1
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
2
|
The role of mitochondria-associated membranes in cellular homeostasis and diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 350:119-196. [PMID: 32138899 DOI: 10.1016/bs.ircmb.2019.11.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria and endoplasmic reticulum (ER) are fundamental in the control of cell physiology regulating several signal transduction pathways. They continuously communicate exchanging messages in their contact sites called MAMs (mitochondria-associated membranes). MAMs are specific microdomains acting as a platform for the sorting of vital and dangerous signals. In recent years increasing evidence reported that multiple scaffold proteins and regulatory factors localize to this subcellular fraction suggesting MAMs as hotspot signaling domains. In this review we describe the current knowledge about MAMs' dynamics and processes, which provided new correlations between MAMs' dysfunctions and human diseases. In fact, MAMs machinery is strictly connected with several pathologies, like neurodegeneration, diabetes and mainly cancer. These pathological events are characterized by alterations in the normal communication between ER and mitochondria, leading to deep metabolic defects that contribute to the progression of the diseases.
Collapse
|
3
|
Simmen T, Herrera-Cruz MS. Plastic mitochondria-endoplasmic reticulum (ER) contacts use chaperones and tethers to mould their structure and signaling. Curr Opin Cell Biol 2018; 53:61-69. [DOI: 10.1016/j.ceb.2018.04.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/10/2018] [Accepted: 04/30/2018] [Indexed: 12/19/2022]
|
4
|
Csordás G, Weaver D, Hajnóczky G. Endoplasmic Reticulum-Mitochondrial Contactology: Structure and Signaling Functions. Trends Cell Biol 2018; 28:523-540. [PMID: 29588129 DOI: 10.1016/j.tcb.2018.02.009] [Citation(s) in RCA: 410] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 02/08/2023]
Abstract
Interorganellar contacts are increasingly recognized as central to the control of cellular behavior. These contacts, which typically involve a small fraction of the endomembrane surface, are local communication hubs that resemble synapses. We propose the term contactology to denote the analysis of interorganellar contacts. Endoplasmic reticulum (ER) contacts with mitochondria were recognized several decades ago; major roles in ion and lipid transfer, signaling, and membrane dynamics have been established, while others continue to emerge. The functional diversity of ER-mitochondrial (ER-mito) contacts is mirrored in their structural heterogeneity, with subspecialization likely supported by multiple, different linker-forming protein structures. The nanoscale size of the contacts has made studying their structure, function, and dynamics difficult. This review focuses on the structure of the ER-mito contacts, methods for studying them, and the roles of contacts in Ca2+ and reactive oxygen species (ROS) signaling.
Collapse
Affiliation(s)
- György Csordás
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - David Weaver
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
5
|
Mitochondria-associated membranes (MAMs) and inflammation. Cell Death Dis 2018; 9:329. [PMID: 29491386 PMCID: PMC5832426 DOI: 10.1038/s41419-017-0027-2] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022]
Abstract
The endoplasmic reticulum (ER) and mitochondria are tightly associated with very dynamic platforms termed mitochondria-associated membranes (MAMs). MAMs provide an excellent scaffold for crosstalk between the ER and mitochondria and play a pivotal role in different signaling pathways that allow rapid exchange of biological molecules to maintain cellular health. However, dysfunctions in the ER–mitochondria architecture are associated with pathological conditions and human diseases. Inflammation has emerged as one of the various pathways that MAMs control. Inflammasome components and other inflammatory factors promote the release of pro-inflammatory cytokines that sustain pathological conditions. In this review, we summarize the critical role of MAMs in initiating inflammation in the cellular defense against pathogenic infections and the association of MAMs with inflammation-mediated diseases.
Collapse
|
6
|
Close WL, Anderson AN, Pellett PE. Betaherpesvirus Virion Assembly and Egress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:167-207. [PMID: 29896668 DOI: 10.1007/978-981-10-7230-7_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Virions are the vehicle for cell-to-cell and host-to-host transmission of viruses. Virions need to be assembled reliably and efficiently, be released from infected cells, survive in the extracellular environment during transmission, recognize and then trigger entry of appropriate target cells, and disassemble in an orderly manner during initiation of a new infection. The betaherpesvirus subfamily includes four human herpesviruses (human cytomegalovirus and human herpesviruses 6A, 6B, and 7), as well as viruses that are the basis of important animal models of infection and immunity. Similar to other herpesviruses, betaherpesvirus virions consist of four main parts (in order from the inside): the genome, capsid, tegument, and envelope. Betaherpesvirus genomes are dsDNA and range in length from ~145 to 240 kb. Virion capsids (or nucleocapsids) are geometrically well-defined vessels that contain one copy of the dsDNA viral genome. The tegument is a collection of several thousand protein and RNA molecules packed into the space between the envelope and the capsid for delivery and immediate activity upon cellular entry at the initiation of an infection. Betaherpesvirus envelopes consist of lipid bilayers studded with virus-encoded glycoproteins; they protect the virion during transmission and mediate virion entry during initiation of new infections. Here, we summarize the mechanisms of betaherpesvirus virion assembly, including how infection modifies, reprograms, hijacks, and otherwise manipulates cellular processes and pathways to produce virion components, assemble the parts into infectious virions, and then transport the nascent virions to the extracellular environment for transmission.
Collapse
Affiliation(s)
- William L Close
- Department of Microbiology & Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ashley N Anderson
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Philip E Pellett
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
7
|
Superresolution Imaging Identifies That Conventional Trafficking Pathways Are Not Essential for Endoplasmic Reticulum to Outer Mitochondrial Membrane Protein Transport. Sci Rep 2017; 7:16. [PMID: 28154412 PMCID: PMC5428351 DOI: 10.1038/s41598-017-00039-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/20/2016] [Indexed: 11/23/2022] Open
Abstract
Most nuclear-encoded mitochondrial proteins traffic from the cytosol to mitochondria. Some of these proteins localize at mitochondria-associated membranes (MAM), where mitochondria are closely apposed with the endoplasmic reticulum (ER). We have previously shown that the human cytomegalovirus signal-anchored protein known as viral mitochondria-localized inhibitor of apoptosis (vMIA) traffics from the ER to mitochondria and clusters at the outer mitochondrial membrane (OMM). Here, we have examined the host pathways by which vMIA traffics from the ER to mitochondria and clusters at the OMM. By disruption of phosphofurin acidic cluster sorting protein 2 (PACS-2), mitofusins (Mfn1/2), and dynamin related protein 1 (Drp1), we find these conventional pathways for ER to the mitochondria trafficking are dispensable for vMIA trafficking to OMM. Instead, mutations in vMIA that change its hydrophobicity alter its trafficking to mitochondria. Superresolution imaging showed that PACS-2- and Mfn-mediated membrane apposition or hydrophobic interactions alter vMIA’s ability to organize in nanoscale clusters at the OMM. This shows that signal-anchored MAM proteins can make use of hydrophobic interactions independently of conventional ER-mitochondria pathways to traffic from the ER to mitochondria. Further, vMIA hydrophobic interactions and ER-mitochondria contacts facilitate proper organization of vMIA on the OMM.
