1
|
Yu M, Lin A, Baharom F, Li S, Legendre M, Covés-Datson E, Sohlberg E, Schlisio S, Loré K, Markovitz DM, Smed-Sörensen A. A genetically engineered therapeutic lectin inhibits human influenza A virus infection and sustains robust virus-specific CD8 T cell expansion. PLoS Pathog 2025; 21:e1013112. [PMID: 40333697 PMCID: PMC12057898 DOI: 10.1371/journal.ppat.1013112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Seasonal influenza continues to be a global health problem. Current existing vaccines and antivirals against influenza have limited effectiveness, and typically do not stay ahead of the viral evolutionary curve. Broad-spectrum antiviral agents that are effective therapeutically and prophylactically are much needed. We have created a promising new broad-spectrum anti-influenza agent using molecular engineering of a lectin from bananas, H84T, which is well-tolerated and protective in small animal models. However, the potency and effect of H84T on human immune cells and influenza-specific immune responses are undetermined. We found that H84T efficiently inhibited influenza A virus (IAV) replication in primary human dendritic cells (DCs) isolated from blood and tonsil, preserved DC viability and allowed acquisition and presentation of viral antigen. Excitingly, H84T-treated DCs subsequently initiated effective expansion of IAV-specific CD8 T cells. Furthermore, H84T preserved the capacity of IAV-exposed DCs to present a second non-IAV antigen and induce robust antigen-specific CD8 T cell expansion. Our data support H84T as a potent antiviral in humans as it not only effectively inhibits IAV infection, but also preserves induction of robust pathogen-specific adaptive immune responses against diverse antigens, which likely is clinically beneficial.
Collapse
Affiliation(s)
- Meng Yu
- Department of Medicine Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ang Lin
- Department of Medicine Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Faezzah Baharom
- Department of Medicine Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Shuijie Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maureen Legendre
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Evelyn Covés-Datson
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ebba Sohlberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Schlisio
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Loré
- Department of Medicine Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - David M. Markovitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Programs in Cellular and Molecular Biology, Immunology, and Cancer Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anna Smed-Sörensen
- Department of Medicine Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Li H, Zong Y, Li J, Zhou Z, Chang Y, Shi W, Guo J. Research trends and hotspots on global influenza and inflammatory response based on bibliometrics. Virol J 2024; 21:313. [PMID: 39623458 PMCID: PMC11613568 DOI: 10.1186/s12985-024-02588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
The influenza virus is considered as a kind of significant zoonotic infectious disease identified to date, with severe infections in humans characterized by excessive inflammation and tissue damage, usually resulting in serious complications. Although the molecular mechanisms underlying inflammation after influenza infection have been extensively studied, bibliometric analysis on the research hotspots and developing trends in this field has not been published heretofore. Articles related to influenza and inflammatory response were retrieved from the Web of Science Core Collection (WoSCC) database (1992-2024) and analyzed using various visualization tools. Finally, this study collected a total of 2,176 relevant articles, involving 13,184 researchers, 2,647 institutions, 78 countries/regions, and published in 723 journals. Most articles were published in the United States (928 articles), China (450 articles) and the United Kingdom (158 articles). Ross Vlahos was the most productive author. Furthermore, some journals, such as PLoS One and Frontiers in Immunology, made much contribution to the topic. The future research trends include airway stem cells and neuroendocrine cells as new directions for the treatment of influenza complications, as well as measures related to prevention, treatment, and research and development based on the COVID-19 pandemic. Through bibliometric analysis and summary of inflammatory response of influenza-related articles, this study ultimately summarizes new directions for preventing and treating influenza.
Collapse
Affiliation(s)
- Hui Li
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yanping Zong
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jiajie Li
- Key Laboratory of Xin'an Medical Education, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
| | - Zheng Zhou
- Key Laboratory of Xin'an Medical Education, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
| | - Yonglong Chang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Weibing Shi
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China.
| | - Jinchen Guo
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
3
|
Gopakumar G, Diaz-Méndez A, Coppo MJC, Hartley CA, Devlin JM. Transcriptomic analyses of host-virus interactions during in vitro infection with wild-type and glycoprotein g-deficient (ΔgG) strains of ILTV in primary and continuous cell cultures. PLoS One 2024; 19:e0311874. [PMID: 39392810 PMCID: PMC11469545 DOI: 10.1371/journal.pone.0311874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024] Open
Abstract
Infectious laryngotracheitis (ILT) remains a significant concern for the poultry industry worldwide due to its impact on animal welfare and its substantial economic consequences. The disease is caused by the alphaherpesvirus, infectious laryngotracheitis virus (ILTV). This study investigated in vitro host-virus interactions of a glycoprotein G (gG) deletion mutant vaccine strain of ILTV (ΔgG ILTV), and its parent wild-type strain (CSW-1 ILTV). Inoculations were performed separately for the two strains of ILTV using both a primary (chicken embryonic kidney, CEK) and a continuous culture (leghorn male hepatoma, LMH) of chicken cells. Transcriptome analysis was performed at 12 hours post infection. Each cell-type displayed distinct effects on host and viral gene transcription, with a greater number of viral and host genes differentially transcribed in CEK cells and LMH cells, respectively. Both cell-types infected with either strain demonstrated enrichment of pathways related to signalling, and gene ontologies (GO) associated with chemotaxis. Infection with either strain upregulated both SOCS proteins and certain proto-oncogenes, which may contribute to prolonged viral persistence by promoting immunosuppression and preventing apoptosis, respectively. Patterns of gene transcription related to cytokines, chemokines, endosomal TLRs, and interferon responses, as well as pathways associated with histone acetylation, transport, and extracellular matrix organization were similar within each cell type, regardless of the viral strain. In CEK cells, GO terms and pathways were downregulated uniquely after CSW-1 ILTV infection, indicating a viral-strain specific effect in this cell-type. Overall, this study highlights that the observed differences in host and ILTV gene transcription in vitro were more strongly influenced by the cell-types used rather than the presence or absence of gG. This underscores the importance of cell-line selection in studying host-virus interactions and interpreting experimental results.
Collapse
Affiliation(s)
- Gayathri Gopakumar
- Faculty of Science, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrés Diaz-Méndez
- Faculty of Science, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mauricio J. C. Coppo
- Faculty of Science, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Melbourne, Victoria, Australia
- Escuela de Medicina Veterinaria, Universidad Andrés Bello, Concepción, Biobío, Chile
| | - Carol A. Hartley
- Faculty of Science, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Joanne M. Devlin
- Faculty of Science, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Kumari R, Sharma SD, Kumar A, Ende Z, Mishina M, Wang Y, Falls Z, Samudrala R, Pohl J, Knight PR, Sambhara S. Antiviral Approaches against Influenza Virus. Clin Microbiol Rev 2023; 36:e0004022. [PMID: 36645300 PMCID: PMC10035319 DOI: 10.1128/cmr.00040-22] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Preventing and controlling influenza virus infection remains a global public health challenge, as it causes seasonal epidemics to unexpected pandemics. These infections are responsible for high morbidity, mortality, and substantial economic impact. Vaccines are the prophylaxis mainstay in the fight against influenza. However, vaccination fails to confer complete protection due to inadequate vaccination coverages, vaccine shortages, and mismatches with circulating strains. Antivirals represent an important prophylactic and therapeutic measure to reduce influenza-associated morbidity and mortality, particularly in high-risk populations. Here, we review current FDA-approved influenza antivirals with their mechanisms of action, and different viral- and host-directed influenza antiviral approaches, including immunomodulatory interventions in clinical development. Furthermore, we also illustrate the potential utility of machine learning in developing next-generation antivirals against influenza.
Collapse
Affiliation(s)
- Rashmi Kumari
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suresh D. Sharma
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amrita Kumar
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zachary Ende
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education (ORISE), CDC Fellowship Program, Oak Ridge, Tennessee, USA
| | - Margarita Mishina
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yuanyuan Wang
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Association of Public Health Laboratories, Silver Spring, Maryland, USA
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jan Pohl
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul R. Knight
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suryaprakash Sambhara
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Kawasaki T, Ikegawa M, Kawai T. Antigen Presentation in the Lung. Front Immunol 2022; 13:860915. [PMID: 35615351 PMCID: PMC9124800 DOI: 10.3389/fimmu.2022.860915] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022] Open
Abstract
The lungs are constantly exposed to environmental and infectious agents such as dust, viruses, fungi, and bacteria that invade the lungs upon breathing. The lungs are equipped with an immune defense mechanism that involves a wide variety of immunological cells to eliminate these agents. Various types of dendritic cells (DCs) and macrophages (MACs) function as professional antigen-presenting cells (APCs) that engulf pathogens through endocytosis or phagocytosis and degrade proteins derived from them into peptide fragments. During this process, DCs and MACs present the peptides on their major histocompatibility complex class I (MHC-I) or MHC-II protein complex to naïve CD8+ or CD4+ T cells, respectively. In addition to these cells, recent evidence supports that antigen-specific effector and memory T cells are activated by other lung cells such as endothelial cells, epithelial cells, and monocytes through antigen presentation. In this review, we summarize the molecular mechanisms of antigen presentation by APCs in the lungs and their contribution to immune response.
