1
|
Walker RI. Conserved antigens for enteric vaccines. Vaccine 2025; 50:126828. [PMID: 39914256 PMCID: PMC11878282 DOI: 10.1016/j.vaccine.2025.126828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/25/2025]
Abstract
Enterotoxigenic Escherichia coli (ETEC), Shigella, and Campylobacter have been identified as major causes of diarrheal diseases worldwide. In addition to overt disease and death, they are responsible for stunting in children with the risk of lifelong consequences on health and economic opportunities. All three of these bacterial pathogens, which collectively account for approximately 30 % of the cases of diarrheal diseases, are recognized as antimicrobial resistance (AMR) threats. In spite of the dangers these pathogens represent for both children and adults, there is as yet no licensed vaccine available for any of them. Fortunately, much has been accomplished to identify conserved antigens against each of these pathogens so that now relatively simple vaccines have the potential to be developed into multi-pathogen vaccines which could have a major impact on reduction of diarrheal diseases. Conserved antigens may be used even more efficiently if consolidated and expressed on a cellular vector or as part of a conjugate vaccine. A new mucosal adjuvant, double mutant heat-labile toxin (dmLT), has been shown to not only be among the conserved antigens against ETEC, but to also have properties which drive robust mucosal and systemic immune responses for antigens given orally or intramuscularly. Conserved antigens and the strategies for their use such as co-administration with dmLT will be presented in this review.
Collapse
Affiliation(s)
- Richard I Walker
- PATH, 455 Massachusetts Ave, Suite 1000, Washington, DC, 20001-2621, USA.
| |
Collapse
|
2
|
Gutiérrez RL, Riddle MS, Porter CK, Maciel M, Poole ST, Laird RM, Lane M, Turiansky GW, Jarell A, Savarino SJ. A First in Human Clinical Trial Assessing the Safety and Immunogenicity of Two Intradermally Delivered Enterotoxigenic Escherichia coli CFA/I Fimbrial Tip Adhesin Antigens with and without Heat-Labile Enterotoxin with Mutation LT(R192G). Microorganisms 2023; 11:2689. [PMID: 38004700 PMCID: PMC10672875 DOI: 10.3390/microorganisms11112689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
INTRODUCTION Enterotoxigenic E. coli (ETEC) is a leading cause of diarrhea in travelers as well as for children living in low- to middle-income countries. ETEC adhere to intestinal epithelium via colonization factors (CFs). CFA/I, a common CF, is composed of a polymeric stalk and a tip-localized minor adhesive subunit, CfaE. Vaccine delivery by the transcutaneous immunization of dscCfaE was safe but was poorly immunogenic in a phase 1 trial when administered to volunteers with LTR(192G) and mLT. To potentially enhance the immunogenicity of CfaE while still delivering via a cutaneous route, we evaluated the safety and immunogenicity of two CfaE constructs administered intradermally (ID) with or without mLT. METHODS CfaE was evaluated as a donor strand-complemented construct (dscCfaE) and as a chimeric construct (Chimera) in which dscCfaE replaces the A1 domain of the cholera toxin A subunit and assembles non-covalently with the pentamer of heat-labile toxin B (LTB). Subjects received three ID vaccinations three weeks apart with either dscCfaE (1, 5, and 25 µg) or Chimera (2.6 and 12.9 µg) with and without 0.1 µg of mLT. Subjects were monitored for local and systemic adverse events. Immunogenicity was evaluated by serum and antibody-secreting cell (ASC) responses. RESULTS The vaccine was well-tolerated with predominantly mild and moderate local vaccine site reactions characterized by erythema, induration and post-inflammatory hyperpigmentation. High rates of serologic and ASC responses were seen across study groups with the most robust responses observed in subjects receiving 25 µg of dscCfaE with 0.1 mcg of LT(R192G). CONCLUSION Both ETEC adhesin vaccine prototypes were safe and immunogenic when co-administered with mLT by the ID route. The observed immune responses induced with the high dose of dscCfaE and mLT warrant further assessment in a controlled human infection model.
Collapse
Affiliation(s)
- Ramiro L. Gutiérrez
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
| | - Mark S. Riddle
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
| | - Chad K. Porter
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Milton Maciel
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Steven T. Poole
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Renee M. Laird
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Michelle Lane
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
| | - George W. Turiansky
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Abel Jarell
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Stephen J. Savarino
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
3
|
Prior JT, Limbert VM, Horowitz RM, D'Souza SJ, Bachnak L, Godwin MS, Bauer DL, Harrell JE, Morici LA, Taylor JJ, McLachlan JB. Establishment of isotype-switched, antigen-specific B cells in multiple mucosal tissues using non-mucosal immunization. NPJ Vaccines 2023; 8:80. [PMID: 37258506 PMCID: PMC10231862 DOI: 10.1038/s41541-023-00677-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Although most pathogens infect the human body via mucosal surfaces, very few injectable vaccines can specifically target immune cells to these tissues where their effector functions would be most desirable. We have previously shown that certain adjuvants can program vaccine-specific helper T cells to migrate to the gut, even when the vaccine is delivered non-mucosally. It is not known whether this is true for antigen-specific B cell responses. Here we show that a single intradermal vaccination with the adjuvant double mutant heat-labile toxin (dmLT) induces a robust endogenous, vaccine-specific, isotype-switched B cell response. When the vaccine was intradermally boosted, we detected non-circulating vaccine-specific B cell responses in the lamina propria of the large intestines, Peyer's patches, and lungs. When compared to the TLR9 ligand adjuvant CpG, only dmLT was able to drive the establishment of isotype-switched resident B cells in these mucosal tissues, even when the dmLT-adjuvanted vaccine was administered non-mucosally. Further, we found that the transcription factor Batf3 was important for the full germinal center reaction, isotype switching, and Peyer's patch migration of these B cells. Collectively, these data indicate that specific adjuvants can promote mucosal homing and the establishment of activated, antigen-specific B cells in mucosal tissues, even when these adjuvants are delivered by a non-mucosal route. These findings could fundamentally change the way future vaccines are formulated and delivered.
Collapse
Affiliation(s)
- John T Prior
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Vanessa M Limbert
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Rebecca M Horowitz
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Shaina J D'Souza
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Louay Bachnak
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Matthew S Godwin
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - David L Bauer
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jaikin E Harrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Lisa A Morici
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA.
| |
Collapse
|
4
|
Ochai SO, Crafford JE, Hassim A, Byaruhanga C, Huang YH, Hartmann A, Dekker EH, van Schalkwyk OL, Kamath PL, Turner WC, van Heerden H. Immunological Evidence of Variation in Exposure and Immune Response to Bacillus anthracis in Herbivores of Kruger and Etosha National Parks. Front Immunol 2022; 13:814031. [PMID: 35237267 PMCID: PMC8882864 DOI: 10.3389/fimmu.2022.814031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure and immunity to generalist pathogens differ among host species and vary across spatial scales. Anthrax, caused by a multi-host bacterial pathogen, Bacillus anthracis, is enzootic in Kruger National Park (KNP), South Africa and Etosha National Park (ENP), Namibia. These parks share many of the same potential host species, yet the main anthrax host in one (greater kudu (Tragelaphus strepsiceros) in KNP and plains zebra (Equus quagga) in ENP) is only a minor host in the other. We investigated species and spatial patterns in anthrax mortalities, B. anthracis exposure, and the ability to neutralize the anthrax lethal toxin to determine if observed host mortality differences between locations could be attributed to population-level variation in pathogen exposure and/or immune response. Using serum collected from zebra and kudu in high and low incidence areas of each park (18- 20 samples/species/area), we estimated pathogen exposure from anti-protective antigen (PA) antibody response using enzyme-linked immunosorbent assay (ELISA) and lethal toxin neutralization with a toxin neutralization assay (TNA). Serological evidence of pathogen exposure followed mortality patterns within each system (kudus: 95% positive in KNP versus 40% in ENP; zebras: 83% positive in ENP versus 63% in KNP). Animals in the high-incidence area of KNP had higher anti-PA responses than those in the low-incidence area, but there were no significant differences in exposure by area within ENP. Toxin neutralizing ability was higher for host populations with lower exposure prevalence, i.e., higher in ENP kudus and KNP zebras than their conspecifics in the other park. These results indicate that host species differ in their exposure to and adaptive immunity against B. anthracis in the two parks. These patterns may be due to environmental differences such as vegetation, rainfall patterns, landscape or forage availability between these systems and their interplay with host behavior (foraging or other risky behaviors), resulting in differences in exposure frequency and dose, and hence immune response.
