1
|
Deng Y, Navarro-Forero S, Yang Z. Temporal expression classes and functions of vaccinia virus and mpox (monkeypox) virus genes. mBio 2025; 16:e0380924. [PMID: 40111027 PMCID: PMC11980589 DOI: 10.1128/mbio.03809-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Poxviruses comprise pathogens that are highly pathogenic to humans and animals, causing diseases such as smallpox and mpox (formerly monkeypox). The family also contains members developed as vaccine vectors and oncolytic agents to fight other diseases. Vaccinia virus is the prototype poxvirus and the vaccine used to eradicate smallpox. Poxvirus genes follow a cascade temporal expression pattern, categorized into early, intermediate, and late stages using distinct transcription factors. This review comprehensively summarized the temporal expression classification of over 200 vaccinia virus genes. The relationships between expression classes and functions, as well as different branches of immune responses, were discussed. Based on the vaccinia virus orthologs, we classified the temporal expression classes of all the mpox virus genes, including a few that were not previously annotated with orthologs in vaccinia viruses. Additionally, we reviewed the functions of all vaccinia virus genes based on the up-to-date published papers. This review provides a readily usable resource for researchers working on poxvirus biology, medical countermeasures, and poxvirus utility development.
Collapse
Affiliation(s)
- Yining Deng
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Santiago Navarro-Forero
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Zhilong Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Wang S, Ma T, Xia X, Zhang L. Evolutionary insights and functional diversity of gasdermin family proteins and homologs in microorganisms. Front Immunol 2024; 15:1371611. [PMID: 38571940 PMCID: PMC10989679 DOI: 10.3389/fimmu.2024.1371611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
The gasdermin protein family and its homologs in microorganisms have gained significant attention due to their roles in programmed cell death, immune defense, and microbial infection. This review summarizes the current research status of gasdermin proteins, their structural features, and functional roles in fungi, bacteria, and viruses. The review presents evolutionary parallels between mammalian and microbial defense systems, highlighting the conserved role of gasdermin proteins in regulating cell death processes and immunity. Additionally, the structural and functional characteristics of gasdermin homologs in microorganisms are summarized, shedding light on their potential as targets for therapeutic interventions. Future research directions in this field are also discussed to provide a roadmap for further investigation.
Collapse
Affiliation(s)
- Shule Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Tingbo Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaoyi Xia
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
3
|
Boys IN, Johnson AG, Quinlan MR, Kranzusch PJ, Elde NC. Structural homology screens reveal host-derived poxvirus protein families impacting inflammasome activity. Cell Rep 2023; 42:112878. [PMID: 37494187 DOI: 10.1016/j.celrep.2023.112878] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/20/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Viruses acquire host genes via horizontal transfer and can express them to manipulate host biology during infections. Some homologs retain sequence identity, but evolutionary divergence can obscure host origins. We use structural modeling to compare vaccinia virus proteins with metazoan proteomes. We identify vaccinia A47L as a homolog of gasdermins, the executioners of pyroptosis. An X-ray crystal structure of A47 confirms this homology, and cell-based assays reveal that A47 interferes with caspase function. We also identify vaccinia C1L as the product of a cryptic gene fusion event coupling a Bcl-2-related fold with a pyrin domain. C1 associates with components of the inflammasome, a cytosolic innate immune sensor involved in pyroptosis, yet paradoxically enhances inflammasome activity, suggesting differential modulation during infections. Our findings demonstrate the increasing power of structural homology screens to reveal proteins with unique combinations of domains that viruses capture from host genes and combine in unique ways.
Collapse
Affiliation(s)
- Ian N Boys
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Alex G Johnson
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Meghan R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Nels C Elde
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
4
|
Boys IN, Johnson AG, Quinlan M, Kranzusch PJ, Elde NC. Structural homology screens reveal poxvirus-encoded proteins impacting inflammasome-mediated defenses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.529821. [PMID: 36909515 PMCID: PMC10002665 DOI: 10.1101/2023.02.26.529821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Viruses acquire host genes via horizontal gene transfer and can express them to manipulate host biology during infections. Some viral and host homologs retain sequence identity, but evolutionary divergence can obscure host origins. We used structural modeling to compare vaccinia virus proteins with metazoan proteomes. We identified vaccinia A47L as a homolog of gasdermins, the executioners of pyroptosis. An X-ray crystal structure of A47 confirmed this homology and cell-based assays revealed that A47 inhibits pyroptosis. We also identified vaccinia C1L as the product of a cryptic gene fusion event coupling a Bcl-2 related fold with a pyrin domain. C1 associates with components of the inflammasome, a cytosolic innate immune sensor involved in pyroptosis, yet paradoxically enhances inflammasome activity, suggesting a benefit to poxvirus replication in some circumstances. Our findings demonstrate the potential of structural homology screens to reveal genes that viruses capture from hosts and repurpose to benefit viral fitness.
Collapse
Affiliation(s)
- Ian N. Boys
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, 84112 USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| | - Alex G. Johnson
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Meghan Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, 84112 USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| | - Philip J. Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Nels C. Elde
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, 84112 USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| |
Collapse
|
5
|
Hensen L, Illing PT, Rowntree LC, Davies J, Miller A, Tong SYC, Habel JR, van de Sandt CE, Flanagan K, Purcell AW, Kedzierska K, Clemens EB. T Cell Epitope Discovery in the Context of Distinct and Unique Indigenous HLA Profiles. Front Immunol 2022; 13:812393. [PMID: 35603215 PMCID: PMC9121770 DOI: 10.3389/fimmu.2022.812393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
CD8+ T cells are a pivotal part of the immune response to viruses, playing a key role in disease outcome and providing long-lasting immunity to conserved pathogen epitopes. Understanding CD8+ T cell immunity in humans is complex due to CD8+ T cell restriction by highly polymorphic Human Leukocyte Antigen (HLA) proteins, requiring T cell epitopes to be defined for different HLA allotypes across different ethnicities. Here we evaluate strategies that have been developed to facilitate epitope identification and study immunogenic T cell responses. We describe an immunopeptidomics approach to sequence HLA-bound peptides presented on virus-infected cells by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Using antigen presenting cell lines that stably express the HLA alleles characteristic of Indigenous Australians, this approach has been successfully used to comprehensively identify influenza-specific CD8+ T cell epitopes restricted by HLA allotypes predominant in Indigenous Australians, including HLA-A*24:02 and HLA-A*11:01. This is an essential step in ensuring high vaccine coverage and efficacy in Indigenous populations globally, known to be at high risk from influenza disease and other respiratory infections.
