1
|
Mopuri R, Welbourn S, Charles T, Ralli-Jain P, Rosales D, Burton S, Aftab A, Karunakaran K, Pellegrini K, Kilembe W, Karita E, Gnanakaran S, Upadhyay AA, Bosinger SE, Derdeyn CA. High throughput analysis of B cell dynamics and neutralizing antibody development during immunization with a novel clade C HIV-1 envelope. PLoS Pathog 2023; 19:e1011717. [PMID: 37878666 PMCID: PMC10627474 DOI: 10.1371/journal.ppat.1011717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/06/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
A protective HIV-1 vaccine has been hampered by a limited understanding of how B cells acquire neutralizing activity. Our previous vaccines expressing two different HIV-1 envelopes elicited robust antigen specific serum IgG titers in 20 rhesus macaques; yet serum from only two animals neutralized the autologous virus. Here, we used high throughput immunoglobulin receptor and single cell RNA sequencing to characterize the overall expansion, recall, and maturation of antigen specific B cells longitudinally over 90 weeks. Diversification and expansion of many B cell clonotypes occurred broadly in the absence of serum neutralization. However, in one animal that developed neutralization, two neutralizing B cell clonotypes arose from the same immunoglobulin germline and were tracked longitudinally. Early antibody variants with high identity to germline neutralized the autologous virus while later variants acquired somatic hypermutation and increased neutralization potency. The early engagement of precursors capable of neutralization with little to no SHM followed by prolonged affinity maturation allowed the two neutralizing lineages to successfully persist despite many other antigen specific B cells. The findings provide new insight into B cells responding to HIV-1 envelope during heterologous prime and boost immunization in rhesus macaques and the development of selected autologous neutralizing antibody lineages.
Collapse
Affiliation(s)
- Rohini Mopuri
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Sarah Welbourn
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Tysheena Charles
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Pooja Ralli-Jain
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - David Rosales
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Samantha Burton
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Areeb Aftab
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Kirti Karunakaran
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Kathryn Pellegrini
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | | | | | - Sandrasegaram Gnanakaran
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Amit A. Upadhyay
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Steven E. Bosinger
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Cynthia A. Derdeyn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Infectious Diseases and Translational Medicine Unit, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Rao PG, Lambert GS, Upadhyay C. Broadly neutralizing antibody epitopes on HIV-1 particles are exposed after virus interaction with host cells. J Virol 2023; 97:e0071023. [PMID: 37681958 PMCID: PMC10537810 DOI: 10.1128/jvi.00710-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/07/2023] [Indexed: 09/09/2023] Open
Abstract
The envelope (Env) glycoproteins on HIV-1 virions are the sole target of broadly neutralizing antibodies (bNAbs) and the focus of vaccines. However, many cross-reactive conserved epitopes are often occluded on virus particles, contributing to the evasion of humoral immunity. This study aimed to identify the Env epitopes that are exposed/occluded on HIV-1 particles and to investigate the mechanisms contributing to their masking. Using a flow cytometry-based assay, three HIV-1 isolates, and a panel of antibodies, we show that only select epitopes, including V2i, the gp120-g41 interface, and gp41-MPER, are accessible on HIV-1 particles, while V3, V2q, and select CD4bs epitopes are masked. These epitopes become accessible after allosteric conformational changes are induced by the pre-binding of select Abs, prompting us to test if similar conformational changes are required for these Abs to exhibit their neutralization capability. We tested HIV-1 neutralization where the virus-mAb mix was pre-incubated/not pre-incubated for 1 hour prior to adding the target cells. Similar levels of neutralization were observed under both assay conditions, suggesting that the interaction between virus and target cells sensitizes the virions for neutralization via bNAbs. We further show that lectin-glycan interactions can also expose these epitopes. However, this effect is dependent on the lectin specificity. Given that, bNAbs are ideal for providing sterilizing immunity and are the goal of current HIV-1 vaccine efforts, these data offer insight on how HIV-1 may occlude these vulnerable epitopes from the host immune response. In addition, the findings can guide the formulation of effective antibody combinations for therapeutic use. IMPORTANCE The human immunodeficiency virus (HIV-1) envelope (Env) glycoprotein mediates viral entry and is the sole target of neutralizing antibodies. Our data suggest that antibody epitopes including V2q (e.g., PG9, PGT145), CD4bs (e.g., VRC01, 3BNC117), and V3 (2219, 2557) are masked on HIV-1 particles. The PG9 and 2219 epitopes became accessible for binding after conformational unmasking was induced by the pre-binding of select mAbs. Attempts to understand the masking mechanism led to the revelation that interaction between virus and host cells is needed to sensitize the virions for neutralization by broadly neutralizing antibodies (bNAbs). These data provide insight on how bNAbs may gain access to these occluded epitopes to exert their neutralization effects and block HIV-1 infection. These findings have important implications for the way we evaluate the neutralizing efficacy of antibodies and can potentially guide vaccine design.
Collapse
Affiliation(s)
- Priyanka Gadam Rao
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gregory S. Lambert
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chitra Upadhyay
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
3
|
Rao PG, Lambert GS, Upadhyay C. Broadly Neutralizing Antibody Epitopes on HIV-1 Particles are exposed after Virus Interaction with Host Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524996. [PMID: 36711466 PMCID: PMC9882293 DOI: 10.1101/2023.01.20.524996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The envelope glycoproteins (Env) on HIV-1 virions are the sole target of broadly neutralizing antibodies (bNAb) and the focus of vaccines. However, many cross-reactive conserved epitopes are often occluded on virus particles, contributing to the evasion of humoral immunity. This study aimed to identify the Env epitopes that are exposed/occluded on HIV-1 particles and to investigate the mechanisms contributing to their masking. Using a flow cytometry-based assay, three HIV-1 isolates, and a panel of antibodies, we show that only select epitopes including V2i, gp120-g41 interface, and gp41-MPER are accessible on HIV-1 particles, while V3, V2q, and select CD4bs epitopes are masked. These epitopes become accessible after allosteric conformational changes are induced by pre-binding of select Abs, prompting us to test if similar conformational changes are required for these Abs to exhibit their neutralization capability. We tested HIV-1 neutralization where virus-mAb mix was pre-incubated/not pre-incubated for one hour prior to adding the target cells. Similar levels of neutralization were observed under both assay conditions, suggesting that the interaction between virus and target cells sensitizes the virions for neutralization via bNAbs. We further show that lectin-glycan interactions can also expose these epitopes. However, this effect is dependent on the lectin specificity. Given that, bNAbs are the ideal for providing sterilizing immunity and are the goal of current HIV-1 vaccine efforts, these data offer insight on how HIV-1 may occlude these vulnerable epitopes from the host immune response. In addition, the findings can guide the formulation of effective antibody combinations for therapeutic use.
Collapse
|
4
|
Welbourn S, Chakraborty S, Yang JE, Gleinich AS, Gangadhara S, Khan S, Ferrebee C, Yagnik B, Burton S, Charles T, Smith SA, Williams D, Mopuri R, Upadhyay AA, Thompson J, Price MA, Wang S, Qin Z, Shen X, Williams LD, Eisel N, Peters T, Zhang L, Kilembe W, Karita E, Tomaras GD, Bosinger SE, Amara RR, Azadi P, Wright ER, Gnanakaran S, Derdeyn CA. A neutralizing antibody target in early HIV-1 infection was recapitulated in rhesus macaques immunized with the transmitted/founder envelope sequence. PLoS Pathog 2022; 18:e1010488. [PMID: 35503780 PMCID: PMC9106183 DOI: 10.1371/journal.ppat.1010488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/13/2022] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
Transmitted/founder (T/F) HIV-1 envelope proteins (Envs) from infected individuals that developed neutralization breadth are likely to possess inherent features desirable for vaccine immunogen design. To explore this premise, we conducted an immunization study in rhesus macaques (RM) using T/F Env sequences from two human subjects, one of whom developed potent and broad neutralizing antibodies (Z1800M) while the other developed little to no neutralizing antibody responses (R66M) during HIV-1 infection. Using a DNA/MVA/protein immunization protocol, 10 RM were immunized with each T/F Env. Within each T/F Env group, the protein boosts were administered as either monomeric gp120 or stabilized trimeric gp140 protein. All vaccination regimens elicited high titers of antigen-specific IgG, and two animals that received monomeric Z1800M Env gp120 developed autologous neutralizing activity. Using early Env escape variants isolated from subject Z1800M as guides, the serum neutralizing activity of the two immunized RM was found to be dependent on the gp120 V5 region. Interestingly, the exact same residues of V5 were also targeted by a neutralizing monoclonal antibody (nmAb) isolated from the subject Z1800M early in infection. Glycan profiling and computational modeling of the Z1800M Env gp120 immunogen provided further evidence that the V5 loop is exposed in this T/F Env and was a dominant feature that drove neutralizing antibody targeting during infection and immunization. An expanded B cell clonotype was isolated from one of the neutralization-positive RM and nmAbs corresponding to this group demonstrated V5-dependent neutralization similar to both the RM serum and the human Z1800M nmAb. The results demonstrate that neutralizing antibody responses elicited by the Z1800M T/F Env in RM converged with those in the HIV-1 infected human subject, illustrating the potential of using immunogens based on this or other T/F Envs with well-defined immunogenicity as a starting point to drive breadth.
Collapse
Affiliation(s)
- Sarah Welbourn
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Srirupa Chakraborty
- Theoretical Biology and Biophysics Group, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jie E. Yang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anne S. Gleinich
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Sailaja Gangadhara
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Salar Khan
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Courtney Ferrebee
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Bhrugu Yagnik
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Samantha Burton
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Tysheena Charles
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - S. Abigail Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Danielle Williams
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Rohini Mopuri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Amit A. Upadhyay
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Justin Thompson
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Matt A. Price
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
- International AIDS Vaccine Initiative, New York city, New York, United States of America
| | - Shiyu Wang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Xiaoying Shen
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - LaTonya D. Williams
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Nathan Eisel
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Tiffany Peters
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Lu Zhang
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - William Kilembe
- Center for Family Health Research in Zambia (CFHRZ), Lusaka, Zambia
| | | | - Georgia D. Tomaras
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Steven E. Bosinger
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Rama R. Amara
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Cynthia A. Derdeyn
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
5
|
Aljedani SS, Liban TJ, Tran K, Phad G, Singh S, Dubrovskaya V, Pushparaj P, Martinez-Murillo P, Rodarte J, Mileant A, Mangala Prasad V, Kinzelman R, O’Dell S, Mascola JR, Lee KK, Karlsson Hedestam GB, Wyatt RT, Pancera M. Structurally related but genetically unrelated antibody lineages converge on an immunodominant HIV-1 Env neutralizing determinant following trimer immunization. PLoS Pathog 2021; 17:e1009543. [PMID: 34559844 PMCID: PMC8494329 DOI: 10.1371/journal.ppat.1009543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/06/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022] Open
Abstract
Understanding the molecular mechanisms by which antibodies target and neutralize the HIV-1 envelope glycoprotein (Env) is critical in guiding immunogen design and vaccine development aimed at eliciting cross-reactive neutralizing antibodies (NAbs). Here, we analyzed monoclonal antibodies (mAbs) isolated from non-human primates (NHPs) immunized with variants of a native flexibly linked (NFL) HIV-1 Env stabilized trimer derived from the tier 2 clade C 16055 strain. The antibodies displayed neutralizing activity against the autologous virus with potencies ranging from 0.005 to 3.68 μg/ml (IC50). Structural characterization using negative-stain EM and X-ray crystallography identified the variable region 2 (V2) of the 16055 NFL trimer to be the common epitope for these antibodies. The crystal structures revealed that the V2 segment adopts a β-hairpin motif identical to that observed in the 16055 NFL crystal structure. These results depict how vaccine-induced antibodies derived from different clonal lineages penetrate through the glycan shield to recognize a hypervariable region within V2 (residues 184-186) that is unique to the 16055 strain. They also provide potential explanations for the potent autologous neutralization of these antibodies, confirming the immunodominance of this site and revealing that multiple angles of approach are permissible for affinity/avidity that results in potent neutralizing capacity. The structural analysis reveals that the most negatively charged paratope correlated with the potency of the mAbs. The atomic level information is of interest to both define the means of autologous neutralization elicited by different tier 2-based immunogens and facilitate trimer redesign to better target more conserved regions of V2 to potentially elicit cross-neutralizing HIV-1 antibodies.