Collapse
Affiliation(s)
- Sunday O. Ochai
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Jan E. Crafford
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Ayesha Hassim
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Charles Byaruhanga
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Yen-Hua Huang
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Axel Hartmann
- Etosha Ecological Institute, Ministry of Environment, Forestry and Tourism, Okaukuejo, Namibia
| | - Edgar H. Dekker
- Office of the State Veterinarian, Department of Agriculture, Forestry and Fisheries, Government of South Africa, Skukuza, South Africa
| | - O. Louis van Schalkwyk
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
- Office of the State Veterinarian, Department of Agriculture, Forestry and Fisheries, Government of South Africa, Skukuza, South Africa
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Pauline L. Kamath
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Wendy C. Turner
- U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Zhao H, Xu Y, Li G, Liu X, Li X, Wang L. Protective efficacy of a novel multivalent vaccine in the prevention of diarrhea induced by enterotoxigenic Escherichia coli in a murine model. J Vet Sci 2021; 23:e7. [PMID: 34841745 PMCID: PMC8799940 DOI: 10.4142/jvs.21068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/26/2021] [Accepted: 09/05/2021] [Indexed: 11/23/2022] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) infection is a primary cause of livestock diarrhea. Therefore, effective vaccines are needed to reduce the incidence of ETEC infection. Objectives Our study aimed to develop a multivalent ETEC vaccine targeting major virulence factors of ETEC, including enterotoxins and fimbriae. Methods SLS (STa-LTB-STb) recombinant enterotoxin and fimbriae proteins (F4, F5, F6, F18, and F41) were prepared to develop a multivalent vaccine. A total of 65 mice were immunized subcutaneously by vaccines and phosphate-buffered saline (PBS). The levels of specific immunoglobulin G (IgG) and pro-inflammatory cytokines were determined at 0, 7, 14 and 21 days post-vaccination (dpv). A challenge test with a lethal dose of ETEC was performed, and the survival rate of the mice in each group was recorded. Feces and intestine washes were collected to measure the concentrations of secretory immunoglobulin A (sIgA). Results Anti-SLS and anti-fimbriae-specific IgG in serums of antigen-vaccinated mice were significantly higher than those of the control group. Immunization with the SLS enterotoxin and multivalent vaccine increased interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) concentrations. Compared to diarrheal symptoms and 100% death of mice in the control group, mice inoculated with the multivalent vaccine showed an 80% survival rate without any symptom of diarrhea, while SLS and fimbriae vaccinated groups showed 60 and 70% survival rates, respectively. Conclusions Both SLS and fimbriae proteins can serve as vaccine antigens, and the combination of these two antigens can elicit stronger immune responses. The results suggest that the multivalent vaccine can be successfully used for preventing ETEC in important livestock.
Collapse
Affiliation(s)
- Hong Zhao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.,Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China
| | - Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xin Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
6
|
Zhao H, Xu Y, Li G, Liu X, Li X, Wang L. Protective efficacy of a novel multivalent vaccine in the prevention of diarrhea induced by enterotoxigenic Escherichia coli in a murine model. J Vet Sci 2021. [DOI: 10.4142/jvs.2021.22.e90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hong Zhao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian 116620, China
| | - Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xin Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
7
|
Khoobbakht D, Zare Karizi S, Motamedi MJ, Kazemi R, Roghanian P, Amani J. Immunogenicity Evaluation of Chimeric Subunit Vaccine Comprising Adhesion Coli Surface Antigens from Enterotoxigenic Escherichia coli. J Mol Microbiol Biotechnol 2020; 29:91-100. [PMID: 32645695 DOI: 10.1159/000509708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/24/2020] [Indexed: 11/19/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common agent of diarrhea morbidity in developing countries. ETEC adheres to host intestinal epithelial cells via various colonization factors. The CooD and CotD proteins play a significant role in bacteria binding to the intestinal epithelial cells as adhesin tip subunits of CS1 and CS2 pili. The purpose here was to design a new construction containing cooD and cotD genes and use several types of bioinformatics software to predict the structural and immunological properties of the designed antigen. The fusion gene was synthesized with codon bias of E. coli in order to increase the expression level of the protein. The amino acid sequences, protein structure, and immunogenicity properties of potential antigens were analyzed in silico. The chimeric protein was expressed in E. coliBL21 (DE3). The antigenicity of the recombinant proteins was verified by Western blotting and ELISA. In order to assess the induced immunity, the immunized mice were challenged with wild-type ETEC by an intraperitoneal route. Immunological analyses showed the production of a high titer of IgG serum with no sign of serum-mucosal IgA antibody response. The result of the challenge assay showed that 30% of immunized mice survived. The results of this study showed that CooD-CotD recombinant protein can stimulate immunity against ETEC. The designed chimera could be a prototype for the subunit vaccine, which is worthy of further consideration.
Collapse
Affiliation(s)
- Dorna Khoobbakht
- Department of Genetics, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva, Branch of Islamic Azad University, Varamin, Iran
| | | | | | - Pooneh Roghanian
- Department of Genetics, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
8
|
Gary EN, Kathuria N, Makurumidze G, Curatola A, Ramamurthi A, Bernui ME, Myles D, Yan J, Pankhong P, Muthumani K, Haddad E, Humeau L, Weiner DB, Kutzler MA. CCR10 expression is required for the adjuvant activity of the mucosal chemokine CCL28 when delivered in the context of an HIV-1 Env DNA vaccine. Vaccine 2020; 38:2626-2635. [PMID: 32057572 PMCID: PMC10681704 DOI: 10.1016/j.vaccine.2020.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/05/2019] [Accepted: 01/07/2020] [Indexed: 01/07/2023]
Abstract
An effective prophylactic vaccine targeting HIV must induce a robust humoral response and must direct the bulk of this response to the mucosa-the primary site of HIV transmission. The chemokine, CCL28, is secreted by epithelial cells at mucosal surfaces and recruits' cells expressing its receptor CCR10. CCR10 is predominantly expressed by IgA + ASCs. We hypothesized that co-immunization with plasmid DNA encoding consensus envelope antigens with plasmid-encoded CCL28 would enhance anti-HIV IgA responses at mucosal surfaces. Indeed, animals receiving pCCL28 and pEnvA/C had significantly increased HIV-specific IgA in fecal extract. Surprisingly, CCL28 co-immunization induced a significant increase in anti-HIV IgG in the serum in mice compared to those receiving pEnvA/C alone. These robust antibody responses were not associated with changes in the frequency of germinal center B cells but depended upon the expression of CCR10, as these responses we abolished in CCR10-deficient animals. Finally, immunization with CCL28 led to increased frequencies in HIV-specific CCR10 + and CCR10 + IgA + B cells in the small intestine and Peyer's patches of vaccinated animals as compared to those receiving pEnvA/C alone. These data indicate that CCL28 administration can enhance antigen-specific humoral responses systemically and at mucosal surfaces.
Collapse
Affiliation(s)
- E N Gary
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - N Kathuria
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - G Makurumidze
- The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - A Curatola
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - A Ramamurthi
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - M E Bernui
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States; The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - D Myles
- The Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, PA, United States
| | - J Yan
- Inovio Pharmaceuticals, Blue Bell, PA, United States
| | - P Pankhong
- The Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, PA, United States
| | - K Muthumani
- The Wistar Institute, Philadelphia, PA, United States
| | - E Haddad
- The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - L Humeau
- Inovio Pharmaceuticals, Blue Bell, PA, United States
| | - D B Weiner
- The Wistar Institute, Philadelphia, PA, United States
| | - M A Kutzler
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States; The Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
9
|
Rollenhagen JE, Woods CM, O'Dowd A, Poole ST, Tian JH, Guebre-Xabier M, Ellingsworth L, Prouty MG, Glenn G, Savarino SJ. Evaluation of transcutaneous immunization as a delivery route for an enterotoxigenic E. coli adhesin-based vaccine with CfaE, the colonization factor antigen 1 (CFA/I) tip adhesin. Vaccine 2019; 37:6134-6138. [PMID: 31492474 DOI: 10.1016/j.vaccine.2019.08.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
Abstract
dscCfaE is a recombinant form of the CFA/I tip adhesin CfaE, expressed by a large proportion of enterotoxigenic E. coli (ETEC). It is highly immunogenic by the intranasal route in mice and Aotus nancymaae, protective against challenge with CFA/I+ ETEC in an A. nancymaae challenge model, and antibodies to dscCfaE passively protect against CFA/I+ ETEC challenge in human volunteers. Here, we show that transcutaneous immunization (TCI) with dscCfaE in mice resulted in strong anti-CfaE IgG serum responses, with a clear dose-response effect. Co-administration with heat-labile enterotoxin (LT) resulted in enhanced immune responses over those elicited by dscCfaE alone and strong anti-LT antibody responses. The highest dose of dscCfaE administered transcutaneously with LT elicited strong HAI titers, a surrogate for the neutralization of intestinal adhesion. Fecal anti-adhesin IgG and IgA antibody responses were also induced. These findings support the feasibility of TCI for the application of an adhesin-toxin based ETEC vaccine.
