1
|
Barros de Lima G, Nencioni E, Thimoteo F, Perea C, Pinto RFA, Sasaki SD. TMPRSS2 as a Key Player in Viral Pathogenesis: Influenza and Coronaviruses. Biomolecules 2025; 15:75. [PMID: 39858469 PMCID: PMC11764435 DOI: 10.3390/biom15010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
TMPRSS2, a human transmembrane protease enzyme, plays a crucial role in the spread of certain viruses, including influenza and coronaviruses. This enzyme promotes viral infection by cleaving viral glycoproteins, which helps viruses like SARS-CoV-2 and influenza A enter cells more effectively. Genetic differences in TMPRSS2 may affect people's susceptibility to COVID-19, underscoring the need for studies that consider diverse populations. Beyond infectious diseases, TMPRSS2 has also been linked to some cancers, suggesting it could be a valuable target for drug development. This review provides a summary of TMPRSS2 inhibitors currently under study, with some already in clinical trials to test their effectiveness against viral infections. As we uncover more about TMPRSS2's role in pathogenesis, it could open new doors for therapies to combat future outbreaks.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergio Daishi Sasaki
- Graduate Program of Biosystems, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), São Bernardo do Campo, São Paulo 09606-045, Brazil; (G.B.d.L.); (E.N.); (F.T.); (C.P.); (R.F.A.P.)
| |
Collapse
|
2
|
Matsuzaki Y, Sugawara K, Kidoguchi Y, Kadowaki Y, Shimotai Y, Katsushima Y, Katsushima F, Tanaka S, Matoba Y, Komabayashi K, Aoki Y, Mizuta K. Genetic Reassortment in a Child Coinfected with Two Influenza B Viruses, B/Yamagata Lineage and B/Victoria-Lineage Strains. Viruses 2024; 16:983. [PMID: 38932274 PMCID: PMC11209448 DOI: 10.3390/v16060983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
We identified a child coinfected with influenza B viruses of B/Yamagata and B/Victoria lineages, in whom we analyzed the occurrence of genetic reassortment. Plaque purification was performed using a throat swab specimen from a 9-year-old child, resulting in 34 well-isolated plaques. The genomic composition of eight gene segments (HA, NA, PB1, PB2, PA, NP, M, and NS genes) for each plaque was determined at the lineage level. Of the 34 plaques, 21 (61.8%) had B/Phuket/3073/2013 (B/Yamagata)-like sequences in all gene segments, while the other 13 (38.2%) were reassortants with B/Texas/02/2013 (B/Victoria)-like sequences in 1-5 of the 8 segments. The PB1 segment had the most B/Victoria lineage genes (23.5%; 8 of 34 plaques), while PB2 and PA had the least (2.9%; 1 of 34 plaques). Reassortants with B/Victoria lineage genes in 2-5 segments showed the same level of growth as viruses with B/Yamagata lineage genes in all segments. However, reassortants with B/Victoria lineage genes only in the NA, PB1, NP, or NS segments exhibited reduced or undetectable growth. We demonstrated that various gene reassortments occurred in a child. These results suggest that simultaneous outbreaks of two influenza B virus lineages increase genetic diversity and could promote the emergence of new epidemic strains.
Collapse
Affiliation(s)
- Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.K.); (Y.K.); (Y.S.)
| | - Kanetsu Sugawara
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.K.); (Y.K.); (Y.S.)
| | - Yuko Kidoguchi
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.K.); (Y.K.); (Y.S.)
| | - Yoko Kadowaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.K.); (Y.K.); (Y.S.)
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.K.); (Y.K.); (Y.S.)
| | - Yuriko Katsushima
- Katsushima Pediatric Clinic, Yamagata 990-2461, Japan; (Y.K.); (F.K.)
| | - Fumio Katsushima
- Katsushima Pediatric Clinic, Yamagata 990-2461, Japan; (Y.K.); (F.K.)
| | - Shizuka Tanaka
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 990-0031, Japan; (S.T.); (Y.M.); (K.K.); (Y.A.); (K.M.)
| | - Yohei Matoba
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 990-0031, Japan; (S.T.); (Y.M.); (K.K.); (Y.A.); (K.M.)
| | - Kenichi Komabayashi
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 990-0031, Japan; (S.T.); (Y.M.); (K.K.); (Y.A.); (K.M.)
| | - Yoko Aoki
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 990-0031, Japan; (S.T.); (Y.M.); (K.K.); (Y.A.); (K.M.)
| | - Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 990-0031, Japan; (S.T.); (Y.M.); (K.K.); (Y.A.); (K.M.)
| |
Collapse
|
3
|
Minor NR, Ramuta MD, Stauss MR, Harwood OE, Brakefield SF, Alberts A, Vuyk WC, Bobholz MJ, Rosinski JR, Wolf S, Lund M, Mussa M, Beversdorf LJ, Aliota MT, O'Connor SL, O'Connor DH. Metagenomic sequencing detects human respiratory and enteric viruses in air samples collected from congregate settings. Sci Rep 2023; 13:21398. [PMID: 38049453 PMCID: PMC10696062 DOI: 10.1038/s41598-023-48352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023] Open
Abstract
Innovative methods for evaluating virus risk and spread, independent of test-seeking behavior, are needed to improve routine public health surveillance, outbreak response, and pandemic preparedness. Throughout the COVID-19 pandemic, environmental surveillance strategies, including wastewater andair sampling, have been used alongside widespread individual-based SARS-CoV-2 testing programs to provide population-level data. These environmental surveillance strategies have predominantly relied on pathogen-specific detection methods to monitor viruses through space and time. However, this provides a limited picture of the virome present in an environmental sample, leaving us blind to most circulating viruses. In this study, we explore whether pathogen-agnostic deep sequencing can expand the utility of air sampling to detect many human viruses. We show that sequence-independent single-primer amplification sequencing of nucleic acids from air samples can detect common and unexpected human respiratory and enteric viruses, including influenza virus type A and C, respiratory syncytial virus, human coronaviruses, rhinovirus, SARS-CoV-2, rotavirus, mamastrovirus, and astrovirus.
Collapse
Affiliation(s)
| | - Mitchell D Ramuta
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | | | - Olivia E Harwood
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Savannah F Brakefield
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Alexandra Alberts
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - William C Vuyk
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Max J Bobholz
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Jenna R Rosinski
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Sydney Wolf
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Madelyn Lund
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Madison Mussa
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | | | - Matthew T Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Shelby L O'Connor
- Wisconsin National Primate Research Center, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center, Madison, WI, USA.
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA.
| |
Collapse
|
4
|
Minor NR, Ramuta MD, Stauss MR, Harwood OE, Brakefield SF, Alberts A, Vuyk WC, Bobholz MJ, Rosinski JR, Wolf S, Lund M, Mussa M, Beversdorf LJ, Aliota MT, O’Connor SL, O’Connor DH. Metagenomic sequencing detects human respiratory and enteric viruses in air samples collected from congregate settings. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.28.23290648. [PMID: 37398492 PMCID: PMC10312882 DOI: 10.1101/2023.05.28.23290648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Innovative methods for evaluating virus risk and spread, independent of test-seeking behavior, are needed to improve routine public health surveillance, outbreak response, and pandemic preparedness. Throughout the COVID-19 pandemic, environmental surveillance strategies, including wastewater and air sampling, have been used alongside widespread individual-based SARS-CoV-2 testing programs to provide population-level data. These environmental surveillance strategies have predominantly relied on pathogen-specific detection methods to monitor viruses through space and time. However, this provides a limited picture of the virome present in an environmental sample, leaving us blind to most circulating viruses. In this study, we explore whether pathogen-agnostic deep sequencing can expand the utility of air sampling to detect many human viruses. We show that sequence-independent single-primer amplification sequencing of nucleic acids from air samples can detect common and unexpected human respiratory and enteric viruses, including influenza virus type A and C, respiratory syncytial virus, human coronaviruses, rhinovirus, SARS-CoV-2, rotavirus, mamastrovirus, and astrovirus.
Collapse
Affiliation(s)
| | - Mitchell D. Ramuta
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Olivia E. Harwood
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Savannah F. Brakefield
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexandra Alberts
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - William C. Vuyk
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Max J. Bobholz
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna R. Rosinski
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sydney Wolf
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Madelyn Lund
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Madison Mussa
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Shelby L. O’Connor
- Wisconsin National Primate Research Center, Madison, WI USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - David H. O’Connor
- Wisconsin National Primate Research Center, Madison, WI USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Sreenivasan CC, Liu R, Gao R, Guo Y, Hause BM, Thomas M, Naveed A, Clement T, Rausch D, Christopher-Hennings J, Nelson E, Druce J, Zhao M, Kaushik RS, Li Q, Sheng Z, Wang D, Li F. Influenza C and D Viruses Demonstrated a Differential Respiratory Tissue Tropism in a Comparative Pathogenesis Study in Guinea Pigs. J Virol 2023; 97:e0035623. [PMID: 37199648 PMCID: PMC10308911 DOI: 10.1128/jvi.00356-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Influenza C virus (ICV) is increasingly associated with community-acquired pneumonia (CAP) in children and its disease severity is worse than the influenza B virus, but similar to influenza A virus associated CAP. Despite the ubiquitous infection landscape of ICV in humans, little is known about its replication and pathobiology in animals. The goal of this study was to understand the replication kinetics, tissue tropism, and pathogenesis of human ICV (huICV) in comparison to the swine influenza D virus (swIDV) in guinea pigs. Intranasal inoculation of both viruses did not cause clinical signs, however, the infected animals shed virus in nasal washes. The huICV replicated in the nasal turbinates, soft palate, and trachea but not in the lungs while swIDV replicated in all four tissues. A comparative analysis of tropism and pathogenesis of these two related seven-segmented influenza viruses revealed that swIDV-infected animals exhibited broad tissue tropism with an increased rate of shedding on 3, 5, and 7 dpi and high viral loads in the lungs compared to huICV. Seroconversion occurred late in the huICV group at 14 dpi, while swIDV-infected animals seroconverted at 7 dpi. Guinea pigs infected with huICV exhibited mild to moderate inflammatory changes in the epithelium of the soft palate and trachea, along with mucosal damage and multifocal alveolitis in the lungs. In summary, the replication kinetics and pathobiological characteristics of ICV in guinea pigs agree with the clinical manifestation of ICV infection in humans, and hence guinea pigs could be used to study these distantly related influenza viruses. IMPORTANCE Similar to influenza A and B, ICV infections are seen associated with bacterial and viral co-infections which complicates the assessment of its real clinical significance. Further, the antivirals against influenza A and B viruses are ineffective against ICV which mandates the need to study the pathobiological aspects of this virus. Here we demonstrated that the respiratory tract of guinea pigs possesses specific viral receptors for ICV. We also compared the replication kinetics and pathogenesis of huICV and swIDV, as these viruses share 50% sequence identity. The tissue tropism and pathology associated with huICV in guinea pigs are analogous to the mild respiratory disease caused by ICV in humans, thereby demonstrating the suitability of guinea pigs to study ICV. Our comparative analysis revealed that huICV and swIDV replicated differentially in the guinea pigs suggesting that the type-specific genetic differences can result in the disparity of the viral shedding and tissue tropism.