Collapse
Affiliation(s)
- Safia S. Aljedani
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
| | - Tyler J. Liban
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
| | - Karen Tran
- The Scripps Research Institute, IAVI Neutralizing Antibody Center, La Jolla, California, United States of America
| | - Ganesh Phad
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Suruchi Singh
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
| | - Viktoriya Dubrovskaya
- The Scripps Research Institute, IAVI Neutralizing Antibody Center, La Jolla, California, United States of America
| | - Pradeepa Pushparaj
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Paola Martinez-Murillo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Justas Rodarte
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
| | - Alex Mileant
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Rachel Kinzelman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Sijy O’Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, United States of America
| | | | - Richard T. Wyatt
- The Scripps Research Institute, IAVI Neutralizing Antibody Center, La Jolla, California, United States of America
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Marie Pancera
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
6
|
Li L, Hessell AJ, Kong XP, Haigwood NL, Gorny MK. A large repertoire of B cell lineages targeting one cluster of epitopes in a vaccinated rhesus macaque. Vaccine 2021; 39:5607-5614. [PMID: 34400018 DOI: 10.1016/j.vaccine.2021.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
The repertoire of antibodies (Abs) produced upon vaccination against a particular antigenic site is rarely studied due to the complexity of the immunogens. We received such an opportunity when one rhesus macaque was immunized six times at 0, 4, 10, 16, 32, and 143 weeks with C4-447 peptide containing the 8-mer epitope for human monoclonal Ab (mAb) 447-52D specific to the V3 region of gp120 HIV-1. Strong anti-V3 antibody responses reached 50% binding titer in serum of 10-5 at week 10 that declined to 10-3 by week 70. After an additional boost of C4-447 peptide at week 143, titers rebounded to 10-5 at week 146, or 2.7 years after the first immunization. Using the blood sample at week 146, we produced 41 V3-specific recombinant mAbs by single B cell isolation and cloning. Sequence analysis revealed 21B cell lineages, single and clonally related, based on immunoglobulin gene usage and CDR3s. The broad repertoire of Abs directed to a small antigenic site shows the targeting potency of a vaccine-elicited immune response in rhesus macaques.
Collapse
Affiliation(s)
- Liuzhe Li
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Ann J Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Xiang-Peng Kong
- Department of Biochemistry & Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Miroslaw K Gorny
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Charles TP, Burton SL, Arunachalam PS, Cottrell CA, Sewall LM, Bollimpelli VS, Gangadhara S, Dey AK, Ward AB, Shaw GM, Hunter E, Amara RR, Pulendran B, van Gils MJ, Derdeyn CA. The C3/465 glycan hole cluster in BG505 HIV-1 envelope is the major neutralizing target involved in preventing mucosal SHIV infection. PLoS Pathog 2021; 17:e1009257. [PMID: 33556148 PMCID: PMC7895394 DOI: 10.1371/journal.ppat.1009257] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/19/2021] [Accepted: 12/23/2020] [Indexed: 01/08/2023] Open
Abstract
Stabilized HIV-1 envelope (Env) trimers elicit tier 2 autologous neutralizing antibody (nAb) responses in immunized animals. We previously demonstrated that BG505 SOSIP.664.T332N gp140 (BG505 SOSIP) immunization of rhesus macaques (RM) provided robust protection against autologous intra-vaginal simian-human immunodeficiency virus (SHIV) challenge that was predicted by high serum nAb titers. Here, we show that nAb in these protected RM targeted a glycan hole proximal to residue 465 in gp120 in all cases. nAb also targeted another glycan hole at residues 241/289 and an epitope in V1 at varying frequencies. Non-neutralizing antibodies directed at N611-shielded epitopes in gp41 were also present but were more prevalent in RM with low nAb titers. Longitudinal analysis demonstrated that nAb broadened in some RM during sequential immunization but remained focused in others, the latter being associated with increases in nAb titer. Thirty-eight monoclonal antibodies (mAbs) isolated from a protected RM with an exceptionally high serum neutralization titer bound to the trimer in ELISA, and four of the mAbs potently neutralized the BG505 Env pseudovirus (PV) and SHIV. The four neutralizing mAbs were clonally related and targeted the 465 glycan hole to varying degrees, mimicking the serum. The data demonstrate that the C3/465 glycan hole cluster was the dominant neutralization target in high titer protected RM, despite other co-circulating neutralizing and non-neutralizing specificities. The isolation of a neutralizing mAb family argues that clonotype expansion occurred during BG505 SOSIP immunization, leading to high titer, protective nAb and setting a desirable benchmark for HIV vaccines.
Collapse
Affiliation(s)
- Tysheena P. Charles
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Samantha L. Burton
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Prabhu S. Arunachalam
- Departments of Pathology, and Microbiology and Immunology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, United States of America
| | - Christopher A. Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Leigh M. Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Venkata S. Bollimpelli
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Sailaja Gangadhara
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Antu K. Dey
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - George M. Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eric Hunter
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Rama R. Amara
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Bali Pulendran
- Departments of Pathology, and Microbiology and Immunology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, United States of America
| | - Marit J. van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cynthia A. Derdeyn
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
8
|
A de novo approach to inferring within-host fitness effects during untreated HIV-1 infection. PLoS Pathog 2020; 16:e1008171. [PMID: 32492061 PMCID: PMC7295245 DOI: 10.1371/journal.ppat.1008171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 06/15/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
In the absence of effective antiviral therapy, HIV-1 evolves in response to the within-host environment, of which the immune system is an important aspect. During the earliest stages of infection, this process of evolution is very rapid, driven by a small number of CTL escape mutations. As the infection progresses, immune escape variants evolve under reduced magnitudes of selection, while competition between an increasing number of polymorphic alleles (i.e., clonal interference) makes it difficult to quantify the magnitude of selection acting upon specific variant alleles. To tackle this complex problem, we developed a novel multi-locus inference method to evaluate the role of selection during the chronic stage of within-host infection. We applied this method to targeted sequence data from the p24 and gp41 regions of HIV-1 collected from 34 patients with long-term untreated HIV-1 infection. We identify a broad distribution of beneficial fitness effects during infection, with a small number of variants evolving under strong selection and very many variants evolving under weaker selection. The uniquely large number of infections analysed granted a previously unparalleled statistical power to identify loci at which selection could be inferred to act with statistical confidence. Our model makes no prior assumptions about the nature of alleles under selection, such that any synonymous or non-synonymous variant may be inferred to evolve under selection. However, the majority of variants inferred with confidence to be under selection were non-synonymous in nature, and in most cases were have previously been associated with either CTL escape in p24 or neutralising antibody escape in gp41. We also identified a putative new CTL escape site (residue 286 in gag), and a region of gp41 (including residues 644, 648, 655 in env) likely to be associated with immune escape. Sites inferred to be under selection in multiple hosts have high within-host and between-host diversity although not all sites with high between-host diversity were inferred to be under selection at the within-host level. Our identification of selection at sites associated with resistance to broadly neutralising antibodies (bNAbs) highlights the need to fully understand the role of selection in untreated individuals when designing bNAb based therapies.
Collapse
|
9
|
Arunachalam PS, Charles TP, Joag V, Bollimpelli VS, Scott MKD, Wimmers F, Burton SL, Labranche CC, Petitdemange C, Gangadhara S, Styles TM, Quarnstrom CF, Walter KA, Ketas TJ, Legere T, Jagadeesh Reddy PB, Kasturi SP, Tsai A, Yeung BZ, Gupta S, Tomai M, Vasilakos J, Shaw GM, Kang CY, Moore JP, Subramaniam S, Khatri P, Montefiori D, Kozlowski PA, Derdeyn CA, Hunter E, Masopust D, Amara RR, Pulendran B. T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nat Med 2020; 26:932-940. [PMID: 32393800 PMCID: PMC7303014 DOI: 10.1038/s41591-020-0858-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/27/2020] [Indexed: 01/05/2023]
Abstract
Recent efforts toward an HIV vaccine focus on inducing broadly neutralizing antibodies, but eliciting both neutralizing antibodies (nAbs) and cellular responses may be superior. Here, we immunized macaques with an HIV envelope trimer, either alone to induce nAbs, or together with a heterologous viral vector regimen to elicit nAbs and cellular immunity, including CD8+ tissue-resident memory T cells. After ten vaginal challenges with autologous virus, protection was observed in both vaccine groups at 53.3% and 66.7%, respectively. A nAb titer >300 was generally associated with protection but in the heterologous viral vector + nAb group, titers <300 were sufficient. In this group, protection was durable as the animals resisted six more challenges 5 months later. Antigen stimulation of T cells in ex vivo vaginal tissue cultures triggered antiviral responses in myeloid and CD4+ T cells. We propose that cellular immune responses reduce the threshold of nAbs required to confer superior and durable protection.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/drug effects
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/drug effects
- Antibodies, Viral/immunology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Female
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Genetic Vectors
- Immunity, Cellular/drug effects
- Immunity, Cellular/immunology
- Immunity, Heterologous
- Immunogenicity, Vaccine
- Immunologic Memory/immunology
- Macaca mulatta
- Mucous Membrane
- SAIDS Vaccines/pharmacology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Simian Immunodeficiency Virus/immunology
- Vagina
Collapse
Affiliation(s)
- Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Tysheena P Charles
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Vineet Joag
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Venkata S Bollimpelli
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | - Madeleine K D Scott
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Samantha L Burton
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Celia C Labranche
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Caroline Petitdemange
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
- HIV Inflammation and Persistence Unit, Institut Pasteur, Paris, France
| | - Sailaja Gangadhara
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | - Tiffany M Styles
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | - Clare F Quarnstrom
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Korey A Walter
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Thomas J Ketas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Traci Legere
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | - Pradeep Babu Jagadeesh Reddy
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
- Pfizer, Andover, MA, USA
| | - Sudhir Pai Kasturi
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | | | | | - Shakti Gupta
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Mark Tomai
- 3M Corporate Research and Materials Lab, Saint Paul, MN, USA
| | | | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chil-Yong Kang
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Cynthia A Derdeyn
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA.
| | - Eric Hunter
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA.
| | - David Masopust
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| | - Rama R Amara
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA.
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Clade C HIV-1 Envelope Vaccination Regimens Differ in Their Ability To Elicit Antibodies with Moderate Neutralization Breadth against Genetically Diverse Tier 2 HIV-1 Envelope Variants. J Virol 2019; 93:JVI.01846-18. [PMID: 30651354 DOI: 10.1128/jvi.01846-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/03/2019] [Indexed: 01/09/2023] Open
Abstract
The goals of preclinical HIV vaccine studies in nonhuman primates are to develop and test different approaches for their ability to generate protective immunity. Here, we compared the impact of 7 different vaccine modalities, all expressing the HIV-1 1086.C clade C envelope (Env), on (i) the magnitude and durability of antigen-specific serum antibody responses and (ii) autologous and heterologous neutralizing antibody capacity. These vaccination regimens included immunization with different combinations of DNA, modified vaccinia virus Ankara (MVA), soluble gp140 protein, and different adjuvants. Serum samples collected from 130 immunized monkeys at two key time points were analyzed using the TZM-bl cell assay: at 2 weeks after the final immunization (week 40/41) and on the day of challenge (week 58). Key initial findings were that inclusion of a gp140 protein boost had a significant impact on the magnitude and durability of Env-specific IgG antibodies, and addition of 3M-052 adjuvant was associated with better neutralizing activity against the SHIV1157ipd3N4 challenge virus and a heterologous HIV-1 CRF01 Env, CNE8. We measured neutralization against a panel of 12 tier 2 Envs using a newly described computational tool to quantify serum neutralization potency by factoring in the predetermined neutralization tier of each reference Env. This analysis revealed modest neutralization breadth, with DNA/MVA immunization followed by gp140 protein boosts in 3M-052 adjuvant producing the best scores. This study highlights that protein-containing regimens provide a solid foundation for the further development of novel adjuvants and inclusion of trimeric Env immunogens that could eventually elicit a higher level of neutralizing antibody breadth.IMPORTANCE Despite much progress, we still do not have a clear understanding of how to elicit a protective neutralizing antibody response against HIV-1 through vaccination. There have been great strides in the development of envelope immunogens that mimic the virus particle, but less is known about how different vaccination modalities and adjuvants contribute to shaping the antibody response. We compared seven different vaccines that were administered to rhesus macaques and that delivered the same envelope protein through various modalities and with different adjuvants. The results demonstrate that some vaccine components are better than others at eliciting neutralizing antibodies with breadth.