Collapse
Affiliation(s)
| | | | - Taro Kawai
- *Correspondence: Takumi Kawasaki, ; Taro Kawai,
| |
Collapse
|
6
|
Reed SG, Ager A. Immune Responses to IAV Infection and the Roles of L-Selectin and ADAM17 in Lymphocyte Homing. Pathogens 2022; 11:pathogens11020150. [PMID: 35215094 PMCID: PMC8878872 DOI: 10.3390/pathogens11020150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Influenza A virus (IAV) infection is a global public health burden causing up to 650,000 deaths per year. Yearly vaccination programmes and anti-viral drugs currently have limited benefits; therefore, research into IAV is fundamental. Leukocyte trafficking is a crucial process which orchestrates the immune response to infection to protect the host. It involves several homing molecules and receptors on both blood vessels and leukocytes. A key mediator of this process is the transmembrane glycoprotein L-selectin, which binds to vascular addressins on blood vessel endothelial cells. L-selectin classically mediates homing of naïve and central memory lymphocytes to lymph nodes via high endothelial venules (HEVs). Recent studies have found that L-selectin is essential for homing of activated CD8+ T cells to influenza-infected lungs and reduction in virus load. A disintegrin and metalloproteinase 17 (ADAM17) is the primary regulator of cell surface levels of L-selectin. Understanding the mechanisms that regulate these two proteins are central to comprehending recruitment of T cells to sites of IAV infection. This review summarises the immune response to IAV infection in humans and mice and discusses the roles of L-selectin and ADAM17 in T lymphocyte homing during IAV infection.
Collapse
Affiliation(s)
| | - Ann Ager
- Correspondence: (S.G.R.); (A.A.)
| |
Collapse
|
7
|
Zhou A, Dong X, Liu M, Tang B. Comprehensive Transcriptomic Analysis Identifies Novel Antiviral Factors Against Influenza A Virus Infection. Front Immunol 2021; 12:632798. [PMID: 34367124 PMCID: PMC8337049 DOI: 10.3389/fimmu.2021.632798] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Influenza A virus (IAV) has a higher genetic variation, leading to the poor efficiency of traditional vaccine and antiviral strategies targeting viral proteins. Therefore, developing broad-spectrum antiviral treatments is particularly important. Host responses to IAV infection provide a promising approach to identify antiviral factors involved in virus infection as potential molecular drug targets. In this study, in order to better illustrate the molecular mechanism of host responses to IAV and develop broad-spectrum antiviral drugs, we systematically analyzed mRNA expression profiles of host genes in a variety of human cells, including transformed and primary epithelial cells infected with different subtypes of IAV by mining 35 microarray datasets from the GEO database. The transcriptomic results showed that IAV infection resulted in the difference in expression of amounts of host genes in all cell types, especially those genes participating in immune defense and antiviral response. In addition, following the criteria of P<0.05 and |logFC|≥1.5, we found that some difference expression genes were overlapped in different cell types under IAV infection via integrative gene network analysis. IFI6, IFIT2, ISG15, HERC5, RSAD2, GBP1, IFIT3, IFITM1, LAMP3, USP18, and CXCL10 might act as key antiviral factors in alveolar basal epithelial cells against IAV infection, while BATF2, CXCL10, IFI44L, IL6, and OAS2 played important roles in airway epithelial cells in response to different subtypes of IAV infection. Additionally, we also revealed that some overlaps (BATF2, IFI44L, IFI44, HERC5, CXCL10, OAS2, IFIT3, USP18, OAS1, IFIT2) were commonly upregulated in human primary epithelial cells infected with high or low pathogenicity IAV. Moreover, there were similar defense responses activated by IAV infection, including the interferon-regulated signaling pathway in different phagocyte types, although the differentially expressed genes in different phagocyte types showed a great difference. Taken together, our findings will help better understand the fundamental patterns of molecular responses induced by highly or lowly pathogenic IAV, and the overlapped genes upregulated by IAV in different cell types may act as early detection markers or broad-spectrum antiviral targets.
Collapse
Affiliation(s)
- Ao Zhou
- College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China.,Basic Medical College, Southwest Medical University, Luzhou, China
| | - Xia Dong
- College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Mengyun Liu
- College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Bin Tang
- Basic Medical College, Southwest Medical University, Luzhou, China.,Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, China
| |
Collapse
|
8
|
Abstract
Elicitation of lung tissue-resident memory CD8 T cells (TRMs) is a goal of T cell-based vaccines against respiratory viral pathogens, such as influenza A virus (IAV). C-C chemokine receptor type 2 (CCR2)-dependent monocyte trafficking plays an essential role in the establishment of CD8 TRMs in lungs of IAV-infected mice. Here, we used a combination adjuvant-based subunit vaccine strategy that evokes multifaceted (TC1/TC17/TH1/TH17) IAV nucleoprotein-specific lung TRMs to determine whether CCR2 and monocyte infiltration are essential for vaccine-induced TRM development and protective immunity to IAV in lungs. Following intranasal vaccination, neutrophils, monocytes, conventional dendritic cells (DCs), and monocyte-derived dendritic cells internalized and processed vaccine antigen in lungs. We found that basic leucine zipper ATF-like transcription factor 3 (BATF3)-dependent DCs were essential for eliciting T cell responses, but CCR2 deficiency enhanced the differentiation of CD127hi, KLRG-1lo, OX40+ve CD62L+ve, and mucosally imprinted CD69+ve CD103+ve effector and memory CD8 T cells in lungs and airways of vaccinated mice. Mechanistically, increased development of lung TRMs induced by CCR2 deficiency was linked to dampened expression of T-bet but not altered TCF-1 levels or T cell receptor signaling in CD8 T cells. T1/T17 functional programming, parenchymal localization of CD8/CD4 effector and memory T cells, recall T cell responses, and protective immunity to a lethal IAV infection were unaffected in CCR2-deficient mice. Taken together, we identified a negative regulatory role for CCR2 and monocyte trafficking in mucosal imprinting and differentiation of vaccine-induced TRMs. Mechanistic insights from this study may aid the development of T-cell-based vaccines against respiratory viral pathogens, including IAV and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IMPORTANCE While antibody-based immunity to influenza A virus (IAV) is type and subtype specific, lung- and airway-resident memory T cells that recognize conserved epitopes in the internal viral proteins are known to provide heterosubtypic immunity. Hence, broadly protective IAV vaccines need to elicit robust T cell memory in the respiratory tract. We have developed a combination adjuvant-based IAV nucleoprotein vaccine that elicits strong CD4 and CD8 T cell memory in lungs and protects against H1N1 and H5N1 strains of IAV. In this study, we examined the mechanisms that control vaccine-induced protective memory T cells in the respiratory tract. We found that trafficking of monocytes into lungs might limit the development of antiviral lung-resident memory T cells following intranasal vaccination. These findings suggest that strategies that limit monocyte infiltration can potentiate vaccine-induced frontline T-cell immunity to respiratory viruses, such as IAV and SARS-CoV-2.
Collapse
|
9
|
Harpur CM, Le Page MA, Tate MD. Too young to die? How aging affects cellular innate immune responses to influenza virus and disease severity. Virulence 2021; 12:1629-1646. [PMID: 34152253 PMCID: PMC8218692 DOI: 10.1080/21505594.2021.1939608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Influenza is a respiratory viral infection that causes significant morbidity and mortality worldwide. The innate immune cell response elicited during influenza A virus (IAV) infection forms the critical first line of defense, which typically is impaired as we age. As such, elderly individuals more commonly succumb to influenza-associated complications, which is reflected in most aged animal models of IAV infection. Here, we review the important roles of several major innate immune cell populations in influenza pathogenesis, some of which being deleterious to the host, and the current knowledge of how age-associated numerical, phenotypic and functional cell changes impact disease development. Further investigation into age-related modulation of innate immune cell responses, using appropriate animal models, will help reveal how immunity to IAV may be compromised by aging and inform the development of novel therapies, tailored for use in this vulnerable group.