Collapse
|
8
|
Herrera-Cruz MS, Simmen T. Of yeast, mice and men: MAMs come in two flavors. Biol Direct 2017; 12:3. [PMID: 28122638 PMCID: PMC5267431 DOI: 10.1186/s13062-017-0174-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/18/2017] [Indexed: 12/15/2022] Open
Abstract
The past decade has seen dramatic progress in our understanding of membrane contact sites (MCS). Important examples of these are endoplasmic reticulum (ER)-mitochondria contact sites. ER-mitochondria contacts have originally been discovered in mammalian tissue, where they have been designated as mitochondria-associated membranes (MAMs). It is also in this model system, where the first critical MAM proteins have been identified, including MAM tethering regulators such as phospho-furin acidic cluster sorting protein 2 (PACS-2) and mitofusin-2. However, the past decade has seen the discovery of the MAM also in the powerful yeast model system Saccharomyces cerevisiae. This has led to the discovery of novel MAM tethers such as the yeast ER-mitochondria encounter structure (ERMES), absent in the mammalian system, but whose regulators Gem1 and Lam6 are conserved. While MAMs, sometimes referred to as mitochondria-ER contacts (MERCs), regulate lipid metabolism, Ca2+ signaling, bioenergetics, inflammation, autophagy and apoptosis, not all of these functions exist in both systems or operate differently. This biological difference has led to puzzling discrepancies on findings obtained in yeast or mammalian cells at the moment. Our review aims to shed some light onto mechanistic differences between yeast and mammalian MAM and their underlying causes. Reviewers: This article was reviewed by Paola Pizzo (nominated by Luca Pellegrini), Maya Schuldiner and György Szabadkai (nominated by Luca Pellegrini).
Collapse
Affiliation(s)
- Maria Sol Herrera-Cruz
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G2H7, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G2H7, Canada.
| |
Collapse
|
9
|
Over Six Decades of Discovery and Characterization of the Architecture at Mitochondria-Associated Membranes (MAMs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 997:13-31. [PMID: 28815519 DOI: 10.1007/978-981-10-4567-7_2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discovery of proteins regulating ER-mitochondria tethering including phosphofurin acidic cluster sorting protein 2 (PACS-2) and mitofusin-2 has pushed contact sites between the endoplasmic reticulum (ER) and mitochondria into the spotlight of cell biology. While the field is developing rapidly and controversies have come and gone multiple times during its history, it is sometimes overlooked that significant research has been done decades ago with the original discovery of these structures in the 1950s and the first characterization of their function (and coining of the term mitochondria-associated membrane, MAM) in 1990. Today, an ever-increasing array of proteins localize to the MAM fraction of the endoplasmic reticulum (ER) to regulate the interaction of this organelle with mitochondria. These mitochondria-ER contacts, sometimes referred to as MERCs, regulate a multitude of biological functions, including lipid metabolism, Ca2+ signaling, bioenergetics, inflammation, autophagy, mitochondrial structure, and apoptosis.
Collapse
|
10
|
Tambini MD, Pera M, Kanter E, Yang H, Guardia-Laguarta C, Holtzman D, Sulzer D, Area-Gomez E, Schon EA. ApoE4 upregulates the activity of mitochondria-associated ER membranes. EMBO Rep 2015; 17:27-36. [PMID: 26564908 PMCID: PMC4718413 DOI: 10.15252/embr.201540614] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022] Open
Abstract
In addition to the appearance of senile plaques and neurofibrillary tangles, Alzheimer's disease (AD) is characterized by aberrant lipid metabolism and early mitochondrial dysfunction. We recently showed that there was increased functionality of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a subdomain of the ER involved in lipid and cholesterol homeostasis, in presenilin-deficient cells and in fibroblasts from familial and sporadic AD patients. Individuals carrying the ε4 allele of apolipoprotein E (ApoE4) are at increased risk for developing AD compared to those carrying ApoE3. While the reason for this increased risk is unknown, we hypothesized that it might be associated with elevated MAM function. Using an astrocyte-conditioned media (ACM) model, we now show that ER-mitochondrial communication and MAM function-as measured by the synthesis of phospholipids and of cholesteryl esters, respectively-are increased significantly in cells treated with ApoE4-containing ACM as compared to those treated with ApoE3-containing ACM. Notably, this effect was seen with lipoprotein-enriched preparations, but not with lipid-free ApoE protein. These data are consistent with a role of upregulated MAM function in the pathogenesis of AD and may help explain, in part, the contribution of ApoE4 as a risk factor in the disease.
Collapse
Affiliation(s)
- Marc D Tambini
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, NY, USA
| | - Marta Pera
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Ellen Kanter
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Hua Yang
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | - David Holtzman
- Department of Neurology, Hope Center for Neurological Disorders Knight Alzheimer's Disease Research Center Washington University School of Medicine, St. Louis, MO, USA
| | - David Sulzer
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Eric A Schon
- Department of Neurology, Columbia University Medical Center, New York, NY, USA Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
11
|
Rector JL, Thomas GN, Burns VE, Dowd JB, Herr RM, Moss PA, Jarczok MN, Hoffman K, Fischer JE, Bosch JA. Elevated HbA(1c) levels and the accumulation of differentiated T cells in CMV(+) individuals. Diabetologia 2015; 58:2596-605. [PMID: 26290049 PMCID: PMC4589544 DOI: 10.1007/s00125-015-3731-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/23/2015] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Biological ageing of the immune system, or immunosenescence, predicts poor health and increased mortality. A hallmark of immunosenescence is the accumulation of differentiated cytotoxic T cells (CD27(-)CD45RA(+/-); or dCTLs), partially driven by infection with the cytomegalovirus (CMV). Immune impairments reminiscent of immunosenescence are also observed in hyperglycaemia, and in vitro studies have illustrated mechanisms by which elevated glucose can lead to increased dCTLs. This study explored associations between glucose dysregulation and markers of immunosenescence in CMV(+) and CMV(-) individuals. METHODS A cross-sectional sample of participants from an occupational cohort study (n = 1,103, mean age 40 years, 88% male) were assessed for HbA(1c) and fasting glucose levels, diabetes, cardiovascular risk factors (e.g. lipids), numbers of circulating effector memory (EM; CD27(-)CD45RA(-)) and CD45RA re-expressing effector memory (EMRA; CD27(-)CD45RA(+)) T cells, and CMV infection status. Self-report and physical examination assessed anthropometric, sociodemographic and lifestyle factors. RESULTS Among CMV(+) individuals (n = 400), elevated HbA(1c) was associated with increased numbers of EM (B = 2.75, p < 0.01) and EMRA (B = 2.90, p < 0.01) T cells, which was robust to adjustment for age, sex, sociodemographic variables and lifestyle factors. Elevated EM T cells were also positively associated with total cholesterol (B = 0.04, p < 0.05) after applying similar adjustments. No associations were observed in CMV(-) individuals. CONCLUSIONS/INTERPRETATION The present study identified consistent associations of unfavourable glucose and lipid profiles with accumulation of dCTLs in CMV(+) individuals. These results provide evidence that the impact of metabolic risk factors on immunity and health can be co-determined by infectious factors, and provide a novel pathway linking metabolic risk factors with accelerated immunosenescence.
