1
|
Kerek Á, Román I, Szabó Á, Kovács D, Kardos G, Kovács L, Jerzsele Á. Antibiotic resistance genes in Escherichia coli - literature review. Crit Rev Microbiol 2025:1-35. [PMID: 40249005 DOI: 10.1080/1040841x.2025.2492156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Antimicrobial resistance threatens humans and animals worldwide and is recognized as one of the leading global public health issues. Escherichia coli (E. coli) has an unquestionable role in carrying and transmitting antibiotic resistance genes (ARGs), which in many cases are encoded on plasmids or phage, thus creating the potential for horizontal gene transfer. In this literature review, the authors summarize the major antibiotic resistance genes occurring in E. coli bacteria, through the major antibiotic classes. The aim was not only listing the resistance genes against the clinically relevant antibiotics, used in the treatment of E. coli infections, but also to cover the entire resistance gene carriage in E. coli, providing a more complete picture. We started with the long-standing antibiotic groups (beta-lactams, aminoglycosides, tetracyclines, sulfonamides and diaminopyrimidines), then moved toward the newer groups (phenicols, peptides, fluoroquinolones, nitrofurans and nitroimidazoles), and in every group we summarized the resistance genes grouped by the mechanism of their action (enzymatic inactivation, antibiotic efflux, reduced permeability, etc.). We observed that the frequency of antibiotic resistance mechanisms changes in the different groups.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - István Román
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Dóra Kovács
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Gábor Kardos
- One Health Institute, University of Debrecen, Debrecen, Hungary
- National Public Health Center, Budapest, Hungary
- Department of Gerontology, Faculty of Health Sciences, University of Debrecen, Nyíregyháza, Hungary
| | - László Kovács
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, Budapest, Hungary
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, Budapest, Hungary
| |
Collapse
|
2
|
Onstead J, Zhang Z, Huo J, Ord JW, Smith S, Saier MH. Investigating How Genomic Contexts Impact IS5 Transposition Within the Escherichia coli Genome. Microorganisms 2024; 12:2600. [PMID: 39770802 PMCID: PMC11677980 DOI: 10.3390/microorganisms12122600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Insertions of the transposable element IS5 into its target sites in response to stressful environmental conditions, DNA structures, and DNA-binding proteins are well studied, but how the genomic contexts near IS5's native loci impact its transpositions is largely unknown. Here, by examining the roles of all 11 copies of IS5 within the genome of E. coli strain BW25113 in transposition, we reveal that the most significant copy of IS5 is one nested within and oriented in the same direction as the nmpC gene, while two other copies of IS5 harboring point mutations are hardly transposed. Transposition activity is heavily reliant on the upstream nmpC promoter that drives IS5 transposase gene ins5A, with more transpositions resulting from greater promoter activity. The IS5 element at nmpC but not at other loci transcribed detectable amounts of ins5A mRNA. By increasing expression of the ins5CB operon harbored in IS5, we demonstrate that Ins5B and Ins5C appear to exert a stimulatory role in IS5 transposition, suggesting that the downstream genomic regions near the native loci are involved in overall IS5 transposition as well. Using a strain that carries IS5 only at the nmpC locus, we confirm that IS5 primarily uses a copy/paste mechanism for transposition, although we cannot rule out the cut/paste mechanism.
Collapse
Affiliation(s)
| | - Zhongge Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0116, USA; (J.O.); (J.H.); (J.W.O.); (S.S.)
| | | | | | | | - Milton H. Saier
- Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0116, USA; (J.O.); (J.H.); (J.W.O.); (S.S.)
| |
Collapse
|
3
|
Zmyslia M, Capper MJ, Grimmeisen M, Sartory K, Deuringer B, Abdelsalam M, Shen K, Jung M, Sippl W, Koch HG, Kaul L, Süss R, Köhnke J, Jessen-Trefzer C. A nanoengineered tandem nitroreductase: designing a robust prodrug-activating nanoreactor. RSC Chem Biol 2024:d4cb00127c. [PMID: 39508026 PMCID: PMC11532998 DOI: 10.1039/d4cb00127c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
Nitroreductases are important enzymes for a variety of applications, including cancer therapy and bioremediation. They often require encapsulation to improve stability and activity. We focus on genetically encoded encapsulation of nitroreductases within protein capsids, like encapsulins. Our study showcases the encapsulation of nitroreductase NfsB as functional dimers within encapsulins, which enhances protein activity and stability in diverse conditions. Mutations within the pore region are beneficial for activity of the encapsulated enzyme, potentially by increasing diffusion rates. Cryogenic electron microscopy reveals the overall architecture of the encapsulated dimeric NfsB within the nanoreactor environment and identifies multiple pore states in the shell. These findings highlight the potential of encapsulins as versatile tools for enhancing enzyme performance across various fields.
Collapse
Affiliation(s)
- Mariia Zmyslia
- Institute of Organic Chemistry, University of Freiburg 79104 Freiburg im Breisgau Germany
| | | | - Michael Grimmeisen
- Institute of Organic Chemistry, University of Freiburg 79104 Freiburg im Breisgau Germany
| | - Kerstin Sartory
- Institute of Organic Chemistry, University of Freiburg 79104 Freiburg im Breisgau Germany
| | - Benedikt Deuringer
- Institute of Pharmaceutical Science, Pharmaceutical Technology and Biopharmacy, University of Freiburg 79104 Freiburg im Breisgau Germany
| | - Mohamed Abdelsalam
- Department of Medicinal Chemistry, Martin-Luther University of Halle-Wittenberg 06120 Halle/Saale Germany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria Egypt
| | - Kaiwei Shen
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg 79104 Freiburg im Breisgau Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Chemical Epigenetics Group, University of Freiburg 79104 Freiburg im Breisgau Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg Schänzlestrasse 18 79104 Freiburg im Breisgau Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Martin-Luther University of Halle-Wittenberg 06120 Halle/Saale Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg 79104 Freiburg im Breisgau Germany
| | - Laurine Kaul
- Institute of Pharmaceutical Science, Pharmaceutical Technology and Biopharmacy, University of Freiburg 79104 Freiburg im Breisgau Germany
| | - Regine Süss
- Institute of Pharmaceutical Science, Pharmaceutical Technology and Biopharmacy, University of Freiburg 79104 Freiburg im Breisgau Germany
| | - Jesko Köhnke
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
- Institute of Food Chemistry, Leibniz University Hannover 30167 Hannover Germany
| | - Claudia Jessen-Trefzer
- Institute of Organic Chemistry, University of Freiburg 79104 Freiburg im Breisgau Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg Schänzlestrasse 18 79104 Freiburg im Breisgau Germany
| |
Collapse
|
4
|
Khamari B, Bulagonda EP. Unlocking Nitrofurantoin: Understanding Molecular Mechanisms of Action and Resistance in Enterobacterales. Med Princ Pract 2024; 34:121-137. [PMID: 39471786 PMCID: PMC11936445 DOI: 10.1159/000542330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/28/2024] [Indexed: 11/01/2024] Open
Abstract
Antimicrobial resistance (AMR) is a global health crisis that has already claimed millions of lives and is projected to affect millions more unless urgent action is taken. Effective control of AMR requires the correct choice and dosage of antibiotics, as well as robust surveillance and research. Understanding the mechanisms of antibiotic action and the emergence of resistance phenotypes along with their genotypes is essential. This knowledge, combined with insights into resistance prevalence and spread, empowers clinicians to propose alternative therapies. Nitrofurantoin, a 70-year-old antibiotic, remains effective for the treatment of uncomplicated lower UTIs. Preventing emergence and spread of nitrofurantoin-resistant superbugs would preserve the efficacy of this antibiotic which is crucial for ongoing and future AMR efforts. Nitrofurantoin resistance evolves slowly, leading to low prevalence compared to other antibiotics. However, it is often linked with extensive drug resistance, complicating treatment outcomes. Even a minor percentage of nitrofurantoin-resistant bacteria can cause significant clinical challenges due to irreversible evolution. While detailed study of these mechanisms can guide the development of strategies to combat nitrofurantoin resistance, early detection of resistant infections is critical for saving lives. The current review aimed to provide a comprehensive analysis of nitrofurantoin's mechanisms of action, resistance evolution, prevalence, and resistance prediction. Our goal is to offer valuable insights for researchers and clinicians to enhance nitrofurantoin use and address the challenges posed by AMR. Antimicrobial resistance (AMR) is a global health crisis that has already claimed millions of lives and is projected to affect millions more unless urgent action is taken. Effective control of AMR requires the correct choice and dosage of antibiotics, as well as robust surveillance and research. Understanding the mechanisms of antibiotic action and the emergence of resistance phenotypes along with their genotypes is essential. This knowledge, combined with insights into resistance prevalence and spread, empowers clinicians to propose alternative therapies. Nitrofurantoin, a 70-year-old antibiotic, remains effective for the treatment of uncomplicated lower UTIs. Preventing emergence and spread of nitrofurantoin-resistant superbugs would preserve the efficacy of this antibiotic which is crucial for ongoing and future AMR efforts. Nitrofurantoin resistance evolves slowly, leading to low prevalence compared to other antibiotics. However, it is often linked with extensive drug resistance, complicating treatment outcomes. Even a minor percentage of nitrofurantoin-resistant bacteria can cause significant clinical challenges due to irreversible evolution. While detailed study of these mechanisms can guide the development of strategies to combat nitrofurantoin resistance, early detection of resistant infections is critical for saving lives. The current review aimed to provide a comprehensive analysis of nitrofurantoin's mechanisms of action, resistance evolution, prevalence, and resistance prediction. Our goal is to offer valuable insights for researchers and clinicians to enhance nitrofurantoin use and address the challenges posed by AMR.
Collapse
Affiliation(s)
- Balaram Khamari
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, India
| | - Eswarappa Pradeep Bulagonda
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, India
| |
Collapse
|
5
|
Li P, Xu Q, Ding L, Zhang X, Li D, Wang L, Xu X, Lin D, Wang M. Q48K mutation in the type IB nitroreductase NrmA is responsible for nitrofurantoin resistance in Enterococcus faecium. Int J Antimicrob Agents 2024; 64:107277. [PMID: 39032672 DOI: 10.1016/j.ijantimicag.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/16/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVES Nitrofurantoin is recommended as first-line therapy for the optimal treatment of uncomplicated urinary tract infections (UTIs) caused by enterococci and Escherichia coli. However, the mechanisms of nitrofurantoin resistance in enterococci have not been elucidated. This study aimed to investigate the mechanisms of nitrofurantoin resistance in E. faecium, focusing on the role of the nitroreductase NrmA. METHODS Enterococcus strains isolated from the urinary tract samples were collected and were tested for nitrofurantoin susceptibility. Potential genes associated with nitrofurantoin resistance were screened in the NCBI nucleotide database and by polymerase chain reaction (PCR). Complementation assays and enzyme kinetic tests were performed to assess the impact of the Q48K mutation in NrmA on nitrofurantoin resistance. RESULTS Of the 128 E. faecium isolates tested, 59 (46.1%) were resistant to nitrofurantoin. Analysis revealed the presence of a type IB nitroreductase, designated NrmA, in all E. faecium strains studied, shared 18.7% sequence identity with nitroreductase NfsB in E. coli. Different from NrmA in nitrofurantoin-susceptible E. faecium, nitrofurantoin-resistant strains had a single amino acid substitution, i.e., a lysine instead of a glutamine at position 48 (Q48K mutation). Complementation assays of nitrofurantoin-resistant E. faecium HS17-112 showed that the nitrofurantoin minimal inhibitory concentration of the complemented strain HS17-112: pIB166-nrmA (wild type [WT]) decreased from 128 mg/L to 4 mg/L. Compared with NrmA (WT), NrmA (Q48K) showed significantly reduced catalytic efficiency, with a kcat/Km value decreasing from 0.122 µM-1 s-1 to 0.000042 µM-1 s-1. CONCLUSION The Q48K mutation in nitroreductase NrmA is responsible for nitrofurantoin resistance in E. faecium.
Collapse
Affiliation(s)
- Pei Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Qingqing Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Li Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Xuefei Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Dan Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Leilei Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Dongfang Lin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China.
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China.
| |
Collapse
|
6
|
Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, Abebe RB, Gedif AA, Fenta A, Yirdaw G, Tilahun A, Aschale Y. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. Front Pharmacol 2024; 15:1444781. [PMID: 39221153 PMCID: PMC11362070 DOI: 10.3389/fphar.2024.1444781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Antibacterial drug resistance poses a significant challenge to modern healthcare systems, threatening our ability to effectively treat bacterial infections. This review aims to provide a comprehensive overview of the types and mechanisms of antibacterial drug resistance. To achieve this aim, a thorough literature search was conducted to identify key studies and reviews on antibacterial resistance mechanisms, strategies and next-generation antimicrobials to contain antimicrobial resistance. In this review, types of resistance and major mechanisms of antibacterial resistance with examples including target site modifications, decreased influx, increased efflux pumps, and enzymatic inactivation of antibacterials has been discussed. Moreover, biofilm formation, and horizontal gene transfer methods has also been included. Furthermore, measures (interventions) taken to control antimicrobial resistance and next-generation antimicrobials have been discussed in detail. Overall, this review provides valuable insights into the diverse mechanisms employed by bacteria to resist the effects of antibacterial drugs, with the aim of informing future research and guiding antimicrobial stewardship efforts.