Collapse
Affiliation(s)
- Julianne E Rollenhagen
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Colleen M Woods
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Aisling O'Dowd
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Steven T Poole
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Jing-Hui Tian
- Iomai Corporation, 20 Firstfield Road, Suite 250, Gaithersburg, MD 20878, USA
| | - Mimi Guebre-Xabier
- Iomai Corporation, 20 Firstfield Road, Suite 250, Gaithersburg, MD 20878, USA
| | - Larry Ellingsworth
- Iomai Corporation, 20 Firstfield Road, Suite 250, Gaithersburg, MD 20878, USA
| | - Michael G Prouty
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | - Greg Glenn
- Iomai Corporation, 20 Firstfield Road, Suite 250, Gaithersburg, MD 20878, USA
| | - Stephen J Savarino
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
10
|
Frederick DR, Goggins JA, Sabbagh LM, Freytag LC, Clements JD, McLachlan JB. Adjuvant selection regulates gut migration and phenotypic diversity of antigen-specific CD4 + T cells following parenteral immunization. Mucosal Immunol 2018; 11:549-561. [PMID: 28792004 PMCID: PMC6252260 DOI: 10.1038/mi.2017.70] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 06/28/2017] [Indexed: 02/04/2023]
Abstract
Infectious diarrheal diseases are the second leading cause of death in children under 5 years, making vaccines against these diseases a high priority. It is known that certain vaccine adjuvants, chiefly bacterial ADP-ribosylating enterotoxins, can induce mucosal antibodies when delivered parenterally. Based on this, we reasoned vaccine-specific mucosal cellular immunity could be induced via parenteral immunization with these adjuvants. Here, we show that, in contrast to the Toll-like receptor-9 agonist CpG, intradermal immunization with non-toxic double-mutant heat-labile toxin (dmLT) from enterotoxigenic Escherichia coli drove endogenous, antigen-specific CD4+ T cells to expand and upregulate the gut-homing integrin α4β7. This was followed by T-cell migration into gut-draining lymph nodes and both small and large intestines. We also found that dmLT produces a balanced T-helper 1 and 17 (Th1 and Th17) response, whereas T cells from CpG immunized mice were predominantly Th1. Immunization with dmLT preferentially engaged CD103+ dendritic cells (DCs) compared with CpG, and mice deficient in CD103+ DCs were unable to fully license antigen-specific T-cell migration to the intestinal mucosae following parenteral immunization. This work has the potential to redirect the design of existing and next generation vaccines to elicit pathogen-specific immunity in the intestinal tract with non-mucosal immunization.
Collapse
Affiliation(s)
- Daniel R. Frederick
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA 70112
| | - J. Alan Goggins
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA 70112
| | - Leila M. Sabbagh
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA 70112
| | - Lucy C. Freytag
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA 70112
| | - John D. Clements
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA 70112
| | - James B. McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA 70112
| |
Collapse
|
11
|
|
12
|
Gheibi Hayat SM, Mousavi Gargari SL, Nazarian S. Construction and immunogenic properties of a chimeric protein comprising CfaE, CfaB and LTB against Enterotoxigenic Escherichia coli. Biologicals 2016; 44:503-510. [DOI: 10.1016/j.biologicals.2016.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 09/05/2016] [Accepted: 09/09/2016] [Indexed: 01/17/2023] Open
|
13
|
Pathogen-induced secretory diarrhea and its prevention. Eur J Clin Microbiol Infect Dis 2016; 35:1721-1739. [DOI: 10.1007/s10096-016-2726-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022]
|
14
|
Comparative Adjuvant Effects of Type II Heat-Labile Enterotoxins in Combination with Two Different Candidate Ricin Toxin Vaccine Antigens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1285-93. [PMID: 26491037 DOI: 10.1128/cvi.00402-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022]
Abstract
Type II heat-labile enterotoxins (HLTs) constitute a promising set of adjuvants that have been shown to enhance humoral and cellular immune responses when coadministered with an array of different proteins, including several pathogen-associated antigens. However, the adjuvant activities of the four best-studied HLTs, LT-IIa, LT-IIb, LT-IIb(T13I), and LT-IIc, have never been compared side by side. We therefore conducted immunization studies in which LT-IIa, LT-IIb, LT-IIb(T13I), and LT-IIc were coadministered by the intradermal route to mice with two clinically relevant protein subunit vaccine antigens derived from the enzymatic A subunit (RTA) of ricin toxin, RiVax and RVEc. The HLTs were tested with low and high doses of antigen and were assessed for their abilities to stimulate antigen-specific serum IgG titers, ricin toxin-neutralizing activity (TNA), and protective immunity. We found that all four HLTs tested were effective adjuvants when coadministered with RiVax or RVEc. LT-IIa was of particular interest because as little as 0.03 μg when coadministered with RiVax or RVEc proved effective at augmenting ricin toxin-specific serum antibody titers with nominal evidence of local inflammation. Collectively, these results justify the need for further studies into the mechanism(s) underlying LT-IIa adjuvant activity, with the long-term goal of evaluating LT-IIa's activity in humans.
Collapse
|
15
|
Current Progress in Developing Subunit Vaccines against Enterotoxigenic Escherichia coli-Associated Diarrhea. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:983-91. [PMID: 26135975 DOI: 10.1128/cvi.00224-15] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diarrhea continues to be a leading cause of death in children <5 years of age, and enterotoxigenic Escherichia coli (ETEC) is the most common bacterial cause of children's diarrhea. Currently, there are no available vaccines against ETEC-associated diarrhea. Whole-cell vaccine candidates have been under development but require further improvements because they provide inadequate protection and produce unwanted adverse effects. Meanwhile, a newer approach using polypeptide or subunit vaccine candidates focusing on ETEC colonization factor antigens (CFAs) and enterotoxins, the major virulence determinants of ETEC diarrhea, shows substantial promise. A conservative CFA/I adhesin tip antigen and a CFA MEFA (multiepitope fusion antigen) were shown to induce cross-reactive antiadhesin antibodies that protected against adherence by multiple important CFAs. Genetic fusion of toxoids derived from ETEC heat-labile toxin (LT) and heat-stable toxin (STa) induced antibodies neutralizing both enterotoxins. Moreover, CFA-toxoid MEFA polypeptides, generated by fusing CFA MEFA to an STa-LT toxoid fusion, induced antiadhesin antibodies that broadly inhibited adherence of the seven most important ETEC CFAs associated with about 80% of the diarrhea cases caused by ETEC strains with known CFAs. This same antigen preparation also induced antitoxin antibodies that neutralized both toxins that are associated with all cases of ETEC diarrhea. Results from these studies suggest that polypeptide or subunit vaccines have the potential to effectively protect against ETEC diarrhea. In addition, novel adhesins and mucin proteases have been investigated as potential alternatives or, more likely, additional antigens for ETEC subunit vaccine development.
Collapse
|
16
|
Alerasol M, Mousavi Gargari SL, Nazarian S, Bagheri S. Immunogenicity of a fusion protein comprising coli surface antigen 3 and labile B subunit of enterotoxigenic Escherichia coli. IRANIAN BIOMEDICAL JOURNAL 2014; 18:212-218. [PMID: 25326019 PMCID: PMC4225060 DOI: 10.6091/ibj.1344.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Enterotoxigenic Escherichia coli (ETEC) strains are the major causes of diarrheal disease in humans and animals. Colonization factors and enterotoxins are the major virulence factors in ETEC pathogenesis. For the broad-spectrum protection against ETEC, one could focus on colonization factors and non-toxic heat labile as a vaccine candidate. Methods: A fusion protein is composed of a major fimbrial subunit of coli surface antigen 3, and the heat-labile B subunit (LTB) was constructed as a chimeric immunogen. For optimum level expression of protein, the gene was synthesized with codon bias of E. coli. Also, recombinant protein was expressed in E. coli BL21DE3. ELISA and Western tests were carried out for determination of antigen and specificity of antibody raised against recombinant protein in animals. The anti-toxicity and anti-adherence properties of the immune sera against ETEC were also evaluated. Results: Immunological analyses showed the production of high titer of specific antibody in immunized mice. The built-in LTB retains native toxin properties which were approved by GM1 binding assay. Pre-treatment of the ETEC cells with anti-sera significantly decreased their adhesion to Caco-2 cells. Conclusion: The results indicated the efficacy of the recombinant chimeric protein as an effective immunogen inducing strong humoral response. The designated chimer would be an interesting prototype for a vaccine and worthy of further investigation.
Collapse
|
17
|
Bagheri S, Mousavi Gargari SL, Rasooli I, Nazarian S, Alerasol M. A CssA, CssB and LTB chimeric protein induces protection against Enterotoxigenic Escherichia coli. Braz J Infect Dis 2014; 18:308-14. [PMID: 24389278 PMCID: PMC9427529 DOI: 10.1016/j.bjid.2013.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 06/29/2013] [Accepted: 07/16/2013] [Indexed: 12/26/2022] Open
Abstract
Objectives Enterotoxigenic Escherichia coli (ETEC), a major cause of diarrhea in children under 5, is an important agent for traveler's diarrhea. Heat-labile enterotoxin (LT) and colonization factors (CFs) are two main virulence mechanisms in ETEC. CS6 is one of the most prevalent CFs consisting of two structural subunits viz., CssA, CssB, necessary for attachment to the intestinal cells. Methods In the present research, a chimeric trivalent protein composed of CssB, CssA and LTB was constructed. The chimeric gene was synthesized with codon bias of E. coli for enhanced expression of the protein. Recombinant proteins were expressed and purified. Mice were immunized with the recombinant protein. The antibody titer and specificity of the immune sera were analyzed by ELISA and Western blotting. Efficiency of the immune sera against ETEC was evaluated. Results Antibody induction was followed by immunization of mice with the chimeric protein. Pretreatment of the ETEC cells with immunized animal antisera remarkably decreased their adhesion to Caco-2 cells. Discussion The results indicate efficacy of the recombinant chimeric protein as an effective immunogen, which induces strong humoral response as well as protection against ETEC adherence and toxicity.
