1
|
Dykes GE, He Y, Jin T, Fan X, Lee J, Reed S, Capobianco J. Transcriptomic Analysis of Campylobacter jejuni Following Exposure to Gaseous Chlorine Dioxide Reveals an Oxidative Stress Response. Int J Mol Sci 2025; 26:3254. [PMID: 40244107 PMCID: PMC11989795 DOI: 10.3390/ijms26073254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Gaseous chlorine dioxide (ClO2) is a potent antimicrobial agent used to control microbial contamination in food and water. This study evaluates the bactericidal activity of gaseous ClO2 released from a sodium chlorite (NaClO2) pad against Campylobacter jejuni. Exposure to a low concentration (0.4 mg/L) of dissolved ClO2 for 2 h resulted in a >93% reduction of C. jejuni, highlighting the bacterium's extreme sensitivity to gaseous ClO2. To elucidate the molecular mechanism of ClO2-induced bactericidal action, transcriptomic analysis was conducted using RNA sequencing (RNA-seq). The results indicate that C. jejuni responds to ClO2-induced oxidative stress by upregulating genes involved in reactive oxygen species (ROS) detoxification (sodB, ahpC, katA, msrP, and trxB), iron transport (ceuBCD, cfbpABC, and chuBCD), phosphate transport (pstSCAB), and DNA repair (rdgB and mutY). Reverse transcription-quantitative PCR (RT-qPCR) validated the increased expression of oxidative stress response genes but not general stress response genes (spoT, dnaK, and groES). These findings provide insights into the antimicrobial mechanism of ClO2, demonstrating that oxidative damage to essential cellular components results in bacterial cell death.
Collapse
Affiliation(s)
| | - Yiping He
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, USDA-ARS-ERRC, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA (T.J.); (X.F.); (J.L.); (S.R.); (J.C.)
| | | | | | | | | | | |
Collapse
|
2
|
Muzyukina P, Soutourina O. CRISPR genotyping methods: Tracing the evolution from spoligotyping to machine learning. Biochimie 2024; 217:66-73. [PMID: 37506757 DOI: 10.1016/j.biochi.2023.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems provide prokaryotes with adaptive immunity defenses against foreign genetic invaders. The identification of CRISPR-Cas function is among the most impactful discoveries of recent decades that have shaped the development of genome editing in various organisms paving the way for a plethora of promising applications in biotechnology and health. Even before the discovery of CRISPR-Cas biological role, the particular structure of CRISPR loci has been explored for epidemiological genotyping of bacterial pathogens. CRISPR-Cas loci are arranged in CRISPR arrays of mostly identical direct repeats intercalated with invader-derived spacers and an operon of cas genes encoding the Cas protein components. Each small CRISPR RNA (crRNA) encoded within the CRISPR array constitutes a key functional unit of this RNA-based CRISPR-Cas defense system guiding the Cas effector proteins toward the foreign nucleic acids for their destruction. The information acquired from prior invader encounters and stored within CRISPR arrays turns out to be extremely valuable in tracing the microevolution and epidemiology of major bacterial pathogens. We review here the history of CRISPR-based typing strategies highlighting the first PCR-based methods that have set the stage for recent developments of high-throughput sequencing and machine learning-based approaches. A great amount of whole genome sequencing and metagenomic data accumulated in recent years opens up new avenues for combining experimental and computational approaches of high-resolution CRISPR-based typing.
Collapse
Affiliation(s)
- P Muzyukina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - O Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
3
|
Ali MS, Song HJ, Moon BY, Kim SJ, Kang HY, Moon DC, Lee YH, Kwon DH, Yoon SS, Lim SK. Antibiotic Resistance Profiles and Molecular Characteristics of blaCMY-2-Carrying Salmonella enterica Serovar Albany Isolated from Chickens During 2013-2020 in South Korea. Foodborne Pathog Dis 2023; 20:492-501. [PMID: 37699238 DOI: 10.1089/fpd.2023.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
The production of β-lactamase by nontyphoidal Salmonella has become a public health issue throughout the world. In this study, we aimed to investigate the antimicrobial resistance profiles and molecular characteristics of β-lactamase-producing Salmonella enterica serovar Albany isolates. A total of 434 Salmonella Albany were obtained from feces and carcasses of healthy and diseased food-producing animals [cattle (n = 2), pigs (n = 3), chickens (n = 391), and ducks (n = 38)] during 2013-2020. Among the 434 Salmonella Albany isolates, 3.7% showed resistance to cefoxitin, and all the cefoxitin-resistant isolates were obtained from chickens. Moreover, Salmonella Albany isolates demonstrated high resistance to nalidixic acid (99.3%), trimethoprim/sulfamethoxazole (97.9%), ampicillin (86.6%), chloramphenicol (86.6%), and tetracycline (85.7%), as well as higher rates of multidrug resistance were detected in cefoxitin-resistant isolates compared to cefoxitin-susceptible isolates. All cefoxitin-resistant isolates harbored CMY-2-type β-lactamase and belonged to seven different pulsotypes, with type IV-b (43.75%) and IV-a (25%) making up the majority. In addition, genes encoding cefoxitin resistant of all blaCMY-2-harboring Salmonella Albany isolates were horizontally transmitted to a recipient Escherichia coli J53 by conjugation. Furthermore, 93.75% (15/16) of conjugative plasmids harboring blaCMY-2 genes belong to ST12/CC12-IncI1. Genetic characteristics of transmitted blaCMY-2 genes were associated with ISEcp1, which can play an essential role in the effective mobilization and expression of these genes. Salmonella Albany containing blaCMY-2 in chickens can potentially be transferred to humans. Therefore, it is necessary to restrict antibiotic use and conduct continuous monitoring and analysis of resistant bacteria in the poultry industry.
Collapse
Affiliation(s)
- Md Sekendar Ali
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Hyun-Ju Song
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Bo-Youn Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Su-Jeong Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Hee Young Kang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Dong Chan Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Yeon-Hee Lee
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Dong-Hyeon Kwon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Soon-Seek Yoon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| |
Collapse
|
4
|
Meng L, Yang F, Pang Y, Cao Z, Wu F, Yan D, Liu J. Nanocapping-enabled charge reversal generates cell-enterable endosomal-escapable bacteriophages for intracellular pathogen inhibition. SCIENCE ADVANCES 2022; 8:eabq2005. [PMID: 35857522 PMCID: PMC11581130 DOI: 10.1126/sciadv.abq2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Bacteriophages (phages) are widely explored as antimicrobials for treating infectious diseases due to their specificity and potency to infect and inhibit host bacteria. However, the application of phages to inhibit intracellular pathogens has been greatly restricted by inadequacy in cell entry and endosomal escape. Here, we describe the use of cationic polymers to selectively cap negatively charged phage head rather than positively charged tail by electrostatic interaction, resulting in charge-reversed phages with uninfluenced vitality. Given the positive surface charge and proton sponge effect of the nanocapping, capped phages are able to enter intestinal epithelial cells and subsequently escape from endosomes to lyse harbored pathogens. In a murine model of intestinal infection, oral ingestion of capped phages significantly reduces the translocation of pathogens to major organs, showing a remarkable inhibition efficacy. Our work proposes that simple synthetic nanocapping can manipulate phage bioactivity, offering a facile platform for preparing next-generation antimicrobials.
Collapse
Affiliation(s)
- Lu Meng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fengmin Yang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Feng Wu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Deyue Yan
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
5
|
Nadin-Davis S, Pope L, Devenish J, Allain R, Ogunremi D. Evaluation of the use of CRISPR loci for discrimination of Salmonella enterica subsp. enterica serovar Enteritidis strains recovered in Canada and comparison with other subtyping methods. AIMS Microbiol 2022; 8:300-317. [PMID: 36317002 PMCID: PMC9576496 DOI: 10.3934/microbiol.2022022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/18/2022] [Accepted: 05/29/2022] [Indexed: 12/01/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Enteritidis remains one of the most important foodborne pathogens worldwide. To minimise its public health impact when outbreaks of the disease occur, timely investigation to identify and recall the contaminated food source is necessary. Central to this approach is the need for rapid and accurate identification of the bacterial subtype epidemiologically linked to the outbreak. While traditional methods of S. Enteritidis subtyping, such as pulsed field gel electrophoresis (PFGE) and phage typing (PT), have played an important role, the clonal nature of this organism has spurred efforts to improve subtyping resolution and timeliness through molecular based approaches. This study uses a cohort of 92 samples, recovered from a variety of sources, to compare these two traditional methods for S. Enteritidis subtyping with recently developed molecular techniques. These latter methods include the characterisation of two clustered regularly interspaced short palindromic repeats (CRISPR) loci, either in isolation or together with sequence analysis of virulence genes such as fimH. For comparison, another molecular technique developed in this laboratory involved the scoring of 60 informative single nucleotide polymorphisms (SNPs) distributed throughout the genome. Based on both the number of subtypes identified and Simpson's index of diversity, the CRISPR method was the least discriminatory and not significantly improved with the inclusion of fimH gene sequencing. While PT analysis identified the most subtypes, the SNP-PCR process generated the greatest index of diversity value. Combining methods consistently improved the number of subtypes identified, with the SNP/CRISPR typing scheme generating a level of diversity comparable with that of PT/PFGE. While these molecular methods, when combined, may have significant utility in real-world situations, this study suggests that CRISPR analysis alone lacks the discriminatory capability required to support investigations of foodborne disease outbreaks.
Collapse
Affiliation(s)
| | | | | | | | - Dele Ogunremi
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| |
Collapse
|
6
|
Bhattacharjee R, Nandi A, Mitra P, Saha K, Patel P, Jha E, Panda PK, Singh SK, Dutt A, Mishra YK, Verma SK, Suar M. Theragnostic application of nanoparticle and CRISPR against food-borne multi-drug resistant pathogens. Mater Today Bio 2022; 15:100291. [PMID: 35711292 PMCID: PMC9194658 DOI: 10.1016/j.mtbio.2022.100291] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
Foodborne infection is one of the leading sources of infections spreading across the world. Foodborne pathogens are recognized as multidrug-resistant (MDR) pathogens posing a significant problem in the food industry and healthy consumers resulting in enhanced economic burden, and nosocomial infections. The continued search for enhanced microbial detection tools has piqued the interest of the CRISPR-Cas system and Nanoparticles. CRISPR-Cas system is present in the bacterial genome of some prokaryotes and is repurposed as a theragnostic tool against MDR pathogens. Nanoparticles and composites have also emerged as an efficient tool in theragnostic applications against MDR pathogens. The diagnostic limitations of the CRISPR-Cas system are believed to be overcome by a synergistic combination of the nanoparticles system and CRISPR-Cas using nanoparticles as vehicles. In this review, we have discussed the diagnostic application of CRISPR-Cas technologies along with their potential usage in applications like phage resistance, phage vaccination, strain typing, genome editing, and antimicrobial. we have also elucidated the antimicrobial and detection role of nanoparticles against foodborne MDR pathogens. Moreover, the novel combinatorial approach of CRISPR-Cas and nanoparticles for their synergistic effects in pathogen clearance and drug delivery vehicles has also been discussed.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Priya Mitra
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Koustav Saha
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Ealisha Jha
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Sushil Kumar Singh
- DBT- NECAB, Department of Agricultural Biotechnology, Assam Agriculture University, Jorhat, 785013, Assam, India
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, UNAM, CDMX, Mexico
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark
| | - Suresh K. Verma
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| |
Collapse
|
7
|
O'Bryan CA, Ricke SC, Marcy JA. Public health impact of Salmonella spp. on raw poultry: Current concepts and future prospects in the United States. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Brown EW, Bell R, Zhang G, Timme R, Zheng J, Hammack TS, Allard MW. Salmonella Genomics in Public Health and Food Safety. EcoSal Plus 2021; 9:eESP00082020. [PMID: 34125583 PMCID: PMC11163839 DOI: 10.1128/ecosalplus.esp-0008-2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/16/2021] [Indexed: 12/26/2022]
Abstract
The species Salmonella enterica comprises over 2,600 serovars, many of which are known to be intracellular pathogens of mammals, birds, and reptiles. It is now apparent that Salmonella is a highly adapted environmental microbe and can readily persist in a number of environmental niches, including water, soil, and various plant (including produce) species. Much of what is known about the evolution and diversity of nontyphoidal Salmonella serovars (NTS) in the environment is the result of the rise of the genomics era in enteric microbiology. There are over 340,000 Salmonella genomes available in public databases. This extraordinary breadth of genomic diversity now available for the species, coupled with widespread availability and affordability of whole-genome sequencing (WGS) instrumentation, has transformed the way in which we detect, differentiate, and characterize Salmonella enterica strains in a timely way. Not only have WGS data afforded a detailed and global examination of the molecular epidemiological movement of Salmonella from diverse environmental reservoirs into human and animal hosts, but they have also allowed considerable consolidation of the diagnostic effort required to test for various phenotypes important to the characterization of Salmonella. For example, drug resistance, serovar, virulence determinants, and other genome-based attributes can all be discerned using a genome sequence. Finally, genomic analysis, in conjunction with functional and phenotypic approaches, is beginning to provide new insights into the precise adaptive changes that permit persistence of NTS in so many diverse and challenging environmental niches.
