1
|
Maltseva M, Rossotti MA, Tanha J, Langlois MA. Characterization of Nanobody Binding to Distinct Regions of the SARS-CoV-2 Spike Protein by Flow Virometry. Viruses 2025; 17:571. [PMID: 40285013 PMCID: PMC12030927 DOI: 10.3390/v17040571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Nanobodies, or single-domain antibodies (VHHs) from camelid heavy-chain-only antibodies, offer significant advantages in therapeutic and diagnostic applications due to their small size and ability to bind cryptic protein epitopes inaccessible to conventional antibodies. In this study, we examined nanobodies specific to regions of the SARS-CoV-2 spike glycoprotein, including the receptor-binding domain (RBD), N-terminal domain (NTD), and subunit 2 (S2). Using flow virometry, a high-throughput technique for viral quantification, we achieved the efficient detection of pseudotyped viruses expressing the spike glycoprotein. RBD-targeting nanobodies showed the most effective staining, followed by NTD-targeting ones, while S2-specific nanobodies exhibited limited resolution. The simple genetic structure of nanobodies enables the creation of multimeric formats, improving binding specificity and avidity. Bivalent VHH-Fc constructs (VHHs fused to the Fc region of human IgG) outperformed monovalent formats in resolving viral particles from background noise. However, S2-specific monovalent VHHs demonstrated improved staining efficiency, suggesting their smaller size better accesses restricted antigenic sites. Furthermore, direct staining of cell supernatants was possible without virus purification. This versatile nanobody platform, initially developed for antiviral therapy against SARS-CoV-2, can be readily adapted for flow virometry applications and other diagnostic assays.
Collapse
Affiliation(s)
- Mariam Maltseva
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.M.); (J.T.)
| | - Martin A. Rossotti
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON K1N 1J1, Canada;
| | - Jamshid Tanha
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.M.); (J.T.)
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON K1N 1J1, Canada;
- uOttawa Center for Infection, Immunity, and Inflammation (CI3), Ottawa, ON K1H 8L1, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.M.); (J.T.)
- uOttawa Center for Infection, Immunity, and Inflammation (CI3), Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
2
|
Fernandes C, Persaud AT, Chaphekhar D, Burnie J, Belanger C, Tang VA, Guzzo C. Flow virometry: recent advancements, best practices, and future frontiers. J Virol 2025; 99:e0171724. [PMID: 39868829 PMCID: PMC11853038 DOI: 10.1128/jvi.01717-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
The imperative for developing robust tools to detect, analyze, and characterize viruses has become increasingly evident as they continue to threaten human health. In this review, we focus on recent advancements in studying human viruses with flow virometry (FV), an emerging technique that has gained considerable momentum over the past 5 years. These advancements include the application of FV in viral surface phenotyping, viral protein functionality, virus sorting, vaccine development, and diagnostics. With examples illustrated using primary data from our recent studies, we demonstrate that FV is a powerful yet underutilized methodology that, when employed with best practices and experimental rigor, can be highly valuable for studying individual virion heterogeneity, virus phenotypes, and virus-antibody interactions. In this review, we also address the current challenges when performing FV studies, propose strategies to overcome these obstacles, and outline best practices for both new and experienced researchers. Finally, we discuss the promising future prospects of FV within the broader context of virology research.
Collapse
Affiliation(s)
- Claire Fernandes
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Arvin T. Persaud
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Deepa Chaphekhar
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Burnie
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Carolyn Belanger
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vera A. Tang
- Flow Cytometry and Virometry Core Facility, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Christina Guzzo
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Wang Q, Liu J, Luo Y, Kliemke V, Matta GL, Wang J, Liu Q. The nanoscale organization of the Nipah virus fusion protein informs new membrane fusion mechanisms. eLife 2025; 13:RP97017. [PMID: 39745781 DOI: 10.7554/elife.97017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F-AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Jinxin Liu
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Yuhang Luo
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Vicky Kliemke
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Giuliana Leonarda Matta
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Jingjing Wang
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Qian Liu
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
- Mark Wainberg Center for Viral Diseases, Lady Davis Institute, Montreal, Canada
| |
Collapse
|
4
|
Wang Y, Fan L, Ye P, Wang Z, Liang C, Liu Q, Yang X, Long Z, Shi W, Zhou Y, Lin J, Yan H, Huang H, Liu L, Qian J. Novel transcription and replication-competent virus-like particles system modelling the Nipah virus life cycle. Emerg Microbes Infect 2024; 13:2368217. [PMID: 38865205 PMCID: PMC11229746 DOI: 10.1080/22221751.2024.2368217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
Nipah virus (NiV), a highly pathogenic Henipavirus in humans, has been responsible for annual outbreaks in recent years. Experiments involving live NiV are highly restricted to biosafety level 4 (BSL-4) laboratories, which impedes NiV research. In this study, we developed transcription and replication-competent NiV-like particles (trVLP-NiV) lacking N, P, and L genes. This trVLP-NiV exhibited the ability to infect and continuously passage in cells ectopically expressing N, P, and L proteins while maintaining stable genetic characteristics. Moreover, the trVLP-NiV displayed a favourable safety profile in hamsters. Using the system, we found the NiV nucleoprotein residues interacting with viral RNA backbone affected viral replication in opposite patterns. This engineered system was sensitive to well-established antiviral drugs, innate host antiviral factors, and neutralizing antibodies. We then established a high-throughput screening platform utilizing the trVLP-NiV, leading to the identification of tunicamycin as a potential anti-NiV compound. Evidence showed that tunicamycin inhibited NiV replication by decreasing the infectivity of progeny virions. In conclusion, this trVLP-NiV system provided a convenient and versatile molecular tool for investigating NiV molecular biology and conducting antiviral drug screening under BSL-2 conditions. Its application will contribute to the development of medical countermeasures against NiV infections.
Collapse
Affiliation(s)
- Yulong Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Infectious Diseases, Guangzhou Eighth people’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Linjin Fan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Pengfei Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zequn Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Chudan Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Quan Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, People’s Republic of China
| | - Xiaofeng Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhenyu Long
- Institute of Infectious Diseases, Guangzhou Eighth people’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Wendi Shi
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yuandong Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jingyan Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Huijun Yan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hongxin Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Linna Liu
- Institute of Infectious Diseases, Guangzhou Eighth people’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jun Qian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen, People’s Republic of China
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Centre, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Tabler CO, Tilton JC. Analysis of Individual Viral Particles by Flow Virometry. Viruses 2024; 16:802. [PMID: 38793683 PMCID: PMC11125929 DOI: 10.3390/v16050802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
This review focuses on the emerging field of flow virometry, the study and characterization of individual viral particles using flow cytometry instruments and protocols optimized for the detection of nanoscale events. Flow virometry faces considerable technical challenges including minimal light scattering by small viruses that complicates detection, coincidental detection of multiple small particles due to their high concentrations, and challenges with sample preparation including the inability to easily "wash" samples to remove unbound fluorescent antibodies. We will discuss how the field has overcome these challenges to reveal novel insights into viral biology.