Collapse
|
18
|
Alam MM, Aktar A, Afrin S, Rahman MA, Aktar S, Uddin T, Rahman MA, Mahbuba DA, Chowdhury F, Khan AI, Bhuiyan TR, Begum YA, Ryan ET, Calderwood SB, Svennerholm AM, Qadri F. Antigen-specific memory B-cell responses to enterotoxigenic Escherichia coli infection in Bangladeshi adults. PLoS Negl Trop Dis 2014; 8:e2822. [PMID: 24762744 PMCID: PMC3998937 DOI: 10.1371/journal.pntd.0002822] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/11/2014] [Indexed: 11/18/2022] Open
Abstract
Background Multiple infections with diverse enterotoxigenic E. coli (ETEC) strains lead to broad spectrum protection against ETEC diarrhea. However, the precise mechanism of protection against ETEC infection is still unknown. Therefore, memory B cell responses and affinity maturation of antibodies to the specific ETEC antigens might be important to understand the mechanism of protection. Methodology In this study, we investigated the heat labile toxin B subunit (LTB) and colonization factor antigens (CFA/I and CS6) specific IgA and IgG memory B cell responses in Bangladeshi adults (n = 52) who were infected with ETEC. We also investigated the avidity of IgA and IgG antibodies that developed after infection to these antigens. Principal Findings Patients infected with ETEC expressing LT or LT+heat stable toxin (ST) and CFA/I group or CS6 colonization factors developed LTB, CFA/I or CS6 specific memory B cell responses at day 30 after infection. Similarly, these patients developed high avidity IgA and IgG antibodies to LTB, CFA/I or CS6 at day 7 that remained significantly elevated at day 30 when compared to the avidity of these specific antibodies at the acute stage of infection (day 2). The memory B cell responses, antibody avidity and other immune responses to CFA/I not only developed in patients infected with ETEC expressing CFA/I but also in those infected with ETEC expressing CFA/I cross-reacting epitopes. We also detected a significant positive correlation of LTB, CFA/I and CS6 specific memory B cell responses with the corresponding increase in antibody avidity. Conclusion This study demonstrates that natural infection with ETEC induces memory B cells and high avidity antibodies to LTB and colonization factor CFA/I and CS6 antigens that could mediate anamnestic responses on re-exposure to ETEC and may help in understanding the requirements to design an effective vaccination strategies. Enterotoxigenic Escherichia coli (ETEC) is a non-invasive pathogen causing diarrhea in children as well as in adults and travelers in developing countries. After colonizing the intestine using colonization factors, the organisms secrete heat-stable (ST) and/or heat-labile (LT) enterotoxin to cause watery diarrhea. Natural infection with ETEC provides protection against subsequent infection; however, the precise mechanism is unknown. In this study, we have shown that adult patients with diarrhea infected with ETEC develop toxin (LTB) and colonization factor (CFA/I and CS6) specific memory B cell responses as well as highly avid antigen-specific antibodies. The antibody avidity indices were shown to be positively associated with memory B cell responses, suggesting that these processes may occur in concert. This study encourages further evaluation of such responses in children as well as in vaccinees.
Collapse
Affiliation(s)
- Mohammad Murshid Alam
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Amena Aktar
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sadia Afrin
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Arif Rahman
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sarmin Aktar
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Taher Uddin
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - M. Arifur Rahman
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Deena Al Mahbuba
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Fahima Chowdhury
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful Islam Khan
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Taufiqur Rahman Bhuiyan
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin Ara Begum
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ann-Mari Svennerholm
- Gothenburg University Vaccine Research Institute (GUVAX), Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Firdausi Qadri
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- * E-mail:
| |
Collapse
|
19
|
Sizemore DR, Roland KL, Ryan US. Enterotoxigenic Escherichia coli virulence factors and vaccine approaches. Expert Rev Vaccines 2014; 3:585-95. [PMID: 15485338 DOI: 10.1586/14760584.3.5.585] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is recognized as one of the major causes of infectious diarrhea in developing countries. Worldwide, the incidence of ETEC infections is estimated to result in 650 million cases of diarrhea and 380,000 deaths in children under 5 years of age. ETEC is also an important cause of travelers' diarrhea in people traveling to endemic regions of the world. Although ETEC is an uncommon cause of infections in the USA, there have been 14 reported outbreaks of ETEC in the USA and seven on cruise ships over the 20-year period between 1975 and 1995. ETEC strains are comprised of a large number of serotypes that produce a variety of colonization factors and enterotoxins. On infection, ETEC first establishes itself by adhering to the epithelium of the small intestine via one or more colonization factor antigens or coli surface proteins. Once established, ETEC expresses one or more enterotoxin(s), which results in the production of secretory diarrhea. While the need for an efficacious, easily administered vaccine is great, there are currently no licensed ETEC vaccines available for use in endemic countries or for US travelers.
Collapse
|
20
|
|
21
|
Zhang W, Sack DA. Progress and hurdles in the development of vaccines against enterotoxigenic Escherichia coli in humans. Expert Rev Vaccines 2012; 11:677-94. [PMID: 22873126 DOI: 10.1586/erv.12.37] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diarrhea is the second leading cause of death in children younger than 5 years. Enterotoxigenic Escherichia coli (ETEC) strains are the most common bacterial cause of diarrhea in young children living in endemic countries and children and adults traveling to these areas. Pathogenesis of ETEC diarrhea has been well studied, and the key virulence factors are bacterial colonization factor antigens and enterotoxins produced by ETEC strains. Colonization factor antigens mediate bacteria attachment to host small intestinal epithelial cells and subsequent colonization, whereas enterotoxins including heat-labile and heat-stable toxins disrupt fluid homeostasis in host epithelial cells, which leads to fluid and electrolyte hypersecretion and diarrhea. Vaccines stimulating host anti-adhesin immunity to block ETEC attachment and colonization and also antitoxin immunity to neutralize enterotoxicity are considered optimal for prevention of ETEC diarrhea. Vaccines under development have been designed to stimulate local intestinal immunity and are either oral vaccines or transcutaneous vaccines. A cholera vaccine (Dukoral®) does stimulate anti-heat-labile toxin immunity and is licensed for short-term protection of ETEC diarrhea in travelers in some countries. Newer experimental ETEC vaccine candidates are being developed with hope to provide long-lasting and more broad-based protection against ETEC. Some have shown promising results in safety and immunogenicity studies and are approaching field trials for efficacy. A key problem is the development of a vaccine that is both practical and inexpensive so that it can be affordable for use in poor countries where it is needed.
Collapse
Affiliation(s)
- Weiping Zhang
- Veterinary & Biomedical Sciences Department, South Dakota State University, Brookings, SD, USA.
| | | |
Collapse
|
22
|
Kathuria N, Kraynyak KA, Carnathan D, Betts M, Weiner DB, Kutzler MA. Generation of antigen-specific immunity following systemic immunization with DNA vaccine encoding CCL25 chemokine immunoadjuvant. Hum Vaccin Immunother 2012; 8:1607-19. [PMID: 23151454 DOI: 10.4161/hv.22574] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A significant hurdle in vaccine development for many infectious pathogens is the ability to generate appropriate immune responses at the portal of entry, namely mucosal sites. The development of vaccine approaches resulting in secretory IgA and mucosal cellular immune responses against target pathogens is of great interest and in general, requires live viral infection at mucosal sites. Using HIV-1 and influenza A antigens as models, we report here that a novel systemically administered DNA vaccination strategy utilizing co-delivery of the specific chemokine molecular adjuvant CCL25 (TECK) can produce antigen-specific immune responses at distal sites including the lung and mesenteric lymph nodes in mice. The targeted vaccines induced infiltration of cognate chemokine receptor, CCR9+/CD11c+ immune cells to the site of immunization. Furthermore, data shows enhanced IFN-λ secretion by antigen-specific CD3+/CD8+ and CD3+/CD4+ T cells, as well as elevated HIV-1-specific IgG and IgA responses in secondary lymphoid organs, peripheral blood, and importantly, at mucosal sites. These studies have significance for the development of vaccines and therapeutic strategies requiring mucosal immune responses and represent the first report of the use of plasmid co-delivery of CCL25 as part of the DNA vaccine strategy to boost systemic and mucosal immune responses following intramuscular injection.
Collapse
Affiliation(s)
- Noshin Kathuria
- Department of Microbiology and Immunology; Drexel University College of Medicine; Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
23
|
Karande P, Mitragotri S. Transcutaneous immunization: an overview of advantages, disease targets, vaccines, and delivery technologies. Annu Rev Chem Biomol Eng 2012; 1:175-201. [PMID: 22432578 DOI: 10.1146/annurev-chembioeng-073009-100948] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Skin is an immunologically active tissue composed of specialized cells and agents that capture and process antigens to confer immune protection. Transcutaneous immunization takes advantage of the skin immune network by inducing a protective immune response against topically applied antigens. This mode of vaccination presents a novel and attractive approach for needle-free immunization that is safe, noninvasive, and overcomes many of the limitations associated with needle-based administrations. In this review we will discuss the developments in the field of transcutaneous immunization in the past decade with special emphasis on disease targets and vaccine delivery technologies. We will also briefly discuss the challenges that need to be overcome to translate early laboratory successes in transcutaneous immunization into the development of effective clinical prophylactics.
