1
|
Shi X, Zhang J, Zhao H, Li H, Zhu J, Xiong H. Differential tissue and cellular distribution of chemokine C-C motif ligand 2 in grey/white matters of healthy and simian immunodeficiency virus infected monkey. Brain Res Bull 2025; 223:111291. [PMID: 40054539 DOI: 10.1016/j.brainresbull.2025.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Previous studies have shown that CCL2 concentration is higher in cerebrospinal fluid than in plasma of health and human immunodeficiency virus (HIV) infected individuals, suggesting an extra source of CCL2 in brain. Brain cellular CCL2 has been broadly studied in cultured cells and its in-vivo cellular distribution has been investigated in rodent experimental autoimmune encephalomyelitis model. However, its cellular distribution in grey and white matter (GM, WM) remains elusive. We explored this issue using healthy and simian immunodeficiency virus (SIV) infected monkeys and found: 1) Neurons were a major source of CCL2-like immunoreactivity (CCL2-ir) in normal GM, and corpus callosum (CC) ependyma showed high density of CCL2-ir. 2) Upon SIV infection, CCL2-ir was strikingly raised in GM neurons, and in CC ependyma. 3) Brain vascular-perivascular cells were a large source of CCL2-ir in normal GM and WM, which was relatively larger in CC WM than in GM. 4) Vascular-perivascular CCL2-ir proportional areas were significantly enhanced by SIV infection in both GM and CC WM. 5) Microglia seemed not to express CCL2 in healthy brain. Microglia-marker and CCL2-ir co-labeled cells were significantly increased by SIV infection. 6) A vast of macrophage-like cells were situated along infected CC ependyma, suggesting a large number of monocytes be crossing ependyma, which may be related to establishment of viral reservoir. In conclusion, our study provides valuable insights into the cellular sources and alterations of CCL2 in the monkey brain under normal and SIV-infected conditions, which may promote better understanding of CCL2 in related neurological processes.
Collapse
Affiliation(s)
- Xue Shi
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingdong Zhang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Huangying Zhao
- Division of Pharmaceutical Science, University of Cincinnati College of Pharmacy, Cincinnati, OH 45267, USA
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Junyi Zhu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
2
|
Xu X, Niu M, Lamberty BG, Emanuel K, Ramachandran S, Trease AJ, Tabassum M, Lifson JD, Fox HS. Microglia and macrophages alterations in the CNS during acute SIV infection: A single-cell analysis in rhesus macaques. PLoS Pathog 2024; 20:e1012168. [PMID: 39283947 PMCID: PMC11426456 DOI: 10.1371/journal.ppat.1012168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/26/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Human Immunodeficiency Virus (HIV) is widely acknowledged for its profound impact on the immune system. Although HIV primarily affects peripheral CD4 T cells, its influence on the central nervous system (CNS) cannot be overlooked. Within the brain, microglia and CNS-associated macrophages (CAMs) serve as the primary targets for HIV and the simian immunodeficiency virus (SIV) in nonhuman primates. This infection can lead to neurological effects and establish a viral reservoir. Given the gaps in our understanding of how these cells respond in vivo to acute CNS infection, we conducted single-cell RNA sequencing (scRNA-seq) on myeloid cells from the brains of three rhesus macaques 12 days after SIV infection, along with three uninfected controls. Our analysis revealed six distinct microglial clusters including homeostatic microglia, preactivated microglia, and activated microglia expressing high levels of inflammatory and disease-related molecules. In response to acute SIV infection, the homeostatic and preactivated microglia population decreased, while the activated and disease-related microglia increased. All microglial clusters exhibited upregulation of MHC class I molecules and interferon-related genes, indicating their crucial roles in defending against SIV during the acute phase. All microglia clusters also upregulated genes linked to cellular senescence. Additionally, we identified two distinct CAM populations: CD14lowCD16hi and CD14hiCD16low CAMs. Interestingly, during acute SIV infection, the dominant CAM population changed to one with an inflammatory phenotype. Specific upregulated genes within one microglia and one macrophage cluster were associated with neurodegenerative pathways, suggesting potential links to neurocognitive disorders. This research sheds light on the intricate interactions between viral infection, innate immune responses, and the CNS, providing valuable insights for future investigations.
Collapse
Affiliation(s)
- Xiaoke Xu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Meng Niu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Benjamin G Lamberty
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Katy Emanuel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shawn Ramachandran
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Andrew J Trease
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mehnaz Tabassum
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Howard S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
3
|
Annadurai N, Kanmogne GD. Structural and Functional Dysregulation of the Brain Endothelium in HIV Infection and Substance Abuse. Cells 2024; 13:1415. [PMID: 39272987 PMCID: PMC11393916 DOI: 10.3390/cells13171415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Blood-brain barrier (BBB) injury and dysfunction following infection with the human immunodeficiency virus (HIV) enables viral entry into the brain, infection of resident brain cells, neuronal injury and subsequent neurodegeneration leading to HIV-associated neurocognitive disorders (HAND). Although combination antiretroviral therapy has significantly reduced the incidence and prevalence of acquired immunodeficiency syndrome and increased the life expectancy of people living with HIV, the prevalence of HAND remains high. With aging of people living with HIV associated with increased comorbidities, the prevalence of HIV-related central nervous system (CNS) complications is expected to remain high. Considering the principal role of the brain endothelium in HIV infection of the CNS and HAND, the purpose of this manuscript is to review the current literature on the pathobiology of the brain endothelium structural and functional dysregulation in HIV infection, including in the presence of HIV-1 and viral proteins (gp120, Tat, Nef, and Vpr). We summarize evidence from human and animal studies, in vitro studies, and associated mechanisms. We further summarize evidence of synergy or lack thereof between commonly abused substances (cocaine, methamphetamine, alcohol, tobacco, opioids, and cannabinoids) and HIV- or viral protein-induced BBB injury and dysfunction.
Collapse
Affiliation(s)
| | - Georgette D. Kanmogne
- Department of Anesthesiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-4455, USA;
| |
Collapse
|
4
|
Galpayage Dona KNU, Benmassaoud MM, Gipson CD, McLaughlin JP, Ramirez SH, Andrews AM. Something to talk about; crosstalk disruption at the neurovascular unit during HIV infection of the CNS. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:97-111. [PMID: 39958876 PMCID: PMC11823645 DOI: 10.1515/nipt-2024-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/11/2024] [Indexed: 02/18/2025]
Abstract
Although treatable with antiretroviral therapy, HIV infection persists in people living with HIV (PLWH). It is well known that the HIV virus finds refuge in places for which antiretroviral medications do not reach therapeutic levels, mainly the CNS. It is clear that as PLWH age, the likelihood of developing HIV-associated neurological deficits increases. At the biochemical level neurological dysfunction is the manifestation of altered cellular function and ineffective intercellular communication. In this review, we examine how intercellular signaling in the brain is disrupted in the context of HIV. Specifically, the concept of how the blood-brain barrier can be a convergence point for crosstalk, is explored. Crosstalk between the cells of the neurovascular unit (NVU) (endothelium, pericytes, astrocytes, microglia and neurons) is critical for maintaining proper brain function. In fact, the NVU allows for rapid matching of neuronal metabolic needs, regulation of blood-brain barrier (BBB) dynamics for nutrient transport and changes to the level of immunosurveillance. This review invites the reader to conceptually consider the BBB as a router or convergence point for NVU crosstalk, to facilitate a better understanding of the intricate signaling events that underpin the function of the NVU during HIV associated neuropathology.
Collapse
Affiliation(s)
- Kalpani N. Udeni Galpayage Dona
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mohammed M. Benmassaoud
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Cassandra D. Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Servio H. Ramirez
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Allison M. Andrews
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Xu X, Niu M, Lamberty BG, Emanuel K, Trease AJ, Tabassum M, Lifson JD, Fox HS. Microglia and macrophages alterations in the CNS during acute SIV infection: a single-cell analysis in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588047. [PMID: 38617282 PMCID: PMC11014596 DOI: 10.1101/2024.04.04.588047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Human Immunodeficiency Virus (HIV) is widely acknowledged for its profound impact on the immune system. Although HIV primarily affects peripheral CD4 T cells, its influence on the central nervous system (CNS) cannot be overlooked. Within the brain, microglia and CNS-associated macrophages (CAMs) serve as the primary targets for HIV, as well as for the simian immunodeficiency virus (SIV) in nonhuman primates. This infection can lead to neurological effects and the establishment of a viral reservoir. Given the gaps in our understanding of how these cells respond in vivo to acute CNS infection, we conducted single-cell RNA sequencing (scRNA-seq) on myeloid cells from the brains of three rhesus macaques 12-days after SIV infection, along with three uninfected controls. Our analysis revealed six distinct microglial clusters including homeostatic microglia, preactivated microglia, and activated microglia expressing high levels of inflammatory and disease-related molecules. In response to acute SIV infection, the population of homeostatic and preactivated microglia decreased, while the activated and disease-related microglia increased. All microglial clusters exhibited upregulation of MHC class I molecules and interferon-related genes, indicating their crucial roles in defending against SIV during the acute phase. All microglia clusters also upregulated genes linked to cellular senescence. Additionally, we identified two distinct CAM populations: CD14lowCD16hi and CD14hiCD16low CAMs. Interestingly, during acute SIV infection, the dominant CAM population changed to one with an inflammatory phenotype. Notably, specific upregulated genes within one microglia and one macrophage cluster were associated with neurodegenerative pathways, suggesting potential links to neurocognitive disorders. This research sheds light on the intricate interactions between viral infection, innate immune responses, and the CNS, providing valuable insights for future investigations.
Collapse
Affiliation(s)
- Xiaoke Xu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Meng Niu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benjamin G. Lamberty
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Katy Emanuel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Andrew J. Trease
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mehnaz Tabassum
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Howard S. Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
6
|
Veksler V, Calderon TM, Berman JW. The contribution of myeloid cells to HIV neuropathogenesis. HIV-ASSOCIATED NEUROCOGNITIVE DISORDERS 2024:225-238. [DOI: 10.1016/b978-0-323-99744-7.00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Potokar M, Zorec R, Jorgačevski J. Astrocytes Are a Key Target for Neurotropic Viral Infection. Cells 2023; 12:2307. [PMID: 37759529 PMCID: PMC10528686 DOI: 10.3390/cells12182307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes are increasingly recognized as important viral host cells in the central nervous system. These cells can produce relatively high quantities of new virions. In part, this can be attributed to the characteristics of astrocyte metabolism and its abundant and dynamic cytoskeleton network. Astrocytes are anatomically localized adjacent to interfaces between blood capillaries and brain parenchyma and between blood capillaries and brain ventricles. Moreover, astrocytes exhibit a larger membrane interface with the extracellular space than neurons. These properties, together with the expression of various and numerous viral entry receptors, a relatively high rate of endocytosis, and morphological plasticity of intracellular organelles, render astrocytes important target cells in neurotropic infections. In this review, we describe factors that mediate the high susceptibility of astrocytes to viral infection and replication, including the anatomic localization of astrocytes, morphology, expression of viral entry receptors, and various forms of autophagy.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Kim BH, Hadas E, Kelschenbach J, Chao W, Gu CJ, Potash MJ, Volsky DJ. CCL2 is required for initiation but not persistence of HIV infection mediated neurocognitive disease in mice. Sci Rep 2023; 13:6577. [PMID: 37085605 PMCID: PMC10121554 DOI: 10.1038/s41598-023-33491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
HIV enters the brain within days of infection causing neurocognitive impairment (NCI) in up to half of infected people despite suppressive antiretroviral therapy. The virus is believed to enter the brain in infected monocytes through chemotaxis to the major monocyte chemokine, CCL2, but the roles of CCL2 in established NCI are not fully defined. We addressed this question during infection of conventional and CCL2 knockout mice with EcoHIV in which NCI can be verified in behavioral tests. EcoHIV enters mouse brain within 5 days of infection, but NCI develops gradually with established cognitive disease starting 25 days after infection. CCL2 knockout mice infected by intraperitoneal injection of virus failed to develop brain infection and NCI. However, when EcoHIV was directly injected into the brain, CCL2 knockout mice developed NCI. Knockout of CCL2 or its principal receptor, CCR2, slightly reduced macrophage infection in culture. Treatment of mice prior to and during EcoHIV infection with the CCL2 transcriptional inhibitor, bindarit, prevented brain infection and NCI and reduced macrophage infection. In contrast, bindarit treatment of mice 4 weeks after infection affected neither brain virus burden nor NCI. Based on these findings we propose that HIV enters the brain mainly through infected monocytes but that resident brain cells are sufficient to maintain NCI. These findings suggest that NCI therapy must act within the brain.