Collapse
|
11
|
Smith SA, Burton SL, Kilembe W, Lakhi S, Karita E, Price M, Allen S, Derdeyn CA. VH1-69 Utilizing Antibodies Are Capable of Mediating Non-neutralizing Fc-Mediated Effector Functions Against the Transmitted/Founder gp120. Front Immunol 2019; 9:3163. [PMID: 30697215 PMCID: PMC6341001 DOI: 10.3389/fimmu.2018.03163] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/21/2018] [Indexed: 01/05/2023] Open
Abstract
Multiple antibody effector functions arise in HIV-1 infection that could be harnessed to protect against infection or clear the persistent reservoir. Here, we have investigated the genetic and functional memory B cell and antibody landscape present during early infection in six individuals infected with either subtype A, C, or an A/C recombinant HIV-1. These individuals demonstrated varying levels of plasma autologous neutralization (nAb) against the transmitted/founder envelope (T/F Env) pseudovirus and non-neutralizing Fc-mediated effector function (nnFc) antibody-dependent cell-mediated cytotoxicity (ADCC) against the T/F Env gp120 protein at ~7 months after infection. Genetic analysis of the immunoglobulin heavy (VH) and light (VL) chain variable domain gene segments from 352 autologous T/F Env gp120-specific single B cells recovered at this same 7-month time-point revealed an over-representation of the VH1-69 germline in five of six individuals. A defining feature of the VH1-69 utilizing gp120-specific antibodies was their significantly more hydrophobic complementarity-determining region-2 (CDRH2) regions compared to other VH CDRH2 sequences from each individual. While none of the VH1-69 antibodies possessed strong neutralizing activity against virions pseudotyped with the autologous T/F Env, almost a third were capable of mediating high ADCC activity, as assayed by intracellular granzyme B activity in CEM.NKr.CCR5 target cells coated with autologous T/F Env gp120. High ADCC mediating VH1-69 antibodies exhibited shorter complementarity-determining region-3 (CDRH3) lengths and a more neutral isoelectric point than antibodies lacking this function. In the individual that developed the highest autologous ADCC responses, the high granzyme B producing antibodies bound to surface expressed envelope in the absence of CD4 and were not enhanced by the addition of soluble CD4. Overall, VH1-69 utilizing antibodies are commonly induced against gp120 in diverse HIV-1 infections and a subset of these antibodies can mediate ADCC functions, serving as a bridge between the innate and adaptive immune response to HIV-1.
Collapse
Affiliation(s)
- S Abigail Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Samantha L Burton
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | | | - Shabir Lakhi
- Zambia Emory HIV Research Project, Lusaka, Zambia
| | | | - Matt Price
- International AIDS Vaccine Initiative, New York, NY, United States.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Susan Allen
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| | - Cynthia A Derdeyn
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
12
|
Variable infectivity and conserved engagement in cell-to-cell viral transfer by HIV-1 Env from Clade B transmitted founder clones. Virology 2018; 526:189-202. [PMID: 30415130 DOI: 10.1016/j.virol.2018.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
Abstract
HIV-1 transmission is usually initiated by a single viral strain called transmitted/ founder (T/F) virus. In in vitro models, HIV-1 can efficiently spread via cell-free and virological synapse (VS)-mediated cell-to-cell infection. Both modes of infection require the viral glycoprotein Envelope (Env). The efficiency with which T/F Envs initiate VS and mediate cell-to-cell infection has not been well characterized. Here we tested a panel of isogenic HIV-1 molecular clones that carry different Clade B T/F Envs. We found that despite variable infectivity among different Env clones in the two modes of infection, T/F Envs generally mediated efficient VS formation and subsequent cell-to-cell transfer. In contrast, in vitro infectivity of the T/F Env clones was more variable and strongly correlated with intrinsic fusogenicity of various Envs. We speculate that the conservation of cell-to-cell transfer by T/F Env is indicative of a biologically important function of Env.
Collapse
|
13
|
Gp120 V5 Is Targeted by the First Wave of Sequential Neutralizing Antibodies in SHIV SF162P3N-Infected Rhesus Macaques. Viruses 2018; 10:v10050262. [PMID: 29772652 PMCID: PMC5977255 DOI: 10.3390/v10050262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/29/2022] Open
Abstract
Simian-human immunodeficiency virus (SHIV) infection provides a relevant animal model to study HIV-1 neutralization breadth. With previously identified SHIVSF162P3N infected rhesus macaques that did or did not develop neutralization breadth, we characterized the transmitted/founder viruses and initial autologous/homologous neutralizing antibodies in these animals. The plasma viral load and blood CD4 count did not distinguish macaques with and without breadth, and only one tested homologous envelope clone revealed a trend for macaques with breadth to favor an early homologous response. In two macaques with breadth, GB40 and FF69, infected with uncloned SHIVSF162P3N, multiple viral variants were transmitted, and the transmitted variants were not equal in neutralization sensitivity. The targets of initial autologous neutralizing antibodies, arising between 10 and 20 weeks post infection, were mapped to N462 glycan and G460a in gp120 V5 in GB40 and FF69, respectively. Although it is unclear whether these targets are related to later neutralization breadth development, the G460a target but not N462 glycan appeared more common in macaques with breadth than those without. Longitudinal plasmas revealed 2⁻3 sequential waves of neutralizing antibodies in macaques with breadth, implicating that 3 sequential envelope variants, if not more, may be required for the broadening of HIV-1 neutralizing antibodies.
Collapse
|
14
|
Gao N, Wang W, Wang C, Gu T, Guo R, Yu B, Kong W, Qin C, Giorgi EE, Chen Z, Townsley S, Hu SL, Yu X, Gao F. Development of broad neutralization activity in simian/human immunodeficiency virus-infected rhesus macaques after long-term infection. AIDS 2018; 32:555-563. [PMID: 29239895 DOI: 10.1097/qad.0000000000001724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Nonhuman primates (NHPs) are the only animal model that can be used to evaluate protection efficacy of HIV-1 envelope vaccines. However, whether broadly neutralizing antibodies (bnAbs) can be elicited in NHPs infected with simian/human immunodeficiency virus (SHIV) has not been fully understood. The objective of this study is to investigate whether broad neutralization activities were developed in SHIV-infected macaques after long-term infection as in humans. DESIGN Neutralization breadth and specificities in plasmas from SHIV-infected macaques were determined by analyzing a panel of tier 2 viruses and their mutants. METHODS Forty-four Chinese macaques infected with SHIV1157ipd3N4, SHIVSF162P3 or SHIVCHN19P4 were followed for 54-321 weeks. Archived plasmas from 19 macaques were used to determine neutralization breadth and specificities against 17 tier 2 envelope-pseudoviruses. RESULTS Longitudinal plasma from three SHIVSF162P3-infected macaques and three SHIV1157ipd3N4-infected macaques rarely neutralized viruses (<25%) within 1 year of infection. The neutralization breadth in two SHIV1157ipd3N4-infected macaques significantly increased (≥65%) by year 6. Four of six SHIV1157ipd3N4-infected macaques could neutralize 50-75% viruses, whereas none of macaques infected with SHIVSF162P3 or SHIVCHN19P4 could neutralize more than 25% of viruses after 6 years of infection (P = 0.035). Neutralization specificity analysis showed mutations resistant to bnAbs in V2, V3 or CD4bs regions could abrogate neutralization by year-6 plasma from three SHIV1157ipd3N4-infected macaques. CONCLUSION These results demonstrate that bnAbs targeting common HIV-1 epitopes can be elicited in SHIV1157ipd3N4-infected macaques as in humans after 4-6 years of infection, and SHIV/NHP can serve as an ideal model to study bnAb maturation.
Collapse
|
15
|
Functional Antibody Response Against V1V2 and V3 of HIV gp120 in the VAX003 and VAX004 Vaccine Trials. Sci Rep 2018; 8:542. [PMID: 29323175 PMCID: PMC5765017 DOI: 10.1038/s41598-017-18863-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/18/2017] [Indexed: 11/09/2022] Open
Abstract
Immunization with HIV AIDSVAX gp120 vaccines in the phase III VAX003 and VAX004 trials did not confer protection. To understand the shortcomings in antibody (Ab) responses induced by these vaccines, we evaluated the kinetics of Ab responses to the V1V2 and V3 regions of gp120 and the induction of Ab-mediated antiviral functions during the course of 7 vaccinations over a 30.5-month period. Plasma samples from VAX003 and VAX004 vaccinees and placebo recipients were measured for ELISA-binding Abs and for virus neutralization, Ab-dependent cellular phagocytosis (ADCP), and Ab-dependent cellular cytotoxicity (ADCC). Ab responses to V1V2 and V3 peaked after 3 to 4 immunizations and declined after 5 to 7 immunizations. The deteriorating responses were most evident against epitopes in the underside of the V1V2 β-barrel and in the V3 crown. Correspondingly, vaccinees demonstrated higher neutralization against SF162 pseudovirus sensitive to anti-V1V2 and anti-V3 Abs after 3 or 4 immunizations than after 7 immunizations. Higher levels of ADCP and ADCC were also observed at early or mid-time points as compared with the final time point. Hence, VAX003 and VAX004 vaccinees generated V1V2- and V3-binding Abs and functional Abs after 3 to 4 immunizations, but subsequent boosts did not maintain these responses.
Collapse
|
16
|
Abstract
BACKGROUND HIV-1 is known to adapt to the local environment in its usage of receptors, and it can become CD4 independent in the brain where the receptor is scarce. This adaptation is through amino acid variations, but the patterns of such variation are not yet well understood. Given that infection of long-lived CD4-low and CD4-negative cells in anatomical compartments such as the brain expands cell tropism in vivo and may serve as potential viral reservoirs that pose challenge for HIV eradication, understanding the evolution to CD4 independence and envelope conformation associated with infection in the absence of CD4 will not only broaden our insights into HIV pathogenesis but may guide functional cure strategies as well. METHODS We characterize, by site-directed mutagenesis, neutralization assay, and structural analysis, a pair of CD4-dependent (cl2) and CD4-independent (cl20) envelopes concurrently isolated from the cerebral spinal fluid of an SHIV-infected macaque with neurological AIDS and with minimum sequence differences. RESULTS Residues different between cl2 and cl20 are mapped to the V1V2 and surrounding regions. Mutations of these residues in cl2 increased its CD4 independence in infection, and the effects are cumulative and likely structural. CONCLUSIONS Our data suggested that the determinants of CD4 independence in vivo mapped principally to V1V2 of gp120 that can destabilize the apex of the envelope spike, with an additional change in V4 that abrogated a potential N-linked glycan to facilitate movement of the V1V2 domain and further expose the coreceptor-binding site.
Collapse
|
17
|
Moore PL, Gorman J, Doria-Rose NA, Morris L. Ontogeny-based immunogens for the induction of V2-directed HIV broadly neutralizing antibodies. Immunol Rev 2017; 275:217-229. [PMID: 28133797 PMCID: PMC5300058 DOI: 10.1111/imr.12501] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The development of a preventative HIV vaccine able to elicit broadly neutralizing antibodies (bNAbs) remains a major challenge. Antibodies that recognize the V2 region at the apex of the HIV envelope trimer are among the most common bNAb specificities during chronic infection and many exhibit remarkable breadth and potency. Understanding the developmental pathway of these antibodies has provided insights into their precursors, and the viral strains that engage them, as well as defined how such antibodies mature to acquire breadth. V2‐apex bNAbs are derived from rare precursors with long anionic CDR H3s that are often deleted in the B cell repertoire. However, longitudinal studies suggest that once engaged, these precursors contain many of the structural elements required for neutralization, and can rapidly acquire breadth through moderate levels of somatic hypermutation in response to emerging viral variants. These commonalities in the precursors and mechanism of neutralization have enabled the identification of viral strains that show enhanced reactivity for V2 precursors from multiple donors, and may form the basis of germline targeting approaches. In parallel, new structural insights into the HIV trimer, the target of these quaternary antibodies, has created invaluable new opportunities for ontogeny‐based immunogens designed to select for rare V2‐bNAb precursors, and drive them toward breadth.
Collapse
Affiliation(s)
- Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
18
|
Diversification in the HIV-1 Envelope Hyper-variable Domains V2, V4, and V5 and Higher Probability of Transmitted/Founder Envelope Glycosylation Favor the Development of Heterologous Neutralization Breadth. PLoS Pathog 2016; 12:e1005989. [PMID: 27851829 PMCID: PMC5112890 DOI: 10.1371/journal.ppat.1005989] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/11/2016] [Indexed: 11/19/2022] Open
Abstract
A recent study of plasma neutralization breadth in HIV-1 infected individuals at nine International AIDS Vaccine Initiative (IAVI) sites reported that viral load, HLA-A*03 genotype, and subtype C infection were strongly associated with the development of neutralization breadth. Here, we refine the findings of that study by analyzing the impact of the transmitted/founder (T/F) envelope (Env), early Env diversification, and autologous neutralization on the development of plasma neutralization breadth in 21 participants identified during recent infection at two of those sites: Kigali, Rwanda (n = 9) and Lusaka, Zambia (n = 12). Single-genome analysis of full-length T/F Env sequences revealed that all 21 individuals were infected with a highly homogeneous population of viral variants, which were categorized as subtype C (n = 12), A1 (n = 7), or recombinant AC (n = 2). An extensive amino acid sequence-based analysis of variable loop lengths and glycosylation patterns in the T/F Envs revealed that a lower ratio of NXS to NXT-encoded glycan motifs correlated with neutralization breadth. Further analysis comparing amino acid sequence changes, insertions/deletions, and glycan motif alterations between the T/F Env and autologous early Env variants revealed that extensive diversification focused in the V2, V4, and V5 regions of gp120, accompanied by contemporaneous viral escape, significantly favored the development of breadth. These results suggest that more efficient glycosylation of subtype A and C T/F Envs through fewer NXS-encoded glycan sites is more likely to elicit antibodies that can transition from autologous to heterologous neutralizing activity following exposure to gp120 diversification. This initiates an Env-antibody co-evolution cycle that increases neutralization breadth, and is further augmented over time by additional viral and host factors. These findings suggest that understanding how variation in the efficiency of site-specific glycosylation influences neutralizing antibody elicitation and targeting could advance the design of immunogens aimed at inducing antibodies that can transition from autologous to heterologous neutralizing activity.