Collapse
Affiliation(s)
- Chithra C. Sreenivasan
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Runxia Liu
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Yicheng Guo
- Zuckerman Mind Brian Behavior Institute, Columbia University, New York, New York, USA
| | - Ben M. Hause
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Milton Thomas
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Ahsan Naveed
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Travis Clement
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Dana Rausch
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Eric Nelson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Julian Druce
- Virology Section, Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
| | - Miaoyun Zhao
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Radhey S. Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Qingsheng Li
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Zizhang Sheng
- Zuckerman Mind Brian Behavior Institute, Columbia University, New York, New York, USA
| | - Dan Wang
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Feng Li
- Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
6
|
Matsuzaki Y, Ohmiya S, Ota R, Kitai Y, Watanabe O, Kitaoka S, Kumaki S, Onuma R, Watanabe Y, Nagai Y, Kadowaki Y, Shimotai Y, Nishimura H. Epidemiologic, clinical, and genetic characteristics of influenza C virus infections among outpatients and inpatients in Sendai, Japan from 2006 to 2020. J Clin Virol 2023; 162:105429. [PMID: 37031609 DOI: 10.1016/j.jcv.2023.105429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Influenza C virus is a pathogen that causes acute respiratory illness in children. The clinical information about this virus is limited because of the small number of isolated viruses compared to influenza A or B viruses. METHODS A total of 60 influenza C viruses were isolated by clinical tests using cell culture methods conducted in one hospital and one clinic during the 15 years from 2006 to 2020. These 60 cases were retrospectively analyzed by comparing outpatients and inpatients. Moreover, isolated viruses were analyzed for genomic changes during the study period. RESULTS All were younger than 7 years, and 73% of inpatients (19 out of 26) were under 2 years of age. A significant difference was found in the frequency of pneumonia, accounting for 45% and 4% of inpatients and outpatients, respectively. Most of the viruses isolated from 2006 to 2012 belonged to the S/A sublineage of the C/Sao Paulo lineage, but three sublineage viruses, including the S/A sublineage with K190N mutation, S/V sublineage, and C/Kanagawa lineage, have cocirculated since 2014. Moreover, S/A sublineage viruses were undergoing reassortment since 2014, suggesting significant changes in the virus, both antigenically and genetically. Of the 10 strains from patients with pneumonia, 7 were in the S/A sublineage, which had circulated from 2006 to 2012. CONCLUSION Infants under 2 years of age were more likely to be hospitalized with pneumonia. The genomic changes that occurred in 2014 were suggested to affect the ability of the virus to spread.
Collapse
Affiliation(s)
- Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, 990-9585, Yamagata Japan.
| | - Suguru Ohmiya
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Miyagino-ku, 983-8520, Sendai, Miyagi Japan
| | - Reiko Ota
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Miyagino-ku, 983-8520, Sendai, Miyagi Japan
| | - Yuki Kitai
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Miyagino-ku, 983-8520, Sendai, Miyagi Japan
| | - Oshi Watanabe
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Miyagino-ku, 983-8520, Sendai, Miyagi Japan
| | - Setsuko Kitaoka
- Department of Pediatrics, Sendai Medical Center, Miyagino-ku, 983-8520, Sendai, Miyagi Japan
| | - Satoru Kumaki
- Department of Pediatrics, Sendai Medical Center, Miyagino-ku, 983-8520, Sendai, Miyagi Japan
| | - Ryoichi Onuma
- Department of Pediatrics, Sendai Medical Center, Miyagino-ku, 983-8520, Sendai, Miyagi Japan
| | - Yohei Watanabe
- Department of Pediatrics, Sendai Medical Center, Miyagino-ku, 983-8520, Sendai, Miyagi Japan
| | - Yukio Nagai
- Nagai Children's Clinic, Miyagino-ku, 983-0045, Sendai, Miyagi Japan
| | - Yoko Kadowaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, 990-9585, Yamagata Japan
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, 990-9585, Yamagata Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Miyagino-ku, 983-8520, Sendai, Miyagi Japan
| |
Collapse
|
7
|
Takashita E, Murakami S, Matsuzaki Y, Fujisaki S, Morita H, Nagata S, Katayama M, Mizuta K, Nishimura H, Watanabe S, Horimoto T, Hasegawa H. Antiviral Susceptibilities of Distinct Lineages of Influenza C and D Viruses. Viruses 2023; 15:244. [PMID: 36680284 PMCID: PMC9861540 DOI: 10.3390/v15010244] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The emergence and spread of antiviral-resistant influenza viruses are of great concern. To minimize the public health risk, it is important to monitor antiviral susceptibilities of influenza viruses. Analyses of the antiviral susceptibilities of influenza A and B viruses have been conducted globally; however, those of influenza C and D viruses are limited. Here, we determined the susceptibilities of influenza C viruses representing all six lineages (C/Taylor, C/Yamagata, C/Sao Paulo, C/Aichi, C/Kanagawa, and C/Mississippi) and influenza D viruses representing four lineages (D/OK, D/660, D/Yama2016, and D/Yama2019) to RNA polymerase inhibitors (baloxavir and favipiravir) by using a focus reduction assay. All viruses tested were susceptible to both drugs. We then performed a genetic analysis to check for amino acid substitutions associated with baloxavir and favipiravir resistance and found that none of the viruses tested possessed these substitutions. Use of the focus reduction assay with the genotypic assay has proven valuable for monitoring the antiviral susceptibilities of influenza C and D viruses as well as influenza A and B viruses. Antiviral susceptibility monitoring of all influenza virus types should continue in order to assess the public health risks posed by these viruses.
Collapse
Affiliation(s)
- Emi Takashita
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Shin Murakami
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Seiichiro Fujisaki
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Hiroko Morita
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Shiho Nagata
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Misa Katayama
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 990-0031, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan
| | - Shinji Watanabe
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Taisuke Horimoto
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Hideki Hasegawa
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| |
Collapse
|
8
|
Camp JV, Redlberger-Fritz M. Increased cases of influenza C virus in children and adults in Austria, 2022. J Med Virol 2023; 95:e28201. [PMID: 36210349 PMCID: PMC10091750 DOI: 10.1002/jmv.28201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 01/11/2023]
Abstract
Sentinel surveillance of influenza-like illnesses revealed an increase in the cases of influenza C virus in children and adults in Austria, 2022, compared to previous years, following one season (2020/2021), wherein no influenza C virus was detected. Whole-genome sequencing revealed no obvious genetic basis for the increase. We propose that the reemergence is explained by waning immunity from lack of community exposure due to restrictions intended to limit severe acute respiratory syndrome coronavirus 2 spread in prior seasons, pending further investigation.
Collapse
Affiliation(s)
- Jeremy V Camp
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
9
|
Carascal MB, Pavon RDN, Rivera WL. Recent Progress in Recombinant Influenza Vaccine Development Toward Heterosubtypic Immune Response. Front Immunol 2022; 13:878943. [PMID: 35663997 PMCID: PMC9162156 DOI: 10.3389/fimmu.2022.878943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Flu, a viral infection caused by the influenza virus, is still a global public health concern with potential to cause seasonal epidemics and pandemics. Vaccination is considered the most effective protective strategy against the infection. However, given the high plasticity of the virus and the suboptimal immunogenicity of existing influenza vaccines, scientists are moving toward the development of universal vaccines. An important property of universal vaccines is their ability to induce heterosubtypic immunity, i.e., a wide immune response coverage toward different influenza subtypes. With the increasing number of studies and mounting evidence on the safety and efficacy of recombinant influenza vaccines (RIVs), they have been proposed as promising platforms for the development of universal vaccines. This review highlights the current progress and advances in the development of RIVs in the context of heterosubtypic immunity induction toward universal vaccine production. In particular, this review discussed existing knowledge on influenza and vaccine development, current hemagglutinin-based RIVs in the market and in the pipeline, other potential vaccine targets for RIVs (neuraminidase, matrix 1 and 2, nucleoprotein, polymerase acidic, and basic 1 and 2 antigens), and deantigenization process. This review also provided discussion points and future perspectives in looking at RIVs as potential universal vaccine candidates for influenza.
Collapse
Affiliation(s)
- Mark B Carascal
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.,Clinical and Translational Research Institute, The Medical City, Pasig City, Philippines
| | - Rance Derrick N Pavon
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
10
|
Zhao Y, Zhao L, Li Y, Liu Q, Deng L, Lu Y, Zhang X, Li S, Ge J, Bu Z, Ping J. An influenza virus vector candidate vaccine stably expressing SARS-CoV-2 receptor-binding domain produces high and long-lasting neutralizing antibodies in mice. Vet Microbiol 2022; 271:109491. [PMID: 35714529 PMCID: PMC9181763 DOI: 10.1016/j.vetmic.2022.109491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Viral infectious pathogens, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, can cause extremely high infection rates and mortality in humans. Therefore, it is urgent to develop an effective vaccine against coronavirus and influenza virus infection. Herein, we used the influenza virus as a vector to express the SARS-CoV-2 spike receptor-binding domain (RBD) and hemagglutinin-esterase-fusion (HEF) protein of the influenza C virus. We then evaluated the feasibility and effectiveness of this design strategy through experiments in vitro and in vivo. The results showed that the chimeric viruses could stably express the HEF protein and the SARS-CoV-2 spike RBD at a high level. BALB/c mice, infected with the chimeric virus, exhibited mild clinical symptoms, yet produced high specific antibody levels against RBD and HEF, including neutralizing antibodies. Importantly, high neutralizing antibodies could be retained in the sera of mice for at least 20 weeks. Altogether, our data provided a new strategy for developing safe and effective COVID-19 and influenza virus vaccines.