Collapse
Affiliation(s)
- Wubetu Yihunie Belay
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of clinical pharmacy, College of medicine and health sciences, University of Gondar, Gondar, Ethiopia
| | - Abebaw Abie Gedif
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getasew Yirdaw
- Department of environmental health science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Tilahun
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
7
|
Kancherla AD, Liu L, Tillery L, Shek R, Craig JK, Machen AJ, Seibold S, Battaile KP, Fradi S, Barrett LK, Subramanian S, Myler P, Van Voorhis WC, Lovell S. Crystal structures of NAD(P)H nitroreductases from Klebsiella pneumoniae. Acta Crystallogr F Struct Biol Commun 2024; 80:173-182. [PMID: 38990055 PMCID: PMC11299736 DOI: 10.1107/s2053230x24006472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Klebsiella pneumoniae (Kp) is an infectious disease pathogen that poses a significant global health threat due to its potential to cause severe infections and its tendency to exhibit multidrug resistance. Understanding the enzymatic mechanisms of the oxygen-insensitive nitroreductases (Kp-NRs) from Kp is crucial for the development of effective nitrofuran drugs, such as nitrofurantoin, that can be activated as antibiotics. In this paper, three crystal structures of two Kp-NRs (PDB entries 7tmf/7tmg and 8dor) are presented, and an analysis of their crystal structures and their flavin mononucleotide (FMN)-binding mode is provided. The structures with PDB codes 7tmf (Kp-NR1a), 7tmg (Kp-NR1b) and 8dor (Kp-NR2) were determined at resolutions of 1.97, 1.90 and 1.35 Å, respectively. The Kp-NR1a and Kp-NR1b structures adopt an αβ fold, in which four-stranded antiparallel β-sheets are surrounded by five helices. With domain swapping, the β-sheet was expanded with a β-strand from the other molecule of the dimer. The difference between the structures lies in the loop spanning Leu173-Ala185: in Kp-NR1a the loop is disordered, whereas the loop adopts multiple conformations in Kp-NR1b. The FMN interactions within Kp-NR1/NR2 involve hydrogen-bond and π-stacking interactions. Kp-NR2 contains four-stranded antiparallel β-sheets surrounded by eight helices with two short helices and one β-sheet. Structural and sequence alignments show that Kp-NR1a/b and Kp-NR2 are homologs of the Escherichia coli oxygen-insensitive NRs YdjA and NfnB and of Enterobacter cloacae NR, respectively. By homology inference from E. coli, Kp-NR1a/b and Kp-NR2 may detoxify polynitroaromatic compounds and Kp-NR2 may activate nitrofuran drugs to cause bactericidal activity through a ping-pong bi-bi mechanism, respectively.
Collapse
Affiliation(s)
- Abhishek D. Kancherla
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWA98109USA
| | - Lijun Liu
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Protein Structure and X-ray Crystallography LaboratoryUniversity of Kansas2034 Becker DriveLawrenceKS66047USA
| | - Logan Tillery
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWA98109USA
| | - Roger Shek
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWA98109USA
| | - Justin K. Craig
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWA98109USA
| | - Alexandra J. Machen
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Protein Structure and X-ray Crystallography LaboratoryUniversity of Kansas2034 Becker DriveLawrenceKS66047USA
| | - Steve Seibold
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Protein Structure and X-ray Crystallography LaboratoryUniversity of Kansas2034 Becker DriveLawrenceKS66047USA
| | | | - Selma Fradi
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWA98109USA
| | - Lynn K. Barrett
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWA98109USA
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Center for Global Infectious Disease ResearchSeattle Children’s Research Institute307 Westlake Avenue North Suite 500SeattleWA98109USA
| | - Peter Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Center for Global Infectious Disease ResearchSeattle Children’s Research Institute307 Westlake Avenue North Suite 500SeattleWA98109USA
| | - Wesley C. Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWA98109USA
| | - Scott Lovell
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA98109, USA
- Protein Structure and X-ray Crystallography LaboratoryUniversity of Kansas2034 Becker DriveLawrenceKS66047USA
| |
Collapse
|
8
|
Kopkowski PW, Zhang Z, Saier MH. The effect of DNA-binding proteins on insertion sequence element transposition upstream of the bgl operon in Escherichia coli. Front Microbiol 2024; 15:1388522. [PMID: 38666260 PMCID: PMC11043490 DOI: 10.3389/fmicb.2024.1388522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The bglGFB operon in Escherichia coli K-12 strain BW25113, encoding the proteins necessary for the uptake and metabolism of β-glucosides, is normally not expressed. Insertion of either IS1 or IS5 upstream of the bgl promoter activates expression of the operon only when the cell is starving in the presence of a β-glucoside, drastically increasing transcription and allowing the cell to survive and grow using this carbon source. Details surrounding the exact mechanism and regulation of the IS insertional event remain unclear. In this work, the role of several DNA-binding proteins in how they affect the rate of insertion upstream of bgl are examined via mutation assays and protocols measuring transcription. Both Crp and IHF exert a positive effect on insertional Bgl+ mutations when present, active, and functional in the cell. Our results characterize IHF's effect in conjunction with other mutations, show that IHF's effect on IS insertion into bgl also affects other operons, and indicate that it may exert its effect by binding to and altering the DNA conformation of IS1 and IS5 in their native locations, rather than by directly influencing transposase gene expression. In contrast, the cAMP-CRP complex acts directly upon the bgl operon by binding upstream of the promoter, presumably altering local DNA into a conformation that enhances IS insertion.
Collapse
Affiliation(s)
| | - Zhongge Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Milton H. Saier
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
9
|
Hussein M, Sun Z, Hawkey J, Allobawi R, Judd LM, Carbone V, Sharma R, Thombare V, Baker M, Rao GG, Li J, Holt KE, Velkov T. High-level nitrofurantoin resistance in a clinical isolate of Klebsiella pneumoniae: a comparative genomics and metabolomics analysis. mSystems 2024; 9:e0097223. [PMID: 38078757 PMCID: PMC10805014 DOI: 10.1128/msystems.00972-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/02/2023] [Indexed: 01/24/2024] Open
Abstract
Nitrofurantoin is a commonly used chemotherapeutic agent in the treatment of uncomplicated urinary tract infections caused by the problematic multidrug resistant Gram-negative pathogen Klebsiella pneumoniae. The present study aims to elucidate the mechanism of nitrofurantoin action and high-level resistance in K. pneumoniae using whole-genome sequencing (WGS), qPCR analysis, mutation structural modeling and untargeted metabolomic analysis. WGS profiling of evolved highly resistant mutants (nitrofurantoin minimum inhibitory concentrations > 256 mg/L) revealed modified expression of several genes related to membrane transport (porin ompK36 and efflux pump regulator oqxR) and nitroreductase activity (ribC and nfsB, involved in nitrofurantoin reduction). Untargeted metabolomics analysis of total metabolites extracted at 1 and 4 h post-nitrofurantoin treatment revealed that exposure to the drug caused a delayed effect on the metabolome which was most pronounced after 4 h. Pathway enrichment analysis illustrated that several complex interrelated metabolic pathways related to nitrofurantoin bacterial killing (aminoacyl-tRNA biosynthesis, purine metabolism, central carbohydrate metabolism, and pantothenate and CoA biosynthesis) and the development of nitrofurantoin resistance (riboflavin metabolism) were significantly perturbed. This study highlights for the first time the key role of efflux pump regulator oqxR in nitrofurantoin resistance and reveals global metabolome perturbations in response to nitrofurantoin, in K. pneumoniae.IMPORTANCEA quest for novel antibiotics and revitalizing older ones (such as nitrofurantoin) for treatment of difficult-to-treat Gram-negative bacterial infections has become increasingly popular. The precise antibacterial activity of nitrofurantoin is still not fully understood. Furthermore, although the prevalence of nitrofurantoin resistance remains low currently, the drug's fast-growing consumption worldwide highlights the need to comprehend the emerging resistance mechanisms. Here, we used multidisciplinary techniques to discern the exact mechanism of nitrofurantoin action and high-level resistance in Klebsiella pneumoniae, a common cause of urinary tract infections for which nitrofurantoin is the recommended treatment. We found that the expression of multiple genes related to membrane transport (including active efflux and passive diffusion of drug molecules) and nitroreductase activity was modified in nitrofurantoin-resistant strains, including oqxR, the transcriptional regulator of the oqxAB efflux pump. Furthermore, complex interconnected metabolic pathways that potentially govern the nitrofurantoin-killing mechanisms (e.g., aminoacyl-tRNA biosynthesis) and nitrofurantoin resistance (riboflavin metabolism) were significantly inhibited following nitrofurantoin treatment. Our study could help inform the improvement of nitrofuran derivatives, the development of new pharmacophores, or drug combinations to support the resurgence of nitrofurantoin in the management of multidrug resistant K. pneumouniae infection.
Collapse
Affiliation(s)
- Maytham Hussein
- Department of Pharmacology, Monash Biomedicine Discovery Institute,Monash University, Clayton, Victoria, Australia
| | - Zetao Sun
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Rafah Allobawi
- Department of Pharmacology, Monash Biomedicine Discovery Institute,Monash University, Clayton, Victoria, Australia
| | - Louise M. Judd
- Doherty Applied Microbial Genomics (DAMG), 12 Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vincenzo Carbone
- AgResearch Limited, Grasslands Research Center, Tennent Drive, Palmerston North, New Zealand
| | - Rajnikant Sharma
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Varsha Thombare
- Department of Pharmacology, Monash Biomedicine Discovery Institute,Monash University, Clayton, Victoria, Australia
| | - Mark Baker
- Discipline of Biological 17 Sciences, Priority Research Center in Reproductive Biology, Faculty of Science and IT, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Gauri G. Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jian Li
- Department of Pharmacology, Monash Biomedicine Discovery Institute,Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kathryn E. Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Tony Velkov
- Department of Pharmacology, Monash Biomedicine Discovery Institute,Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Ren H, Zhong Z, Zhou S, Wei Y, Liang Y, He H, Zheng Z, Li M, He Q, Long T, Lian X, Liao X, Liu Y, Sun J. CpxA/R-Controlled Nitroreductase Expression as Target for Combinatorial Therapy against Uropathogens by Promoting Reactive Oxygen Species Generation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300938. [PMID: 37407509 PMCID: PMC10477892 DOI: 10.1002/advs.202300938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/07/2023] [Indexed: 07/07/2023]
Abstract
The antibiotic resistances emerged in uropathogens lead to accumulative treatment failure and recurrent episodes of urinary tract infection (UTI), necessitating more innovative therapeutics to curb UTI before systematic infection. In the current study, the combination of amikacin and nitrofurantoin is found to synergistically eradicate Gram-negative uropathogens in vitro and in vivo. The mechanistic analysis demonstrates that the amikacin, as an aminoglycoside, induced bacterial envelope stress by introducing mistranslated proteins, thereby constitutively activating the cpxA/R two-component system (Cpx signaling). The activation of Cpx signaling stimulates the expression of bacterial major nitroreductases (nfsA/nfsB) through soxS/marA regulons. As a result, the CpxA/R-dependent nitroreductases overexpression generates considerable quantity of lethal reactive intermediates via nitroreduction and promotes the prodrug activation of nitrofurantoin. As such, these actions together disrupt the bacterial cellular redox balance with excessively-produced reactive oxygen species (ROS) as "Domino effect", accelerating the clearance of uropathogens. Although aminoglycosides are used as proof-of-principle to elucidate the mechanism, the synergy between nitrofurantoin is generally applicable to other Cpx stimuli. To summarize, this study highlights the potential of aminoglycoside-nitrofurantoin combination to replenish the arsenal against recurrent Gram-negative uropathogens and shed light on the Cpx signaling-controlled nitroreductase as a potential target to manipulate the antibiotic susceptibility.