Collapse
Affiliation(s)
- Christopher M Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Mélanie A Le Page
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| |
Collapse
|
10
|
Bahadoran A, Bezavada L, Smallwood HS. Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunol Rev 2021; 295:140-166. [PMID: 32320072 DOI: 10.1111/imr.12851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies support the notion that glycolysis and oxidative phosphorylation are rheostats in immune cells whose bioenergetics have functional outputs in terms of their biology. Specific intrinsic and extrinsic molecular factors function as molecular potentiometers to adjust and control glycolytic to respiratory power output. In many cases, these potentiometers are used by influenza viruses and immune cells to support pathogenesis and the host immune response, respectively. Influenza virus infects the respiratory tract, providing a specific environmental niche, while immune cells encounter variable nutrient concentrations as they migrate in response to infection. Immune cell subsets have distinct metabolic programs that adjust to meet energetic and biosynthetic requirements to support effector functions, differentiation, and longevity in their ever-changing microenvironments. This review details how influenza coopts the host cell for metabolic reprogramming and describes the overlap of these regulatory controls in immune cells whose function and fate are dictated by metabolism. These details are contextualized with emerging evidence of the consequences of influenza-induced changes in metabolic homeostasis on disease progression.
Collapse
Affiliation(s)
- Azadeh Bahadoran
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lavanya Bezavada
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
11
|
Lee W, Kingstad-Bakke B, Kedl RM, Kawaoka Y, Suresh M. CCR2 Regulates Vaccine-Induced Mucosal T-Cell Memory to Influenza A Virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33791695 DOI: 10.1101/2021.03.24.436901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Elicitation of lung tissue-resident memory CD8 T cells (T RM s) is a goal of T-cell based vaccines against respiratory viral pathogens such as influenza A virus (IAV). Chemokine receptor 2 (CCR2)-dependent monocyte trafficking plays an essential role in the establishment of CD8 T RM s in lungs of IAV-infected mice. Here, we used a combination adjuvant-based subunit vaccine strategy that evokes multifaceted (T C 1/T C 17/T H 1/T H 17) IAV nucleoprotein-specific lung T RM s, to determine whether CCR2 and monocyte infiltration are essential for vaccine-induced T RM development and protective immunity to IAV in lungs. Following intranasal vaccination, neutrophils, monocytes, conventional dendrtitic cells (DCs) and monocyte-derived DCs internalized and processed vaccine antigen in lungs. We also found that Basic Leucine Zipper ATF-Like Transcription Factor 3 (BATF-3)-dependent DCs were essential for eliciting T cell responses, but CCR2 deficiency enhanced the differentiation of CD127 HI /KLRG-1 LO , OX40 +ve CD62L +ve and mucosally imprinted CD69 +ve CD103 +ve effector and memory CD8 T cells in lungs and airways of vaccinated mice. Mechanistically, increased development of lung T RM s, induced by CCR2 deficiency was linked to dampened expression of T-bet, but not altered TCF-1 levels or T cell receptor signaling in CD8 T cells. T1/T17 functional programming, parenchymal localization of CD8/CD4 effector and memory T cells, recall T cell responses and protective immunity to a lethal IAV infection were unaffected in CCR2-deficient mice. Taken together, we identified a negative regulatory role for CCR2 and monocyte trafficking in mucosal imprinting and differentiation of vaccine-induced T RM s. Mechanistic insights from this study may aid the development of T-cell-based vaccines against respiratory viral pathogens including IAV and SARS-CoV-2. Importance While antibody-based immunity to influenza A virus (IAV) is type and sub-type specific, lung and airway-resident memory T cells that recognize conserved epitopes in the internal viral proteins are known to provide heterosubtypic immunity. Hence, broadly protective IAV vaccines need to elicit robust T-cell memory in the respiratory tract. We have developed a combination adjuvant-based IAV nucleoprotein vaccine that elicits strong CD4 and CD8 T cell memory in lungs and protects against H1N1 and H5N1 strains of IAV. In this study, we examined the mechanisms that control vaccine-induced protective memory T cells in the respiratory tract. We found that trafficking of monocytes into lungs might limit the development of anti-viral lung-resident memory T cells, following intranasal vaccination. These findings suggested that strategies that limit monocyte infiltration can potentiate vaccine-induced frontline T-cell immunity to respiratory viruses such as IAV and SARS-CoV-2.
Collapse
|
12
|
Horman WSJ, Nguyen THO, Kedzierska K, Butler J, Shan S, Layton R, Bingham J, Payne J, Bean AGD, Layton DS. The Dynamics of the Ferret Immune Response During H7N9 Influenza Virus Infection. Front Immunol 2020; 11:559113. [PMID: 33072098 PMCID: PMC7541917 DOI: 10.3389/fimmu.2020.559113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022] Open
Abstract
As the recent outbreak of SARS-CoV-2 has highlighted, the threat of a pandemic event from zoonotic viruses, such as the deadly influenza A/H7N9 virus subtype, continues to be a major global health concern. H7N9 virus strains appear to exhibit greater disease severity in mammalian hosts compared to natural avian hosts, though the exact mechanisms underlying this are somewhat unclear. Knowledge of the H7N9 host-pathogen interactions have mainly been constrained to natural sporadic human infections. To elucidate the cellular immune mechanisms associated with disease severity and progression, we used a ferret model to closely resemble disease outcomes in humans following influenza virus infection. Intriguingly, we observed variable disease outcomes when ferrets were inoculated with the A/Anhui/1/2013 (H7N9) strain. We observed relatively reduced antigen-presenting cell activation in lymphoid tissues which may be correlative with increased disease severity. Additionally, depletions in CD8+ T cells were not apparent in sick animals. This study provides further insight into the ways that lymphocytes maturate and traffic in response to H7N9 infection in the ferret model.
Collapse
Affiliation(s)
- William S J Horman
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia.,Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey Butler
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - Songhua Shan
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - Rachel Layton
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - John Bingham
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - Jean Payne
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - Andrew G D Bean
- Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - Daniel S Layton
- Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| |
Collapse
|
13
|
Jung HE, Lee HK. Host Protective Immune Responses against Influenza A Virus Infection. Viruses 2020; 12:v12050504. [PMID: 32375274 PMCID: PMC7291249 DOI: 10.3390/v12050504] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022] Open
Abstract
Influenza viruses cause infectious respiratory disease characterized by fever, myalgia, and congestion, ranging in severity from mild to life-threating. Although enormous efforts have aimed to prevent and treat influenza infections, seasonal and pandemic influenza outbreaks remain a major public health concern. This is largely because influenza viruses rapidly undergo genetic mutations that restrict the long-lasting efficacy of vaccine-induced immune responses and therapeutic regimens. In this review, we discuss the virological features of influenza A viruses and provide an overview of current knowledge of the innate sensing of invading influenza viruses and the protective immune responses in the host.
Collapse
Affiliation(s)
- Hi Eun Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Correspondence: (H.E.J.); (H.K.L.); Tel.: +82-42-350-4281 (H.K.L.)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Korea
- Correspondence: (H.E.J.); (H.K.L.); Tel.: +82-42-350-4281 (H.K.L.)
| |
Collapse
|
14
|
Pulmonary monocytes interact with effector T cells in the lung tissue to drive T RM differentiation following viral infection. Mucosal Immunol 2020; 13:161-171. [PMID: 31723250 PMCID: PMC6917844 DOI: 10.1038/s41385-019-0224-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023]
Abstract
Lung resident memory CD8 T cells (TRM) are critical for protection against respiratory viruses, but the cellular interactions required for their development are poorly understood. Herein we describe the necessity of classical monocytes for the establishment of lung TRM following influenza infection. We find that, during the initial appearance of lung TRM, monocytes and dendritic cells are the most numerous influenza antigen-bearing APCs in the lung. Surprisingly, depletion of DCs after initial T cell priming did not impact lung TRM development or maintenance. In contrast, a monocyte deficient pulmonary environment in CCR2-/- mice results in significantly less lung TRM following influenza infection, despite no defect in the antiviral effector response or in the peripheral memory pool. Imaging shows direct interaction of antigen-specific T cells with antigen-bearing monocytes in the lung, and pulmonary classical monocytes from the lungs of influenza infected mice are sufficient to drive differentiation of T cells in vitro. These data describe a novel role for pulmonary monocytes in mediating lung TRM development through direct interaction with T cells in the lung.