Collapse
Affiliation(s)
- Boe-Hyun Kim
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Eran Hadas
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Jennifer Kelschenbach
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Wei Chao
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Chao-Jiang Gu
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Mary Jane Potash
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - David J Volsky
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
9
|
Ramirez-Mata AS, Ostrov D, Salemi M, Marini S, Magalis BR. Machine Learning Prediction and Phyloanatomic Modeling of Viral Neuroadaptive Signatures in the Macaque Model of HIV-Mediated Neuropathology. Microbiol Spectr 2023; 11:e0308622. [PMID: 36847516 PMCID: PMC10100676 DOI: 10.1128/spectrum.03086-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
In human immunodeficiency virus (HIV) infection, virus replication in and adaptation to the central nervous system (CNS) can result in neurocognitive deficits in approximately 25% of patients with unsuppressed viremia. While no single viral mutation can be agreed upon as distinguishing the neuroadapted population, earlier studies have demonstrated that a machine learning (ML) approach could be applied to identify a collection of mutational signatures within the virus envelope glycoprotein (Gp120) predictive of disease. The S[imian]IV-infected macaque is a widely used animal model of HIV neuropathology, allowing in-depth tissue sampling infeasible for human patients. Yet, translational impact of the ML approach within the context of the macaque model has not been tested, much less the capacity for early prediction in other, noninvasive tissues. We applied the previously described ML approach to prediction of SIV-mediated encephalitis (SIVE) using gp120 sequences obtained from the CNS of animals with and without SIVE with 97% accuracy. The presence of SIVE signatures at earlier time points of infection in non-CNS tissues indicated these signatures cannot be used in a clinical setting; however, combined with protein structural mapping and statistical phylogenetic inference, results revealed common denominators associated with these signatures, including 2-acetamido-2-deoxy-beta-d-glucopyranose structural interactions and high rate of alveolar macrophage (AM) infection. AMs were also determined to be the phyloanatomic source of cranial virus in SIVE animals, but not in animals that did not develop SIVE, implicating a role for these cells in the evolution of the signatures identified as predictive of both HIV and SIV neuropathology. IMPORTANCE HIV-associated neurocognitive disorders remain prevalent among persons living with HIV (PLWH) owing to our limited understanding of the contributing viral mechanisms and ability to predict disease onset. We have expanded on a machine learning method previously used on HIV genetic sequence data to predict neurocognitive impairment in PLWH to the more extensively sampled SIV-infected macaque model in order to (i) determine the translatability of the animal model and (ii) more accurately characterize the predictive capacity of the method. We identified eight amino acid and/or biochemical signatures in the SIV envelope glycoprotein, the most predominant of which demonstrated the potential for aminoglycan interaction characteristic of previously identified HIV signatures. These signatures were not isolated to specific points in time or to the central nervous system, limiting their use as an accurate clinical predictor of neuropathogenesis; however, statistical phylogenetic and signature pattern analyses implicate the lungs as a key player in the emergence of neuroadapted viruses.
Collapse
Affiliation(s)
- Andrea S. Ramirez-Mata
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - David Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Simone Marini
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Brittany Rife Magalis
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Byrnes SJ, Angelovich TA, Busman-Sahay K, Cochrane CR, Roche M, Estes JD, Churchill MJ. Non-Human Primate Models of HIV Brain Infection and Cognitive Disorders. Viruses 2022; 14:v14091997. [PMID: 36146803 PMCID: PMC9500831 DOI: 10.3390/v14091997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Human Immunodeficiency virus (HIV)-associated neurocognitive disorders are a major burden for people living with HIV whose viremia is stably suppressed with antiretroviral therapy. The pathogenesis of disease is likely multifaceted, with contributions from viral reservoirs including the brain, chronic and systemic inflammation, and traditional risk factors including drug use. Elucidating the effects of each element on disease pathogenesis is near impossible in human clinical or ex vivo studies, facilitating the need for robust and accurate non-human primate models. In this review, we describe the major non-human primate models of neuroHIV infection, their use to study the acute, chronic, and virally suppressed infection of the brain, and novel therapies targeting brain reservoirs and inflammation.
Collapse
Affiliation(s)
- Sarah J. Byrnes
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Thomas A. Angelovich
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
- Life Sciences, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97006, USA
| | - Catherine R. Cochrane
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Michael Roche
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Jacob D. Estes
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97006, USA
- Oregon National Primate Research Centre, Oregon Health & Science University, Portland, OR 97006, USA
| | - Melissa J. Churchill
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- Life Sciences, Burnet Institute, Melbourne, VIC 3004, Australia
- Departments of Microbiology and Medicine, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
11
|
Eberle RJ, Olivier DS, Amaral MS, Pacca CC, Nogueira ML, Arni RK, Willbold D, Coronado MA. Riboflavin, a Potent Neuroprotective Vitamin: Focus on Flavivirus and Alphavirus Proteases. Microorganisms 2022; 10:1331. [PMID: 35889050 PMCID: PMC9315535 DOI: 10.3390/microorganisms10071331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
Several neurotropic viruses are members of the flavivirus and alphavirus families. Infections caused by these viruses may cause long-term neurological sequelae in humans. The continuous emergence of infections caused by viruses around the world, such as the chikungunya virus (CHIKV) (Alphavirus genus), the zika virus (ZIKV) and the yellow fever virus (YFV) (both of the Flavivirus genus), warrants the development of new strategies to combat them. Our study demonstrates the inhibitory potential of the water-soluble vitamin riboflavin against NS2B/NS3pro of ZIKV and YFV and nsP2pro of CHIKV. Riboflavin presents a competitive inhibition mode with IC50 values in the medium µM range of 79.4 ± 5.0 µM for ZIKV NS2B/NS3pro and 45.7 ± 2.9 μM for YFV NS2B/NS3pro. Against CHIKV nsP2pro, the vitamin showed a very strong effect (93 ± 5.7 nM). The determined dissociation constants (KD) are significantly below the threshold value of 30 µM. The ligand binding increases the thermal stability between 4 °C and 8 °C. Unexpectedly, riboflavin showed inhibiting activity against another viral protein; the molecule was also able to inhibit the viral entry of CHIKV. Molecular dynamics simulations indicated great stability of riboflavin in the protease active site, which validates the repurposing of riboflavin as a promising molecule in drug development against the viruses presented here.
Collapse
Affiliation(s)
- Raphael J. Eberle
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany;
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, 40225 Düsseldorf, Germany
| | - Danilo S. Olivier
- Center of Integrated Sciences, Campus Cimba, Federal University of Tocantins, Araguaína 77824-838, TO, Brazil;
| | - Marcos S. Amaral
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | - Carolina C. Pacca
- Instituto Superior de Educação Ceres, FACERES Medical School, São José do Rio Preto 15090-305, SP, Brazil;
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto-FAMERP, São José do Rio Preto 15090-000, SP, Brazil;
| | - Mauricio L. Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto-FAMERP, São José do Rio Preto 15090-000, SP, Brazil;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, Department of Physics, IBILCE, São Paulo State University, São Jose do Rio Preto 15054-000, SP, Brazil;
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany;
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, 40225 Düsseldorf, Germany
- JuStruct: Jülich Centre for Structural Biology, Forchungszentrum Jülich, 52428 Jülich, Germany
| | - Monika A. Coronado
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany;
| |
Collapse
|
12
|
Aschman T, Mothes R, Heppner FL, Radbruch H. What SARS-CoV-2 does to our brains. Immunity 2022; 55:1159-1172. [PMID: 35777361 PMCID: PMC9212726 DOI: 10.1016/j.immuni.2022.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/22/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
Neurological symptoms in SARS-CoV-2-infected patients have been reported, but their cause remains unclear. In theory, the neurological symptoms observed after SARS-CoV-2 infection could be (1) directly caused by the virus infecting brain cells, (2) indirectly by our body’s local or systemic immune response toward the virus, (3) by coincidental phenomena, or (4) a combination of these factors. As indisputable evidence of intact and replicating SARS-CoV-2 particles in the central nervous system (CNS) is currently lacking, we suggest focusing on the host’s immune reaction when trying to understand the neurocognitive symptoms associated with SARS-CoV-2 infection. In this perspective, we discuss the possible immune-mediated mechanisms causing functional or structural CNS alterations during acute infection as well as in the post-infectious context. We also review the available literature on CNS affection in the context of COVID-19 infection, as well as observations from animal studies on the molecular pathways involved in sickness behavior.
Collapse
|
13
|
Constant O, Maarifi G, Blanchet FP, Van de Perre P, Simonin Y, Salinas S. Role of Dendritic Cells in Viral Brain Infections. Front Immunol 2022; 13:862053. [PMID: 35529884 PMCID: PMC9072653 DOI: 10.3389/fimmu.2022.862053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
To gain access to the brain, a so-called immune-privileged organ due to its physical separation from the blood stream, pathogens and particularly viruses have been selected throughout evolution for their use of specific mechanisms. They can enter the central nervous system through direct infection of nerves or cerebral barriers or through cell-mediated transport. Indeed, peripheral lymphoid and myeloid immune cells can interact with the blood-brain and the blood-cerebrospinal fluid barriers and allow viral brain access using the "Trojan horse" mechanism. Among immune cells, at the frontier between innate and adaptive immune responses, dendritic cells (DCs) can be pathogen carriers, regulate or exacerbate antiviral responses and neuroinflammation, and therefore be involved in viral transmission and spread. In this review, we highlight an important contribution of DCs in the development and the consequences of viral brain infections.