Collapse
Affiliation(s)
- Pankaj Karande
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | | |
Collapse
|
24
|
Cholera toxin activates nonconventional adjuvant pathways that induce protective CD8 T-cell responses after epicutaneous vaccination. Proc Natl Acad Sci U S A 2012; 109:2072-7. [PMID: 22308317 DOI: 10.1073/pnas.1105771109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ability to induce humoral and cellular immunity via antigen delivery through the unbroken skin (epicutaneous immunization, EPI) has immediate relevance for vaccine development. However, it is unclear which adjuvants induce protective memory CD8 T-cell responses by this route, and the molecular and cellular requirements for priming through intact skin are not defined. We report that cholera toxin (CT) is superior to other adjuvants in its ability to prime memory CD8 T cells that control bacterial and viral challenges. Epicutaneous immunization with CT does not require engagement of classic toll-like receptor (TLR) and inflammasome pathways and, surprisingly, is independent of skin langerin-expressing cells (including Langerhans cells). However, CT adjuvanticity required type-I IFN sensitivity, participation of a Batf3-dependent dendritic cell (DC) population and engagement of CT with suitable gangliosides. Chemoenzymatic generation of CT-antigen fusion proteins led to efficient priming of the CD8 T-cell responses, paving the way for development of this immunization strategy as a therapeutic option.
Collapse
|
25
|
Abstract
It is now clear that the epidermis has an active role in local immune responses in the skin. Keratinocytes are involved early in inflammation by providing first-line innate mechanisms and, in addition, can contribute to adaptive immune responses that may be associated with clinical disease. Moreover, keratinocytes are capable of enhancing and shaping the outcome of inflammation in response to stimuli and promoting particular types of immune bias. Through understanding the underlying mechanisms, the role of keratinocytes in disease pathogenesis will be further defined, which is likely to lead to the identification of potential targets for prophylactic or therapeutic intervention.
Collapse
Affiliation(s)
- Danuta Gutowska-Owsiak
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
26
|
Anthrax vaccine antigen-adjuvant formulations completely protect New Zealand white rabbits against challenge with Bacillus anthracis Ames strain spores. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 19:11-6. [PMID: 22089245 DOI: 10.1128/cvi.05376-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In an effort to develop an improved anthrax vaccine that shows high potency, five different anthrax protective antigen (PA)-adjuvant vaccine formulations that were previously found to be efficacious in a nonhuman primate model were evaluated for their efficacy in a rabbit pulmonary challenge model using Bacillus anthracis Ames strain spores. The vaccine formulations include PA adsorbed to Alhydrogel, PA encapsulated in liposomes containing monophosphoryl lipid A, stable liposomal PA oil-in-water emulsion, PA displayed on bacteriophage T4 by the intramuscular route, and PA mixed with Escherichia coli heat-labile enterotoxin administered by the needle-free transcutaneous route. Three of the vaccine formulations administered by the intramuscular or the transcutaneous route as a three-dose regimen induced 100% protection in the rabbit model. One of the formulations, liposomal PA, also induced significantly higher lethal toxin neutralizing antibodies than PA-Alhydrogel. Even 5 months after the second immunization of a two-dose regimen, rabbits vaccinated with liposomal PA were 100% protected from lethal challenge with Ames strain spores. In summary, the needle-free skin delivery and liposomal formulation that were found to be effective in two different animal model systems appear to be promising candidates for next-generation anthrax vaccine development.
Collapse
|
27
|
Serum antibodies protect against intraperitoneal challenge with enterotoxigenic Escherichia coli. J Biomed Biotechnol 2011; 2011:632396. [PMID: 22007145 PMCID: PMC3191916 DOI: 10.1155/2011/632396] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/27/2011] [Accepted: 06/17/2011] [Indexed: 12/27/2022] Open
Abstract
To assess whether anticolonization factor antigen I (CFA/I) fimbriae antibodies (Abs) from enterotoxigenic Escherichia coli (ETEC) can protect against various routes of challenge, BALB/c mice were immunized with a live attenuated Salmonella vaccine vector expressing CFA/I fimbriae. Vaccinated mice elicited elevated systemic IgG and mucosal IgA Abs, unlike mice immunized with the empty Salmonella vector. Mice were challenged with wild-type ETEC by the oral, intranasal (i.n.), and intraperitoneal (i.p.) routes. Naïve mice did not succumb to oral challenge, but did to i.n. challenge, as did immunized mice; however, vaccinated mice were protected against i.p. ETEC challenge. Two intramuscular (i.m.) immunizations with CFA/I fimbriae without adjuvant conferred 100% protection against i.p. ETEC challenge, while a single 30 μg dose conferred 88% protection. Bactericidal assays showed that ETEC is highly sensitive to anti-CFA/I sera. These results suggest that parenteral immunization with purified CFA/I fimbriae can induce protective Abs and may represent an alternative method to elicit protective Abs for passive immunity to ETEC.
Collapse
|
28
|
Kraynyak KA, Kutzler MA, Cisper NJ, Khan AS, Draghia-Akli R, Sardesal NY, Lewis MG, Yan J, Weiner DB. Systemic immunization with CCL27/CTACK modulates immune responses at mucosal sites in mice and macaques. Vaccine 2010; 28:1942-51. [PMID: 20188250 PMCID: PMC4396814 DOI: 10.1016/j.vaccine.2009.10.095] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Plasmid DNA is a promising vaccine platform that has been shown to be safe and able to be administered repeatedly without vector interference. Enhancing the potency of DNA vaccination through co-delivery of molecular adjuvants is one strategy currently under investigation. Here we describe the use of the novel chemokine adjuvant CCL27/CTACK to enhance immune responses to an HIV-1 or SIV antigen in mice and rhesus macaques. CCL27 has been shown to play a role in inflammatory responses through chemotaxis of CCR10+ cells, and we hypothesized that CCL27 may modulate adaptive immune responses. Immunizations in mice with HIV-1gag/CCL27 enhanced immune responses both at peripheral and, surprisingly, at mucosal sites. To confirm these findings in a large-animal model, we created optimized CCL27 and SIV antigenic plasmid constructs for rhesus macaques. 10 macaques (n=5/group) were immunized intramuscularly with 1mg/construct of antigenic plasmids+/-CCL27 with electroporation. We observed significant IFN-gamma secretion and CD8+ T-cell proliferation in peripheral blood. Interestingly, CCL27 co-immunized macaques exhibited a trend toward greater effector CD4+ T cells in the bronchiolar lavage (BAL). CCL27 co-delivery also elicited greater antigen-specific IgA at unique sites including BAL and fecal samples but not in the periphery. Future studies incorporating CCL27 as an adjuvant in vaccine or therapy models where eliciting immune responses in the lung are warranted.
Collapse
Affiliation(s)
- Kimberly A. Kraynyak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Michele A. Kutzler
- Department of Infectious Diseases, Drexel University College of Medicine, Philadelphia, PA
| | - Neil J. Cisper
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | | | | | | | | | - Jian Yan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - David B. Weiner
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
29
|
Abstract
The skin has been investigated as a site for vaccine delivery only since the late 1990s. However, much has been discovered about the cell populations that reside in the skin, their active role in immune responses, and the fate of trans- cutaneously applied antigens. Transcutaneous immunization (TCI) is a safe, effective means of inducing immune responses against a number of pathogens. One of the most notable benefits of TCI is the induction of immune responses in both systemic and mucosal compartments. This chapter focuses on the transport of antigen into and beyond intact skin, the cutaneous sentinel cell populations that play a role in TCI, and the types of mucosal immune responses that have been generated. A number of in vivo studies in murine models have provided information about the broad responses induced by TCI. Cellular and humoral responses and protection against challenge have been noted in the gastrointestinal, reproductive, and respiratory tracts. Clinical trials have demonstrated the benefits of this vaccine delivery route in humans. As with other routes of immunization, the type of vaccine formulation and choice of adjuvant may be critical for achieving appropriate responses and can be tailored to activate specific immune-responsive cells in the skin to increase the efficacy of TCI against mucosal pathogens.
Collapse
|
30
|
Toxin-mediated effects on the innate mucosal defenses: implications for enteric vaccines. Infect Immun 2009; 77:5206-15. [PMID: 19737904 DOI: 10.1128/iai.00712-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent studies have confirmed older observations that the enterotoxins enhance enteric bacterial colonization and pathogenicity. How and why this happens remains unknown at this time. It appears that toxins such as the heat-labile enterotoxin (LT) from Escherichia coli can help overcome the innate mucosal barrier as a key step in enteric pathogen survival. We review key observations relevant to the roles of LT and cholera toxin in protective immunity and the effects of these toxins on innate mucosal defenses. We suggest either that toxin-mediated fluid secretion mechanically disrupts the mucus layer or that toxins interfere with innate mucosal defenses by other means. Such a breach gives pathogens access to the enterocyte, leading to binding and pathogenicity by enterotoxigenic E. coli (ETEC) and other organisms. Given the common exposure to LT(+) ETEC by humans visiting or residing in regions of endemicity, barrier disruption should frequently render the gut vulnerable to ETEC and other enteric infections. Conversely, toxin immunity would be expected to block this process by protecting the innate mucosal barrier. Years ago, Peltola et al. (Lancet 338:1285-1289, 1991) observed unexpectedly broad protective effects against LT(+) ETEC and mixed infections when using a toxin-based enteric vaccine. If toxins truly exert barrier-disruptive effects as a key step in pathogenesis, then a return to classic toxin-based vaccine strategies for enteric disease is warranted and can be expected to have unexpectedly broad protective effects.