Collapse
Affiliation(s)
- Jerrald L Rector
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Mannheim Institute of Public Health, Social and Preventive Medicine, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - G Neil Thomas
- School of Health and Population Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Victoria E Burns
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Jennifer B Dowd
- CUNY School of Public Health, New York, NY, USA
- CUNY Institute for Demographic Research, New York, NY, USA
| | - Raphael M Herr
- Mannheim Institute of Public Health, Social and Preventive Medicine, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Paul A Moss
- Cancer Research UK Centre, University of Birmingham, Birmingham, UK
| | - Marc N Jarczok
- Mannheim Institute of Public Health, Social and Preventive Medicine, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Kristina Hoffman
- Mannheim Institute of Public Health, Social and Preventive Medicine, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Joachim E Fischer
- Mannheim Institute of Public Health, Social and Preventive Medicine, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Jos A Bosch
- Mannheim Institute of Public Health, Social and Preventive Medicine, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany.
- Department of Psychology, University of Amsterdam, Weesperplein 4, 1018 XA, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Williamson CD, Wong DS, Bozidis P, Zhang A, Colberg-Poley AM. Isolation of Endoplasmic Reticulum, Mitochondria, and Mitochondria-Associated Membrane and Detergent Resistant Membrane Fractions from Transfected Cells and from Human Cytomegalovirus-Infected Primary Fibroblasts. ACTA ACUST UNITED AC 2015; 68:3.27.1-3.27.33. [PMID: 26331984 DOI: 10.1002/0471143030.cb0327s68] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasingly mechanistic virology studies require dependable and sensitive methods for isolating purified organelles containing functional cellular sub-domains. The mitochondrial network is, in part, closely apposed to the endoplasmic reticulum (ER). The mitochondria-associated membrane (MAM) fraction provides direct physical contact between the ER and mitochondria. Characterization of the dual localization and trafficking of human cytomegalovirus (HCMV) UL37 proteins required establishing protocols in which the ER and mitochondria could be reliably separated. Because of its documented role in lipid and ceramide transfer from the ER to mitochondria, a method to purify MAM from infected cells was also developed. Two robust procedures were developed to efficiently isolate mitochondria, ER, and MAM fractions while providing substantial protein yields from HCMV-infected primary fibroblasts and from transfected HeLa cells. Furthermore, this unit includes protocols for isolation of detergent resistant membranes from subcellular fractions as well as techniques that allow visualization of the mitochondrial network disruption that occurs in permissively infected cells by their optimal resolution in Percoll gradients.
Collapse
Affiliation(s)
- Chad D Williamson
- Center for Genetic Medicine Research, Children's Research Institute, Washington, D.C.,Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel S Wong
- Cellular and Molecular Physiology Program, Sackler School for Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - Petros Bozidis
- Laboratory of Microbiology, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Aiping Zhang
- Center for Genetic Medicine Research, Children's Research Institute, Washington, D.C
| | - Anamaris M Colberg-Poley
- Center for Genetic Medicine Research, Children's Research Institute, Washington, D.C.,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, D.C.,Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, D.C
| |
Collapse
|
13
|
Guardia-Laguarta C, Area-Gomez E, Schon EA, Przedborski S. A new role for α-synuclein in Parkinson's disease: Alteration of ER-mitochondrial communication. Mov Disord 2015; 30:1026-33. [DOI: 10.1002/mds.26239] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 03/10/2015] [Accepted: 03/19/2015] [Indexed: 12/28/2022] Open
Affiliation(s)
| | - Estela Area-Gomez
- Department of Neurology; Columbia University Medical Center; New York NY USA
| | - Eric A. Schon
- Department of Neurology; Columbia University Medical Center; New York NY USA
- Department of Genetics and Development; Columbia University Medical Center; New York NY USA
| | - Serge Przedborski
- Department of Pathology and Cell Biology; Columbia University Medical Center; New York NY USA
| |
Collapse
|
14
|
Superresolution imaging of viral protein trafficking. Med Microbiol Immunol 2015; 204:449-60. [PMID: 25724304 DOI: 10.1007/s00430-015-0395-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/13/2015] [Indexed: 12/25/2022]
Abstract
The endoplasmic reticulum (ER) membrane is closely apposed to the outer mitochondrial membrane (OMM), which facilitates communication between these organelles. These contacts, known as mitochondria-associated membranes (MAM), facilitate calcium signaling, lipid transfer, as well as antiviral and stress responses. How cellular proteins traffic to the MAM, are distributed therein, and interact with ER and mitochondrial proteins are subject of great interest. The human cytomegalovirus UL37 exon 1 protein or viral mitochondria-localized inhibitor of apoptosis (vMIA) is crucial for viral growth. Upon synthesis at the ER, vMIA traffics to the MAM and OMM, where it reprograms the organization and function of these compartments. vMIA significantly changes the abundance of cellular proteins at the MAM and OMM, including proteins that regulate calcium homeostasis and cell death. Through the use of superresolution imaging, we have shown that vMIA is distributed at the OMM in nanometer scale clusters. This is similar to the clusters reported for the mitochondrial calcium channel, VDAC, as well as electron transport chain, translocase of the OMM complex, and mitochondrial inner membrane organizing system components. Thus, aside from addressing how vMIA targets the MAM and regulates survival of infected cells, biochemical studies and superresolution imaging of vMIA offer insights into the formation, organization, and functioning of MAM. Here, we discuss these insights into trafficking, function, and organization of vMIA at the MAM and OMM and discuss how the use of superresolution imaging is contributing to the study of the formation and trafficking of viruses.