Collapse
|
15
|
Ng K, Raheem J, St Laurent CD, Marcet CT, Vliagoftis H, Befus AD, Moon TC. Responses of human mast cells and epithelial cells following exposure to influenza A virus. Antiviral Res 2019; 171:104566. [PMID: 31348951 DOI: 10.1016/j.antiviral.2019.104566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/03/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
As a part of innate immune defense, the role of mast cells during viral replication has been incompletely understood. In this study, we characterized and compared the responses of the human mast cell line, LAD2, and human lung epithelial cell line, Calu-3, against three influenza A virus strains; A/PR/8/34 (H1N1), A/WS/33 (H1N1) and A/HK/8/68 (H3N2). We found that there were strain-dependent mast cell responses, and different profiles of cytokine, chemokine and antiviral gene expression between the two cell types. All three strains did not induce histamine or β-hexosaminidase release in LAD2. A/HK/8/68 induced release of prostaglandin D2 in LAD2, whereas A/PR/8/34 and A/WS/33 did not. We found that, among those examined, only CCL4 (by A/PR/8/34) was statistically significantly released from LAD2 cells. Furthermore, there was increased mRNA expression of viral recognition receptors (RIG-I and MDA5) and antiviral protein, viperin, but levels and kinetics of the expression were different among the cell types, as well as by the strains examined. Our findings highlight the variability in innate response to different strains of influenza A virus in two human cell types, indicating that further investigation is needed to understand better the role of mast cells and epithelial cells in innate immunity against influenza A viruses.
Collapse
Affiliation(s)
- Kurtis Ng
- Alberta Respiratory Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Javeria Raheem
- Alberta Respiratory Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Chris D St Laurent
- Alberta Respiratory Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Candy Tsang Marcet
- Alberta Respiratory Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Harissios Vliagoftis
- Alberta Respiratory Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - A Dean Befus
- Alberta Respiratory Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | - Tae Chul Moon
- Alberta Respiratory Centre, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
16
|
Franchini AM, Myers JR, Jin GB, Shepherd DM, Lawrence BP. Genome-Wide Transcriptional Analysis Reveals Novel AhR Targets That Regulate Dendritic Cell Function during Influenza A Virus Infection. Immunohorizons 2019; 3:219-235. [PMID: 31356168 DOI: 10.4049/immunohorizons.1900004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/25/2019] [Indexed: 12/16/2022] Open
Abstract
Activation of the ligand inducible aryl hydrocarbon receptor (AhR) during primary influenza A virus infection diminishes host responses by negatively regulating the ability of dendritic cells (DC) to prime naive CD8+ T cells, which reduces the generation of CTL. However, AhR-regulated genes and signaling pathways in DCs are not fully known. In this study, we used unbiased gene expression profiling to identify differentially expressed genes and signaling pathways in DCs that are modulated by AhR activation in vivo. Using the prototype AhR agonist TCDD, we identified the lectin receptor Cd209a (DC-SIGN) and chemokine Ccl17 as novel AhR target genes. We further show the percentage of DCs expressing CD209a on their surface was significantly decreased by AhR activation during infection. Whereas influenza A virus infection increased CCL17 protein levels in the lung and lung-draining lymph nodes, this was significantly reduced following AhR activation. Targeted excision of AhR in the hematopoietic compartment confirmed AhR is required for downregulation of CCL17 and CD209a. Loss of AhR's functional DNA-binding domain demonstrates that AhR activation alone is necessary but not sufficient to drive downregulation. AhR activation induced similar changes in gene expression in human monocyte-derived DCs. Analysis of the murine and human upstream regulatory regions of Cd209a and Ccl17 revealed a suite of potential transcription factor partners for AhR, which may coregulate these genes in vivo. This study highlights the breadth of AhR-regulated pathways within DCs, and that AhR likely interacts with other transcription factors to modulate DC functions during infection.
Collapse
Affiliation(s)
- Anthony M Franchini
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Jason R Myers
- Genomics Research Center, James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642
| | - Guang-Bi Jin
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - David M Shepherd
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812; and.,Center for Translational Medicine, University of Montana, Missoula, MT 59812
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642;
| |
Collapse
|
17
|
Jung HE, Oh JE, Lee HK. Cell-Penetrating Mx1 Enhances Anti-Viral Resistance against Mucosal Influenza Viral Infection. Viruses 2019; 11:v11020109. [PMID: 30696001 PMCID: PMC6409533 DOI: 10.3390/v11020109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/20/2019] [Accepted: 01/25/2019] [Indexed: 01/03/2023] Open
Abstract
Dynamin-like GTPase myxovirus resistance protein 1 (Mx1) is an intracellular anti-viral protein following the activation of type I and type III interferon signaling. Mx1 inhibits viral replication by blocking the transcription of viral RNA, and a deficiency in this protein enhances susceptibility to influenza infection. Thus, Mx1 could be another efficient target of anti-influenza therapy. To test our hypothesis, we fused poly-arginine cell-penetrating peptides to the C terminus of Mx1 (Mx1-9R) and examined the anti-viral activity of Mx1-9R in vitro and in vivo. Madin-Darby Canine Kidney epithelial cells internalized the Mx1-9R within 12 h. Pre-exposure Mx1-9R treatment inhibited viral replication and viral RNA expression in infected cells. Further, intranasal administration of Mx1-9R improved the survival of mice infected with the PR8 influenza viral strain. These data support the consideration of Mx1-9R as a novel therapeutic agent against mucosal influenza virus infection.
Collapse
Affiliation(s)
- Hi Eun Jung
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Ji Eun Oh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea.
| | - Heung Kyu Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea.
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Korea.
| |
Collapse
|
18
|
Meyers JL, Winans B, Kelsaw E, Murthy A, Gerber S, Lawrence BP. Environmental cues received during development shape dendritic cell responses later in life. PLoS One 2018; 13:e0207007. [PMID: 30412605 PMCID: PMC6226176 DOI: 10.1371/journal.pone.0207007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
Environmental signals mediated via the aryl hydrocarbon receptor (AHR) shape the developing immune system and influence immune function. Developmental exposure to AHR binding chemicals causes persistent changes in CD4+ and CD8+ T cell responses later in life, including dampened clonal expansion and differentiation during influenza A virus (IAV) infection. Naïve T cells require activation by dendritic cells (DCs), and AHR ligands modulate the function of DCs from adult organisms. Yet, the consequences of developmental AHR activation by exogenous ligands on DCs later in life has not been examined. We report here that early life activation of AHR durably reduces the ability of DC to activate naïve IAV-specific CD8+ T cells; however, activation of naïve CD4+ T cells was not impaired. Also, DCs from developmentally exposed offspring migrated more poorly than DCs from control dams in both in vivo and ex vivo assessments of DC migration. Conditional knockout mice, which lack Ahr in CD11c lineage cells, suggest that dampened DC emigration is intrinsic to DCs. Yet, levels of chemokine receptor 7 (CCR7), a key regulator of DC trafficking, were generally unaffected. Gene expression analyses reveal changes in Lrp1, Itgam, and Fcgr1 expression, and point to alterations in genes that regulate DC migration and antigen processing and presentation as being among pathways disrupted by inappropriate AHR signaling during development. These studies establish that AHR activation during development causes long-lasting changes to DCs, and provide new information regarding how early life environmental cues shape immune function later in life.