Collapse
|
19
|
Tian J, López CA, Derdeyn CA, Jones MS, Pinter A, Korber B, Gnanakaran S. Effect of Glycosylation on an Immunodominant Region in the V1V2 Variable Domain of the HIV-1 Envelope gp120 Protein. PLoS Comput Biol 2016; 12:e1005094. [PMID: 27716795 PMCID: PMC5055340 DOI: 10.1371/journal.pcbi.1005094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 08/01/2016] [Indexed: 12/14/2022] Open
Abstract
Heavy glycosylation of the envelope (Env) surface subunit, gp120, is a key adaptation of HIV-1; however, the precise effects of glycosylation on the folding, conformation and dynamics of this protein are poorly understood. Here we explore the patterns of HIV-1 Env gp120 glycosylation, and particularly the enrichment in glycosylation sites proximal to the disulfide linkages at the base of the surface-exposed variable domains. To dissect the influence of glycans on the conformation these regions, we focused on an antigenic peptide fragment from a disulfide bridge-bounded region spanning the V1 and V2 hyper-variable domains of HIV-1 gp120. We used replica exchange molecular dynamics (MD) simulations to investigate how glycosylation influences its conformation and stability. Simulations were performed with and without N-linked glycosylation at two sites that are highly conserved across HIV-1 isolates (N156 and N160); both are contacts for recognition by V1V2-targeted broadly neutralizing antibodies against HIV-1. Glycosylation stabilized the pre-existing conformations of this peptide construct, reduced its propensity to adopt other secondary structures, and provided resistance against thermal unfolding. Simulations performed in the context of the Env trimer also indicated that glycosylation reduces flexibility of the V1V2 region, and provided insight into glycan-glycan interactions in this region. These stabilizing effects were influenced by a combination of factors, including the presence of a disulfide bond between the Cysteines at 131 and 157, which increased the formation of beta-strands. Together, these results provide a mechanism for conservation of disulfide linkage proximal glycosylation adjacent to the variable domains of gp120 and begin to explain how this could be exploited to enhance the immunogenicity of those regions. These studies suggest that glycopeptide immunogens can be designed to stabilize the most relevant Env conformations to focus the immune response on key neutralizing epitopes. Heavy glycosylation of the envelope surface subunit, gp120, is a key adaptation of HIV-1, however, the precise effects of glycosylation on the folding, conformation and dynamics of this protein are poorly understood. The network of glycans on gp120 is of particular interest with regards to vaccine design, because the glycans both serve as targets for many classes of broadly neutralizing antibodies, and contribute to patterns of immune evasion and escape during HIV-1 infection. In this manuscript, we report on how glycosylation influences an immunogenic but disordered region of gp120. Glycosylation stabilizes the pre-existing conformation, and reduces its propensity to form other secondary structures. It also stabilizes preformed conformation against thermal unfolding. These complementary effects originate from a combination of multiple factors, including the observation that having a glycosylation site adjacent to the disulfide bond further promotes the formation of beta-strand structure in this peptide.
Collapse
Affiliation(s)
- Jianhui Tian
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Biomolecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Cesar A. López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Cynthia A. Derdeyn
- Department of Pathology and Laboratory Medicine and Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Morris S. Jones
- University of California Berkeley, School of Public Health, Berkeley, California, United States of America
| | - Abraham Pinter
- New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Bette Korber
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
20
|
Comparison of Antibody-Dependent Cell-Mediated Cytotoxicity and Virus Neutralization by HIV-1 Env-Specific Monoclonal Antibodies. J Virol 2016; 90:6127-6139. [PMID: 27122574 DOI: 10.1128/jvi.00347-16] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/16/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Although antibodies to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein have been studied extensively for their ability to block viral infectivity, little data are currently available on nonneutralizing functions of these antibodies, such as their ability to eliminate virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 Env-specific antibodies of diverse specificities, including potent broadly neutralizing and nonneutralizing antibodies, were therefore tested for ADCC against cells infected with a lab-adapted HIV-1 isolate (HIV-1NL4-3), a primary HIV-1 isolate (HIV-1JR-FL), and a simian-human immunodeficiency virus (SHIV) adapted for pathogenic infection of rhesus macaques (SHIVAD8-EO). In accordance with the sensitivity of these viruses to neutralization, HIV-1NL4-3-infected cells were considerably more sensitive to ADCC, both in terms of the number of antibodies and magnitude of responses, than cells infected with HIV-1JR-FL or SHIVAD8-EO ADCC activity generally correlated with antibody binding to Env on the surfaces of virus-infected cells and with viral neutralization; however, neutralization was not always predictive of ADCC, as instances of ADCC in the absence of detectable neutralization, and vice versa, were observed. These results reveal incomplete overlap in the specificities of antibodies that mediate these antiviral activities and provide insights into the relationship between ADCC and neutralization important for the development of antibody-based vaccines and therapies for combating HIV-1 infection. IMPORTANCE This study provides fundamental insights into the relationship between antibody-dependent cell-mediated cytotoxicity (ADCC) and virus neutralization that may help to guide the development of antibody-based vaccines and immunotherapies for the prevention and treatment of HIV-1 infection.
Collapse
|
21
|
Detection of Broadly Neutralizing Activity within the First Months of HIV-1 Infection. J Virol 2016; 90:5231-5245. [PMID: 26984721 DOI: 10.1128/jvi.00049-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/08/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A fraction of HIV-1 patients are able to generate broadly neutralizing antibodies (bNAbs) after 2 to 4 years of infection. In rare occasions such antibodies are observed close to the first year of HIV-1 infection but never within the first 6 months. In this study, we analyzed the neutralization breadth of sera from 157 antiretroviral-naive individuals who were infected for less than 1 year. A range of neutralizing activities was observed with a previously described panel of six recombinant viruses from five different subtypes (M. Medina-Ramirez et al., J Virol 85:5804-5813, 2011, http://dx.doi.org/10.1128/JVI.02482-10). Some sera were broadly reactive, predominantly targeting envelope epitopes within the V2 glycan-dependent region. The neutralization breadth was positively associated with time postinfection (P = 0.0001), but contrary to what has been reported for chronic infections, no association with the viral load was observed. Notably, five individuals within the first 6 months of infection (two as early as 77 and 96 days postinfection) showed substantial cross-neutralization. This was confirmed with an extended panel of 20 Env pseudoviruses from four different subtypes (two in tier 3, 14 in tier 2, and four in tier 1). Sera from these individuals were capable of neutralizing viruses from four different subtypes with a geometric mean 50% infective dose (ID50) between 100 and 800. These results indicate that induction of cross-neutralizing responses, albeit rare, is achievable even within 6 months of HIV-1 infection. These observations encourage the search for immunogens able to elicit this kind of response in preventive HIV-1 vaccine approaches. IMPORTANCE There are very few individuals able to mount broadly neutralizing activity (bNA) close to the first year postinfection. It is not known how early in the infection cross-neutralizing responses can be induced. In the present study, we show that bNAbs, despite being rare, can be induced much earlier than previously thought. The identification of HIV-1-infected patients with these activities within the first months of infection and characterization of these responses will help in defining new immunogen designs and neutralization targets for vaccine-mediated induction of bNAbs.
Collapse
|
22
|
Development of Broadly Neutralizing Antibodies and Their Mapping by Monomeric gp120 in Human Immunodeficiency Virus Type 1-Infected Humans and Simian-Human Immunodeficiency Virus SHIVSF162P3N-Infected Macaques. J Virol 2016; 90:4017-4031. [PMID: 26842476 DOI: 10.1128/jvi.02898-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/28/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED To improve our understanding of the similarities and differences between neutralizing antibodies elicited by simian-human immunodeficiency virus (SHIV)-infected rhesus macaques and human immunodeficiency virus type 1 (HIV-1)-infected humans, we examined the plasma of 13 viremic macaques infected with SHIVSF162P3Nand 85 HIV-1-infected humans with known times of infection. We identified 5 macaques (38%) from 1 to 2 years postinfection (p.i.) with broadly neutralizing antibodies (bnAbs) against tier 2 HIV-1. In comparison, only 2 out of 42 (5%) human plasma samples collected in a similar time frame of 1 to 3 years p.i. exhibited comparable neutralizing breadths and potencies, with the number increasing to 7 out of 21 (30%) after 3 years p.i. Plasma mapping with monomeric gp120 identified only 2 out of 9 humans and 2 out of 4 macaques that contained gp120-reactive neutralizing antibodies, indicating distinct specificities in these plasma samples, with most of them recognizing the envelope trimer (including gp41) rather than the gp120 monomer. Indeed, a total of 20 gp120-directed monoclonal antibodies (MAbs) isolated from a human subject (AD358) and a Chinese rhesus macaque (GB40) displayed no or limited neutralizing activity against tier 2 strains. These isolated MAbs, mapped to the CD4-binding site, the V3 loop, the inner domain, and the C5 region of gp120, revealed genetic similarity between the human and macaque immunoglobulin genes used to encode some V3-directed MAbs. These results also support the use of envelope trimer probes for efficient isolation of HIV-1 bnAbs. IMPORTANCE HIV-1 vaccine research can benefit from understanding the development of broadly neutralizing antibodies (bnAbs) in rhesus macaques, commonly used to assess vaccine immunogenicity and efficacy. Here, we examined 85 HIV-1-infected humans and 13 SHIVSF162P3N-infected macaques for bnAbs and found that, similar to HIV-1-infected humans, bnAbs in SHIV-infected macaques are also rare, but their development might have been faster in some of the studied macaques. Plasma mapping with monomeric gp120 indicated that most bnAbs bind to the envelope trimer rather than the gp120 monomer. In support of this, none of the isolated gp120-reactive monoclonal antibodies (MAbs) displayed the neutralization breadth observed in the corresponding plasma. However, the MAb sequences revealed similarity between human and macaque genes used to encode some V3-directed MAbs. Our study sheds light on the timing and development of bnAbs in SHIV-infected macaques in comparison to HIV-1-infected humans and highlights the use of envelope trimer probes for efficient recovery of bnAbs.
Collapse
|
23
|
|
24
|
Adenoviral vectors elicit humoral immunity against variable loop 2 of clade C HIV-1 gp120 via "Antigen Capsid-Incorporation" strategy. Virology 2015; 487:75-84. [PMID: 26499044 DOI: 10.1016/j.virol.2015.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 11/23/2022]
Abstract
Adenoviral (Ad) vectors in combination with the "Antigen Capsid-Incorporation" strategy have been applied in developing HIV-1 vaccines, due to the vectors׳ abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein. We generated adenovirus serotype 5 (Ad5) vectors displaying variable loop 2 (V2) of HIV-1 gp120, with the "Antigen Capsid-Incorporation" strategy. To assess the incorporation capabilities on hexon hypervariable region1 (HVR1) and protein IX (pIX), 20aa or full length (43aa) of V2 and V1V2 (67aa) were incorporated, respectively. Immunizations with the recombinant vectors significantly generated antibodies against both linear and discontinuous V2 epitopes. The immunizations generated durable humoral immunity against V2. This study will lead to more stringent development of various serotypes of adenovirus-vectored V2 vaccine candidates, based on breakthroughs regarding the immunogenicity of V2.
Collapse
|
25
|
Breakthrough of SIV strain smE660 challenge in SIV strain mac239-vaccinated rhesus macaques despite potent autologous neutralizing antibody responses. Proc Natl Acad Sci U S A 2015; 112:10780-5. [PMID: 26261312 DOI: 10.1073/pnas.1509731112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although the correlates of immunological protection from human immunodeficiency virus or simian immunodeficiency virus infection remain incompletely understood, it is generally believed that medium to high titers of serum neutralizing antibodies (nAbs) against the challenge virus will prevent infection. This paradigm is based on a series of studies in which passive transfer of HIV-specific nAbs protected rhesus macaques (RMs) from subsequent mucosal challenge with a chimeric human/simian immunodeficiency virus. However, it is unknown whether nAb titers define protection in the setting of active immunization. Here we determined serum nAb titers against breakthrough transmitted/founder (T/F) SIVsmE660-derived envelope glycoprotein (Env) variants from 14 RMs immunized with SIVmac239-based DNA-prime/modified vaccinia virus Ankara-boost vaccine regimens that included GM-CSF or CD40L adjuvants and conferred significant but incomplete protection against repeated low-dose intrarectal challenge. A single Env variant established infection in all RMs except one, with no identifiable genetic signature associated with vaccination breakthrough compared with T/F Envs from four unvaccinated monkeys. Breakthrough T/F Env pseudoviruses were potently neutralized in vitro by heterologous pooled serum from chronically SIVsmE660-infected monkeys at IC50 titers exceeding 1:1,000,000. Remarkably, the T/F Env pseudoviruses from 13 of 14 monkeys were also susceptible to neutralization by autologous prechallenge serum at in vitro IC50 titers ranging from 1:742-1:10,832. These titers were similar to those observed in vaccinated RMs that remained uninfected. These data suggest that the relationship between serum nAb titers and protection from mucosal SIV challenge in the setting of active immunization is more complex than previously recognized, warranting further studies into the balance between immune activation, target cell availability, and protective antibody responses.