Collapse
|
31
|
DuPont HL, Ericsson CD, Farthing MJG, Gorbach S, Pickering LK, Rombo L, Steffen R, Weinke T. Expert review of the evidence base for prevention of travelers' diarrhea. J Travel Med 2009; 16:149-60. [PMID: 19538575 DOI: 10.1111/j.1708-8305.2008.00299.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The most frequent illness among persons traveling from developed to developing countries is travelers' diarrhea. Travelers to high-risk regions traditionally have been educated to exercise care in food and beverage selection. Innovative research is needed to identify ways to motivate people to exercise this care and to determine its value. Chemoprophylaxis can be recommended for certain groups while monitoring for safety, drug resistance, and efficacy against all forms of bacterial diarrhea. Research to evaluate the value of immunoprophylaxis is recommended. In the following document, the authors used an evidence base when available to determine strength and quality of evidence and when data were lacking, the panel experts provided consensus opinion.
Collapse
Affiliation(s)
- Herbert L DuPont
- Center for Infectious Disease, University of Texas School of Public Health at Houston, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Skountzou I, Kang SM. Transcutaneous Immunization with Influenza Vaccines. Curr Top Microbiol Immunol 2009; 333:347-68. [DOI: 10.1007/978-3-540-92165-3_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Thompson JM, Nicholson MG, Whitmore AC, Zamora M, West A, Iwasaki A, Staats HF, Johnston RE. Nonmucosal alphavirus vaccination stimulates a mucosal inductive environment in the peripheral draining lymph node. THE JOURNAL OF IMMUNOLOGY 2008; 181:574-85. [PMID: 18566424 DOI: 10.4049/jimmunol.181.1.574] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The strongest mucosal immune responses are induced following mucosal Ag delivery and processing in the mucosal lymphoid tissues, and much is known regarding the immunological parameters which regulate immune induction via this pathway. Recently, experimental systems have been identified in which mucosal immune responses are induced following nonmucosal Ag delivery. One such system, footpad delivery of Venezuelan equine encephalitis virus replicon particles (VRP), led to the local production of IgA Abs directed against both expressed and codelivered Ags at multiple mucosal surfaces in mice. In contrast to the mucosal delivery pathway, little is known regarding the lymphoid structures and immunological components that are responsible for mucosal immune induction following nonmucosal delivery. In this study, we have used footpad delivery of VRP to probe the constituents of this alternative pathway for mucosal immune induction. Following nonmucosal VRP delivery, J chain-containing, polymeric IgA Abs were detected in the peripheral draining lymph node (DLN), at a time before IgA detection at mucosal surfaces. Further analysis of the VRP DLN revealed up-regulated alpha4beta7 integrin expression on DLN B cells, expression of mucosal addressin cell adhesion molecule 1 on the DLN high endothelia venules, and production of IL-6 and CC chemokines, all characteristics of mucosal lymphoid tissues. Taken together, these results implicate the peripheral DLN as an integral component of an alternative pathway for mucosal immune induction. A further understanding of the critical immunological and viral components of this pathway may significantly improve both our knowledge of viral-induced immunity and the efficacy of viral-based vaccines.
Collapse
Affiliation(s)
- Joseph M Thompson
- Department of Microbiology and Immunology, Carolina Vaccine Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Frerichs DM, Ellingsworth LR, Frech SA, Flyer DC, Villar CP, Yu J, Glenn GM. Controlled, single-step, stratum corneum disruption as a pretreatment for immunization via a patch. Vaccine 2008; 26:2782-7. [DOI: 10.1016/j.vaccine.2008.02.070] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/21/2008] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
|
35
|
Abstract
BACKGROUND Renewed interest in the use of antibiotics to prevent travellers' diarrhoea has occurred with the availability of non-absorbed (<0.4%) rifaximin, and with evidence that a subgroup of travellers with diarrhoea have progression of their illnesses to postinfectious irritable bowel syndrome. AIM To summarize recently published information and make recommendations on travellers' diarrhoea prevention. METHODS PubMed was reviewed on 2 January 2008 for 255 articles on the topic of 'travellers diarrhoea' published beginning with 2000 along with the author's extensive file on prevention of travellers' diarrhoea. RESULTS Exercising care in food and beverage selection, while of unproven value, is recommended during travel to high-risk areas of Latin America, Southern Asia or Africa. An algorithm is presented to identify future travellers, for which chemoprophylaxis is appropriate. The preferred drug for prevention of travellers' diarrhoea is rifaximin, with bismuth subsalicylate or a fluoroquinolone also being effective. Vaccines against the principal cause of travellers' diarrhoea, enterotoxigenic Escherichia coli, are being developed. CONCLUSIONS Research is needed to determine the relative effectiveness of exercising care on food and beverage selection and chemoprophylaxis in preventing travellers' diarrhoea and postinfectious irritable bowel syndrome during high-risk travel. Enterotoxigenic E. coli vaccines appear to be a promising addition to travel medicine.
Collapse
Affiliation(s)
- H L DuPont
- Houston School of Public Health and School of Medicine, The University of Texas, St Luke's Episcopal Hospital, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Frolov VG, Seid RC, Odutayo O, Al-Khalili M, Yu J, Frolova OY, Vu H, Butler BA, Look JL, Ellingsworth LR, Glenn GM. Transcutaneous delivery and thermostability of a dry trivalent inactivated influenza vaccine patch. Influenza Other Respir Viruses 2008; 2:53-60. [PMID: 19453472 PMCID: PMC4941894 DOI: 10.1111/j.1750-2659.2008.00040.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A patch containing a trivalent inactivated influenza vaccine (TIV) was prepared in a dried, stabilized formulation for transcutaneous delivery. When used in a guinea pig immunogenicity model, the dry patch was as effective as a wet TIV patch in inducing serum anti-influenza IgG antibodies. When the dry TIV patch was administered with LT as an adjuvant, a robust immune response was obtained that was comparable with or better than an injected TIV vaccine. When stored sealed in a nitrogen-purged foil, the dry TIV patch was stable for 12 months, as measured by HA content, under both refrigerated and room temperature conditions. Moreover, the immunological potency of the vaccine product was not affected by long-term storage. The dry TIV patch was also thermostable against three cycles of alternating low-to-high temperatures of -20/25 and -20/40 degrees C, and under short-term temperature stress conditions. These studies indicate that the dry TIV patch product can tolerate unexpected environmental stresses that may be encountered during shipping and distribution. Because of its effectiveness in vaccine delivery and its superior thermostable characteristics, the dry TIV patch represents a major advance for needle-free influenza vaccination.
Collapse
|
37
|
Combadière B, Mahé B. Particle-based vaccines for transcutaneous vaccination. Comp Immunol Microbiol Infect Dis 2008; 31:293-315. [PMID: 17915323 DOI: 10.1016/j.cimid.2007.07.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2007] [Indexed: 01/12/2023]
Abstract
Immunization concepts evolve with increasing knowledge of how the immune system works and the development of new vaccination methods. Traditional vaccines are made of live, attenuated, killed or fragmented pathogens. New vaccine strategies can take advantage of particulate compounds--microspheres or nanoparticles--to target antigen-presenting cells better, which must subsequently reach the secondary lymphoid organs, which are the sites of the immune response. The use of the skin as a target organ for vaccine delivery stems from the fact that immature dendritic cells (DCs), which are professional antigen-presenting cells can be found at high density in the epidermis and dermis of human or animal skin. This has led to design various methods of dermal or transcutaneous vaccination. The quality and duration of the humoral and cellular responses to vaccination depend on the appropriate targeting of antigen-presenting cells, of the vaccine dose, route of administration and use of adjuvant. In this review, we will focus on the use of micro- and nano-particles to target the skin antigen-presenting cells and will discuss recent advances in the field of transcutaneous vaccination in animal models and humans.
Collapse
Affiliation(s)
- Behazine Combadière
- Institut National de la Santé et de la Recherche Médicale (INSERM) U543, Université Pierre et Marie Curie-Paris6, 91 Boulevard de l'Hôpital, 75634 Paris, France.
| | | |
Collapse
|
38
|
McCullers JA, Dunn JD. Advances in vaccine technology and their impact on managed care. P & T : A PEER-REVIEWED JOURNAL FOR FORMULARY MANAGEMENT 2008; 33:35-41. [PMID: 19749990 PMCID: PMC2730064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 12/04/2007] [Indexed: 05/28/2023]
Abstract
The discovery of vaccines has led to the near eradication of several important diseases and has had a tremendous impact on health for a relatively low cost. However, most vaccines in use today were developed by techniques that were pioneered more than 100 years ago and do not represent the full potential of the field. The introduction of genetic engineering has fueled rapid advances in vaccine technology and is now leading to the entry of new products in the marketplace.In the past, options for the utilization of vaccines in the area of managed care had been quite limited because of the historically straightforward application of immunizations. The growing number and type of vaccine targets, coupled with novel, more effective formulations, adjuvants, and routes of delivery for vaccines, will undoubtedly create new challenges. Although progress in vaccine technology has the potential to prevent illness and reduce the economic burden of diseases in the long term, thereby improving outcomes, ongoing problems remain in the short term.Who should and will pay for these anticipated improvements in health?How will this period of change be managed?This article describes the present "vaccine revolution" and attempts to answer these questions, which are becoming increasingly important in managed care.