Collapse
Affiliation(s)
- Eric W. Brown
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Rebecca Bell
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Guodong Zhang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Ruth Timme
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jie Zheng
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Thomas S. Hammack
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Marc W. Allard
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| |
Collapse
|
9
|
Comparison of Conventional Molecular and Whole-Genome Sequencing Methods for Differentiating Salmonella enterica Serovar Schwarzengrund Isolates Obtained from Food and Animal Sources. Microorganisms 2021; 9:microorganisms9102046. [PMID: 34683367 PMCID: PMC8540620 DOI: 10.3390/microorganisms9102046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022] Open
Abstract
Over the last decade, Salmonella enterica serovar Schwarzengrund has become more prevalent in Asia, Europe, and the US with the simultaneous emergence of multidrug-resistant isolates. As these pathogens are responsible for many sporadic illnesses and chronic complications, as well as outbreaks over many countries, improved surveillance is urgently needed. For 20 years, pulsed-field gel electrophoresis (PFGE) has been the gold standard for determining bacterial relatedness by targeting genome-wide restriction enzyme polymorphisms. Despite its utility, recent studies have reported that PFGE results correlate poorly with that of closely related outbreak strains and clonally dominant endemic strains. Due to these concerns, alternative amplification-based molecular methods for bacterial strain typing have been developed, including clustered regular interspaced short palindromic repeats (CRISPR) and multilocus sequence typing (MLST). Furthermore, as the cost of sequencing continues to decrease, whole genome sequencing (WGS) is poised to replace other molecular strain typing methods. In this study, we assessed the discriminatory power of PFGE, CRISPR, MLST, and WGS methods to differentiate between 23 epidemiologically unrelated S. enterica serovar Schwarzengrund isolates collected over an 18-year period from distinct locations in Taiwan. The discriminatory index (DI) of each method for different isolates was calculated, resulting in values between 0 (not discriminatory) and 1 (highly discriminatory). Our results showed that WGS has the greatest resolution (DI = 0.982) compared to PFGE (DI = 0.938), CRISPR (DI = 0.906), and MLST (DI = 0.463) methods. In conclusion, the WGS typing approach was shown to be the most sensitive for S. enterica serovar Schwarzengrund fingerprinting.
Collapse
|
10
|
Zhang K, Zhang Y, Wang Z, Li Y, Xu H, Jiao X, Li Q. Characterization of CRISPR array in Salmonella enterica from asymptomatic people and patients. Int J Food Microbiol 2021; 355:109338. [PMID: 34333443 DOI: 10.1016/j.ijfoodmicro.2021.109338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Salmonella enterica is a major foodborne pathogen causing symptomatic diseases or asymptomatic infections in humans. To reveal the genetic difference of Salmonella strains from patients to that from asymptomatic people, we used CRISPR typing to analyze the phylogenetic relationship of 180 clinical strains during 2017-2018 in Jiangsu, China. The CRISPR typing divided these isolates into 76 CRISPR types with a discriminatory power of 97.6%. S. Typhimurium and its monophasic variants of 6 CRISPR types are the significant serotypes causing both human diseases and asymptomatic infection, while S. Enteritidis mainly resulted in diseases and shared one CRISPR type. The spacer HadB20 displayed as a new molecular marker to differentiate ST34-S. Typhimurium monophasic variant from ST19-S. Typhimurium. S. Derby, S. London, and S. Senftenberg frequently caused asymptomatic infection with diverse CRISPR types, while S. Mbandaka and S. Meleagridis, occasionally isolated from patients, had conserved CRISPR types. Additionally, 30 of 516 newly identified spacers showed homology to sequences in both plasmids and bacteriophages. Interestingly, some spacers from one serotype showed homology to the correspondent prophage or plasmid sequences in another serotype; and more than two spacers identified in one strain showed homology to the sequences located in the identical plasmids or phages, revealing the constant evolution of Salmonella CRISPR arrays during the interactions between bacteria and phages or plasmids.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Yue Zhang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Zhenyu Wang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Yang Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Haiyan Xu
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Qiuchun Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China.
| |
Collapse
|
11
|
Ye Q, Shang Y, Chen M, Pang R, Li F, Wang C, Xiang X, Zhou B, Zhang S, Zhang J, Wu S, Xue L, Ding Y, Wu Q. Identification of new serovar-specific detection targets against salmonella B serogroup using large-scale comparative genomics. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Shang Y, Ye Q, Wu Q, Pang R, Xiang X, Wang C, Li F, Zhou B, Xue L, Zhang Y, Sun X, Zhang J. PCR identification of Salmonella serovars for the E serogroup based on novel specific targets obtained by pan-genome analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Yang C, Shao W, Wei L, Chen L, Zhu A, Pan Z. Subtyping Salmonella isolated from pet dogs with multilocus sequence typing (MLST) and clustered regularly interspaced short palindromic repeats (CRISPRs). AMB Express 2021; 11:60. [PMID: 33893895 PMCID: PMC8068741 DOI: 10.1186/s13568-021-01221-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/15/2021] [Indexed: 11/29/2022] Open
Abstract
Salmonella, as a zoonotic pathogen, has attracted widespread attention worldwide, especially in the transmission between household pets and humans. Therefore, we investigated the epidemic distribution of dog Salmonella from pet hospitals and breeding base in Xuzhou, Jiangsu Province, China, and used multilocus sequence typing (MLST) and clustered regularly interspaced short palindromic repeats (CRISPRs) to subtype Salmonella isolates. From April 2018 to November 2019, a total of 469 samples were collected from pet hospitals and breeding base, including 339 dog samples and 60 cat samples. S. Kentucky (40.74%) was the most prevalent serotype, but other, such as S. Typhimurium (18.52%) and S. Indiana (18.52%), were also widespread. Eight different sequence type (ST) patterns were identified by MLST and ST198 was the highest proportion of these isolates. CRISPRs analysis showed that 9 different Kentucky CRISPR types (KCTs) was identified from ST198. 48 spacers including 29 (6 News) for CRISPR1 and 19 (4 News) for CRISPR2 that proved the polymorphic of Salmonella genes in samples from different sources. The analysis demonstrated that the common serotypes were widely present in pet hosts in the same area. This analysis shows that CRISPR genes have better recognition ability in the same serotype, which has a positive effect on the traceability of Salmonella and the prevention and treatment of salmonellosis.
Collapse
|
14
|
Petrin S, Orsini M, Mastrorilli E, Longo A, Cozza D, Olsen JE, Ricci A, Losasso C, Barco L. Identification and characterization of a spreadable IncI1 plasmid harbouring a bla CTX-M-15 gene in an Italian human isolate of Salmonella serovar Napoli. Plasmid 2021; 114:102566. [PMID: 33582117 DOI: 10.1016/j.plasmid.2021.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
Salmonella enterica subsp. enterica serovar Napoli (S. Napoli) ranks among the top serovars causing human infections in Italy, although not common in other European countries. Isolates are generally pan-susceptible or resistant to aminoglycosides only, however data on antimicrobial resistance genes in strains of S. Napoli are limited. Recently an isolate encoding resistance to third generation cephalosporins was reported. This study aimed to characterize plasmid-encoded cephalosporin resistance due to the blaCTX-M-15 gene in a human S. Napoli isolate in Italy, and to investigate plasmid stability over time. S. Napoli 16/174478 was confirmed to be ESBL-producing. The blaCTX-M-15 gene was shown to be located on an IncI1α plasmid of 90,272 bp (50.03 GC%) encoding for 107 coding sequences (CDS). The plasmid was successfully transferred by conjugation to an E. coli 1816 recipient strain (conjugation frequency 3.9 × 10-2 transconjugants per donor). Transconjugants were confirmed to carry the IncI1α plasmid, and to be ESBL-producing strains as well. Moreover, transconjugant colonies maintained the plasmid for up to 10 passages. The identification of S. Napoli isolates able to produce ESBLs is of great concern, as this pathogen is frequently associated with invasive infections and a higher risk of bacteraemia, and its reservoir has not yet been clearly identified.
Collapse
Affiliation(s)
- Sara Petrin
- Microbial Ecology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro (PD), Italy
| | - Massimiliano Orsini
- Microbial Ecology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro (PD), Italy
| | - Eleonora Mastrorilli
- Microbial Ecology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro (PD), Italy
| | - Alessandra Longo
- Microbial Ecology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro (PD), Italy
| | - Debora Cozza
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici (NA), Italy
| | - John E Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Antonia Ricci
- OIE and National Reference Laboratory for Salmonellosis, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro (PD), Italy
| | - Carmen Losasso
- Microbial Ecology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro (PD), Italy.
| | - Lisa Barco
- OIE and National Reference Laboratory for Salmonellosis, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro (PD), Italy
| |
Collapse
|
15
|
Liu MA, Kidambi A, Reeves PR. The low level of O antigen in Salmonella enterica Paratyphi A is due to inefficiency of the glycosyltransferase WbaV. FEMS Microbiol Lett 2021; 368:6105216. [PMID: 33476372 DOI: 10.1093/femsle/fnab009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/18/2021] [Indexed: 11/14/2022] Open
Abstract
The group A O antigen is the major surface polysaccharide of Salmonella enterica serovar Paratyphi A (SPA), and the focal point for most current vaccine development efforts. The SPA O-antigen repeat (O unit) is structurally similar to the group D1 O unit of S. enterica serovar Typhi, differing only in the presence of a terminal side-branch paratose (Par) in place of tyvelose (Tyv), both of which are attached by the glycosyltransferase WbaV. The two O-antigen gene clusters are also highly similar, but with a loss-of-function mutation in the group A tyv gene and the tandem amplification of wbaV in most SPA strains. In this study, we show that SPA strains consistently produce less O antigen than their group D1 counterparts and use an artificial group A strain (D1 Δtyv) to show this is due to inefficient Par attachment by WbaV. We also demonstrate that group A O-antigen production can be increased by overexpression of the wbaV gene in both the D1 Δtyv strain and two multi-wbaV SPA strains. These findings should be broadly applicable in ongoing vaccine development pipelines, where efficient isolation and purification of large quantities of O antigen is of critical importance.