Collapse
Affiliation(s)
- Orianne Constant
- Pathogenesis and Control of Chronic and Emerging Infections, Institut national de la santé et de la recherche médicale (INSERM), University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Ghizlane Maarifi
- Institut de Recherche en Infectiologie de Montpellier, Centre national de la recherche scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Fabien P. Blanchet
- Institut de Recherche en Infectiologie de Montpellier, Centre national de la recherche scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, Institut national de la santé et de la recherche médicale (INSERM), University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, Institut national de la santé et de la recherche médicale (INSERM), University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic and Emerging Infections, Institut national de la santé et de la recherche médicale (INSERM), University of Montpellier, Etablissement Français du Sang, Montpellier, France
| |
Collapse
|
14
|
Sharma V, Creegan M, Tokarev A, Hsu D, Slike BM, Sacdalan C, Chan P, Spudich S, Ananworanich J, Eller MA, Krebs SJ, Vasan S, Bolton DL. Cerebrospinal fluid CD4+ T cell infection in humans and macaques during acute HIV-1 and SHIV infection. PLoS Pathog 2021; 17:e1010105. [PMID: 34874976 PMCID: PMC8683024 DOI: 10.1371/journal.ppat.1010105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/17/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022] Open
Abstract
HIV-1 replication within the central nervous system (CNS) impairs neurocognitive function and has the potential to establish persistent, compartmentalized viral reservoirs. The origins of HIV-1 detected in the CNS compartment are unknown, including whether cells within the cerebrospinal fluid (CSF) produce virus. We measured viral RNA+ cells in CSF from acutely infected macaques longitudinally and people living with early stages of acute HIV-1. Active viral transcription (spliced viral RNA) was present in CSF CD4+ T cells as early as four weeks post-SHIV infection, and among all acute HIV-1 specimens (N = 6; Fiebig III/IV). Replication-inactive CD4+ T cell infection, indicated by unspliced viral RNA in the absence of spliced viral RNA, was even more prevalent, present in CSF of >50% macaques and human CSF at ~10-fold higher frequency than productive infection. Infection levels were similar between CSF and peripheral blood (and lymph nodes in macaques), indicating comparable T cell infection across these compartments. In addition, surface markers of activation were increased on CSF T cells and monocytes and correlated with CSF soluble markers of inflammation. These studies provide direct evidence of HIV-1 replication in CD4+ T cells and broad immune activation in peripheral blood and the CNS during acute infection, likely contributing to early neuroinflammation and reservoir seeding. Thus, early initiation of antiretroviral therapy may not be able to prevent establishment of CNS viral reservoirs and sources of long-term inflammation, important targets for HIV-1 cure and therapeutic strategies. Neurological pathologies are associated with HIV-1 infection and remain common in the ongoing AIDS epidemic. Despite the advent of successful viremia suppression by anti-retroviral therapy, increased life expectancies and co-morbidities have led to higher prevalence of milder forms of neurocognitive dysfunction. How HIV-1 causes neurocognitive dysfunction is currently unclear, though it is widely believed that viral replication within the central nervous system (CNS) prior to therapy triggers these detrimental processes. The appearance of HIV-1 in the cerebrospinal fluid during the earliest stages of infection suggests that these processes may begin very early. Here, we use novel techniques to probe cells for viral infection during the first few weeks of infection in the CNS of humans and animals to determine the source of this virus. We found HIV-1 replication in T cells in the cerebrospinal fluid during this early window. In addition, infected T cells were present at similar frequencies in the CNS and other anatomic compartments, suggesting equilibration of T cell infection levels across these sites and potential for establishment of long-term reservoirs in the CNS. Our study provides new insights to the early events of viral entry and replication in the CNS with implications for subsequent viral persistence and neuronal injury.
Collapse
Affiliation(s)
- Vishakha Sharma
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Matthew Creegan
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Andrey Tokarev
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Denise Hsu
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Bonnie M. Slike
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Carlo Sacdalan
- Institute of HIV Research and Innovation, Bangkok, Thailand
| | - Phillip Chan
- Institute of HIV Research and Innovation, Bangkok, Thailand
| | - Serena Spudich
- Department of Neurology, Yale University, New Haven, Connecticut, United States of America
| | - Jintanat Ananworanich
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Michael A. Eller
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Shelly J. Krebs
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Sandhya Vasan
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Diane L. Bolton
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
- * E-mail:
| | | |
Collapse
|
15
|
Mussa BM, Srivastava A, Verberne AJM. COVID-19 and Neurological Impairment: Hypothalamic Circuits and Beyond. Viruses 2021; 13:v13030498. [PMID: 33802995 PMCID: PMC8002703 DOI: 10.3390/v13030498] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/15/2021] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
In December 2019, a novel coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, the capital of Hubei, China. The virus infection, coronavirus disease 2019 (COVID-19), represents a global concern, as almost all countries around the world are affected. Clinical reports have confirmed several neurological manifestations in COVID-19 patients such as headaches, vomiting, and nausea, indicating the involvement of the central nervous system (CNS) and peripheral nervous system (PNS). Neuroinvasion of coronaviruses is not a new phenomenon, as it has been demonstrated by previous autopsies of severe acute respiratory syndrome coronavirus (SARS-CoV) patients who experienced similar neurologic symptoms. The hypothalamus is a complex structure that is composed of many nuclei and diverse neuronal cell groups. It is characterized by intricate intrahypothalamic circuits that orchestrate a finely tuned communication within the CNS and with the PNS. Hypothalamic circuits are critical for maintaining homeostatic challenges including immune responses to viral infections. The present article reviews the possible routes and mechanisms of neuroinvasion of SARS-CoV-2, with a specific focus on the role of the hypothalamic circuits in mediating the neurological symptoms noted during COVID-19 infection.
Collapse
Affiliation(s)
- Bashair M. Mussa
- Basic Medical Science Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-65057220
| | - Ankita Srivastava
- Sharjah Institute for Medical Research and College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Anthony J. M. Verberne
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg 3084, Australia;
| |
Collapse
|
16
|
Kaminski NE, Kaplan BLF. Immunomodulation by cannabinoids: Current uses, mechanisms, and identification of data gaps to be addressed for additional therapeutic application. ADVANCES IN PHARMACOLOGY 2021; 91:1-59. [PMID: 34099105 DOI: 10.1016/bs.apha.2021.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The endocannabinoid system plays a critical role in immunity and therefore its components, including cannabinoid receptors 1 and 2 (CB1 and CB2), are putative druggable targets for immune-mediated diseases. Whether modulating endogenous cannabinoid levels or interacting with CB1 or CB2 receptors directly, cannabinoids or cannabinoid-based therapeutics (CBTs) show promise as anti-inflammatory or immune suppressive agents. Herein we provide an overview of cannabinoid effects in animals and humans that provide support for the use of CBTs in immune-mediated disease such as multiple sclerosis (MS), inflammatory bowel disease (IBD), asthma, arthritis, diabetes, human immunodeficiency virus (HIV), and HIV-associated neurocognitive disorder (HAND). This is not an exhaustive review of cannabinoid effects on immune responses, but rather provides: (1) key studies in which initial and/or novel observations were made in animal studies; (2) critical human studies including meta-analyses and randomized clinical trials (RCTs) in which CBTs have been assessed; and (3) evidence for the role of CB1 or CB2 receptors in immune-mediated diseases through genetic analyses of single nucleotide polymorphisms (SNPs) in the CNR1 and CNR2 genes that encode CB1 or CB2 receptors, respectively. Perhaps most importantly, we provide our view of data gaps that exist, which if addressed, would allow for more rigorous evaluation of the efficacy and risk to benefit ratio of the use of cannabinoids and/or CBTs for immune-mediated diseases.
Collapse
Affiliation(s)
- Norbert E Kaminski
- Institute for Integrative Toxicology, Center for Research on Ingredient Safety, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States.
| |
Collapse
|
17
|
Boyles DA, Schwarz MM, Albe JR, McMillen CM, O'Malley KJ, Reed DS, Hartman AL. Development of Rift valley fever encephalitis in rats is mediated by early infection of olfactory epithelium and neuroinvasion across the cribriform plate. J Gen Virol 2021; 102:001522. [PMID: 33231535 PMCID: PMC8116942 DOI: 10.1099/jgv.0.001522] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/30/2020] [Indexed: 01/20/2023] Open
Abstract
The zoonotic emerging Rift Valley fever virus (RVFV) causes sporadic disease in livestock and humans throughout Africa and the Saudi Arabian peninsula. Infection of people with RVFV can occur through mosquito bite or mucosal exposure during butchering or milking of infected livestock. Disease typically presents as a self-limiting fever; however, in rare cases, hepatitis, encephalitis and ocular disease may occur. Recent studies have illuminated the neuropathogenic mechanisms of RVFV in a rat aerosol infection model. Neurological disease in rats is characterized by breakdown of the blood-brain barrier late in infection, infiltration of leukocytes to the central nervous system (CNS) and massive viral replication in the brain. However, the route of RVFV entry into the CNS after inhalational exposure remains unknown. Here, we visualized the entire nasal olfactory route from snout to brain after RVFV infection using RNA in situ hybridization and immunofluorescence microscopy. We found widespread RVFV-infected cells within the olfactory epithelium, across the cribriform plate, and in the glomerular region of the olfactory bulb within 2 days of infection. These results indicate that the olfactory tract is a major route of infection of the brain after inhalational exposure. A better understanding of potential neuroinvasion pathways can support the design of more effective therapeutic regiments for the treatment of neurological disease caused by RVFV.
Collapse
Affiliation(s)
- Devin A. Boyles
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madeline M. Schwarz
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph R. Albe
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cynthia M. McMillen
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amy L. Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Rizzo MD, Henriquez JE, Blevins LK, Bach A, Crawford RB, Kaminski NE. Targeting Cannabinoid Receptor 2 on Peripheral Leukocytes to Attenuate Inflammatory Mechanisms Implicated in HIV-Associated Neurocognitive Disorder. J Neuroimmune Pharmacol 2020; 15:780-793. [PMID: 32409991 PMCID: PMC7666101 DOI: 10.1007/s11481-020-09918-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022]
Abstract
HIV infection affects an estimated 38 million people. Approximately 50% of HIV patients exhibit neurocognitive dysfunction termed HIV-Associated Neurocognitive Disorder (HAND). HAND is a consequence of chronic low-level neuroinflammation due to HIV entry into the brain. Initially, monocytes become activated in circulation and traffic to the brain. Monocytes, when activated, become susceptible to infection by HIV and can then carry the virus across the blood brain barrier. Once in the brain, activated monocytes secrete chemokines, which recruit virus-specific CD8+ T cells into the brain to further promote neuroinflammation. HAND is closely linked to systemic inflammation driven, in part, by HIV but is also due to persistent translocation of microorganisms across the GI tract. Persistent anti-viral responses in the GI tract compromise microbial barrier integrity. Indeed, HIV patients can exhibit remarkably high levels of activated (CD16+) monocytes in circulation. Recent studies, including our own, show that HIV patients using medical marijuana exhibit lower levels of circulating CD16+ monocytes than non-cannabis using HIV patients. Cannabis is a known immune modulator, including anti-inflammatory properties, mediated, in part, by ∆9-tetrahydrocannabinol (THC), as well as less characterized minor cannabinoids, such as cannabidiol (CBD), terpenes and presumably other cannabis constituents. The immune modulating activity of THC is largely mediated through cannabinoid receptors (CB) 1 and 2, with CB1 also responsible for the psychotropic properties of cannabis. Here we discuss the anti-inflammatory properties of cannabinoids in the context of HIV and propose CB2 as a putative therapeutic target for the treatment of neuroinflammation. Graphical Abstract HIV-associated neurocognitive disorder is a systemic inflammatory disease leading to activation of plasmacytoid dendritic cells, monocytes and T cells. Monocyte and CD8 T cell migration across the BBB and interaction with astrocytes promotes neurotoxic inflammatory mediators release. CB2 ligands are proposed as therapeutics capable of suppressing systemic and localized inflammation.
Collapse
Affiliation(s)
- Michael D Rizzo
- Michigan State University, East Lansing, MI, USA
- Cell & Molecular Biology Program, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Joseph E Henriquez
- Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| | - Lance K Blevins
- Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Anthony Bach
- Michigan State University, East Lansing, MI, USA
- Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, USA
| | - Robert B Crawford
- Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Norbert E Kaminski
- Michigan State University, East Lansing, MI, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA.
- Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
19
|
Huang J, Zheng M, Tang X, Chen Y, Tong A, Zhou L. Potential of SARS-CoV-2 to Cause CNS Infection: Biologic Fundamental and Clinical Experience. Front Neurol 2020; 11:659. [PMID: 32625165 PMCID: PMC7314941 DOI: 10.3389/fneur.2020.00659] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023] Open
Abstract
SARS-CoV-2 is a novel coronavirus leading to serious respiratory disease and is spreading around the world at a raging speed. Recently there is emerging speculations that the central nervous system (CNS) may be involved during SARS-CoV-2 infection, contributing to the respiratory failure. However, the existence of viral replication in CNS has not been confirmed due to the lack of evidence from autopsy specimens. Considering the tropism of SARS-CoV-2, ACE2, is prevailing in CNS, and the neuro-invasive property of human coronavirus was widely reported, there is a need to identified the possible complications during COVID-19 for CNS. In this review, we conduct a detailed summary for the potential of SARS-CoV-2 to infect central nervous system from latest biological fundamental of SARS-CoV-2 to the clinical experience of other human coronaviruses. To confirm the neuro-invasive property of SARS-CoV-2 and the subsequent influence on patients will require further exploration by both virologist and neurologist.
Collapse
Affiliation(s)
- Jianhan Huang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Meijun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xin Tang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yaxing Chen
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Cipitelli MDC, Amâncio Paiva I, Badolato-Corrêa J, de-Oliveira-Pinto LM. Influence of chemokines on the endothelial permeability and cellular transmigration during dengue. Immunol Lett 2019; 212:88-97. [PMID: 31181280 DOI: 10.1016/j.imlet.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 01/31/2023]
Abstract
During a pathogenic infection, an inflammatory process is triggered in which several inflammatory mediators, such as cytokines, chemokines, growth factors, complement system components, nitric oxide, and others induce integrity alteration on the endothelial barrier. Chemokines are responsible for regulating leukocyte trafficking under homeostatic conditions as well as activating immune system cells under inflammatory conditions. They are crucial molecules in the early stages of infection, leading to the recruitment of immune cells, namely neutrophils, monocytes, natural killer (NK) cells, natural killer T cells (NKT), dendritic cells (DC), T lymphocytes and all cells expressing chemokine receptors for inflammatory sites. Other functions, such as collagen production, tissue repair, a proliferation of hematopoietic precursors and angiogenesis, are also performed by these molecules. Chemokines, amongst inflammatory mediators, play a key role in dengue immunopathogenesis. Dengue fever is a disease caused by the dengue virus (DENV). It is characterized by a broad spectrum of clinical manifestations ranging from asymptomatic cases to mild and severe symptomatic ones. As for the latter, the appearance of hemorrhagic manifestations and changes in vascular permeability may lead the patient to develop cavitary effusions, organ involvement, and even death. As chemokines exert an influence on various homeostatic and inflammatory processes, acting vigorously on vascular endothelial activation and cell migration, the main purpose of this chapter is to discuss the influence of chemokines on the alteration of endothelial permeability and migration of T lymphocytes in DENV infection.
Collapse
Affiliation(s)
- Márcio da Costa Cipitelli
- Laboratory of Viral Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Fundation, Rio de Janeiro, Brazil
| | - Iury Amâncio Paiva
- Laboratory of Viral Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Fundation, Rio de Janeiro, Brazil
| | - Jéssica Badolato-Corrêa
- Laboratory of Viral Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Fundation, Rio de Janeiro, Brazil
| | | |
Collapse
|
21
|
Kakooza-Mwesige A, Tshala-Katumbay D, Juliano SL. Viral infections of the central nervous system in Africa. Brain Res Bull 2019; 145:2-17. [PMID: 30658129 DOI: 10.1016/j.brainresbull.2018.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022]
Abstract
Viral infections are a major cause of human central nervous system infection, and may be associated with significant mortality, and long-term sequelae. In Africa, the lack of effective therapies, limited diagnostic and human resource facilities are especially in dire need. Most viruses that affect the central nervous system are opportunistic or accidental pathogens. Some of these viruses were initially considered harmless, however they have now evolved to penetrate the nervous system efficiently and exploit neuronal cell biology thus resulting in severe illness. A number of potentially lethal neurotropic viruses have been discovered in Africa and over the course of time shown their ability to spread wider afield involving other continents leaving a devastating impact in their trail. In this review we discuss key viruses involved in central nervous system disease and of major public health concern with respect to Africa. These arise from the families of Flaviviridae, Filoviridae, Retroviridae, Bunyaviridae, Rhabdoviridae and Herpesviridae. In terms of the number of cases affected by these viruses, HIV (Retroviridae) tops the list for morbidity, mortality and long term disability, while the Rift Valley Fever virus (Bunyaviridae) is at the bottom of the list. The most deadly are the Ebola and Marburg viruses (Filoviridae). This review describes their epidemiology and key neurological manifestations as regards the central nervous system such as meningoencephalitis and Guillain-Barré syndrome. The potential pathogenic mechanisms adopted by these viruses are debated and research perspectives suggested.
Collapse
Affiliation(s)
- Angelina Kakooza-Mwesige
- Department of Paediatrics & Child Health, Makerere University College of Health Sciences and Mulago Hospital, Kampala, Uganda; Astrid Lindgren Children's Hospital, Neuropediatric Research Unit, Karolinska Institutet, Sweden.
| | - Desire Tshala-Katumbay
- Department of Neurology and School of Public Health, Oregon Health & Science University, Portland, OR, USA; Department of Neurology, University of Kinshasa, and Institut National de Recherches Biomedicales, University of Kinshasa, Democratic Republic of the Congo.
| | | |
Collapse
|
22
|
Monette A, Mouland AJ. T Lymphocytes as Measurable Targets of Protection and Vaccination Against Viral Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 342:175-263. [PMID: 30635091 PMCID: PMC7104940 DOI: 10.1016/bs.ircmb.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Continuous epidemiological surveillance of existing and emerging viruses and their associated disorders is gaining importance in light of their abilities to cause unpredictable outbreaks as a result of increased travel and vaccination choices by steadily growing and aging populations. Close surveillance of outbreaks and herd immunity are also at the forefront, even in industrialized countries, where previously eradicated viruses are now at risk of re-emergence due to instances of strain recombination, contractions in viral vector geographies, and from their potential use as agents of bioterrorism. There is a great need for the rational design of current and future vaccines targeting viruses, with a strong focus on vaccine targeting of adaptive immune effector memory T cells as the gold standard of immunity conferring long-lived protection against a wide variety of pathogens and malignancies. Here, we review viruses that have historically caused large outbreaks and severe lethal disorders, including respiratory, gastric, skin, hepatic, neurologic, and hemorrhagic fevers. To observe trends in vaccinology against these viral disorders, we describe viral genetic, replication, transmission, and tropism, host-immune evasion strategies, and the epidemiology and health risks of their associated syndromes. We focus on immunity generated against both natural infection and vaccination, where a steady shift in conferred vaccination immunogenicity is observed from quantifying activated and proliferating, long-lived effector memory T cell subsets, as the prominent biomarkers of long-term immunity against viruses and their associated disorders causing high morbidity and mortality rates.
Collapse
|
23
|
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) remain a common end-organ manifestation of viral infection. Subclinical and mild symptoms lead to neurocognitive and behavioral abnormalities. These are associated, in part, with viral penetrance and persistence in the central nervous system. Infections of peripheral blood monocytes, macrophages, and microglia are the primary drivers of neuroinflammation and neuronal impairments. While current antiretroviral therapy (ART) has reduced the incidence of HIV-associated dementia, milder forms of HAND continue. Depression, comorbid conditions such as infectious liver disease, drugs of abuse, antiretroviral drugs themselves, age-related neurodegenerative diseases, gastrointestinal maladies, and concurrent social and economic issues can make accurate diagnosis of HAND challenging. Increased life expectancy as a result of ART clearly creates this variety of comorbid conditions that often blur the link between the virus and disease. With the discovery of novel biomarkers, neuropsychologic testing, and imaging techniques to better diagnose HAND, the emergence of brain-penetrant ART, adjunctive therapies, longer life expectancy, and better understanding of disease pathogenesis, disease elimination is perhaps a realistic possibility. This review focuses on HIV-associated disease pathobiology with an eye towards changing trends in the face of widespread availability of ART.
Collapse
|
24
|
Gu CJ, Borjabad A, Hadas E, Kelschenbach J, Kim BH, Chao W, Arancio O, Suh J, Polsky B, McMillan J, Edagwa B, Gendelman HE, Potash MJ, Volsky DJ. EcoHIV infection of mice establishes latent viral reservoirs in T cells and active viral reservoirs in macrophages that are sufficient for induction of neurocognitive impairment. PLoS Pathog 2018; 14:e1007061. [PMID: 29879225 PMCID: PMC5991655 DOI: 10.1371/journal.ppat.1007061] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/29/2018] [Indexed: 02/06/2023] Open
Abstract
Suppression of HIV replication by antiretroviral therapy (ART) or host immunity can prevent AIDS but not other HIV-associated conditions including neurocognitive impairment (HIV-NCI). Pathogenesis in HIV-suppressed individuals has been attributed to reservoirs of latent-inducible virus in resting CD4+ T cells. Macrophages are persistently infected with HIV but their role as HIV reservoirs in vivo has not been fully explored. Here we show that infection of conventional mice with chimeric HIV, EcoHIV, reproduces physiological conditions for development of disease in people on ART including immunocompetence, stable suppression of HIV replication, persistence of integrated, replication-competent HIV in T cells and macrophages, and manifestation of learning and memory deficits in behavioral tests, termed here murine HIV-NCI. EcoHIV established latent reservoirs in CD4+ T lymphocytes in chronically-infected mice but could be induced by epigenetic modulators ex vivo and in mice. In contrast, macrophages expressed EcoHIV constitutively in mice for up to 16 months; murine leukemia virus (MLV), the donor of gp80 envelope in EcoHIV, did not infect macrophages. Both EcoHIV and MLV were found in brain tissue of infected mice but only EcoHIV induced NCI. Murine HIV-NCI was prevented by antiretroviral prophylaxis but once established neither persistent EcoHIV infection in mice nor NCI could be reversed by long-acting antiretroviral therapy. EcoHIV-infected, athymic mice were more permissive to virus replication in macrophages than were wild-type mice, suffered cognitive dysfunction, as well as increased numbers of monocytes and macrophages infiltrating the brain. Our results suggest an important role of HIV expressing macrophages in HIV neuropathogenesis in hosts with suppressed HIV replication.