Collapse
Affiliation(s)
| | - John C. Tilton
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
6
|
Chaudhuri D, Majumder S, Datta J, Giri K. In silico designing of an epitope-based peptide vaccine cocktail against Nipah virus: an Indian population-based epidemiological study. Arch Microbiol 2023; 205:380. [PMID: 37955744 DOI: 10.1007/s00203-023-03717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023]
Abstract
Nipah virus, a zoonotic virus from the family Paramyxoviridae has led to significant loss of lives till date with the most recent outbreak in India reported in Kerala. The virus has a considerably high mortality rate along with lack of characteristic symptoms which results in the delay of the virus detection. No specific vaccine is available for the virus although monoclonal antibody treatment has been seen to be effective along with favipiravir. The high mortality and complications caused by the virus underscores the necessity to develop alternative modes of vaccination. One such method has been designed in this study using peptide cocktail consisting of the immunologically important epitopes for use as vaccine. The human leucocytic antigens that are used for the study were analyzed for their presence in various ethnic Indian populations. This study may serve as a new avenue for development of more efficient peptide cocktail vaccines in recent future based on the population genetics and ethnicity.
Collapse
Affiliation(s)
- Dwaipayan Chaudhuri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Satyabrata Majumder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Joyeeta Datta
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
7
|
Welch SR, Spengler JR, Genzer SC, Coleman-McCray JD, Harmon JR, Sorvillo TE, Scholte FE, Rodriguez SE, O’Neal TJ, Ritter JM, Ficarra G, Davies KA, Kainulainen MH, Karaaslan E, Bergeron É, Goldsmith CS, Lo MK, Nichol ST, Montgomery JM, Spiropoulou CF. Single-dose mucosal replicon-particle vaccine protects against lethal Nipah virus infection up to 3 days after vaccination. SCIENCE ADVANCES 2023; 9:eadh4057. [PMID: 37540755 PMCID: PMC10403222 DOI: 10.1126/sciadv.adh4057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
Nipah virus (NiV) causes a highly lethal disease in humans who present with acute respiratory or neurological signs. No vaccines against NiV have been approved to date. Here, we report on the clinical impact of a novel NiV-derived nonspreading replicon particle lacking the fusion (F) protein gene (NiVΔF) as a vaccine in three small animal models of disease. A broad antibody response was detected that included immunoglobulin G (IgG) and IgA subtypes with demonstrable Fc-mediated effector function targeting multiple viral antigens. Single-dose intranasal vaccination up to 3 days before challenge prevented clinical signs and reduced virus levels in hamsters and immunocompromised mice; decreases were seen in tissues and mucosal secretions, critically decreasing potential for virus transmission. This virus replicon particle system provides a vital tool to the field and demonstrates utility as a highly efficacious and safe vaccine candidate that can be administered parenterally or mucosally to protect against lethal Nipah disease.
Collapse
Affiliation(s)
- Stephen R. Welch
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessica R. Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Sarah C. Genzer
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - JoAnn D. Coleman-McCray
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Infectious Disease Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessica R. Harmon
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Teresa E. Sorvillo
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Florine E. M. Scholte
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Sergio E. Rodriguez
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - T. Justin O’Neal
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jana M. Ritter
- Infectious Disease Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Georgia Ficarra
- Infectious Disease Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Katherine A. Davies
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Markus H. Kainulainen
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Elif Karaaslan
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Cynthia S. Goldsmith
- Infectious Disease Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Michael K. Lo
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Stuart T. Nichol
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
8
|
Prout A, Rustandi RR, Tubbs C, Winters MA, McKenna P, Vlasak J. Functional profiling of Covid 19 vaccine candidate by flow virometry. Vaccine 2022; 40:5529-5536. [PMID: 35985887 PMCID: PMC9359933 DOI: 10.1016/j.vaccine.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/20/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Vaccine development is a complex process, starting with selection of a promising immunogen in the discovery phase, followed by process development in the preclinical phase, and later by clinical trials in tandem with process improvements and scale up. A large suite of analytical techniques is required to gain understanding of the vaccine candidate so that a relevant immunogen is selected and subsequently manufactured consistently throughout the lifespan of the product. For viral vaccines, successful immunogen production is contingent on its maintained antigenicity and/or infectivity, as well as the ability to characterize these qualities within the context of the process, formulation, and clinical performance. In this report we show the utility of flow virometry during preclinical development of a Covid 19 vaccine candidate based on SARS-CoV-2 spike (S) protein expressed on vesicular stomatitis virus (VSV). Using a panel of monoclonal antibodies, we were able to detect the S protein on the surface of the recombinant VSV virus, monitor the expression levels, detect differences in the antigen based on S protein sequence and after virus inactivation, and monitor S protein stability. Collectively, flow virometry provided important data that helped to guide preclinical development of this vaccine candidate.
Collapse
Affiliation(s)
- Ashley Prout
- Vaccine Analytical Research and Development, Merck & Co., Inc., West Point, PA, USA
| | - Richard R Rustandi
- Vaccine Analytical Research and Development, Merck & Co., Inc., West Point, PA, USA
| | - Christopher Tubbs
- Vaccine Analytical Research and Development, Merck & Co., Inc., West Point, PA, USA
| | - Michael A Winters
- Vaccine Process Research and Development, Merck & Co., Inc., West Point, PA, USA
| | - Philip McKenna
- Infectious Diseases-Vaccines, Merck & Co., Inc., West Point, PA, USA
| | - Josef Vlasak
- Vaccine Analytical Research and Development, Merck & Co., Inc., West Point, PA, USA.