Collapse
Affiliation(s)
- Yongzhen Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lingcai Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yingfei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qingzheng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lulu Deng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuanlu Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaoting Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shengmin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
11
|
Daniels RS, Galiano M, Ermetal B, Kwong J, Lau CS, Xiang Z, McCauley JW, Lo J. Temporal and Gene Reassortment Analysis of Influenza C Virus Outbreaks in Hong Kong, SAR, China. J Virol 2022; 96:e0192821. [PMID: 34787455 PMCID: PMC8826914 DOI: 10.1128/jvi.01928-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022] Open
Abstract
From 2014 to week 07/2020 the Centre for Health Protection in Hong Kong conducted screening for influenza C virus (ICV). A retrospective analysis of ICV detections to week 26/2019 revealed persistent low-level circulation with outbreaks occurring biennially in the winters of 2015 to 2016 and 2017 to 2018 (R. S. Daniels et al., J Virol 94:e01051-20, 2020, https://doi.org/10.1128/JVI.01051-20). Here, we report on an outbreak occurring in 2019 to 2020, reinforcing the observation of biennial seasonality in Hong Kong. All three outbreaks occurred in similar time frames, were subsequently dwarfed by seasonal epidemics of influenza types A and B, and were caused by similar proportions of C/Kanagawa/1/76 (K)-lineage and C/São Paulo/378/82 S1- and S2-sublineage viruses. Ongoing genetic drift was observed in all genes, with some evidence of amino acid substitution in the hemagglutinin-esterase-fusion (HEF) glycoprotein possibly associated with antigenic drift. A total of 61 ICV genomes covering the three outbreaks were analyzed for reassortment, and 9 different reassortant constellations were identified, 1 K-lineage, 4 S1-sublineage, and 4 S2-sublineage, with 6 of these being identified first in the 2019-1920 outbreak (2 S2-lineage and 4 S1-lineage). The roles that virus interference/enhancement, ICV persistent infection, genome evolution, and reassortment might play in the observed seasonality of ICV in Hong Kong are discussed. IMPORTANCE Influenza C virus (ICV) infection of humans is common, with the great majority of people being infected during childhood, though reinfection can occur throughout life. While infection normally results in "cold-like" symptoms, severe disease cases have been reported in recent years. However, knowledge of ICV is limited due to poor systematic surveillance and an inability to propagate the virus in large amounts in the laboratory. Following recent systematic surveillance in Hong Kong SAR, China, and direct ICV gene sequencing from clinical specimens, a 2-year cycle of disease outbreaks (epidemics) has been identified, with gene mixing playing a significant role in ICV evolution. Studies like those reported here are key to developing an understanding of the impact of influenza C virus infection in humans, notably where comorbidities exist and severe respiratory disease can develop.
Collapse
Affiliation(s)
- Rodney S. Daniels
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Monica Galiano
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Burcu Ermetal
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Jasmine Kwong
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| | - Chi S. Lau
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| | - Zheng Xiang
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - John W. McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Janice Lo
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| |
Collapse
|
12
|
Chiem K, Nogales A, Martinez-Sobrido L. Generation, Characterization, and Applications of Influenza A Reporter Viruses. Methods Mol Biol 2022; 2524:249-268. [PMID: 35821477 DOI: 10.1007/978-1-0716-2453-1_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Secondary experimental procedures such as immunostaining have been utilized to study wild-type influenza A viruses (IAV) but are inadequate to rapidly determine the virus in infected cells or for the high-throughput screening (HTS) of antivirals or neutralizing antibodies. Reverse genetics approaches have allowed the generation of recombinant IAV expressing bioluminescent (BL) reporters or fluorescent proteins (FPs). These approaches can easily track viral infections in cultured cells and in validated animal models of infection using in vivo imaging systems (IVIS). Here, we describe the experimental procedures to generate recombinant monomeric (m)Cherry-expressing influenza A/Puerto Rico/8/34 (PR8-mCherry) H1N1 by altering the non-structural (NS) vRNA segment and its use in mCherry-based microneutralization assays to assess antivirals and neutralizing antibodies. The experimental procedures could be used for the generation of other recombinant influenza virus types (e.g., influenza B) or IAV subtypes (e.g., H3N2) expressing mCherry or other BL reporters or FPs from the NS or other vRNA segment. These recombinant reporter-expressing viruses represent an excellent toolbox for the identification of prophylactics or therapeutics for the treatment of influenza viral infections in HTS settings as well as to study different aspects related with the biology of influenza viruses and/or its interaction with the host.
Collapse
Affiliation(s)
- Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Aitor Nogales
- Center for Animal Health Research, INIA-CISA/CSIC, Madrid, Spain.
| | - Luis Martinez-Sobrido
- Texas Biomedical Research Institute, San Antonio, TX, USA.
- Department of Internal Research, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
13
|
Sreenivasan CC, Sheng Z, Wang D, Li F. Host Range, Biology, and Species Specificity of Seven-Segmented Influenza Viruses-A Comparative Review on Influenza C and D. Pathogens 2021; 10:1583. [PMID: 34959538 PMCID: PMC8704295 DOI: 10.3390/pathogens10121583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Other than genome structure, influenza C (ICV), and D (IDV) viruses with seven-segmented genomes are biologically different from the eight-segmented influenza A (IAV), and B (IBV) viruses concerning the presence of hemagglutinin-esterase fusion protein, which combines the function of hemagglutinin and neuraminidase responsible for receptor-binding, fusion, and receptor-destroying enzymatic activities, respectively. Whereas ICV with humans as primary hosts emerged nearly 74 years ago, IDV, a distant relative of ICV, was isolated in 2011, with bovines as the primary host. Despite its initial emergence in swine, IDV has turned out to be a transboundary bovine pathogen and a broader host range, similar to influenza A viruses (IAV). The receptor specificities of ICV and IDV determine the host range and the species specificity. The recent findings of the presence of the IDV genome in the human respiratory sample, and high traffic human environments indicate its public health significance. Conversely, the presence of ICV in pigs and cattle also raises the possibility of gene segment interactions/virus reassortment between ICV and IDV where these viruses co-exist. This review is a holistic approach to discuss the ecology of seven-segmented influenza viruses by focusing on what is known so far on the host range, seroepidemiology, biology, receptor, phylodynamics, species specificity, and cross-species transmission of the ICV and IDV.
Collapse
Affiliation(s)
- Chithra C. Sreenivasan
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA;
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| |
Collapse
|
14
|
Sato K, Hayashi H, Shimotai Y, Yamaya M, Hongo S, Kawakami K, Matsuzaki Y, Nishimura H. TMPRSS2 Activates Hemagglutinin-Esterase Glycoprotein of Influenza C Virus. J Virol 2021; 95:e0129621. [PMID: 34406864 PMCID: PMC8513465 DOI: 10.1128/jvi.01296-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
Influenza C virus (ICV) has only one kind of spike protein, the hemagglutinin-esterase (HE) glycoprotein. HE functions similarly to hemagglutinin (HA) and neuraminidase of the influenza A and B viruses (IAV and IBV, respectively). It has a monobasic site, which is cleaved by some host enzymes. The cleavage is essential to activating the virus, but the enzyme or enzymes in the respiratory tract have not been identified. This study investigated whether the host serine proteases, transmembrane protease serine S1 member 2 (TMPRSS2) and human airway trypsin-like protease (HAT), which reportedly cleave HA of IAV/IBV, are involved in HE cleavage. We established TMPRSS2- and HAT-expressing MDCK cells (MDCK-TMPRSS2 and MDCK-HAT). ICV showed multicycle replication with HE cleavage without trypsin in MDCK-TMPRSS2 cells as well as IAV did. The HE cleavage and multicycle replication did not appear in MDCK-HAT cells infected with ICV without trypsin, while HA cleavage and multistep growth of IAV appeared in the cells. Amino acid sequences of the HE cleavage site in 352 ICV strains were completely preserved. Camostat and nafamostat suppressed the growth of ICV and IAV in human nasal surface epithelial (HNE) cells. Therefore, this study revealed that, at least, TMPRSS2 is involved in HE cleavage and suggested that nafamostat could be a candidate for therapeutic drugs for ICV infection. IMPORTANCE Influenza C virus (ICV) is a pathogen that causes acute respiratory illness, mostly in children, but there are no anti-ICV drugs. ICV has only one kind of spike protein, the hemagglutinin-esterase (HE) glycoprotein on the virion surface, which possesses receptor-binding, receptor-destroying, and membrane fusion activities. The HE cleavage is essential for the virus to be activated, but the enzyme or enzymes in the respiratory tract have not been identified. This study revealed that transmembrane protease serine S1 member 2 (TMPRSS2), and not human airway trypsin-like protease (HAT), is involved in HE cleavage. This is a novel study on the host enzymes involved in HE cleavage, and the result suggests that the host enzymes, such as TMPRSS2, may be a target for therapeutic drugs of ICV infection.
Collapse
Affiliation(s)
- Ko Sato
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hideki Hayashi
- Medical University Research Administrator, Nagasaki University School of Medicine, Sakamoto, Nagasaki, Japan
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, Yamagata, Japan
| | - Mutsuo Yamaya
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate school of Medicine, Sendai, Miyagi, Japan
| | - Seiji Hongo
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, Yamagata, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, Yamagata, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan
| |
Collapse
|
15
|
He WT, Lu M, Xing G, Shao Y, Zhang M, Yang Y, Li X, Zhang L, Li G, Cao Z, Su S, Veit M, He H. Emergence and adaptive evolution of influenza D virus. Microb Pathog 2021; 160:105193. [PMID: 34536503 DOI: 10.1016/j.micpath.2021.105193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
As a novel member of the Orthomyxoviridae, influenza D virus (IDV) was firstly isolated from swine. However, cattle were found to serve as its primary reservoir. The study of IDV emergence can shed light into the dynamics of zoonotic infections and interspecies transmission. Although there is an increasing number of strains and sequenced IDV strains, their origin, epidemiology and evolutionary dynamics remain unclear. In this study, we reconstruct the diversity and evolutionary dynamics of IDVs. Molecular detection of swine tissue samples shows that six IDV positive samples were identified in the Eastern China. Phylogenetic analyses suggest three major IDV lineages designated as D/Japan, D/OK and D/660 as well as intermediate lineages. IDVs show strong association with geographical location indicating a high level of local transmission, which suggests IDVs tend to establish a local lineage of in situ evolution. In addition, the D/OK lineage widely circulates in swine in Eastern China, and all of the Chinese virus isolates form a distinct sub-clade (D/China sub-lineage). Furthermore, we identified important amino acids in the HEF gene under positive selection that might affect its receptor binding cavity relevant for its broader cell tropism. The combined results highlight that more attention should be paid to the potential threat of IDV to livestock and farming in China.
Collapse
Affiliation(s)
- Wan-Ting He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Meng Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Gang Xing
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Yuekun Shao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Meng Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yichen Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinxin Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Letian Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Gairu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zongxi Cao
- Hainan Academician Workstation, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Shuo Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; San-ya Research Institute of Nanjing Agricultural University, Hainan, Sanya, China.