Collapse
|
15
|
Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function. J Bioenerg Biomembr 2014; 48:137-51. [PMID: 25425472 DOI: 10.1007/s10863-014-9592-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/14/2014] [Indexed: 12/23/2022]
Abstract
Mitochondria require cholesterol for biogenesis and membrane maintenance, and for the synthesis of steroids, oxysterols and hepatic bile acids. Multiple pathways mediate the transport of cholesterol from different subcellular pools to mitochondria. In steroidogenic cells, the steroidogenic acute regulatory protein (StAR) interacts with a mitochondrial protein complex to mediate cholesterol delivery to the inner mitochondrial membrane for conversion to pregnenolone. In non-steroidogenic cells, several members of a protein family defined by the presence of a StAR-related lipid transfer (START) domain play key roles in the delivery of cholesterol to mitochondrial membranes. Subdomains of the endoplasmic reticulum (ER), termed mitochondria-associated ER membranes (MAM), form membrane contact sites with mitochondria and may contribute to the transport of ER cholesterol to mitochondria, either independently or in conjunction with lipid-transfer proteins. Model systems of mitochondria enriched with cholesterol in vitro and mitochondria isolated from cells with (patho)physiological mitochondrial cholesterol accumulation clearly demonstrate that mitochondrial cholesterol levels affect mitochondrial function. Increased mitochondrial cholesterol levels have been observed in several diseases, including cancer, ischemia, steatohepatitis and neurodegenerative diseases, and influence disease pathology. Hence, a deeper understanding of the mechanisms maintaining mitochondrial cholesterol homeostasis may reveal additional targets for therapeutic intervention. Here we give a brief overview of mitochondrial cholesterol import in steroidogenic cells, and then focus on cholesterol trafficking pathways that deliver cholesterol to mitochondrial membranes in non-steroidogenic cells. We also briefly discuss the consequences of increased mitochondrial cholesterol levels on mitochondrial function and their potential role in disease pathology.
Collapse
|
16
|
Bhuvanendran S, Salka K, Rainey K, Sreetama SC, Williams E, Leeker M, Prasad V, Boyd J, Patterson GH, Jaiswal JK, Colberg-Poley AM. Superresolution imaging of human cytomegalovirus vMIA localization in sub-mitochondrial compartments. Viruses 2014; 6:1612-36. [PMID: 24721787 PMCID: PMC4014713 DOI: 10.3390/v6041612] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/16/2014] [Accepted: 03/27/2014] [Indexed: 01/04/2023] Open
Abstract
The human cytomegalovirus (HCMV) viral mitochondria-localized inhibitor of apoptosis (vMIA) protein, traffics to mitochondria-associated membranes (MAM), where the endoplasmic reticulum (ER) contacts the outer mitochondrial membrane (OMM). vMIA association with the MAM has not been visualized by imaging. Here, we have visualized this by using a combination of confocal and superresolution imaging. Deconvolution of confocal microscopy images shows vMIA localizes away from mitochondrial matrix at the Mitochondria-ER interface. By gated stimulated emission depletion (GSTED) imaging, we show that along this interface vMIA is distributed in clusters. Through multicolor, multifocal structured illumination microscopy (MSIM), we find vMIA clusters localize away from MitoTracker Red, indicating its OMM localization. GSTED and MSIM imaging show vMIA exists in clusters of ~100–150 nm, which is consistent with the cluster size determined by Photoactivated Localization Microscopy (PALM). With these diverse superresolution approaches, we have imaged the clustered distribution of vMIA at the OMM adjacent to the ER. Our findings directly compare the relative advantages of each of these superresolution imaging modalities for imaging components of the MAM and sub-mitochondrial compartments. These studies establish the ability of superresolution imaging to provide valuable insight into viral protein location, particularly in the sub-mitochondrial compartments, and into their clustered organization.
Collapse
Affiliation(s)
- Shivaprasad Bhuvanendran
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Kyle Salka
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Kristin Rainey
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Sen Chandra Sreetama
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Elizabeth Williams
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Margretha Leeker
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Vidhya Prasad
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Jonathan Boyd
- Life Science Division, Leica Microsystems, Inc., 1700 Leider Lane, Buffalo Grove, IL 60089, USA.
| | - George H Patterson
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jyoti K Jaiswal
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Anamaris M Colberg-Poley
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| |
Collapse
|
17
|
Xie X, Colberg-Poley AM, Das JR, Li J, Zhang A, Tang P, Jerebtsova M, Gutkind JS, Ray PE. The basic domain of HIV-tat transactivating protein is essential for its targeting to lipid rafts and regulating fibroblast growth factor-2 signaling in podocytes isolated from children with HIV-1-associated nephropathy. J Am Soc Nephrol 2014; 25:1800-13. [PMID: 24578133 DOI: 10.1681/asn.2013070710] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Podocyte injury has a critical role in the pathogenesis of HIV-associated nephropathy (HIVAN). The HIV-1 transactivator of transcription (Tat), combined with fibroblast growth factor-2 (FGF-2), can induce the dedifferentiation and proliferation of cultured human podocytes. Cellular internalization of Tat requires interactions with heparan sulfate proteoglycans and cholesterol-enriched lipid rafts (LRs). However, the specific distribution of Tat in human podocytes and its ability to associate with LRs have not been documented. Here, we found that Tat is preferentially recruited to LRs in podocytes isolated from children with HIVAN. Furthermore, we identified arginines in the basic domain (RKKRRQRRR) of Tat as essential for (1) targeting Tat to LRs, (2) Tat-mediated increases in the expression of Rho-A and matrix metalloproteinase-9 in LRs, and (3) Tat-mediated enhancement of FGF-2 signaling in human podocytes and HIV-transgenic mouse kidneys and the exacerbation of renal lesions in these mice. Tat carrying alanine substitutions in the basic domain (AKKAAQAAA) remained localized in the cytosol and did not associate with LRs or enhance FGF-2 signaling in cultured podocytes. These results show the specific association of Tat with LRs in podocytes isolated from children with HIVAN, confirm Tat as a regulator of FGF-2 signaling in LRs, and identify the key domain of Tat responsible for promoting these effects and aggravating renal injury in HIV-transgenic mice. Moreover, these results provide a molecular framework for developing novel therapies to improve the clinical outcome of children with HIVAN.