Collapse
Affiliation(s)
- Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Patricia T. Illing
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jane Davies
- Menzies School of Health Research, Darwin, NT, Australia
| | - Adrian Miller
- Indigenous Engagement, CQUniversity, Townsville, QLD, Australia
| | - Steven Y. C. Tong
- Menzies School of Health Research, Darwin, NT, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer R. Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Katie L. Flanagan
- Department of Infectious Diseases and Tasmanian Vaccine Trial Centre, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - E. Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| |
Collapse
|
6
|
Lin LCW, Croft SN, Croft NP, Wong YC, Smith SA, Tang SS, Purcell AW, Tscharke DC. Direct Priming of CD8 + T Cells Persists in the Face of Cowpox Virus Inhibitors of Antigen Presentation. J Virol 2021; 95:JVI.00186-21. [PMID: 33692206 PMCID: PMC8139650 DOI: 10.1128/jvi.00186-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/27/2021] [Indexed: 11/30/2022] Open
Abstract
Vaccinia virus (VACV) was the vaccine used to eradicate smallpox and is being repurposed as a vaccine vector. CD8+ T cells are key anti-viral mediators, but require priming to become effector or memory cells. Priming requires an interaction with dendritic cells that are either infected (direct priming), or that have acquired virus proteins but remain uninfected (cross priming). To investigate CD8+ T cell priming pathways for VACV, we engineered the virus to express CPXV12 and CPXV203, two inhibitors of antigen presentation encoded by cowpox virus. These intracellular proteins would be expected to block direct but not cross priming. The inhibitors had diverse impacts on the size of anti-VACV CD8+ T cell responses across epitopes and by different infection routes in mice, superficially suggesting variable use of direct and cross priming. However, when we then tested a form of antigen that requires direct priming, we found surprisingly that CD8+ T cell responses were not diminished by co-expression with CPXV12 and CPXV203. We then directly quantified the impact of CPXV12 and CPXV203 on viral antigen presentation using mass spectrometry, which revealed strong, but incomplete inhibition of antigen presentation by the CPXV proteins. Therefore, direct priming of CD8+ T cells by poxviruses is robust enough to withstand highly potent viral inhibitors of antigen presentation. This is a reminder of the limits of viral immune evasion and shows that viral inhibitors of antigen presentation cannot be assumed to dissect cleanly direct and cross priming of anti-viral CD8+ T cells.ImportanceCD8+ T cells are key to anti-viral immunity, so it is important to understand how they are activated. Many viruses have proteins that protect infected cells from T cell attack by interfering with the process that allows virus infection to be recognised by CD8+ T cells. It is thought that these proteins would also stop infected cells from activating T cells in the first place. However, we show here that this is not the case for two very powerful inhibitory proteins from cowpox virus. This demonstrates the flexibility and robustness of immune processes that turn on the immune responses required to fight infection.
Collapse
Affiliation(s)
- Leon C. W. Lin
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sarah N. Croft
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Nathan P. Croft
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Yik Chun Wong
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Stewart A. Smith
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Swee-Seong Tang
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Anthony W. Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - David C. Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
7
|
Croft S, Wong YC, Smith SA, Flesch IEA, Tscharke DC. Surprisingly Effective Priming of CD8 + T Cells by Heat-Inactivated Vaccinia Virus Virions. J Virol 2020; 94:e01486-20. [PMID: 32759313 PMCID: PMC7527048 DOI: 10.1128/jvi.01486-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/29/2022] Open
Abstract
Robust priming of CD8+ T cells by viruses is considered to require infection and de novo expression of viral antigens. A corollary of this is that inactivated viruses are thought of as being inevitably poor vaccines for eliciting these responses. In contrast to this dogma, we found that some antigens present in vaccinia virus (VACV) virions prime strong CD8+ T cell responses when the virus was rendered noninfectious by heat. More surprisingly, in some cases these responses were similar in magnitude to those primed by infectious virus administered at an equivalent dose. Next, we tested whether this was a special property of particular antigens and their epitopes and found that foreign epitopes tagged onto three different VACV virion proteins were able to elicit CD8+ T cell responses irrespective of whether the virus was viable or heat killed. Further, the polyfunctionality and cytotoxic ability of the CD8+ T cells primed by these VACVs was equivalent irrespective of whether they were administered to mice as inactivated or live viruses. Finally, we used these VACVs in prime-boost combinations of inactivated and live virus and found that priming with dead virus before a live booster was the most immunogenic regime. We conclude that VACV virions can be efficient vectors for targeting antigens to dendritic cells for effective priming of CD8+ T cells, even when rendered noninfectious and speculate that this might also be the case for other viruses.IMPORTANCE The design of viral vectored vaccines is often considered to require a trade-off between efficacy and safety. This is especially the case for vaccines that aim to induce killer (CD8+) T cells, where there is a well-established dogma that links infection in vaccinated individuals with effective induction of immunity. However, we found that some proteins of vaccinia virus generate strong CD8+ T cell responses even when the virus preparation was inactivated by heat prior to administration as a vaccine. We took advantage of this finding by engineering a new vaccine vector virus that could be used as an inactivated vaccine. These results suggest that vaccinia virus may be a more versatile vaccine vector than previously appreciated and that in some instances safety can be prioritized by the complete elimination of viral replication without a proportional loss of immunogenicity.
Collapse
Affiliation(s)
- Sarah Croft
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Yik Chun Wong
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Stewart A Smith
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Inge E A Flesch
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - David C Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
8
|
Modified Vaccinia Virus Ankara Can Induce Optimal CD8 + T Cell Responses to Directly Primed Antigens Depending on Vaccine Design. J Virol 2019; 93:JVI.01154-19. [PMID: 31375596 PMCID: PMC6803277 DOI: 10.1128/jvi.01154-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/29/2019] [Indexed: 01/19/2023] Open
Abstract
A variety of strains of vaccinia virus (VACV) have been used as recombinant vaccine vectors with the aim of inducing robust CD8+ T cell immunity. While much of the pioneering work was done with virulent strains, such as Western Reserve (WR), attenuated strains such as modified vaccinia virus Ankara (MVA) are more realistic vectors for clinical use. To unify this literature, side-by-side comparisons of virus strains are required. Here, we compare the form of antigen that supports optimal CD8+ T cell responses for VACV strains WR and MVA using equivalent constructs. We found that for multiple antigens, minimal antigenic constructs (epitope minigenes) that prime CD8+ T cells via the direct presentation pathway elicited optimal responses from both vectors, which was surprising because this finding contradicts the prevailing view in the literature for MVA. We then went on to explore the discrepancy between current and published data for MVA, finding evidence that the expression locus and in some cases the presence of the viral thymidine kinase may influence the ability of this strain to prime optimal responses from antigens that require direct presentation. This extends our knowledge of the design parameters for VACV vectored vaccines, especially those based on MVA.IMPORTANCE Recombinant vaccines based on vaccinia virus and particularly attenuated strains such as MVA are in human clinical trials, but due to the complexity of these large vectors much remains to be understood about the design parameters that alter their immunogenicity. Previous work had found that MVA vectors should be designed to express stable protein in order to induce robust immunity by CD8+ (cytotoxic) T cells. Here, we found that the primacy of stable antigen is not generalizable to all designs of MVA and may depend where a foreign antigen is inserted into the MVA genome. This unexpected finding suggests that there is an interaction between genome location and the best form of antigen for optimal T cell priming in MVA and thus possibly other vaccine vectors. It also highlights that our understanding of antigen presentation by even the best studied of vaccine vectors remains incomplete.