Collapse
Affiliation(s)
- Michael A Liu
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Aditi Kidambi
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Peter R Reeves
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
16
|
Kushwaha SK, Bhavesh NLS, Abdella B, Lahiri C, Marathe SA. The phylogenomics of CRISPR-Cas system and revelation of its features in Salmonella. Sci Rep 2020; 10:21156. [PMID: 33273523 PMCID: PMC7712790 DOI: 10.1038/s41598-020-77890-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/18/2020] [Indexed: 01/26/2023] Open
Abstract
Salmonellae display intricate evolutionary patterns comprising over 2500 serovars having diverse pathogenic profiles. The acquisition and/or exchange of various virulence factors influences the evolutionary framework. To gain insights into evolution of Salmonella in association with the CRISPR-Cas genes we performed phylogenetic surveillance across strains of 22 Salmonella serovars. The strains differed in their CRISPR1-leader and cas operon features assorting into two main clades, CRISPR1-STY/cas-STY and CRISPR1-STM/cas-STM, comprising majorly typhoidal and non-typhoidal Salmonella serovars respectively. Serovars of these two clades displayed better relatedness, concerning CRISPR1-leader and cas operon, across genera than between themselves. This signifies the acquisition of CRISPR1/Cas region could be through a horizontal gene transfer event owing to the presence of mobile genetic elements flanking CRISPR1 array. Comparison of CRISPR and cas phenograms with that of multilocus sequence typing (MLST) suggests differential evolution of CRISPR/Cas system. As opposed to broad-host-range, the host-specific serovars harbor fewer spacers. Mapping of protospacer sources suggested a partial correlation of spacer content with habitat diversity of the serovars. Some serovars like serovar Enteritidis and Typhimurium that inhabit similar environment/infect similar hosts hardly shared their protospacer sources.
Collapse
Affiliation(s)
- Simran Krishnakant Kushwaha
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Narra Lakshmi Sai Bhavesh
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Bahaa Abdella
- Department of Biological Sciences, Sunway University, Petaling Jaya, Selangor, Malaysia.,Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Chandrajit Lahiri
- Department of Biological Sciences, Sunway University, Petaling Jaya, Selangor, Malaysia
| | - Sandhya Amol Marathe
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| |
Collapse
|
17
|
Chen J, Karanth S, Pradhan AK. Quantitative microbial risk assessment for Salmonella: Inclusion of whole genome sequencing and genomic epidemiological studies, and advances in the bioinformatics pipeline. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2020; 2:100045. [DOI: 10.1016/j.jafr.2020.100045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Jing W, Liu J, Wu S, Chen Q, Li X, Liu Y. Development of a Method for Simultaneous Generation of Multiple Genetic Modification in Salmonella enterica Serovar Typhimurium. Front Genet 2020; 11:563491. [PMID: 33193646 PMCID: PMC7544003 DOI: 10.3389/fgene.2020.563491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/19/2020] [Indexed: 01/29/2023] Open
Abstract
To comprehensively analyze bacterial gene function, it is important to simultaneously generate multiple genetic modifications within the target gene. However, current genetic engineering approaches, which mainly use suicide vector- or λ red homologous recombination-based systems, are tedious and technically difficult to perform. Here, we developed a flexible and easy method to simultaneously construct multiple modifications at the same locus on the Salmonella enterica serovar Typhimurium chromosome. The method combines an efficient seamless assembly system in vitro, red homologous recombination in vivo, and counterselection marker sacB. To test this method, with the seamless assembly system, various modification fragments for target genes cpxR, cpxA, and acrB were rapidly and efficiently constructed in vitro. sacBKan cassettes generated via polymerase chain reaction were inserted into the target loci in the genome of Salmonella Typhimurium strain CVCC541. The resulting pKD46-containing kanamycin-resistant recombinants were selected and used as intermediate strains. Multiple target gene modifications were then carried out simultaneously via allelic exchange using various homologous recombinogenic DNA fragments to replace the sacBKan cassettes in the chromosomes of the intermediate strains. Using this method, we successfully carried out site-directed mutagenesis, seamless deletion, and 3 × FLAG tagging of the target genes. This method can be used in any bacterial species that supports sacB gene activity and λ red-mediated recombination, allowing in-depth functional analysis of bacterial genes.
Collapse
Affiliation(s)
- Wenxian Jing
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Juan Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shanshan Wu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiwei Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuerui Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
19
|
Chand Y, Alam MA, Singh S. Pan-genomic analysis of the species Salmonella enterica: Identification of core essential and putative essential genes. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
20
|
Wellawa DH, Allan B, White AP, Köster W. Iron-Uptake Systems of Chicken-Associated Salmonella Serovars and Their Role in Colonizing the Avian Host. Microorganisms 2020; 8:E1203. [PMID: 32784620 PMCID: PMC7465098 DOI: 10.3390/microorganisms8081203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/09/2023] Open
Abstract
Iron is an essential micronutrient for most bacteria. Salmonella enterica strains, representing human and animal pathogens, have adopted several mechanisms to sequester iron from the environment depending on availability and source. Chickens act as a major reservoir for Salmonella enterica strains which can lead to outbreaks of human salmonellosis. In this review article we summarize the current understanding of the contribution of iron-uptake systems to the virulence of non-typhoidal S. enterica strains in colonizing chickens. We aim to address the gap in knowledge in this field, to help understand and define the interactions between S. enterica and these important hosts, in comparison to mammalian models.
Collapse
Affiliation(s)
- Dinesh H. Wellawa
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Brenda Allan
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
| | - Aaron P. White
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Wolfgang Köster
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
21
|
Characterization of non-typhoid Salmonellae isolated from domestic animals and wildlife from selected areas of Zambia. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
22
|
Tang L, Zhou YJ, Zhu S, Liang GD, Zhuang H, Zhao MF, Chang XY, Li HN, Liu Z, Guo ZR, Liu WQ, He X, Wang CX, Zhao DD, Li JJ, Mu XQ, Yao BQ, Li X, Li YG, Duo LB, Wang L, Johnston RN, Zhou J, Zhao JB, Liu GR, Liu SL. E. coli diversity: low in colorectal cancer. BMC Med Genomics 2020; 13:59. [PMID: 32252754 PMCID: PMC7133007 DOI: 10.1186/s12920-020-0704-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Escherichia coli are mostly commensals but also contain pathogenic lineages. It is largely unclear whether the commensal E. coli as the potential origins of pathogenic lineages may consist of monophyletic or polyphyletic populations, elucidation of which is expected to lead to novel insights into the associations of E. coli diversity with human health and diseases. METHODS Using genomic sequencing and pulsed field gel electrophoresis (PFGE) techniques, we analyzed E. coli from the intestinal microbiota of three groups of healthy individuals, including preschool children, university students, and seniors of a longevity village, as well as colorectal cancer (CRC) patients, to probe the commensal E. coli populations for their diversity. RESULTS We delineated the 2280 fresh E. coli isolates from 185 subjects into distinct genome types (genotypes) by PFGE. The genomic diversity of the sampled E. coli populations was so high that a given subject may have multiple genotypes of E. coli, with the general diversity within a host going up from preschool children through university students to seniors. Compared to the healthy subjects, the CRC patients had the lowest diversity level among their E. coli isolates. Notably, E. coli isolates from CRC patients could suppress the growth of E. coli bacteria isolated from healthy controls under nutrient-limited culture conditions. CONCLUSIONS The coexistence of multiple E. coli lineages in a host may help create and maintain a microbial environment that is beneficial to the host. As such, the low diversity of E. coli bacteria may be associated with unhealthy microenvironment in the intestine and hence facilitate the pathogenesis of diseases such as CRC.
Collapse
Affiliation(s)
- Le Tang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Departments of Ecosystems and Public Health, University of Calgary, Calgary, Canada
| | - Yu-Jie Zhou
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Present address: Department of Immunology, Capital Medical University, Beijing, China
| | - Songling Zhu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Gong-Da Liang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Department of Epidemiology, Public Health School, Harbin Medical University, Harbin, China
| | - He Zhuang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Man-Fei Zhao
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Department of Epidemiology, Public Health School, Harbin Medical University, Harbin, China
| | - Xiao-Yun Chang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Hai-Ning Li
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Zheng Liu
- Department of Colorectal Surgery of the Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Present address: Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Rong Guo
- Department of Microbiology, Peking University Health Sciences Center, Beijing, China
| | - Wei-Qiao Liu
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Present address: Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Xiaoyan He
- Department of Microbiology, Peking University Health Sciences Center, Beijing, China
| | - Chun-Xiao Wang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Dan-Dan Zhao
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Jia-Jing Li
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Xiao-Qin Mu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Bing-Qing Yao
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Xia Li
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yong-Guo Li
- Department of Infectious Diseases of the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li-Bo Duo
- Clinical Laboratory of Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li Wang
- Clinical Laboratory of Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Randal N Johnston
- Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Jin Zhou
- Department of Hematology of the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jing-Bo Zhao
- Department of Epidemiology, Public Health School, Harbin Medical University, Harbin, China
| | - Gui-Rong Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.
| | - Shu-Lin Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.
- Department of Microbiology, Peking University Health Sciences Center, Beijing, China.
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
- Department of Infectious Diseases of the First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
23
|
Jiang J, Yang B, Ross RP, Stanton C, Zhao J, Zhang H, Chen W. Comparative Genomics of Pediococcus pentosaceus Isolated From Different Niches Reveals Genetic Diversity in Carbohydrate Metabolism and Immune System. Front Microbiol 2020; 11:253. [PMID: 32174896 PMCID: PMC7055311 DOI: 10.3389/fmicb.2020.00253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Pediococcus pentosaceus isolated from fermented food and the gastrointestinal tracts of humans and animals have been widely identified, and some strains have been reported to reduce inflammation, encephalopathy, obesity and fatty liver in animals. In this study, the genomes of 65 P. pentosaceus strains isolated from human and animal feces and different fermented food were sequenced and comparative genomics analysis was performed on all strains along with nine sequenced representative strains to preliminarily reveal the lifestyle of P. pentosaceus, and investigate the genomic diversity within this species. The results reveal that P. pentosaceus is not host-specific, and shares core genes encoding proteins related to translation, ribosomal structure and biogenesis and signal transduction mechanisms, while its genetic diversity relates mainly to carbohydrate metabolism, and horizontally transferred DNA, especially prophages and bacteriocins encoded on plasmids. Additionally, this is the first report of a type IIA CRISPR/Cas system in P. pentosaceus. This work provides expanded resources of P. pentosaceus genomes, and offers a framework for understanding the biotechnological potential of this species.