Collapse
Affiliation(s)
| | - Anamaris M Colberg-Poley
- Center for Genetic Medicine Research and Department of Pediatrics, George Washington University, Washington, DC; and
| | | | | | | | - Pingtao Tang
- Center for Genetic Medicine Research and Department of Pediatrics, George Washington University, Washington, DC; and
| | - Marina Jerebtsova
- Center for Genetic Medicine Research and Department of Pediatrics, George Washington University, Washington, DC; and
| | - J Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Patricio E Ray
- Center for Genetic Medicine Research and Department of Pediatrics, George Washington University, Washington, DC; and Division of Nephrology, Children's National Medical Center, Washington, DC;
| |
Collapse
|
18
|
MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:595-609. [PMID: 24316057 DOI: 10.1016/j.bbalip.2013.11.014] [Citation(s) in RCA: 464] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/21/2013] [Accepted: 11/27/2013] [Indexed: 12/15/2022]
Abstract
One mechanism by which communication between the endoplasmic reticulum (ER) and mitochondria is achieved is by close juxtaposition between these organelles via mitochondria-associated membranes (MAM). The MAM consist of a region of the ER that is enriched in several lipid biosynthetic enzyme activities and becomes reversibly tethered to mitochondria. Specific proteins are localized, sometimes transiently, in the MAM. Several of these proteins have been implicated in tethering the MAM to mitochondria. In mammalian cells, formation of these contact sites between MAM and mitochondria appears to be required for key cellular events including the transport of calcium from the ER to mitochondria, the import of phosphatidylserine into mitochondria from the ER for decarboxylation to phosphatidylethanolamine, the formation of autophagosomes, regulation of the morphology, dynamics and functions of mitochondria, and cell survival. This review focuses on the functions proposed for MAM in mediating these events in mammalian cells. In light of the apparent involvement of MAM in multiple fundamental cellular processes, recent studies indicate that impaired contact between MAM and mitochondria might underlie the pathology of several human neurodegenerative diseases, including Alzheimer's disease. Moreover, MAM has been implicated in modulating glucose homeostasis and insulin resistance, as well as in some viral infections.
Collapse
|
19
|
Schon EA, Area-Gomez E. Mitochondria-associated ER membranes in Alzheimer disease. Mol Cell Neurosci 2013; 55:26-36. [DOI: 10.1016/j.mcn.2012.07.011] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 01/03/2023] Open
|
20
|
Lagace TA, Ridgway ND. The role of phospholipids in the biological activity and structure of the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2499-510. [PMID: 23711956 DOI: 10.1016/j.bbamcr.2013.05.018] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/09/2013] [Accepted: 05/15/2013] [Indexed: 01/22/2023]
Abstract
The endoplasmic reticulum (ER) is an interconnected network of tubular and planar membranes that supports the synthesis and export of proteins, carbohydrates and lipids. Phospholipids, in particular phosphatidylcholine (PC), are synthesized in the ER where they have essential functions including provision of membranes required for protein synthesis and export, cholesterol homeostasis, and triacylglycerol storage and secretion. Coordination of these biological processes is essential, as highlighted by findings that link phospholipid metabolism in the ER with perturbations in lipid storage/secretion and stress responses, ultimately contributing to obesity/diabetes, atherosclerosis and neurological disorders. Phospholipid synthesis is not uniformly distributed in the ER but is localized at membrane interfaces or contact zones with other organelles, and in dynamic, proliferating ER membranes. The topology of phospholipid synthesis is an important consideration when establishing the etiology of diseases that arise from ER dysfunction. This review will highlight our current understanding of the contribution of phospholipid synthesis to proper ER function, and how alterations contribute to aberrant stress responses and disease. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
Affiliation(s)
- Thomas A Lagace
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | | |
Collapse
|
21
|
Zhang A, Hildreth RL, Colberg-Poley AM. Human cytomegalovirus inhibits apoptosis by proteasome-mediated degradation of Bax at endoplasmic reticulum-mitochondrion contacts. J Virol 2013; 87:5657-68. [PMID: 23487455 PMCID: PMC3648137 DOI: 10.1128/jvi.00145-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/22/2013] [Indexed: 12/30/2022] Open
Abstract
Human cytomegalovirus (HCMV) encodes the UL37 exon 1 protein (pUL37x1), which is the potent viral mitochondrion-localized inhibitor of apoptosis (vMIA), to increase survival of infected cells. HCMV vMIA traffics from the endoplasmic reticulum (ER) to ER subdomains, which are physically linked to mitochondria known as mitochondrion-associated membranes (MAM), and to mitochondria. The antiapoptotic function of vMIA is thought to primarily result from its ability to inhibit Bax-mediated permeabilization of the outer mitochondrial membrane (OMM). Here, we establish that vMIA retargets Bax to the MAM as well as to the OMM from immediate early through late times of infection. However, MAM localization of Bax results in its increased ubiquitination and proteasome-mediated degradation. Surprisingly, HCMV infection does not increase OMM-associated degradation (OMMAD) of Bax, even though the ER and mitochondria are physically connected at the MAM. It was recently found that lipid rafts at the plasma membrane can connect extrinsic and intrinsic apoptotic pathways and can serve as sites of apoptosome assembly. In transfected permissive human fibroblasts, vMIA mediates, through its cholesterol affinity, association of Bax and apoptosome components with MAM lipid rafts. While Bax association with MAM lipid rafts was detected in HCMV-infected cells, association of apoptosome components was not. These results establish that Bax recruitment to the MAM and its MAM-associated degradation (MAMAD) are a newly described antiapoptotic mechanism used by HCMV infection to increase cell survival for its growth.
Collapse
Affiliation(s)
- Aiping Zhang
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA
| | - Richard L. Hildreth
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA
- Molecular Medicine Program,
| | - Anamaris M. Colberg-Poley
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA
- Molecular Medicine Program,
- Departments of Integrative Systems Biology,
- Biochemistry and Molecular Biology,
- Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
22
|
Sorice M, Mattei V, Matarrese P, Garofalo T, Tinari A, Gambardella L, Ciarlo L, Manganelli V, Tasciotti V, Misasi R, Malorni W. Dynamics of mitochondrial raft-like microdomains in cell life and death. Commun Integr Biol 2012; 5:217-9. [PMID: 22808338 PMCID: PMC3376069 DOI: 10.4161/cib.19145] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
On the basis of the biochemical nature of lipid rafts, composed by glycosphingolipids, cholesterol and signaling proteins, it has been suggested that they are part of the complex framework of subcellular intermixing activities that lead to CD95/Fas-triggered apoptosis. We demonstrated that, following CD95/Fas triggering, cellular prion protein (PrPC), which represents a paradigmatic component of lipid rafts, was redistributed to mitochondrial raft-like microdomains via endoplasmic reticulum (ER)-mitochondria associated membranes (MAM) and microtubular network.