Collapse
|
9
|
Croft NP, Smith SA, Pickering J, Sidney J, Peters B, Faridi P, Witney MJ, Sebastian P, Flesch IEA, Heading SL, Sette A, La Gruta NL, Purcell AW, Tscharke DC. Most viral peptides displayed by class I MHC on infected cells are immunogenic. Proc Natl Acad Sci U S A 2019; 116:3112-3117. [PMID: 30718433 PMCID: PMC6386720 DOI: 10.1073/pnas.1815239116] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
CD8+ T cells are essential effectors in antiviral immunity, recognizing short virus-derived peptides presented by MHC class I (pMHCI) on the surface of infected cells. However, the fraction of viral pMHCI on infected cells that are immunogenic has not been shown for any virus. To approach this fundamental question, we used peptide sequencing by high-resolution mass spectrometry to identify more than 170 vaccinia virus pMHCI presented on infected mouse cells. Next, we screened each peptide for immunogenicity in multiple virus-infected mice, revealing a wide range of immunogenicities. A surprisingly high fraction (>80%) of pMHCI were immunogenic in at least one infected mouse, and nearly 40% were immunogenic across more than half of the mice screened. The high number of peptides found to be immunogenic and the distribution of responses across mice give us insight into the specificity of antiviral CD8+ T cell responses.
Collapse
Affiliation(s)
- Nathan P Croft
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Stewart A Smith
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Jana Pickering
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Pouya Faridi
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Matthew J Witney
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Prince Sebastian
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Inge E A Flesch
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Sally L Heading
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Nicole L La Gruta
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Anthony W Purcell
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - David C Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia;
| |
Collapse
|
10
|
Keating R, Morris MY, Yue W, Reynolds CE, Harris TL, Brown SA, Doherty PC, Thomas PG, McGargill MA. Potential killers exposed: tracking endogenous influenza-specific CD8 + T cells. Immunol Cell Biol 2018; 96:1104-1119. [PMID: 29972699 PMCID: PMC6282960 DOI: 10.1111/imcb.12189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 12/31/2022]
Abstract
Current influenza A virus (IAV) vaccines stimulate antibody responses that are directed against variable regions of the virus, and are therefore ineffective against divergent strains. As CD8+ T cells target the highly conserved, internal IAV proteins, they have the potential to increase heterosubtypic immunity. Early T‐cell priming events influence lasting memory, which is required for long‐term protection. However, the early responding, IAV‐specific cells are difficult to monitor because of their low frequencies. Here, we tracked the dissemination of endogenous IAV‐specific CD8+ T cells during the initial phases of the immune response following IAV infection. We exposed a significant population of recently activated, CD25+CD43+ IAV‐specific T cells that were not detected by tetramer staining. By tracking this population, we found that initial T‐cell priming occurred in the mediastinal lymph nodes, which gave rise to the most expansive IAV‐specific CD8+ T‐cell population. Subsequently, IAV‐specific CD8+ T cells dispersed to the bronchoalveolar lavage and blood, followed by spleen and liver, and finally to the lung. These data provide important insight into the priming and tissue dispersion of an endogenous CD8+ T‐cell response. Importantly, the CD25+CD43+ phenotype identifies an inclusive population of early responding CD8+ T cells, which may provide insight into TCR repertoire selection and expansion. A better understanding of this response is critical for designing improved vaccines that target CD8+ T cells.
Collapse
Affiliation(s)
- Rachael Keating
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Melissa Y Morris
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Wen Yue
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cory E Reynolds
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Tarsha L Harris
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Scott A Brown
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Peter C Doherty
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.,Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3010, Australia
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Maureen A McGargill
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| |
Collapse
|
11
|
Russell TA, Velusamy T, Tseng YY, Tscharke DC. Increasing antigen presentation on HSV-1-infected cells increases lesion size but does not alter neural infection or latency. J Gen Virol 2018; 99:682-692. [PMID: 29620508 PMCID: PMC5994700 DOI: 10.1099/jgv.0.001059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
CD8+ T cells have a role in the control of acute herpes simplex virus (HSV) infection and may also be important in the maintenance of latency. In this study we have explored the consequences of boosting the efficacy of CD8+ T cells against HSV by increasing the amount of an MHC I-presented epitope on the surface of infected cells. To do this we used HSVs engineered to express an extra copy of the immunodominant CD8+ T cell epitope in C57Bl/6 mice, namely gB498 (SSIEFARL). Despite greater presentation of gB498 on infected cells, CD8+ T cell responses to these viruses in mice were similar to those elicited by a control virus. Further, the expression of extra gB498 did not significantly alter the extent or stability of latency in our mouse model, and virus loads in skin and sensory ganglia of infected mice were not affected. Surprisingly, mice infected with these viruses developed significantly larger skin lesions than those infected with control viruses and notably, this phenotype was dependent on MHC haplotype. Therefore increasing the visibility of HSV-infected cells to CD8+ T cell attack did not impact neural infection or latency, but rather enhanced pathology in the skin.
Collapse
Affiliation(s)
- Tiffany A Russell
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Present address: Department of Microbial Sciences, University of Surrey, Guildford, UK
| | - Thilaga Velusamy
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Yeu-Yang Tseng
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - David C Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
12
|
Navarro J, Gozalbo-López B, Méndez AC, Dantzer F, Schreiber V, Martínez C, Arana DM, Farrés J, Revilla-Nuin B, Bueno MF, Ampurdanés C, Galindo-Campos MA, Knobel PA, Segura-Bayona S, Martin-Caballero J, Stracker TH, Aparicio P, Del Val M, Yélamos J. PARP-1/PARP-2 double deficiency in mouse T cells results in faulty immune responses and T lymphomas. Sci Rep 2017; 7:41962. [PMID: 28181505 PMCID: PMC5299517 DOI: 10.1038/srep41962] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
The maintenance of T-cell homeostasis must be tightly regulated. Here, we have identified a coordinated role of Poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 in maintaining T-lymphocyte number and function. Mice bearing a T-cell specific deficiency of PARP-2 in a PARP-1-deficient background showed defective thymocyte maturation and diminished numbers of peripheral CD4+ and CD8+ T-cells. Meanwhile, peripheral T-cell number was not affected in single PARP-1 or PARP-2-deficient mice. T-cell lymphopenia was associated with dampened in vivo immune responses to synthetic T-dependent antigens and virus, increased DNA damage and T-cell death. Moreover, double-deficiency in PARP-1/PARP-2 in T-cells led to highly aggressive T-cell lymphomas with long latency. Our findings establish a coordinated role of PARP-1 and PARP-2 in T-cell homeostasis that might impact on the development of PARP-centred therapies.