Collapse
|
26
|
Peters PJ, Gonzalez-Perez MP, Musich T, Moore Simas TA, Lin R, Morse AN, Shattock RJ, Derdeyn CA, Clapham PR. Infection of ectocervical tissue and universal targeting of T-cells mediated by primary non-macrophage-tropic and highly macrophage-tropic HIV-1 R5 envelopes. Retrovirology 2015; 12:48. [PMID: 26055104 PMCID: PMC4459458 DOI: 10.1186/s12977-015-0176-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/19/2015] [Indexed: 12/21/2022] Open
Abstract
Background HIV-1 variants carrying non-macrophage-tropic HIV-1 R5 envelopes (Envs) are predominantly transmitted and persist in immune tissue even in AIDS patients who have highly macrophage-tropic variants in the brain. Non-macrophage-tropic R5 Envs require high levels of CD4 for infection contrasting with macrophage-tropic Envs, which can efficiently mediate infection of cells via low CD4. Here, we investigated whether non-macrophage-tropic R5 Envs from the acute stage of infection (including transmitted/founder Env) mediated more efficient infection of ectocervical explant cultures compared to non-macrophage-tropic and highly macrophage-tropic R5 Envs from late disease. Results We used Env+ pseudovirions that carried a GFP reporter gene to measure infection of the first cells targeted in ectocervical explant cultures. In straight titrations of Env+ pseudovirus supernatants, mac-tropic R5 Envs from late disease mediated slightly higher infectivities for ectocervical explants although this was not significant. Surprisingly, explant infection by several T/F/acute Envs was lower than for Envs from late disease. However, when infectivity for explants was corrected to account for differences in the overall infectivity of each Env+ pseudovirus (measured on highly permissive HeLa TZM-bl cells), non-mac-tropic early and late disease Env+ pseudoviruses mediated significantly higher infection. This observation suggests that cervical tissue preferentially supports non-mac-tropic Env+ viruses compared to mac-tropic viruses. Finally, we show that T-cells were the main targets for infection regardless of whether explants were stimulated with T-cell or monocyte/macrophage cytokines. There was no evidence of macrophage infection even for pseudovirions carrying highly mac-tropic Envs from brain tissue or for the highly mac-tropic, laboratory strain, BaL, which targeted T-cells in the explant tissue. Conclusions Our data support ectocervical tissue as a favorable environment for non-mac-tropic HIV-1 R5 variants and emphasize the role of T-cells as initial targets for infection even for highly mac-tropic variants. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0176-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul J Peters
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Biotech 2, 373 Plantation Street, Worcester, MA, 01605-2377, USA.
| | - Maria Paz Gonzalez-Perez
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Biotech 2, 373 Plantation Street, Worcester, MA, 01605-2377, USA.
| | - Thomas Musich
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Biotech 2, 373 Plantation Street, Worcester, MA, 01605-2377, USA.
| | - Tiffany A Moore Simas
- Department of Ob/Gyn, University of Massachusetts Memorial Health Care, 119 Belmont Street, Worcester, MA, 01605, USA.
| | - Rongheng Lin
- School of Public Health and Health Sciences, University of Massachusetts, 411 Arnold House, 715 North Pleasant Street, Amherst, MA, 01003-9304, USA.
| | - Abraham N Morse
- Department of Ob/Gyn, University of Massachusetts Memorial Health Care, 119 Belmont Street, Worcester, MA, 01605, USA.
| | - Robin J Shattock
- Department of Medicine, St Mary's Campus, Imperial College, Medical School Building, London, W21PG, UK.
| | - Cynthia A Derdeyn
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center at Yerkes National Primate Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA.
| | - Paul R Clapham
- Program in Molecular Medicine and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Biotech 2, 373 Plantation Street, Worcester, MA, 01605-2377, USA.
| |
Collapse
|
27
|
Characterization and Implementation of a Diverse Simian Immunodeficiency Virus SIVsm Envelope Panel in the Assessment of Neutralizing Antibody Breadth Elicited in Rhesus Macaques by Multimodal Vaccines Expressing the SIVmac239 Envelope. J Virol 2015; 89:8130-51. [PMID: 26018167 DOI: 10.1128/jvi.01221-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/03/2014] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED Antibodies that can neutralize diverse viral strains are likely to be an important component of a protective human immunodeficiency virus type 1 (HIV-1) vaccine. To this end, preclinical simian immunodeficiency virus (SIV)-based nonhuman primate immunization regimens have been designed to evaluate and enhance antibody-mediated protection. However, these trials often rely on a limited selection of SIV strains with extreme neutralization phenotypes to assess vaccine-elicited antibody activity. To mirror the viral panels used to assess HIV-1 antibody breadth, we created and characterized a novel panel of 14 genetically and phenotypically diverse SIVsm envelope (Env) glycoproteins. To assess the utility of this panel, we characterized the neutralizing activity elicited by four SIVmac239 envelope-expressing DNA/modified vaccinia virus Ankara vector- and protein-based vaccination regimens that included the immunomodulatory adjuvants granulocyte-macrophage colony-stimulating factor, Toll-like receptor (TLR) ligands, and CD40 ligand. The SIVsm Env panel exhibited a spectrum of neutralization sensitivity to SIV-infected plasma pools and monoclonal antibodies, allowing categorization into three tiers. Pooled sera from 91 rhesus macaques immunized in the four trials consistently neutralized only the highly sensitive tier 1a SIVsm Envs, regardless of the immunization regimen. The inability of vaccine-mediated antibodies to neutralize the moderately resistant tier 1b and tier 2 SIVsm Envs defined here suggests that those antibodies were directed toward epitopes that are not accessible on most SIVsm Envs. To achieve a broader and more effective neutralization profile in preclinical vaccine studies that is relevant to known features of HIV-1 neutralization, more emphasis should be placed on optimizing the Env immunogen, as the neutralization profile achieved by the addition of adjuvants does not appear to supersede the neutralizing antibody profile determined by the immunogen. IMPORTANCE Many in the HIV/AIDS vaccine field believe that the ability to elicit broadly neutralizing antibodies capable of blocking genetically diverse HIV-1 variants is a critical component of a protective vaccine. Various SIV-based nonhuman primate vaccine studies have investigated ways to improve antibody-mediated protection against a heterologous SIV challenge, including administering adjuvants that might stimulate a greater neutralization breadth. Using a novel SIV neutralization panel and samples from four rhesus macaque vaccine trials designed for cross comparison, we show that different regimens expressing the same SIV envelope immunogen consistently elicit antibodies that neutralize only the very sensitive tier 1a SIV variants. The results argue that the neutralizing antibody profile elicited by a vaccine is primarily determined by the envelope immunogen and is not substantially broadened by including adjuvants, resulting in the conclusion that the envelope immunogen itself should be the primary consideration in efforts to elicit antibodies with greater neutralization breadth.
Collapse
|
28
|
HIV-1 fitness cost associated with escape from the VRC01 class of CD4 binding site neutralizing antibodies. J Virol 2015; 89:4201-13. [PMID: 25631091 DOI: 10.1128/jvi.03608-14] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Broadly neutralizing antibodies (bNAbs) have been isolated from selected HIV-1-infected individuals and shown to bind to conserved sites on the envelope glycoprotein (Env). However, circulating plasma virus in these donors is usually resistant to autologous isolated bNAbs, indicating that during chronic infection, HIV-1 can escape from even broadly cross-reactive antibodies. Here, we evaluate if such viral escape is associated with an impairment of viral replication. Antibodies of the VRC01 class target the functionally conserved CD4 binding site and share a structural mode of gp120 recognition that includes mimicry of the CD4 receptor. We examined naturally occurring VRC01-sensitive and -resistant viral strains, as well as their mutated sensitive or resistant variants, and tested point mutations in the backbone of the VRC01-sensitive isolate YU2. In several cases, VRC01 resistance was associated with a reduced efficiency of CD4-mediated viral entry and diminished viral replication. Several mutations, alone or in combination, in the loop D or β23-V5 region of Env conferred a high level of resistance to VRC01 class antibodies, suggesting a preferred escape pathway. We further mapped the VRC01-induced escape pathway in vivo using Envs from donor 45, from whom antibody VRC01 was isolated. Initial escape mutations, including the addition of a key glycan, occurred in loop D and were associated with impaired viral replication; however, compensatory mutations restored full replicative fitness. These data demonstrate that escape from VRC01 class antibodies can diminish viral replicative fitness, but compensatory changes may explain the limited impact of neutralizing antibodies during the course of natural HIV-1 infection. IMPORTANCE Some antibodies that arise during natural HIV-1 infection bind to conserved regions on the virus envelope glycoprotein and potently neutralize the majority of diverse HIV-1 strains. The VRC01 class of antibodies blocks the conserved CD4 receptor binding site interaction that is necessary for viral entry, raising the possibility that viral escape from antibody neutralization might exert detrimental effects on viral function. Here, we show that escape from VRC01 class antibodies can be associated with impaired viral entry and replication; however, during the course of natural infection, compensatory mutations restore the ability of the virus to replicate normally.
Collapse
|
29
|
Transmitted virus fitness and host T cell responses collectively define divergent infection outcomes in two HIV-1 recipients. PLoS Pathog 2015; 11:e1004565. [PMID: 25569444 PMCID: PMC4287535 DOI: 10.1371/journal.ppat.1004565] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/10/2014] [Indexed: 12/27/2022] Open
Abstract
Control of virus replication in HIV-1 infection is critical to delaying disease progression. While cellular immune responses are a key determinant of control, relatively little is known about the contribution of the infecting virus to this process. To gain insight into this interplay between virus and host in viral control, we conducted a detailed analysis of two heterosexual HIV-1 subtype A transmission pairs in which female recipients sharing three HLA class I alleles exhibited contrasting clinical outcomes: R880F controlled virus replication while R463F experienced high viral loads and rapid disease progression. Near full-length single genome amplification defined the infecting transmitted/founder (T/F) virus proteome and subsequent sequence evolution over the first year of infection for both acutely infected recipients. T/F virus replicative capacities were compared in vitro, while the development of the earliest cellular immune response was defined using autologous virus sequence-based peptides. The R880F T/F virus replicated significantly slower in vitro than that transmitted to R463F. While neutralizing antibody responses were similar in both subjects, during acute infection R880F mounted a broad T cell response, the most dominant components of which targeted epitopes from which escape was limited. In contrast, the primary HIV-specific T cell response in R463F was focused on just two epitopes, one of which rapidly escaped. This comprehensive study highlights both the importance of the contribution of the lower replication capacity of the transmitted/founder virus and an associated induction of a broad primary HIV-specific T cell response, which was not undermined by rapid epitope escape, to long-term viral control in HIV-1 infection. It underscores the importance of the earliest CD8 T cell response targeting regions of the virus proteome that cannot mutate without a high fitness cost, further emphasizing the need for vaccines that elicit a breadth of T cell responses to conserved viral epitopes.
Collapse
|
30
|
Chung AW, Ghebremichael M, Robinson H, Brown E, Choi I, Lane S, Dugast AS, Schoen MK, Rolland M, Suscovich TJ, Mahan AE, Liao L, Streeck H, Andrews C, Rerks-Ngarm S, Nitayaphan S, de Souza MS, Kaewkungwal J, Pitisuttithum P, Francis D, Michael NL, Kim JH, Bailey-Kellogg C, Ackerman ME, Alter G. Polyfunctional Fc-effector profiles mediated by IgG subclass selection distinguish RV144 and VAX003 vaccines. Sci Transl Med 2014; 6:228ra38. [PMID: 24648341 DOI: 10.1126/scitranslmed.3007736] [Citation(s) in RCA: 335] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The human phase 2B RV144 ALVAC-HIV vCP1521/AIDSVAX B/E vaccine trial, held in Thailand, resulted in an estimated 31.2% efficacy against HIV infection. By contrast, vaccination with VAX003 (consisting of only AIDSVAX B/E) was not protective. Because protection within RV144 was observed in the absence of neutralizing antibody activity or cytotoxic T cell responses, we speculated that the specificity or qualitative differences in Fc-effector profiles of nonneutralizing antibodies may have accounted for the efficacy differences observed between the two trials. We show that the RV144 regimen elicited nonneutralizing antibodies with highly coordinated Fc-mediated effector responses through the selective induction of highly functional immunoglobulin G3 (IgG3). By contrast, VAX003 elicited monofunctional antibody responses influenced by IgG4 selection, which was promoted by repeated AIDSVAX B/E protein boosts. Moreover, only RV144 induced IgG1 and IgG3 antibodies targeting the crown of the HIV envelope V2 loop, albeit with limited coverage of breakthrough viral sequences. These data suggest that subclass selection differences associated with coordinated humoral functional responses targeting strain-specific protective V2 loop epitopes may underlie differences in vaccine efficacy observed between these two vaccine trials.