| |
Collapse
|
9
|
Novel Roles of the Nipah Virus Attachment Glycoprotein and Its Mobility in Early and Late Membrane Fusion Steps. mBio 2022; 13:e0322221. [PMID: 35506666 PMCID: PMC9239137 DOI: 10.1128/mbio.03222-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Paramyxoviridae family comprises important pathogens that include measles (MeV), mumps, parainfluenza, and the emerging deadly zoonotic Nipah virus (NiV) and Hendra virus (HeV). Paramyxoviral entry into cells requires viral-cell membrane fusion, and formation of paramyxoviral pathognomonic syncytia requires cell-cell membrane fusion. Both events are coordinated by intricate interactions between the tetrameric attachment (G/H/HN) and trimeric fusion (F) glycoproteins. We report that receptor binding induces conformational changes in NiV G that expose its stalk domain, which triggers F through a cascade from prefusion to prehairpin intermediate (PHI) to postfusion conformations, executing membrane fusion. To decipher how the NiV G stalk may trigger F, we introduced cysteines along the G stalk to increase tetrameric strength and restrict stalk mobility. While most point mutants displayed near-wild-type levels of cell surface expression and receptor binding, most yielded increased NiV G oligomeric strength, and showed remarkably strong defects in syncytium formation. Furthermore, most of these mutants displayed stronger F/G interactions and significant defects in their ability to trigger F, indicating that NiV G stalk mobility is key to proper F triggering via moderate G/F interactions. Also remarkably, a mutant capable of triggering F and of fusion pore formation yielded little syncytium formation, implicating G or G/F interactions in a late step occurring post fusion pore formation, such as the extensive fusion pore expansion required for syncytium formation. This study uncovers novel mechanisms by which the G stalk and its oligomerization/mobility affect G/F interactions, the triggering of F, and a late fusion pore expansion step-exciting novel findings for paramyxoviral attachment glycoproteins. IMPORTANCE The important Paramyxoviridae family includes measles, mumps, human parainfluenza, and the emerging deadly zoonotic Nipah virus (NiV) and Hendra virus (HeV). The deadly emerging NiV can cause neurologic and respiratory symptoms in humans with a >60% mortality rate. NiV has two surface proteins, the receptor binding protein (G) and fusion (F) glycoproteins. They mediate the required membrane fusion during viral entry into host cells and during syncytium formation, a hallmark of paramyxoviral and NiV infections. We previously discovered that the G stalk domain is important for triggering F (via largely unknown mechanisms) to induce membrane fusion. Here, we uncovered new roles and mechanisms by which the G stalk and its mobility modulate the triggering of F and also unexpectedly affect a very late step in membrane fusion, namely fusion pore expansion. Importantly, these novel findings may extend to other paramyxoviruses, offering new potential targets for therapeutic interventions.
Collapse
|
10
|
Maltseva M, Langlois MA. Flow Virometry for Characterizing the Size, Concentration, and Surface Antigens of Viruses. Curr Protoc 2022; 2:e368. [PMID: 35201679 DOI: 10.1002/cpz1.368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Application of flow cytometry principles for the analysis of viruses has been referred to as flow virometry (FVM). FVM is a multiparametric, high-throughput, and sensitive technique that allows viral particles to be detected, quantified, and characterized based on the biophysical properties of the virus and the expression of proteins on their surface. More specifically, by calibrating the flow cytometer with reference materials, it is possible to measure the concentration of intact viral particles in a sample, the abundance of a target antigen on the surface of the virus, and the relative diameter of the virus. Here, we describe a comprehensive overview of procedures used to stain, detect, and quantify viral and host-derived proteins located on the surface of retroviruses. These outlined techniques can be applied for the rapid phenotypic characterization of retroviruses, other enveloped viruses, and generally most viruses at the single-particle level through the direct staining of viruses collected from the supernatant of infected cells, without the need for enrichment or purification. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Virus production Basic Protocol 2: Instrument setup, standardization, and quality control for fluorescence quantification Basic Protocol 3: Flow virometry analysis Basic Protocol 4: Viral surface antigen staining and fluorescence quantification Support Protocol: Determination of the optimal antibody concentration for virus staining Basic Protocol 5: Gain configuration optimization.
Collapse
Affiliation(s)
- Mariam Maltseva
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,uOttawa Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Monticelli SR, Bryk P, Brewer MG, Aguilar HC, Norbury CC, Ward BM. An increase in glycoprotein concentration on extracellular virions dramatically alters vaccinia virus infectivity and pathogenesis without impacting immunogenicity. PLoS Pathog 2021; 17:e1010177. [PMID: 34962975 PMCID: PMC8746760 DOI: 10.1371/journal.ppat.1010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/10/2022] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
The extracellular virion (EV) form of Orthopoxviruses is required for cell-to-cell spread and pathogenesis, and is the target of neutralizing antibodies in the protective immune response. EV have a double envelope that contains several unique proteins that are involved in its intracellular envelopment and/or subsequent infectivity. One of these, F13, is involved in both EV formation and infectivity. Here, we report that replacement of vaccinia virus F13L with the molluscum contagiosum virus homolog, MC021L, results in the production of EV particles with significantly increased levels of EV glycoproteins, which correlate with a small plaque phenotype. Using a novel fluorescence-activated virion sorting assay to isolate EV populations based on glycoprotein content we determine that EV containing either higher or lower levels of glycoproteins are less infectious, suggesting that there is an optimal concentration of glycoproteins in the outer envelope that is required for maximal infectivity of EV. This optimal glycoprotein concentration was required for lethality and induction of pathology in a cutaneous model of animal infection, but was not required for induction of a protective immune response. Therefore, our results demonstrate that there is a sensitive balance between glycoprotein incorporation, infectivity, and pathogenesis, and that manipulation of EV glycoprotein levels can produce vaccine vectors in which pathologic side effects are attenuated without a marked diminution in induction of protective immunity.
Collapse
Affiliation(s)
- Stephanie R. Monticelli
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Peter Bryk
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Matthew G. Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, United States of America
| | - Christopher C. Norbury
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Brian M. Ward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
12
|
Burnie J, Tang VA, Welsh JA, Persaud AT, Thaya L, Jones JC, Guzzo C. Flow Virometry Quantification of Host Proteins on the Surface of HIV-1 Pseudovirus Particles. Viruses 2020; 12:v12111296. [PMID: 33198254 PMCID: PMC7697180 DOI: 10.3390/v12111296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
The HIV-1 glycoprotein spike (gp120) is typically the first viral antigen that cells encounter before initiating immune responses, and is often the sole target in vaccine designs. Thus, characterizing the presence of cellular antigens on the surfaces of HIV particles may help identify new antiviral targets or impact targeting of gp120. Despite the importance of characterizing proteins on the virion surface, current techniques available for this purpose do not support high-throughput analysis of viruses, and typically only offer a semi-quantitative assessment of virus-associated proteins. Traditional bulk techniques often assess averages of viral preparations, which may mask subtle but important differences in viral subsets. On the other hand, microscopy techniques, which provide detail on individual virions, are difficult to use in a high-throughput manner and have low levels of sensitivity for antigen detection. Flow cytometry is a technique that traditionally has been used for rapid, high-sensitivity characterization of single cells, with limited use in detecting viruses, since the small size of viral particles hinders their detection. Herein, we report the detection and surface antigen characterization of HIV-1 pseudovirus particles by light scattering and fluorescence with flow cytometry, termed flow virometry for its specific application to viruses. We quantified three cellular proteins (integrin α4β7, CD14, and CD162/PSGL-1) in the viral envelope by directly staining virion-containing cell supernatants without the requirement of additional processing steps to distinguish virus particles or specific virus purification techniques. We also show that two antigens can be simultaneously detected on the surface of individual HIV virions, probing for the tetraspanin marker, CD81, in addition to α4β7, CD14, and CD162/PSGL-1. This study demonstrates new advances in calibrated flow virometry as a tool to provide sensitive, high-throughput characterization of the viral envelope in a more efficient, quantitative manner than previously reported techniques.