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Robert-von-Ostertag-Straße 7-13, 14163, Berlin, Germany
| | - Haijian He
- Agricultural College, Jinhua Poletecnic, Jinhua, 321007, China.
| |
Collapse
|
16
|
Devi AB, Sarala R. Substantial effect of phytochemical constituents against the pandemic disease influenza-a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:120. [PMID: 34150912 PMCID: PMC8196934 DOI: 10.1186/s43094-021-00269-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Background Influenza is an acute respiratory tract infection caused by the influenza virus. Vaccination and antiviral drugs are the two methods opted to control the disease. Besides their efficiency, they also cause adverse side effects. Hence, scientists turned their attention to powerful herbal medicines. This review put focus on various proven, scientifically validated anti-influenza compounds produced by the plants suggested for the production of newer drugs for the better treatment of influenza and its related antiviral diseases too. Main body In this review, fifty medicinal herb phytochemical constituents and their anti-influenza activities have been documented. Specifically, this review brings out the accurate and substantiates mechanisms of action of these constituents. This study categorizes the phytochemical constituents into primary and secondary metabolites which provide a source for synthesizing and developing new drugs. Conclusion This article provides a summary of the actions of the herbal constituents. Since the mechanisms of action of the components are elucidated, the pandemic situation arising due to influenza and similar antiviral diseases can be handled promisingly with greater efficiency. However, clinical trials are in great demand. The formulation of usage may be a single drug compound or multi-herbal combination. These, in turn, open up a new arena for the pharmaceutical industries to develop innovative drugs.
Collapse
Affiliation(s)
- A Brindha Devi
- Department of Botany, Periyar EVR College (Autonomous), (Affiliated to Bharathidasan University, Trichy-24), Trichy-620 023, Tamil Nadu, India
| | - R Sarala
- Department of Botany, Periyar EVR College (Autonomous), (Affiliated to Bharathidasan University, Trichy-24), Trichy-620 023, Tamil Nadu, India
| |
Collapse
|
17
|
Serrão VHB, Cook JD, Lee JE. Snapshot of an influenza virus glycoprotein fusion intermediate. Cell Rep 2021; 35:109152. [PMID: 34010634 DOI: 10.1016/j.celrep.2021.109152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Enveloped virus entry requires the fusion of cellular and viral membranes, a process directed by their viral fusion glycoproteins. Our current knowledge of this process has been shaped by structural studies of the pre- and post-fusion conformations of these viral fusogens. These structural snapshots have revealed the start and end states necessary for fusion, but the dynamics of the intermediate conformations have remained unclear. Using the influenza C virus hemagglutinin-esterase-fusion glycoprotein as a model, we report the structural and biophysical characterization of a trapped intermediate. Crystallographic studies revealed a structural reorganization of the C terminus to create a second chain reversal region, resulting in the N and C termini being positioned in opposing directions. Intrinsic tryptophan fluorescence and bimane-induced quenching measurements suggest intermediate formation is mediated by conserved hydrophobic residues. Our study reveals a late-stage extended intermediate structural event. This work adds to our understanding of virus cell fusion.
Collapse
Affiliation(s)
- Vitor Hugo B Serrão
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathan D Cook
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
18
|
Matsuzaki Y, Sugawara K, Shimotai Y, Kadowaki Y, Hongo S, Mizuta K, Nishimura H. Growth Kinetics of Influenza C Virus Antigenic Mutants That Escaped from Anti-Hemagglutinin Esterase Monoclonal Antibodies and Viral Antigenic Changes Found in Field Isolates. Viruses 2021; 13:401. [PMID: 33802440 PMCID: PMC7998938 DOI: 10.3390/v13030401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/16/2023] Open
Abstract
The antigenicity of the hemagglutinin esterase (HE) glycoprotein of influenza C virus is known to be stable; however, information about residues related to antigenic changes has not yet been fully acquired. Using selection with anti-HE monoclonal antibodies, we previously obtained some escape mutants and identified four antigenic sites, namely, A-1, A-2, A-3, and Y-1. To confirm whether the residues identified as the neutralizing epitope possibly relate to the antigenic drift, we analyzed the growth kinetics of these mutants. The results showed that some viruses with mutations in antigenic site A-1 were able to replicate to titers comparable to that of the wild-type, while others showed reduced titers. The mutants possessing substitutions in the A-2 or A-3 site replicated as efficiently as the wild-type virus. Although the mutant containing a deletion at positions 192 to 195 in the Y-1 site showed lower titers than the wild-type virus, it was confirmed that this region in the 190-loop on the top side of the HE protein is not essential for viral propagation. Then, we revealed that antigenic changes due to substitutions in the A-1, A-3, and/or Y-1 site had occurred in nature in Japan for the past 30 years. These results suggest that some residues (i.e., 125, 176, 192) in the A-1 site, residue 198 in the A-3 site, and residue 190 in the Y-1 site are likely to mediate antigenic drift while maintaining replicative ability.
Collapse
Affiliation(s)
- Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.S.); (Y.K.); (S.H.)
| | - Kanetsu Sugawara
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.S.); (Y.K.); (S.H.)
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.S.); (Y.K.); (S.H.)
| | - Yoko Kadowaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.S.); (Y.K.); (S.H.)
| | - Seiji Hongo
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.S.); (Y.K.); (S.H.)
| | - Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 990-0031, Japan;
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan;
| |
Collapse
|
19
|
Liao F, Nishimura H, Ito H, Zhang Y, Matsuzaki Y. Longitudinal course of influenza C virus antibody titers of healthy adults in Sendai, Japan. J Clin Virol 2020; 133:104662. [PMID: 33137705 DOI: 10.1016/j.jcv.2020.104662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 10/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Influenza C virus causes mild respiratory diseases in humans. Previous studies suggested that the predominant hemagglutinin-esterase gene lineage circulating in children might be selected among the adult population, yet the prevalence of influenza C virus in adults has not been described. OBJECTIVES To evaluate the frequency of influenza C virus infection in adults. STUDY DESIGN We performed hemagglutination inhibition assays of serum samples collected at periodic occupational medical checkups from employees of a hospital. A total of 679 serum samples were collected from 57 subjects who participated in biannual medical checkups between 2011 and 2016 as part of a longitudinal series. Titers of antibodies against the C/Kanagawa and C/Sao Paulo lineage viruses were detected. RESULTS Ten serum sample pairs from among the 57 subjects showed at least a four-fold increase in influenza C antibody titers. Samples from three subjects exhibited antibody titer increases for both the C/Kanagawa and C/Sao Paulo lineages, four subjects showed an increased titer against the C/Sao Paulo lineage, and three subjects showed an increased titer against the C/Kanagawa lineage. Half of the antibody titer increases for the C/Kanagawa lineage were detected in May 2014, while the increases for the C/Sao Paulo lineage were detected from 2011 to 2016. CONCLUSION The 5-year influenza C virus infection rate was estimated at 17.5 %. There were antibodies that cross-reacted with the C/Sao Paulo and C/Kanagawa lineages. The results suggest that C/Sao Paulo was the main lineage in the adult population of this area, with cocirculation of the C/Kanagawa lineage.
Collapse
Affiliation(s)
- Feng Liao
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Miyagino-ku, Sendai, Miyagi, 983-8520, Japan; Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, 650022, Kunming, PR China
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Miyagino-ku, Sendai, Miyagi, 983-8520, Japan
| | - Hiroko Ito
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Miyagino-ku, Sendai, Miyagi, 983-8520, Japan
| | - Yunhui Zhang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, 650022, Kunming, PR China
| | - Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University, Faculty of Medicine, Iida-Nishi, Yamagata, 990-9585, Japan.