Collapse
Affiliation(s)
- Hao Ren
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Zixing Zhong
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Shuang Zhou
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Yiyang Wei
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Yujiao Liang
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Huiling He
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Zijian Zheng
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Mengyuan Li
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Qian He
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Tengfei Long
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Xinlei Lian
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Xiaoping Liao
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhou225009China
| | - Yahong Liu
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhou225009China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhou225009China
| |
Collapse
|
11
|
Whelan S, Lucey B, Finn K. Uropathogenic Escherichia coli (UPEC)-Associated Urinary Tract Infections: The Molecular Basis for Challenges to Effective Treatment. Microorganisms 2023; 11:2169. [PMID: 37764013 PMCID: PMC10537683 DOI: 10.3390/microorganisms11092169] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections, especially among women and older adults, leading to a significant global healthcare cost burden. Uropathogenic Escherichia coli (UPEC) are the most common cause and accounts for the majority of community-acquired UTIs. Infection by UPEC can cause discomfort, polyuria, and fever. More serious clinical consequences can result in urosepsis, kidney damage, and death. UPEC is a highly adaptive pathogen which presents significant treatment challenges rooted in a complex interplay of molecular factors that allow UPEC to evade host defences, persist within the urinary tract, and resist antibiotic therapy. This review discusses these factors, which include the key genes responsible for adhesion, toxin production, and iron acquisition. Additionally, it addresses antibiotic resistance mechanisms, including chromosomal gene mutations, antibiotic deactivating enzymes, drug efflux, and the role of mobile genetic elements in their dissemination. Furthermore, we provide a forward-looking analysis of emerging alternative therapies, such as phage therapy, nano-formulations, and interventions based on nanomaterials, as well as vaccines and strategies for immunomodulation. This review underscores the continued need for research into the molecular basis of pathogenesis and antimicrobial resistance in the treatment of UPEC, as well as the need for clinically guided treatment of UTIs, particularly in light of the rapid spread of multidrug resistance.
Collapse
Affiliation(s)
- Shane Whelan
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland;
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland;
| | - Karen Finn
- Department of Analytical, Biopharmaceutical and Medical Sciences, Atlantic Technological University Galway City, Dublin Road, H91 T8NW Galway, Ireland
| |
Collapse
|
12
|
Hung CC, Varga C, Reinhart JM, Maddox CW, Dilger RN, Forsythe L, Stevenson AK, Franklin-Guild RJ, Paul NC, Ramachandran A. Assessing the urinary concentration of nitrofurantoin and its antibacterial activity against Escherichia coli, Staphylococcus pseudintermedius, and Enterococcus faecium isolated from dogs with urinary tract infections. Front Vet Sci 2023; 10:1189374. [PMID: 37492434 PMCID: PMC10365272 DOI: 10.3389/fvets.2023.1189374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/12/2023] [Indexed: 07/27/2023] Open
Abstract
Nitrofurantoin, a broad-spectrum nitrofuran class antibiotic, is applied as a first-line antibiotic in treating human urinary tract infections (UTIs) due to its great efficacy and high achievable concentration. The interest in using this antibiotic in companion animals has increased due to the growing demand for effective antibiotics to treat UTIs caused by multidrug-resistant bacteria. Currently, the susceptibility interpretations for nitrofurantoin are based on the breakpoints set for humans, while the canine-specific breakpoints are still unavailable. In this study, we assessed the concentration of nitrofurantoin reaching the dog's urine using the recommended oral dosing regimen. In addition, we examined the efficacy of this breakpoint concentration against the common canine UTI pathogens, Escherichia coli, Staphylococcus pseudintermedius, and Enterococcus faecium. Eight experimental beagle dogs were treated with ~5 mg/kg of nitrofurantoin macrocrystal PO 8qh for 7 days. The urine samples were collected via cystocentesis at 2, 4, and 6 h after administration on day 2 and day 7 and used to quantify nitrofurantoin concentrations by ultra-high performance liquid chromatography. The results showed that 26.13-315.87 μg/mL nitrofurantoin was detected in the dogs' urine with a mean and median concentration of 104.82 and 92.75 μg/mL, respectively. Additionally, individual dogs presented with urinary nitrofurantoin concentrations greater than 64 μg/mL for at least 50% of the dosing intervals. This concentration efficiently killed E. coli, and S. pseudintermedius, but not E. faecium strains carrying an MIC90 value equal to 16, 16, and 128 μg/mL, respectively. Taken together, these results suggest that the value of 64 μg/mL may be set as a breakpoint against UTI pathogens, and nitrofurantoin could be an effective therapeutic drug against E. coli and S. pseudintermedius for canine UTIs.
Collapse
Affiliation(s)
- Chien-Che Hung
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Jennifer M. Reinhart
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Carol W. Maddox
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Ryan N. Dilger
- Department of Animal Science, College of Agriculture, Consumer and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Lauren Forsythe
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Amy K. Stevenson
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Rebecca J. Franklin-Guild
- Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Narayan C. Paul
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, TX, United States
| | - Akhilesh Ramachandran
- Oklahoma Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
13
|
Schäfer AB, Steenhuis M, Jim KK, Neef J, O’Keefe S, Whitehead RC, Swanton E, Wang B, Halbedel S, High S, van Dijl JM, Luirink J, Wenzel M. Dual Action of Eeyarestatin 24 on Sec-Dependent Protein Secretion and Bacterial DNA. ACS Infect Dis 2023; 9:253-269. [PMID: 36637435 PMCID: PMC9926488 DOI: 10.1021/acsinfecdis.2c00404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 01/14/2023]
Abstract
Eeyarestatin 24 (ES24) is a promising new antibiotic with broad-spectrum activity. It shares structural similarity with nitrofurantoin (NFT), yet appears to have a distinct and novel mechanism: ES24 was found to inhibit SecYEG-mediated protein transport and membrane insertion in Gram-negative bacteria. However, possible additional targets have not yet been explored. Moreover, its activity was notably better against Gram-positive bacteria, for which its mechanism of action had not yet been investigated. We have used transcriptomic stress response profiling, phenotypic assays, and protein secretion analyses to investigate the mode of action of ES24 in comparison with NFT using the Gram-positive model bacterium Bacillus subtilis and have compared our findings to Gram-negative Escherichia coli. Here, we show the inhibition of Sec-dependent protein secretion in B. subtilis and additionally provide evidence for DNA damage, probably caused by the generation of reactive derivatives of ES24. Interestingly, ES24 caused a gradual dissipation of the membrane potential, which led to delocalization of cytokinetic proteins and subsequent cell elongation in E. coli. However, none of those effects were observed in B. subtilis, thereby suggesting that ES24 displays distinct mechanistic differences with respect to Gram-positive and Gram-negative bacteria. Despite its structural similarity to NFT, ES24 profoundly differed in our phenotypic analysis, which implies that it does not share the NFT mechanism of generalized macromolecule and structural damage. Importantly, ES24 outperformed NFT in vivo in a zebrafish embryo pneumococcal infection model. Our results suggest that ES24 not only inhibits the Sec translocon, but also targets bacterial DNA and, in Gram-negative bacteria, the cell membrane.
Collapse
Affiliation(s)
- Ann-Britt Schäfer
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Maurice Steenhuis
- Molecular
Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Kin Ki Jim
- Department
of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers - Location Vrije Universiteit
Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam
Institute for Infection and Immunity, Amsterdam
University Medical Centers, 1081 HZ Amsterdam, The Netherlands
| | - Jolanda Neef
- Department
of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, The Netherlands
| | - Sarah O’Keefe
- School
of
Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Roger C. Whitehead
- School
of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Eileithyia Swanton
- School
of
Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Biwen Wang
- Bacterial
Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Sven Halbedel
- FG11
Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
- Institute
for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Stephen High
- School
of
Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jan Maarten van Dijl
- Department
of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, The Netherlands
| | - Joen Luirink
- Molecular
Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Michaela Wenzel
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
14
|
Vallée M, Harding C, Hall J, Aldridge PD, TAN A. Exploring the in situ evolution of nitrofurantoin resistance in clinically derived uropathogenic Escherichia coli isolates. J Antimicrob Chemother 2022; 78:373-379. [PMID: 36480295 PMCID: PMC9890214 DOI: 10.1093/jac/dkac398] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/30/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nitrofurantoin has been re-introduced as a first-choice antibiotic to treat uncomplicated acute urinary tract infections in England and Wales. Highly effective against common uropathogens such as Escherichia coli, its use is accompanied by a low incidence (<10%) of antimicrobial resistance. Resistance to nitrofurantoin is predominantly via the acquisition of loss-of-function, step-wise mutations in the nitroreductase genes nfsA and nfsB. OBJECTIVE To explore the in situ evolution of NitR in E. coli isolates from 17 patients participating in AnTIC, a 12-month open label randomized controlled trial assessing the efficacy of antibiotic prophylaxis in reducing urinary tract infections (UTIs) incidence in clean intermittent self-catheterizing patients. METHODS The investigation of NitR evolution in E. coli used general microbiology techniques and genetics to model known NitR mutations in NitSE. coli strains. RESULTS Growth rate analysis identified a 2%-10% slower doubling time for nitrofurantoin resistant strains: NitS: 20.8 ± 0.7 min compared to NitR: 23 ± 0.8 min. Statistically, these data indicated no fitness advantage of evolved strains compared to the sensitive predecessor (P-value = 0.13). Genetic manipulation of E. coli to mimic NitR evolution, supported no fitness advantage (P-value = 0.22). In contrast, data argued that a first-step mutant gained a selective advantage, at sub-MIC (4-8 mg/L) nitrofurantoin concentrations. CONCLUSION Correlation of these findings to nitrofurantoin pharmacokinetic data suggests that the low incidence of E. coli NitR, within the community, is driven by urine-based nitrofurantoin concentrations that selectively inhibit the growth of E. coli strains carrying the key first-step loss-of-function mutation.
Collapse
Affiliation(s)
| | - Chris Harding
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
- Urology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - Judith Hall
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | | | - Aaron TAN
- Current address: SCELSE, Nanyang Technological University, SBS-01N-27, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
15
|
Kim SJ, Kim YS, Kim SE, Jung HK, Park J, Yu MJ, Kim KH. Rasiella rasia gen. nov. sp. nov. within the family Flavobacteriaceae isolated from seawater recirculating aquaculture system. J Microbiol 2022; 60:1070-1076. [PMID: 36251119 DOI: 10.1007/s12275-022-2099-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
A novel bacterium designated RR4-40T was isolated from a biofilter of seawater recirculating aquaculture system in Busan, South Korea. Cells are strictly aerobic, Gram-negative, irregular short rod, non-motile, and oxidase- and catalase-negative. Growth was observed at 15-30°C, 0.5-6% NaCl (w/v), and pH 5.0-9.5. The strain grew optimally at 28°C, 3% salinity (w/v), and pH 8.5. The phylogenetic analysis based on 16S rRNA gene sequences showed that strain RR4-40T was most closely related to Marinirhabdus gelatinilytica NH83T (94.16% of 16S rRNA gene similarity) and formed a cluster with genera within the family Flavobacteriaceae. The values of the average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH), and average amino acid identity (AAI) between genomes of strain RR4-40T and M. gelatinilytica NH83T were 72.91, 18.2, and 76.84%, respectively, and the values against the strains in the other genera were lower than those. The major fatty acids were iso-C15:0 (31.34%), iso-C17:0 3-OH (13.65%), iso-C16:0 3-OH (10.61%), and iso-C15:1 G (10.38%). The polar lipids comprised phosphatidylglycerol, diphosphatidylglycerol, aminophospholipid, aminolipid, glycolipid, and sphingolipid. The major respiratory quinone was menaquinone-6 (MK-6) and the DNA G + C content of strain RR4-40T was 37.4 mol%. According to the polyphasic analysis, strain RR4-40T is considered to represent a novel genus within the family Flavobacteriaceae, for which the name Rasiella rasia gen. nov, sp. nov. is proposed. The type strain is RR4-40T (= KCTC 52650T = MCCC 1K04210T).
Collapse
Affiliation(s)
- Seong-Jin Kim
- Department of Microbiology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Sam Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Sang-Eon Kim
- Department of Microbiology, Pukyong National University, Busan, 48513, Republic of Korea
- School of Marine and Fisheries Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun-Kyoung Jung
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Jeeeun Park
- Department of Microbiology, Pukyong National University, Busan, 48513, Republic of Korea
- School of Marine and Fisheries Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Min-Ju Yu
- Department of Microbiology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Kyoung-Ho Kim
- Department of Microbiology, Pukyong National University, Busan, 48513, Republic of Korea.
- School of Marine and Fisheries Life Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
16
|
Pant A, Maiti TK, Mahajan D, Das B. Human Gut Microbiota and Drug Metabolism. MICROBIAL ECOLOGY 2022:1-15. [PMID: 35869999 PMCID: PMC9308113 DOI: 10.1007/s00248-022-02081-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/18/2022] [Indexed: 05/31/2023]
Abstract
The efficacy of drugs widely varies in individuals, and the gut microbiota plays an important role in this variability. The commensal microbiota living in the human gut encodes several enzymes that chemically modify systemic and orally administered drugs, and such modifications can lead to activation, inactivation, toxification, altered stability, poor bioavailability, and rapid excretion. Our knowledge of the role of the human gut microbiome in therapeutic outcomes continues to evolve. Recent studies suggest the existence of complex interactions between microbial functions and therapeutic drugs across the human body. Therapeutic drugs or xenobiotics can influence the composition of the gut microbiome and the microbial encoded functions. Both these deviations can alter the chemical transformations of the drugs and hence treatment outcomes. In this review, we provide an overview of (i) the genetic ecology of microbially encoded functions linked with xenobiotic degradation; (ii) the effect of drugs on the composition and function of the gut microbiome; and (iii) the importance of the gut microbiota in drug metabolism.