Collapse
Affiliation(s)
- Jie Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, China
| | - R Paul Ross
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, China.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, China.,Moorepark Teagasc Food Research Centre, Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
24
|
Prevalence, genetic analysis and CRISPR typing of Cronobacter spp. isolated from meat and meat products in China. Int J Food Microbiol 2020; 321:108549. [PMID: 32062304 DOI: 10.1016/j.ijfoodmicro.2020.108549] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/17/2022]
Abstract
Cronobacter spp. are important foodborne pathogens that infections occur in all age groups, especially cause serious life-threatening diseases in infants. This study aimed to acquire data on Cronobacter spp. contamination of meat and meat products (n = 588) in China during 2011 to 2016, and investigated the use of CRISPR typing technology as an approach for characterizing the genetics of Cronobacter spp. The overall contamination rate for Cronobacter spp. was determined to be 9.18% (54/588). Of the positive samples, 90.74% (49/54) had <10 MPN/g, with duck samples had a relatively high contamination rate (15.69%, 8/51) and highest contamination level (28.90 MPN/g). Four species and nine serotypes were identified among 69 isolates, of which C. sakazakii was the major species (n = 50) and C. sakazakii serogroup O1 and O2 (n = 17) were the primary serotypes. The majority of Cronobacter spp. strains were found to be susceptible to most antibiotics except exhibited high resistance to cephalothin (76.81%, 53/69), and total two multi-drug resistant C. sakazakii strains were isolated from duck. The genetic diversity of Cronobacter spp. was remarkably high, as evidenced by the identification of 40 sequence types (STs) and 60 CRISPR types (CTs). C. sakazakii ST64 (n = 7) was the predominant genotype and was further divided into two sub-lineages based on CRISPR diversity, showing different antibiotic resistance profile. These results demonstrate that CRISPR typing results have a good correspondence with bacterial phenotypes, and it will be a tremendously useful approach for elucidating inter-subtyping during molecular epidemiological investigations while interpreting the divergent evolution of Cronobacter. The presence of Cronobacter spp. in meat and meat product is a potential threat to human public health.
Collapse
|
25
|
Vila Nova M, Durimel K, La K, Felten A, Bessières P, Mistou MY, Mariadassou M, Radomski N. Genetic and metabolic signatures of Salmonella enterica subsp. enterica associated with animal sources at the pangenomic scale. BMC Genomics 2019; 20:814. [PMID: 31694533 PMCID: PMC6836353 DOI: 10.1186/s12864-019-6188-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Salmonella enterica subsp. enterica is a public health issue related to food safety, and its adaptation to animal sources remains poorly described at the pangenome scale. Firstly, serovars presenting potential mono- and multi-animal sources were selected from a curated and synthetized subset of Enterobase. The corresponding sequencing reads were downloaded from the European Nucleotide Archive (ENA) providing a balanced dataset of 440 Salmonella genomes in terms of serovars and sources (i). Secondly, the coregenome variants and accessory genes were detected (ii). Thirdly, single nucleotide polymorphisms and small insertions/deletions from the coregenome, as well as the accessory genes were associated to animal sources based on a microbial Genome Wide Association Study (GWAS) integrating an advanced correction of the population structure (iii). Lastly, a Gene Ontology Enrichment Analysis (GOEA) was applied to emphasize metabolic pathways mainly impacted by the pangenomic mutations associated to animal sources (iv). RESULTS Based on a genome dataset including Salmonella serovars from mono- and multi-animal sources (i), 19,130 accessory genes and 178,351 coregenome variants were identified (ii). Among these pangenomic mutations, 52 genomic signatures (iii) and 9 over-enriched metabolic signatures (iv) were associated to avian, bovine, swine and fish sources by GWAS and GOEA, respectively. CONCLUSIONS Our results suggest that the genetic and metabolic determinants of Salmonella adaptation to animal sources may have been driven by the natural feeding environment of the animal, distinct livestock diets modified by human, environmental stimuli, physiological properties of the animal itself, and work habits for health protection of livestock.
Collapse
Affiliation(s)
- Meryl Vila Nova
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
- Applied Mathematics and Computer Science, from Genomes to the Environment (MaIAGE), French National Institute for Agricultural Research (INRA), Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Kévin Durimel
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
| | - Kévin La
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
| | - Arnaud Felten
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
| | - Philippe Bessières
- Applied Mathematics and Computer Science, from Genomes to the Environment (MaIAGE), French National Institute for Agricultural Research (INRA), Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Michel-Yves Mistou
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
| | - Mahendra Mariadassou
- Applied Mathematics and Computer Science, from Genomes to the Environment (MaIAGE), French National Institute for Agricultural Research (INRA), Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Nicolas Radomski
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France.
| |
Collapse
|
26
|
Gupta SK, Sharma P, McMillan EA, Jackson CR, Hiott LM, Woodley T, Humayoun SB, Barrett JB, Frye JG, McClelland M. Genomic comparison of diverse Salmonella serovars isolated from swine. PLoS One 2019; 14:e0224518. [PMID: 31675365 PMCID: PMC6824618 DOI: 10.1371/journal.pone.0224518] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022] Open
Abstract
Food animals act as a reservoir for many foodborne pathogens. Salmonella enterica is one of the leading pathogens that cause food borne illness in a broad host range including animals and humans. They can also be associated with a single host species or a subset of hosts, due to genetic factors associated with colonization and infection. Adult swine are often asymptomatic carriers of a broad range of Salmonella servoars and can act as an important reservoir of infections for humans. In order to understand the genetic variations among different Salmonella serovars, Whole Genome Sequences (WGS) of fourteen Salmonella serovars from swine products were analyzed. More than 75% of the genes were part of the core genome in each isolate and the higher fraction of gene assign to different functional categories in dispensable genes indicated that these genes acquired for better adaptability and diversity. High concordance (97%) was detected between phenotypically confirmed antibiotic resistances and identified antibiotic resistance genes from WGS. The resistance determinants were mainly located on mobile genetic elements (MGE) on plasmids or integrated into the chromosome. Most of known and putative virulence genes were part of the core genome, but a small fraction were detected on MGE. Predicted integrated phage were highly diverse and many harbored virulence, metal resistance, or antibiotic resistance genes. CRISPR (Clustered regularly interspaced short palindromic repeats) patterns revealed the common ancestry or infection history among Salmonella serovars. Overall genomic analysis revealed a great deal of diversity among Salmonella serovars due to acquired genes that enable them to thrive and survive during infection.
Collapse
Affiliation(s)
- Sushim K. Gupta
- Bacterial Epidemiology and Antimicrobial Resistance Unit, USDA-ARS, Athens, GA, United States of America
| | - Poonam Sharma
- Bacterial Epidemiology and Antimicrobial Resistance Unit, USDA-ARS, Athens, GA, United States of America
| | - Elizabeth A. McMillan
- Bacterial Epidemiology and Antimicrobial Resistance Unit, USDA-ARS, Athens, GA, United States of America
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Charlene R. Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Unit, USDA-ARS, Athens, GA, United States of America
| | - Lari M. Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Unit, USDA-ARS, Athens, GA, United States of America
| | - Tiffanie Woodley
- Bacterial Epidemiology and Antimicrobial Resistance Unit, USDA-ARS, Athens, GA, United States of America
| | - Shaheen B. Humayoun
- Bacterial Epidemiology and Antimicrobial Resistance Unit, USDA-ARS, Athens, GA, United States of America
| | - John B. Barrett
- Bacterial Epidemiology and Antimicrobial Resistance Unit, USDA-ARS, Athens, GA, United States of America
| | - Jonathan G. Frye
- Bacterial Epidemiology and Antimicrobial Resistance Unit, USDA-ARS, Athens, GA, United States of America
- * E-mail:
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, United States of America
| |
Collapse
|
27
|
Ramirez MS, Iriarte A, Reyes-Lamothe R, Sherratt DJ, Tolmasky ME. Small Klebsiella pneumoniae Plasmids: Neglected Contributors to Antibiotic Resistance. Front Microbiol 2019; 10:2182. [PMID: 31616398 PMCID: PMC6764390 DOI: 10.3389/fmicb.2019.02182] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Klebsiella pneumoniae is the causative agent of community- and, more commonly, hospital-acquired infections. Infections caused by this bacterium have recently become more dangerous due to the acquisition of multiresistance to antibiotics and the rise of hypervirulent variants. Plasmids usually carry genes coding for resistance to antibiotics or virulence factors, and the recent sequence of complete K. pneumoniae genomes showed that most strains harbor many of them. Unlike large plasmids, small, usually high copy number plasmids, did not attract much attention. However, these plasmids may include genes coding for specialized functions, such as antibiotic resistance, that can be expressed at high levels due to gene dosage effect. These genes may be part of mobile elements that not only facilitate their dissemination but also participate in plasmid evolution. Furthermore, high copy number plasmids may also play a role in evolution by allowing coexistence of mutated and non-mutated versions of a gene, which helps to circumvent the constraints imposed by trade-offs after certain genes mutate. Most K. pneumoniae plasmids 25-kb or smaller replicate by the ColE1-type mechanism and many of them are mobilizable. The transposon Tn1331 and derivatives were found in a high percentage of these plasmids. Another transposon that was found in representatives of this group is the bla KPC-containing Tn4401. Common resistance determinants found in these plasmids were aac(6')-Ib and genes coding for β-lactamases including carbapenemases.
Collapse
Affiliation(s)
- Maria S. Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Universidad de la República de Uruguay, Montevideo, Uruguay
| | | | - David J. Sherratt
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Sciences, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Zeng H, Li C, He W, Zhang J, Chen M, Lei T, Wu H, Ling N, Cai S, Wang J, Ding Y, Wu Q. Cronobacter sakazakii, Cronobacter malonaticus, and Cronobacter dublinensis Genotyping Based on CRISPR Locus Diversity. Front Microbiol 2019; 10:1989. [PMID: 31555228 PMCID: PMC6722223 DOI: 10.3389/fmicb.2019.01989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/13/2019] [Indexed: 11/19/2022] Open
Abstract
Cronobacter strains harboring CRISPR-Cas systems are important foodborne pathogens that cause serious neonatal infections. CRISPR typing is a new molecular subtyping method to track the sources of pathogenic bacterial outbreaks and shows a promise in typing Cronobacter, however, this molecular typing procedure using routine PCR method has not been established. Therefore, the purpose of this study was to establish such methodology, 257 isolates of Cronobacter sakazakii, C. malonaticus, and C. dublinensis were used to verify the feasibility of the method. Results showed that 161 C. sakazakii strains could be divided into 129 CRISPR types (CTs), among which CT15 (n = 7) was the most prevalent CT followed by CT6 (n = 4). Further, 65 C. malonaticus strains were divided into 42 CTs and CT23 (n = 8) was the most prevalent followed by CT2, CT3, and CT13 (n = 4). Finally, 31 C. dublinensis strains belonged to 31 CTs. There was also a relationship among CT, sequence type (ST), food types, and serotype. Compared to multi-locus sequence typing (MLST), this new molecular method has greater power to distinguish similar strains and had better accordance with whole genome sequence typing (WGST). More importantly, some lineages were found to harbor conserved ancestral spacers ahead of their divergent specific spacer sequences; this can be exploited to infer the divergent evolution of Cronobacter and provide phylogenetic information reflecting common origins. Compared to WGST, CRISPR typing method is simpler and more affordable, it could be used to identify sources of Cronobacter food-borne outbreaks, from clinical cases to food sources and the production sites.