Collapse
Affiliation(s)
- Jessica L. Meyers
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Bethany Winans
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Erin Kelsaw
- Department of Microbiology and Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Aditi Murthy
- Department of Microbiology and Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Scott Gerber
- Department of Microbiology and Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
- Department of Surgery, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - B. Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| |
Collapse
|
19
|
Shane HL, Reagin KL, Klonowski KD. The Respiratory Environment Diverts the Development of Antiviral Memory CD8 T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 200:3752-3761. [PMID: 29669782 DOI: 10.4049/jimmunol.1701268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/24/2018] [Indexed: 12/21/2022]
Abstract
Our understanding of memory CD8+ T cells has been largely derived from acute, systemic infection models. However, memory CD8+ T cells generated from mucosal infection exhibit unique properties and, following respiratory infection, are not maintained in the lung long term. To better understand how infection route modifies memory differentiation, we compared murine CD8+ T cell responses to a vesicular stomatitis virus (VSV) challenge generated intranasally (i.n.) or i.v. The i.n. infection resulted in greater peak expansion of VSV-specific CD8+ T cells. However, this numerical advantage was rapidly lost during the contraction phase of the immune response, resulting in memory CD8+ T cell numerical deficiencies when compared with i.v. infection. Interestingly, the antiviral CD8+ T cells generated in response to i.n. VSV exhibited a biased and sustained proportion of early effector cells (CD127loKLRG1lo) akin to the developmental program favored after i.n. influenza infection, suggesting that respiratory infection broadly favors an incomplete memory differentiation program. Correspondingly, i.n. VSV infection resulted in lower CD122 expression and eomesodermin levels by VSV-specific CD8+ T cells, further indicative of an inferior transition to bona fide memory. These results may be due to distinct (CD103+CD11b+) dendritic cell subsets in the i.n. versus i.v. T cell priming environments, which express molecules that regulate T cell signaling and the balance between tolerance and immunity. Therefore, we propose that distinct immunization routes modulate both the quality and quantity of antiviral effector and memory CD8+ T cells in response to an identical pathogen and should be considered in CD8+ T cell-based vaccine design.
Collapse
Affiliation(s)
- Hillary L Shane
- Department of Cellular Biology, University of Georgia, Athens, GA 30602-2607
| | - Katie L Reagin
- Department of Cellular Biology, University of Georgia, Athens, GA 30602-2607
| | | |
Collapse
|
20
|
Silvin A, Yu CI, Lahaye X, Imperatore F, Brault JB, Cardinaud S, Becker C, Kwan WH, Conrad C, Maurin M, Goudot C, Marques-Ladeira S, Wang Y, Pascual V, Anguiano E, Albrecht RA, Iannacone M, García-Sastre A, Goud B, Dalod M, Moris A, Merad M, Palucka AK, Manel N. Constitutive resistance to viral infection in human CD141 + dendritic cells. Sci Immunol 2017; 2:2/13/eaai8071. [PMID: 28783704 DOI: 10.1126/sciimmunol.aai8071] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 03/09/2017] [Accepted: 05/17/2017] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) are critical for the launching of protective T cell immunity in response to viral infection. Viruses can directly infect DCs, thereby compromising their viability and suppressing their ability to activate immune responses. How DC function is maintained in light of this paradox is not understood. By analyzing the susceptibility of primary human DC subsets to viral infections, we report that CD141+ DCs have an innate resistance to infection by a broad range of enveloped viruses, including HIV and influenza virus. In contrast, CD1c+ DCs are susceptible to infection, which enables viral antigen production but impairs their immune functions and survival. The ability of CD141+ DCs to resist infection is conferred by RAB15, a vesicle-trafficking protein constitutively expressed in this DC subset. We show that CD141+ DCs rely on viral antigens produced in bystander cells to launch cross-presentation-driven T cell responses. By dissociating viral infection from antigen presentation, this mechanism protects the functional capacity of DCs to launch adaptive immunity against viral infection.
Collapse
Affiliation(s)
- Aymeric Silvin
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Chun I Yu
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA.,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.,The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Xavier Lahaye
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Francesco Imperatore
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille University, UM2, INSERM U1104, CNRS UMR7280, France
| | - Jean-Baptiste Brault
- Institut Curie, PSL Research University, CNRS, UMR144, Molecular Mechanisms of Intracellular Transport, 75005 Paris, France
| | - Sylvain Cardinaud
- Centre d'Immunologie et des Maladies Infectieuses-Paris, Pierre and Marie Curie University UMRS C7, INSERM U1135, CNRS ERL 8255, Paris, France.,INSERM U955, IMRB Equipe-16, Vaccine Research Institute (VRI), F-94010, Creteil, France
| | - Christian Becker
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine; and Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Wing-Hong Kwan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cécile Conrad
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Mathieu Maurin
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Christel Goudot
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Santy Marques-Ladeira
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Yuanyuan Wang
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA
| | | | | | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR144, Molecular Mechanisms of Intracellular Transport, 75005 Paris, France
| | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille University, UM2, INSERM U1104, CNRS UMR7280, France
| | - Arnaud Moris
- Centre d'Immunologie et des Maladies Infectieuses-Paris, Pierre and Marie Curie University UMRS C7, INSERM U1135, CNRS ERL 8255, Paris, France
| | - Miriam Merad
- Precision Immunology Institute, Human Immune Monitoring Center, Tisch Cancer institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - A Karolina Palucka
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA. .,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.,The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France.
| |
Collapse
|
21
|
Contribution of innate immune cells to pathogenesis of severe influenza virus infection. Clin Sci (Lond) 2017; 131:269-283. [PMID: 28108632 DOI: 10.1042/cs20160484] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/19/2016] [Accepted: 11/25/2016] [Indexed: 12/12/2022]
Abstract
Influenza A viruses (IAVs) cause respiratory illness of varying severity based on the virus strains, host predisposition and pre-existing immunity. Ultimately, outcome and recovery from infection rely on an effective immune response comprising both innate and adaptive components. The innate immune response provides the first line of defence and is crucial to the outcome of infection. Airway epithelial cells are the first cell type to encounter the virus in the lungs, providing antiviral and chemotactic molecules that shape the ensuing immune response by rapidly recruiting innate effector cells such as NK cells, monocytes and neutrophils. Each cell type has unique mechanisms to combat virus-infected cells and limit viral replication, however their actions may also lead to pathology. This review focuses how innate cells contribute to protection and pathology, and provides evidence for their involvement in immune pathology in IAV infections.
Collapse
|
22
|
Liu Y, Zheng J, Liu Y, Wen L, Huang L, Xiang Z, Lam KT, Lv A, Mao H, Lau YL, Tu W. Uncompromised NK cell activation is essential for virus-specific CTL activity during acute influenza virus infection. Cell Mol Immunol 2017; 15:827-837. [PMID: 28413216 DOI: 10.1038/cmi.2017.10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 01/11/2023] Open
Abstract
Natural killer (NK) cells are indispensable components of both the innate and adaptive immune response. However, their precise roles in the cross-talk between innate and adaptive immunity during influenza virus infection remain controversial. By comparing NK cell dynamics and activity under a sub-lethal dose and high dose of influenza virus infection, we showed that influenza virus PR8 directly infected NK cells during natural infection, which was consistent with our previous findings obtained from an in vitro investigation of human NK cells. The impairments in cytotoxicity and IFN-γ production by spleen NK cells following high-dose infection were accompanied by decreased virus-specific killing mediated by cytotoxic T lymphocytes (CTLs). Importantly, the weakened CTL activity could be reversed by adoptive transfer of spleen NK cells harvested from low-dose-infected mice but not healthy donors. Taken together, our data provide direct evidence supporting the contribution of NK cells to antiviral T-cell responses. This study also indicates that a novel NK-targeted immune evasion strategy is used by influenza virus to shrink both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Jian Zheng
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yinping Liu
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Liyan Wen
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lei Huang
- Department of Radiology, Georgia Regents University, Augusta, 30912, USA, GA.,GRU Cancer Center, Georgia Regents University, Augusta, 30912, USA, GA
| | - Zheng Xiang
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Tai Lam
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aizhen Lv
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Huawei Mao
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Yu-Lung Lau
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wenwei Tu
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
23
|
Gray J, Oehrle K, Worthen G, Alenghat T, Whitsett J, Deshmukh H. Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection. Sci Transl Med 2017; 9:eaaf9412. [PMID: 28179507 PMCID: PMC5880204 DOI: 10.1126/scitranslmed.aaf9412] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022]
Abstract
Immature mucosal defenses contribute to increased susceptibility of newborn infants to pathogens. Sparse knowledge of age-dependent changes in mucosal immunity has hampered improvements in neonatal morbidity because of infections. We report that exposure of neonatal mice to commensal bacteria immediately after birth is required for a robust host defense against bacterial pneumonia, the leading cause of death in newborn infants. This crucial window was characterized by an abrupt influx of interleukin-22 (IL-22)-producing group 3 innate lymphoid cells (IL-22+ILC3) into the lungs of newborn mice. This influx was dependent on sensing of commensal bacteria by intestinal mucosal dendritic cells. Disruption of postnatal commensal colonization or selective depletion of dendritic cells interrupted the migratory program of lung IL-22+ILC3 and made the newborn mice more susceptible to pneumonia, which was reversed by transfer of commensal bacteria after birth. Thus, the resistance of newborn mice to pneumonia relied on commensal bacteria-directed ILC3 influx into the lungs, which mediated IL-22-dependent host resistance to pneumonia during this developmental window. These data establish that postnatal colonization by intestinal commensal bacteria is pivotal in the development of the lung defenses of newborns.