| |
Collapse
|
20
|
Daniels RS, Tse H, Ermetal B, Xiang Z, Jackson DJ, Guntoro J, Nicod J, Stewart A, Cross KJ, Hussain S, McCauley JW, Lo J. Molecular Characterization of Influenza C Viruses from Outbreaks in Hong Kong SAR, China. J Virol 2020; 94:e01051-20. [PMID: 32817211 PMCID: PMC7565627 DOI: 10.1128/jvi.01051-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
In 2014, the Centre for Health Protection in Hong Kong introduced screening for influenza C virus (ICV) as part of its routine surveillance for infectious agents in specimens collected from patients presenting with symptoms of respiratory viral infection, including influenza-like illness (ILI). A retrospective analysis of ICV detections up to week 26 of 2019 revealed persistent low-level circulation, with two outbreaks having occurred in the winters of 2015 to 2016 and 2017 to 2018. These outbreaks occurred at the same time as, and were dwarfed by, seasonal epidemics of influenza types A and B. Gene sequencing studies on stored ICV-positive clinical specimens from the two outbreaks have shown that the hemagglutinin-esterase (HE) genes of the viruses fall into two of the six recognized genetic lineages (represented by C/Kanagawa/1/76 and C/São Paulo/378/82), with there being significant genetic drift compared to earlier circulating viruses within both lineages. The location of a number of encoded amino acid substitutions in hemagglutinin-esterase fusion (HEF) glycoproteins suggests that antigenic drift may also have occurred. Observations of ICV outbreaks in other countries, with some of the infections being associated with severe disease, indicates that ICV infection has the potential to have significant clinical and health care impacts in humans.IMPORTANCE Influenza C virus infection of humans is common, and reinfection can occur throughout life. While symptoms are generally mild, severe disease cases have been reported, but knowledge of the virus is limited, as little systematic surveillance for influenza C virus is conducted and the virus cannot be studied by classical virologic methods because it cannot be readily isolated in laboratories. A combination of systematic surveillance in Hong Kong SAR, China, and new gene sequencing methods has been used in this study to assess influenza C virus evolution and provides evidence for a 2-year cycle of disease outbreaks. The results of studies like that reported here are key to developing an understanding of the impact of influenza C virus infection in humans and how virus evolution might be associated with epidemics.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Amino Acid Substitution
- Child
- Child, Preschool
- Disease Outbreaks
- Epidemiological Monitoring
- Female
- Gene Expression
- Hemagglutinins, Viral/chemistry
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/metabolism
- High-Throughput Nucleotide Sequencing
- Hong Kong/epidemiology
- Humans
- Infant
- Influenza, Human/epidemiology
- Influenza, Human/pathology
- Influenza, Human/virology
- Gammainfluenzavirus/enzymology
- Gammainfluenzavirus/genetics
- Male
- Middle Aged
- Models, Molecular
- Molecular Epidemiology
- Mutation
- Phylogeny
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Retrospective Studies
- Viral Fusion Proteins/chemistry
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/metabolism
Collapse
Affiliation(s)
- Rodney S Daniels
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Herman Tse
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| | - Burcu Ermetal
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Zheng Xiang
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Deborah J Jackson
- Advanced Sequencing Facility, The Francis Crick Institute, London, United Kingdom
| | - Jeremy Guntoro
- Advanced Sequencing Facility, The Francis Crick Institute, London, United Kingdom
| | - Jérôme Nicod
- Advanced Sequencing Facility, The Francis Crick Institute, London, United Kingdom
| | - Aengus Stewart
- Bioinformatics & Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Karen J Cross
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Saira Hussain
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - John W McCauley
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Janice Lo
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| |
Collapse
|
21
|
Sriwilaijaroen N, Suzuki Y. Host Receptors of Influenza Viruses and Coronaviruses-Molecular Mechanisms of Recognition. Vaccines (Basel) 2020; 8:E587. [PMID: 33036202 PMCID: PMC7712180 DOI: 10.3390/vaccines8040587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Among the four genera of influenza viruses (IVs) and the four genera of coronaviruses (CoVs), zoonotic αIV and βCoV have occasionally caused airborne epidemic outbreaks in humans, who are immunologically naïve, and the outbreaks have resulted in high fatality rates as well as social and economic disruption and losses. The most devasting influenza A virus (IAV) in αIV, pandemic H1N1 in 1918, which caused at least 40 million deaths from about 500 million cases of infection, was the first recorded emergence of IAVs in humans. Usually, a novel human-adapted virus replaces the preexisting human-adapted virus. Interestingly, two IAV subtypes, A/H3N2/1968 and A/H1N1/2009 variants, and two lineages of influenza B viruses (IBV) in βIV, B/Yamagata and B/Victoria lineage-like viruses, remain seasonally detectable in humans. Both influenza C viruses (ICVs) in γIV and four human CoVs, HCoV-229E and HCoV-NL63 in αCoV and HCoV-OC43 and HCoV-HKU1 in βCoV, usually cause mild respiratory infections. Much attention has been given to CoVs since the global epidemic outbreaks of βSARS-CoV in 2002-2004 and βMERS-CoV from 2012 to present. βSARS-CoV-2, which is causing the ongoing COVID-19 pandemic that has resulted in 890,392 deaths from about 27 million cases of infection as of 8 September 2020, has provoked worldwide investigations of CoVs. With the aim of developing efficient strategies for controlling virus outbreaks and recurrences of seasonal virus variants, here we overview the structures, diversities, host ranges and host receptors of all IVs and CoVs and critically review current knowledge of receptor binding specificity of spike glycoproteins, which mediates infection, of IVs and of zoonotic, pandemic and seasonal CoVs.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| | - Yasuo Suzuki
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
22
|
Liu R, Sheng Z, Huang C, Wang D, Li F. Influenza D virus. Curr Opin Virol 2020; 44:154-161. [PMID: 32932215 PMCID: PMC7755673 DOI: 10.1016/j.coviro.2020.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022]
Abstract
Influenza D is the only type of influenza virus that mainly affects cattle with frequent spillover to other species. Since the initial description of influenza D virus (IDV) in 2011, the virus has been found to circulate among cattle and swine populations worldwide. Research conducted during the past several years has led to an increased understanding of this novel influenza virus with bovines as a reservoir. In this review, we describe the current knowledge of epidemiology and host range of IDV followed by discussion of infection biology and animal model development for IDV. Finally, we review progress towards understanding of the pathogenesis and host response of IDV as well as developing preventive vaccines for IDV.
Collapse
Affiliation(s)
- Runxia Liu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Zizhang Sheng
- Zukerman Institute of Mind Brain Behavior, Columbia University, New York, NY, USA
| | - Chen Huang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
23
|
Matsuzaki Y, Shimotai Y, Kadowaki Y, Sugawara K, Hongo S, Mizuta K, Nishimura H. Antigenic changes among the predominantly circulating C/Sao Paulo lineage strains of influenza C virus in Yamagata, Japan, between 2015 and 2018. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 81:104269. [PMID: 32135195 DOI: 10.1016/j.meegid.2020.104269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/10/2020] [Accepted: 02/29/2020] [Indexed: 11/29/2022]
Abstract
Influenza C virus is a pathogen that causes acute respiratory illness in children and results in the hospitalization of infants. The antigenicity of the hemagglutinin esterase (HE) glycoprotein is highly stable, and it is not yet known whether antigenic changes contribute to the worldwide transmission and the occurrence of outbreaks of influenza C virus. Here, we performed antigenic analysis of 84 influenza C viruses isolated in Yamagata, Japan, during a 4-year period from 2015 to 2018 and analyzed sequence data for strains of the virus from Japan and many other parts of the world. Antigenic and phylogenetic analyses revealed that 83 strains belonged to the C/Sao Paulo lineage, and two sublineage strains, the Aichi99 sublineage and Victoria2012 sublineage, cocirculated between 2016 and 2018. Aichi99 sublineage strains exhibiting decreased reactivity with the monoclonal antibody YA3 became predominant after 2016, and these strains possessed the K190N mutation. Residue 190 is located in the 190-loop on the top side of the HE protein within a region that is known to show variation that does not impair the biological activity of the protein. The Aichi99 sublineage strains possessing the K190N mutation were detected after 2012 in Europe, Australia, the USA, and Asia as well as Japan. These observations suggest that antigenic variants with K190N mutations have circulated extensively around the world and caused outbreaks in Japan between 2016 and 2018. Our study indicated that the 190-loop is an important antigenic region, and the results suggested that changes in the 190-loop have contributed to the extensive transmission of the virus.
Collapse
Affiliation(s)
- Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan.
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan
| | - Yoko Kadowaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan
| | - Kanetsu Sugawara
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan
| | - Seiji Hongo
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan
| | - Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Yamagata 990-0031, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan
| |
Collapse
|
24
|
Liu R, Sheng Z, Lin T, Sreenivasan C, Gao R, Thomas M, Druce J, Hause BM, Kaushik RS, Li F, Wang D. Genetic and antigenic characteristics of a human influenza C virus clinical isolate. J Med Virol 2020; 92:161-166. [PMID: 31498448 PMCID: PMC6901781 DOI: 10.1002/jmv.25589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/02/2019] [Indexed: 12/24/2022]
Abstract
Unlike influenza A and B viruses that infect humans and cause severe diseases in seasonal epidemics, influenza C virus (ICV) is a ubiquitous childhood pathogen typically causing mild respiratory symptoms. ICV infections are rarely diagnosed and less research has been performed on it despite the virus being capable of causing severe disease in infants. Here we report on the isolation of a human ICV from a child with acute respiratory disease, provisionally designated C/Victoria/2/2012 (C/Vic). The full-length genome sequence and phylogenetic analysis revealed that the hemagglutinin-esterase-fusion (HEF) gene of C/Vic was derived from C/Sao Paulo lineage, while its PB2 and P3 genes evolved separately from all characterized historical ICV isolates. Furthermore, antigenic analysis using the hemagglutination inhibition (HI) assay found that 1947 C/Taylor virus (C/Taylor lineage) was antigenically more divergent from1966 C/Johannesburg (C/Aichi lineage) than from 2012 C/Vic. Structure modeling of the HEF protein identified two mutations in the 170-loop of the HEF protein around the receptor-binding pocket as a possible antigenic determinant responsible for the discrepant HI results. Taken together, results of our studies reveal novel insights into the genetic and antigenic evolution of ICV and provide a framework for further investigation of its molecular determinants of antigenic property and replication.
Collapse
Affiliation(s)
- Runxia Liu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
- BioSNTR, Brookings, SD, 57007, USA
| | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Tao Lin
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, 57007, USA
| | - Chithra Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
- BioSNTR, Brookings, SD, 57007, USA
| | - Rongruan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
- BioSNTR, Brookings, SD, 57007, USA
| | - Milton Thomas
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Julian Druce
- Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
| | - Ben M. Hause
- Cambridge Technologies Inc., Worthington, 56187, USA
| | - Radhey S. Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
- BioSNTR, Brookings, SD, 57007, USA
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
- BioSNTR, Brookings, SD, 57007, USA
| |
Collapse
|
25
|
Sederdahl BK, Williams JV. Epidemiology and Clinical Characteristics of Influenza C Virus. Viruses 2020; 12:E89. [PMID: 31941041 PMCID: PMC7019359 DOI: 10.3390/v12010089] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Influenza C virus (ICV) is a common yet under-recognized cause of acute respiratory illness. ICV seropositivity has been found to be as high as 90% by 7-10 years of age, suggesting that most people are exposed to ICV at least once during childhood. Due to difficulty detecting ICV by cell culture, epidemiologic studies of ICV likely have underestimated the burden of ICV infection and disease. Recent development of highly sensitive RT-PCR has facilitated epidemiologic studies that provide further insights into the prevalence, seasonality, and course of ICV infection. In this review, we summarize the epidemiology and clinical characteristics of ICV.