Collapse
Affiliation(s)
- Judith Navarro
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Beatriz Gozalbo-López
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Andrea C Méndez
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Françoise Dantzer
- Biotechnology and Cell Signaling, UMR7242-CNRS, Laboratory of Excellence Medalis, ESBS, Illkirch, France
| | - Valérie Schreiber
- Biotechnology and Cell Signaling, UMR7242-CNRS, Laboratory of Excellence Medalis, ESBS, Illkirch, France
| | - Carlos Martínez
- Experimental Pathology Unit, IMIB-LAIB-Arrixaca, Murcia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - David M Arana
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Jordi Farrés
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Beatriz Revilla-Nuin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Genomic Unit. IMIB-LAIB-Arrixaca, Murcia, Spain
| | - María F Bueno
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Coral Ampurdanés
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Miguel A Galindo-Campos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Philip A Knobel
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sandra Segura-Bayona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pedro Aparicio
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia, Murcia, Spain
| | - Margarita Del Val
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - José Yélamos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Department of Immunology, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
13
|
Flesch IEA, Hollett NA, Wong YC, Quinan BR, Howard D, da Fonseca FG, Tscharke DC. Extent of Systemic Spread Determines CD8+ T Cell Immunodominance for Laboratory Strains, Smallpox Vaccines, and Zoonotic Isolates of Vaccinia Virus. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26195812 DOI: 10.4049/jimmunol.1402508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CD8(+) T cells that recognize virus-derived peptides presented on MHC class I are vital antiviral effectors. Such peptides presented by any given virus vary greatly in immunogenicity, allowing them to be ranked in an immunodominance hierarchy. However, the full range of parameters that determine immunodominance and the underlying mechanisms remain unknown. In this study, we show across a range of vaccinia virus strains, including the current clonal smallpox vaccine, that the ability of a strain to spread systemically correlated with reduced immunodominance. Reduction in immunodominance was observed both in the lymphoid system and at the primary site of infection. Mechanistically, reduced immunodominance was associated with more robust priming and especially priming in the spleen. Finally, we show this is not just a property of vaccine and laboratory strains of virus, because an association between virulence and immunodominance was also observed in isolates from an outbreak of zoonotic vaccinia virus that occurred in Brazil.
Collapse
Affiliation(s)
- Inge E A Flesch
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Natasha A Hollett
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yik Chun Wong
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Bárbara Resende Quinan
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia; Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; and
| | - Debbie Howard
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Flávio G da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; and
| | - David C Tscharke
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia; John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
14
|
Ren H, Ferguson BJ, Maluquer de Motes C, Sumner RP, Harman LER, Smith GL. Enhancement of CD8(+) T-cell memory by removal of a vaccinia virus nuclear factor-κB inhibitor. Immunology 2015; 145:34-49. [PMID: 25382035 PMCID: PMC4405322 DOI: 10.1111/imm.12422] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 12/20/2022] Open
Abstract
Factors influencing T-cell responses are important for vaccine development but are incompletely understood. Here, vaccinia virus (VACV) protein N1 is shown to impair the development of both effector and memory CD8+ T cells and this correlates with its inhibition of nuclear factor-κB (NF-κB) activation. Infection with VACVs that either have the N1L gene deleted (vΔN1) or contain a I6E mutation (vN1.I6E) that abrogates its inhibition of NF-κB resulted in increased central and memory CD8+ T-cell populations, increased CD8+ T-cell cytotoxicity and lower virus titres after challenge. Furthermore, CD8+ memory T-cell function was increased following infection with vN1.I6E, with more interferon-γ production and greater protection against VACV infection following passive transfer to naive mice, compared with CD8+ T cells from mice infected with wild-type virus (vN1.WT). This demonstrates the importance of NF-κB activation within infected cells for long-term CD8+ T-cell memory and vaccine efficacy. Further, it provides a rationale for deleting N1 from VACV vectors to enhance CD8+ T-cell immunogenicity, while simultaneously reducing virulence to improve vaccine safety.
Collapse
Affiliation(s)
- Hongwei Ren
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
15
|
CD4+ T cell help is dispensable for protective CD8+ T cell memory against mousepox virus following vaccinia virus immunization. J Virol 2014; 89:776-83. [PMID: 25355885 DOI: 10.1128/jvi.02176-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED It has been shown in various infection models that CD4(+) T cell help (TH) is necessary for the conditioning, maintenance, and/or recall responses of memory CD8(+) T cells (CD8M). Yet, in the case of vaccinia virus (VACV), which constitutes the vaccine used to eradicate smallpox and is a candidate vector for other infectious diseases, the issue is controversial because different groups have shown either T(H) dependence or independence of CD8M conditioning, maintenance, and/or recall response. In agreement with some of these groups, we show that T(H) plays a role in, but is not essential for, the maintenance, proliferation, and effector differentiation of polyclonal memory CD8(+) T cells after infection with wild-type VACV strain Western Reserve. More important, we show that unhelped and helped anti-VACV memory CD8(+) T cells are similarly efficient at protecting susceptible mice from lethal mousepox, the mouse equivalent of human smallpox. Thus, T(H) is not essential for the conditioning and maintenance of memory CD8(+) T cells capable of mounting a recall response strong enough to protect from a lethal natural pathogen. Our results may partly explain why the VACV vaccine is so effective. IMPORTANCE We used vaccinia virus (VACV)--a gold standard vaccine--as the immunogen and ectromelia virus (ECTV) as the pathogen to demonstrate that the conditioning and maintenance of anti-VACV memory CD8(+) T cells and their ability to protect against an orthopoxvirus (OPV) infection in its natural host can develop in the absence of CD4(+) T cell help. Our results provide important insight to our basic knowledge of the immune system. Further, because VACV is used as a vaccine in humans, our results may help us understand how this vaccine induces protective immunity in this species. In addition, this work may partly explain why VACV is so effective as a vaccine.