Collapse
Affiliation(s)
- Jonathan Burnie
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (J.B.); (A.T.P.); (L.T.)
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Vera A. Tang
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Flow Cytometry and Virometry Core Facility, Ottawa, ON K1H 8M5, Canada;
| | - Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.A.W.); (J.C.J.)
| | - Arvin T. Persaud
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (J.B.); (A.T.P.); (L.T.)
| | - Laxshaginee Thaya
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (J.B.); (A.T.P.); (L.T.)
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Jennifer C. Jones
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.A.W.); (J.C.J.)
| | - Christina Guzzo
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (J.B.); (A.T.P.); (L.T.)
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
- Correspondence: ; Tel.: +1-(416)-287-7436
| |
Collapse
|
13
|
Bonar MM, Tabler CO, Haqqani AA, Lapointe LE, Galiatsos JA, Joussef-Piña S, Quiñones-Mateu ME, Tilton JC. Nanoscale flow cytometry reveals interpatient variability in HIV protease activity that correlates with viral infectivity and identifies drug-resistant viruses. Sci Rep 2020; 10:18101. [PMID: 33093566 PMCID: PMC7583244 DOI: 10.1038/s41598-020-75118-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/06/2020] [Indexed: 11/26/2022] Open
Abstract
HIV encodes an aspartyl protease that is activated during, or shortly after, budding of viral particles from the surface of infected cells. Protease-mediated cleavage of viral polyproteins is essential to generating infectious viruses, a process known as ‘maturation’ that is the target of FDA-approved antiretroviral drugs. Most assays to monitor protease activity rely on bulk analysis of millions of viruses and obscure potential heterogeneity of protease activation within individual particles. In this study we used nanoscale flow cytometry in conjunction with an engineered FRET reporter called VIral ProteasE Reporter (VIPER) to investigate heterogeneity of protease activation in individual, patient-derived viruses. We demonstrate previously unappreciated interpatient variation in HIV protease processing efficiency that impacts viral infectivity. Additionally, monitoring of protease activity in individual virions distinguishes between drug sensitivity or resistance to protease inhibitors in patient-derived samples. These findings demonstrate the feasibility of monitoring enzymatic processes using nanoscale flow cytometry and highlight the potential of this technology for translational clinical discovery, not only for viruses but also other submicron particles including exosomes, microvesicles, and bacteria.
Collapse
Affiliation(s)
- Michał M Bonar
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Caroline O Tabler
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Aiman A Haqqani
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lauren E Lapointe
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jake A Galiatsos
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Samira Joussef-Piña
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Miguel E Quiñones-Mateu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - John C Tilton
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
14
|
Flow Cytometry Analysis of HIV-1 Env Conformations at the Surface of Infected Cells and Virions: Role of Nef, CD4, and SERINC5. J Virol 2020; 94:JVI.01783-19. [PMID: 31852789 DOI: 10.1128/jvi.01783-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
The HIV-1 Env protein is exposed at the surface of virions and infected cells. Env fluctuates between different closed and open structural states and these conformations influence both viral infectivity and sensitivity to antibody binding and neutralization. We established a flow virometry assay to visualize Env proteins at the surface of human immunodeficiency virus type 1 (HIV-1) virions. The assay is performed on ultracentrifuged fluorescent viral particles that are stained with a panel of broadly neutralizing antibodies (bNAbs) and nonneutralizing antibodies (nnAbs) that probe different epitopes of Env. We used this assay to compare Env at the surface of producer cells and viral particles and to analyze the effect of Nef, CD4, and SERINC5 on Env accessibility to antibodies. We studied the laboratory-adapted strain NL4-3 and two transmitted/founder viruses, THRO and CH058. We confirm that antibody accessibility varies between viral strains and show that Nef, CD4, and SERINC5 additively impact Env conformations. We further demonstrate that the Env accessibility profile on virions is globally similar to that observed on HIV-1-infected cells, with some noticeable differences. For instance, nnAbs bind to virions more efficiently than to producer cells, likely reflecting changes in Env conformational states on mature viral particles. This test complements other techniques and provides a convenient and simple tool for quantifying and probing the structure of Env at the virion surface and to analyze the impact of viral and cellular proteins on these parameters.IMPORTANCE HIV-1 Env conformation is one of the key parameters determining viral infectivity. The flow virometry-based assay developed in this study allows for the characterization of proteins incorporated in HIV-1 particles. We studied the conformation of HIV-1 Env and the impact that the viral protein Nef and the cellular proteins CD4 and SERINC5 have on Env accessibility to antibodies. Our assay permitted us to highlight some noticeable differences in the conformation of Env between producer cells and viral particles. It contributes to a better understanding of the actual composition of HIV-1 particles.
Collapse
|
15
|
Khadivjam B, El Bilali N, Lippé R. Analysis and Sorting of Individual HSV-1 Particles by Flow Virometry. Methods Mol Biol 2020; 2060:289-303. [PMID: 31617185 DOI: 10.1007/978-1-4939-9814-2_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flow cytometry has been instrumental in characterizing normal and infected cells. However, until recently, it was not possible to use such an approach to analyze small entities such as bacteria, let alone viruses, owing to the 0.5 μm resolution of most instruments. To circumvent this limitation, some laboratories decorate pathogens with antibodies or nanoparticles. Our laboratory instead exploits an alternative approach that relies on the staining of internal viral constituents with permeable SYTO dyes or the fluorescent tagging of individual viral proteinaceous components, whether capsid, tegument or glycoproteins. This opens up a range of new research avenues and, for example, enabled us to characterize individual herpes simplex virus type 1 particles, discern their different subpopulations, measure the heterogeneity of mature virions in terms of protein content, sort these viral particles with >90% purity and, for the first time, directly address the impact of this heterogeneity on viral fitness. This approach, coined flow virometry or nanoscale flow cytometry, allows for the study of a wide variety of pathogens with high statistical significance and the potential discovery of novel virulence factors.