Collapse
Affiliation(s)
- Jerilyn Gray
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45219, USA
| | - Katherine Oehrle
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45219, USA
| | - George Worthen
- Children's Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Theresa Alenghat
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45219, USA
| | - Jeffrey Whitsett
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45219, USA
| | - Hitesh Deshmukh
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45219, USA.
| |
Collapse
|
24
|
Influenza and Memory T Cells: How to Awake the Force. Vaccines (Basel) 2016; 4:vaccines4040033. [PMID: 27754364 PMCID: PMC5192353 DOI: 10.3390/vaccines4040033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/27/2016] [Indexed: 12/24/2022] Open
Abstract
Annual influenza vaccination is an effective way to prevent human influenza. Current vaccines are mainly focused on eliciting a strain-matched humoral immune response, requiring yearly updates, and do not provide protection for all vaccinated individuals. The past few years, the importance of cellular immunity, and especially memory T cells, in long-lived protection against influenza virus has become clear. To overcome the shortcomings of current influenza vaccines, eliciting both humoral and cellular immunity is imperative. Today, several new vaccines such as infection-permissive and recombinant T cell inducing vaccines, are being developed and show promising results. These vaccines will allow us to stay several steps ahead of the constantly evolving influenza virus.
Collapse
|
25
|
LeMessurier KS, Lin Y, McCullers JA, Samarasinghe AE. Antimicrobial peptides alter early immune response to influenza A virus infection in C57BL/6 mice. Antiviral Res 2016; 133:208-17. [PMID: 27531368 DOI: 10.1016/j.antiviral.2016.08.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/12/2016] [Indexed: 02/07/2023]
Abstract
Influenza is a disease of the respiratory system caused by single stranded RNA viruses with varying genotypes. Immunopathogenesis to influenza viruses differs based on virus strain, dose, and mouse strain used in laboratory models. Although effective mucosal immune defenses are important in early host defense against influenza, information on the kinetics of these immune defense mechanisms during the course of influenza infection is limited. We investigated changes to antimicrobial peptides and primary innate immune cells at early time points after infection and compared these variables between two prominent H1N1 influenza A virus (IAV) strains, A/CA/04/2009 and A/PR/08/1934 in C57BL/6 mice. Alveolar and parenchymal macrophage ratios were altered after IAV infection and pro-inflammatory cytokine production in macrophages was induced after IAV infection. Genes encoding antimicrobial peptides, β-defensin (Defb4), bactericidal-permeability increasing protein (Bpifa1), and cathelicidin antimicrobial peptide (Camp), were differentially regulated after IAV infection and the kinetics of Defb4 expression differed in response to each virus strain. Beta-defensin reduced infectivity of A/CA/04/2009 virus but not A/PR/08/1934. Beta defensins also changed the innate immune cell profile wherein mice pre-treated with β-defensin had increased alveolar macrophages and CD103(+) dendritic cells, and reduced CD11b(+) dendritic cells and neutrophils. In addition to highlighting that immune responses may vary based on influenza virus strain used, our data suggest an important role for antimicrobial peptides in host defense against influenza virus.
Collapse
Affiliation(s)
- Kim S LeMessurier
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Yanyan Lin
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Jonathan A McCullers
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Amali E Samarasinghe
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
26
|
Duan S, Thomas PG. Balancing Immune Protection and Immune Pathology by CD8(+) T-Cell Responses to Influenza Infection. Front Immunol 2016; 7:25. [PMID: 26904022 PMCID: PMC4742794 DOI: 10.3389/fimmu.2016.00025] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/18/2016] [Indexed: 02/05/2023] Open
Abstract
Influenza A virus (IAV) is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL)-mediated immunity contributes to the clearance of virus-infected cells, and CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, its cytotoxicity, and the effects of produced proinflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL antiviral immunity from those necessary to restrain CTL-mediated non-specific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity.
Collapse
Affiliation(s)
- Susu Duan
- Department of Immunology, St. Jude Children's Research Hospital , Memphis, TN , USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital , Memphis, TN , USA
| |
Collapse
|
27
|
Plasmacytoid Dendritic Cells Require Direct Infection To Sustain the Pulmonary Influenza A Virus-Specific CD8 T Cell Response. J Virol 2015; 90:2830-7. [PMID: 26719269 DOI: 10.1128/jvi.02546-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/20/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Following influenza A virus (IAV) infection, development of a robust IAV-specific CD8 T cell response is required for clearance of primary infection and enhances memory protection. Following IAV infection, plasmacytoid dendritic cells (pDC) or CD8α(+) DC regulate pulmonary effector CD8 T cell responses within the lung. Without this DC-T cell interaction, insufficient effector CD8 T cells are maintained in the lungs, leading to enhanced morbidity and mortality. Previous studies have demonstrated that pDC are capable of classical presentation or cross-presentation of IAV antigens and could potentially regulate IAV-specific CD8 T cell responses through either mechanism. Our results demonstrate that pDC from the lungs of donor mice infected with an IAV that is not able to replicate in hematopoietic cells (142t-IAV), unlike donor pDC isolated from the lungs of control infected mice, are not able to rescue the host IAV-specific CD8 T cell response from apoptosis. This indicates that pDC must utilize the direct presentation pathway for this rescue. This inability of pDC from 142t-IAV donors to rescue the IAV-specific CD8 T cell response is not due to differences in the overall ability of 142t-IAV to replicate within the lungs or generate defective viral genomes or to differences in levels of costimulatory molecules required for this interaction. We further demonstrate that bypassing the antigen presentation pathway by coating the 142t-IAV pDC with IAV peptide epitopes restores their ability to rescue the IAV-specific CD8 T cell response. IMPORTANCE IAV continues to be a global health burden, infecting 5 to 20% of the global population annually. Continued investigation into the mechanisms that mediate protective immune responses against IAV is important to improving current vaccination and antiviral strategies antagonistic toward IAV. Our findings presented herein demonstrate a key requirement for pDC promotion of effector CD8 T cell survival: that rather than utilizing cross-presentation, pDC must be infected and utilize the endogenous pathway for presentation of antigens to CD8 T cells during in vivo IAV infections. This suggests that targeting presentation via the endogenous pathway in pDC could be important for the development of unique antiviral cellular therapies.
Collapse
|
28
|
Kim EH, Choi YK, Kim CJ, Sung MH, Poo H. Intranasal administration of poly-gamma glutamate induced antiviral activity and protective immune responses against H1N1 influenza A virus infection. Virol J 2015; 12:160. [PMID: 26437715 PMCID: PMC4595321 DOI: 10.1186/s12985-015-0387-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/17/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The global outbreak of a novel swine-origin strain of the 2009 H1N1 influenza A virus and the sudden, worldwide increase in oseltamivir-resistant H1N1 influenza A viruses highlight the urgent need for novel antiviral therapy. METHODS Here, we investigated the antiviral efficacy of poly-gamma glutamate (γ-PGA), a safe and edible biomaterial that is naturally synthesized by Bacillus subtilis, against A/Puerto Rico/8/1934 (PR8) and A/California/04/2009 (CA04) H1N1 influenza A virus infections in C57BL/6 mice. RESULTS Intranasal administration of γ-PGA for 5 days post-infection improved survival, increased production of antiviral cytokines including interferon-beta (IFN-β) and interleukin-12 (IL-12), and enhanced activation of natural killer (NK) cells and influenza antigen-specific cytotoxic T lymphocytes (CTL) activity. CONCLUSIONS These results suggest that γ-PGA protects mice against H1N1 influenza A virus by enhancing antiviral immune responses.