Collapse
Affiliation(s)
- Bethany K. Sederdahl
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
26
|
Nogales A, Aydillo T, Ávila-Pérez G, Escalera A, Chiem K, Cadagan R, DeDiego ML, Li F, García-Sastre A, Martínez-Sobrido L. Functional Characterization and Direct Comparison of Influenza A, B, C, and D NS1 Proteins in vitro and in vivo. Front Microbiol 2019; 10:2862. [PMID: 31921042 PMCID: PMC6927920 DOI: 10.3389/fmicb.2019.02862] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022] Open
Abstract
Influenza viruses are important pathogens that affect multiple animal species, including humans. There are four types of influenza viruses: A, B, C, and D (IAV, IBV, ICV, and IDV, respectively). IAV and IBV are currently circulating in humans and are responsible of seasonal epidemics (IAV and IBV) and occasional pandemics (IAV). ICV is known to cause mild infections in humans and pigs, while the recently identified IDV primarily affect cattle and pigs. Influenza non-structural protein 1 (NS1) is a multifunctional protein encoded by the NS segment in all influenza types. The main function of NS1 is to counteract the host antiviral defense, including the production of interferon (IFN) and IFN-stimulated genes (ISGs), and therefore is considered an important viral pathogenic factor. Despite of homologous functions, the NS1 protein from the diverse influenza types share little amino acid sequence identity, suggesting possible differences in their mechanism(s) of action, interaction(s) with host factors, and contribution to viral replication and/or pathogenesis. In addition, although the NS1 protein of IAV, IBV and, to some extent ICV, have been previously studied, it is unclear if IDV NS1 has similar properties. Using an approach that allow us to express NS1 independently of the nuclear export protein from the viral NS segment, we have generated recombinant IAV expressing IAV, IBV, ICV, and IDV NS1 proteins. Although recombinant viruses expressing heterotypic (IBV, ICV, and IDV) NS1 proteins were able to replicate similarly in canine MDCK cells, their viral fitness was impaired in human A549 cells and they were highly attenuated in vivo. Our data suggest that despite the similarities to effectively counteract innate immune responses in vitro, the NS1 proteins of IBV, ICV, or IDV do not fully complement the functions of IAV NS1, resulting in deficient viral replication and pathogenesis in vivo.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- Centro de Investigación en Sanidad Animal, Madrid, Spain
| | - Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gines Ávila-Pérez
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Alba Escalera
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kevin Chiem
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Richard Cadagan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Feng Li
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| |
Collapse
|
27
|
Lee J, Wang L, Palinski R, Walsh T, He D, Li Y, Wu R, Lang Y, Sunwoo SY, Richt JA, Ma W. Comparison of Pathogenicity and Transmissibility of Influenza B and D Viruses in Pigs. Viruses 2019; 11:E905. [PMID: 31569752 PMCID: PMC6832242 DOI: 10.3390/v11100905] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022] Open
Abstract
Influenza viruses are important pathogens causing respiratory disease in humans and animals. In contrast to influenza A virus (IAV) that can infect a wide range of animal species, other influenza viruses, including influenza B virus (IBV), influenza C virus (ICV), and influenza D virus (IDV) have a limited host range. Swine can be infected with all four different genera of influenza viruses. IAV infection of pigs causes the well-known swine influenza that poses significant threats to human and animal health. However, influenza virus infection of pigs with IBV, ICV, and IDV are not well-characterized. Herein, we compared pathogenicity of IBV and IDV using intratracheal and intranasal infection of pigs, which are IAV seropositive, and commingled naïve pigs with the infected animals to determine their transmissibility. Both viruses caused fever and some lung lesions, replicated in the lungs of infected pigs, but only IDV transmitted to the contact animals. Although IBV and IDV displayed differing levels of replication in the respiratory tract of infected pigs, no significant differences in pathogenicity of both viruses were observed. These results indicate that both IBV and IDV can replicate, and are pathogenic in pigs.
Collapse
Affiliation(s)
- Jinhwa Lee
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Liping Wang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Rachel Palinski
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Tim Walsh
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Dongchang He
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Yonghai Li
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Rui Wu
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Yuekun Lang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Sun-Young Sunwoo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Juergen A Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
28
|
Gultyaev AP, Richard M, Spronken MI, Olsthoorn RCL, Fouchier RAM. Conserved structural RNA domains in regions coding for cleavage site motifs in hemagglutinin genes of influenza viruses. Virus Evol 2019; 5:vez034. [PMID: 31456885 PMCID: PMC6704317 DOI: 10.1093/ve/vez034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The acquisition of a multibasic cleavage site (MBCS) in the hemagglutinin (HA) glycoprotein is the main determinant of the conversion of low pathogenic avian influenza viruses into highly pathogenic strains, facilitating HA cleavage and virus replication in a broader range of host cells. In nature, substitutions or insertions in HA RNA genomic segments that code for multiple basic amino acids have been observed only in the HA genes of two out of sixteen subtypes circulating in birds, H5 and H7. Given the compatibility of MBCS motifs with HA proteins of numerous subtypes, this selectivity was hypothesized to be determined by the existence of specific motifs in HA RNA, in particular structured domains. In H5 and H7 HA RNAs, predictions of such domains have yielded alternative conserved stem-loop structures with the cleavage site codons in the hairpin loops. Here, potential RNA secondary structures were analyzed in the cleavage site regions of HA segments of influenza viruses of different types and subtypes. H5- and H7-like stem-loop structures were found in all known influenza A virus subtypes and in influenza B and C viruses with homology modeling. Nucleotide covariations supported this conservation to be determined by RNA structural constraints that are stronger in the domain-closing bottom stems as compared to apical parts. The structured character of this region in (sub-)types other than H5 and H7 indicates its functional importance beyond the ability to evolve toward an MBCS responsible for a highly pathogenic phenotype.
Collapse
Affiliation(s)
- Alexander P Gultyaev
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.,Group Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Monique I Spronken
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - René C L Olsthoorn
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
29
|
Lee HS, Lim S, Noh JY, Song JY, Cheong HJ, Lee JH, Woo SI, Kim WJ. Identification of influenza C virus in young South Korean children, from October 2013 to September 2016. J Clin Virol 2019; 115:47-52. [PMID: 30978620 PMCID: PMC7106441 DOI: 10.1016/j.jcv.2019.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Influenza C virus has been largely neglected, compared to influenza A orB viruses, and is not routinely tested in clinical practices. However, several studies have indicated that influenza C virus causes severe acute respiratory illness and pneumonia in all ages. OBJECTIVE We conducted a study to identify influenza C virus among young children in South Korea. STUDY DESIGN From October 2013 to September 2016, 973 young children with influenzalike illness (ILI) were enrolled at three university hospitals. We tested nasopharyngeal samples for 16 types of respiratory viruses. Among the tested samples, 564 were positive for one or more respiratory viruses. Except for the samples where 16 types of respiratory viruses were found, 409 negative samples were examined for the presence of influenza C virus, using a matrix gene specific primer set. RESULTS Among 409 nasopharyngeal samples, five influenza C viruses were detected. The manifestation of influenza C virus infection in young children was observed acute respiratory illness, such as fever, rhinorrhea, and cough, but no pneumonia or severe respiratory illness. Nucleotide sequencing was conducted and a phylogenetic tree was generated. We found that C/Sao Paulo/387/82-like lineage viruses circulated in South Korea, and the fully sequenced virus (C/Seoul/APD462/2015) was closely related to C/Victoria/2/2012 and C/Tokyo/4/2014 strains. CONCLUSIONS This study was the first report of influenza C virus detection in South Korea. Although severe illness was not observed in this study, we suggest the necessity for influenza C virus testing in pediatric patients with ILI, considering other reports of severe illnesses caused by influenza C virus infections.
Collapse
Affiliation(s)
- Han Sol Lee
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Sooyeon Lim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea; Division of Brain Korea 21 Program for Biomedicine Science, College of Medicine, Korea University, Seoul, South Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea; Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, South Korea
| | - Jung Hwa Lee
- Department of Pediatrics, Korea University College of Medicine, Seoul, South Korea
| | - Sung Il Woo
- Department of Pediatrics, Chungbuk National University Hospital and College of Medicine, Cheongju, South Korea
| | - Woo Joo Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea; Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
30
|
Tang YS, Lo CY, Mok CKP, Chan PKS, Shaw PC. The Extended C-Terminal Region of Influenza C Virus Nucleoprotein Is Important for Nuclear Import and Ribonucleoprotein Activity. J Virol 2019; 93:e02048-18. [PMID: 30814281 PMCID: PMC6475786 DOI: 10.1128/jvi.02048-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
The influenza C virus (ICV) is a human-pathogenic agent, and the infections are frequently identified in children. Compared to influenza A and B viruses, the nucleoprotein of ICV (NPC) has an extended C-terminal region of which the functional significance is ill defined. We observed that the nuclear localization signals (NLSs) found on the nucleoproteins of influenza A and B virus subtypes are absent at corresponding positions on ICV. Instead, we found that a long bipartite nuclear localization signal resides at the extended C-terminal region, spanning from R513 to K549. Our experimental data determined that the KKMK motif within this region plays important roles in both nuclear import and polymerase activity. Similar to the influenza A viruses, NPC also binds to multiple human importin α isoforms. Taken together, our results enhance the understanding of the virus-host interaction of the influenza C virus.IMPORTANCE As a member of the Orthomyxoviridae family, the polymerase complex of the influenza C virus structurally resembles its influenza A and influenza B virus counterparts, but the nucleoprotein differs by possessing an extra C-terminal region. We have characterized this region in view of nuclear import and interaction with the importin α protein family. Our results demonstrate the functional significance of a previously uncharacterized region on Orthomyxoviridae nucleoprotein (NP). Based on this work, we propose that importin α binding to influenza C virus NP is regulated by a long bipartite nuclear localization signal. Since the sequence of influenza D virus NP shares high homology to that of the influenza C virus, this work will also shed light on how influenza D virus NP functions.
Collapse
Affiliation(s)
- Yun-Sang Tang
- School of Life Sciences and Centre for Protein Science and Crystallography, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun-Yeung Lo
- School of Life Sciences and Centre for Protein Science and Crystallography, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chris Ka-Pun Mok
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Paul Kay-Sheung Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pang-Chui Shaw
- School of Life Sciences and Centre for Protein Science and Crystallography, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
31
|
Fritsch A, Schweiger B, Biere B. Influenza C virus in pre-school children with respiratory infections: retrospective analysis of data from the national influenza surveillance system in Germany, 2012 to 2014. Euro Surveill 2019; 24:1800174. [PMID: 30862333 PMCID: PMC6415498 DOI: 10.2807/1560-7917.es.2019.24.10.1800174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 12/31/2018] [Indexed: 11/23/2022] Open
Abstract
IntroductionRecent data on influenza C virus indicate a possible higher clinical impact in specified patient populations than previously thought.AimWe aimed to investigate influenza C virus circulation in Germany.MethodsA total of 1,588 samples from 0 to 4 year-old children presenting as outpatients with influenza-like illness (ILI) or acute respiratory infection were analysed retrospectively. The samples represented a subset of all samples from the German national surveillance system for influenza in this age group in 2012-14. The presence of influenza C virus was investigated by real-time PCR. For positive samples, information on symptoms as well as other respiratory virus co-infections was considered. Retrieved influenza C viral sequences were phylogenetically characterised.ResultsInfluenza C viral RNA was detected in 20 (1.3% of) samples, including 16 during the 2012/13 season. The majority (18/20) of influenza C-positive patients had ILI according to the European Union definition, one patient had pneumonia. Viruses belonged to the C/Sao Paulo and C/Kanagawa lineages. Most (11/20) samples were co-infected with other respiratory viruses.ConclusionOur data are the first on influenza C virus circulation in Germany and notably from a European national surveillance system. The low detection frequency and the identified virus variants confirm earlier observations outside a surveillance system. More virus detections during the 2012/13 season indicate a variable circulation intensity in the different years studied. Influenza C virus can be considered for ILI patients. Future studies addressing its clinical impact, especially in patients with severe disease are needed.