Collapse
|
16
|
Davies DH, Chun S, Hermanson G, Tucker JA, Jain A, Nakajima R, Pablo J, Felgner PL, Liang X. T cell antigen discovery using soluble vaccinia proteome reveals recognition of antigens with both virion and nonvirion association. THE JOURNAL OF IMMUNOLOGY 2014; 193:1812-27. [PMID: 25024392 DOI: 10.4049/jimmunol.1400663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vaccinia virus (VACV) is a useful model system for understanding the immune response to a complex pathogen. Proteome-wide Ab profiling studies reveal the humoral response to be strongly biased toward virion-associated Ags, and several membrane proteins induce Ab-mediated protection against VACV challenge in mice. Some studies have indicated that the CD4 response is also skewed toward proteins with virion association, whereas the CD8 response is more biased toward proteins with early expression. In this study, we have leveraged a VACV strain Western Reserve (VACV-WR) plasmid expression library, produced previously for proteome microarrays for Ab profiling, to make a solubilized full VACV-WR proteome for T cell Ag profiling. Splenocytes from VACV-WR-infected mice were assayed without prior expansion against the soluble proteome in assays for Th1 and Th2 signature cytokines. The response to infection was polarized toward a Th1 response, with the distribution of reactive T cell Ags comprising both early and late VACV proteins. Interestingly, the proportions of different functional subsets were similar to that present in the whole proteome. In contrast, the targets of Abs from the same mice were enriched for membrane and other virion components, as described previously. We conclude that a "nonbiasing" approach to T cell Ag discovery reveals a T cell Ag profile in VACV that is broader and less skewed to virion association than the Ab profile. The T cell Ag mapping method developed in the present study should be applicable to other organisms where expressible "ORFeome" libraries are also available, and it is readily scalable for larger pathogens.
Collapse
Affiliation(s)
- D Huw Davies
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697; Antigen Discovery, Inc., Irvine, CA 92618; and
| | - Sookhee Chun
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | | | - Jo Anne Tucker
- Division of Hematology and Oncology, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Aarti Jain
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Rie Nakajima
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Jozelyn Pablo
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697; Antigen Discovery, Inc., Irvine, CA 92618; and
| | - Philip L Felgner
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | | |
Collapse
|
17
|
Caro-Gomez E, Gazi M, Goez Y, Valbuena G. Discovery of novel cross-protective Rickettsia prowazekii T-cell antigens using a combined reverse vaccinology and in vivo screening approach. Vaccine 2014; 32:4968-76. [PMID: 25010827 DOI: 10.1016/j.vaccine.2014.06.089] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/04/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
Rickettsial agents are some of the most lethal pathogens known to man. Among them, Rickettsia prowazekii is a select agent with potential use for bioterrorism; yet, there is no anti-Rickettsia vaccine commercially available. Owing to the obligate intracellular lifestyle of rickettsiae, CD8(+) T cells are indispensable for protective cellular immunity. Furthermore, T cells can mediate cross-protective immunity between different pathogenic Rickettsia, a finding consistent with the remarkable similarity among rickettsial genomes. However, Rickettsia T cell antigens remain unidentified. In the present study, we report an algorithm that allowed us to identify and validate four novel R. prowazekii vaccine antigen candidates recognized by CD8(+) T cells from a set of twelve in silico-defined protein targets. Our results highlight the importance of combining proteasome-processing as well as MHC class-I-binding predictions. The novel rickettsial vaccine candidate antigens, RP778, RP739, RP598, and RP403, protected mice against a lethal challenge with Rickettsia typhi, which is indicative of cross-protective immunity within the typhus group rickettsiae. Together, our findings validate a reverse vaccinology approach as a viable strategy to identify protective rickettsial antigens and highlight the feasibility of a subunit vaccine that triggers T-cell-mediated cross-protection among diverse rickettsiae.
Collapse
Affiliation(s)
- Erika Caro-Gomez
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA
| | - Michal Gazi
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA
| | - Yenny Goez
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA
| | - Gustavo Valbuena
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA; Sealy Center for Vaccine Development, Center for Tropical Diseases, Center for Biodefense and Emerging Infectious Diseases, Institute for Translational Sciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| |
Collapse
|
18
|
Quinan BR, Flesch IEA, Pinho TMG, Coelho FM, Tscharke DC, da Fonseca FG. An intact signal peptide on dengue virus E protein enhances immunogenicity for CD8(+) T cells and antibody when expressed from modified vaccinia Ankara. Vaccine 2014; 32:2972-9. [PMID: 24726244 DOI: 10.1016/j.vaccine.2014.03.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 10/25/2022]
Abstract
Dengue is a global public health concern and this is aggravated by a lack of vaccines or antiviral therapies. Despite the well-known role of CD8(+) T cells in the immunopathogenesis of Dengue virus (DENV), only recent studies have highlighted the importance of this arm of the immune response in protection against the disease. Thus, the majority of DENV vaccine candidates are designed to achieve protective titers of neutralizing antibodies, with less regard for cellular responses. Here, we used a mouse model to investigate CD8(+) T cell and humoral responses to a set of potential DENV vaccines based on recombinant modified vaccinia virus Ankara (rMVA). To enable this study, we identified two CD8(+) T cell epitopes in the DENV-3 E protein in C57BL/6 mice. Using these we found that all the rMVA vaccines elicited DENV-specific CD8(+) T cells that were cytotoxic in vivo and polyfunctional in vitro. Moreover, vaccines expressing the E protein with an intact signal peptide sequence elicited more DENV-specific CD8(+) T cells than those expressing E proteins in the cytoplasm. Significantly, it was these same ER-targeted E protein vaccines that elicited antibody responses. Our results support the further development of rMVA vaccines expressing DENV E proteins and add to the tools available for dengue vaccine development.
Collapse
Affiliation(s)
- Bárbara R Quinan
- Laboratory of Basic and Applied Virology, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil; Division of Biomedical Science and Biochemistry, Research School of Biology, Bldg. 134 Linnaeus Way, The Australian National University, Canberra, ACT 0200, Australia
| | - Inge E A Flesch
- Division of Biomedical Science and Biochemistry, Research School of Biology, Bldg. 134 Linnaeus Way, The Australian National University, Canberra, ACT 0200, Australia
| | - Tânia M G Pinho
- Laboratory of Basic and Applied Virology, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| | - Fabiana M Coelho
- Laboratory of Basic and Applied Virology, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| | - David C Tscharke
- Division of Biomedical Science and Biochemistry, Research School of Biology, Bldg. 134 Linnaeus Way, The Australian National University, Canberra, ACT 0200, Australia.
| | - Flávio G da Fonseca
- Laboratory of Basic and Applied Virology, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil; Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, MG, Brazil.