Raft-like microdomains appear to be involved in a series of intracellular functions, such as: (1) the membrane “scrambling” that participates in cell death execution pathways, (2) the remodeling of organelles, (3) the recruitment of proteins to the mitochondria; (4) the mitochondrial oxidative phosphorylation and ATP production.
In conclusion, we suggest that lipid raft components can exert their regulatory activity in apoptosis execution at three different levels: (1) in the DISC formation at the plasma membrane; (2) in the intracellular redistribution at cytoplasmic organelles, and, (3) in the structural and functional mitochondrial modifications associated with apoptosis execution.
Collapse
|
23
|
Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J 2012; 31:4106-23. [PMID: 22892566 PMCID: PMC3492725 DOI: 10.1038/emboj.2012.202] [Citation(s) in RCA: 497] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/28/2012] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) associated (gamma)-secretase components presenilin-1 and -2 accumulate in MAM, an LR-like ER subcompartment connected to mitochondria. MAM function increases in patients with familial or sporadic AD and may be linked to AD pathogenesis. Alzheimer disease (AD) is associated with aberrant processing of the amyloid precursor protein (APP) by γ-secretase, via an unknown mechanism. We recently showed that presenilin-1 and -2, the catalytic components of γ-secretase, and γ-secretase activity itself, are highly enriched in a subcompartment of the endoplasmic reticulum (ER) that is physically and biochemically connected to mitochondria, called mitochondria-associated ER membranes (MAMs). We now show that MAM function and ER–mitochondrial communication—as measured by cholesteryl ester and phospholipid synthesis, respectively—are increased significantly in presenilin-mutant cells and in fibroblasts from patients with both the familial and sporadic forms of AD. We also show that MAM is an intracellular detergent-resistant lipid raft (LR)-like domain, consistent with the known presence of presenilins and γ-secretase activity in rafts. These findings may help explain not only the aberrant APP processing but also a number of other biochemical features of AD, including altered lipid metabolism and calcium homeostasis. We propose that upregulated MAM function at the ER–mitochondrial interface, and increased cross-talk between these two organelles, may play a hitherto unrecognized role in the pathogenesis of AD.
Collapse
|
24
|
Minogue S, Waugh MG. Lipid rafts, microdomain heterogeneity and inter-organelle contacts: impacts on membrane preparation for proteomic studies. Biol Cell 2012; 104:618-27. [PMID: 22694059 DOI: 10.1111/boc.201200020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/08/2012] [Indexed: 12/20/2022]
Abstract
In recent years, there has been considerable interest in mapping the protein content of isolated organelles using mass spectrometry. However, many subcellular compartments are highly dynamic with diverse and intricate architectures that are not always preserved during membrane isolation procedures. Furthermore, lateral heterogeneities in intra-membrane lipid and protein concentrations underlie the formation of membrane microdomains, trafficking vesicles and inter-membrane contacts. These complexities in membrane organisation have important consequences for the design of membrane preparation strategies and test the very concept of organelle purity. We illustrate how some of these biological considerations are relevant to membrane preparation and assess the numerous potential pitfalls in attempting to purify organelles from mammalian cells.
Collapse
Affiliation(s)
- Shane Minogue
- Centre for Molecular Cell Biology, UCL, Institute of Liver and Digestive Health, Royal Free Campus, UCL, London NW3 2PF, United Kingdom
| | | |
Collapse
|
25
|
Zhang Y, Shi Y, Qiao L, Sun Y, Ding W, Zhang H, Li N, Chen D. Sigma-1 receptor agonists provide neuroprotection against gp120 via a change in bcl-2 expression in mouse neuronal cultures. Brain Res 2012; 1431:13-22. [PMID: 22133307 DOI: 10.1016/j.brainres.2011.10.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/14/2011] [Accepted: 10/31/2011] [Indexed: 11/30/2022]
Abstract
Although combined antiretroviral therapy has significantly improved the prognosis of HIV-1 infected patients and decreased the incidence of HIV-1 associated dementia, the cumulative prevalence of this disease, in particular, mild or asymptomatic neurocognitive impairment, has not decreased. Thus, in addition to active antiretroviral therapy, the search for an effective neuroprotective approach is very important. Sigma-1 receptors are widely distributed in the central nervous system. Sigma-1 receptor agonists are robustly neuroprotective in many neuropathy and neurotoxicity in vivo and in vitro studies. This study aims to investigate possible neuroprotective effects of sigma-1 receptor agonist, 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) against HIV-1 protein gp120. Primary cortical neuronal cultures were exposed to gp120 in different concentrations; to investigate neuroprotective effects of sigma-1 receptor agonist, cells were pre-treated with PPBP (10μM) in the presence or absence of pre-incubated sigma-1 receptor antagonist rimcazole (5μM). Cell apoptosis was confirmed with calcein/PI uptake test, lactate dehydrogenase (LDH) leakage assay or TUNEL assay and neurite degeneration was evaluated with morphometry via MAP-2 stained immunofluorescence. The mRNA and protein levels of apoptosis associated bax and bcl-2 were determined with real-time qPCR and Western blot. The results showed that gp120 could induce neuronal apoptosis and neurite degeneration in a concentration dependent manner and PPBP could attenuate the neurotoxicity of gp120. Simultaneously, gp120 could induce low expression of bcl-2 and bax, but only low expression of bcl-2 could be reversed by PPBP. The present data suggest that PPBP, at least, in part protects the neuron against gp120 by regulating bcl-2 expression.