Collapse
Affiliation(s)
- Bita Khadivjam
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
| | - Nabil El Bilali
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
| | - Roger Lippé
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
16
|
Nipah Virus-Like Particle Egress Is Modulated by Cytoskeletal and Vesicular Trafficking Pathways: a Validated Particle Proteomics Analysis. mSystems 2019; 4:4/5/e00194-19. [PMID: 31551400 PMCID: PMC6759566 DOI: 10.1128/msystems.00194-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Classified as a biosafety level 4 (BSL4) select agent, Nipah virus (NiV) is a deadly henipavirus in the Paramyxoviridae family, with a nearly 75% mortality rate in humans, underscoring its global and animal health importance. Elucidating the process of viral particle production in host cells is imperative both for targeted drug design and viral particle-based vaccine development. However, little is understood concerning the functions of cellular machinery in paramyxoviral and henipaviral assembly and budding. Recent studies showed evidence for the involvement of multiple NiV proteins in viral particle formation, in contrast to the mechanisms understood for several paramyxoviruses as being reliant on the matrix (M) protein alone. Further, the levels and purposes of cellular factor incorporation into viral particles are largely unexplored for the paramyxoviruses. To better understand the involvement of cellular machinery and the major structural viral fusion (F), attachment (G), and matrix (M) proteins, we performed proteomics analyses on virus-like particles (VLPs) produced from several combinations of these NiV proteins. Our findings indicate that NiV VLPs incorporate vesicular trafficking and actin cytoskeletal factors. The involvement of these biological processes was validated by experiments indicating that the perturbation of key factors in these cellular processes substantially modulated viral particle formation. These effects were most impacted for NiV-F-modulated viral particle formation either autonomously or in combination with other NiV proteins, indicating that NiV-F budding relies heavily on these cellular processes. These findings indicate a significant involvement of the NiV fusion protein, vesicular trafficking, and actin cytoskeletal processes in efficient viral particle formation.IMPORTANCE Nipah virus is a zoonotic biosafety level 4 agent with high mortality rates in humans. The genus to which Nipah virus belongs, Henipavirus, includes five officially recognized pathogens; however, over 20 species have been identified in multiple continents within the last several years. As there are still no vaccines or treatments for NiV infection, elucidating its process of viral particle production is imperative both for targeted drug design as well as for particle-based vaccine development. Developments in high-throughput technologies make proteomic analysis of isolated viral particles a highly insightful approach to understanding the life cycle of pathogens such as Nipah virus.
Collapse
|
17
|
Lian H, He S, Chen C, Yan X. Flow Cytometric Analysis of Nanoscale Biological Particles and Organelles. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:389-409. [PMID: 30978294 DOI: 10.1146/annurev-anchem-061318-115042] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Analysis of nanoscale biological particles and organelles (BPOs) at the single-particle level is fundamental to the in-depth study of biosciences. Flow cytometry is a versatile technique that has been well-established for the analysis of eukaryotic cells, yet conventional flow cytometry can hardly meet the sensitivity requirement for nanoscale BPOs. Recent advances in high-sensitivity flow cytometry have made it possible to conduct precise, sensitive, and specific analyses of nanoscale BPOs, with exceptional benefits for bacteria, mitochondria, viruses, and extracellular vesicles (EVs). In this article, we discuss the significance, challenges, and efforts toward sensitivity enhancement, followed by the introduction of flow cytometric analysis of nanoscale BPOs. With the development of the nano-flow cytometer that can detect single viruses and EVs as small as 27 nm and 40 nm, respectively, more exciting applications in nanoscale BPO analysis can be envisioned.
Collapse
Affiliation(s)
| | | | - Chaoxiang Chen
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation; Key Laboratory for Chemical Biology of Fujian Province; Collaborative Innovation Center of Chemistry for Energy Material; and Department of Chemical Biology, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China;
| | - Xiaomei Yan
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation; Key Laboratory for Chemical Biology of Fujian Province; Collaborative Innovation Center of Chemistry for Energy Material; and Department of Chemical Biology, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China;
| |
Collapse
|
18
|
Liu Q, Chen L, Aguilar HC, Chou KC. A stochastic assembly model for Nipah virus revealed by super-resolution microscopy. Nat Commun 2018; 9:3050. [PMID: 30076303 PMCID: PMC6076310 DOI: 10.1038/s41467-018-05480-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/22/2018] [Indexed: 01/29/2023] Open
Abstract
Understanding virus assembly mechanisms is important for developing therapeutic interventions. Nipah virus (NiV) is of interest because of its high mortality rate and efficient human-human transmissions. The current model for most enveloped viruses suggests that matrix proteins (M) recruit attachment glycoproteins (G) and fusion glycoproteins (F) to the assembly site at the plasma membrane. Here we report an assembly model that differs in many aspects from the current one. Examining NiV proteins on the cell plasma membrane using super-resolution microscopy reveals that clusters of F and G are randomly distributed on the plasma membrane regardless of the presence or absence of M. Our data suggests a model in which the M molecules assemble at the plasma membrane to form virus-like particles (VLPs), while the incorporation of F and G into the nascent VLPs is stochastic.
Collapse
Affiliation(s)
- Qian Liu
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Lei Chen
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Hector C Aguilar
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, 14853, USA
| | - Keng C Chou
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
19
|
Hansen MMK, Wen WY, Ingerman E, Razooky BS, Thompson CE, Dar RD, Chin CW, Simpson ML, Weinberger LS. A Post-Transcriptional Feedback Mechanism for Noise Suppression and Fate Stabilization. Cell 2018; 173:1609-1621.e15. [PMID: 29754821 PMCID: PMC6044448 DOI: 10.1016/j.cell.2018.04.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/19/2018] [Accepted: 04/03/2018] [Indexed: 11/25/2022]
Abstract
Diverse biological systems utilize fluctuations ("noise") in gene expression to drive lineage-commitment decisions. However, once a commitment is made, noise becomes detrimental to reliable function, and the mechanisms enabling post-commitment noise suppression are unclear. Here, we find that architectural constraints on noise suppression are overcome to stabilize fate commitment. Using single-molecule and time-lapse imaging, we find that-after a noise-driven event-human immunodeficiency virus (HIV) strongly attenuates expression noise through a non-transcriptional negative-feedback circuit. Feedback is established through a serial cascade of post-transcriptional splicing, whereby proteins generated from spliced mRNAs auto-deplete their own precursor unspliced mRNAs. Strikingly, this auto-depletion circuitry minimizes noise to stabilize HIV's commitment decision, and a noise-suppression molecule promotes stabilization. This feedback mechanism for noise suppression suggests a functional role for delayed splicing in other systems and may represent a generalizable architecture of diverse homeostatic signaling circuits.