| |
Collapse
|
19
|
Russell TA, Tscharke DC. Strikingly poor CD8+ T-cell immunogenicity of vaccinia virus strain MVA in BALB/c mice. Immunol Cell Biol 2014; 92:466-9. [PMID: 24566805 PMCID: PMC4037371 DOI: 10.1038/icb.2014.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 02/02/2014] [Accepted: 02/02/2014] [Indexed: 01/24/2023]
Abstract
Vaccinia virus (VACV) strain MVA is a highly attenuated vector for
vaccines that is being explored in clinical trials. We compared the
CD8+ T cell immunogenicity of MVA with that of a virulent
laboratory strain of VACV (strain WR) in BALB/c mice by examining
epitope-specific responses as well as estimating the total number of activated
CD8+ T cells, irrespective of specificity. We found that
MVA elicited total CD8+ T cell responses that were reduced by
at least 20-fold compared with strain WR in BALB/c mice. In C57Bl/6 mice we also
found a substantial difference in immunogenicity between these VACV strains, but
it was more modest at around 5-fold. Of note, the size of responses to the
virulent WR virus were similar in both strains of mice suggesting that BALB/c
mice can mount robust CD8+ T cell responses to VACV. While
the data for total responses clearly showed that MVA overall is poorly
immunogenic in BALB/c mice, we found one epitope for which strong responses were
made irrespective of virus strain. Therefore in the context of a vaccine, some
recombinant epitopes may have similar immunogenicity when expressed from MVA and
other strains of VACV, but we would expect these to be exceptions. These data
show clearly the substantial difference in immunogenicity between MVA and
virulent VACV strains and suggest that the impact of host genetics on responses
to attenuated vaccine vectors like MVA requires more consideration.
Collapse
Affiliation(s)
- Tiffany A Russell
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - David C Tscharke
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
20
|
Lin LCW, Flesch IEA, Tscharke DC. Immunodomination during peripheral vaccinia virus infection. PLoS Pathog 2013; 9:e1003329. [PMID: 23633956 PMCID: PMC3635974 DOI: 10.1371/journal.ppat.1003329] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/14/2013] [Indexed: 11/20/2022] Open
Abstract
Immunodominance is a fundamental property of CD8(+) T cell responses to viruses and vaccines. It had been observed that route of administration alters immunodominance after vaccinia virus (VACV) infection, but only a few epitopes were examined and no mechanism was provided. We re-visited this issue, examining a panel of 15 VACV epitopes and four routes, namely intradermal (i.d.), subcutaneous (s.c.), intraperitoneal (i.p.) and intravenous (i.v.) injection. We found that immunodominance is sharpened following peripheral routes of infection (i.d. and s.c.) compared with those that allow systemic virus dissemination (i.p. and i.v.). This increased immunodominance was demonstrated with native epitopes of VACV and with herpes simplex virus glycoprotein B when expressed from VACV. Responses to some subdominant epitopes were altered by as much as fourfold. Tracking of virus, examination of priming sites, and experiments restricting virus spread showed that priming of CD8(+) T cells in the spleen was necessary, but not sufficient to broaden responses. Further, we directly demonstrated that immunodomination occurs more readily when priming is mainly in lymph nodes. Finally, we were able to reduce immunodominance after i.d., but not i.p. infection, using a VACV expressing the costimulators CD80 (B7-1) and CD86 (B7-2), which is notable because VACV-based vaccines incorporating these molecules are in clinical trials. Taken together, our data indicate that resources for CD8(+) T cell priming are limiting in local draining lymph nodes, leading to greater immunodomination. Further, we provide evidence that costimulation can be a limiting factor that contributes to immunodomination. These results shed light on a possible mechanism of immunodomination and highlight the need to consider multiple epitopes across the spectrum of immunogenicities in studies aimed at understanding CD8(+) T cell immunity to viruses.
Collapse
Affiliation(s)
- Leon C. W. Lin
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Inge E. A. Flesch
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - David C. Tscharke
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
21
|
Gilchuk P, Spencer CT, Conant SB, Hill T, Gray JJ, Niu X, Zheng M, Erickson JJ, Boyd KL, McAfee KJ, Oseroff C, Hadrup SR, Bennink JR, Hildebrand W, Edwards KM, Crowe JE, Williams JV, Buus S, Sette A, Schumacher TNM, Link AJ, Joyce S. Discovering naturally processed antigenic determinants that confer protective T cell immunity. J Clin Invest 2013; 123:1976-87. [PMID: 23543059 DOI: 10.1172/jci67388] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/07/2013] [Indexed: 12/15/2022] Open
Abstract
CD8+ T cells (TCD8) confer protective immunity against many infectious diseases, suggesting that microbial TCD8 determinants are promising vaccine targets. Nevertheless, current T cell antigen identification approaches do not discern which epitopes drive protective immunity during active infection - information that is critical for the rational design of TCD8-targeted vaccines. We employed a proteomics-based approach for large-scale discovery of naturally processed determinants derived from a complex pathogen, vaccinia virus (VACV), that are presented by the most frequent representatives of four major HLA class I supertypes. Immunologic characterization revealed that many previously unidentified VACV determinants were recognized by smallpox-vaccinated human peripheral blood cells in a variegated manner. Many such determinants were recognized by HLA class I-transgenic mouse immune TCD8 too and elicited protective TCD8 immunity against lethal intranasal VACV infection. Notably, efficient processing and stable presentation of immune determinants as well as the availability of naive TCD8 precursors were sufficient to drive a multifunctional, protective TCD8 response. Our approach uses fundamental insights into T cell epitope processing and presentation to define targets of protective TCD8 immunity within human pathogens that have complex proteomes, suggesting that this approach has general applicability in vaccine sciences.
Collapse
Affiliation(s)
- Pavlo Gilchuk
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wijesundara DK, Tscharke DC, Jackson RJ, Ranasinghe C. Reduced interleukin-4 receptor α expression on CD8+ T cells correlates with higher quality anti-viral immunity. PLoS One 2013; 8:e55788. [PMID: 23383283 PMCID: PMC3561338 DOI: 10.1371/journal.pone.0055788] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/31/2012] [Indexed: 11/18/2022] Open
Abstract
With the hope of understanding how interleukin (IL)-4 and IL-13 modulated quality of anti-viral CD8+ T cells, we evaluated the expression of receptors for these cytokines following a range of viral infections (e.g. pox viruses and influenza virus). Results clearly indicated that unlike other IL-4/IL-13 receptor subunits, IL-4 receptor α (IL-4Rα) was significantly down-regulated on anti-viral CD8+ T cells in a cognate antigen dependent manner. The infection of gene knockout mice and wild-type (WT) mice with vaccinia virus (VV) or VV expressing IL-4 confirmed that IL-4, IL-13 and signal transducer and activator of transcription 6 (STAT6) were required to increase IL-4Rα expression on CD8+ T cells, but not interferon (IFN)-γ. STAT6 dependent elevation of IL-4Rα expression on CD8+ T cells was a feature of poor quality anti-viral CD8+ T cell immunity as measured by the production of IFN-γ and tumor necrosis factor α (TNF-α) in response to VV antigen stimulation in vitro. We propose that down-regulation of IL-4Rα, but not the other IL-4/IL-13 receptor subunits, is a mechanism by which CD8+ T cells reduce responsiveness to IL-4 and IL-13. This can improve the quality of anti-viral CD8+ T cell immunity. Our findings have important implications in understanding anti-viral CD8+ T cell immunity and designing effective vaccines against chronic viral infections.