Collapse
Affiliation(s)
- Yulin Zhang
- STD/AIDS Research Center, Department of Infectious Diseases, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Fujimoto M, Hayashi T, Su TP. The role of cholesterol in the association of endoplasmic reticulum membranes with mitochondria. Biochem Biophys Res Commun 2011; 417:635-9. [PMID: 22185692 DOI: 10.1016/j.bbrc.2011.12.022] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/06/2011] [Indexed: 11/19/2022]
Abstract
The unique endoplasmic reticulum (ER) subdomain termed the mitochondria-associated ER membrane (MAM) engages the physical connection between the ER and the mitochondrial outer membrane and plays a role in regulating IP(3) receptor-mediated Ca(2+) influx and the phospholipid transport between the two organelles. The MAM contains certain signaling and membrane-tethering proteins but also lipids including cholesterol. The biophysical role of lipids at the MAM, specifically in the physical interaction between the MAM of the ER and mitochondria, remains not totally clarified. Here we employed the in vitro membrane association assay to investigate the role of cholesterol in the association between MAMs and mitochondria. The purified MAMs and mitochondria were mixed in vitro in a test tube and then the physical association of the two subcellular organelles was quantified indirectly by measuring the presence of the MAM-specific protein sigma-1 receptors in the mitochondria fraction. Purified MAMs contained free cholesterol approximately 7 times higher than that in microsomes. We found that depletion of cholesterol in MAMs with methyl-β-cyclodextrin (MβC) significantly increases the association between MAMs and mitochondria, whereas MβC saturated with cholesterol does not change the association. (14)C-Serine pulse-labeling demonstrated that the treatment of living cells with MβC decreases the level of de novo synthesized (14)C-phosphatidylserine (PtSer) and concomitantly increases greatly the synthesis of (14)C-phosphatidylethanolamine (PtEt). Apparently, cholesterol depletion increased the PtSer transport from MAMs to mitochondria. Our findings suggest that cholesterol is an important substrate in regulating the association between MAMs of the ER and mitochondria.
Collapse
Affiliation(s)
- Michiko Fujimoto
- Cellular Stress Signaling Unit, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
27
|
Mattei V, Matarrese P, Garofalo T, Tinari A, Gambardella L, Ciarlo L, Manganelli V, Tasciotti V, Misasi R, Malorni W, Sorice M. Recruitment of cellular prion protein to mitochondrial raft-like microdomains contributes to apoptosis execution. Mol Biol Cell 2011; 22:4842-53. [PMID: 22031292 PMCID: PMC3237627 DOI: 10.1091/mbc.e11-04-0348] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PrPC is identified as a new component of mitochondrial raft-like microdomains in T cells undergoing CD95/Fas–mediated apoptosis, and microtubular network integrity and function could play a role in the redistribution of PrPC from the plasma membrane to the mitochondria. We examined the possibility that cellular prion protein (PrPC) plays a role in the receptor-mediated apoptotic pathway. We first found that CD95/Fas triggering induced a redistribution of PrPC to the mitochondria of T lymphoblastoid CEM cells via a mechanism that brings into play microtubular network integrity and function. In particular, we demonstrated that PrPC was redistributed to raft-like microdomains at the mitochondrial membrane, as well as at endoplasmic reticulum-mitochondria–associated membranes. Our in vitro experiments also demonstrated that, although PrPC had such an effect on mitochondria, it induced the loss of mitochondrial membrane potential and cytochrome c release only after a contained rise of calcium concentration. Finally, the involvement of PrPC in apoptosis execution was also analyzed in PrPC-small interfering RNA–transfected cells, which were found to be significantly less susceptible to CD95/Fas–induced apoptosis. Taken together, these results suggest that PrPC might play a role in the complex multimolecular signaling associated with CD95/Fas receptor–mediated apoptosis.
Collapse
Affiliation(s)
- Vincenzo Mattei
- Laboratory of Experimental Medicine and Environmental Pathology, Sabina Universitas, 02100 Rieti, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Poston CN, Duong E, Cao Y, Bazemore-Walker CR. Proteomic analysis of lipid raft-enriched membranes isolated from internal organelles. Biochem Biophys Res Commun 2011; 415:355-60. [PMID: 22037461 DOI: 10.1016/j.bbrc.2011.10.072] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 10/14/2011] [Indexed: 10/16/2022]
Abstract
The mitochondria-associated membrane (MAM) is a sub-region of the endoplasmic reticulum (ER) that facilitates crosstalk between the ER and mitochondria. The MAM actively influences vital cellular processes including Ca(2+) signaling and protein folding. Detergent-resistant microdomains (DRMs) may localize proteins to the mitochondria/MAM interface to coordinate these events. However, the protein composition of DRMs isolated from this region is not known. Lipid-raft enriched DRMs were isolated from a combined mitochondria/MAM sample and analyzed using two-dimensional reversed-phased tandem mass spectrometry. Strict post-acquisition filtering of the acquired data led to the confident identification 250 DRM proteins. The majority (58%) of the identified proteins are bona fide mitochondrial or ER proteins according to Gene Ontology annotation. Additionally, 74% of the proteins have previously been noted as MAM-resident or -associated proteins. Furthermore, ∼20% of the identified proteins have a documented association with lipid rafts. Most importantly, known internal LR marker proteins (inositol 1,4,5-trisphosphate receptor type 3, erlin-2, and voltage-dependent anion channel 1) were detected as well as most of the components of the mitochondrial/MAM-localized Ca(2+) signaling complex. Our study provides the basis for future work probing how the protein activities at the mitochondrion/MAM interface are dependent upon the integrity of these internal lipid-raft-like domains.
Collapse
Affiliation(s)
- Chloe N Poston
- Brown University, Department of Chemistry, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
29
|
Schleiss MR. Congenital cytomegalovirus infection: molecular mechanisms mediating viral pathogenesis. Infect Disord Drug Targets 2011; 11:449-465. [PMID: 21827434 PMCID: PMC3869401 DOI: 10.2174/187152611797636721] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/21/2011] [Indexed: 05/31/2023]
Abstract
Human cytomegalovirus (CMV) is responsible for approximately 40,000 congenital infections in the United States each year. Congenital CMV disease frequently produces serious neurodevelopmental disability, as well as vision impairment and sensorineural hearing loss. Development of a CMV vaccine is therefore considered to be a major public health priority. The mechanisms by which CMV injures the fetus are complex and likely include a combination of direct fetal injury induced by pathologic virally-encoded gene products, an inability of the maternal immune response to control infection, and the direct impact of infection on placental function. CMV encodes gene products that function, both at the RNA and the protein level, to interfere with many cellular processes. These include gene products that modify the cell cycle; interfere with apoptosis; induce an inflammatory response; mediate vascular injury; induce site-specific breakage of chromosomes; promote oncogenesis; dysregulate cellular proliferation; and facilitate evasion of host immune responses. This minireview summarizes current concepts regarding these aspects of the molecular virology of CMV and the potential pathogenic impact of viral gene expression on the developing fetus. Areas for potential development of novel therapeutic intervention are suggested for improving the outcome of this disabling congenital infection.