Collapse
Affiliation(s)
- Amy W Chung
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Boston, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Manhas S, Chau D, Rempel C, Clark BE, Auyeung K, Pantophlet R. The presence of glutamine at position 315 but not epitope masking predominantly hinders HIV subtype C neutralization by the anti-V3 antibody B4e8. Virology 2014; 462-463:98-106. [PMID: 24971702 PMCID: PMC4125615 DOI: 10.1016/j.virol.2014.05.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/14/2014] [Accepted: 05/19/2014] [Indexed: 11/19/2022]
Abstract
Antibody B4e8 exhibits modest cross-neutralizing activity, with preference for HIV subtype B. This preference might be explained by B4e8׳s extensive interaction with Arg315, which occurs at the center of most subtype B V3 sequences but is replaced by Gln in subtype C. The extent to which B4e8׳s ability to neutralize subtype C strains is hindered by Gln315 and/or other factors, e.g. epitope masking, is unclear. We confirmed here that an Arg315-to-Gln substitution in a subtype B virus abrogates B4e8 neutralizing activity. Conversely, B4e8-resistant subtype C viruses were rendered sensitive upon Gln 315-to-Arg substitution. V2 region swapping between B4e8-sensitive and- resistant subtype C strains revealed a role for V2 in limiting B4e8 access, but this was less significant than the absence of Arg315. Our findings, while illustrating the importance of Arg315 for B4e8, suggest that some subtype C strains may be vulnerable to B4e8 derivatives capable of binding stronger to Gln315-containing sequences.
Collapse
Affiliation(s)
- Savrina Manhas
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Burnaby, Canada V5A 1S6
| | - Dennis Chau
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Burnaby, Canada V5A 1S6
| | - Caitlin Rempel
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Burnaby, Canada V5A 1S6
| | - Brenda E Clark
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Burnaby, Canada V5A 1S6
| | - Kate Auyeung
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Burnaby, Canada V5A 1S6
| | - Ralph Pantophlet
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Burnaby, Canada V5A 1S6; Department of Molecular Biology and Biochemistry, Simon Fraser University, British Columbia, Burnaby, Canada V5A 1S6.
| |
Collapse
|
32
|
Derdeyn CA, Moore PL, Morris L. Development of broadly neutralizing antibodies from autologous neutralizing antibody responses in HIV infection. Curr Opin HIV AIDS 2014; 9:210-6. [PMID: 24662931 PMCID: PMC4068799 DOI: 10.1097/coh.0000000000000057] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Detailed genetic and structural characterization has revealed that broadly neutralizing antibodies (bnAbs) against HIV-1 have unusually high levels of somatic hypermutation, long CDRH3 domains, and the ability to target one of four sites of vulnerability on the HIV-1 envelope (Env) glycoproteins. A current priority is to understand how bnAbs are generated during natural infection, and translate this information into immunogens that can elicit bnAb following vaccination. RECENT FINDINGS Strain-specific neutralizing antibodies can acquire broad neutralizing capacity when the transmitted/founder Env or a specific Env variant is recognized by an unmutated rearranged germline that has the capacity to develop bnAb-like features. This event could be relatively infrequent, as only certain germlines appear to possess inherent features needed for bnAb activity. Furthermore, the glycosylation pattern and diversity of circulating HIV-1 Envs, as well as the state of the B-cell compartment, may influence the activation and maturation of certain antibody lineages. SUMMARY Collectively, studies over the last year have suggested that the development of HIV-1 Env immunogens that bind and activate bnAb-like germlines is feasible. However, more information about the features of Env variants and the host factors that lead to breadth during natural infection are needed to elicit bnAbs through immunization.
Collapse
Affiliation(s)
- Cynthia A. Derdeyn
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Penny L. Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- University of the Witwatersrand, Johannesburg, South Africa
- Center for the AIDS Program of Research, Durban, South Africa
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- University of the Witwatersrand, Johannesburg, South Africa
- Center for the AIDS Program of Research, Durban, South Africa
| |
Collapse
|
33
|
Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature 2014; 509:55-62. [PMID: 24590074 DOI: 10.1038/nature13036] [Citation(s) in RCA: 607] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/16/2014] [Indexed: 02/08/2023]
Abstract
Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.
Collapse
|
34
|
McLinden RJ, LaBranche CC, Chenine AL, Polonis VR, Eller MA, Wieczorek L, Ochsenbauer C, Kappes JC, Perfetto S, Montefiori DC, Michael NL, Kim JH. Detection of HIV-1 neutralizing antibodies in a human CD4⁺/CXCR4⁺/CCR5⁺ T-lymphoblastoid cell assay system. PLoS One 2013; 8:e77756. [PMID: 24312168 PMCID: PMC3842913 DOI: 10.1371/journal.pone.0077756] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/09/2013] [Indexed: 11/18/2022] Open
Abstract
Sensitive assays are needed to meaningfully assess low levels of neutralizing antibodies (NAbs) that may be important for protection against the acquisition of HIV-1 infection in vaccine recipients. The current assay of choice uses a non-lymphoid cell line (TZM-bl) that may lack sensitivity owing to over expression of CD4 and CCR5. We used transfection of a human CD4+/CXCR4+/α4β7+ T-lymphoblastoid cell line (A3.01) with a CMV IE promoter-driven CCR5neo vector to stably express CCR5. The resulting line, designated A3R5, is permissive to a wide range of CCR5-tropic circulating strains of HIV-1, including HIV-1 molecular clones containing a Tat-inducible Renilla luciferase reporter gene and expressing multiple Env subtypes. Flow cytometric analysis found CCR5 surface expression on A3R5 cells to be markedly less than TZM-bl but similar to CD3.8 stimulated PBMC. More importantly, neutralization mediated by a diverse panel of monoclonal antibodies, HIV-1 positive polyclonal sera and sCD4 was consistently greater in A3R5 compared to TZM-bl cells. The A3R5 cell line provides a novel approach to guide the development and qualification of promising new HIV-1 vaccine immunogens.
Collapse
Affiliation(s)
- Robert J. McLinden
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Celia C. LaBranche
- Department of Surgery, Duke U. Medical Center, Durham, North Carolina, United States of America
| | - Agnès-Laurence Chenine
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
| | - Victoria R. Polonis
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
| | - Michael A. Eller
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
| | - Lindsay Wieczorek
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, United States of America
| | - Stephen Perfetto
- Vaccine Research Center, NIH, Bethesda, Maryland, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke U. Medical Center, Durham, North Carolina, United States of America
| | - Nelson L. Michael
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
| | - Jerome H. Kim
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
| |
Collapse
|
35
|
Wibmer CK, Bhiman JN, Gray ES, Tumba N, Abdool Karim SS, Williamson C, Morris L, Moore PL. Viral escape from HIV-1 neutralizing antibodies drives increased plasma neutralization breadth through sequential recognition of multiple epitopes and immunotypes. PLoS Pathog 2013; 9:e1003738. [PMID: 24204277 PMCID: PMC3814426 DOI: 10.1371/journal.ppat.1003738] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/14/2013] [Indexed: 11/30/2022] Open
Abstract
Identifying the targets of broadly neutralizing antibodies to HIV-1 and understanding how these antibodies develop remain important goals in the quest to rationally develop an HIV-1 vaccine. We previously identified a participant in the CAPRISA Acute Infection Cohort (CAP257) whose plasma neutralized 84% of heterologous viruses. In this study we showed that breadth in CAP257 was largely due to the sequential, transient appearance of three distinct broadly neutralizing antibody specificities spanning the first 4.5 years of infection. The first specificity targeted an epitope in the V2 region of gp120 that was also recognized by strain-specific antibodies 7 weeks earlier. Specificity for the autologous virus was determined largely by a rare N167 antigenic variant of V2, with viral escape to the more common D167 immunotype coinciding with the development of the first wave of broadly neutralizing antibodies. Escape from these broadly neutralizing V2 antibodies through deletion of the glycan at N160 was associated with exposure of an epitope in the CD4 binding site that became the target for a second wave of broadly neutralizing antibodies. Neutralization by these CD4 binding site antibodies was almost entirely dependent on the glycan at position N276. Early viral escape mutations in the CD4 binding site drove an increase in wave two neutralization breadth, as this second wave of heterologous neutralization matured to recognize multiple immunotypes within this site. The third wave targeted a quaternary epitope that did not overlap any of the four known sites of vulnerability on the HIV-1 envelope and remains undefined. Altogether this study showed that the human immune system is capable of generating multiple broadly neutralizing antibodies in response to a constantly evolving viral population that exposes new targets as a consequence of escape from earlier neutralizing antibodies.
Collapse
Affiliation(s)
- Constantinos Kurt Wibmer
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jinal N. Bhiman
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Elin S. Gray
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Nancy Tumba
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine (IIDMM) and Division of Medical Virology, University of Cape Town and NHLS, Cape Town, South Africa
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L. Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
36
|
Abstract
The development of an effective vaccine has been hindered by the enormous diversity of human immunodeficiency virus-1 (HIV-1) and its ability to escape a myriad of host immune responses. In addition, conserved vulnerable regions on the HIV-1 envelope glycoprotein are often poorly immunogenic and elicit broadly neutralizing antibody responses (BNAbs) in a minority of HIV-1-infected individuals and only after several years of infection. All of the known BNAbs demonstrate high levels of somatic mutations and often display other unusual traits, such as a long heavy chain complementarity determining region 3 (CDRH3) and autoreactivity that can be limited by host tolerance controls. Nonetheless, the demonstration that HIV-1-infected individuals can make potent BNAbs is encouraging, and recent progress in isolating such antibodies and mapping their immune pathways of development is providing new strategies for vaccination.
Collapse
Affiliation(s)
- John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
37
|
Powell RL, Lindsay RW, Wilson A, Carpov A, Rabinovich S, Hoffenberg S, Caulfield MJ. Rapid, quantitative mapping of anti-HIV type 1 envelope serum antibody specificities. AIDS Res Hum Retroviruses 2013; 29:971-8. [PMID: 23394346 DOI: 10.1089/aid.2012.0317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new generation of extremely broad and potent neutralizing antibodies (bNAbs) has been isolated from HIV-infected subjects. This has refocused interest in the sites of vulnerability targeted by these bNAbs and in the potential for designing Envelope (Env) immunogens that display these sites. Standard methods for evaluating HIV-1 vaccine candidates do not enable epitope mapping on the HIV Env spike, the target for NAbs. To meet the need for rapid analysis of Ab specificity, we designed a multiplexed, quantitative mapping assay that can test for serum Ab competition for the binding of an HIV-1 Env gp120 to a panel of bNAbs directed to different sites of vulnerability on the Env that do not compete for one another in the assay. Using serum samples from rabbits immunized with various DNA prime/gp120 protein boost vaccines we were able to detect serum Ab competition for multiple classes of bNAbs in the postimmune samples that were significantly higher than background competition detected in samples obtained prior to vaccination. Importantly, application of this novel assay to our ongoing HIV-1 Env viral vector studies in mice has allowed us to distinguish qualitative differences in the Ab elicited by various regimens that ELISA cannot. Furthermore, pooled immunoglobulin from HIV-infected donors (HIVIg) competes for binding to the bNAb panel whereas a control pool from HIV-negative donors does not, highlighting the utility of this assay for human studies. This novel assay will add value in rational immunogen design and in the detailed, qualitative evaluation of binding and, potentially, neutralizing Abs elicited by natural infections and HIV-1 vaccine candidates.