Collapse
Affiliation(s)
- Danushka K Wijesundara
- The Molecular Mucosal Vaccine Immunology Group, The Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra, Australia.
| | | | | | | |
Collapse
|
23
|
Croft NP, Smith SA, Wong YC, Tan CT, Dudek NL, Flesch IEA, Lin LCW, Tscharke DC, Purcell AW. Kinetics of antigen expression and epitope presentation during virus infection. PLoS Pathog 2013; 9:e1003129. [PMID: 23382674 PMCID: PMC3561264 DOI: 10.1371/journal.ppat.1003129] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/26/2012] [Indexed: 01/20/2023] Open
Abstract
Current knowledge about the dynamics of antigen presentation to T cells during viral infection is very poor despite being of fundamental importance to our understanding of anti-viral immunity. Here we use an advanced mass spectrometry method to simultaneously quantify the presentation of eight vaccinia virus peptide-MHC complexes (epitopes) on infected cells and the amounts of their source antigens at multiple times after infection. The results show a startling 1000-fold range in abundance as well as strikingly different kinetics across the epitopes monitored. The tight correlation between onset of protein expression and epitope display for most antigens provides the strongest support to date that antigen presentation is largely linked to translation and not later degradation of antigens. Finally, we show a complete disconnect between the epitope abundance and immunodominance hierarchy of these eight epitopes. This study highlights the complexity of viral antigen presentation by the host and demonstrates the weakness of simple models that assume total protein levels are directly linked to epitope presentation and immunogenicity. A major mechanism for the detection of virus infection is the recognition by T cells of short peptide fragments (epitopes) derived from the degradation of intracellular proteins presented at the cell surface in a complex with class I MHC. Whilst the mechanics of antigen degradation and the loading of peptides onto MHC are now well understood, the kinetics of epitope presentation have only been studied for individual model antigens. We addressed this issue by studying vaccinia virus, best known as the smallpox vaccine, using advanced mass spectrometry. Precise and simultaneous quantification of multiple peptide-MHC complexes showed that the surface of infected cells provides a surprisingly dynamic landscape from the point of view of anti-viral T cells. Further, concurrent measurement of virus protein levels demonstrated that in most cases, peak presentation of epitopes occurs at the same time or precedes the time of maximum protein build up. Finally, we found a complete disconnect between the abundance of epitopes on infected cells and the size of the responding T cell populations. These data provide new insights into how virus infected cells are seen by T cells, which is crucial to our understanding of anti-viral immunity and development of vaccines.
Collapse
Affiliation(s)
- Nathan P. Croft
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Stewart A. Smith
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yik Chun Wong
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Chor Teck Tan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Nadine L. Dudek
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Inge E. A. Flesch
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Leon C. W. Lin
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - David C. Tscharke
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (DCT); (AWP)
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail: (DCT); (AWP)
| |
Collapse
|
24
|
Erickson JJ, Gilchuk P, Hastings AK, Tollefson SJ, Johnson M, Downing MB, Boyd KL, Johnson JE, Kim AS, Joyce S, Williams JV. Viral acute lower respiratory infections impair CD8+ T cells through PD-1. J Clin Invest 2012; 122:2967-82. [PMID: 22797302 DOI: 10.1172/jci62860] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/07/2012] [Indexed: 12/25/2022] Open
Abstract
Viruses are leading causes of severe acute lower respiratory infections (LRIs). These infections evoke incomplete immunity, as individuals can be repeatedly reinfected throughout life. We report that acute viral LRI causes rapid pulmonary CD8+ cytotoxic T lymphocyte (TCD8) functional impairment via programmed death-1/programmed death ligand-1 (PD-1/PD-L1) signaling, a pathway previously associated with prolonged antigenic stimulation during chronic infections and cancer. PD-1-mediated TCD8 impairment occurred acutely in mice following infection with human metapneumovirus or influenza virus. Viral antigen was sufficient for PD-1 upregulation, but induction of PD-L1 was required for impairment. During secondary viral infection or epitope-only challenge, memory TCD8 rapidly reexpressed PD-1 and exhibited severe functional impairment. Inhibition of PD-1 signaling using monoclonal antibody blockade prevented TCD8 impairment, reduced viral titers during primary infection, and enhanced protection of immunized mice against challenge infection. Additionally, PD-1 and PD-L1 were upregulated in the lungs of patients with 2009 H1N1 influenza virus, respiratory syncytial virus, or parainfluenza virus infection. These results indicate that PD-1 mediates TCD8 functional impairment during acute viral infection and may contribute to recurrent viral LRIs. Therefore, the PD-1/PD-L1 pathway may represent a therapeutic target in the treatment of respiratory viruses.
Collapse
Affiliation(s)
- John J Erickson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Memory CD8+ T cells specific for a single immunodominant or subdominant determinant induced by peptide-dendritic cell immunization protect from an acute lethal viral disease. J Virol 2012; 86:9748-59. [PMID: 22740418 DOI: 10.1128/jvi.00981-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The antigens recognized by individual CD8(+) T cells are small peptides bound to major histocompatibility complex (MHC) class I molecules. The CD8(+) T cell response to a virus is restricted to several peptides, and the magnitudes of the effector as well as memory phases of the response to the individual peptides are generally hierarchical. The peptide eliciting a stronger response is called immunodominant (ID), and those with smaller-magnitude responses are termed subdominant (SD). The relative importance of ID and SD determinants in protective immunity remains to be fully elucidated. We previously showed that multispecific memory CD8(+) T cells can protect susceptible mice from mousepox, an acute lethal viral disease. It remained unknown, however, whether CD8(+) T cells specific for single ID or SD peptides could be protective. Here, we demonstrate that immunization with dendritic cells pulsed with ID and some but not all SD peptides induces memory CD8(+) T cells that are fully capable of protecting susceptible mice from mousepox. Additionally, while natural killer (NK) cells are essential for the natural resistance of nonimmune C57BL/6 (B6) to mousepox, we show that memory CD8(+) T cells of single specificity also protect B6 mice depleted of NK cells. This suggests it is feasible to produce effective antiviral CD8(+) T cell vaccines using single CD8(+) T cell determinants and that NK cells are no longer essential when memory CD8(+) T cells are present.