Collapse
|
39
|
|
40
|
Glenn GM, Flyer DC, Ellingsworth LR, Frech SA, Frerichs DM, Seid RC, Yu J. Transcutaneous immunization with heat-labile enterotoxin: development of a needle-free vaccine patch. Expert Rev Vaccines 2007; 6:809-19. [PMID: 17931160 DOI: 10.1586/14760584.6.5.809] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The skin is an attractive target for vaccine delivery. Adjuvants and antigens delivered into the skin can result in potent immune responses and an unmatched safety profile. The heat-labile enterotoxin (LT) from Escherichia coli, which acts both as antigen and adjuvant, has been shown to be delivered to human skin efficiently when used in a patch, resulting in strong immune responses. Iomai scientists have capitalized on these observations to develop late-stage products based on LT. This has encouraged commercial-level product development of a delivery system that is efficient, user-friendly and designed to address important medical needs. Over the past 2 years, extensive clinical testing and optimization has allowed the patch to evolve to a late-stage product. As a strategy for approval of a revolutionary vaccine-delivery system, the singular focus on optimization of LT delivery has enabled technical progress to extend patch-vaccine product development beyond LT. The field efficacy of the LT-based travelers' diarrhea vaccine has validated this approach. The discussion of transcutaneous immunization is unique, in that any consideration of the adjuvant must also include delivery, and the significant advances in a commercial patch application system are described. In this review, we integrate these concepts, update the clinical data and look to the future.
Collapse
Affiliation(s)
- Gregory M Glenn
- Iomai Corporation, 20 Firstfield Road, Suite 250, Gaithersburg, MD 20878, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Protection against Shiga toxin-producing Escherichia coli infection by transcutaneous immunization with Shiga toxin subunit B. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 15:359-66. [PMID: 18003816 DOI: 10.1128/cvi.00399-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) strains are important human food-borne pathogens. EHEC strains elaborate potent Shiga toxins (Stx1, and/or Stx2) implicated in the development of hemorrhagic colitis (HC) or hemolytic-uremic syndrome (HUS). In this report, we evaluated the immunogenicity and protective efficacy of Stx1 subunit B (StxB1) administered by transcutaneous immunization (TCI). Three groups of Dutch Belted rabbits received patches containing StxB1, StxB1 in combination with Escherichia coli heat-labile enterotoxin (LT), or LT alone. An additional group of naïve rabbits served as controls. The protective efficacy following TCI with StxB1 was assessed by challenging rabbits with a virulent Stx1-producing strain, RDEC-H19A, capable of inducing HC and HUS in rabbits. Antibodies specific to StxB1 from serum and bile samples were determined by enzyme-linked immunosorbent assay and toxin neutralization test. Rabbits immunized with StxB1 demonstrated improved weight gain and reduced Stx-induced histopathology. Rabbits receiving StxB or StxB1/LT showed a significant increase in serum immunoglobulin G titers specific to StxB1 as well as toxin neutralization titers. These data demonstrated that the StxB delivered by TCI could induce significant systemic immune responses. Thus, Stx subunit B vaccine delivered by a patch for a high-risk population may be a practical approach to prevent (and/or reduce) Stx-induced pathology.
Collapse
|
42
|
Naito S, Maeyama JI, Mizukami T, Takahashi M, Hamaguchi I, Yamaguchi K. Transcutaneous immunization by merely prolonging the duration of antigen presence on the skin of mice induces a potent antigen-specific antibody response even in the absence of an adjuvant. Vaccine 2007; 25:8762-70. [PMID: 18023509 DOI: 10.1016/j.vaccine.2007.10.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 09/07/2007] [Accepted: 10/12/2007] [Indexed: 01/04/2023]
Abstract
Transcutaneous immunization (TCI) is a promising needle-free technique for vaccination. In this method, strong adjuvants, such as the cholera toxin, are generally crucial to elicit a robust immune response. Here, we showed that prolonged antigen presence on the skin of mice during TCI could effectively enhance the immune response. Substantial antigen-specific antibodies were produced in the sera of mice even after non-adjuvanted TCI when the antigen presence was for longer than 16 h. This non-adjuvanted TCI method was applied using the tetanus toxoid, and potent tetanus toxoid-specific antibodies were successfully induced in the sera of mice; they survived a lethal tetanus toxin challenge with no clinical signs. Thus, non-adjuvanted approach might be a possible option for TCI, and this method might improve the safety and practicality of transcutaneous vaccination.
Collapse
Affiliation(s)
- Seishiro Naito
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
McKenzie R, Bourgeois AL, Frech SA, Flyer DC, Bloom A, Kazempour K, Glenn GM. Transcutaneous immunization with the heat-labile toxin (LT) of enterotoxigenic Escherichia coli (ETEC): Protective efficacy in a double-blind, placebo-controlled challenge study. Vaccine 2007; 25:3684-91. [PMID: 17313998 DOI: 10.1016/j.vaccine.2007.01.043] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Revised: 01/03/2007] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND An enterotoxigenic Escherichia coli (ETEC) vaccine could reduce diarrhea among children in developing countries and travelers to these countries. The heat-labile toxin (LT) of ETEC is immunogenic but too toxic for oral or nasal vaccines. METHODS In a double-blind, placebo-controlled trial, 59 adults were randomized to receive 50 microg of LT or placebo in a patch applied to alternating arms on days 0, 21, and 42. On day 56, 27 vaccinees and 20 controls were challenged orally with 6x10(8) cfu of LT+/ST+ ETEC. RESULTS 100 and 97% of vaccinees had 4-fold increases in anti-LT IgG and IgA, and 100 and 90% developed IgG- and IgA-antibody-secreting cell responses. The study did not meet the primary endpoint: 82% of vaccinees and 75% of controls had moderate to severe ETEC illness. However, vaccinees with ETEC illness had lower numbers (6.8 versus 9.7, p=0.04) and weights of loose stools (840 g versus 1147 g, p<0.05), a decreased need for intravenous fluids (14% versus 40%, p=0.03) and a delayed onset of diarrhea (30 h versus 22 h, p=0.01). CONCLUSIONS Transcutaneous LT vaccination induced anti-toxin immune responses that did not prevent but mitigated illness following a high-dose challenge with a virulent LT+/ST+ ETEC strain.
Collapse
Affiliation(s)
- Robin McKenzie
- Division of Infectious Diseases, Johns Hopkins University, Johns Hopkins Bayview Medical Center, 4940 Eastern Ave., Baltimore, MD 21224, United States.
| | | | | | | | | | | | | |
Collapse
|
44
|
Ghose C, Kalsy A, Sheikh A, Rollenhagen J, John M, Young J, Rollins SM, Qadri F, Calderwood SB, Kelly CP, Ryan ET. Transcutaneous immunization with Clostridium difficile toxoid A induces systemic and mucosal immune responses and toxin A-neutralizing antibodies in mice. Infect Immun 2007; 75:2826-32. [PMID: 17371854 PMCID: PMC1932889 DOI: 10.1128/iai.00127-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clostridium difficile is the leading cause of nosocomial infectious diarrhea. C. difficile produces two toxins (A and B), and systemic and mucosal anti-toxin A antibodies prevent or limit C. difficile-associated diarrhea. To evaluate whether transcutaneous immunization with formalin-treated C. difficile toxin A (CDA) induces systemic and mucosal anti-CDA immune responses, we transcutaneously immunized three cohorts of mice with CDA with or without immunoadjuvantative cholera toxin (CT) on days 0, 14, 28, and 42. Mice transcutaneously immunized with CDA and CT developed prominent anti-CDA and anti-CT immunoglobulin G (IgG) and IgA responses in serum and anti-CDA and anti-CT IgA responses in stool. Sera from immunized mice were able to neutralize C. difficile toxin A activity in an in vitro cell culture assay. CDA itself demonstrated adjuvant activity and enhanced both serum and stool anti-CT IgA responses. Our results suggest that transcutaneous immunization with CDA toxoid may be a feasible immunization strategy against C. difficile, an important cause of morbidity and mortality against which current preventative strategies are failing.
Collapse
Affiliation(s)
- Chandrabali Ghose
- Division of Infectious Diseases, Massachusetts General Hospital, Jackson 504, 55 Fruit Street, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Skin is an ideal tissue for vaccine administration, as it is comprised of immunocompetent cells such as keratinocytes and Langerhans cells and elicits both innate and adaptive immune responses. In this paper, we summarize the immune responses induced by topical vaccination of the skin and review the effects of adjuvants on skin vaccination. We also summarize the existing techniques for skin vaccination. New techniques such as the use of lasers to enhance skin permeability are also discussed, as well as the role of the stratum corneum in skin vaccination. A recent study demonstrating enhanced skin vaccination by using surfactants to extract partial lamellar lipids of the stratum corneum will also be introduced in this review.