Collapse
Affiliation(s)
- Rebecca L.R. Powell
- International AIDS Vaccine Initiative Design and Development Laboratory, Brooklyn, New York
| | - Ross W.B. Lindsay
- International AIDS Vaccine Initiative Design and Development Laboratory, Brooklyn, New York
| | - Aaron Wilson
- International AIDS Vaccine Initiative Design and Development Laboratory, Brooklyn, New York
| | - Alexei Carpov
- International AIDS Vaccine Initiative Design and Development Laboratory, Brooklyn, New York
| | - Svetlana Rabinovich
- International AIDS Vaccine Initiative Design and Development Laboratory, Brooklyn, New York
- Molecular and Cellular Biology Program, The School of Graduate Studies, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Simon Hoffenberg
- International AIDS Vaccine Initiative Design and Development Laboratory, Brooklyn, New York
| | - Michael J. Caulfield
- International AIDS Vaccine Initiative Design and Development Laboratory, Brooklyn, New York
| |
Collapse
|
38
|
Murphy MK, Yue L, Pan R, Boliar S, Sethi A, Tian J, Pfafferot K, Karita E, Allen SA, Cormier E, Goepfert PA, Borrow P, Robinson JE, Gnanakaran S, Hunter E, Kong XP, Derdeyn CA. Viral escape from neutralizing antibodies in early subtype A HIV-1 infection drives an increase in autologous neutralization breadth. PLoS Pathog 2013; 9:e1003173. [PMID: 23468623 PMCID: PMC3585129 DOI: 10.1371/journal.ppat.1003173] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 12/19/2012] [Indexed: 01/07/2023] Open
Abstract
Antibodies that neutralize (nAbs) genetically diverse HIV-1 strains have been recovered from a subset of HIV-1 infected subjects during chronic infection. Exact mechanisms that expand the otherwise narrow neutralization capacity observed during early infection are, however, currently undefined. Here we characterized the earliest nAb responses in a subtype A HIV-1 infected Rwandan seroconverter who later developed moderate cross-clade nAb breadth, using (i) envelope (Env) glycoproteins from the transmitted/founder virus and twenty longitudinal nAb escape variants, (ii) longitudinal autologous plasma, and (iii) autologous monoclonal antibodies (mAbs). Initially, nAbs targeted a single region of gp120, which flanked the V3 domain and involved the alpha2 helix. A single amino acid change at one of three positions in this region conferred early escape. One immunoglobulin heavy chain and two light chains recovered from autologous B cells comprised two mAbs, 19.3H-L1 and 19.3H-L3, which neutralized the founder Env along with one or three of the early escape variants carrying these mutations, respectively. Neither mAb neutralized later nAb escape or heterologous Envs. Crystal structures of the antigen-binding fragments (Fabs) revealed flat epitope contact surfaces, where minimal light chain mutation in 19.3H-L3 allowed for additional antigenic interactions. Resistance to mAb neutralization arose in later Envs through alteration of two glycans spatially adjacent to the initial escape signatures. The cross-neutralizing nAbs that ultimately developed failed to target any of the defined V3-proximal changes generated during the first year of infection in this subject. Our data demonstrate that this subject's first recognized nAb epitope elicited strain-specific mAbs, which incrementally acquired autologous breadth, and directed later B cell responses to target distinct portions of Env. This immune re-focusing could have triggered the evolution of cross-clade antibodies and suggests that exposure to a specific sequence of immune escape variants might promote broad humoral responses during HIV-1 infection.
Collapse
Affiliation(s)
- Megan K. Murphy
- Immunology and Molecular Pathogenesis Graduate Program, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Ling Yue
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Saikat Boliar
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Anurag Sethi
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jianhui Tian
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Katja Pfafferot
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Susan A. Allen
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
- Departments of Epidemiology and Global Health, Emory University, Atlanta, Georgia, United States of America
| | - Emmanuel Cormier
- International AIDS Vaccine Initiative, Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Paul A. Goepfert
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - James E. Robinson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Cynthia A. Derdeyn
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
39
|
Archary D, Rong R, Gordon ML, Boliar S, Madiga M, Gray ES, Dugast AS, Hermanus T, Goulder PJR, Coovadia HM, Werner L, Morris L, Alter G, Derdeyn CA, Ndung'u T. Characterization of anti-HIV-1 neutralizing and binding antibodies in chronic HIV-1 subtype C infection. Virology 2012; 433:410-20. [PMID: 22995189 PMCID: PMC3488441 DOI: 10.1016/j.virol.2012.08.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/14/2012] [Accepted: 08/23/2012] [Indexed: 01/08/2023]
Abstract
Neutralizing (nAbs) and high affinity binding antibodies may be critical for an efficacious HIV-1 vaccine. We characterized virus-specific nAbs and binding antibody responses over 21 months in eight HIV-1 subtype C chronically infected individuals with heterogeneous rates of disease progression. Autologous nAb titers of study exit plasma against study entry viruses were significantly higher than contemporaneous responses at study entry (p=0.002) and exit (p=0.01). NAb breadth and potencies against subtype C viruses were significantly higher than for subtype A (p=0.03 and p=0.01) or B viruses (p=0.03; p=0.05) respectively. Gp41-IgG binding affinity was higher than gp120-IgG (p=0.0002). IgG-FcγR1 affinity was significantly higher than FcγRIIIa (p<0.005) at study entry and FcγRIIb (p<0.05) or FcγRIIIa (p<0.005) at study exit. Evolving IgG binding suggests alteration of immune function mediated by binding antibodies. Evolution of nAbs was a potential marker of HIV-1 disease progression.
Collapse
Affiliation(s)
- Derseree Archary
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rolland M, Edlefsen PT, Larsen BB, Tovanabutra S, Sanders-Buell E, Hertz T, deCamp AC, Carrico C, Menis S, Magaret CA, Ahmed H, Juraska M, Chen L, Konopa P, Nariya S, Stoddard JN, Wong K, Zhao H, Deng W, Maust BS, Bose M, Howell S, Bates A, Lazzaro M, O'Sullivan A, Lei E, Bradfield A, Ibitamuno G, Assawadarachai V, O'Connell RJ, deSouza MS, Nitayaphan S, Rerks-Ngarm S, Robb ML, McLellan JS, Georgiev I, Kwong PD, Carlson JM, Michael NL, Schief WR, Gilbert PB, Mullins JI, Kim JH. Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2. Nature 2012; 490:417-20. [PMID: 22960785 PMCID: PMC3551291 DOI: 10.1038/nature11519] [Citation(s) in RCA: 354] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/24/2012] [Indexed: 11/23/2022]
Abstract
The RV144 trial demonstrated 31% vaccine efficacy at preventing human immunodeficiency virus (HIV)-1 infection. Antibodies against the HIV-1 envelope variable loops 1 and 2 (Env V1 and V2) correlated inversely with infection risk. We proposed that vaccine-induced immune responses against V1/V2 would have a selective effect against, or sieve, HIV-1 breakthrough viruses. A total of 936 HIV-1 genome sequences from 44 vaccine and 66 placebo recipients were examined. We show that vaccine-induced immune responses were associated with two signatures in V2 at amino acid positions 169 and 181. Vaccine efficacy against viruses matching the vaccine at position 169 was 48% (confidence interval 18% to 66%; P = 0.0036), whereas vaccine efficacy against viruses mismatching the vaccine at position 181 was 78% (confidence interval 35% to 93%; P = 0.0028). Residue 169 is in a cationic glycosylated region recognized by broadly neutralizing and RV144-derived antibodies. The predicted distance between the two signature sites (21 ± 7 Å) and their match/mismatch dichotomy indicate that multiple factors may be involved in the protection observed in RV144. Genetic signatures of RV144 vaccination in V2 complement the finding of an association between high V1/V2-binding antibodies and reduced risk of HIV-1 acquisition, and provide evidence that vaccine-induced V2 responses plausibly had a role in the partial protection conferred by the RV144 regimen.
Collapse
Affiliation(s)
- Morgane Rolland
- US Military HIV Research Program, Silver Spring, Maryland 20910, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Basu D, Kraft CS, Murphy MK, Campbell PJ, Yu T, Hraber PT, Irene C, Pinter A, Chomba E, Mulenga J, Kilembe W, Allen SA, Derdeyn CA, Hunter E. HIV-1 subtype C superinfected individuals mount low autologous neutralizing antibody responses prior to intrasubtype superinfection. Retrovirology 2012; 9:76. [PMID: 22995123 PMCID: PMC3477039 DOI: 10.1186/1742-4690-9-76] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/03/2012] [Indexed: 11/23/2022] Open
Abstract
Background The potential role of antibodies in protection against intra-subtype HIV-1 superinfection remains to be understood. We compared the early neutralizing antibody (NAb) responses in three individuals, who were superinfected within one year of primary infection, to ten matched non-superinfected controls from a Zambian cohort of subtype C transmission cases. Sequence analysis of single genome amplified full-length envs from a previous study showed limited diversification in the individuals who became superinfected with the same HIV-1 subtype within year one post-seroconversion. We hypothesized that this reflected a blunted NAb response, which may have made these individuals more susceptible to superinfection. Results Neutralization assays showed that autologous plasma NAb responses to the earliest, and in some cases transmitted/founder, virus were delayed and had low to undetectable titers in all three superinfected individuals prior to superinfection. In contrast, NAbs with a median IC50 titer of 1896 were detected as early as three months post-seroconversion in non-superinfected controls. Early plasma NAbs in all subjects showed limited but variable levels of heterologous neutralization breadth. Superinfected individuals also exhibited a trend toward lower levels of gp120- and V1V2-specific IgG binding antibodies but higher gp120-specific plasma IgA binding antibodies. Conclusions These data suggest that the lack of development of IgG antibodies, as reflected in autologous NAbs as well as gp120 and V1V2 binding antibodies to the primary infection virus, combined with potentially competing, non-protective IgA antibodies, may increase susceptibility to superinfection in the context of settings where a single HIV-1 subtype predominates.
Collapse
Affiliation(s)
- Debby Basu
- Immunology and Molecular Pathogenesis Graduate Program, Emory University, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Boliar S, Murphy MK, Tran TC, Carnathan DG, Armstrong WS, Silvestri G, Derdeyn CA. B-lymphocyte dysfunction in chronic HIV-1 infection does not prevent cross-clade neutralization breadth. J Virol 2012; 86:8031-40. [PMID: 22623771 PMCID: PMC3421653 DOI: 10.1128/jvi.00771-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/11/2012] [Indexed: 01/11/2023] Open
Abstract
Aberrant expression of regulatory receptors programmed death-1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) is linked with dysregulation and exhaustion of T lymphocytes during chronic human immunodeficiency virus type 1 (HIV-1) infection; however, less is known about whether a similar process impacts B-lymphocyte function during HIV-1 infection. We reasoned that disruption of the peripheral B cell compartment might be associated with decreased neutralizing antibody activity. Expression of markers that indicate dysregulation (BTLA and PD-1), immune activation (CD95), and proliferation (Ki-67) was evaluated in B cells from HIV-1-infected viremic and aviremic subjects and healthy subjects, in conjunction with immunoglobulin production and CD4 T cell count. Viral load and cross-clade neutralizing activity in plasma from viremic subjects were also assessed. Dysregulation of B lymphocytes was indicated by a marked disruption of peripheral B cell subsets, increased levels of PD-1 expression, and decreased levels of BTLA expression in viremic subjects compared to aviremic subjects and healthy controls. PD-1 and BTLA were correlated in a divergent fashion with immune activation, CD4 T cell count, and the total plasma IgG level, a functional correlate of B cell dysfunction. Within viremic subjects, the total IgG level correlated directly with cross-clade neutralizing activity in plasma. The findings demonstrate that even in chronically infected subjects in which B lymphocytes display multiple indications of dysfunction, antibodies that mediate cross-clade neutralization breadth continue to circulate in plasma.
Collapse
Affiliation(s)
- Saikat Boliar
- Emory Vaccine Center at Yerkes National Primate Research Center
| | - Megan K. Murphy
- Emory Vaccine Center at Yerkes National Primate Research Center
- Immunology and Molecular Pathogenesis Graduate Program
| | - T. Cameron Tran
- Center for AIDS Research
- Division of Infectious Diseases, Department of Medicine
| | | | | | - Guido Silvestri
- Emory Vaccine Center at Yerkes National Primate Research Center
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Cynthia A. Derdeyn
- Emory Vaccine Center at Yerkes National Primate Research Center
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
43
|
Van Regenmortel MHV. Basic research in HIV vaccinology is hampered by reductionist thinking. Front Immunol 2012; 3:194. [PMID: 22787464 PMCID: PMC3391733 DOI: 10.3389/fimmu.2012.00194] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/21/2012] [Indexed: 01/05/2023] Open
Abstract
This review describes the structure-based reverse vaccinology approach aimed at developing vaccine immunogens capable of inducing antibodies that broadly neutralize HIV-1. Some basic principles of protein immunochemistry are reviewed and the implications of the extensive polyspecificity of antibodies for vaccine development are underlined. Although it is natural for investigators to want to know the cause of an effective immunological intervention, the classic notion of causality is shown to have little explanatory value for a system as complex as the immune system, where any observed effect always results from many interactions between a large number of components. Causal explanations are reductive because a single factor is singled out for attention and given undue explanatory weight on its own. Other examples of the negative impact of reductionist thinking on HIV vaccine development are discussed. These include (1) the failure to distinguish between the chemical nature of antigenicity and the biological nature of immunogenicity, (2) the belief that when an HIV-1 epitope is reconstructed by rational design to better fit a neutralizing monoclonal antibody (nMab), this will produce an immunogen able to elicit Abs with the same neutralizing capacity as the Ab used as template for designing the antigen, and (3) the belief that protection against infection can be analyzed at the level of individual molecular interactions although it has meaning only at the level of an entire organism. The numerous unsuccessful strategies that have been used to design HIV-1 vaccine immunogens are described and it is suggested that the convergence of so many negative experimental results justifies the conclusion that reverse vaccinology is unlikely to lead to the development of a preventive HIV-1 vaccine. Immune correlates of protection in vaccines have not yet been identified because this will become feasible only retrospectively once an effective vaccine exists. The finding that extensive antibody affinity maturation is needed to obtain mature anti-HIV-1 Abs endowed with a broad neutralizing capacity explains why antigens designed to fit matured Mabs are not effective vaccine immunogens since these are administered to naive recipients who possess only B-cell receptors corresponding to the germline version of the matured Abs.