Collapse
Affiliation(s)
- Chao-Jiang Gu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Alejandra Borjabad
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Eran Hadas
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jennifer Kelschenbach
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Boe-Hyun Kim
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Wei Chao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Jin Suh
- Department of Medicine, St. Joseph’s Regional Medical Center, Paterson, New Jersey, United States of America
| | - Bruce Polsky
- Department of Medicine, NYU Winthrop Hospital, Mineola, New York, United States of America
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mary Jane Potash
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - David J. Volsky
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
25
|
González RG, Fell R, He J, Campbell J, Burdo TH, Autissier P, Annamalai L, Taheri F, Parker T, Lifson JD, Halpern EF, Vangel M, Masliah E, Westmoreland SV, Williams KC, Ratai EM. Temporal/compartmental changes in viral RNA and neuronal injury in a primate model of NeuroAIDS. PLoS One 2018; 13:e0196949. [PMID: 29750804 PMCID: PMC5947913 DOI: 10.1371/journal.pone.0196949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/23/2018] [Indexed: 02/01/2023] Open
Abstract
Despite the advent of highly active anti-retroviral therapy HIV-associated neurocognitive disorders (HAND) continue to be a significant problem. Furthermore, the precise pathogenesis of this neurodegeneration is still unclear. The objective of this study was to examine the relationship between infection by the simian immunodeficiency virus (SIV) and neuronal injury in the rhesus macaque using in vivo and postmortem sampling techniques. The effect of SIV infection in 23 adult rhesus macaques was investigated using an accelerated NeuroAIDS model. Disease progression was modulated either with combination anti-retroviral therapy (cART, 4 animals) or minocycline (7 animals). Twelve animals remained untreated. Viral loads were monitored in the blood and cerebral spinal fluid, as were levels of activated monocytes in the blood. Neuronal injury was monitored in vivo using magnetic resonance spectroscopy. Viral RNA was quantified in brain tissue of each animal postmortem using reverse transcription polymerase chain reaction (RT-PCR), and neuronal injury was assessed by immunohistochemistry. Without treatment, viral RNA in plasma, cerebral spinal fluid, and brain tissue appears to reach a plateau. Neuronal injury was highly correlated both to plasma viral levels and a subset of infected/activated monocytes (CD14+CD16+), which are known to traffic the virus into the brain. Treatment with either cART or minocycline decreased brain viral levels and partially reversed alterations in in vivo and immunohistochemical markers for neuronal injury. These findings suggest there is significant turnover of replicating virus within the brain and the severity of neuronal injury is directly related to the brain viral load.
Collapse
Affiliation(s)
- R. Gilberto González
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Robert Fell
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
| | - Julian He
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Jennifer Campbell
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | - Tricia H. Burdo
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | - Patrick Autissier
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | | | - Faramarz Taheri
- New England Primate Research Center, Southborough, MA, United States of America
| | - Termara Parker
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Elkan F. Halpern
- Harvard Medical School, Boston, MA, United States of America
- Institute for Technology Assessment, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Mark Vangel
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Eliezer Masliah
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, United States of America
| | | | - Kenneth C. Williams
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | - Eva-Maria Ratai
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
26
|
Rizzo MD, Crawford RB, Henriquez JE, Aldhamen YA, Gulick P, Amalfitano A, Kaminski NE. HIV-infected cannabis users have lower circulating CD16+ monocytes and IFN-γ-inducible protein 10 levels compared with nonusing HIV patients. AIDS 2018; 32:419-429. [PMID: 29194121 PMCID: PMC5790621 DOI: 10.1097/qad.0000000000001704] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Chronic immune activation and elevated numbers of circulating activated monocytes (CD16) are implicated in HIV-associated neuroinflammation. The objective was to compare the level of circulating CD16 monocytes and IFN-γ-inducible protein 10 (IP-10) between HIV-infected cannabis users (HIV+MJ+) and noncannabis users (HIV+MJ-) and determine whether in-vitro Δ-Tetrahydrocannabinol (THC), a constituent of cannabis, affected CD16 expression as well as IP-10 production by monocytes. DESIGN The levels of circulating CD16 monocytes and IP-10 from HIV+MJ- and HIV+MJ+ donors were examined. In-vitro experimentation using THC was performed on primary leukocytes isolated from HIV-MJ-, HIV+MJ- and HIV+MJ+ donors to determine if THC has an impact on CD16 monocyte and IP-10 levels. METHODS Flow cytometry was used to measure the number of blood CD16 monocytes and plasma IP-10 from HIV+MJ- and HIV+MJ+ donors. Peripheral blood mononuclear cells were isolated from HIV-MJ- and HIV+ (MJ- and MJ+) donors for in-vitro THC and IFNα treatment, and CD16 monocytes and supernatant IP-10 were quantified. RESULTS HIV+MJ+ donors possessed a lower level of circulating CD16 monocytes and plasma IP-10, compared with HIV+MJ- donors. Further, monocytes from HIV+MJ+ donors were unable to induce CD16 expression when treated with in-vitro IFNα, whereas HIV-MJ- and HIV+MJ- donors displayed pronounced CD16 induction, suggesting anti-inflammatory effects by cannabis. Lastly, in-vitro THC treatment impaired CD16 monocyte transition to CD16 and monocyte-derived IP-10. CONCLUSION Components of cannabis, including THC, may decelerate peripheral monocyte processes that are implicated in HIV-associated neuroinflammation.
Collapse
Affiliation(s)
- Michael D Rizzo
- Cell & Molecular Biology Program
- Institute for Integrative Toxicology
| | - Robert B Crawford
- Institute for Integrative Toxicology
- Department of Pharmacology & Toxicology
| | - Joseph E Henriquez
- Institute for Integrative Toxicology
- Department of Pharmacology & Toxicology
| | | | - Peter Gulick
- Department of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Andrea Amalfitano
- Department of Microbiology & Molecular Genetics
- Department of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Norbert E Kaminski
- Institute for Integrative Toxicology
- Department of Pharmacology & Toxicology
| |
Collapse
|
27
|
Lauer AN, Tenenbaum T, Schroten H, Schwerk C. The diverse cellular responses of the choroid plexus during infection of the central nervous system. Am J Physiol Cell Physiol 2017; 314:C152-C165. [PMID: 29070490 DOI: 10.1152/ajpcell.00137.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The choroid plexus (CP) is responsible for the production of a large amount of the cerebrospinal fluid (CSF). As a highly vascularized structure, the CP also presents a significant frontier between the blood and the central nervous system (CNS). To seal this border, the epithelium of the CP forms the blood-CSF barrier, one of the most important barriers separating the CNS from the blood. During the course of infectious disease, cells of the CP can experience interactions with intruding pathogens, especially when the CP is used as gateway for entry into the CNS. In return, the CP answers to these encounters with diverse measures. Here, we will review the distinct responses of the CP during infection of the CNS, which include engaging of signal transduction pathways, the regulation of gene expression in the host cells, inflammatory cell response, alterations of the barrier, and, under certain circumstances, cell death. Many of these actions may contribute to stage an immunological response against the pathogen and subsequently help in the clearance of the infection.
Collapse
Affiliation(s)
- Alexa N Lauer
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| | - Tobias Tenenbaum
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| |
Collapse
|
28
|
Veenstra M, Williams DW, Calderon TM, Anastos K, Morgello S, Berman JW. Frontline Science: CXCR7 mediates CD14 +CD16 + monocyte transmigration across the blood brain barrier: a potential therapeutic target for NeuroAIDS. J Leukoc Biol 2017; 102:1173-1185. [PMID: 28754798 DOI: 10.1189/jlb.3hi0517-167r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/22/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
CD14+CD16+ monocytes transmigrate into the CNS of HIV-positive people in response to chemokines elevated in the brains of infected individuals, including CXCL12. Entry of these cells leads to viral reservoirs, neuroinflammation, and neuronal damage. These may eventually lead to HIV-associated neurocognitive disorders. Although antiretroviral therapy (ART) has significantly improved the lives of HIV-infected people, the prevalence of cognitive deficits remains unchanged despite ART, still affecting >50% of infected individuals. There are no therapies to reduce these deficits or to prevent CNS entry of CD14+CD16+ monocytes. The goal of this study was to determine whether CXCR7, a receptor for CXCL12, is expressed on CD14+CD16+ monocytes and whether a small molecule CXCR7 antagonist (CCX771) can prevent CD14+CD16+ monocyte transmigration into the CNS. We showed for the first time that CXCR7 is on CD14+CD16+ monocytes and that it may be a therapeutic target to reduce their entry into the brain. We demonstrated that CD14+CD16+ monocytes and not the more abundant CD14+CD16- monocytes or T cells transmigrate to low homeostatic levels of CXCL12. This may be a result of increased CXCR7 on CD14+CD16+ monocytes. We showed that CCX771 reduced transmigration of CD14+CD16+ monocytes but not of CD14+CD16- monocytes from uninfected and HIV-infected individuals and that it reduced CXCL12-mediated chemotaxis of CD14+CD16+ monocytes. We propose that CXCR7 is a therapeutic target on CD14+CD16+ monocytes to limit their CNS entry, thereby reducing neuroinflammation, neuronal damage, and HIV-associated neurocognitive disorders. Our data also suggest that CCX771 may reduce CD14+CD16+ monocyte-mediated inflammation in other disorders.
Collapse
Affiliation(s)
- Mike Veenstra
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Dionna W Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kathryn Anastos
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Susan Morgello
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; and
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA; .,Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
29
|
Pikor NB, Cupovic J, Onder L, Gommerman JL, Ludewig B. Stromal Cell Niches in the Inflamed Central Nervous System. THE JOURNAL OF IMMUNOLOGY 2017; 198:1775-1781. [DOI: 10.4049/jimmunol.1601566] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/19/2016] [Indexed: 11/19/2022]
|
30
|
Dopamine Increases CD14 +CD16 + Monocyte Transmigration across the Blood Brain Barrier: Implications for Substance Abuse and HIV Neuropathogenesis. J Neuroimmune Pharmacol 2017; 12:353-370. [PMID: 28133717 DOI: 10.1007/s11481-017-9726-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/12/2017] [Indexed: 01/11/2023]
Abstract
In human immunodeficiency virus-1 (HIV) infected individuals, substance abuse may accelerate the development and/or increase the severity of HIV associated neurocognitive disorders (HAND). It is proposed that CD14+CD16+ monocytes mediate HIV entry into the central nervous system (CNS) and that uninfected and infected CD14+CD16+ monocyte transmigration across the blood brain barrier (BBB) contributes to the establishment and propagation of CNS HIV viral reservoirs and chronic neuroinflammation, important factors in the development of HAND. The effects of substance abuse on the frequency of CD14+CD16+ monocytes in the peripheral circulation and on the entry of these cells into the CNS during HIV neuropathogenesis are not known. PBMC from HIV infected individuals were analyzed by flow cytometry and we demonstrate that the frequency of peripheral blood CD14+CD16+ monocytes in HIV infected substance abusers is increased when compared to those without active substance use. Since drug use elevates extracellular dopamine concentrations in the CNS, we examined the effects of dopamine on CD14+CD16+ monocyte transmigration across our in vitro model of the human BBB. The transmigration of this monocyte subpopulation is increased by dopamine and the dopamine receptor agonist, SKF 38393, implicating D1-like dopamine receptors in the increase in transmigration elicited by this neurotransmitter. Thus, elevated extracellular CNS dopamine may be a novel common mechanism by which active substance use increases uninfected and HIV infected CD14+CD16+ monocyte transmigration across the BBB. The influx of these cells into the CNS may increase viral seeding and neuroinflammation, contributing to the development of HIV associated neurocognitive impairments.