Collapse
Affiliation(s)
- Maike M K Hansen
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Winnie Y Wen
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elena Ingerman
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Brandon S Razooky
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Cassandra E Thompson
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Roy D Dar
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Charles W Chin
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Bredesen Center, University of Tennessee, Knoxville, TN 37996, USA
| | - Michael L Simpson
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Bredesen Center, University of Tennessee, Knoxville, TN 37996, USA
| | - Leor S Weinberger
- Gladstone
- UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
20
|
Proteomic composition of Nipah virus-like particles. J Proteomics 2018; 172:190-200. [DOI: 10.1016/j.jprot.2017.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/13/2017] [Accepted: 10/22/2017] [Indexed: 01/28/2023]
|
21
|
Abstract
For several decades, flow cytometry has been a common approach to analyze cells and sort them to near-purity. It enables one to probe inner cellular molecules, surface receptors, or infected cells. However, the analysis of smaller entities such as viruses and exocytic vesicles has been more difficult but is becoming mainstream. This has in part been due to the development of new instrumentation with resolutions below that of conventional cytometers. It is also attributed to the several means employed to fluorescently label viruses, hence enabling them to stand out from similarly sized particles representing background noise. Thus far, more than a dozen different viruses ranging in size from 40 nm to giant viruses have been probed by this approach, which was recently dubbed "flow virometry." These studies have collectively highlighted the breadth of the applications of this method, which, for example, has elucidated the maturation of dengue virus, served as quality control for vaccinia vaccines, and enabled the sorting of herpes simplex virus discrete viral particles. The present review focuses on the means employed to characterize and sort viruses by this powerful technology and on the emerging uses of flow virometry. It similarly addresses some of its current challenges and limitations.
Collapse
|
22
|
Zamora JLR, Aguilar HC. Flow virometry as a tool to study viruses. Methods 2017; 134-135:87-97. [PMID: 29258922 DOI: 10.1016/j.ymeth.2017.12.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/10/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023] Open
Abstract
In the last few decades, flow cytometry has redefined the field of biology, exponentially enhancing our understanding of cells, immunology, and microbiology. Flow cytometry recently gave birth to flow virometry, a new way to detect, analyze, and characterize single viral particles. Detection of viruses by flow cytometry is possible due to improvements in current flow cytometers, calibration, and tuning methods. We summarize the recent birth and novel uses of flow virometry and the progressive evolution of this tool to advance the field of virology. We also discuss the various flow virometry methods used to identify and analyze viruses. We briefly summarize other applications of flow virometry, including: virus detection, quantification, population discrimination, and viral particles' antigenic properties. Finally, we summarize how viral sorting will allow further progress of flow virometry to relate viral surface characteristics to infectivity properties.
Collapse
Affiliation(s)
| | - Hector C Aguilar
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
23
|
Wong JJW, Young TA, Zhang J, Liu S, Leser GP, Komives EA, Lamb RA, Zhou ZH, Salafsky J, Jardetzky TS. Monomeric ephrinB2 binding induces allosteric changes in Nipah virus G that precede its full activation. Nat Commun 2017; 8:781. [PMID: 28974687 PMCID: PMC5626764 DOI: 10.1038/s41467-017-00863-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/01/2017] [Indexed: 11/09/2022] Open
Abstract
Nipah virus is an emergent paramyxovirus that causes deadly encephalitis and respiratory infections in humans. Two glycoproteins coordinate the infection of host cells, an attachment protein (G), which binds to cell surface receptors, and a fusion (F) protein, which carries out the process of virus-cell membrane fusion. The G protein binds to ephrin B2/3 receptors, inducing G conformational changes that trigger F protein refolding. Using an optical approach based on second harmonic generation, we show that monomeric and dimeric receptors activate distinct conformational changes in G. The monomeric receptor-induced changes are not detected by conformation-sensitive monoclonal antibodies or through electron microscopy analysis of G:ephrinB2 complexes. However, hydrogen/deuterium exchange experiments confirm the second harmonic generation observations and reveal allosteric changes in the G receptor binding and F-activating stalk domains, providing insights into the pathway of receptor-activated virus entry.Nipah virus causes encephalitis in humans. Here the authors use a multidisciplinary approach to study the binding of the viral attachment protein G to its host receptor ephrinB2 and show that monomeric and dimeric receptors activate distinct conformational changes in G and discuss implications for receptor-activated virus entry.
Collapse
Affiliation(s)
- Joyce J W Wong
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Jiayan Zhang
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Shiheng Liu
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - George P Leser
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL, 60208-3500, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208-3500, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA, 92093, USA
| | - Robert A Lamb
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL, 60208-3500, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208-3500, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Theodore S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
24
|
Cytoplasmic Motifs in the Nipah Virus Fusion Protein Modulate Virus Particle Assembly and Egress. J Virol 2017; 91:JVI.02150-16. [PMID: 28250132 DOI: 10.1128/jvi.02150-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/21/2017] [Indexed: 01/19/2023] Open
Abstract
Nipah virus (NiV), a paramyxovirus in the genus Henipavirus, has a mortality rate in humans of approximately 75%. While several studies have begun our understanding of NiV particle formation, the mechanism of this process remains to be fully elucidated. For many paramyxoviruses, M proteins drive viral assembly and egress; however, some paramyxoviral glycoproteins have been reported as important or essential in budding. For NiV the matrix protein (M), the fusion glycoprotein (F) and, to a much lesser extent, the attachment glycoprotein (G) autonomously induce the formation of virus-like particles (VLPs). However, functional interactions between these proteins during assembly and egress remain to be fully understood. Moreover, if the F-driven formation of VLPs occurs through interactions with host cell machinery, the cytoplasmic tail (CT) of F is a likely interactive domain. Therefore, we analyzed NiV F CT deletion and alanine mutants and report that several but not all regions of the F CT are necessary for efficient VLP formation. Two of these regions contain YXXØ or dityrosine motifs previously shown to interact with cellular machinery involved in F endocytosis and transport. Importantly, our results showed that F-driven, M-driven, and M/F-driven viral particle formation enhanced the recruitment of G into VLPs. By identifying key motifs, specific residues, and functional viral protein interactions important for VLP formation, we improve our understanding of the viral assembly/egress process and point to potential interactions with host cell machinery.IMPORTANCE Henipaviruses can cause deadly infections of medical, veterinary, and agricultural importance. With recent discoveries of new henipa-like viruses, understanding the mechanisms by which these viruses reproduce is paramount. We have focused this study on identifying the functional interactions of three Nipah virus proteins during viral assembly and particularly on the role of one of these proteins, the fusion glycoprotein, in the incorporation of other viral proteins into viral particles. By identifying several regions in the fusion glycoprotein that drive viral assembly, we further our understanding of how these viruses assemble and egress from infected cells. The results presented will likely be useful toward designing treatments targeting this aspect of the viral life cycle and for the production of new viral particle-based vaccines.