Collapse
Affiliation(s)
- Archana Pant
- Molecular Genetics Lab, National Institute of Immunology, New Delhi, Delhi-110067, India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad-121001, India
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, PO box, Gurgaon Expressway, #04 Faridabad-121001, Haryana, India
| | - Tushar K Maiti
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad-121001, India
| | - Dinesh Mahajan
- Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhabatosh Das
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, PO box, Gurgaon Expressway, #04 Faridabad-121001, Haryana, India.
| |
Collapse
|
17
|
Vázquez X, Fernández J, Rodríguez-Lozano J, Calvo J, Rodicio R, Rodicio MR. Genomic Analysis of Two MDR Isolates of Salmonella enterica Serovar Infantis from a Spanish Hospital Bearing the blaCTX-M-65 Gene with or without fosA3 in pESI-like Plasmids. Antibiotics (Basel) 2022; 11:786. [PMID: 35740192 PMCID: PMC9219668 DOI: 10.3390/antibiotics11060786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 02/04/2023] Open
Abstract
Salmonella enterica serovar Infantis (S. Infantis) is a broiler-associated pathogen which ranks in the fourth position as a cause of human salmonellosis in the European Union. Here, we report a comparative genomic analysis of two clinical S. Infantis isolates recovered in Spain from children who just returned from Peru. The isolates were selected on the basis of resistance to cefotaxime, one of the antibiotics of choice for treatment of S. enterica infections. Antimicrobial susceptibility testing demonstrated that they were resistant to eight classes of antimicrobial agents: penicillins, cephalosporins, phenicols, aminoglycosides, tetracyclines, inhibitors of folate synthesis, (fluoro)quinolones and nitrofurans, and one of them was also resistant to fosfomycin. As shown by whole-genome sequence analysis, each isolate carried a pESI-like megaplasmid of ca. 300 kb harboring multiple resistance genes [blaCTX-M-65, aph(4)-Ia, aac(3)-IVa, aph(3')-Ia, floR, dfrA14, sul1, tet(A), aadA1 ± fosA3], as well as genes for resistance to heavy metals and disinfectants (mer, ars and qacEΔ1). These genes were distributed in two complex regions, separated by DNA belonging to the plasmid backbone, and associated with a wealth of transposable elements. The two isolates had a D87Y amino acid substitution in the GyrA protein, and truncated variants of the nitroreductase genes nfsA and nsfB, accounting for chromosomally encoded resistances to nalidixic acid and nitrofurantoin, respectively. The two S. Infantis isolates were assigned to sequence type ST32 by in silico multilocus sequence typing (MLST). Phylogenetic analysis revealed that they were closely related, differing only by 12 SNPs, although they were recovered from different children two years apart. They were also genetically similar to blaCTX-M-65-positive ± fosA3 isolates obtained from humans and along the poultry production chain in the USA, South America, as well as from humans in several European countries, usually associated with a travel history to America. However, this is the first time that the S. Infantis blaCTX-M-65 ± fosA3 MDR clone has been reported in Spain.
Collapse
Affiliation(s)
- Xenia Vázquez
- Área de Microbiología, Departamento de Biología Funcional, Universidad de Oviedo (UO), 33006 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (J.F.); (R.R.)
| | - Javier Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (J.F.); (R.R.)
- Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- Research & Innovation, Artificial Intelligence and Statistical Department, Pragmatech AI Solutions, 33003 Oviedo, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, 20029 Madrid, Spain
| | - Jesús Rodríguez-Lozano
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla (IDIVAL), 39008 Santander, Spain; (J.R.-L.); (J.C.)
| | - Jorge Calvo
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla (IDIVAL), 39008 Santander, Spain; (J.R.-L.); (J.C.)
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rosaura Rodicio
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (J.F.); (R.R.)
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo (UO), 33006 Oviedo, Spain
| | - M. Rosario Rodicio
- Área de Microbiología, Departamento de Biología Funcional, Universidad de Oviedo (UO), 33006 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (J.F.); (R.R.)
| |
Collapse
|
18
|
Meng Q, Wu M, Shang Z, Zhang Z, Zhang R. Responsive gadolinium(III) complex-based small molecule magnetic resonance imaging probes: Design, mechanism and application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Zhang Z, Zhou K, Tran D, Saier M. Insertion Sequence (IS) Element-Mediated Activating Mutations of the Cryptic Aromatic β-Glucoside Utilization ( BglGFB) Operon Are Promoted by the Anti-Terminator Protein (BglG) in Escherichia coli. Int J Mol Sci 2022; 23:ijms23031505. [PMID: 35163427 PMCID: PMC8836124 DOI: 10.3390/ijms23031505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/24/2023] Open
Abstract
The cryptic β-glucoside GFB (bglGFB) operon in Escherichia coli (E. coli) can be activated by mutations arising under starvation conditions in the presence of an aromatic β-glucoside. This may involve the insertion of an insertion sequence (IS) element into a "stress-induced DNA duplex destabilization" (SIDD) region upstream of the operon promoter, although other types of mutations can also activate the bgl operon. Here, we show that increased expression of the bglG gene, encoding a well-characterized transcriptional antiterminator, dramatically increases the frequency of both IS-mediated and IS-independent Bgl+ mutations occurring on salicin- and arbutin-containing agar plates. Both mutation rates increased with increasing levels of bglG expression but IS-mediated mutations were more prevalent at lower BglG levels. Mutations depended on the presence of both BglG and an aromatic β-glucoside, and bglG expression did not influence IS insertion in other IS-activated operons tested. The N-terminal mRNA-binding domain of BglG was essential for mutational activation, and alteration of BglG's binding site in the mRNA nearly abolished Bgl+ mutant appearances. Increased bglG expression promoted residual bgl operon expression in parallel with the increases in mutation rates. Possible mechanisms are proposed explaining how BglG enhances the frequencies of bgl operon activating mutations.
Collapse
|
20
|
Liu D, Wanniarachchi TN, Jiang G, Seabra G, Cao S, Bruner SD, Ding Y. Biochemical and structural characterization of Haemophilus influenzae nitroreductase in metabolizing nitroimidazoles. RSC Chem Biol 2022; 3:436-446. [PMID: 35441146 PMCID: PMC8985140 DOI: 10.1039/d1cb00238d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
Nitroheterocycle antibiotics, particularly 5-nitroimidazoles, are frequently used for treating anaerobic infections. The antimicrobial activities of these drugs heavily rely on the in vivo bioactivation, mainly mediated by widely distributed bacterial nitroreductases (NTRs). However, the bioactivation can also lead to severe toxicities and drug resistance. Mechanistic understanding of NTR-mediated 5-nitroimidazole metabolism can potentially aid addressing these issues. Here, we report the metabolism of structurally diverse nitroimidazole drug molecules by a NTR from a human pathogen Haemophilus influenzae (HiNfsB). Our detailed bioinformatic analysis uncovered that HiNfsB represents a group of unexplored oxygen-insensitive NTRs. Biochemical characterization of the recombinant enzyme revealed that HiNfsB effectively metabolizes ten clinically used nitroimidazoles. Furthermore, HiNfsB generated not only canonical nitroreduction metabolites but also stable, novel dimeric products from three nitroimidazoles, whose structures were proposed based on the results of high resolution MS and tandem MS analysis. X-ray structural analysis of the enzyme coupled with site-directed mutagenesis identified four active site residues important to its catalysis and broad substrate scope. Finally, transient expression of HiNfsB sensitized an E. coli mutant strain to 5-nitroimidazoles under anaerobic conditions. Together, these results advance our understanding of the metabolism of nitroimidazole antibiotics mediated by a new NTR group and reinforce the research on the natural antibiotic resistome for addressing the antibiotic resistance crisis. The nitroreductase of Haemophilus influenzae metabolizes clinically used nitroimidazoles, generates dimeric metabolites and anaerobically sensitizes an E. coli mutant to antibiotics. We further uncover its biochemical and structural details.![]()
Collapse
Affiliation(s)
- Dake Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, USA
| | | | - Guangde Jiang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, USA
| | - Gustavo Seabra
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, USA
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, University of Hawai'i at Hilo, Hilo, Hawaii, 96720, USA
| | - Steven D. Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, USA
| |
Collapse
|
21
|
Wan Y, Mills E, Leung RC, Vieira A, Zhi X, Croucher NJ, Woodford N, Jauneikaite E, Ellington MJ, Sriskandan S. Alterations in chromosomal genes nfsA, nfsB, and ribE are associated with nitrofurantoin resistance in Escherichia coli from the United Kingdom. Microb Genom 2021; 7:000702. [PMID: 34860151 PMCID: PMC8767348 DOI: 10.1099/mgen.0.000702] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/01/2021] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial resistance in enteric or urinary Escherichia coli is a risk factor for invasive E. coli infections. Due to widespread trimethoprim resistance amongst urinary E. coli and increased bacteraemia incidence, a national recommendation to prescribe nitrofurantoin for uncomplicated urinary tract infection was made in 2014. Nitrofurantoin resistance is reported in <6% urinary E. coli isolates in the UK, however, mechanisms underpinning nitrofurantoin resistance in these isolates remain unknown. This study aimed to identify the genetic basis of nitrofurantoin resistance in urinary E. coli isolates collected from north west London and then elucidate resistance-associated genetic alterations in available UK E. coli genomes. As a result, an algorithm was developed to predict nitrofurantoin susceptibility. Deleterious mutations and gene-inactivating insertion sequences in chromosomal nitroreductase genes nfsA and/or nfsB were identified in genomes of nine confirmed nitrofurantoin-resistant urinary E. coli isolates and additional 11 E. coli isolates that were highlighted by the prediction algorithm and subsequently validated to be nitrofurantoin-resistant. Eight categories of allelic changes in nfsA , nfsB , and the associated gene ribE were detected in 12412 E. coli genomes from the UK. Evolutionary analysis of these three genes revealed homoplasic mutations and explained the previously reported order of stepwise mutations. The mobile gene complex oqxAB , which is associated with reduced nitrofurantoin susceptibility, was identified in only one of the 12412 genomes. In conclusion, mutations and insertion sequences in nfsA and nfsB were leading causes of nitrofurantoin resistance in UK E. coli . As nitrofurantoin exposure increases in human populations, the prevalence of nitrofurantoin resistance in carriage E. coli isolates and those from urinary and bloodstream infections should be monitored.
Collapse
Affiliation(s)
- Yu Wan
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Ewurabena Mills
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Rhoda C.Y. Leung
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Present address: Department of Microbiology, Queen Mary Hospital, Hong Kong S.A.R., PR China
| | - Ana Vieira
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Xiangyun Zhi
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Nicholas J. Croucher
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, Colindale, London, United Kingdom
| | - Elita Jauneikaite
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Matthew J. Ellington
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, Colindale, London, United Kingdom
| | - Shiranee Sriskandan
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Khamari B, Adak S, Chanakya PP, Lama M, Peketi ASK, Gurung SA, Chettri S, Kumar P, Bulagonda EP. Prediction of nitrofurantoin resistance among Enterobacteriaceae and mutational landscape of in vitro selected resistant E. coli. Res Microbiol 2021; 173:103889. [PMID: 34718096 DOI: 10.1016/j.resmic.2021.103889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 11/18/2022]
Abstract
Nitrofurantoin (NIT) has long been a drug of choice in the treatment of lower urinary tract infections. Recent emergence of NIT resistant Enterobacteriaceae is a global concern. An ordinal logistic regression model based on PCR amplification patterns of five genes associated with NIT resistance (nfsA, nfsB, ribE, oqxA, and oqxB) among 100 clinical Enterobacteriaceae suggested that a combination of oqxB, nfsB, ribE, and oqxA is ideal for NIT resistance prediction. In addition, four Escherichia coli NIT-resistant mutants were in vitro generated by exposing an NIT-susceptible E. coli to varying concentrations of NIT. The in vitro selected NIT resistant mutants (NI2, NI3, NI4 and NI5) were found to have mutations resulting in frameshifts, premature/lost stop codons or failed amplification of nfsA and/or nfsB genes. The in vitro selected NI5 and the transductant colonies with reconstructed NI5 genotype exhibited reduced fitness compared to their parent strain NS30, while growth of a resistant clinical isolate (NR42) was found to be unaffected in the absence of NIT. These results emphasize the importance of strict adherence to prescribed antibiotic treatment regimens and dosage duration. If left unchecked, these resistant bacteria may thrive at sub-therapeutic concentrations of NIT and spread in the community.