Collapse
|
31
|
Proliferation of Perivascular Macrophages Contributes to the Development of Encephalitic Lesions in HIV-Infected Humans and in SIV-Infected Macaques. Sci Rep 2016; 6:32900. [PMID: 27610547 PMCID: PMC5017189 DOI: 10.1038/srep32900] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/17/2016] [Indexed: 11/09/2022] Open
Abstract
The aim of the present study was to investigate if macrophage proliferation occurs in the brain during simian immunodeficiency virus (SIV) infection of adult macaques. We examined the expression of the Ki-67 proliferation marker in the brains of uninfected and SIV-infected macaques with or without encephalitis. Double-label immunohistochemistry using antibodies against the pan-macrophage marker CD68 and Ki-67 showed that there was a significant increase in CD68+Ki-67+ cells in macaques with SIV encephalitis (SIVE) compared to uninfected and SIV-infected animals without encephalitis, a trend that was also confirmed in brain samples from patients with HIV encephalitis. Multi-label immunofluorescence for CD163 and Ki-67 confirmed that the vast majority of Ki-67+ nuclei were localized to CD163+ macrophages in perivascular cuffs and lesions. The proliferative capacity of Ki-67+ perivascular macrophages (PVM) was confirmed by their nuclear incorporation of bromodeoxyuridine. Examining SIVE lesions, using double-label immunofluorescence with antibodies against SIV-Gag-p28 and Ki-67, showed that the population of Ki-67+ cells were productively infected and expanded proportionally with lesions. Altogether, this study shows that there are subpopulations of resident PVM that express Ki-67 and are SIV-infected, suggesting a mechanism of macrophage accumulation in the brain via PVM proliferation.
Collapse
|
32
|
Zondler L, Müller K, Khalaji S, Bliederhäuser C, Ruf WP, Grozdanov V, Thiemann M, Fundel-Clemes K, Freischmidt A, Holzmann K, Strobel B, Weydt P, Witting A, Thal DR, Helferich AM, Hengerer B, Gottschalk KE, Hill O, Kluge M, Ludolph AC, Danzer KM, Weishaupt JH. Peripheral monocytes are functionally altered and invade the CNS in ALS patients. Acta Neuropathol 2016; 132:391-411. [PMID: 26910103 DOI: 10.1007/s00401-016-1548-y] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease affecting primarily the upper and lower motor neurons. A common feature of all ALS cases is a well-characterized neuroinflammatory reaction within the central nervous system (CNS). However, much less is known about the role of the peripheral immune system and its interplay with CNS resident immune cells in motor neuron degeneration. Here, we characterized peripheral monocytes in both temporal and spatial dimensions of ALS pathogenesis. We found the circulating monocytes to be deregulated in ALS regarding subtype constitution, function and gene expression. Moreover, we show that CNS infiltration of peripheral monocytes correlates with improved motor neuron survival in a genetic ALS mouse model. Furthermore, application of human immunoglobulins or fusion proteins containing only the human Fc, but not the Fab antibody fragment, increased CNS invasion of peripheral monocytes and delayed the disease onset. Our results underline the importance of peripheral monocytes in ALS pathogenesis and are in agreement with a protective role of monocytes in the early phase of the disease. The possibility to boost this beneficial function of peripheral monocytes by application of human immunoglobulins should be evaluated in clinical trials.
Collapse
Affiliation(s)
- Lisa Zondler
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | - Kathrin Müller
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | - Samira Khalaji
- Department of Experimental Physics, Ulm University, Ulm, Germany
| | - Corinna Bliederhäuser
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | - Wolfgang P Ruf
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | - Veselin Grozdanov
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | | | | | - Axel Freischmidt
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | | | | | - Patrick Weydt
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | - Anke Witting
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | - Dietmar R Thal
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | - Anika M Helferich
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | | | | | | | | | - Albert C Ludolph
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | - Karin M Danzer
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany
| | - Jochen H Weishaupt
- Department of Neurology, Ulm University, Albert-Einstein Allee 11, O25, Niveau 5, 89081, Ulm, Germany.
| |
Collapse
|
33
|
Yadav A, Betts MR, Collman RG. Statin modulation of monocyte phenotype and function: implications for HIV-1-associated neurocognitive disorders. J Neurovirol 2016; 22:584-596. [PMID: 27021071 DOI: 10.1007/s13365-016-0433-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/08/2016] [Accepted: 02/19/2016] [Indexed: 12/15/2022]
Abstract
HIV-1-associated neurocognitive disorder (HAND) remains a persistent problem despite antiretroviral therapy (ART), largely a result of continued inflammation in the periphery and the brain and neurotoxin release from activated myeloid cells in the CNS. CD14+CD16+ inflammatory monocytes, expanded in HIV infection, play a central role in the pathogenesis of HAND and have parallels with monocyte-dependent inflammatory mechanisms in atherosclerosis. Statins, through their HMG-CoA reductase inhibitor activity, have pleiotropic immunomodulatory properties that contribute to their benefit in atherosclerosis beyond lipid lowering. Here, we investigated whether statins would modulate the monocyte phenotype and function associated with HIV-1 neuropathogenesis. Treatment ex vivo with simvastatin and atorvastatin reduced the proportion of CD16+ monocytes in peripheral blood mononuclear cells, as well as in purified monocytes, especially CD14++CD16+ "intermediate" monocytes most closely associated with neurocognitive disease. Statin treatment also markedly reduced expression of CD163, which is also linked to HAND pathogenesis. Finally, simvastatin inhibited production of monocyte chemoattractant protein-1 (MCP-1) and other inflammatory cytokines following LPS stimulation and reduced monocyte chemotaxis in response to MCP-1, a major driver of myeloid cell accumulation in the CNS in HAND. Together, these findings suggest that statin drugs may be useful to prevent or reduce HAND in HIV-1-infected subjects on ART with persistent monocyte activation and inflammation.
Collapse
Affiliation(s)
- Anjana Yadav
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, 36th and Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Michael R Betts
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, 36th and Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Ronald G Collman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, 36th and Hamilton Walk, Philadelphia, PA, 19104, USA. .,Department of Microbiology, University of Pennsylvania Perelman School of Medicine, 36th and Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
34
|
Virus Multiplicity of Infection Affects Type I Interferon Subtype Induction Profiles and Interferon-Stimulated Genes. J Virol 2015; 89:11534-48. [PMID: 26355085 DOI: 10.1128/jvi.01727-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/31/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Type I interferons (IFNs) are induced upon viral infection and important mediators of innate immunity. While there is 1 beta interferon (IFN-β) protein, there are 12 different IFN-α subtypes. It has been reported extensively that different viruses induce distinct patterns of IFN subtypes, but it has not been previously shown how the viral multiplicity of infection (MOI) can affect IFN induction. In this study, we discovered the novel finding that human U937 cells infected with 2 different concentrations of Sendai virus (SeV) induce 2 distinct type I IFN subtype profiles. Cells infected at the lower MOI induced more subtypes than cells infected at the higher MOI. We found that this was due to the extent of signaling through the IFN receptor (IFNAR). The cells infected at the lower viral MOI induced the IFNAR2-dependent IFN-α subtypes 4, 6, 7, 10, and 17, which were not induced in cells infected at higher virus concentrations. IFN-β and IFN-α1, -2, and -8 were induced in an IFNAR-independent manner in cells infected at both virus concentrations. IFN-α5, -14, -16, and -21 were induced in an IFNAR-dependent manner in cells infected at lower virus concentrations and in an IFNAR-independent manner in cells infected at higher virus concentrations. These differences in IFN subtype profiles in the 2 virus concentrations also resulted in distinct interferon-stimulated gene induction. These results present the novel finding that different viral MOIs differentially activate JAK/STAT signaling through the IFNAR, which greatly affects the profile of IFN subtypes that are induced. IMPORTANCE Type I IFNs are pleiotropic cytokines that are instrumental in combating viral diseases. Understanding how the individual subtypes are induced is important in developing strategies to block viral replication. Many studies have reported that different viruses induce distinct type I IFN subtype profiles due to differences in the way viruses are sensed in different cell types. However, we report in our study the novel finding that the amount of virus used to infect a system can also affect which type I IFN subtypes are induced due to the extent of activation of certain signaling pathways. These distinct IFN subtype profiles in cells infected at different MOIs are correlated with differences in interferon-stimulated gene induction, indicating that the same virus can induce distinct antiviral responses depending on the MOI. Because type I IFNs are used as therapeutic agents to treat viral diseases, understanding their antiviral mechanisms can enhance clinical treatments.
Collapse
|
35
|
Dutta R, Roy S. Chronic morphine and HIV-1 Tat promote differential central nervous system trafficking of CD3+ and Ly6C+ immune cells in a murine Streptococcus pneumoniae infection model. J Neuroinflammation 2015; 12:120. [PMID: 26087960 PMCID: PMC4490693 DOI: 10.1186/s12974-015-0341-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/05/2015] [Indexed: 01/28/2023] Open
Abstract
Background Persistent systemic infection results in excessive trafficking of peripheral immune cells into the central nervous system (CNS), thereby contributing to sustained neuroinflammation that leads to neurocognitive deficits. In this study, we explored the role of opportunistic systemic infection with Streptococcus pneumoniae in the recruitment of peripheral leukocytes into the CNS and its contribution to HIV-1-associated neurocognitive disorders in opioid-dependent individuals. Methods Wild-type B6CBAF1 (wt), μ-opioid receptor knockout (MORKO), FVB/N luciferase transgenic, and Toll-like receptor 2 and 4 knockout (TLR2KO and TLR4KO) mice were subcutaneously implanted with morphine/placebo pellet followed by HIV-1 Transactivator of transcription (Tat) protein injection intravenously and S. pneumoniae administration intraperitoneally. On postoperative day 5, brains perfused with phosphate-buffered saline were harvested and subjected to immunohistochemistry (for bacterial trafficking and chemokine ligand generation), flow cytometry (for phenotypic characterization of CNS trafficked immune cells), Western blot, and real-time PCR (for ligand expression). Results Our results show differential leukocyte trafficking of T lymphocytes (CD3+) and inflammatory monocytes (Ly6C+) into the CNS of mice treated with morphine, HIV-1 Tat, and/or S. pneumoniae. In addition, we demonstrate a Trojan horse mechanism for bacterial dissemination across the blood-brain barrier into the CNS by monocytes. Activation of TLRs on microglia induced a chemokine gradient that facilitated receptor-dependent trafficking of peripheral immune cells into the CNS. HIV-1 Tat induced trafficking of Ly6C+ and CD3+ cells into the CNS; infection with S. pneumoniae facilitated infiltration of only T lymphocytes into the CNS. We also observed differential chemokine secretion in the CNS, with CCL5 being the predominant chemokine following HIV-1 Tat treatment, which was potentiated further with morphine. S. pneumoniae alone led to preferential induction of CXCL12. Furthermore, we attributed a regulatory role for TLRs in the chemokine-mediated trafficking of leukocytes into the CNS. Chronic morphine and HIV-1 Tat, in the context of systemic S. pneumoniae co-infection, differentially modulated induction of TLR2/4, which consequently facilitated trafficking of TLR2 → CD3 + CCR5+ and TLR4 → Ly6C+(CCR5+/CXCR4+) immune cells into the CNS. Conclusion Our murine study suggests that secondary infection in opioid-dependent individuals infected with HIV-1 augments peripheral leukocyte trafficking as a consequence of sustained chemokine gradients in the CNS.