Collapse
|
25
|
Musich T, Jones JC, Keele BF, Jenkins LMM, Demberg T, Uldrick TS, Yarchoan R, Robert-Guroff M. Flow virometric sorting and analysis of HIV quasispecies from plasma. JCI Insight 2017; 2:e90626. [PMID: 28239654 PMCID: PMC5313071 DOI: 10.1172/jci.insight.90626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/05/2017] [Indexed: 11/17/2022] Open
Abstract
Flow cytometry is utilized extensively for cellular analysis, but technical limitations have prevented its routine application for characterizing virus. The recent introduction of nanoscale fluorescence-activated cytometric cell sorting now allows analysis of individual virions. Here, we demonstrate staining and sorting of infectious HIV. Fluorescent antibodies specific for cellular molecules found on budding virions were used to label CCR5-tropic Bal HIV and CXCR4-tropic NL4.3 HIV Env-expressing pseudovirions made in THP-1 cells (monocyte/macrophage) and H9 cells (T cells), respectively. Using a flow cytometer, we resolved the stained virus beyond isotype staining and demonstrated purity and infectivity of sorted virus populations on cells with the appropriate coreceptors. We subsequently sorted infectious simian/human immunodeficiency virus from archived plasma. Recovery was approximately 0.5%, but virus present in plasma was already bound to viral-specific IgG generated in vivo, likely contributing to the low yield. Importantly, using two broadly neutralizing HIV antibodies, PG9 and VRC01, we also sorted virus from archived human plasma and analyzed the sorted populations genetically and by proteomics, identifying the quasispecies present. The ability to sort infectious HIV from clinically relevant samples provides material for detailed molecular, genetic, and proteomic analyses applicable to future design of vaccine antigens and potential development of personalized treatment regimens.
Collapse
Affiliation(s)
| | - Jennifer C. Jones
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Lisa M. Miller Jenkins
- Collaborative Protein Technology Resource, Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Thomas S. Uldrick
- Retroviral Diseases Section, HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert Yarchoan
- Retroviral Diseases Section, HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | |
Collapse
|
26
|
Bonar MM, Tilton JC. High sensitivity detection and sorting of infectious human immunodeficiency virus (HIV-1) particles by flow virometry. Virology 2017; 505:80-90. [PMID: 28235684 DOI: 10.1016/j.virol.2017.02.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 12/21/2022]
Abstract
Detection of viruses by flow cytometry is complicated by their small size. Here, we characterized the ability of a standard (FACSAria II) and a sub-micron flow cytometer (A50 Micro) to resolve HIV-1 viruses. The A50 was superior at resolving small particles but did not reliably distinguish HIV-1, extracellular vesicles, and laser noise by light scatter properties alone. However, single fluorescent HIV-1 particles could readily be detected by both cytometers. Fluorescent particles were sorted and retained infectivity, permitting further exploration of the functional consequences of HIV-1 heterogeneity. Finally, flow cytometry had a limit of detection of 80 viruses/ml, nearly equal to PCR assays. These studies demonstrate the power of flow cytometry to detect and sort viral particles and provide a critical toolkit to validate methods to label wild-type HIV-1; quantitatively assess integrity and aggregation of viruses and virus-based therapeutics; and efficiently screen drugs inhibiting viral assembly and release.
Collapse
Affiliation(s)
- Michał M Bonar
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland OH 44106, USA
| | - John C Tilton
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland OH 44106, USA.
| |
Collapse
|
27
|
Jones DM, Padilla-Parra S. The β-Lactamase Assay: Harnessing a FRET Biosensor to Analyse Viral Fusion Mechanisms. SENSORS 2016; 16:s16070950. [PMID: 27347948 PMCID: PMC4970004 DOI: 10.3390/s16070950] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 02/06/2023]
Abstract
The β-lactamase (BlaM) assay was first revealed in 1998 and was demonstrated to be a robust Förster resonance energy transfer (FRET)-based reporter system that was compatible with a range of commonly-used cell lines. Today, the BlaM assay is available commercially as a kit and can be utilised readily and inexpensively for an array of experimental procedures that require a fluorescence-based readout. One frequent application of the BlaM assay is the measurement of viral fusion—the moment at which the genetic material harboured within virus particles is released into the cytosol following successful entry. The flexibility of the system permits evaluation of not only total fusion levels, but also the kinetics of fusion. However, significant variation exists in the scientific literature regarding the methodology by which the assay is applied to viral fusion analysis, making comparison between results difficult. In this review we draw attention to the disparity of these methodologies and examine the advantages and disadvantages of each approach. Successful strategies shown to render viruses compatible with BlaM-based analyses are also discussed.
Collapse
Affiliation(s)
- Daniel M Jones
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK.
| | - Sergi Padilla-Parra
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK.
| |
Collapse
|
28
|
Stone JA, Nicola AV, Baum LG, Aguilar HC. Multiple Novel Functions of Henipavirus O-glycans: The First O-glycan Functions Identified in the Paramyxovirus Family. PLoS Pathog 2016; 12:e1005445. [PMID: 26867212 PMCID: PMC4750917 DOI: 10.1371/journal.ppat.1005445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/19/2016] [Indexed: 01/13/2023] Open
Abstract
O-linked glycosylation is a ubiquitous protein modification in organisms belonging to several kingdoms. Both microbial and host protein glycans are used by many pathogens for host invasion and immune evasion, yet little is known about the roles of O-glycans in viral pathogenesis. Reportedly, there is no single function attributed to O-glycans for the significant paramyxovirus family. The paramyxovirus family includes many important pathogens, such as measles, mumps, parainfluenza, metapneumo- and the deadly Henipaviruses Nipah (NiV) and Hendra (HeV) viruses. Paramyxoviral cell entry requires the coordinated actions of two viral membrane glycoproteins: the attachment (HN/H/G) and fusion (F) glycoproteins. O-glycan sites in HeV G were recently identified, facilitating use of the attachment protein of this deadly paramyxovirus as a model to study O-glycan functions. We mutated the identified HeV G O-glycosylation sites and found mutants with altered cell-cell fusion, G conformation, G/F association, viral entry in a pseudotyped viral system, and, quite unexpectedly, pseudotyped viral F protein incorporation and processing phenotypes. These are all important functions of viral glycoproteins. These phenotypes were broadly conserved for equivalent NiV mutants. Thus our results identify multiple novel and pathologically important functions of paramyxoviral O-glycans, paving the way to study O-glycan functions in other paramyxoviruses and enveloped viruses.