Collapse
Affiliation(s)
- Balaram Khamari
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, India
| | - Sudeshna Adak
- OmiX Research and Diagnostic Laboratories Private Limited, Bengaluru, India
| | - Pachi Pulusu Chanakya
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, India
| | - Manmath Lama
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, India
| | - Arun Sai Kumar Peketi
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, India
| | - Saurav Anand Gurung
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, India
| | - Sushil Chettri
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, India
| | - Prakash Kumar
- Department of Microbiology, Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthigram, India
| | | |
Collapse
|
23
|
Correlated Transcriptional Responses Provide Insights into the Synergy Mechanisms of the Furazolidone, Vancomycin, and Sodium Deoxycholate Triple Combination in Escherichia coli. mSphere 2021; 6:e0062721. [PMID: 34494879 PMCID: PMC8550143 DOI: 10.1128/msphere.00627-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Effective therapeutic options are urgently needed to tackle antibiotic resistance. Furazolidone (FZ), vancomycin (VAN), and sodium deoxycholate (DOC) show promise as their combination can synergistically inhibit the growth of, and kill, multidrug-resistant Gram-negative bacteria that are classified as critical priority by the World Health Organization. Here, we investigated the mechanisms of action and synergy of this drug combination using a transcriptomics approach in the model bacterium Escherichia coli. We show that FZ and DOC elicit highly similar gene perturbations indicative of iron starvation, decreased respiration and metabolism, and translational stress. In contrast, VAN induced envelope stress responses, in agreement with its known role in peptidoglycan synthesis inhibition. FZ induces the SOS response consistent with its DNA-damaging effects, but we demonstrate that using FZ in combination with the other two compounds enables lower dosages and largely mitigates its mutagenic effects. Based on the gene expression changes identified, we propose a synergy mechanism where the combined effects of FZ, VAN, and DOC amplify damage to Gram-negative bacteria while simultaneously suppressing antibiotic resistance mechanisms. IMPORTANCE Synergistic antibiotic combinations are a promising alternative strategy for developing effective therapies for multidrug-resistant bacterial infections. The synergistic combination of the existing antibiotics nitrofurans and vancomycin with sodium deoxycholate shows promise in inhibiting and killing multidrug-resistant Gram-negative bacteria. We examined the mechanism of action and synergy of these three antibacterials and proposed a mechanistic basis for their synergy. Our results highlight much-needed mechanistic information necessary to advance this combination as a potential therapy.
Collapse
|
24
|
Fosfomycin and nitrofurantoin: classic antibiotics and perspectives. J Antibiot (Tokyo) 2021; 74:547-558. [PMID: 34244614 DOI: 10.1038/s41429-021-00444-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
Antibiotics are essential molecules for the treatment and prophylaxis of many infectious diseases. However, drugs that combat microbial infections can become a human health threat due to their high and often indiscriminate consumption, considered one of the factors of antimicrobial resistance (AMR) emergence. The AMR crisis, the decrease in new drug development by the pharmaceutical industry, and reduced economic incentives for research have all reduced the options for treating infections, and new strategies are necessary, including the return of some traditional but "forgotten" antibiotics. However, prescriptions for these older drugs including nitrofurantoin and oral fosfomycin, have been based on the results of pioneer studies, and the limited knowledge generated 50-70 years ago may not be enough. To avoid harming patients and further increasing multidrug resistance, systematic evaluation is required, mainly for the drugs prescribed for community-acquired infections, such as urinary tract infections (UTI). Therefore, this review has the objective of reporting the use of two classic drugs from the nitrofuran and phosphonic acid classes for UTI control nowadays. Furthermore, we also explore new approaches used for these antibiotics, including new combination regimes for spectral amplification, and the prospects for reducing bacterial resistance in the fight against bacteria responsible for UTI.
Collapse
|
25
|
The structures of E. coli NfsA bound to the antibiotic nitrofurantoin; to 1,4-benzoquinone and to FMN. Biochem J 2021; 478:2601-2617. [PMID: 34142705 PMCID: PMC8286842 DOI: 10.1042/bcj20210160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 01/23/2023]
Abstract
NfsA is a dimeric flavoprotein that catalyses the reduction in nitroaromatics and quinones by NADPH. This reduction is required for the activity of nitrofuran antibiotics. The crystal structure of free Escherichia coli NfsA and several homologues have been determined previously, but there is no structure of the enzyme with ligands. We present here crystal structures of oxidised E. coli NfsA in the presence of several ligands, including the antibiotic nitrofurantoin. Nitrofurantoin binds with the furan ring, rather than the nitro group that is reduced, near the N5 of the FMN. Molecular dynamics simulations show that this orientation is only favourable in the oxidised enzyme, while potentiometry suggests that little semiquinone is formed in the free protein. This suggests that the reduction occurs by direct hydride transfer from FMNH− to nitrofurantoin bound in the reverse orientation to that in the crystal structure. We present a model of nitrofurantoin bound to reduced NfsA in a viable hydride transfer orientation. The substrate 1,4-benzoquinone and the product hydroquinone are positioned close to the FMN N5 in the respective crystal structures with NfsA, suitable for reaction, but are mobile within the active site. The structure with a second FMN, bound as a ligand, shows that a mobile loop in the free protein forms a phosphate-binding pocket. NfsA is specific for NADPH and a similar conformational change, forming a phosphate-binding pocket, is likely to also occur with the natural cofactor.
Collapse
|
26
|
Bhando T, Bhattacharyya T, Gaurav A, Akhter J, Saini M, Gupta VK, Srivastava SK, Sen H, Navani NK, Gupta V, Biswas D, Chaudhry R, Pathania R. Antibacterial properties and in vivo efficacy of a novel nitrofuran, IITR06144, against MDR pathogens. J Antimicrob Chemother 2021; 75:418-428. [PMID: 31665357 DOI: 10.1093/jac/dkz428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES The emergence of MDR Gram-negative pathogens and increasing prevalence of chronic infections presents an unmet need for the discovery of novel antibacterial agents. The aim of this study was to evaluate the biological properties of a small molecule, IITR06144, identified in a phenotypic screen against the Gram-negative model organism Escherichia coli. METHODS A small-molecule library of 10956 compounds was screened for growth inhibition against E. coli ATCC 25922 at concentration 50 μM. MICs of lead compounds were determined by the broth microdilution method. Time-kill kinetics, anti-persister activity, spontaneous frequency of resistance, biofilm inhibition and disruption were assessed by standard protocols. Resistant mutants were generated by serial passaging followed by WGS. In vitro toxicity studies were carried out via the MTT assay. In vivo toxicity and efficacy in a mouse model were also evaluated. RESULTS IITR06144 was identified as the most promising candidate amongst 29 other potential antibacterial leads, exhibiting the lowest MIC, 0.5 mg/L. IITR06144 belongs to the nitrofuran class and exhibited broad-spectrum bactericidal activity against most MDR bacteria, including the 'priority pathogen', carbapenem-resistant Acinetobacter baumannii. IITR06144 retained its potency against nitrofurantoin-resistant clinical isolates. It displayed anti-persister, anti-biofilm activity and lack of spontaneous resistance development. IITR06144 demonstrated a large therapeutic index with no associated in vitro and in vivo toxicity. CONCLUSIONS In the light of excellent in vitro properties displayed by IITR06144 coupled with its considerable in vivo efficacy, further evaluation of IITR06144 as a therapeutic lead against antibiotic-resistant infections is warranted.
Collapse
Affiliation(s)
- Timsy Bhando
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Tapas Bhattacharyya
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Amit Gaurav
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Jawed Akhter
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Mahak Saini
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Vivek Kumar Gupta
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | | | - Himanshu Sen
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Naveen K Navani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Varsha Gupta
- Department of Microbiology, Government Medical College & Hospital, Chandigarh, India
| | - Debasis Biswas
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| | - Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ranjana Pathania
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
27
|
Gregorchuk BSJ, Reimer SL, Green KAC, Cartwright NH, Beniac DR, Hiebert SL, Booth TF, Chong PM, Westmacott GR, Zhanel GG, Bay DC. Phenotypic and Multi-Omics Characterization of Escherichia coli K-12 Adapted to Chlorhexidine Identifies the Role of MlaA and Other Cell Envelope Alterations Regulated by Stress Inducible Pathways in CHX Resistance. Front Mol Biosci 2021; 8:659058. [PMID: 34095221 PMCID: PMC8170033 DOI: 10.3389/fmolb.2021.659058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 11/27/2022] Open
Abstract
Chlorhexidine (CHX) is an essential medicine used as a topical antiseptic in skin and oral healthcare treatments. The widespread use of CHX has increased concerns regarding the development of antiseptic resistance in Enterobacteria and its potential impact on cross-resistance to other antimicrobials. Similar to other cationic antiseptics, resistance to CHX is believed to be driven by three membrane-based mechanisms: lipid synthesis/transport, altered porin expression, and increased efflux pump activity; however, specific gene and protein alterations associated with CHX resistance remain unclear. Here, we adapted Escherichia coli K-12 BW25113 to increasing concentrations of CHX to determine what phenotypic, morphological, genomic, transcriptomic, and proteomic changes occurred. We found that CHX-adapted E. coli isolates possessed no cross-resistance to any other antimicrobials we tested. Scanning electron microscopy imaging revealed that CHX adaptation significantly altered mean cell widths and lengths. Proteomic analyses identified changes in the abundance of porin OmpF, lipid synthesis/transporter MlaA, and efflux pump MdfA. Proteomic and transcriptomic analyses identified that CHX adaptation altered E. coli transcripts and proteins controlling acid resistance (gadE, cdaR) and antimicrobial stress-inducible pathways Mar-Sox-Rob, stringent response systems. Whole genome sequencing analyses revealed that all CHX-resistant isolates had single nucleotide variants in the retrograde lipid transporter gene mlaA as well as the yghQ gene associated with lipid A transport and synthesis. CHX resistant phenotypes were reversible only when complemented with a functional copy of the mlaA gene. Our results highlight the importance of retrograde phospholipid transport and stress response systems in CHX resistance and the consequences of prolonged CHX exposure.
Collapse
Affiliation(s)
- Branden S J Gregorchuk
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Shelby L Reimer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Kari A C Green
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Nicola H Cartwright
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel R Beniac
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Shannon L Hiebert
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Timothy F Booth
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Patrick M Chong
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Garrett R Westmacott
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Denice C Bay
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
28
|
Thomas C, Gwenin CD. The Role of Nitroreductases in Resistance to Nitroimidazoles. BIOLOGY 2021; 10:388. [PMID: 34062712 PMCID: PMC8147198 DOI: 10.3390/biology10050388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/14/2023]
Abstract
Antimicrobial resistance is a major challenge facing modern medicine, with an estimated 700,000 people dying annually and a global cost in excess of $100 trillion. This has led to an increased need to develop new, effective treatments. This review focuses on nitroimidazoles, which have seen a resurgence in interest due to their broad spectrum of activity against anaerobic Gram-negative and Gram-positive bacteria. The role of nitroreductases is to activate the antimicrobial by reducing the nitro group. A decrease in the activity of nitroreductases is associated with resistance. This review will discuss the resistance mechanisms of different disease organisms, including Mycobacterium tuberculosis, Helicobacter pylori and Staphylococcus aureus, and how these impact the effectiveness of specific nitroimidazoles. Perspectives in the field of nitroimidazole drug development are also summarised.
Collapse
Affiliation(s)
- Carol Thomas
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK;
| | - Christopher D. Gwenin
- Department of Chemistry, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou Industrial Park, Suzhou 215123, China
| |
Collapse
|
29
|
Karan S, Cho MY, Lee H, Lee H, Park HS, Sundararajan M, Sessler JL, Hong KS. Near-Infrared Fluorescent Probe Activated by Nitroreductase for In Vitro and In Vivo Hypoxic Tumor Detection. J Med Chem 2021; 64:2971-2981. [PMID: 33711229 DOI: 10.1021/acs.jmedchem.0c02162] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tumor hypoxia is correlated with increased resistance to chemotherapy and poor overall prognoses across a number of cancer types. We present here a cancer cell-selective and hypoxia-responsive probe (fol-BODIPY) designed on the basis of density functional theory (DFT)-optimized quantum chemical calculations. The fol-BODIPY probe was found to provide a rapid fluorescence "off-on" response to hypoxia relative to controls, which lack the folate or nitro-benzyl moieties. In vitro confocal microscopy and flow cytometry analyses, as well as in vivo near-infrared optical imaging of CT26 solid tumor-bearing mice, provided support for the contention that fol-BODIPY is more readily accepted by folate receptor-positive CT26 cancer cells and provides a superior fluorescence "off-on" signal under hypoxic conditions than the controls. Based on the findings of this study, we propose that fol-BODIPY may serve as a tumor-targeting, hypoxia-activatable probe that allows for direct cancer monitoring both in vitro and in vivo.