Collapse
Affiliation(s)
- Eun-Ha Kim
- Viral Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, Republic of Korea. .,College of Medicine, Chungbuk National University, Chengju, Republic of Korea.
| | - Young-Ki Choi
- College of Medicine, Chungbuk National University, Chengju, Republic of Korea.
| | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Moon-Hee Sung
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea.
| | - Haryoung Poo
- Viral Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, Republic of Korea. .,Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, Republic of Korea.
| |
Collapse
|
29
|
Wang YZ, Feng XG, Wang Q, Xing CY, Shi QG, Kong QX, Cheng PP, Zhang Y, Hao YL, Yuki N. Increased plasmacytoid dendritic cells in Guillain-Barré syndrome. J Neuroimmunol 2015; 283:1-6. [PMID: 26004148 DOI: 10.1016/j.jneuroim.2015.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 11/15/2022]
Abstract
Guillain-Barré syndrome (GBS) is a post-infectious autoimmune disease. Dendritic cells (DCs) can recognize the pathogen and modulate the host immune response. Exploring the role of DCs in GBS will help our understanding of the disease development. In this study, we aimed to analyze plasmacytoid and conventional DCs in peripheral blood of patients with GBS at different stages of the disease: acute phase as well as early and late recovery phases. There was a significant increase of plasmacytoid DCs in the acute phase (p=0.03 vs healthy donors). There was a positive correlation between percentage of plasmacytoid DCs and the clinical severity of patients with GBS (r=0.61, p<0.001). Quantitative polymerase chain reaction and flow cytometry confirmed the aberrant plasmacytoid DCs in GBS. Thus, plasmacytoid DCs may participate in the development of GBS.
Collapse
Affiliation(s)
- Yu-Zhong Wang
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, PR China; Central Laboratory, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, PR China
| | - Xun-Gang Feng
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, PR China
| | - Qian Wang
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, PR China
| | - Chun-Ye Xing
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, PR China
| | - Qi-Guang Shi
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, PR China
| | - Qing-Xia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, PR China
| | - Pan-Pan Cheng
- Department of Haemotology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, PR China
| | - Yong Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province, PR China
| | - Yan-Lei Hao
- Department of Neurology, Affiliated Hospital of Jining Medical College, Jining, Shandong Province, PR China.
| | - Nobuhiro Yuki
- Departments of Medicine and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
30
|
Melanoma-derived factors alter the maturation and activation of differentiated tissue-resident dendritic cells. Immunol Cell Biol 2015; 94:24-38. [PMID: 26010746 DOI: 10.1038/icb.2015.58] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/05/2015] [Accepted: 05/20/2015] [Indexed: 01/26/2023]
Abstract
Dendritic cells (DCs) are key regulators of host immunity that are capable of inducing either immune tolerance or activation. In addition to their well-characterized role in shaping immune responses to foreign pathogens, DCs are also known to be critical for the induction and maintenance of anti-tumor immune responses. Therefore, it is important to understand how tumors influence the function of DCs and the quality of immune responses they elicit. Although the majority of studies in this field to date have utilized either immortalized DC lines or DC populations that have been generated under artificial conditions from hematopoietic precursors in vitro, we wished to investigate how tumors impact the function of already differentiated, tissue-resident DCs. Therefore, we used both an ex vivo and in vivo model system to assess the influence of melanoma-derived factors on DC maturation and activation. In ex vivo studies with freshly isolated splenic DCs, we demonstrate that the extent to which DC maturation and activation are altered by these factors correlates with melanoma tumorigenicity, and we identify partial roles for tumor-derived transforming growth factor (TGF)β1 and vascular endothelial growth factor (VEGF)-A in the altered functionality of DCs. In vivo studies using a lung metastasis model of melanoma also demonstrate tumorigenicity-dependent alterations to the function of lung-resident DCs, and skewed production of proinflammatory cytokines and chemokines by these tumor-altered cells is associated with recruitment of an immune infiltrate that may ultimately favor tumor immune escape and outgrowth.
Collapse
|
31
|
De Baets S, Verhelst J, Van den Hoecke S, Smet A, Schotsaert M, Job ER, Roose K, Schepens B, Fiers W, Saelens X. A GFP expressing influenza A virus to report in vivo tropism and protection by a matrix protein 2 ectodomain-specific monoclonal antibody. PLoS One 2015; 10:e0121491. [PMID: 25816132 PMCID: PMC4376807 DOI: 10.1371/journal.pone.0121491] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/02/2015] [Indexed: 11/30/2022] Open
Abstract
The severity of influenza-related illness is mediated by many factors, including in vivo cell tropism, timing and magnitude of the immune response, and presence of pre-existing immunity. A direct way to study cell tropism and virus spread in vivo is with an influenza virus expressing a reporter gene. However, reporter gene-expressing influenza viruses are often attenuated in vivo and may be genetically unstable. Here, we describe the generation of an influenza A virus expressing GFP from a tri-cistronic NS segment. To reduce the size of this engineered gene segment, we used a truncated NS1 protein of 73 amino acids combined with a heterologous dimerization domain to increase protein stability. GFP and nuclear export protein coding information were fused in frame with the truncated NS1 open reading frame and separated from each other by 2A self-processing sites. The resulting PR8-NS1(1-73)GFP virus was successfully rescued and replicated as efficiently as the parental PR8 virus in vitro and was slightly attenuated in vivo. Flow cytometry-based monitoring of cells isolated from PR8-NS1(1-73)GFP virus infected BALB/c mice revealed that GFP expression peaked on day two in all cell types tested. In particular respiratory epithelial cells and myeloid cells known to be involved in antigen presentation, including dendritic cells (CD11c+) and inflammatory monocytes (CD11b+ GR1+), became GFP positive following infection. Prophylactic treatment with anti-M2e monoclonal antibody or oseltamivir reduced GFP expression in all cell types studied, demonstrating the usefulness of this reporter virus to analyze the efficacy of antiviral treatments in vivo. Finally, deep sequencing analysis, serial in vitro passages and ex vivo analysis of PR8-NS1(1-73)GFP virus, indicate that this virus is genetically and phenotypically stable.
Collapse
Affiliation(s)
- Sarah De Baets
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Judith Verhelst
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Silvie Van den Hoecke
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Anouk Smet
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Michael Schotsaert
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Emma R. Job
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kenny Roose
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bert Schepens
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Walter Fiers
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Abstract
Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocompromised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Michael B. A. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California USA
| | - Richard W. Compans
- IDepartment of Microbiology and Immunology, Emory University, Atlanta, Georgia USA
| |
Collapse
|
33
|
Trenchevska O, Sherma ND, Oran PE, Reaven PD, Nelson RW, Nedelkov D. Quantitative mass spectrometric immunoassay for the chemokine RANTES and its variants. J Proteomics 2014; 116:15-23. [PMID: 25549571 DOI: 10.1016/j.jprot.2014.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/12/2014] [Accepted: 12/19/2014] [Indexed: 01/27/2023]
Abstract
UNLABELLED The chemokine RANTES plays a key role in inflammation, cell recruitment and T cell activation. RANTES is heterogenic and exists as multiple variants in vivo. Herein we describe the development and characterization of a fully quantitative mass spectrometric immunoassay (MSIA) for analysis of intact RANTES and its proteoforms in human serum and plasma samples. The assay exhibits linearity over a wide concentration range (1.56-200ng/mL), intra- and inter-assay precision with CVs <10%, and good linearity and recovery correlations. The assay was tested in different biological matrices, and it was benchmarked against an existing RANTES ELISA. The new RANTES MSIA was used to analyze RANTES and its proteoforms in a small clinical cohort, revealing the quantitative distribution and frequency of the native and truncated RANTES proteoforms. BIOLOGICAL SIGNIFICANCE In the last two decades, RANTES has been studied extensively due to its association with numerous clinical conditions, including kidney-related, autoimmune, cardiovascular, viral and metabolic pathologies. Although a single gene product, RANTES is expressed in a range of cells and tissues presenting with different endogenously produced variants and PTMs. The structural variety and population diversity that has been identified for RANTES necessitate developing advanced methodologies that can provide insight into the protein heterogeneity and its function and regulation in disease. In this work we present a simple, efficient and high-throughput mass spectrometric immunoassay (MSIA) method for analysis of RANTES proteoforms. RANTES MSIA can detect and analyze RANTES proteoforms and provide an insight into the endogenous protein modifications.