Collapse
Affiliation(s)
- Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Minneapolis, MN 55455, USA.
| |
Collapse
|
30
|
Zhang A, Williamson CD, Wong DS, Bullough MD, Brown KJ, Hathout Y, Colberg-Poley AM. Quantitative proteomic analyses of human cytomegalovirus-induced restructuring of endoplasmic reticulum-mitochondrial contacts at late times of infection. Mol Cell Proteomics 2011; 10:M111.009936. [PMID: 21742798 DOI: 10.1074/mcp.m111.009936] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Endoplasmic reticulum-mitochondrial contacts, known as mitochondria-associated membranes, regulate important cellular functions including calcium signaling, bioenergetics, and apoptosis. Human cytomegalovirus is a medically important herpesvirus whose growth increases energy demand and depends upon continued cell survival. To gain insight into how human cytomegalovirus infection affects endoplasmic reticulum-mitochondrial contacts, we undertook quantitative proteomics of mitochondria-associated membranes using differential stable isotope labeling by amino acids in cell culture strategy and liquid chromatography-tandem MS analysis. This is the first reported quantitative proteomic analyses of a suborganelle during permissive human cytomegalovirus infection. Human fibroblasts were uninfected or human cytomegalovirus-infected for 72 h. Heavy mitochondria-associated membranes were isolated from paired unlabeled, uninfected cells and stable isotope labeling by amino acids in cell culture-labeled, infected cells and analyzed by liquid chromatography-tandem MS analysis. The results were verified by a reverse labeling experiment. Human cytomegalovirus infection dramatically altered endoplasmic reticulum-mitochondrial contacts by late times. Notable is the increased abundance of several fundamental networks in the mitochondria-associated membrane fraction of human cytomegalovirus-infected fibroblasts. Chaperones, including HSP60 and BiP, which is required for human cytomegalovirus assembly, were prominently increased at endoplasmic reticulum-mitochondrial contacts after infection. Minimal translational and translocation machineries were also associated with endoplasmic reticulum-mitochondrial contacts and increased after human cytomegalovirus infection as were glucose regulated protein 75 and the voltage dependent anion channel, which can form an endoplasmic reticulum-mitochondrial calcium signaling complex. Surprisingly, mitochondrial metabolic enzymes and cytosolic glycolytic enzymes were confidently detected in the mitochondria-associated membrane fraction and increased therein after infection. Finally, proapoptotic regulatory proteins, including Bax, cytochrome c, and Opa1, were augmented in endoplasmic reticulum-mitochondrial contacts after infection, suggesting attenuation of proapoptotic signaling by their increased presence therein. Together, these results suggest that human cytomegalovirus infection restructures the proteome of endoplasmic reticulum-mitochondrial contacts to bolster protein translation at these junctions, calcium signaling to mitochondria, cell survival, and bioenergetics and, thereby, allow for enhanced progeny production.
Collapse
Affiliation(s)
- Aiping Zhang
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Lynes EM, Simmen T. Urban planning of the endoplasmic reticulum (ER): how diverse mechanisms segregate the many functions of the ER. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1893-905. [PMID: 21756943 PMCID: PMC7172674 DOI: 10.1016/j.bbamcr.2011.06.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) is the biggest organelle in most cell types, but its characterization as an organelle with a continuous membrane belies the fact that the ER is actually an assembly of several, distinct membrane domains that execute diverse functions. Almost 20 years ago, an essay by Sitia and Meldolesi first listed what was known at the time about domain formation within the ER. In the time that has passed since, additional ER domains have been discovered and characterized. These include the mitochondria-associated membrane (MAM), the ER quality control compartment (ERQC), where ER-associated degradation (ERAD) occurs, and the plasma membrane-associated membrane (PAM). Insight has been gained into the separation of nuclear envelope proteins from the remainder of the ER. Research has also shown that the biogenesis of peroxisomes and lipid droplets occurs on specialized membranes of the ER. Several studies have shown the existence of specific marker proteins found on all these domains and how they are targeted there. Moreover, a first set of cytosolic ER-associated sorting proteins, including phosphofurin acidic cluster sorting protein 2 (PACS-2) and Rab32 have been identified. Intra-ER targeting mechanisms appear to be superimposed onto ER retention mechanisms and rely on transmembrane and cytosolic sequences. The crucial roles of ER domain formation for cell physiology are highlighted with the specific targeting of the tumor metastasis regulator gp78 to ERAD-mediating membranes or of the promyelocytic leukemia protein to the MAM.
Collapse
Affiliation(s)
- Emily M Lynes
- Department of Cell Biology, University of Alberta, Alberta, Canada
| | | |
Collapse
|
32
|
Mate SE, Brown KJ, Hoffman EP. Integrated genomics and proteomics of the Torpedo californica electric organ: concordance with the mammalian neuromuscular junction. Skelet Muscle 2011; 1:20. [PMID: 21798097 PMCID: PMC3156643 DOI: 10.1186/2044-5040-1-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/04/2011] [Indexed: 11/25/2022] Open
Abstract
Background During development, the branchial mesoderm of Torpedo californica transdifferentiates into an electric organ capable of generating high voltage discharges to stun fish. The organ contains a high density of cholinergic synapses and has served as a biochemical model for the membrane specialization of myofibers, the neuromuscular junction (NMJ). We studied the genome and proteome of the electric organ to gain insight into its composition, to determine if there is concordance with skeletal muscle and the NMJ, and to identify novel synaptic proteins. Results Of 435 proteins identified, 300 mapped to Torpedo cDNA sequences with ≥2 peptides. We identified 14 uncharacterized proteins in the electric organ that are known to play a role in acetylcholine receptor clustering or signal transduction. In addition, two human open reading frames, C1orf123 and C6orf130, showed high sequence similarity to electric organ proteins. Our profile lists several proteins that are highly expressed in skeletal muscle or are muscle specific. Synaptic proteins such as acetylcholinesterase, acetylcholine receptor subunits, and rapsyn were present in the electric organ proteome but absent in the skeletal muscle proteome. Conclusions Our integrated genomic and proteomic analysis supports research describing a muscle-like profile of the organ. We show that it is a repository of NMJ proteins but we present limitations on its use as a comprehensive model of the NMJ. Finally, we identified several proteins that may become candidates for signaling proteins not previously characterized as components of the NMJ.
Collapse
Affiliation(s)
- Suzanne E Mate
- Department of Biochemistry and Molecular Genetics, IBS, George Washington University, Washington DC, USA
| | | | | |
Collapse
|