Collapse
Affiliation(s)
- Haiyan Zeng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chengsi Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wenjing He
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tao Lei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Haoming Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Na Ling
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuzhen Cai
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
29
|
Tasmin R, Gulig PA, Parveen S. Detection of Virulence Plasmid-Encoded Genes in Salmonella Typhimurium and Salmonella Kentucky Isolates Recovered from Commercially Processed Chicken Carcasses. J Food Prot 2019; 82:1364-1368. [PMID: 31322922 DOI: 10.4315/0362-028x.jfp-18-552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Salmonella enterica serovar Typhimurium is one of the leading causes of nontyphoidal gastroenteritis of humans in the United States. Commercially processed poultry carcasses are frequently contaminated with Salmonella serovar Kentucky in the United States. The aim of the study was to detect the Salmonella virulence plasmid containing the spv genes from Salmonella isolates recovered from commercially processed chicken carcasses. A total of 144 Salmonella isolates (Salmonella Typhimurium, n = 72 and Salmonella Kentucky, n = 72) were used for isolation of plasmids and detection of corresponding virulence genes (spvA, spvB, and spvC). Only four (5.5%) Salmonella Typhimurium isolates tested positive for all three virulence genes and hence were classified as possessing the virulence plasmid. All isolates of Salmonella Kentucky were negative for the virulence plasmid and genes. These results indicate that the virulence plasmid, which is very common among clinical isolates of Typhimurium and other Salmonella serovars (e.g., Enteritidis, Dublin, Choleraesuis, Gallinarum, Pullorum, and Abortusovis), may not be present in a significant portion of commercially processed chicken carcass isolates.
Collapse
Affiliation(s)
- Rizwana Tasmin
- 1 Agriculture, Food and Resource Sciences, University of Maryland, Eastern Shore, Princess Anne, Maryland 21853
| | - Paul A Gulig
- 2 Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32611, USA
| | - Salina Parveen
- 1 Agriculture, Food and Resource Sciences, University of Maryland, Eastern Shore, Princess Anne, Maryland 21853
| |
Collapse
|
30
|
Tang S, Orsi RH, Luo H, Ge C, Zhang G, Baker RC, Stevenson A, Wiedmann M. Assessment and Comparison of Molecular Subtyping and Characterization Methods for Salmonella. Front Microbiol 2019; 10:1591. [PMID: 31354679 PMCID: PMC6639432 DOI: 10.3389/fmicb.2019.01591] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/26/2019] [Indexed: 01/26/2023] Open
Abstract
The food industry is facing a major transition regarding methods for confirmation, characterization, and subtyping of Salmonella. Whole-genome sequencing (WGS) is rapidly becoming both the method of choice and the gold standard for Salmonella subtyping; however, routine use of WGS by the food industry is often not feasible due to cost constraints or the need for rapid results. To facilitate selection of subtyping methods by the food industry, we present: (i) a comparison between classical serotyping and selected widely used molecular-based subtyping methods including pulsed-field gel electrophoresis, multilocus sequence typing, and WGS (including WGS-based serovar prediction) and (ii) a scoring system to evaluate and compare Salmonella subtyping assays. This literature-based assessment supports the superior discriminatory power of WGS for source tracking and root cause elimination in food safety incident; however, circumstances in which use of other subtyping methods may be warranted were also identified. This review provides practical guidance for the food industry and presents a starting point for further comparative evaluation of Salmonella characterization and subtyping methods.
Collapse
Affiliation(s)
- Silin Tang
- Mars Global Food Safety Center, Beijing, China
| | - Renato H. Orsi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Hao Luo
- Mars Global Food Safety Center, Beijing, China
| | - Chongtao Ge
- Mars Global Food Safety Center, Beijing, China
| | | | | | | | - Martin Wiedmann
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
31
|
Feng Y, Lin E, Zou S, Chen CL, Chiu CH. Complete genome sequence of Salmonella enterica serovar Sendai shows H antigen convergence with S. Miami and recent divergence from S. Paratyphi A. BMC Genomics 2019; 20:398. [PMID: 31117944 PMCID: PMC6530103 DOI: 10.1186/s12864-019-5798-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
Background Salmonella enterica consists of over 2500 serovars and displays dichotomy in disease manifestations and host range. Except for the enrichment of pseudogenes in genomes for human-restricted serovars, no hallmark has been identified to distinguish those with host-generalist serovars. The serovar Sendai is rare and human-restricted. Notably, it exhibits an O, H antigen formula as the host-generalist serovar Miami. Results We sequenced the complete genomes of the two serovars Sendai and Miami. Analysis at both nucleotide identity and gene content level demonstrates the same high degree of similarity between Sendai and Paratyphi A, but their distinct CRISPR spacers suggests a recent divergence history. A frameshift mutation occurred in rfbE for the entire lineage of Paratyphi A but not in Sendai, which may explain their distinct O antigens. The nucleotide sequence of Miami’s fliC is nearly identical to Sendai’s. The incongruent phylogeny of this gene with that of the adjacent genes suggests a recombination event responsible for Sendai and Miami possessing the same H antigen. Sendai’s even greater number of pseudogenes than that of Paratyphi A and Typhi indicates its undergoing continued genomic degradation. The phylogenetically distinct human-restricted serovars/strains share pseudogenes with the same inactivation mutations, therefore suggesting that recombination may have occurred and have been facilitated by their overlap in niches. Conclusions Analysis of Sendai’s genome and comparison with others reflect the finer evolutionary signatures of Salmonella in the process of niches changing from facultative to obligate parasite. Electronic supplementary material The online version of this article (10.1186/s12864-019-5798-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Institute for Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China. .,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| | - Enze Lin
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute for Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengmei Zou
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute for Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan. .,Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
32
|
Scaltriti E, Carminati D, Cortimiglia C, Ramoni R, Sørensen KI, Giraffa G, Zago M. Survey on the CRISPR arrays in Lactobacillus helveticus genomes. Lett Appl Microbiol 2019; 68:394-402. [PMID: 30762876 DOI: 10.1111/lam.13128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/10/2019] [Accepted: 02/11/2019] [Indexed: 02/05/2023]
Abstract
Lactobacillus helveticus is a homofermentative thermophilic lactic acid bacteria that is mainly used in the manufacture of Swiss type and long-ripened Italian hard cheeses. In this study, the presence of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) were analysed in 25 L. helveticus genomes and identified in 23 of these genomes. A total of 40 CRISPR loci were identified and classified into five main families based on CRISPR repeats: Ldbu1, Lsal1, Lhel1, Lhel2 and a new repeat family named Lhel3. Spacers had a size between 30 and 40 bp whereas repeats have an average size of 30 bp, with three longer repeats. The analysis displayed the presence of conserved spacers in 23 of the 40 CRISPR loci. A geographical distribution of L. helveticus isolates with similar CRISPR spacer array profiles were not observed. Based on the presence of the signature protein Cas3, all CRISPR loci belonged to Type I. This analysis demonstrated a great CRISPR array variability within L. helveticus, which could be a useful tool for genotypic strain differentiation. A next step will be to understand the possible role of CRISPR/Cas system for the resistance of L. helveticus to phage infection. SIGNIFICANCE AND IMPACT OF THE STUDY: Lactobacillus helveticus, a lactic acid bacteria species widely used as starter culture in the dairy industry has recently also gained importance as health-promoting culture in probiotic and nutraceutical food products. The CRISPR/Cas system, a well-known molecular mechanism that provides adaptive immunity against exogenous genetic elements such as bacteriophages and plasmids in bacteria, was recently found in this species. In this study, we investigated the presence and genetic heterogeneity of CRISPR loci in 25 L. helveticus genomes. The results presented here represent an important step on the way to manage phage resistance, plasmid uptake and genome editing in this species.
Collapse
Affiliation(s)
- E Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, IZSLER, Parma, Italy
| | - D Carminati
- CREA Research Centre for Animal Production and Aquaculture (CREA-ZA), Lodi, Italy
| | - C Cortimiglia
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - R Ramoni
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | - G Giraffa
- CREA Research Centre for Animal Production and Aquaculture (CREA-ZA), Lodi, Italy
| | - M Zago
- CREA Research Centre for Animal Production and Aquaculture (CREA-ZA), Lodi, Italy
| |
Collapse
|
33
|
Pathogenic potential of non-typhoidal Salmonella serovars isolated from aquatic environments in Mexico. Genes Genomics 2019; 41:767-779. [DOI: 10.1007/s13258-019-00798-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/19/2019] [Indexed: 12/20/2022]
|
34
|
Prathan R, Bitrus AA, Sinwat N, Angkititrakul S, Chuanchuen R. Phylogenetic characterization of Salmonella enterica from pig production and humans in Thailand and Laos border provinces. Vet World 2019; 12:79-84. [PMID: 30936658 PMCID: PMC6431808 DOI: 10.14202/vetworld.2019.79-84] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/29/2018] [Indexed: 11/30/2022] Open
Abstract
Background and Aim: The genetic relationship among serotypes of Salmonellaenterica from food animals, food of animal origin, and human is of interest as the data could provide an important clue for the source of human infection. This study aimed to determine the genetic relatedness of S. enterica from pig production and human in Thailand–Laos border provinces. Materials and Methods: A total of 195 S. enterica serotypes isolated from pig and pork (n=178) and human (n=17) including four serotypes (Typhimurium, Rissen, Derby, and Stanley) were randomly selected to examine their genetic relatedness using highly conserved sequence of three genes (fim A, man B, and mdh). Results: The results showed that 195 Salmonella isolates of four different serotypes were grouped into five different clusters, and members of the same Salmonella serotypes were found in the same cluster. Salmonella isolated from pig production and human in Thailand–Laos border provinces represented overlapping population and revealed a high degree of similarity, indicating close genetic relationship among the isolates. Conclusion: The results support that the determination of Salmonella serotyping combined with analysis of phylogenetic tree can be used track the clonal evolution and genetic diversity of Salmonella serotypes in different host species.
Collapse
Affiliation(s)
- Rangsiya Prathan
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asinamai Athliamai Bitrus
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuananong Sinwat
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean campus, Nakhonpathom, 73140 Thailand
| | - Sunpetch Angkititrakul
- Research Group for Prevention Technology in Livestock, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40000, Thailand
| | - Rungtip Chuanchuen
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
35
|
Labbé G, Rankin MA, Robertson J, Moffat J, Giang E, Lee LK, Ziebell K, MacKinnon J, Laing CR, Parmley EJ, Agunos A, Daignault D, Bekal S, Chui L, MacDonald KA, Hoang L, Slavic D, Ramsay D, Pollari F, Nash JHE, Johnson RP. Targeting discriminatory SNPs in Salmonella enterica serovar Heidelberg genomes using RNase H2-dependent PCR. J Microbiol Methods 2018; 157:81-87. [PMID: 30592979 DOI: 10.1016/j.mimet.2018.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 11/16/2022]
Abstract
We report a novel RNase H2-dependent PCR (rhPCR) genotyping assay for a small number of discriminatory single-nucleotide polymorphisms (SNPs) that identify lineages and sub-lineages of the highly clonal pathogen Salmonella Heidelberg (SH). Standard PCR primers targeting numerous SNP locations were initially designed in silico, modified to be RNase H2-compatible, and then optimized by laboratory testing. Optimization often required repeated cycling through variations in primer design, assay conditions, reagent concentrations and selection of alternative SNP targets. The final rhPCR assay uses 28 independent rhPCR reactions to target 14 DNA bases that can distinguish 15 possible lineages and sub-lineages of SH. On evaluation, the assay correctly identified the 12 lineages and sub-lineages represented in a panel of 75 diverse SH strains. Non-specific amplicons were observed in 160 (15.2%) of the 1050 reactions, but due to their low intensity did not compromise assay performance. Furthermore, in silico analysis of 500 closed genomes from 103 Salmonella serovars and laboratory rhPCR testing of five prevalent Salmonella serovars including SH indicated the assay can identify Salmonella isolates as SH, since only SH isolates generated amplicons from all 14 target SNPs. The genotyping results can be fully correlated with whole genome sequencing (WGS) data in silico. This fast and economical assay, which can identify SH isolates and classify them into related or unrelated lineages and sub-lineages, has potential applications in outbreak identification, source attribution and microbial source tracking.