Collapse
Affiliation(s)
- Raini Dutta
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Sabita Roy
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA. .,Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
36
|
Nowlin BT, Burdo TH, Midkiff CC, Salemi M, Alvarez X, Williams KC. SIV encephalitis lesions are composed of CD163(+) macrophages present in the central nervous system during early SIV infection and SIV-positive macrophages recruited terminally with AIDS. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1649-65. [PMID: 25963554 DOI: 10.1016/j.ajpath.2015.01.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/16/2015] [Accepted: 01/30/2015] [Indexed: 10/23/2022]
Abstract
Macrophage recruitment to the central nervous system (CNS) during AIDS pathogenesis is poorly understood. We measured the accumulation of brain perivascular (CD163(+)) and inflammatory (MAC387(+)) macrophages in SIV-infected monkeys. Monocyte progenitors were 5-bromo-2'-deoxyuridine (BrdU) labeled in bone marrow, and CNS macrophages were labeled serially with fluorescent dextrans injected into the cisterna magna. MAC387(+) macrophages accumulated in the meninges and choroid plexus in early inflammation and in the perivascular space and SIV encephalitis (SIVE) lesions late. CD163(+) macrophages accumulated in the perivascular space and SIVE lesions with late inflammation. Most of the BrdU(+) cells were MAC387(+); however, CD163(+)BrdU(+) macrophages were present in the meninges and choroid plexus with AIDS. Most (81.6% ± 1.8%) of macrophages in SIVE lesions were present in the CNS before SIVE lesion formation. There was a 2.9-fold increase in SIVp28(+) macrophages entering the CNS late compared with those entering early (P < 0.05). The rate of CD163(+) macrophage recruitment to the CNS inversely correlated with time to death (P < 0.03) and increased with SIVE. In SIVE animals, soluble CD163 correlated with CD163(+) macrophage recruitment (P = 0.02). Most perivascular macrophages that comprise SIVE lesions and multinucleated giant cells are present in the CNS early, before SIVE lesions are formed. Most SIV-infected macrophages traffic to the CNS terminally with AIDS.
Collapse
Affiliation(s)
- Brian T Nowlin
- Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Tricia H Burdo
- Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Cecily C Midkiff
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University Health Science Center, Covington, Louisiana
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University Health Science Center, Covington, Louisiana
| | | |
Collapse
|
37
|
Swanson PA, McGavern DB. Viral diseases of the central nervous system. Curr Opin Virol 2015; 11:44-54. [PMID: 25681709 DOI: 10.1016/j.coviro.2014.12.009] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/17/2014] [Indexed: 11/18/2022]
Abstract
Virus-induced diseases of the central nervous system (CNS) represent a significant burden to human health worldwide. The complexity of these diseases is influenced by the sheer number of different neurotropic viruses, the diverse routes of CNS entry, viral tropism, and the immune system. Using a combination of human pathological data and experimental animal models, we have begun to uncover many of the mechanisms that viruses use to enter the CNS and cause disease. This review highlights a selection of neurotropic viruses that infect the CNS and explores the means by which they induce neurological diseases such as meningitis, encephalitis, and myelitis.
Collapse
Affiliation(s)
- Phillip A Swanson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
38
|
Campbell JH, Ratai EM, Autissier P, Nolan DJ, Tse S, Miller AD, González RG, Salemi M, Burdo TH, Williams KC. Anti-α4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection. PLoS Pathog 2014; 10:e1004533. [PMID: 25502752 PMCID: PMC4263764 DOI: 10.1371/journal.ppat.1004533] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 10/21/2014] [Indexed: 12/21/2022] Open
Abstract
Four SIV-infected monkeys with high plasma virus and CNS injury were treated with an anti-α4 blocking antibody (natalizumab) once a week for three weeks beginning on 28 days post-infection (late). Infection in the brain and gut were quantified, and neuronal injury in the CNS was assessed by MR spectroscopy, and compared to controls with AIDS and SIV encephalitis. Treatment resulted in stabilization of ongoing neuronal injury (NAA/Cr by 1H MRS), and decreased numbers of monocytes/macrophages and productive infection (SIV p28+, RNA+) in brain and gut. Antibody treatment of six SIV infected monkeys at the time of infection (early) for 3 weeks blocked monocyte/macrophage traffic and infection in the CNS, and significantly decreased leukocyte traffic and infection in the gut. SIV – RNA and p28 was absent in the CNS and the gut. SIV DNA was undetectable in brains of five of six early treated macaques, but proviral DNA in guts of treated and control animals was equivalent. Early treated animals had low-to-no plasma LPS and sCD163. These results support the notion that monocyte/macrophage traffic late in infection drives neuronal injury and maintains CNS viral reservoirs and lesions. Leukocyte traffic early in infection seeds the CNS with virus and contributes to productive infection in the gut. Leukocyte traffic early contributes to gut pathology, bacterial translocation, and activation of innate immunity. To determine whether ongoing cell traffic is required for SIV-associated tissue damage, we blocked monocyte and T lymphocyte traffic to the brain and gut during a) ongoing infection or, b) at the time of infection. When animals were treated at four weeks post infection (late), once significant neuronal injury and accumulation of infected macrophages had already occurred, neuronal injury was stabilized, and CNS infection and the number of CNS lesions decreased. In the gut, there were significantly fewer productively infected cells and decreased inflammatory macrophages post treatment. Treatment at the time of infection (early) blocked infection of the CNS (SIV –DNA, RNA, or protein) and macrophage accumulation. In the gut, treatment at the time of infection blocked productive infection (SIV –RNA and protein) but not SIV –DNA. Interestingly, with treatment at the time of infection, there was no evidence of microbial translocation or elevated sCD163 in plasma, demonstrating that leukocyte traffic early plays a role in damage to gut tissues. Overall, these data point to the role of monocyte traffic and possibly lymphocytes to the CNS and leukocyte traffic to the gut to establish and maintain viral reservoirs. They underscore the role of monocyte/macrophage traffic and accumulation in the CNS for neuronal injury and maintenance of CNS lesions.
Collapse
Affiliation(s)
- Jennifer H. Campbell
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Eva-Maria Ratai
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Neuroscience, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Patrick Autissier
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - David J. Nolan
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Samantha Tse
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Andrew D. Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - R. Gilberto González
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marco Salemi
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Tricia H. Burdo
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Kenneth C. Williams
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
39
|
Abstract
Monocytes and macrophages play critical roles in HIV transmission, viral spread early in infection, and as a reservoir of virus throughout infection. There has been a recent resurgence of interest in the biology of monocyte subsets and macrophages and their role in HIV pathogenesis, partly fuelled by efforts to understand difficulties in achieving HIV eradication. This article examines the importance of monocyte subsets and tissue macrophages in HIV pathogenesis. Additionally, we will review the role of monocytes and macrophages in the development of serious non-AIDS events including cardiovascular disease and neurocognitive impairment, their significance in viral persistence, and how these cells represent an important obstacle to achieving HIV eradication.
Collapse
|
40
|
Agsalda-Garcia M, Shiramizu B, Melendez L, Plaud M, Liang CY, Wojna V. Different levels of HIV DNA copy numbers in cerebrospinal fluid cellular subsets. J Health Care Poor Underserved 2014; 24:8-16. [PMID: 24241256 DOI: 10.1353/hpu.2014.0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inequities in the incidence of HIV infection and AIDS with continued persistence of HIV-associated neurocognitive disorders (HAND) exist in populations in Hawaii (HI) and Puerto Rico (PR). We previously reported that peripheral monocyte HIV DNA levels are high in patients in Hawaii with HAND and we now hypothesize that similar findings would be observed in the cerebrospinal fluid (CSF) cellular subsets. Cerebrospinal fluid cells were obtained from patients from PR and HI undergoing neurocognitive testing and sorted into monocytes (CD14+) and lymphocytes (CD14-) and HIV DNA was measured. From six PR subjects (three HAND, three normal cognition, NC) and six HI subjects (three HAND, three NC), HIV DNA burden in CD14+ cells was higher in HAND than NC patients; NC patients had higher HIV DNA burden in CD14-cells versus HAND. Differences in HIV DNA burden in particular CSF cellular subsets suggest that HIV DNA burden may play a role in HAND neuropathogenesis.
Collapse
|
41
|
Suen WW, Prow NA, Hall RA, Bielefeldt-Ohmann H. Mechanism of West Nile virus neuroinvasion: a critical appraisal. Viruses 2014; 6:2796-825. [PMID: 25046180 PMCID: PMC4113794 DOI: 10.3390/v6072796] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) is an important emerging neurotropic virus, responsible for increasingly severe encephalitis outbreaks in humans and horses worldwide. However, the mechanism by which the virus gains entry to the brain (neuroinvasion) remains poorly understood. Hypotheses of hematogenous and transneural entry have been proposed for WNV neuroinvasion, which revolve mainly around the concepts of blood-brain barrier (BBB) disruption and retrograde axonal transport, respectively. However, an over‑representation of in vitro studies without adequate in vivo validation continues to obscure our understanding of the mechanism(s). Furthermore, WNV infection in the current rodent models does not generate a similar viremia and character of CNS infection, as seen in the common target hosts, humans and horses. These differences ultimately question the applicability of rodent models for pathogenesis investigations. Finally, the role of several barriers against CNS insults, such as the blood-cerebrospinal fluid (CSF), the CSF-brain and the blood-spinal cord barriers, remain largely unexplored, highlighting the infancy of this field. In this review, a systematic and critical appraisal of the current evidence relevant to the possible mechanism(s) of WNV neuroinvasion is conducted.
Collapse
Affiliation(s)
- Willy W Suen
- School of Veterinary Science, University of Queensland, Gatton, QLD, 4343, Australia.
| | - Natalie A Prow
- Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, QLD, 4072, Australia.
| | | |
Collapse
|
42
|
Monocytes as regulators of inflammation and HIV-related comorbidities during cART. J Immunol Res 2014; 2014:569819. [PMID: 25025081 PMCID: PMC4082935 DOI: 10.1155/2014/569819] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/15/2014] [Indexed: 12/17/2022] Open
Abstract
Combined antiretroviral therapy (cART) extends the lifespan and the quality of life for HIV-infected persons but does not completely eliminate chronic immune activation and inflammation. The low level of chronic immune activation persisting during cART-treated HIV infection is associated with the development of diseases which usually occur in the elderly. Although T-cell activation has been extensively examined in the context of cART-treated HIV infection, monocyte activation is only beginning to be recognized as an important source of inflammation in this context. Here we examine markers and sources of monocyte activation during cART-treated HIV infection and discuss the role of monocytes during cardiovascular disease, HIV-associated neurocognitive disorder, and innate immune aging.
Collapse
|
43
|
Bertin J, Jalaguier P, Barat C, Roy MA, Tremblay MJ. Exposure of human astrocytes to leukotriene C4 promotes a CX3CL1/fractalkine-mediated transmigration of HIV-1-infected CD4⁺ T cells across an in vitro blood-brain barrier model. Virology 2014; 454-455:128-38. [PMID: 24725939 DOI: 10.1016/j.virol.2014.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/23/2013] [Accepted: 02/07/2014] [Indexed: 11/18/2022]
Abstract
Eicosanoids, including cysteinylleukotrienes (cysLTs), are found in the central nervous system (CNS) of individuals infected with HIV-1. Few studies have addressed the contribution of cysLTs in HIV-1-associated CNS disorders. We demonstrate that conditioned medium from human astrocytes treated with leukotriene C4 (LTC4) increases the transmigration of HIV-1-infected CD4(+) T cells across an in vitro blood-brain barrier (BBB) model using cultured brain endothelial cells. Additional studies indicate that the higher cell migration is linked with secretion by astrocytes of CX3CL1/fractalkine, a chemokine that has chemoattractant activity for CD4(+) T cells. Moreover, we report that the enhanced cell migration across BBB leads to a more important CD4(+) T cell-mediated HIV-1 transfer toward macrophages. Altogether data presented in the present study reveal the important role that LTC4, a metabolite of arachidonic acid, may play in the HIV-1-induced neuroinvasion, neuropathogenesis and disease progression.