Collapse
Affiliation(s)
- Sanu Karan
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mi Young Cho
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Hyunseung Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Hwunjae Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Hye Sun Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Mahesh Sundararajan
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Kwan Soo Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
30
|
Metabolites Potentiate Nitrofurans in Nongrowing Escherichia coli. Antimicrob Agents Chemother 2021; 65:AAC.00858-20. [PMID: 33361301 DOI: 10.1128/aac.00858-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/17/2020] [Indexed: 01/17/2023] Open
Abstract
Nitrofurantoin (NIT) is a broad-spectrum bactericidal antibiotic used in the treatment of urinary tract infections. It is a prodrug that once activated by nitroreductases goes on to inhibit bacterial DNA, RNA, cell wall, and protein synthesis. Previous work has suggested that NIT retains considerable activity against nongrowing bacteria. Here, we have found that Escherichia coli grown to stationary phase in minimal or artificial urine medium is not susceptible to NIT. Supplementation with glucose under conditions where cells remained nongrowing (other essential nutrients were absent) sensitized cultures to NIT. We conceptualized NIT sensitivity as a multi-input AND gate and lack of susceptibility as an insufficiency in one or more of those inputs. The inputs considered were an activating enzyme, cytoplasmic abundance of NIT, and reducing equivalents required for NIT activation. We systematically assessed the contribution of each of these inputs and found that NIT import and the level of activating enzyme were not contributing factors to the lack of susceptibility. Rather, evidence suggested that the low abundance of reducing equivalents is why stationary-phase E. coli are not killed by NIT and catabolites can resensitize those cells. We found that this phenomenon also occurred when using nitrofurazone, which established generality to the nitrofuran antibiotic class. In addition, we observed that NIT activity against stationary-phase uropathogenic E. coli (UPEC) could also be potentiated through metabolite supplementation. These findings suggest that the combination of nitrofurans with specific metabolites could improve the outcome of uncomplicated urinary tract infections.
Collapse
|
31
|
Maity DK, Paul RK, Desiraju GR. Drug-Drug Binary Solids of Nitrofurantoin and Trimethoprim: Crystal Engineering and Pharmaceutical Properties. Mol Pharm 2020; 17:4435-4442. [PMID: 32941048 DOI: 10.1021/acs.molpharmaceut.0c00090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
With the aim of developing multidrug solids through a tuned crystal engineering approach, we have selected two antiurinary infective drugs, namely, nitrofurantoin (NF) and trimethoprim (TMP) and isolated eight binary drug-drug solid solvates along with a nonsolvated cocrystal. Crystal structure analyses were performed for eight of these solids and rationalized in terms of known supramolecular synthons formed by pyrimidine, imide, and amine functionalities. Notably, the TMP-NF anhydrous cocrystal and its ionic cocrystal hydrate exhibit enhanced equilibrium solubilities compared to pure NF or the simple NF hydrate. Furthermore, the ionic cocrystal hydrate exhibits greater antibacterial activity against the Gram-negative bacteria, E. coli, compared to the parent TMP and NF at the lowest concentration of 3.9 μg/mL. This study indicates initial pathways using the cocrystal methodology that would help to eventually arrive at an antiurinary cocrystal with optimal properties.
Collapse
Affiliation(s)
- Dilip Kumar Maity
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Rakesh Kumar Paul
- Department of Pharmacy, School of Chemical Science and Pharmacy, Central University of Rajasthan, Bandar Sindri, Ajmer, Rajasthan 305 817, India
| | - Gautam R Desiraju
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
32
|
Ghodke PP, Pradeepkumar PI. Site‐Specific
N
2
‐dG DNA Adducts: Formation, Synthesis, and TLS Polymerase‐Mediated Bypass. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pratibha P. Ghodke
- Department of Biochemistry Vanderbilt University School of Medicine 638B Robinson Research Building 2200 Pierce Avenue 37323‐0146 Nashville Tennessee United States
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai Powai India
| | | |
Collapse
|
33
|
Stevens M, Howe C, Ray AM, Washburn A, Chitre S, Sivinski J, Park Y, Hoang QQ, Chapman E, Johnson SM. Analogs of nitrofuran antibiotics are potent GroEL/ES inhibitor pro-drugs. Bioorg Med Chem 2020; 28:115710. [PMID: 33007545 PMCID: PMC7914298 DOI: 10.1016/j.bmc.2020.115710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/14/2023]
Abstract
In two previous studies, we identified compound 1 as a moderate GroEL/ES inhibitor with weak to moderate antibacterial activity against Gram-positive and Gram-negative bacteria including Bacillus subtilis, methicillin-resistant Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, and SM101 Escherichia coli (which has a compromised lipopolysaccharide biosynthetic pathway making bacteria more permeable to drugs). Extending from those studies, we developed two series of analogs with key substructures resembling those of known antibacterials, nitroxoline (hydroxyquinoline moiety) and nifuroxazide/nitrofurantoin (bis-cyclic-N-acylhydrazone scaffolds). Through biochemical and cell-based assays, we identified potent GroEL/ES inhibitors that selectively blocked E. faecium, S. aureus, and E. coli proliferation with low cytotoxicity to human colon and intestine cells in vitro. Initially, only the hydroxyquinoline-bearing analogs were found to be potent inhibitors in our GroEL/ES-mediated substrate refolding assays; however, subsequent testing in the presence of an E. coli nitroreductase (NfsB) in situ indicated that metabolites of the nitrofuran-bearing analogs were potent GroEL/ES inhibitor pro-drugs. Consequently, this study has identified a new target of nitrofuran-containing drugs, and is the first reported instance of such a unique class of GroEL/ES chaperonin inhibitors. The intriguing results presented herein provide impetus for expanded studies to validate inhibitor mechanisms and optimize this antibacterial class using the respective GroEL/ES chaperonin systems and nitroreductases from E. coli and the ESKAPE bacteria.
Collapse
Affiliation(s)
- Mckayla Stevens
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Chris Howe
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Anne-Marie Ray
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Alex Washburn
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Siddhi Chitre
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Jared Sivinski
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Yangshin Park
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202, United States; Department of Neurology, Indiana University School of Medicine. 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Quyen Q Hoang
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202, United States; Department of Neurology, Indiana University School of Medicine. 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Eli Chapman
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Steven M Johnson
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States.
| |
Collapse
|
34
|
Boddu RS, Perumal O, K D. Microbial nitroreductases: A versatile tool for biomedical and environmental applications. Biotechnol Appl Biochem 2020; 68:1518-1530. [PMID: 33156534 DOI: 10.1002/bab.2073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
Nitroreductases, enzymes found mostly in bacteria and also in few eukaryotes, use nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor for their activity and metabolize an enormous list of a diverse nitro group-containing compounds. Nitroreductases that are capable of metabolizing nitroaromatic and nitro heterocyclic compounds have drawn great attention in recent years owing to their biotechnological, biomedical, environmental, and human impact. These enzymes attracted medicinal chemists and pharmacologists because of their prodrug selectivity for activation/reduction of nitro compounds that wipe out pathogens/cancer cells, leaving the host/normal cells unharmed. It is applied in diverse fields of study like prodrug activation in treating cancer and leishmaniasis, designing fluorescent probes for hypoxia detection, cell imaging, ablation of specific cell types, biodegradation of nitro-pollutants, and interpretation of mutagenicity of nitro compounds. Keeping in view the immense prospects of these enzymes and a large number of research contributions in this area, the present review encompasses the enzymatic reaction mechanism, their role in antibiotic resistance, hypoxia sensing, cell imaging, cancer therapy, reduction of recalcitrant nitro chemicals, enzyme variants, and their specificity to substrates, reaction products, and their applications.
Collapse
Affiliation(s)
- Ramya Sree Boddu
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Onkara Perumal
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Divakar K
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, India
| |
Collapse
|
35
|
Steenhuis M, Koningstein GM, Oswald J, Pick T, O'Keefe S, Koch HG, Cavalié A, Whitehead RC, Swanton E, High S, Luirink J. Eeyarestatin 24 impairs SecYEG-dependent protein trafficking and inhibits growth of clinically relevant pathogens. Mol Microbiol 2020; 115:28-40. [PMID: 32798330 PMCID: PMC8273874 DOI: 10.1111/mmi.14589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Eeyarestatin 1 (ES1) is an inhibitor of endoplasmic reticulum (ER) associated protein degradation, Sec61‐dependent Ca2+ homeostasis and protein translocation into the ER. Recently, evidence was presented showing that a smaller analog of ES1, ES24, targets the Sec61‐translocon, and captures it in an open conformation that is translocation‐incompetent. We now show that ES24 impairs protein secretion and membrane protein insertion in Escherichia coli via the homologous SecYEG‐translocon. Transcriptomic analysis suggested that ES24 has a complex mode of action, probably involving multiple targets. Interestingly, ES24 shows antibacterial activity toward clinically relevant strains. Furthermore, the antibacterial activity of ES24 is equivalent to or better than that of nitrofurantoin, a known antibiotic that, although structurally similar to ES24, does not interfere with SecYEG‐dependent protein trafficking. Like nitrofurantoin, we find that ES24 requires activation by the NfsA and NfsB nitroreductases, suggesting that the formation of highly reactive nitroso intermediates is essential for target inactivation in vivo.
Collapse
Affiliation(s)
- Maurice Steenhuis
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, Amsterdam, the Netherlands
| | - Gregory M Koningstein
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, Amsterdam, the Netherlands
| | - Julia Oswald
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tillman Pick
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Sarah O'Keefe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Adolfo Cavalié
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Roger C Whitehead
- School of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Eileithyia Swanton
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stephen High
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
36
|
Sorlozano-Puerto A, Lopez-Machado I, Albertuz-Crespo M, Martinez-Gonzalez LJ, Gutierrez-Fernandez J. Characterization of Fosfomycin and Nitrofurantoin Resistance Mechanisms in Escherichia coli Isolated in Clinical Urine Samples. Antibiotics (Basel) 2020; 9:antibiotics9090534. [PMID: 32847131 PMCID: PMC7558542 DOI: 10.3390/antibiotics9090534] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 01/29/2023] Open
Abstract
Fosfomycin and nitrofurantoin are antibiotics of choice to orally treat non-complicated urinary tract infections (UTIs) of community origin because they remain active against bacteria resistant to other antibiotics. However, epidemiologic surveillance studies have detected a reduced susceptibility to these drugs. The objective of this study was to determine possible mechanisms of resistance to these antibiotics in clinical isolates of fosfomycin- and/or nitrofurantoin-resistant UTI-producing Escherichia coli. We amplified and sequenced murA, glpT, uhpT, uhpA, ptsI, cyaA, nfsA, nfsB, and ribE genes, and screened plasmid-borne fosfomycin-resistance genes fosA3, fosA4, fosA5, fosA6, and fosC2 and nitrofurantoin-resistance genes oqxA and oqxB by polymerase chain reaction. Among 29 isolates studied, 22 were resistant to fosfomycin due to deletion of uhpT and/or uhpA genes, and 2 also possessed the fosA3 gene. Some modifications detected in sequences of NfsA (His11Tyr, Ser33Arg, Gln67Leu, Cys80Arg, Gly126Arg, Gly154Glu, Arg203Cys), NfsB (Gln44His, Phe84Ser, Arg107Cys, Gly192Ser, Arg207His), and RibE (Pro55His), and the production of truncated NfsA (Gln67 and Gln147) and NfsB (Glu54), were associated with nitrofurantoin resistance in 15/29 isolates; however, the presence of oqxAB plasmid genes was not detected in any isolate. Resistance to fosfomycin was associated with the absence of transporter UhpT expression and/or the presence of antibiotic-modifying enzymes encoded by fosA3 plasmid-mediated gene. Resistance to nitrofurantoin was associated with modifications of NfsA, NfsB, and RibE proteins. The emergence and spread of these resistance mechanisms, including transferable resistance, could compromise the future usefulness of fosfomycin and nitrofurantoin against UTIs. Furthermore, knowledge of the genetic mechanisms underlying resistance may lead to rapid DNA-based testing for resistance.
Collapse
Affiliation(s)
- Antonio Sorlozano-Puerto
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada-ibs, 18016 Granada, Spain; (A.S.-P.); (I.L.-M.); (M.A.-C.)
| | - Isaac Lopez-Machado
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada-ibs, 18016 Granada, Spain; (A.S.-P.); (I.L.-M.); (M.A.-C.)
| | - Maria Albertuz-Crespo
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada-ibs, 18016 Granada, Spain; (A.S.-P.); (I.L.-M.); (M.A.-C.)
| | - Luis Javier Martinez-Gonzalez
- Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), 18016 Granada, Spain;
| | - Jose Gutierrez-Fernandez
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada-ibs, 18016 Granada, Spain; (A.S.-P.); (I.L.-M.); (M.A.-C.)