Collapse
Affiliation(s)
- Geneviève Labbé
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Marisa A Rankin
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - James Robertson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Jonathan Moffat
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Elissa Giang
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Lok Kan Lee
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Kim Ziebell
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Joanne MacKinnon
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Chad R Laing
- National Centres for Animal Disease Lethbridge Laboratory, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| | - E Jane Parmley
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Agnes Agunos
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Danielle Daignault
- National Microbiology Laboratory, Public Health Agency of Canada, St-Hyacinthe, Québec, Canada
| | - Sadjia Bekal
- Laboratoire de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Linda Chui
- Provincial Laboratory for Public Health-Alberta Public Laboratories, Edmonton, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kimberley A MacDonald
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; British Columbia Centre for Disease Control, Public Health Microbiology and Reference Laboratory, Vancouver, British Columbia, Canada
| | - Linda Hoang
- British Columbia Centre for Disease Control, Public Health Microbiology and Reference Laboratory, Vancouver, British Columbia, Canada
| | - Durda Slavic
- Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, Ontario, Canada
| | - Danielle Ramsay
- Ministère de l'Agriculture, des Pêcheries, et de l'Alimentation du Québec, Québec, Canada
| | - Frank Pollari
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - John H E Nash
- National Microbiology Laboratory, Public Health Agency of Canada, Toronto, Ontario, Canada
| | - Roger P Johnson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada.
| |
Collapse
|
36
|
Antony L, Behr M, Sockett D, Miskimins D, Aulik N, Christopher-Hennings J, Nelson E, Allard MW, Scaria J. Genome divergence and increased virulence of outbreak associated Salmonella enterica subspecies enterica serovar Heidelberg. Gut Pathog 2018; 10:53. [PMID: 30603048 PMCID: PMC6304783 DOI: 10.1186/s13099-018-0279-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/15/2018] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serotype Heidelberg is primarily a poultry adapted serotype of Salmonella that can also colonize other hosts and cause human disease. In this study, we compared the genomes of outbreak associated non-outbreak causing Salmonella ser. Heidelberg strains from diverse hosts and geographical regions. Human outbreak associated strains in this study were from a 2015 multistate outbreak of Salmonella ser. Heidelberg involving 15 states in the United States which originated from bull calves. Our clinicopathologic examination revealed that cases involving Salmonella ser. Heidelberg strains were predominantly young, less than weeks-old, dairy calves. Pre-existing or concurrent disease was found in the majority of the calves. Detection of Salmonella ser. Heidelberg correlated with markedly increased death losses clinically comparable to those seen in herds infected with S. Dublin, a known serious pathogen of cattle. Whole genome based single nucleotide polymorphism based analysis revealed that these calf isolates formed a distinct cluster along with outbreak associated human isolates. The defining feature of the outbreak associated strains, when compared to older isolates of S. Heidelberg, is that all isolates in this cluster contained Saf fimbrial genes which are generally absent in S. Heidelberg. The acquisition of several single nucleotide polymorphisms and the gain of Saf fimbrial genes may have contributed to the increased disease severity of these Salmonella ser. Heidelberg strains.
Collapse
Affiliation(s)
- Linto Antony
- 1Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD USA.,South Dakota Center for Biologics Research and Commercialization, Brookings, SD USA
| | - Melissa Behr
- 1Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD USA
| | - Donald Sockett
- 3Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin, Madison, WI USA
| | - Dale Miskimins
- 1Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD USA
| | - Nicole Aulik
- 3Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin, Madison, WI USA
| | - Jane Christopher-Hennings
- 1Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD USA.,South Dakota Center for Biologics Research and Commercialization, Brookings, SD USA
| | - Eric Nelson
- 1Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD USA.,South Dakota Center for Biologics Research and Commercialization, Brookings, SD USA
| | - Marc W Allard
- 4Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Nutrition, U.S. Food and Drug Administration, College Park, MD USA
| | - Joy Scaria
- 1Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD USA.,South Dakota Center for Biologics Research and Commercialization, Brookings, SD USA
| |
Collapse
|
37
|
Kongrueng J, Srinitiwarawong K, Nishibuchi M, Mittraparp-Arthorn P, Vuddhakul V. Characterization and CRISPR-based genotyping of clinical trh-positive Vibrio parahaemolyticus. Gut Pathog 2018; 10:48. [PMID: 30459849 PMCID: PMC6233571 DOI: 10.1186/s13099-018-0275-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/08/2018] [Indexed: 01/15/2023] Open
Abstract
Background Vibrio parahaemolyticus is a causative agent of gastroenteritis. Most of the clinical isolates carry either tdh and/or trh genes which are considered as the major virulence genes of this pathogen. In this study, the clinical isolates of V. parahaemolyticus carrying trh gene (n = 73) obtained from 1886 to 2012 from various countries were investigated for the urease production, haemolytic activity, and biofilm formation. In addition, the potential of clustered regularly interspaced short palindromic repeats (CRISPR)-based genotyping among these isolates was investigated. Results In this study, no significant differences were observed in the urease production between tdh + trh1+ and tdh + trh2+ isolates (p = 0.063) and between the tdh - trh1+ and tdh - trh2+ isolates (p = 0.788). The isolates carrying only the trh gene showed variation in their haemolytic activity. The ratio of urease production and haemolytic activity between the trh1+ and trh2+ isolates and biofilm formation of trh + V. parahaemolyticus isolates were not significantly different. Sixteen of thirty-four tested isolates (47.0%) of trh + V. parahaemolyticus were positive for CRISPR detection. The discriminatory power index (DI) of CRISPR-virulence typing was higher than the DI obtained by CRISPR typing alone. Conclusion The tdh and trh genes were not involved in urease production in the trh + V. parahaemolyticus, and variation of haemolytic activity detected in V. parahaemolyticus carrying only the trh gene might be correlated to the sequence variation within trh1 and trh2 genes. Additionally, biofilm production of V. parahaemolyticus was not associated with harboring of virulence genes. For genotyping, CRISPR sequences combined with virulence genes can be used as genetic markers to differentiate trh + V. parahaemolyticus strains.
Collapse
Affiliation(s)
- Jetnapang Kongrueng
- 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Kanchana Srinitiwarawong
- 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | | | | | - Varaporn Vuddhakul
- 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
38
|
Medina-Aparicio L, Dávila S, Rebollar-Flores JE, Calva E, Hernández-Lucas I. The CRISPR-Cas system in Enterobacteriaceae. Pathog Dis 2018; 76:4794941. [PMID: 29325038 DOI: 10.1093/femspd/fty002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
In nature, microorganisms are constantly exposed to multiple viral infections and thus have developed many strategies to survive phage attack and invasion by foreign DNA. One of such strategies is the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) bacterial immunological system. This defense mechanism is widespread in prokaryotes including several families such as Enterobacteriaceae. Much knowledge about the CRISPR-Cas system has been generated, including its biological functions, transcriptional regulation, distribution, utility as a molecular marker and as a tool for specific genome editing. This review focuses on these aspects and describes the state of the art of the CRISPR-Cas system in the Enterobacteriaceae bacterial family.
Collapse
Affiliation(s)
- Liliana Medina-Aparicio
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Sonia Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Cuernavaca, Morelos 62209, México
| | - Javier E Rebollar-Flores
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Ismael Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| |
Collapse
|
39
|
Seif Y, Kavvas E, Lachance JC, Yurkovich JT, Nuccio SP, Fang X, Catoiu E, Raffatellu M, Palsson BO, Monk JM. Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits. Nat Commun 2018; 9:3771. [PMID: 30218022 PMCID: PMC6138749 DOI: 10.1038/s41467-018-06112-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/17/2018] [Indexed: 01/08/2023] Open
Abstract
Salmonella strains are traditionally classified into serovars based on their surface antigens. While increasing availability of whole-genome sequences has allowed for more detailed subtyping of strains, links between genotype, serovar, and host remain elusive. Here we reconstruct genome-scale metabolic models for 410 Salmonella strains spanning 64 serovars. Model-predicted growth capabilities in over 530 different environments demonstrate that: (1) the Salmonella accessory metabolic network includes alternative carbon metabolism, and cell wall biosynthesis; (2) metabolic capabilities correspond to each strain's serovar and isolation host; (3) growth predictions agree with 83.1% of experimental outcomes for 12 strains (690 out of 858); (4) 27 strains are auxotrophic for at least one compound, including L-tryptophan, niacin, L-histidine, L-cysteine, and p-aminobenzoate; and (5) the catabolic pathways that are important for fitness in the gastrointestinal environment are lost amongst extraintestinal serovars. Our results reveal growth differences that may reflect adaptation to particular colonization sites.
Collapse
Affiliation(s)
- Yara Seif
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Erol Kavvas
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | | | - James T Yurkovich
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, USA
| | - Sean-Paul Nuccio
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Xin Fang
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Edward Catoiu
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Manuela Raffatellu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, USA.
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, USA.
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kongens, Lyngby, Denmark.
| | - Jonathan M Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, USA.
| |
Collapse
|
40
|
Nguyen SV, Harhay DM, Bono JL, Smith TPL, Fields PI, Dinsmore BA, Santovenia M, Wang R, Bosilevac JM, Harhay GP. Comparative genomics of Salmonella enterica serovar Montevideo reveals lineage-specific gene differences that may influence ecological niche association. Microb Genom 2018; 4:e000202. [PMID: 30052174 PMCID: PMC6159554 DOI: 10.1099/mgen.0.000202] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/05/2018] [Indexed: 01/01/2023] Open
Abstract
Salmonella enterica serovar Montevideo has been linked to recent foodborne illness outbreaks resulting from contamination of products such as fruits, vegetables, seeds and spices. Studies have shown that Montevideo also is frequently associated with healthy cattle and can be isolated from ground beef, yet human salmonellosis outbreaks of Montevideo associated with ground beef contamination are rare. This disparity fuelled our interest in characterizing the genomic differences between Montevideo strains isolated from healthy cattle and beef products, and those isolated from human patients and outbreak sources. To that end, we sequenced 13 Montevideo strains to completion, producing high-quality genome assemblies of isolates from human patients (n=8) or from healthy cattle at slaughter (n=5). Comparative analysis of sequence data from this study and publicly available sequences (n=72) shows that Montevideo falls into four previously established clades, differentially occupied by cattle and human strains. The results of these analyses reveal differences in metabolic islands, environmental adhesion determinants and virulence factors within each clade, and suggest explanations for the infrequent association between bovine isolates and human illnesses.