Collapse
Affiliation(s)
- Jonathan Bertin
- Axe des Maladies Infectieuses et Immunitaires, Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec - pavillon CHUL, Canada
| | - Pascal Jalaguier
- Axe des Maladies Infectieuses et Immunitaires, Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec - pavillon CHUL, Canada
| | - Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec - pavillon CHUL, Canada
| | - Marc-André Roy
- Axe des Maladies Infectieuses et Immunitaires, Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec - pavillon CHUL, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec - pavillon CHUL, Canada; Département de Microbiologie-Infectiologie et Immunologie, Faculté de médecine, Université Laval, Québec, Canada.
| |
Collapse
|
44
|
Tong J, Buch S, Yao H, Wu C, Tong HI, Wang Y, Lu Y. Monocytes-derived macrophages mediated stable expression of human brain-derived neurotrophic factor, a novel therapeutic strategy for neuroAIDS. PLoS One 2014; 9:e82030. [PMID: 24505242 PMCID: PMC3914783 DOI: 10.1371/journal.pone.0082030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 10/19/2013] [Indexed: 12/30/2022] Open
Abstract
HIV-1 associated dementia remains a significant public health burden. Clinical and experimental research has shown that reduced levels of brain-derived neurotrophic factor (BDNF) may be a risk factor for neurological complications associated with HIV-1 infection. We are actively testing genetically modified macrophages for their possible use as the cell-based gene delivery vehicle for the central nervous system (CNS). It can be an advantage to use the natural homing/migratory properties of monocyte-derived macrophages to deliver potentially neuroprotective BDNF into the CNS, as a non-invasive manner. Lentiviral-mediated gene transfer of human (h)BDNF plasmid was constructed and characterized. Defective lentiviral stocks were generated by transient transfection of 293T cells with lentiviral transfer plasmid together with packaging and envelope plasmids. High titer lentiviral vector stocks were harvested and used to transduce human neuronal cell lines, primary cultures of human peripheral mononocyte-derived macrophages (hMDM) and murine myeloid monocyte-derived macrophages (mMDM). These transduced cells were tested for hBDNF expression, stability, and neuroprotective activity. The GenomeLab GeXP Genetic Analysis System was used to evaluate transduced cells for any adverse effects by assessing gene profiles of 24 reference genes. High titer vectors were prepared for efficient transduction of neuronal cell lines, hMDM, and mMDM. Stable secretion of high levels of hBDNF was detected in supernatants of transduced cells using western blot and ELISA. The conditioned media containing hBDNF were shown to be protective to neuronal and monocytic cell lines from TNF-α and HIV-1 Tat mediated cytotoxicity. Lentiviral vector-mediated gene transduction of hMDM and mMDM resulted in high-level, stable expression of the neuroprotective factorBDNF in vitro. These findings form the basis for future research on the potential use of BDNF as a novel therapy for neuroAIDS.
Collapse
Affiliation(s)
- Jing Tong
- MOE Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, People's Republic of China
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Shilpa Buch
- University of Nebraska Medical Center, Pharmacology and Experimental Neuroscience, Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Honghong Yao
- University of Nebraska Medical Center, Pharmacology and Experimental Neuroscience, Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Chengxiang Wu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Hsin-I Tong
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Youwei Wang
- MOE Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Institute of TCM & Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, People's Republic of China
- * E-mail: (YW); (YL)
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail: (YW); (YL)
| |
Collapse
|
45
|
Milush JM, Chen HL, Atteberry G, Sodora DL. Early detection of simian immunodeficiency virus in the central nervous system following oral administration to rhesus macaques. Front Immunol 2013; 4:236. [PMID: 23966995 PMCID: PMC3743037 DOI: 10.3389/fimmu.2013.00236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/31/2013] [Indexed: 12/05/2022] Open
Abstract
The timing of HIV dissemination to the central nervous system (CNS) has the potential to have important implications regarding HIV disease progression and treatment. The earlier HIV enters the CNS the more difficult it might be to remove with antiretroviral therapy. Alternatively, HIV may only enter the CNS later in the course of disease as a result of disruption of the blood-brain-barrier. We utilized the simian immunodeficiency virus (SIV) infection of rhesus macaques to evaluate the oral route of infection and the subsequent spread of SIV to the CNS during the acute infection phase. A high dose oral SIV challenge was utilized to ensure a successful infection and permit the evaluation of CNS spread during the first 1–14 days post-infection. Ultrasensitive nested PCR was used to detect SIV gag DNA in the brains of macaques at 1–2 days post-infection and identified SIV gag DNA in the brain tissues from three of four macaques. This SIV DNA was also present following perfusion of the macaque brains, providing evidence that it was not residing in the circulating blood but in the brain tissue itself. The diversity of the viral envelope V1–V2 region at early times post-infection indicated that the brain viral variants were similar to variants obtained from lymph nodes. This genetic similarity between SIV obtained from lymphoid and brain tissues suggests that the founder population of viral species entered and subsequently spread without any evidence of brain-specific SIV selection. The relatively rapid appearance of SIV within the CNS tissue following oral transmission may also occur during HIV transmission where it may impact disease course as well as representing a challenge for long-term therapies and future viral eradication modalities.
Collapse
Affiliation(s)
- Jeffrey M Milush
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco , San Francisco, CA , USA
| | | | | | | |
Collapse
|
46
|
Metcalf Pate KA, Lyons CE, Dorsey JL, Shirk EN, Queen SE, Adams RJ, Gama L, Morrell CN, Mankowski JL. Platelet activation and platelet-monocyte aggregate formation contribute to decreased platelet count during acute simian immunodeficiency virus infection in pig-tailed macaques. J Infect Dis 2013; 208:874-83. [PMID: 23852120 DOI: 10.1093/infdis/jit278] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Platelets are key participants in innate immune responses to pathogens. As a decrease in circulating platelet count is one of the initial hematologic indicators of human immunodeficiency virus (HIV) infection, we sought to determine whether decline in platelet number during acute infection results from decreased production, increased antibody-mediated destruction, or increased platelet activation in a simian immunodeficiency virus (SIV)/macaque model. During acute SIV infection, circulating platelets were activated with increased surface expression of P-selection, CD40L and major histocompatibility complex class I. Platelet production was maintained and platelet autoantibodies were not detected during acute infection. Concurrent with a decrease in platelet numbers and an increase in circulating monocytes, platelets were found sequestered in platelet-monocyte aggregates, thereby contributing to the decline in platelet counts. Because the majority of circulating CD16(+) monocytes formed complexes with platelets during acute SIV infection, a decreased platelet count may represent platelet participation in the innate immune response to HIV.
Collapse
Affiliation(s)
- Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Neurological sequelae of human immunodeficiency virus (HIV) infection have been and remain a significant problem. Monocytes and macrophages in humans and monkeys are susceptible to infection by HIV and simian immunodeficiency virus (SIV), and are considered to be a main mechanism by which the central nervous system (CNS) is infected. Within the infected CNS, perivascular macrophages and, in some cases, parenchymal microglia are infected as are multinucleated giant cells when present. While neurons are not themselves directly infected, neuronal damage occurs within the infected CNS. Despite the success of antiretroviral therapy (ART) in limiting virus in plasma to non-detectable levels, neurological deficits persist. This review discusses the continued neurological dysfunctions that persist in the era of ART, focusing on the roles of monocyte and macrophage as targets of continued viral infection and as agents of pathogenesis in what appears to be emergent macrophage-mediated disease resulting from long-term HIV infection of the host. Data discussed include the biology of monocyte/macrophage activation with HIV and SIV infection, traffic of cells into and out of the CNS with infection, macrophage-associated biomarkers of CNS and cardiac disease, the role of antiretroviral therapy on these cells and CNS disease, as well as the need for effective adjunctive therapies targeting monocytes and macrophages.
Collapse
Affiliation(s)
- Tricia H. Burdo
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Andrew Lackner
- Tulane National Primate Research Center, Covington, LA, USA
| | | |
Collapse
|
48
|
Gaskill PJ, Calderon TM, Coley JS, Berman JW. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND. J Neuroimmune Pharmacol 2013; 8:621-42. [PMID: 23456305 PMCID: PMC4303241 DOI: 10.1007/s11481-013-9443-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/13/2013] [Indexed: 02/08/2023]
Abstract
Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70 % of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers.
Collapse
Affiliation(s)
- Peter J Gaskill
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | |
Collapse
|
49
|
López-Muñoz A, Sepulcre MP, García-Moreno D, Fuentes I, Béjar J, Manchado M, Álvarez MC, Meseguer J, Mulero V. Viral nervous necrosis virus persistently replicates in the central nervous system of asymptomatic gilthead seabream and promotes a transient inflammatory response followed by the infiltration of IgM+ B lymphocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:429-37. [PMID: 22402274 DOI: 10.1016/j.dci.2012.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 05/04/2023]
Abstract
The viral nervous necrosis virus (VNNV) is the causal agent of viral encephalopathy and retinopathy (VER), a worldwide fish disease that is responsible for high mortality in both marine and freshwater species. Infected fish suffer from encephalitis, which leads to abnormal swimming behavior and extensive cellular vacuolation and neuronal degeneration in the central nervous system (CNS) and retina. The marine fish gilthead seabream (Sparus aurata) does not develop VER but it is an asymptomatic carrier of VNNV. In this study, we report that VNNV was able to replicate and persist for up to 3 months in the CNS of the gilthead seabream without causing any neural damage. In addition, we found an early inflammatory response in the CNS that was characterized by the induction of genes encoding pro-inflammatory cytokines, a delayed but persistent induction of anti-inflammatory cytokines, and the infiltration of IgM(+) B lymphocytes, suggesting that local adaptive immunity played a major role in the control of VNNV in the CNS of this species.
Collapse
Affiliation(s)
- Azucena López-Muñoz
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gama L, Shirk EN, Russell JN, Carvalho KI, Li M, Queen SE, Kalil J, Zink MC, Clements JE, Kallas EG. Expansion of a subset of CD14highCD16negCCR2low/neg monocytes functionally similar to myeloid-derived suppressor cells during SIV and HIV infection. J Leukoc Biol 2012; 91:803-16. [PMID: 22368280 DOI: 10.1189/jlb.1111579] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Monocytes have been categorized in three main subpopulations based on CD14 and CD16 surface expression. Classical monocytes express the CD14(++)CD16(-)CCR2(+) phenotype and migrate to inflammatory sites by quickly responding to CCL2 signaling. Here, we identified and characterized the expansion of a novel monocyte subset during HIV and SIV infection, which were undistinguishable from classical monocytes, based on CD14 and CD16 expression, but expressed significantly lower surface CCR2. Transcriptome analysis of sorted cells demonstrated that the CCR2(low/neg) cells are a distinct subpopulation and express lower levels of inflammatory cytokines and activation markers than their CCR2(high) counterparts. They exhibited impaired phagocytosis and greatly diminished chemotaxis in response to CCL2 and CCL7. In addition, these monocytes are refractory to SIV infection and suppress CD8(+) T cell proliferation in vitro. These cells express higher levels of STAT3 and NOS2, suggesting a phenotype similar to monocytic myeloid-derived cells, which suppress expansion of CD8(+) T cells in vivo. They may reflect an antiproliferative response against the extreme immune activation observed during HIV and SIV infections. In addition, they may suppress antiviral responses and thus, have a role in AIDS pathogenesis. Antiretroviral therapy in infected macaque and human subjects caused this population to decline, suggesting that this atypical phenotype is linked to viral replication.
Collapse
Affiliation(s)
- Lucio Gama
- Johns Hopkins University School of Medicine, BRB 831, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|