- Laboratory of Microbiology, Virgen de las Nieves University Hospital-ibs, 18014 Granada, Spain
- Correspondence:
| |
Collapse
|
37
|
Complete Genome Assembly of a Multidrug-Resistant New Delhi Metallo-β-Lactamase 1 (NDM-1)-Producing Escherichia coli Human Isolate from a New Zealand Hospital. Microbiol Resour Announc 2020; 9:9/34/e00780-20. [PMID: 32816984 PMCID: PMC7441242 DOI: 10.1128/mra.00780-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the complete genome of a multidrug-resistant Escherichia coli strain isolated from a New Zealand patient with a history of hospitalization in India. The strain, carrying eight plasmids, harbors chromosome-encoded nfsA and nfsB mutations, which cause nitrofuran resistance, and class C β-lactamase (bla EC) and plasmid-encoded bla NDM-1, bla CTX-M-15, and bla CMY-6, as well as other antibiotic resistance genes.
Collapse
|
38
|
Barreto HC, Sousa A, Gordo I. The Landscape of Adaptive Evolution of a Gut Commensal Bacteria in Aging Mice. Curr Biol 2020; 30:1102-1109.e5. [PMID: 32142696 DOI: 10.1016/j.cub.2020.01.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/20/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Abstract
Aging is a complex process, with many associated time-dependent phenotypes. The gut microbiota have long been postulated as an important factor in shaping healthy aging [1, 2]. During aging, changes in the microbiota composition occur, with taxa that are rare in adults becoming dominant in the elderly [3, 4]. Increased inflammation associated with aging is also known to modulate and be modulated by the microbiota [5]. Ecological interactions are known to affect the evolution of bacteria both in vitro [6] and in vivo [7], but the extent to which these and the host age-dependent inflammatory environment can alter the pattern of evolutionary change of a gut commensal lineage is still unknown [8]. Here, we provide the first genomic analysis of such evolution in cohorts of old mice, under controlled host genetics and lifestyle conditions. We find that Escherichia coli evolution when colonizing the gut of old mice significantly differs from its evolution in young mice. Evolution toward metabolic adaptation is slower in old than young mice, and mutational targets concerning stress-related functions were found specifically in the inflamed gut of old mice. Taking the genetic basis of E. coli short-term evolution as a reflection of the environment it experiences, the sequencing data indicate that aging imposes a more stressful environment to this important colonizer of the mammalian gut.
Collapse
Affiliation(s)
- Hugo C Barreto
- Instituto Gulbenkian de Ciências, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Ana Sousa
- iBiMed, Institute for Biomedicine, Universidade de Aveiro, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| | - Isabel Gordo
- Instituto Gulbenkian de Ciências, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
39
|
Chen SH, Sun JM, Chen BM, Lin SC, Chang HF, Collins S, Chang D, Wu SF, Lu YC, Wang W, Chen TC, Kasahara N, Wang HE, Tai CK. Efficient Prodrug Activator Gene Therapy by Retroviral Replicating Vectors Prolongs Survival in an Immune-Competent Intracerebral Glioma Model. Int J Mol Sci 2020; 21:ijms21041433. [PMID: 32093290 PMCID: PMC7073086 DOI: 10.3390/ijms21041433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
Prodrug activator gene therapy mediated by murine leukemia virus (MLV)-based retroviral replicating vectors (RRV) was previously shown to be highly effective in killing glioma cells both in culture and in vivo. To avoid receptor interference and enable dual vector co-infection with MLV-RRV, we have developed another RRV based on gibbon ape leukemia virus (GALV) that also shows robust replicative spread in a wide variety of tumor cells. We evaluated the potential of GALV-based RRV as a cancer therapeutic agent by incorporating yeast cytosine deaminase (CD) and E. coli nitroreductase (NTR) prodrug activator genes into the vector. The expression of CD and NTR genes from GALV-RRV achieved highly efficient delivery of these prodrug activator genes to RG-2 glioma cells, resulting in enhanced cytotoxicity after administering their respective prodrugs 5-fluorocytosine and CB1954 in vitro. In an immune-competent intracerebral RG-2 glioma model, GALV-mediated CD and NTR gene therapy both significantly suppressed tumor growth with CB1954 administration after a single injection of vector supernatant. However, NTR showed greater potency than CD, with control animals receiving GALV-NTR vector alone (i.e., without CB1954 prodrug) showing extensive tumor growth with a median survival time of 17.5 days, while animals receiving GALV-NTR and CB1954 showed significantly prolonged survival with a median survival time of 30 days. In conclusion, GALV-RRV enabled high-efficiency gene transfer and persistent expression of NTR, resulting in efficient cell killing, suppression of tumor growth, and prolonged survival upon CB1954 administration. This validates the use of therapeutic strategies employing this prodrug activator gene to arm GALV-RRV, and opens the door to the possibility of future combination gene therapy with CD-armed MLV-RRV, as the latter vector is currently being evaluated in clinical trials.
Collapse
Affiliation(s)
- Shih-Han Chen
- Section of Neurosurgery, Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan; (S.-H.C.); (J.-M.S.)
| | - Jui-Ming Sun
- Section of Neurosurgery, Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan; (S.-H.C.); (J.-M.S.)
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Bing-Mao Chen
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 621, Taiwan; (B.-M.C.); (S.-C.L.); (H.-F.C.); (D.C.); (S.-F.W.)
| | - Sheng-Che Lin
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 621, Taiwan; (B.-M.C.); (S.-C.L.); (H.-F.C.); (D.C.); (S.-F.W.)
| | - Hao-Fang Chang
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 621, Taiwan; (B.-M.C.); (S.-C.L.); (H.-F.C.); (D.C.); (S.-F.W.)
| | - Sara Collins
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA; (S.C.); (N.K.)
| | - Deching Chang
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 621, Taiwan; (B.-M.C.); (S.-C.L.); (H.-F.C.); (D.C.); (S.-F.W.)
| | - Shu-Fen Wu
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 621, Taiwan; (B.-M.C.); (S.-C.L.); (H.-F.C.); (D.C.); (S.-F.W.)
| | - Yin-Che Lu
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Weijun Wang
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA; (W.W.); (T.C.C.)
| | - Thomas C. Chen
- Department of Neurosurgery, University of Southern California, Los Angeles, CA 90033, USA; (W.W.); (T.C.C.)
| | - Noriyuki Kasahara
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA; (S.C.); (N.K.)
- Department of Radiation Oncology, University of California, San Francisco, CA 94143, USA
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: (H.-E.W.); (C.-K.T.)
| | - Chien-Kuo Tai
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 621, Taiwan; (B.-M.C.); (S.-C.L.); (H.-F.C.); (D.C.); (S.-F.W.)
- Correspondence: (H.-E.W.); (C.-K.T.)
| |
Collapse
|
40
|
Le VVH, Olivera C, Spagnuolo J, Davies IG, Rakonjac J. In vitro synergy between sodium deoxycholate and furazolidone against enterobacteria. BMC Microbiol 2020; 20:5. [PMID: 31906851 PMCID: PMC6945529 DOI: 10.1186/s12866-019-1668-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
Background Antimicrobial combinations have been proven as a promising approach in the confrontation with multi-drug resistant bacterial pathogens. In the present study, we identify and characterize a synergistic interaction of broad-spectrum nitroreductase-activated prodrugs 5-nitrofurans, with a secondary bile salt, sodium deoxycholate (DOC) in growth inhibition and killing of enterobacteria. Results Using checkerboard assay, we show that combination of nitrofuran furazolidone (FZ) and DOC generates a profound synergistic effect on growth inhibition in several enterobacterial species including Escherichia coli, Salmonella enterica, Citrobacter gillenii and Klebsiella pneumoniae. The Fractional Inhibitory Concentration Index (FICI) for DOC-FZ synergy ranges from 0.125 to 0.35 that remains unchanged in an ampicillin-resistant E. coli strain containing a β-lactamase-producing plasmid. Findings from the time-kill assay further highlight the synergy with respect to bacterial killing in E. coli and Salmonella. We further characterize the mechanism of synergy in E. coli K12, showing that disruption of the tolC or acrA genes that encode components of multidrug efflux pumps causes, respectively, a complete or partial loss, of the DOC-FZ synergy. This finding indicates the key role of TolC-associated efflux pumps in the DOC-FZ synergy. Overexpression of nitric oxide-detoxifying enzyme Hmp results in a three-fold increase in FICI for DOC-FZ interaction, suggesting a role of nitric oxide in the synergy. We further demonstrate that DOC-FZ synergy is largely independent of NfsA and NfsB, the two major activation enzymes of the nitrofuran prodrugs. Conclusions This study is to our knowledge the first report of nitrofuran-deoxycholate synergy against Gram-negative bacteria, offering potential applications in antimicrobial therapeutics. The mechanism of DOC-FZ synergy involves FZ-mediated inhibition of TolC-associated efflux pumps that normally remove DOC from bacterial cells. One possible route contributing to that effect is via FZ-mediated nitric oxide production.
Collapse
Affiliation(s)
- Vuong Van Hung Le
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Catrina Olivera
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Julian Spagnuolo
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Present Address: Department of Biomedicine, University Hospital Basel, 4031, Basel, Switzerland
| | - Ieuan G Davies
- New Zealand Pharmaceuticals Ltd, Palmerston North, New Zealand
| | - Jasna Rakonjac
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
41
|
Hibbard HA, Reynolds MM. Synthesis of novel nitroreductase enzyme-activated nitric oxide prodrugs to site-specifically kill bacteria. Bioorg Chem 2019; 93:103318. [DOI: 10.1016/j.bioorg.2019.103318] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
|
42
|
Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. J Mol Evol 2019; 88:26-40. [PMID: 31659373 DOI: 10.1007/s00239-019-09914-3] [Citation(s) in RCA: 374] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/02/2019] [Indexed: 01/29/2023]
Abstract
In recent years, we have seen antimicrobial resistance rapidly emerge at a global scale and spread from one country to the other faster than previously thought. Superbugs and multidrug-resistant bacteria are endemic in many parts of the world. There is no question that the widespread use, overuse, and misuse of antimicrobials during the last 80 years have been associated with the explosion of antimicrobial resistance. On the other hand, the molecular pathways behind the emergence of antimicrobial resistance in bacteria were present since ancient times. Some of these mechanisms are the ancestors of current resistance determinants. Evidently, there are plenty of putative resistance genes in the environment, however, we cannot yet predict which ones would be able to be expressed as phenotypes in pathogenic bacteria and cause clinical disease. In addition, in the presence of inhibitory and sub-inhibitory concentrations of antibiotics in natural habitats, one could assume that novel resistance mechanisms will arise against antimicrobial compounds. This review presents an overview of antimicrobial resistance mechanisms, and describes how these have evolved and how they continue to emerge. As antimicrobial strategies able to bypass the development of resistance are urgently needed, a better understanding of the critical factors that contribute to the persistence and spread of antimicrobial resistance may yield innovative perspectives on the design of such new therapeutic targets.
Collapse
|
43
|
Chung The H, Boinett C, Pham Thanh D, Jenkins C, Weill FX, Howden BP, Valcanis M, De Lappe N, Cormican M, Wangchuk S, Bodhidatta L, Mason CJ, Nguyen TNT, Ha Thanh T, Voong VP, Duong VT, Nguyen PHL, Turner P, Wick R, Ceyssens PJ, Thwaites G, Holt KE, Thomson NR, Rabaa MA, Baker S. Dissecting the molecular evolution of fluoroquinolone-resistant Shigella sonnei. Nat Commun 2019; 10:4828. [PMID: 31645551 PMCID: PMC6811581 DOI: 10.1038/s41467-019-12823-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/25/2019] [Indexed: 02/08/2023] Open
Abstract
Shigella sonnei increasingly dominates the international epidemiological landscape of shigellosis. Treatment options for S. sonnei are dwindling due to resistance to several key antimicrobials, including the fluoroquinolones. Here we analyse nearly 400 S. sonnei whole genome sequences from both endemic and non-endemic regions to delineate the evolutionary history of the recently emergent fluoroquinolone-resistant S. sonnei. We reaffirm that extant resistant organisms belong to a single clonal expansion event. Our results indicate that sequential accumulation of defining mutations (gyrA-S83L, parC-S80I, and gyrA-D87G) led to the emergence of the fluoroquinolone-resistant S. sonnei population around 2007 in South Asia. This clone was then transmitted globally, resulting in establishments in Southeast Asia and Europe. Mutation analysis suggests that the clone became dominant through enhanced adaptation to oxidative stress. Experimental evolution reveals that under fluoroquinolone exposure in vitro, resistant S. sonnei develops further intolerance to the antimicrobial while the susceptible counterpart fails to attain complete resistance.
Collapse
Affiliation(s)
- Hao Chung The
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Christine Boinett
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
| | - Duy Pham Thanh
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Claire Jenkins
- Gastrointestinal Bacterial Reference Unit, National Infection Service, Public Health England, London, UK
| | | | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Niall De Lappe
- National Salmonella, Shigella, and Listeria monocytogenes Reference Laboratory, University Hospital Galway, Galway, Ireland
| | - Martin Cormican
- School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Sonam Wangchuk
- Public Health Laboratory, Department of Public Health, Ministry of Health, Royal Government of Bhutan, Thimphu, Bhutan
| | - Ladaporn Bodhidatta
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Carl J Mason
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - To Nguyen Thi Nguyen
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tuyen Ha Thanh
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Vinh Phat Voong
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Vu Thuy Duong
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Phu Huong Lan Nguyen
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Paul Turner
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Ryan Wick
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | | | - Guy Thwaites
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
- London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas R Thomson
- London School of Hygiene and Tropical Medicine, London, UK
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Maia A Rabaa
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK.