Collapse
Affiliation(s)
- Marc H. V. Van Regenmortel
- Stellenbosch Institute of Advanced Study, Wallenberg Research Center at Stellenbosch University,Stellenbosch, South Africa
| |
Collapse
|
44
|
Pastori C, Tudor D, Diomede L, Drillet AS, Jegerlehner A, Röhn TA, Bomsel M, Lopalco L. Virus like particle based strategy to elicit HIV-protective antibodies to the alpha-helic regions of gp41. Virology 2012; 431:1-11. [PMID: 22658900 DOI: 10.1016/j.virol.2012.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/23/2012] [Accepted: 05/09/2012] [Indexed: 11/29/2022]
Abstract
Natural antibodies to gp41 inhibit HIV-1 replication through the recognition of two different regions, corresponding to the leucine zipper motif in the HR1 alpha-helix and to another motif within HR2 region, hosting 2F5 and 4E10 epitope. This study aimed at reproducing such protective responses through VLP vaccination. Six regions covering the alpha-helical regions of gp41 were conjugated to the surface of AP205 phage-based VLPs. Once administered in mice via systemic or mucosal route, these immunogens elicited high titers of gp41-specific IgG. Immunogenicity and HIV infectivity reduction were obtained either with HR2 regions or with peptides where aminoacid strings were added to either the C-terminus or N-terminus of core epitope in HR1 region. Antibody-dependent cell cytotoxicity (ADCC) activity was induced by one of the HR2 epitopes only. These results may have relevant implications for the development of new vaccinal approaches against HIV infection.
Collapse
Affiliation(s)
- C Pastori
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Via Stamira D'Ancona 20, 20127 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bar KJ, Tsao CY, Iyer SS, Decker JM, Yang Y, Bonsignori M, Chen X, Hwang KK, Montefiori DC, Liao HX, Hraber P, Fischer W, Li H, Wang S, Sterrett S, Keele BF, Ganusov VV, Perelson AS, Korber BT, Georgiev I, McLellan JS, Pavlicek JW, Gao F, Haynes BF, Hahn BH, Kwong PD, Shaw GM. Early low-titer neutralizing antibodies impede HIV-1 replication and select for virus escape. PLoS Pathog 2012; 8:e1002721. [PMID: 22693447 PMCID: PMC3364956 DOI: 10.1371/journal.ppat.1002721] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/11/2012] [Indexed: 11/18/2022] Open
Abstract
Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus evolution and insight into the earliest anti-viral immune responses in vivo. By using this approach, together with deep sequencing, site-directed mutagenesis, antibody adsorptions and virus-entry assays, we found evidence in three subjects of neutralizing antibody (Nab) responses as early as 2 weeks post-seroconversion, with Nab titers as low as 1∶20 to 1∶50 (IC(50)) selecting for virus escape. In each of the subjects, Nabs targeted different regions of the HIV-1 envelope (Env) in a strain-specific, conformationally sensitive manner. In subject CH40, virus escape was first mediated by mutations in the V1 region of the Env, followed by V3. HIV-1 specific monoclonal antibodies from this subject mapped to an immunodominant region at the base of V3 and exhibited neutralizing patterns indistinguishable from polyclonal antibody responses, indicating V1-V3 interactions within the Env trimer. In subject CH77, escape mutations mapped to the V2 region of Env, several of which selected for alterations of glycosylation. And in subject CH58, escape mutations mapped to the Env outer domain. In all three subjects, initial Nab recognition was followed by sequential rounds of virus escape and Nab elicitation, with Nab escape variants exhibiting variable costs to replication fitness. Although delayed in comparison with autologous CD8 T-cell responses, our findings show that Nabs appear earlier in HIV-1 infection than previously recognized, target diverse sites on HIV-1 Env, and impede virus replication at surprisingly low titers. The unexpected in vivo sensitivity of early transmitted/founder virus to Nabs raises the possibility that similarly low concentrations of vaccine-induced Nabs could impair virus acquisition in natural HIV-1 transmission, where the risk of infection is low and the number of viruses responsible for transmission and productive clinical infection is typically one.
Collapse
Affiliation(s)
- Katharine J. Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Chun-yen Tsao
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Shilpa S. Iyer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julie M. Decker
- University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mattia Bonsignori
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Xi Chen
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kwan-Ki Hwang
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Hua-Xin Liao
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Peter Hraber
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - William Fischer
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Hui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shuyi Wang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarah Sterrett
- University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brandon F. Keele
- SAIC-Frederick Inc, National Cancer Institute, Frederick, Maryland, United States of America
| | - Vitaly V. Ganusov
- University of Tennessee, Knoxville, Tennessee, United States of America
| | - Alan S. Perelson
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Bette T. Korber
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ivelin Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason S. McLellan
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffrey W. Pavlicek
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Feng Gao
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Beatrice H. Hahn
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - George M. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
46
|
Selection pressure on HIV-1 envelope by broadly neutralizing antibodies to the conserved CD4-binding site. J Virol 2012; 86:5844-56. [PMID: 22419808 DOI: 10.1128/jvi.07139-11] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The monoclonal antibody (MAb) VRC01 was isolated from a slowly progressing HIV-1-infected donor and was shown to neutralize diverse HIV-1 strains by binding to the conserved CD4 binding site (CD4bs) of gp120. To better understand the virologic factors associated with such antibody development, we characterized HIV-1 envelope (Env) variants from this donor and five other donors who developed broadly neutralizing antibodies. A total of 473 env sequences were obtained by single-genome amplification, and 100 representative env clones were expressed and tested for entry and neutralization sensitivity. While VRC01 neutralizes about 90% of the genetically diverse heterologous HIV-1 strains tested, only selective archival Env variants from the VRC01 donor were sensitive to VRC01 and all of the Env variants derived from the donor plasma were resistant, indicating strong antibody-based selection pressure. Despite their resistance to this broadly reactive MAb that partially mimics CD4, all Env variants required CD4 for entry. Three other CD4bs MAbs from the same donor were able to neutralize some VRC01 escape variants, suggesting that CD4bs antibodies continued to evolve in response to viral escape. We also observed a relatively high percentage of VRC01-resistant Env clones in the plasma of four of five additional broadly neutralizing donors, suggesting the presence of CD4bs-directed neutralizing antibodies in these donors. In total, these data indicate that the CD4bs-directed neutralizing antibodies exert ongoing selection pressure on the conserved CD4bs epitope of HIV-1 Env.
Collapse
|
47
|
Passively transmitted gp41 antibodies in babies born from HIV-1 subtype C-seropositive women: correlation between fine specificity and protection. J Virol 2012; 86:4129-38. [PMID: 22301151 DOI: 10.1128/jvi.06359-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-exposed, uninfected (EUN) babies born to HIV-infected mothers are examples of natural resistance to HIV infection. In this study, we evaluated the titer and neutralizing potential of gp41-specific maternal antibodies and their correlation with HIV transmission in HIV-infected mother-child pairs. Specific gp41-binding and -neutralizing antibodies were determined in a cohort of 74 first-time mother-child pairs, of whom 40 mothers were infected with HIV subtype C. Within the infected mother cohort, 16 babies were born infected and 24 were PCR negative and uninfected at birth (i.e., exposed but uninfected). Thirty-four HIV-uninfected and HIV-unexposed mother-child pairs were included as controls. All HIV-positive mothers and their newborns showed high IgG titers to linear epitopes within the HR1 region and to the membrane-proximal (MPER) domain of gp41; most sera also recognized the disulfide loop immunodominant epitope (IDE). Antibody titers to the gp41 epitopes were significantly lower in nontransmitting mothers (P < 0.01) and in the EUN babies (P < 0.005) than in HIV-positive mother-child pairs. Three domains of gp41, HR1, IDE, and MPER, elicited antibodies that were effectively transmitted to EUN babies. Moreover, in EUN babies, epitopes overlapping the 2F5 epitope (ELDKWAS), but not the 4E10 epitope, were neutralization targets in two out of four viruses tested. Our findings highlight important epitopes in gp41 that appear to be associated with exposure without infection and would be important to consider for vaccine design.
Collapse
|
48
|
Gijsbers EF, Schuitemaker H, Kootstra NA. HIV-1 transmission and viral adaptation to the host. Future Virol 2012. [DOI: 10.2217/fvl.11.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
HIV-1 transmission predominantly occurs via mucosal transmission and blood–blood contact. In most newly infected individuals, outgrowth of a single virus variant has been described. This indicates that HIV-1 transmission is a very inefficient process and is restricted by an extensive transmission bottleneck. The transmission rate is directly correlated to the viral load in the donor and the susceptibility of the recipient, which is influenced by factors such as the integrity of mucosal barriers, target cell availability and genetic host factors. After establishment of infection in the new host, the viral population remains very homogenous until the host immune response drives evolution of the viral quasispecies. This review describes our current knowledge on HIV-1 transmission and recent insights in viral adaption to its host.
Collapse
Affiliation(s)
- Esther F Gijsbers
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Hanneke Schuitemaker
- Department of Experimental Immunology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
49
|
Tang H, Robinson JE, Gnanakaran S, Li M, Rosenberg ES, Perez LG, Haynes BF, Liao HX, LaBranche CC, Korber BT, Montefiori DC. epitopes immediately below the base of the V3 loop of gp120 as targets for the initial autologous neutralizing antibody response in two HIV-1 subtype B-infected individuals. J Virol 2011; 85:9286-99. [PMID: 21734041 PMCID: PMC3165744 DOI: 10.1128/jvi.02286-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 06/15/2011] [Indexed: 01/01/2023] Open
Abstract
Epitopes that drive the initial autologous neutralizing antibody response in HIV-1-infected individuals could provide insights for vaccine design. Although highly strain specific, these epitopes are immunogenic, vulnerable to antibody attack on infectious virus, and could be involved in the ontogeny of broadly neutralizing antibody responses. To delineate such epitopes, we used site-directed mutagenesis, autologous plasma samples, and autologous monoclonal antibodies to map the amino acid changes that led to escape from the initial autologous neutralizing antibody response in two HIV-1 subtype B-infected individuals. Additional mapping of the epitopes was accomplished by using alanine scanning mutagenesis. Escape in the two individuals occurred by different pathways, but the responses in both cases appeared to be directed against the same region of gp120. In total, three amino acid positions were identified that were independently associated with autologous neutralization. Positions 295 and 332 are located immediately before and after the N- and C-terminal cysteines of the V3 loop, respectively, the latter of which affected an N-linked glycan that was critical to the neutralization epitope. Position 415 affected an N-linked glycan at position 413 in the C terminus of V4 that might mask epitopes near the base of V3. All three sites lie in close proximity on a four-stranded antiparallel sheet on the outer domain of gp120. We conclude that a region just below the base of the V3 loop, near the coreceptor binding domain of gp120, can be a target for autologous neutralization.
Collapse
Affiliation(s)
| | - James E. Robinson
- Department of Pediatrics, Tulane University Medical Center, New Orleans, Louisiana
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | | | - Eric S. Rosenberg
- Pathology Service and Infectious Disease Division, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | | | - Barton F. Haynes
- Medicine, Duke University Medical Center, Durham, North Carolina
| | - Hua-Xin Liao
- Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - Bette T. Korber
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | | |
Collapse
|
50
|
Characterization of structural features and diversity of variable-region determinants of related quaternary epitopes recognized by human and rhesus macaque monoclonal antibodies possessing unusually potent neutralizing activities. J Virol 2011; 85:10730-40. [PMID: 21835798 DOI: 10.1128/jvi.00365-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A series of potently neutralizing monoclonal antibodies (MAbs) that target quaternary epitopes on the native Env trimer have recently been described. A common feature shared by these antibodies is the critical involvement of sites in both the V2 and V3 variable domains in antibody recognition. In this study the gp120 variable-region determinants were mapped for eight rhesus macaque monoclonal antibodies (RhMAbs) possessing potently neutralizing activity specific for a quaternary target in SF162 Env and compared to those originally identified for human MAb 2909. These studies showed that determinants for the epitopes defined by the RhMAbs differed in both the V2 (positions 160, 167, and 169) and V3 (positions 313 and 315) regions from 2909, and in a number of cases, from each other. Attempts to reconstitute expression of these epitopes on the cell surface by cotransfecting Envs containing either the V2 or the V3 determinant of the epitope were not successful, suggesting that these epitopes were expressed on individual protomers in a trimer-dependent manner. Several of the V2 positions found to be critical for expression of these quaternary epitopes also significantly affected exposure and neutralization sensitivity of targets in the V3 and CD4-binding domains. These results demonstrated a considerable diversity in the fine structure of this class of epitopes and further suggested a potentially important relationship between the expression of such quaternary epitopes and V1/V2-mediated masking of immunodominant epitopes.
Collapse
|