Collapse
Affiliation(s)
- Annemarie Fritsch
- Robert Koch Institute, National Reference Center for Influenza, FG 17 Influenza and Other Respiratory Viruses, Berlin, Germany
| | - Brunhilde Schweiger
- Robert Koch Institute, National Reference Center for Influenza, FG 17 Influenza and Other Respiratory Viruses, Berlin, Germany
| | - Barbara Biere
- Robert Koch Institute, National Reference Center for Influenza, FG 17 Influenza and Other Respiratory Viruses, Berlin, Germany
| |
Collapse
|
32
|
Mizuta K, Tanaka W, Komabayashi K, Tanaka S, Seto J, Aoki Y, Ikeda T. Longitudinal Epidemiology of Viral Infectious Diseases Combining Virus Isolation, Antigenic Analysis, and Phylogenetic Analysis as Well as Seroepidemiology in Yamagata, Japan, between 1999 and 2018. Jpn J Infect Dis 2019; 72:211-223. [PMID: 30814463 DOI: 10.7883/yoken.jjid.2018.500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We introduced a microplate method for virus isolation in the Department of Microbiology, Yamagata Prefectural Institute of Public Health (YPIPH) in 1999 in Yamagata, Japan. We have since carried out longitudinal epidemiological studies on viral infectious diseases, particularly respiratory viruses, combining traditional technologies such as virus isolation and serological techniques and newly developed molecular methods. Here, we provide an overview of our activities at YPIPH between 1999 and 2018. During the study period, we observed emerging and re-merging diseases such as those caused by echovirus type 13, enterovirus D68, parechovirus-A3 (PeV-A3), and Saffold virus. With regard to PeV-A3, we proposed a new disease concept, "PeV-A3-associated myalgia/myositis." We also revealed the longitudinal epidemiologies of several viruses such as enterovirus A71 and coxsackievirus A16. To perform longitudinal epidemiological studies at any time in Yamagata, we established a system for stocking clinical specimens, viral isolates, complementary DNAs, and serum specimens. We have also pursued collaboration works with virology laboratories across Japan. We hope our experiences, findings, and research materials will further contribute to the development of countermeasures against viral infectious diseases and improvement in public health strategies in Yamagata, Japan, Asia, and around the world.
Collapse
Affiliation(s)
- Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health
| | - Waka Tanaka
- Department of Microbiology, Yamagata Prefectural Institute of Public Health
| | | | - Shizuka Tanaka
- Department of Microbiology, Yamagata Prefectural Institute of Public Health
| | - Junji Seto
- Department of Microbiology, Yamagata Prefectural Institute of Public Health
| | - Yoko Aoki
- Department of Microbiology, Yamagata Prefectural Institute of Public Health
| | - Tatsuya Ikeda
- Department of Microbiology, Yamagata Prefectural Institute of Public Health
| |
Collapse
|
33
|
Zhang W, Zhang L, He W, Zhang X, Wen B, Wang C, Xu Q, Li G, Zhou J, Veit M, Su S. Genetic Evolution and Molecular Selection of the HE Gene of Influenza C Virus. Viruses 2019; 11:E167. [PMID: 30791465 PMCID: PMC6409753 DOI: 10.3390/v11020167] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/15/2019] [Accepted: 01/31/2019] [Indexed: 11/26/2022] Open
Abstract
Influenza C virus (ICV) was first identified in humans and swine, but recently also in cattle, indicating a wider host range and potential threat to both the livestock industry and public health than was originally anticipated. The ICV hemagglutinin-esterase (HE) glycoprotein has multiple functions in the viral replication cycle and is the major determinant of antigenicity. Here, we developed a comparative approach integrating genetics, molecular selection analysis, and structural biology to identify the codon usage and adaptive evolution of ICV. We show that ICV can be classified into six lineages, consistent with previous studies. The HE gene has a low codon usage bias, which may facilitate ICV replication by reducing competition during evolution. Natural selection, dinucleotide composition, and mutation pressure shape the codon usage patterns of the ICV HE gene, with natural selection being the most important factor. Codon adaptation index (CAI) and relative codon deoptimization index (RCDI) analysis revealed that the greatest adaption of ICV was to humans, followed by cattle and swine. Additionally, similarity index (SiD) analysis revealed that swine exerted a stronger evolutionary pressure on ICV than humans, which is considered the primary reservoir. Furthermore, a similar tendency was also observed in the M gene. Of note, we found HE residues 176, 194, and 198 to be under positive selection, which may be the result of escape from antibody responses. Our study provides useful information on the genetic evolution of ICV from a new perspective that can help devise prevention and control strategies.
Collapse
Affiliation(s)
- Wenyan Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Letian Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wanting He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xu Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Baiqing Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Congcong Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qiuhua Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Gairu Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiyong Zhou
- Key laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China.
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, 14163 Berlin, Germany.
| | - Shuo Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
34
|
Takahashi M, Obara T, Matsuzaki Y, Maisawa SI, Sasaki Y, Yoshino N, Shirasawa A, Iwabuchi K, Takahashi T, Kajita H, Ono Y, Ryo A, Kimura H, Muraki Y. Cocirculation of Influenza C Viruses with Distinct Internal Genome Constellations in Iwate Prefecture, Japan, in 2016. Jpn J Infect Dis 2018; 71:393-395. [PMID: 30068890 DOI: 10.7883/yoken.jjid.2018.204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Masaki Takahashi
- Iwate Prefectural Research Institute for Environmental Sciences and Public Health
- Department of Microbiology, Yokohama City University Graduate School of Medicine
| | - Takahiro Obara
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University
| | - Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine
| | | | - Yutaka Sasaki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University
| | - Naoto Yoshino
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University
| | - Akira Shirasawa
- Iwate Prefectural Research Institute for Environmental Sciences and Public Health
- Oshu Public Health Center, Iwate Prefectural Government
| | - Kaori Iwabuchi
- Iwate Prefectural Research Institute for Environmental Sciences and Public Health
| | - Tomoko Takahashi
- Iwate Prefectural Research Institute for Environmental Sciences and Public Health
| | - Hiroko Kajita
- Iwate Prefectural Research Institute for Environmental Sciences and Public Health
| | - Yasushi Ono
- Iwate Prefectural Research Institute for Environmental Sciences and Public Health
- Office of Medical Policy, Department of Health and Welfare, Iwate Prefectural Government
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine
| | - Hirokazu Kimura
- Department of Microbiology, Yokohama City University Graduate School of Medicine
- School of Medical Technology, Faculty of Health Science, Gunma Paz University
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases
| | - Yasushi Muraki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University
| |
Collapse
|
35
|
Matsuzaki Y, Sugawara K, Furuse Y, Shimotai Y, Hongo S, Mizuta K, Nishimura H. Neutralizing Epitopes and Residues Mediating the Potential Antigenic Drift of the Hemagglutinin-Esterase Protein of Influenza C Virus. Viruses 2018; 10:E417. [PMID: 30096880 PMCID: PMC6116000 DOI: 10.3390/v10080417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022] Open
Abstract
We mapped the hemagglutinin-esterase (HE) antigenic epitopes of the influenza C virus on the three-dimensional (3D) structure of the HE glycoprotein using 246 escape mutants that were selected by a panel of nine anti-HE monoclonal antibodies (MAbs), including seven of the C/Ann Arbor/1/50 virus and two of the C/Yamagata/15/2004 virus. The frequency of variant selection in the presence of anti-HE MAbs was very low, with frequencies ranging from 10-4.62 to 10-7.58 for the C/Ann Arbor/1/50 virus and from 10-7.11 to 10-9.25 for the C/Yamagata/15/2004 virus. Sequencing of mutant HE genes revealed 25 amino acid substitutions at 16 positions in three antigenic sites: A-1, A-2, and A-3, and a newly designated Y-1 site. In the 3D structure, the A-1 site was widely located around the receptor-binding site, the A-2 site was near the receptor-destroying enzyme site, and the Y-1 site was located in the loop on the topside of HE. The hemagglutination inhibition reactions of the MAbs with influenza C viruses, circulating between 1947 and 2016, were consistent with the antigenic-site amino acid changes. We also found some amino acid variations in the antigenic site of recently circulating strains with antigenic changes, suggesting that viruses that have the potential to alter antigenicity continue to circulate in humans.
Collapse
Affiliation(s)
- Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan.
| | - Kanetsu Sugawara
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan.
| | - Yuki Furuse
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
- Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan.
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan.
| | - Seiji Hongo
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan.
| | - Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 990-0031, Japan.
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan.
| |
Collapse
|
36
|
Complete Genome Sequence of an Influenza C Virus Strain Identified from a Sick Calf in the United States. Microbiol Resour Announc 2018; 7:MRA00828-18. [PMID: 30533603 PMCID: PMC6211337 DOI: 10.1128/mra.00828-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022] Open
Abstract
Influenza C virus (ICV) has been identified for the first time from bovine respiratory disease complex (BRDC) samples in the United States. Here, we report the complete genome sequence of the strain C/bovine/Montana/12/2016, identified from a nasal swab sample collected from a sick calf with clinical signs of respiratory disease in Montana. Influenza C virus (ICV) has been identified for the first time from bovine respiratory disease complex (BRDC) samples in the United States. Here, we report the complete genome sequence of the strain C/bovine/Montana/12/2016, identified from a nasal swab sample collected from a sick calf with clinical signs of respiratory disease in Montana.
Collapse
|
37
|
Thielen BK, Friedlander H, Bistodeau S, Shu B, Lynch B, Martin K, Bye E, Como-Sabetti K, Boxrud D, Strain AK, Chaves SS, Steffens A, Fowlkes AL, Lindstrom S, Lynfield R. Detection of Influenza C Viruses Among Outpatients and Patients Hospitalized for Severe Acute Respiratory Infection, Minnesota, 2013-2016. Clin Infect Dis 2018; 66:1092-1098. [PMID: 29069373 PMCID: PMC5862734 DOI: 10.1093/cid/cix931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/19/2017] [Indexed: 11/23/2022] Open
Abstract
Background Existing literature suggests that influenza C typically causes mild respiratory tract disease. However, clinical and epidemiological data are limited. Methods Four outpatient clinics and 3 hospitals submitted clinical data and respiratory specimens through a surveillance network for acute respiratory infection (ARI) from May 2013 through December 2016. Specimens were tested using multitarget nucleic acid amplification for 19-22 respiratory pathogens, including influenza C. Results Influenza C virus was detected among 59 of 10 202 (0.58%) hospitalized severe ARI cases and 11 of 2282 (0.48%) outpatients. Most detections occurred from December to March, 73% during the 2014-2015 season. Influenza C detections occurred among patients of all ages, with rates being similar between inpatients and outpatients. The highest rate of detection occurred among children aged 6-24 months (1.2%). Among hospitalized cases, 7 required intensive care. Medical comorbidities were reported in 58% of hospitalized cases and all who required intensive care. At least 1 other respiratory pathogen was detected in 40 (66%) cases, most commonly rhinovirus/enterovirus (25%) and respiratory syncytial virus (20%). The hemagglutinin-esterase-fusion gene was sequenced in 37 specimens, and both C/Kanagawa and C/Sao Paulo lineages were detected in inpatients and outpatients. Conclusions We found seasonal circulation of influenza C with year-to-year variability. Detection was most frequent among young children but occurred in all ages. Some cases that were positive for influenza C, particularly those with comorbid conditions, had severe disease, suggesting a need for further study of the role of influenza C virus in the pathogenesis of respiratory disease.