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, The Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
44
|
Novel 5-Nitrofuran-Activating Reductase in Escherichia coli. Antimicrob Agents Chemother 2019; 63:AAC.00868-19. [PMID: 31481448 DOI: 10.1128/aac.00868-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
The global spread of multidrug-resistant enterobacteria warrants new strategies to combat these pathogens. One possible approach is the reconsideration of "old" antimicrobials, which remain effective after decades of use. Synthetic 5-nitrofurans such as furazolidone, nitrofurantoin, and nitrofurazone are such a class of antimicrobial drugs. Recent epidemiological data showed a very low prevalence of resistance to this antimicrobial class among clinical Escherichia coli isolates in various parts of the world, forecasting the increasing importance of its uses to battle antibiotic-resistant enterobacteria. However, although they have had a long history of clinical use, a detailed understanding of the 5-nitrofurans' mechanisms of action remains limited. Nitrofurans are known as prodrugs that are activated in E. coli by reduction catalyzed by two redundant nitroreductases, NfsA and NfsB. Furazolidone, nevertheless, retains relatively significant antibacterial activity in the nitroreductase-deficient ΔnfsA ΔnfsB E. coli strain, indicating the presence of additional activating enzymes and/or antibacterial activity of the unreduced form. Using genome sequencing, genetic, biochemical, and bioinformatic approaches, we discovered a novel 5-nitrofuran-activating enzyme, AhpF, in E. coli The discovery of a new nitrofuran-reducing enzyme opens new avenues for overcoming 5-nitrofuran resistance, such as designing nitrofuran analogues with higher affinity for AhpF or screening for adjuvants that enhance AhpF expression.
Collapse
|
45
|
Mottaghizadeh F, Mohajjel Shoja H, Haeili M, Darban-Sarokhalil D. Molecular epidemiology and nitrofurantoin resistance determinants of nitrofurantoin-non-susceptible Escherichia coli isolated from urinary tract infections. J Glob Antimicrob Resist 2019; 21:335-339. [PMID: 31627025 DOI: 10.1016/j.jgar.2019.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVES The worldwide emergence of multidrug-resistant uropathogens has resulted in the revival of old antibiotics such as nitrofurantoin (NIT) for the treatment of uncomplicated urinary tract infections (UTIs). This study aimed to identify determinants of NIT resistance and to investigate the genetic diversity of NIT-resistant (NIT-R) Escherichia coli isolates. METHODS Six NIT-R and three NIT-susceptible clinical E. coli isolates from patients with UTI were studied. The susceptibility of the isolates to various classes of antibiotics was evaluated by disk diffusion. The presence of plasmid-encoded efflux pump genes (oqxA and oqxB) was investigated by PCR. Nucleotide sequences of the nfsA, nfsB and ribE genes were determined. The genetic relatedness of the NIT-R isolates was evaluated by multilocus sequence typing (MLST). RESULTS All six NIT-R isolates were characterised with high-level NIT resistance (MIC ≥ 512 mg/L) and they belonged to five distinct STs including ST131 (n = 2), ST73, ST405, ST10 and ST354 (n = 1 each). Amikacin, carbapenems, minocycline, tigecycline and fosfomycin were the most active agents against the studied uropathogens. The oqxA and oqxB genes were not detected in any isolate. All NIT-R isolates harboured inactivating genetic alterations in nfsA and nfsB [NfsA H11Y, S33N, S38Y, W212R substitutions, Δg638 (frameshift), Δa64-g73 (frameshift) and NfsB F84S, P45S, W94Stop, E197Stop substitutions, ΔnfsB locus]. The ribE gene of most isolates was unaffected, except for one isolate co-harbouring a deleterious RibE G85C substitution and NfsA/B alterations. CONCLUSION NIT resistance in the studied E. coli isolates was mainly mediated by nfsA and nfsB alterations.
Collapse
Affiliation(s)
- Fatemeh Mottaghizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hanieh Mohajjel Shoja
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Mehri Haeili
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Si Y, Basak S, Li Y, Merino J, Iuliano JN, Walker SG, Tonge PJ. Antibacterial Activity and Mode of Action of a Sulfonamide-Based Class of Oxaborole Leucyl-tRNA-Synthetase Inhibitors. ACS Infect Dis 2019; 5:1231-1238. [PMID: 31007018 DOI: 10.1021/acsinfecdis.9b00071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Benzoxaboroles are a class of boron-containing compounds with a broad range of biological activities. A subset of benzoxaboroles have antimicrobial activity due primarily to their ability to inhibit leucyl-tRNA synthetase (LeuRS) via the oxaborole tRNA-trapping mechanism, which involves the formation of a stable tRNALeu-benzoxaborole adduct in which the boron atom interacts with the 2'- and 3'-oxygen atoms of the terminal 3' tRNA adenosine. We sought to identify other antibacterial targets for this promising class of compounds by means of mode-of-action studies, and we selected a nitrophenyl sulfonamide based oxaborole (PT638) as a probe molecule because it had potent antibacterial activity (MIC of 0.4 μg/mL against methicillin-resistant Staphylococcus aureus) but did not inhibit LeuRS (IC50 > 100 μM). Analogues of PT638 were synthesized to explore the importance of the sulfonamide linker and the impact of altering the functionalization of the phenyl ring. These structure-activity-relationship studies revealed that the nitro substituent was essential for activity. To identify the target for PT638, we raised resistant strains of S. aureus, and whole-genome sequencing revealed mutations in leuRS, suggesting that the target for this compound was indeed LeuRS, despite the lack of enzyme inhibition. Subsequent analysis of PT638 metabolism demonstrated that bacterial nitroreductases readily converted this compound into the amino analogue, which inhibited LeuRS with an IC50 of 3.0 ± 1.2 μM, demonstrating that PT638 is thus a prodrug.
Collapse
|
47
|
Wijma RA, Fransen F, Muller AE, Mouton JW. Optimizing dosing of nitrofurantoin from a PK/PD point of view: What do we need to know? Drug Resist Updat 2019; 43:1-9. [PMID: 30947111 DOI: 10.1016/j.drup.2019.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/15/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
Abstract
Nitrofurantoin is an old antibiotic and an important first-line oral antibiotic for the treatment of uncomplicated urinary tract infections. However despite its long term use for over 60 years, little information is available with respect to its dose justification and this may be the reason of highly variable recommended doses and dosing schedules. Furthermore, nitrofurantoin is not a uniform product -crystal sizes of nitrofurantoin, and therefore pharmacokinetic properties, differ significantly by product. Moreover, pharmacokinetic profiling of some products is even lacking, or difficult to interpret because of its unstable chemical properties. Pharmacokinetic and pharmacodynamic data is now slowly becoming available. This review provides an overview of nitrofurantoins antibacterial, pharmacokinetic and pharmacodynamic properties. This shows that a clear rationale of current dosing regimens is scanty.
Collapse
Affiliation(s)
- Rixt A Wijma
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Fiona Fransen
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anouk E Muller
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Medical Microbiology, Haaglanden Medical Center, The Hague, the Netherlands
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
48
|
de Almeida FA, Carneiro DG, de Oliveira Mendes TA, Barros E, Pinto UM, de Oliveira LL, Vanetti MCD. N-dodecanoyl-homoserine lactone influences the levels of thiol and proteins related to oxidation-reduction process in Salmonella. PLoS One 2018; 13:e0204673. [PMID: 30304064 PMCID: PMC6179229 DOI: 10.1371/journal.pone.0204673] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/12/2018] [Indexed: 01/09/2023] Open
Abstract
Quorum sensing is a cell-cell communication mechanism mediated by chemical signals that leads to differential gene expression in response to high population density. Salmonella is unable to synthesize the autoinducer-1 (AI-1), N-acyl homoserine lactone (AHL), but is able to recognize AHLs produced by other microorganisms through SdiA protein. This study aimed to evaluate the fatty acid and protein profiles of Salmonella enterica serovar Enteritidis PT4 578 throughout time of cultivation in the presence of AHL. The presence of N-dodecanoyl-homoserine lactone (C12-HSL) altered the fatty acid and protein profiles of Salmonella cultivated during 4, 6, 7, 12 and 36 h in anaerobic condition. The profiles of Salmonella Enteritidis at logarithmic phase of growth (4 h of cultivation), in the presence of C12-HSL, were similar to those of cells at late stationary phase (36 h). In addition, there was less variation in both protein and fatty acid profiles along growth, suggesting that this quorum sensing signal anticipated a stationary phase response. The presence of C12-HSL increased the abundance of thiol related proteins such as Tpx, Q7CR42, Q8ZP25, YfgD, AhpC, NfsB, YdhD and TrxA, as well as the levels of free cellular thiol after 6 h of cultivation, suggesting that these cells have greater potential to resist oxidative stress. Additionally, the LuxS protein which synthesizes the AI-2 signaling molecule was differentially abundant in the presence of C12-HSL. The NfsB protein had its abundance increased in the presence of C12-HSL at all evaluated times, which is a suggestion that the cells may be susceptible to the action of nitrofurans or that AHLs present some toxicity. Overall, the presence of C12-HSL altered important pathways related to oxidative stress and stationary phase response in Salmonella.
Collapse
Affiliation(s)
| | | | | | - Edvaldo Barros
- Núcleo de Análise de Biomoléculas, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
49
|
Lee DS, Lee SJ, Choe HS. Community-Acquired Urinary Tract Infection by Escherichia coli in the Era of Antibiotic Resistance. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7656752. [PMID: 30356438 PMCID: PMC6178185 DOI: 10.1155/2018/7656752] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/19/2018] [Accepted: 09/09/2018] [Indexed: 01/27/2023]
Abstract
Urinary tract infections (UTIs) caused by Escherichia coli (E. coli) are the most common types of infections in women. The antibiotic resistance of E. coli is increasing rapidly, causing physicians to hesitate when selecting oral antibiotics. In this review, our objective is to ensure that clinicians understand the current seriousness of antibiotic-resistant E. coli, the mechanisms by which resistance is selected for, and methods that can be used to prevent antibiotic resistance.
Collapse
Affiliation(s)
- Dong Sup Lee
- Department of Urology, St. Vincent's Hospital, The Catholic University of Korea, College of Medicine, Republic of Korea
| | - Seung-Ju Lee
- Department of Urology, St. Vincent's Hospital, The Catholic University of Korea, College of Medicine, Republic of Korea
| | - Hyun-Sop Choe
- Department of Urology, St. Vincent's Hospital, The Catholic University of Korea, College of Medicine, Republic of Korea
| |
Collapse
|
50
|
Ingle DJ, Levine MM, Kotloff KL, Holt KE, Robins-Browne RM. Dynamics of antimicrobial resistance in intestinal Escherichia coli from children in community settings in South Asia and sub-Saharan Africa. Nat Microbiol 2018; 3:1063-1073. [PMID: 30127495 PMCID: PMC6787116 DOI: 10.1038/s41564-018-0217-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/09/2018] [Indexed: 11/30/2022]
Abstract
The dynamics of antimicrobial resistance (AMR) in developing countries are poorly understood, especially in community settings, due to a sparsity of data on AMR prevalence and genetics. We used a combination of phenotyping, genomics and antimicrobial usage data to investigate patterns of AMR amongst atypical enteropathogenic Escherichia coli (aEPEC) strains isolated from children younger than five years old in seven developing countries (four in sub-Saharan Africa and three in South Asia) over a three-year period. We detected high rates of AMR, with 65% of isolates displaying resistance to three or more drug classes. Whole-genome sequencing revealed a diversity of known genetic mechanisms for AMR that accounted for >95% of phenotypic resistance, with comparable rates amongst aEPEC strains associated with diarrhoea or asymptomatic carriage. Genetic determinants of AMR were associated with the geographic location of isolates, not E. coli lineage, and AMR genes were frequently co-located, potentially enabling the acquisition of multi-drug resistance in a single step. Comparison of AMR with antimicrobial usage data showed that the prevalence of resistance to fluoroquinolones and third-generation cephalosporins was correlated with usage, which was higher in South Asia than in Africa. This study provides much-needed insights into the frequency and mechanisms of AMR in intestinal E. coli in children living in community settings in developing countries.
Collapse
Affiliation(s)
- Danielle J Ingle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Myron M Levine
- Departments of Pediatrics and Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Karen L Kotloff
- Departments of Pediatrics and Medicine, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
- London School of Hygiene and Tropical Medicine, London, UK
| | - Roy M Robins-Browne
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.
| |
Collapse
|