Collapse
|
26
|
Flesch IEA, Hollett NA, Wong YC, Tscharke DC. Linear fidelity in quantification of anti-viral CD8+ T cells. PLoS One 2012; 7:e39533. [PMID: 22745779 PMCID: PMC3379996 DOI: 10.1371/journal.pone.0039533] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/23/2012] [Indexed: 11/19/2022] Open
Abstract
Enumeration of anti-viral CD8(+) T cells to make comparisons between mice, viruses and vaccines is a frequently used approach, but controversy persists as to the most appropriate methods. Use of peptide-MHC tetramers (or variants) and intracellular staining for cytokines, in particular IFNγ, after a short ex vivo stimulation are now common, as are a variety of cytotoxicity assays, but few direct comparisons have been made. It has been argued that use of tetramers leads to the counting of non-functional T cells and that measurement of single cytokines will fail to identify cells with alternative functions. Further, the linear range of these methods has not been tested and this is required to give confidence that relative quantifications can be compared across samples. Here we show for two acute virus infections and CD8(+) T cells activated in vitro that DimerX (a tetramer variant) and intracellular staining for IFNγ, alone or in combination with CD107 to detect degranulation, gave comparable results at the peak of the response. Importantly, these methods were highly linear over nearly two orders of magnitude. In contrast, in vitro and in vivo assays for cytotoxicity were not linear, suffering from high background killing, plateaus in maximal killing and substantial underestimation of differences in magnitude of responses.
Collapse
Affiliation(s)
- Inge E. A. Flesch
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
| | - Natasha A. Hollett
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
| | - Yik Chun Wong
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
| | - David C. Tscharke
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
27
|
Chung E, Sen J. The ongoing pursuit of a prophylactic HSV vaccine. Rev Med Virol 2012; 22:285-300. [PMID: 22396215 DOI: 10.1002/rmv.1709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/12/2012] [Accepted: 01/18/2012] [Indexed: 12/27/2022]
Abstract
HSV is among the most common human pathogens in the world. It is known to cause painful, persistent skin lesions, while also being the most common cause of fatal non-epidemic encephalitis as well as the leading cause of corneal blindness. The development of prophylactic vaccines could substantially reduce global health problems associated with HSV. So far, HSV vaccine strategies have shown noticeable efficacy in early development during preclinical phases but remained unsuccessful or unproven in human trials. New understanding of how the immune system mounts a defence against HSV offers practical strategies for vaccine development. A number of promising vaccine candidates are currently awaiting clinical development or already undergoing clinical testing. Therefore, this is a suitable time to assess the progress of HSV vaccine development and consider existing challenges and future improvements needed to achieve an effective prophylactic HSV vaccine.
Collapse
Affiliation(s)
- Erin Chung
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada.
| | | |
Collapse
|
28
|
Abstract
Mouse models of immunology are frequently used to study host responses to poxviruses or poxvirus-based recombinant vaccines. In this context, the magnitude of CD8(+) T cell responses is often of interest. Methods to evaluate CD8(+) T cell responses extend from those that rely on indirect measurement of effector function only, such as cytotoxicity assays, to those that only measure antiviral CD8(+) T cell numbers and not function, like peptide MHC tetramers. In this chapter, five methods are provided that cover this range: DimerX staining (a variant of peptide-MHC tetramers), intracellular cytokine staining for interferon-γ, CD62L/Granzyme B staining, and in vitro and ex vivo cytotoxicity assays. We also include tables of vaccinia virus peptide epitopes for use in most of these assays.
Collapse
|
29
|
Gamma interferon and perforin control the strength, but not the hierarchy, of immunodominance of an antiviral CD8+ T cell response. J Virol 2011; 85:12578-84. [PMID: 21917955 DOI: 10.1128/jvi.05334-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The two major antiviral effector mechanisms of CD8(+) T cells are thought to be perforin (Prf)-mediated cell lysis and gamma interferon (IFN-γ)-mediated induction of an antiviral state. By affecting the expression of proteins involved in antigen presentation, IFN-γ is also thought to shape the magnitude and specificity of the CD8(+) T cell response. Here we studied the roles of Prf and IFN-γ in shaping the effector and memory CD8(+) T cell responses to vaccinia virus (VACV). IFN-γ deficiency resulted in increased numbers of anti-VACV effector and memory CD8(+) T cells, which were partly dependent on increased virus loads. On the other hand, Prf-deficient mice showed an increase in the number of VACV-specific CD8(+) T cells only in the memory phase. Treatment of the mice with the antiviral drug cidofovir reduced the numbers of effector and memory cells closer to wild-type levels in IFN-γ-deficient mice and reduced the numbers of memory CD8(+) T cells to wild-type levels in Prf-deficient mice. These data suggest that virus loads are the main reason for the increased strength of the CD8 response in IFN-γ- and Prf-deficient mice. Neither Prf deficiency nor IFN-γ deficiency had an effect on the immunodominance hierarchy of five K(b)-restricted CD8(+) T cell determinants either during acute infection or after recovery. Thus, our work shows that CD8(+) T cell immunodominance during VACV infection is not affected by the effects of IFN-γ on the antigen presentation machinery.
Collapse
|
30
|
Systematic identification of immunodominant CD8+ T-cell responses to influenza A virus in HLA-A2 individuals. Proc Natl Acad Sci U S A 2011; 108:9178-83. [PMID: 21562214 DOI: 10.1073/pnas.1105624108] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immunodominant T-cell responses are important for virus clearance. However, the identification of immunodominant T-cell peptide + HLA glycoprotein epitopes has been hindered by the extent of HLA polymorphism and the limitations of predictive algorithms. A simple, systematic approach has been used here to screen for immunodominant CD8(+) T-cell specificities. The analysis targeted healthy HLA-A2(+) donors to allow comparison with responses to the well-studied influenza matrix protein 1 epitope. Although influenza matrix protein 1 was consistently detected in all individual samples in our study, the response to this epitope was only immunodominant in three of eight, whereas for the other five, prominent CD8(+) T-cell responses tended to focus on various peptides from the influenza nucleoprotein that were not presented by HLA-A2. Importantly, with the four immunodominant T-cell epitopes identified here, only one would have been detected by the current prediction programs. The other three peptides would have been either considered too long or classified as not containing typical HLA binding motifs. Our data stress the importance of systematic analysis for discovering HLA-dependent, immunodominant CD8(+) T-cell epitopes derived from viruses and tumors. Focusing on HLA-A2 and predictive algorithms may be too limiting as we seek to develop targeted immunotherapy and vaccine strategies that depend on T cell-mediated immunity.
Collapse
|