Collapse
Affiliation(s)
- Beth K Thielen
- Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis
| | | | | | - Bo Shu
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Brian Lynch
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Erica Bye
- Minnesota Department of Health, St. Paul
| | | | | | | | - Sandra S Chaves
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Andrea Steffens
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ashley L Fowlkes
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stephen Lindstrom
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | |
Collapse
|
38
|
Goto T, Shimotai Y, Matsuzaki Y, Muraki Y, Sho R, Sugawara K, Hongo S. Effect of Phosphorylation of CM2 Protein on Influenza C Virus Replication. J Virol 2017; 91:e00773-17. [PMID: 28878070 PMCID: PMC5660502 DOI: 10.1128/jvi.00773-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/23/2017] [Indexed: 01/12/2023] Open
Abstract
CM2 is the second membrane protein of the influenza C virus and has been demonstrated to play a role in the uncoating and genome packaging processes in influenza C virus replication. Although the effects of N-linked glycosylation, disulfide-linked oligomerization, and palmitoylation of CM2 on virus replication have been analyzed, the effect of the phosphorylation of CM2 on virus replication remains to be determined. In this study, a phosphorylation site(s) at residue 78 and/or 103 of CM2 was replaced with an alanine residue(s), and the effects of the loss of phosphorylation on influenza C virus replication were analyzed. No significant differences were observed in the packaging of the reporter gene between influenza C virus-like particles (VLPs) produced from 293T cells expressing wild-type CM2 and those from the cells expressing the CM2 mutants lacking the phosphorylation site(s). Reporter gene expression in HMV-II cells infected with VLPs containing the CM2 mutants was inhibited in comparison with that in cells infected with wild-type VLPs. The virus production of the recombinant influenza C virus possessing CM2 mutants containing a serine-to-alanine change at residue 78 was significantly lower than that of wild-type recombinant influenza C virus. Furthermore, the virus growth of the recombinant viruses possessing CM2 with a serine-to-aspartic acid change at position 78, to mimic constitutive phosphorylation, was virtually identical to that of the wild-type virus. These results suggest that phosphorylation of CM2 plays a role in efficient virus replication, probably through the addition of a negative charge to the Ser78 phosphorylation site.IMPORTANCE It is well-known that many host and viral proteins are posttranslationally modified by phosphorylation, which plays a role in the functions of these proteins. In influenza A and B viruses, phosphorylation of viral proteins NP, M1, NS1, and the nuclear export protein (NEP), which are not integrated into the membranes, affects the functions of these proteins, thereby affecting virus replication. However, it was reported that phosphorylation of the influenza A virus M2 ion channel protein, which is integrated into the membrane, has no effect on virus replication in vitro or in vivo We previously demonstrated that the influenza C virus CM2 ion channel protein is modified by N-glycosylation, oligomerization, palmitoylation, and phosphorylation and have analyzed the effects of these modifications, except phosphorylation, on virus replication. This is the first report demonstrating that phosphorylation of the influenza C virus CM2 ion channel protein, unlike that of the influenza A virus M2 protein, plays a role in virus replication.
Collapse
Affiliation(s)
- Takanari Goto
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yasushi Muraki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Ri Sho
- Department of Public Health, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Kanetsu Sugawara
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Seiji Hongo
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
39
|
Potdar VA, Hinge DD, Dakhave MR, Manchanda A, Jadhav N, Kulkarni PB, Chadha MS. Molecular detection and characterization of Influenza 'C' viruses from western India. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2017; 54:466-477. [PMID: 28803969 DOI: 10.1016/j.meegid.2017.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
Abstract
Since 2003, India has had a well-established influenza surveillance network, though Influenza C virus was not the focus of study. We therefore retrospectively analyzed clinical samples from Pune, western India collected during January 2009 to August 2015, by real-time RT-PCR. Three of 2530 samples of patients with influenza-like illness (ILI) or severe acute respiratory illness (SARI) showed positivity for Influenza C virus infection, while 105 and 31 samples were positive for Influenza A and B viruses respectively. Influenza C viruses were successfully isolated using the embryonated egg system and whole genomes were sequenced and analyzed phylogenetically. HE gene-based phylogeny showed that two viruses C/India/P119564/2011 and C/India P121719/2012 clustered with the C/Sao Paulo/378/82 (SP82) lineage, whereas C/India/P135047/2013 clustered with the C/Kanagawa/1/76 (KA76) lineage. The internal gene of these viruses grouped in two lineages. The PB1, PB2, M and NS genes of the study viruses grouped with C/Yamagata/26/81 (YA81), while the P3 (PA) and NP genes grouped with C/Mississippi/80 (MS80). Bayesian clock studies conclude that the Indian strains may have emerged through multiple reassortment events.
Collapse
Affiliation(s)
- V A Potdar
- National Institute of Virology, Pune, India.
| | - D D Hinge
- National Institute of Virology, Pune, India
| | | | | | - N Jadhav
- National Institute of Virology, Pune, India
| | | | - M S Chadha
- National Institute of Virology, Pune, India
| |
Collapse
|
40
|
Atkinson KV, Bishop LA, Rhodes G, Salez N, McEwan NR, Hegarty MJ, Robey J, Harding N, Wetherell S, Lauder RM, Pickup RW, Wilkinson M, Gatherer D. Influenza C in Lancaster, UK, in the winter of 2014-2015. Sci Rep 2017; 7:46578. [PMID: 28406194 PMCID: PMC5390268 DOI: 10.1038/srep46578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/17/2017] [Indexed: 11/09/2022] Open
Abstract
Influenza C is not included in the annual seasonal influenza vaccine, and has historically been regarded as a minor respiratory pathogen. However, recent work has highlighted its potential role as a cause of pneumonia in infants. We performed nasopharyngeal or nasal swabbing and/or serum sampling (n = 148) in Lancaster, UK, over the winter of 2014-2015. Using enzyme-linked immunosorbent assay (ELISA), we obtain seropositivity of 77%. By contrast, only 2 individuals, both asymptomatic adults, were influenza C-positive by polymerase chain reaction (PCR). Deep sequencing of nasopharyngeal samples produced partial sequences for 4 genome segments in one of these patients. Bayesian phylogenetic analysis demonstrated that the influenza C genome from this individual is evolutionarily distant to those sampled in recent years and represents a novel genome constellation, indicating that it may be a product of a decades-old reassortment event. Although we find no evidence that influenza C was a significant respiratory pathogen during the winter of 2014-2015 in Lancaster, we confirm previous observations of seropositivity in the majority of the population. (170 words).
Collapse
Affiliation(s)
- Kate V Atkinson
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, LA1 4YT, UK
- Present address: University College London Hospitals NHS Foundation Trust, London, UK
| | - Lisa A Bishop
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, LA1 4YT, UK
- Royal Lancaster Infirmary, Ashton Road, Lancaster, LA1 4RP, UK
| | - Glenn Rhodes
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4AP, UK
| | - Nicolas Salez
- UMR_D 190, Emergence des Pathologies Virales, Aix-Marseille University, 27 Bd Jean Moulin, Marseille cedex 05, 13005, France
| | - Neil R McEwan
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Matthew J Hegarty
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Julie Robey
- Queen Square Medical Practice, 2 Queen Square, Lancaster, LA1 1RP, UK
| | - Nicola Harding
- Queen Square Medical Practice, 2 Queen Square, Lancaster, LA1 1RP, UK
| | - Simon Wetherell
- Queen Square Medical Practice, 2 Queen Square, Lancaster, LA1 1RP, UK
| | - Robert M Lauder
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, LA1 4YT, UK
| | - Roger W Pickup
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, LA1 4YT, UK
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4AP, UK
| | - Mark Wilkinson
- Royal Lancaster Infirmary, Ashton Road, Lancaster, LA1 4RP, UK
| | - Derek Gatherer
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, LA1 4YT, UK.
| |
Collapse
|
41
|
Affiliation(s)
- Sam Ghebrehewet
- Cheshire and Merseyside Health Protection Team, Public Health England North West, Liverpool, UK
| | - Peter MacPherson
- Cheshire and Merseyside Health Protection Team, Public Health England North West, Liverpool, UK
- Department of Public Health and Policy, The Farr Institute@HeRC, University of Liverpool, UK
- Department of Clinical Research, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Antonia Ho
- Department of Infectious Diseases, Queen Elizabeth University Hospital, Glasgow, UK
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
42
|
Furuse Y, Matsuzaki Y, Nishimura H, Oshitani H. Analyses of Evolutionary Characteristics of the Hemagglutinin-Esterase Gene of Influenza C Virus during a Period of 68 Years Reveals Evolutionary Patterns Different from Influenza A and B Viruses. Viruses 2016; 8:E321. [PMID: 27898037 PMCID: PMC5192382 DOI: 10.3390/v8120321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022] Open
Abstract
Infections with the influenza C virus causing respiratory symptoms are common, particularly among children. Since isolation and detection of the virus are rarely performed, compared with influenza A and B viruses, the small number of available sequences of the virus makes it difficult to analyze its evolutionary dynamics. Recently, we reported the full genome sequence of 102 strains of the virus. Here, we exploited the data to elucidate the evolutionary characteristics and phylodynamics of the virus compared with influenza A and B viruses. Along with our data, we obtained public sequence data of the hemagglutinin-esterase gene of the virus; the dataset consists of 218 unique sequences of the virus collected from 14 countries between 1947 and 2014. Informatics analyses revealed that (1) multiple lineages have been circulating globally; (2) there have been weak and infrequent selective bottlenecks; (3) the evolutionary rate is low because of weak positive selection and a low capability to induce mutations; and (4) there is no significant positive selection although a few mutations affecting its antigenicity have been induced. The unique evolutionary dynamics of the influenza C virus must be shaped by multiple factors, including virological, immunological, and epidemiological characteristics.
Collapse
Affiliation(s)
- Yuki Furuse
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan.
| | - Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 9909585, Japan.
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 9838520, Japan.
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan.
| |
Collapse
|