Collapse
Affiliation(s)
- Jacquelyn A. Stone
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Anthony V. Nicola
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Linda G. Baum
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, United States of America
| | - Hector C. Aguilar
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
29
|
Sawatsky B, Bente DA, Czub M, von Messling V. Morbillivirus and henipavirus attachment protein cytoplasmic domains differently affect protein expression, fusion support and particle assembly. J Gen Virol 2016; 97:1066-1076. [PMID: 26813519 PMCID: PMC7482510 DOI: 10.1099/jgv.0.000415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The amino-terminal cytoplasmic domains of paramyxovirus attachment glycoproteins
include trafficking signals that influence protein processing and cell surface
expression. To characterize the role of the cytoplasmic domain in protein expression,
fusion support and particle assembly in more detail, we constructed chimeric Nipah
virus (NiV) glycoprotein (G) and canine distemper virus (CDV) haemagglutinin (H)
proteins carrying the respective heterologous cytoplasmic domain, as well as a series
of mutants with progressive deletions in this domain. CDV H retained fusion function
and was normally expressed on the cell surface with a heterologous cytoplasmic
domain, while the expression and fusion support of NiV G was dramatically decreased
when its cytoplasmic domain was replaced with that of CDV H. The cell surface
expression and fusion support functions of CDV H were relatively insensitive to
cytoplasmic domain deletions, while short deletions in the corresponding region of
NiV G dramatically decreased both. In addition, the first 10 residues of the CDV H
cytoplasmic domain strongly influence its incorporation into virus-like particles
formed by the CDV matrix (M) protein, while the co-expression of NiV M with NiV G had
no significant effect on incorporation of G into particles. The cytoplasmic domains
of both the CDV H and NiV G proteins thus contribute differently to the virus life
cycle.
Collapse
Affiliation(s)
- Bevan Sawatsky
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA.,INRS-Institut Armand-Frappier, University of Quebec, Laval, Quebec, Canada.,Veterinary Medicine Division, Paul-Ehrlich-Institute, Langen, Germany.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Dennis A Bente
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA.,Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Markus Czub
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Veronika von Messling
- INRS-Institut Armand-Frappier, University of Quebec, Laval, Quebec, Canada.,Veterinary Medicine Division, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
30
|
Nipah Virus Matrix Protein Influences Fusogenicity and Is Essential for Particle Infectivity and Stability. J Virol 2015; 90:2514-22. [PMID: 26676785 DOI: 10.1128/jvi.02920-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Nipah virus (NiV) causes fatal encephalitic infections in humans. To characterize the role of the matrix (M) protein in the viral life cycle, we generated a reverse genetics system based on NiV strain Malaysia. Using an enhanced green fluorescent protein (eGFP)-expressing M protein-deleted NiV, we observed a slightly increased cell-cell fusion, slow replication kinetics, and significantly reduced peak titers compared to the parental virus. While increased amounts of viral proteins were found in the supernatant of cells infected with M-deleted NiV, the infectivity-to-particle ratio was more than 100-fold reduced, and the particles were less thermostable and of more irregular morphology. Taken together, our data demonstrate that the M protein is not absolutely required for the production of cell-free NiV but is necessary for proper assembly and release of stable infectious NiV particles. IMPORTANCE Henipaviruses cause a severe disease with high mortality in human patients. Therefore, these viruses can be studied only in biosafety level 4 (BSL-4) laboratories, making it more challenging to characterize their life cycle. Here we investigated the role of the Nipah virus matrix protein in virus-mediated cell-cell fusion and in the formation and release of newly produced particles. We found that even though low levels of infectious viruses are produced in the absence of the matrix protein, it is required for the release of highly infectious and stable particles. Fusogenicity of matrixless viruses was slightly enhanced, further demonstrating the critical role of this protein in different steps of Nipah virus spread.
Collapse
|
31
|
Xu K, Chan YP, Bradel-Tretheway B, Akyol-Ataman Z, Zhu Y, Dutta S, Yan L, Feng Y, Wang LF, Skiniotis G, Lee B, Zhou ZH, Broder CC, Aguilar HC, Nikolov DB. Crystal Structure of the Pre-fusion Nipah Virus Fusion Glycoprotein Reveals a Novel Hexamer-of-Trimers Assembly. PLoS Pathog 2015; 11:e1005322. [PMID: 26646856 PMCID: PMC4672880 DOI: 10.1371/journal.ppat.1005322] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 11/11/2015] [Indexed: 12/05/2022] Open
Abstract
Nipah virus (NiV) is a paramyxovirus that infects host cells through the coordinated efforts of two envelope glycoproteins. The G glycoprotein attaches to cell receptors, triggering the fusion (F) glycoprotein to execute membrane fusion. Here we report the first crystal structure of the pre-fusion form of the NiV-F glycoprotein ectodomain. Interestingly this structure also revealed a hexamer-of-trimers encircling a central axis. Electron tomography of Nipah virus-like particles supported the hexameric pre-fusion model, and biochemical analyses supported the hexamer-of-trimers F assembly in solution. Importantly, structure-assisted site-directed mutagenesis of the interfaces between F trimers highlighted the functional relevance of the hexameric assembly. Shown here, in both cell-cell fusion and virus-cell fusion systems, our results suggested that this hexamer-of-trimers assembly was important during fusion pore formation. We propose that this assembly would stabilize the pre-fusion F conformation prior to cell attachment and facilitate the coordinated transition to a post-fusion conformation of all six F trimers upon triggering of a single trimer. Together, our data reveal a novel and functional pre-fusion architecture of a paramyxoviral fusion glycoprotein.
Collapse
Affiliation(s)
- Kai Xu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Yee-Peng Chan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Birgit Bradel-Tretheway
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Zeynep Akyol-Ataman
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
| | - Yongqun Zhu
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Somnath Dutta
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America
| | - YanRu Feng
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Lin-Fa Wang
- CSIRO Animal, Food and Health Sciences, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Georgios Skiniotis
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Hector C. Aguilar
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Dimitar B. Nikolov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|