Collapse
Affiliation(s)
- Chun-Ming Huang
- Division of Dermatology, Department of Medicine, University of California, San Diego and VA San Diego Healthcare Center, Rm 3217A, 3350 La Jolla Village Drive, San Diego, CA, USA.
| |
Collapse
|
46
|
Qadri F, Ahmed T, Ahmed F, Bhuiyan MS, Mostofa MG, Cassels FJ, Helander A, Svennerholm AM. Mucosal and systemic immune responses in patients with diarrhea due to CS6-expressing enterotoxigenic Escherichia coli. Infect Immun 2007; 75:2269-74. [PMID: 17296752 PMCID: PMC1865745 DOI: 10.1128/iai.01856-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colonization factor CS6 expressed by enterotoxigenic Escherichia coli (ETEC) is a nonfimbrial polymeric protein. A substantial proportion of ETEC strains isolated from patients in endemic settings and in people who travel to regions where ETEC is endemic are ETEC strains expressing CS6, either alone or in combination with fimbrial colonization factor CS5 or CS4. However, relatively little is known about the natural immune responses elicited against CS6 expressed by ETEC strains causing disease. We studied patients who were hospitalized with diarrhea (n = 46) caused by CS6-expressing ETEC (ETEC expressing CS6 or CS5 plus CS6) and had a disease spectrum ranging from severe dehydration (27%) to moderate or mild dehydration (73%). Using recombinant CS6 antigen, we found that more than 90% of the patients had mucosal immune responses to CS6 expressed as immunoglobulin (IgA) antibody-secreting cells (ASC) or antibody in lymphocyte supernatant (ALS) and that about 57% responded with CS6-specific IgA antibodies in feces. More than 80% of the patients showed IgA seroconversion to CS6. Significant increases in the levels of anti-CS6 antibodies of the IgG isotype were also observed in assays for ASC (75%), ALS (100%), and serum (70%). These studies demonstrated that patients hospitalized with the noninvasive enteric pathogen CS6-expressing ETEC responded with both mucosal and systemic antibodies against CS6. Studies are needed to determine if the anti-CS6 responses protect against reinfection and if protective levels of CS6 immunity are induced by vaccination.
Collapse
MESH Headings
- Adolescent
- Adult
- Antibodies, Bacterial/analysis
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Antibody Specificity
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Child, Preschool
- Diarrhea/immunology
- Diarrhea/microbiology
- Escherichia coli/immunology
- Escherichia coli/pathogenicity
- Escherichia coli Infections/immunology
- Escherichia coli Infections/microbiology
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/immunology
- Escherichia coli Proteins/metabolism
- Feces/chemistry
- Female
- Hospitalization
- Humans
- Immunity, Mucosal
- Immunoglobulin A, Secretory/analysis
- Immunoglobulin A, Secretory/blood
- Immunoglobulin A, Secretory/immunology
- Immunoglobulin G/blood
- Infant
- Male
- Middle Aged
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh, GPO Box 128, Dhaka 1000, Bangladesh.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Walker RI, Steele D, Aguado T. Analysis of strategies to successfully vaccinate infants in developing countries against enterotoxigenic E. coli (ETEC) disease. Vaccine 2006; 25:2545-66. [PMID: 17224212 DOI: 10.1016/j.vaccine.2006.12.028] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 12/12/2006] [Indexed: 12/30/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common bacterial cause of diarrhoea in the world, annually affecting up to 400,000,000 children under 5 years of age living in developing countries (DCs). Although ETEC possesses numerous antigens, the relatively conserved colonization factor (CF) antigens and the heat labile enterotoxin (LT) have been associated with protection and most vaccine candidates have exploited these antigens. A safe and effective vaccine against ETEC is a feasible goal as supported by the acquisition of protective immunity. The success of an ETEC vaccine targeting infants and children in DCs will depend on a combination of maximally antigenic vaccine preparations and regimens for their delivery which will produce optimal immune responses to these antigens. Vaccine candidates having a high priority for accelerated development and clinical testing for eventual use in infants would include inactivated ETEC or Shigella hybrids expressing ETEC antigens as well as attenuated ETEC strains which express the major CF antigens and LT toxin B-subunit, as well as attenuated Shigella, Vibrio cholerae and Salmonella typhi hybrids engineered to deliver antigens of ETEC. Candidates for an ETEC vaccine would have to meet the minimal requirement of providing at least 50% protection against severe disease in DCs during the first 2 years of life. The critical roadblock to achieving this goal has not been the science as much as the lack of a sufficiently funded and focused effort to bring it to realization. However, a Product Development Partnership to overcome this hurdle could accelerate the time lines towards when control of ETEC disease in DCs is substantially closer.
Collapse
Affiliation(s)
- Richard I Walker
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, MD 20851-1448, USA.
| | | | | |
Collapse
|
48
|
Rollenhagen JE, Kalsy A, Cerda F, John M, Harris JB, Larocque RC, Qadri F, Calderwood SB, Taylor RK, Ryan ET. Transcutaneous immunization with toxin-coregulated pilin A induces protective immunity against Vibrio cholerae O1 El Tor challenge in mice. Infect Immun 2006; 74:5834-9. [PMID: 16988262 PMCID: PMC1594919 DOI: 10.1128/iai.00438-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin-coregulated pilin A (TcpA) is the main structural subunit of a type IV bundle-forming pilus of Vibrio cholerae, the cause of cholera. Toxin-coregulated pilus is involved in formation of microcolonies of V. cholerae at the intestinal surface, and strains of V. cholerae deficient in TcpA are attenuated and unable to colonize intestinal surfaces. Anti-TcpA immunity is common in humans recovering from cholera in Bangladesh, and immunization against TcpA is protective in murine V. cholerae models. To evaluate whether transcutaneously applied TcpA is immunogenic, we transcutaneously immunized mice with 100 mug of TcpA or TcpA with an immunoadjuvant (cholera toxin [CT], 50 mug) on days 0, 19, and 40. Mice immunized with TcpA alone did not develop anti-TcpA responses. Mice that received transcutaneously applied TcpA and CT developed prominent anti-TcpA immunoglobulin G (IgG) serum responses but minimal anti-TcpA IgA. Transcutaneous immunization with CT induced prominent IgG and IgA anti-CT serum responses. In an infant mouse model, offspring born to dams transcutaneously immunized either with TcpA and CT or with CT alone were challenged with 10(6) CFU (one 50% lethal dose) wild-type V. cholerae O1 El Tor strain N16961. At 48 h, mice born to females transcutaneously immunized with CT alone had 36% +/- 10% (mean +/- standard error of the mean) survival, while mice born to females transcutaneously immunized with TcpA and CT had 69% +/- 6% survival (P < 0.001). Our results suggest that transcutaneous immunization with TcpA and an immunoadjuvant induces protective anti-TcpA immune responses. Anti-TcpA responses may contribute to an optimal cholera vaccine.
Collapse
Affiliation(s)
- Julianne E Rollenhagen
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Melkebeek V, Sonck E, Verdonck F, Goddeeris BM, Cox E. Optimized FaeG expression and a thermolabile enterotoxin DNA adjuvant enhance priming of an intestinal immune response by an FaeG DNA vaccine in pigs. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 14:28-35. [PMID: 17108289 PMCID: PMC1797719 DOI: 10.1128/cvi.00268-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
One of the problems hindering the development of DNA vaccines is the relatively low immunogenicity often seen in humans and large animals compared to that in mice. In the present study, we tried to enhance the immunogenicity of a pcDNA1/faeG19 DNA vaccine in pigs by optimizing the FaeG expression plasmid and by coadministration of the plasmid vectors encoding the A and B subunits of the Escherichia coli thermolabile enterotoxin (LT). The insertion of a Kozak sequence and optimization of vector (cellular localization and expression) and both vector and codon usage were all shown to enhance in vitro FaeG expression compared to that of pcDNA1/faeG19. Subsequently, pcDNA1/faeG19 and the vector-optimized and the vector-codon-optimized construct were tested for their immunogenicity in pigs. In line with the in vitro results, antibody responses were better induced with increasing expression. The LT vectors additionally enhanced the antibody response, although not significantly, and were necessary to induce an F4-specific cellular response. These vectors were also added because LT has been described to direct the systemic response towards a mucosal immunoglobulin A (IgA) response in mice. Here, however, the intradermal FaeG DNA prime-oral F4 boost immunization resulted in a mainly systemic IgG response, with only a marginal but significant reduction in F4+ E. coli fecal excretion when the piglets were primed with pWRGFaeGopt and pWRGFaeGopt with the LT vectors.
Collapse
Affiliation(s)
- V Melkebeek
- Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | |
Collapse
|
50
|
Abstract
The skin is populated with Langerhans cells, thought to be efficient, potent antigen-presenting cells, that are capable of inducing protective immunity by targeting antigen delivery to the skin. Delivery to the skin may be accomplished by active delivery such as intradermal injection, use of patches or a combination of a universal adjuvant patch with injections. The robust immunity induced by skin targeting can lead to dose sparing, novel vaccines and immune enhancement in populations with poorly responsive immune systems, such as the elderly. Vaccine delivery with patches (transcutaneous immunization), may allow self-administration, ambient temperature stabilization and ease of storage for stockpiling, leading to a new level of efficient vaccine distribution in times of crisis such as a bioterror event or pandemic influenza outbreak. The use of an adjuvant (immunostimulant) patch with injected vaccines has been shown in clinical studies to enhance the immune response to an injected vaccine. This can be used for dose sparing in pandemic influenza vaccines in critically short supply or immune enhancement for poor responders to flu vaccines such as the elderly. Transcutaneous immunization offers a unique safety profile, as adjuvants are sequestered in the skin and only delivered systemically by Langerhans cells. This results in an excellent safety profile and allows use of extremely potent adjuvants. The combination of the skin immune system, safe use of potent adjuvants and ease of delivery suggests that skin delivery of vaccines can address multiple unmet needs for mass vaccination scenarios.
Collapse
Affiliation(s)
- G M Glenn
- Iomai Corporation, Gaithersburg, MD 20878, USA.
| | | |
Collapse
|