Collapse
Affiliation(s)
- Scott V. Nguyen
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Dayna M. Harhay
- USDA-ARS-US Meat Animal Research Center, Clay Center, NE 68933, USA
| | - James L. Bono
- USDA-ARS-US Meat Animal Research Center, Clay Center, NE 68933, USA
| | | | - Patricia I. Fields
- Enteric Disease Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Blake A. Dinsmore
- Enteric Disease Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Monica Santovenia
- Enteric Disease Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Rong Wang
- USDA-ARS-US Meat Animal Research Center, Clay Center, NE 68933, USA
| | | | | |
Collapse
|
41
|
Ricke SC, Kim SA, Shi Z, Park SH. Molecular-based identification and detection of Salmonella in food production systems: current perspectives. J Appl Microbiol 2018; 125:313-327. [PMID: 29675864 DOI: 10.1111/jam.13888] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/25/2022]
Abstract
Salmonella remains a prominent cause of foodborne illnesses and can originate from a wide range of food products. Given the continued presence of pathogenic Salmonella in food production systems, there is a consistent need to improve identification and detection methods that can identify this pathogen at all stages in food systems. Methods for subtyping have evolved over the years, and the introduction of whole genome sequencing and advancements in PCR technologies have greatly improved the resolution for differentiating strains within a particular serovar. This, in turn, has led to the continued improvement in Salmonella detection technologies for utilization in food production systems. In this review, the focus will be on recent advancements in these technologies, as well as potential issues associated with the application of these tools in food production. In addition, the recent and emerging research developments on Salmonella detection and identification methodologies and their potential application in food production systems will be discussed.
Collapse
Affiliation(s)
- S C Ricke
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - S A Kim
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - Z Shi
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| | - S H Park
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
42
|
Jaslow SL, Gibbs KD, Fricke WF, Wang L, Pittman KJ, Mammel MK, Thaden JT, Fowler VG, Hammer GE, Elfenbein JR, Ko DC. Salmonella Activation of STAT3 Signaling by SarA Effector Promotes Intracellular Replication and Production of IL-10. Cell Rep 2018; 23:3525-3536. [PMID: 29924996 PMCID: PMC6314477 DOI: 10.1016/j.celrep.2018.05.072] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/24/2018] [Accepted: 05/21/2018] [Indexed: 12/23/2022] Open
Abstract
Salmonella enterica is an important foodborne pathogen that uses secreted effector proteins to manipulate host pathways to facilitate survival and dissemination. Different S. enterica serovars cause disease syndromes ranging from gastroenteritis to typhoid fever and vary in their effector repertoire. We leveraged this natural diversity to identify stm2585, here designated sarA (Salmonella anti-inflammatory response activator), as a Salmonella effector that induces production of the anti-inflammatory cytokine IL-10. RNA-seq of cells infected with either ΔsarA or wild-type S. Typhimurium revealed that SarA activates STAT3 transcriptional targets. Consistent with this, SarA is necessary and sufficient for STAT3 phosphorylation, STAT3 inhibition blocks IL-10 production, and SarA and STAT3 interact by co-immunoprecipitation. These effects of SarA contribute to intracellular replication in vitro and bacterial load at systemic sites in mice. Our results demonstrate the power of using comparative genomics for identifying effectors and that Salmonella has evolved mechanisms for activating an important anti-inflammatory pathway.
Collapse
Affiliation(s)
- Sarah L Jaslow
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Kyle D Gibbs
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - W Florian Fricke
- Department of Nutrigenomics, University of Hohenheim, Stuttgart, Germany
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Kelly J Pittman
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Mark K Mammel
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Joshua T Thaden
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Vance G Fowler
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Gianna E Hammer
- Department of Immunology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Johanna R Elfenbein
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA; Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
43
|
Ferrari RG, Panzenhagen PHN, Conte-Junior CA. Phenotypic and Genotypic Eligible Methods for Salmonella Typhimurium Source Tracking. Front Microbiol 2017; 8:2587. [PMID: 29312260 PMCID: PMC5744012 DOI: 10.3389/fmicb.2017.02587] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
Salmonellosis is one of the most common causes of foodborne infection and a leading cause of human gastroenteritis. Throughout the last decade, Salmonella enterica serotype Typhimurium (ST) has shown an increase report with the simultaneous emergence of multidrug-resistant isolates, as phage type DT104. Therefore, to successfully control this microorganism, it is important to attribute salmonellosis to the exact source. Studies of Salmonella source attribution have been performed to determine the main food/food-production animals involved, toward which, control efforts should be correctly directed. Hence, the election of a ST subtyping method depends on the particular problem that efforts must be directed, the resources and the data available. Generally, before choosing a molecular subtyping, phenotyping approaches such as serotyping, phage typing, and antimicrobial resistance profiling are implemented as a screening of an investigation, and the results are computed using frequency-matching models (i.e., Dutch, Hald and Asymmetric Island models). Actually, due to the advancement of molecular tools as PFGE, MLVA, MLST, CRISPR, and WGS more precise results have been obtained, but even with these technologies, there are still gaps to be elucidated. To address this issue, an important question needs to be answered: what are the currently suitable subtyping methods to source attribute ST. This review presents the most frequently applied subtyping methods used to characterize ST, analyses the major available microbial subtyping attribution models and ponders the use of conventional phenotyping methods, as well as, the most applied genotypic tools in the context of their potential applicability to investigates ST source tracking.
Collapse
Affiliation(s)
- Rafaela G. Ferrari
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
- Food Science Program, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H. N. Panzenhagen
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
- Food Science Program, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A. Conte-Junior
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
- Food Science Program, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Felten A, Vila Nova M, Durimel K, Guillier L, Mistou MY, Radomski N. First gene-ontology enrichment analysis based on bacterial coregenome variants: insights into adaptations of Salmonella serovars to mammalian- and avian-hosts. BMC Microbiol 2017; 17:222. [PMID: 29183286 PMCID: PMC5706153 DOI: 10.1186/s12866-017-1132-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Background Many of the bacterial genomic studies exploring evolution processes of the host adaptation focus on the accessory genome describing how the gains and losses of genes can explain the colonization of new habitats. Consequently, we developed a new approach focusing on the coregenome in order to describe the host adaptation of Salmonella serovars. Methods In the present work, we propose bioinformatic tools allowing (i) robust phylogenetic inference based on SNPs and recombination events, (ii) identification of fixed SNPs and InDels distinguishing homoplastic and non-homoplastic coregenome variants, and (iii) gene-ontology enrichment analyses to describe metabolic processes involved in adaptation of Salmonella enterica subsp. enterica to mammalian- (S. Dublin), multi- (S. Enteritidis), and avian- (S. Pullorum and S. Gallinarum) hosts. Results The ‘VARCall’ workflow produced a robust phylogenetic inference confirming that the monophyletic clade S. Dublin diverged from the polyphyletic clade S. Enteritidis which includes the divergent clades S. Pullorum and S. Gallinarum (i). The scripts ‘phyloFixedVar’ and ‘FixedVar’ detected non-synonymous and non-homoplastic fixed variants supporting the phylogenetic reconstruction (ii). The scripts ‘GetGOxML’ and ‘EveryGO’ identified representative metabolic pathways related to host adaptation using the first gene-ontology enrichment analysis based on bacterial coregenome variants (iii). Conclusions We propose in the present manuscript a new coregenome approach coupling identification of fixed SNPs and InDels with regards to inferred phylogenetic clades, and gene-ontology enrichment analysis in order to describe the adaptation of Salmonella serovars Dublin (i.e. mammalian-hosts), Enteritidis (i.e. multi-hosts), Pullorum (i.e. avian-hosts) and Gallinarum (i.e. avian-hosts) at the coregenome scale. All these polyvalent Bioinformatic tools can be applied on other bacterial genus without additional developments. Electronic supplementary material The online version of this article (10.1186/s12866-017-1132-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arnaud Felten
- Université PARIS-EST, Anses, Laboratory for food safety, Maisons-Alfort, France
| | - Meryl Vila Nova
- Université PARIS-EST, Anses, Laboratory for food safety, Maisons-Alfort, France
| | - Kevin Durimel
- Université PARIS-EST, Anses, Laboratory for food safety, Maisons-Alfort, France
| | - Laurent Guillier
- Université PARIS-EST, Anses, Laboratory for food safety, Maisons-Alfort, France
| | - Michel-Yves Mistou
- Université PARIS-EST, Anses, Laboratory for food safety, Maisons-Alfort, France
| | - Nicolas Radomski
- Université PARIS-EST, Anses, Laboratory for food safety, Maisons-Alfort, France.
| |
Collapse
|
45
|
Santin E, Hayashi RM, Wammes JC, Gonzalez-Esquerra R, Carazzolle MF, Freire CCDM, Monzani PS, da Cunha AF. Phenotypic and Genotypic Features of a Salmonella Heidelberg Strain Isolated in Broilers in Brazil and Their Possible Association to Antibiotics and Short-Chain Organic Acids Resistance and Susceptibility. Front Vet Sci 2017; 4:184. [PMID: 29164140 PMCID: PMC5671994 DOI: 10.3389/fvets.2017.00184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 10/11/2017] [Indexed: 01/04/2023] Open
Abstract
Salmonella enterica serovar Heidelberg is a human pathogen also found in broilers. A strain (UFPR1) has been associated with field reports of resistance to short-chain organic acids (SCOA) in broilers in the South of Brazil, but was susceptible to a Bacillus subtilis-based probiotic added in feed in a related study. This work aimed to (i) report clinical symptoms caused by SH UFPR1 in broilers, (ii) study its susceptibility to some antibiotics in vitro, and (iii) SCOA in vivo; and (iv) relate these phenotypic observations with its genome characteristics. Two in vivo trials used 1-day-old chicks housed for 21 days in 8 sterilized isolated negative pressure rooms with 4 battery cages of 12 birds each. Birds were challenged or not with 107 CFU/bird of SH UFPR1 orally and exposed or not to SCOA in a 2 × 2 factorial design. Zootechnical parameters were unaffected (P > 0.05), no clinical signs were observed, and few cecal and hepatic histologic and immune-related alterations were seen, in birds challenged with SH. Formic and propionic acids added together in drinking water, fumaric and benzoic acid in feed (Trial 1), and coated calcium butyrate in feed (Trial 2) did not reduce the SH isolation frequencies seen in cecum and liver in broilers after SH challenge (P > 0.05). SH UFPR1 was susceptible to amikacin, amoxicillin + clavulanate, ceftiofur, cephalexin, doxycycline and oxytetracycline; and mildly susceptible to ampicillin + sulbactam, cephalothin, ciprofloxacin, enrofloxacin, and gentamycin in an in vitro minimum inhibitory concentration model using Mueller–Hinton agar. The whole genome of SH UFPR1 was sequenced and consisted of a circular chromosome, spanning 4,760,321 bp with 52.18% of GC-content encoding 84 tRNA, 22 rRNA, and 4,427 protein-coding genes. The comparison between SH UFPR1 genome and a multidrug-resistant SL476 strain revealed 11 missing genomic fragments and 5 insertions related to bgt, bgr, and rpoS genes. The deleted genes codify proteins associated with cell cycle regulation, virulence, drug resistance, cellular adhesion, and salt efflux which collectively reveal key aspects of the evolution and adaptation of SH strains such as organic acids resistance and antibiotic sensitivity and provide information relevant to the control of SH in poultry.
Collapse
Affiliation(s)
- Elizabeth Santin
- Laboratório de Microbiologia e Ornitopatologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Ricardo Mitsuo Hayashi
- Laboratório de Microbiologia e Ornitopatologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jessica Caroline Wammes
- Laboratório de Microbiologia e Ornitopatologia, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | - Caio César de Melo Freire
- Laboratório de Bioquímica e Genética Aplicada, Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Paulo Sérgio Monzani
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, Brazil
| | - Anderson Ferreira da Cunha
- Laboratório de Bioquímica e Genética Aplicada, Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
46
|
Ogrodzki P, Forsythe SJ. DNA-Sequence Based Typing of the Cronobacter Genus Using MLST, CRISPR- cas Array and Capsular Profiling. Front Microbiol 2017; 8:1875. [PMID: 29033918 PMCID: PMC5626840 DOI: 10.3389/fmicb.2017.01875] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/13/2017] [Indexed: 11/13/2022] Open
Abstract
The Cronobacter genus is composed of seven species, within which a number of pathovars have been described. The most notable infections by Cronobacter spp. are of infants through the consumption of contaminated infant formula. The description of the genus has greatly improved in recent years through DNA sequencing techniques, and this has led to a robust means of identification. However some species are highly clonal and this limits the ability to discriminate between unrelated strains by some methods of genotyping. This article updates the application of three genotyping methods across the Cronobacter genus. The three genotyping methods were multilocus sequence typing (MLST), capsular profiling of the K-antigen and colanic acid (CA) biosynthesis regions, and CRISPR-cas array profiling. A total of 1654 MLST profiled and 286 whole genome sequenced strains, available by open access at the PubMLST Cronobacter database, were used this analysis. The predominance of C. sakazakii and C. malonaticus in clinical infections was confirmed. The majority of clinical strains being in the C. sakazakii clonal complexes (CC) 1 and 4, sequence types (ST) 8 and 12 and C. malonaticus ST7. The capsular profile K2:CA2, previously proposed as being strongly associated with C. sakazakii and C. malonaticus isolates from severe neonatal infections, was also found in C. turicensis, C. dublinensis and C. universalis. The majority of CRISPR-cas types across the genus was the I-E (Ecoli) type. Some strains of C. dublinensis and C. muytjensii encoded the I-F (Ypseudo) type, and others lacked the cas gene loci. The significance of the expanding profiling will be of benefit to researchers as well as governmental and industrial risk assessors.
Collapse
Affiliation(s)
- Pauline Ogrodzki
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | | |
Collapse
|
47
|
Hoffmann M, Pettengill JB, Gonzalez-Escalona N, Miller J, Ayers SL, Zhao S, Allard MW, McDermott PF, Brown EW, Monday SR. Comparative Sequence Analysis of Multidrug-Resistant IncA/C Plasmids from Salmonella enterica. Front Microbiol 2017; 8:1459. [PMID: 28824587 PMCID: PMC5545573 DOI: 10.3389/fmicb.2017.01459] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/20/2017] [Indexed: 11/13/2022] Open
Abstract
Determinants of multidrug resistance (MDR) are often encoded on mobile elements, such as plasmids, transposons, and integrons, which have the potential to transfer among foodborne pathogens, as well as to other virulent pathogens, increasing the threats these traits pose to human and veterinary health. Our understanding of MDR among Salmonella has been limited by the lack of closed plasmid genomes for comparisons across resistance phenotypes, due to difficulties in effectively separating the DNA of these high-molecular weight, low-copy-number plasmids from chromosomal DNA. To resolve this problem, we demonstrate an efficient protocol for isolating, sequencing and closing IncA/C plasmids from Salmonella sp. using single molecule real-time sequencing on a Pacific Biosciences (Pacbio) RS II Sequencer. We obtained six Salmonella enterica isolates from poultry, representing six different serovars, each exhibiting the MDR-Ampc resistance profile. Salmonella plasmids were obtained using a modified mini preparation and transformed with Escherichia coli DH10Br. A Qiagen Large-Construct kit™ was used to recover highly concentrated and purified plasmid DNA that was sequenced using PacBio technology. These six closed IncA/C plasmids ranged in size from 104 to 191 kb and shared a stable, conserved backbone containing 98 core genes, with only six differences among those core genes. The plasmids encoded a number of antimicrobial resistance genes, including those for quaternary ammonium compounds and mercury. We then compared our six IncA/C plasmid sequences: first with 14 IncA/C plasmids derived from S. enterica available at the National Center for Biotechnology Information (NCBI), and then with an additional 38 IncA/C plasmids derived from different taxa. These comparisons allowed us to build an evolutionary picture of how antimicrobial resistance may be mediated by this common plasmid backbone. Our project provides detailed genetic information about resistance genes in plasmids, advances in plasmid sequencing, and phylogenetic analyses, and important insights about how MDR evolution occurs across diverse serotypes from different animal sources, particularly in agricultural settings where antimicrobial drug use practices vary.
Collapse
Affiliation(s)
- Maria Hoffmann
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, United States
| | - James B Pettengill
- Division of Public Health Informatics and Analytics, Office of Food Defense, Communication and Emergency Response, Center for Food Safety and Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, United States
| | - Narjol Gonzalez-Escalona
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, United States
| | - John Miller
- Division of Public Health Informatics and Analytics, Office of Food Defense, Communication and Emergency Response, Center for Food Safety and Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, United States.,U.S. Department of Energy, Oak Ridge Institute for Science and EducationOak Ridge, TN, United States
| | - Sherry L Ayers
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug AdministrationLaurel, MD, United States
| | - Shaohua Zhao
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug AdministrationLaurel, MD, United States
| | - Marc W Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, United States
| | - Patrick F McDermott
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug AdministrationLaurel, MD, United States
| | - Eric W Brown
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, United States
| | - Steven R Monday
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, United States
| |
Collapse
|
48
|
Analysis of prevalence and CRISPR typing reveals persistent antimicrobial-resistant Salmonella infection across chicken breeder farm production stages. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Tasmin R, Hasan NA, Grim CJ, Grant A, Choi SY, Alam MS, Bell R, Cavanaugh C, Balan KV, Babu US, Parveen S. Genotypic and phenotypic characterization of multidrug resistant Salmonella Typhimurium and Salmonella Kentucky strains recovered from chicken carcasses. PLoS One 2017; 12:e0176938. [PMID: 28481935 PMCID: PMC5421757 DOI: 10.1371/journal.pone.0176938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/19/2017] [Indexed: 01/18/2023] Open
Abstract
Salmonella Typhimurium is the leading cause of human non-typhoidal gastroenteritis in the US. S. Kentucky is one the most commonly recovered serovars from commercially processed poultry carcasses. This study compared the genotypic and phenotypic properties of two Salmonella enterica strains Typhimurium (ST221_31B) and Kentucky (SK222_32B) recovered from commercially processed chicken carcasses using whole genome sequencing, phenotype characterizations and an intracellular killing assay. Illumina MiSeq platform was used for sequencing of two Salmonella genomes. Phylogenetic analysis employing homologous alignment of a 1,185 non-duplicated protein-coding gene in the Salmonella core genome demonstrated fully resolved bifurcating patterns with varying levels of diversity that separated ST221_31B and SK222_32B genomes into distinct monophyletic serovar clades. Single nucleotide polymorphism (SNP) analysis identified 2,432 (ST19) SNPs within 13 Typhimurium genomes including ST221_31B representing Sequence Type ST19 and 650 (ST152) SNPs were detected within 13 Kentucky genomes including SK222_32B representing Sequence Type ST152. In addition to serovar-specific conserved coding sequences, the genomes of ST221_31B and SK222_32B harbor several genomic regions with significant genetic differences. These included phage and phage-like elements, carbon utilization or transport operons, fimbriae operons, putative membrane associated protein-encoding genes, antibiotic resistance genes, siderophore operons, and numerous hypothetical protein-encoding genes. Phenotype microarray results demonstrated that ST221_31B is capable of utilizing certain carbon compounds more efficiently as compared to SK222_3B; namely, 1,2-propanediol, M-inositol, L-threonine, α-D-lactose, D-tagatose, adonitol, formic acid, acetoacetic acid, and L-tartaric acid. ST221_31B survived for 48 h in macrophages, while SK222_32B was mostly eliminated. Further, a 3-fold growth of ST221_31B was observed at 24 hours post-infection in chicken granulosa cells while SK222_32B was unable to replicate in these cells. These results suggest that Salmonella Typhimurium can survive host defenses better and could be more invasive than Salmonella Kentucky and provide some insights into the genomic determinants responsible for these differences.
Collapse
Affiliation(s)
- Rizwana Tasmin
- Agriculture, Food and Resource Sciences, University of Maryland, Eastern Shore, Princess Anne, Maryland, United States of America
| | - Nur A. Hasan
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, United States of America
- CosmosID Inc., Rockville, Maryland, United States of America
| | - Christopher J. Grim
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, United States of America
| | - Ar’Quette Grant
- Agriculture, Food and Resource Sciences, University of Maryland, Eastern Shore, Princess Anne, Maryland, United States of America
| | - Seon Young Choi
- CosmosID Inc., Rockville, Maryland, United States of America
| | - M. Samiul Alam
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, United States of America
| | - Rebecca Bell
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, United States of America
| | - Christopher Cavanaugh
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, United States of America
| | - Kannan V. Balan
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, United States of America
| | - Uma S. Babu
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, United States of America
| | - Salina Parveen
- Agriculture, Food and Resource Sciences, University of Maryland, Eastern Shore, Princess Anne, Maryland, United States of America
- * E-mail:
| |
Collapse
|
50
|
Agrawal S, Arze C, Adkins RS, Crabtree J, Riley D, Vangala M, Galens K, Fraser CM, Tettelin H, White O, Angiuoli SV, Mahurkar A, Fricke WF. CloVR-Comparative: automated, cloud-enabled comparative microbial genome sequence analysis pipeline. BMC Genomics 2017; 18:332. [PMID: 28449639 PMCID: PMC5408420 DOI: 10.1186/s12864-017-3717-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/21/2017] [Indexed: 11/11/2022] Open
Abstract
Background The benefit of increasing genomic sequence data to the scientific community depends on easy-to-use, scalable bioinformatics support. CloVR-Comparative combines commonly used bioinformatics tools into an intuitive, automated, and cloud-enabled analysis pipeline for comparative microbial genomics. Results CloVR-Comparative runs on annotated complete or draft genome sequences that are uploaded by the user or selected via a taxonomic tree-based user interface and downloaded from NCBI. CloVR-Comparative runs reference-free multiple whole-genome alignments to determine unique, shared and core coding sequences (CDSs) and single nucleotide polymorphisms (SNPs). Output includes short summary reports and detailed text-based results files, graphical visualizations (phylogenetic trees, circular figures), and a database file linked to the Sybil comparative genome browser. Data up- and download, pipeline configuration and monitoring, and access to Sybil are managed through CloVR-Comparative web interface. CloVR-Comparative and Sybil are distributed as part of the CloVR virtual appliance, which runs on local computers or the Amazon EC2 cloud. Representative datasets (e.g. 40 draft and complete Escherichia coli genomes) are processed in <36 h on a local desktop or at a cost of <$20 on EC2. Conclusions CloVR-Comparative allows anybody with Internet access to run comparative genomics projects, while eliminating the need for on-site computational resources and expertise. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3717-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Cesar Arze
- Institute for Genome Sciences, Baltimore, MD, USA
| | | | | | - David Riley
- Institute for Genome Sciences, Baltimore, MD, USA
| | | | - Kevin Galens
- Institute for Genome Sciences, Baltimore, MD, USA
| | - Claire M Fraser
- Institute for Genome Sciences, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hervé Tettelin
- Institute for Genome Sciences, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Owen White
- Institute for Genome Sciences, Baltimore, MD, USA.,Department of Epidemiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - W Florian Fricke
- Institute for Genome Sciences, Baltimore, MD, USA. .,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA. .,Department of Nutrigenomics, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|