Collapse
Affiliation(s)
- Olgica Trenchevska
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States.
| | - Nisha D Sherma
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | - Paul E Oran
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | | | - Randall W Nelson
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | - Dobrin Nedelkov
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| |
Collapse
|
34
|
An infected chicken kidney cell co-culture ELISpot for enhanced detection of T cell responses to avian influenza and vaccination. J Immunol Methods 2014; 416:40-8. [PMID: 25450002 PMCID: PMC4334094 DOI: 10.1016/j.jim.2014.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/25/2014] [Accepted: 10/24/2014] [Indexed: 11/23/2022]
Abstract
A better understanding of the immune responses of chickens to the influenza virus is essential for the development of new strategies of vaccination and control. We have developed a method incorporating infected chicken kidney cells (CKC) in culture with splenocytes in an IFNγ ELISpot assay to enumerate ex vivo responses against influenza virus antigens. Splenocytes from birds challenged with influenza showed specific responses to the influenza virus, with responding cells being mainly CD8 positive. The utility of the assay was also demonstrated in the detection of an antigen specific enhancement of IFNγ producing cells from birds vaccinated with recombinant Fowlpox vectored influenza nucleoprotein and matrix protein. Chickens infected with avian influenza developed IFNγ responses. The use of infected CKC in ELISpot overcomes limitations at detection of responses. This methods allows the quantification of influenza specific CD8 T cells. The use of recombinant virus to infect CKC can further define antigen specificity.
Collapse
|
35
|
Liu B, Zhang X, Deng W, Liu J, Li H, Wen M, Bao L, Qu J, Liu Y, Li F, An Y, Qin C, Cao B, Wang C. Severe influenza A(H1N1)pdm09 infection induces thymic atrophy through activating innate CD8(+)CD44(hi) T cells by upregulating IFN-γ. Cell Death Dis 2014; 5:e1440. [PMID: 25275588 PMCID: PMC4649502 DOI: 10.1038/cddis.2014.323] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 11/12/2022]
Abstract
Thymic atrophy has been described as a consequence of infection by several pathogens including highly pathogenic avian influenza virus and is induced through diverse mechanisms. However, whether influenza A(H1N1)pdm09 infection induces thymic atrophy and the mechanisms underlying this process have not been completely elucidated. Our results show that severe infection of influenza A(H1N1)pdm09 led to progressive thymic atrophy and CD4+CD8+ double-positive (DP) T-cells depletion due to apoptosis. The viruses were present in thymus, where they activated thymic innate CD8+CD44hi single-positive (SP) thymocytes to secrete a large amount of IFN-γ. Milder thymic atrophy was observed in innate CD8+ T-cell-deficient mice (C57BL/6J). Neutralization of IFN-γ could significantly rescue the atrophy, but peramivir treatment did not significantly alleviate thymic atrophy. In this study, we demonstrated that thymic innate CD8+CD44hi SP T-cells have critical roles in influenza A(H1N1)pdm09 infection-induced thymic atrophy through secreting IFN-γ. This exceptional mechanism might serve as a target for the prevention and treatment of thymic atrophy induced by influenza A(H1N1)pdm09.
Collapse
Affiliation(s)
- B Liu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - X Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - W Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - H Li
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - M Wen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - L Bao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - J Qu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Y Liu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - F Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Y An
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - C Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - B Cao
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - C Wang
- 1] Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China [2] Department of Respiratory Medicine, Capital Medical University, Beijing, China [3] Beijing Institute of Respiratory Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing, China [4] Beijing Institute of Respiratory Medicine, Beijing Hospital, Ministry of Heath, P. R. China, Beijing, China
| |
Collapse
|
36
|
Hargadon KM. Murine and Human Model Systems for the Study of Dendritic Cell Immunobiology. Int Rev Immunol 2014; 35:85-115. [DOI: 10.3109/08830185.2014.952413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Desch AN, Gibbings SL, Clambey ET, Janssen WJ, Slansky JE, Kedl RM, Henson PM, Jakubzick C. Dendritic cell subsets require cis-activation for cytotoxic CD8 T-cell induction. Nat Commun 2014; 5:4674. [PMID: 25135627 PMCID: PMC4153365 DOI: 10.1038/ncomms5674] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 07/11/2014] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are required for the induction of cytotoxic T cells (CTL). In most tissues, including the lung, the resident DCs fall into two types expressing the integrin markers CD103 and CD11b. The current supposition is that DC function is predetermined by lineage, designating the CD103(+) DC as the major cross-presenting DC able to induce CTL. Here we show that Poly I:C (TLR3 agonist) or R848 (TLR7 agonist) do not activate all endogenous DCs. CD11b(+) DCs can orchestrate a CTL response in vivo in the presence of a TLR7 agonist but not a TLR3 agonist, whereas CD103(+) DCs require ligation of TLR3 for this purpose. This selectivity does not extend to antigen cross-presentation for T-cell proliferation but is required for induction of cytotoxicity. Thus, we demonstrate that the ability of DCs to induce functional CTLs is specific to the nature of the pathogen-associated molecular pattern (PAMP) encountered by endogenous DC.
Collapse
Affiliation(s)
- A. Nicole Desch
- Integrated Department of Immunology, National Jewish Health and UC Denver Anschutz Campus, 1400 Jackson Street, Denver, Colorado 80206
| | - Sophie L. Gibbings
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206
| | - Eric T. Clambey
- Department of Anesthesiology, UC Denver Anschutz Campus, Denver, CO, 80206
| | | | - Jill E. Slansky
- Integrated Department of Immunology, National Jewish Health and UC Denver Anschutz Campus, 1400 Jackson Street, Denver, Colorado 80206
| | - Ross M. Kedl
- Integrated Department of Immunology, National Jewish Health and UC Denver Anschutz Campus, 1400 Jackson Street, Denver, Colorado 80206
| | - Peter M. Henson
- Integrated Department of Immunology, National Jewish Health and UC Denver Anschutz Campus, 1400 Jackson Street, Denver, Colorado 80206
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206
| | - Claudia Jakubzick
- Integrated Department of Immunology, National Jewish Health and UC Denver Anschutz Campus, 1400 Jackson Street, Denver, Colorado 80206
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206
| |
Collapse
|
38
|
Jie Z, Sun W, Wang S, Koster F, Li B, Harrod KS. The rapid and sustained responses of dendritic cells to influenza virus infection in a non-human primate model. Braz J Infect Dis 2014; 18:406-13. [PMID: 24780366 PMCID: PMC9478763 DOI: 10.1016/j.bjid.2013.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/17/2013] [Accepted: 12/24/2013] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) are readily infected by influenza viruses and play a crucial role in regulating host innate and adaptive immune responses to viral infection. The aims of this study are to characterize the dynamic changes in the numbers and maturation status of dendritic cells present in the lung and lung-associated lymph nodes (LALNs) in the model of a non-human primate (NHP) infected by influenza A virus (IAV). Cynomolgus macaques were infected with influenza A virus (H3N2) via bronchoscopy. Flow cytometry was used to analyze the DC numbers, maturation status and subsets during the time of acute infection (days 1, 2, 3, 4, 7) and the resolution phase (day 30). A dramatic increase in the numbers of influenza A virus-infected CD11c+CD14- myeloid dendritic cells (mDCs) and CD11c-CD123+ plasmacytoid dendritic cells (pDCs) were observed from day 1 to day 4 and peak up from day 7 post-infection. In lung and lung-associated lymph nodes, the numbers and maturation status of myeloid dendritic cells and plasmacytoid dendritic cells increased more slowly than those in the lung tissues. On day 30 post-infection, influenza A virus challenge increased the number of myeloid dendritic cells, but not plasmacytoid dendritic cells, compared with baseline. These findings indicate that dendritic cells are susceptible to influenza A virus infection, with the likely purpose of increasing mature myeloid dendritic cells numbers in the lung and lung and lung-associated lymph nodes, which provides important new insights into the regulation of dendritic cells in a non-human primate model.
Collapse
Affiliation(s)
- Zhijun Jie
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Wei Sun
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Shanze Wang
- Infectious Disease Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Frederick Koster
- Infectious Disease Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Bilan Li
- Infectious Disease Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Kevin S Harrod
- Infectious Disease Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA.
| |
Collapse
|
39
|
Jin GB, Winans B, Martin KC, Paige Lawrence B. New insights into the role of the aryl hydrocarbon receptor in the function of CD11c⁺ cells during respiratory viral infection. Eur J Immunol 2014; 44:1685-1698. [PMID: 24519489 DOI: 10.1002/eji.201343980] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/28/2014] [Accepted: 02/06/2014] [Indexed: 01/06/2023]
Abstract
The aryl hydrocarbon receptor (AHR) has garnered considerable attention as a modulator of CD4(+) cell lineage development and function. It also regulates antiviral CD8(+) T-cell responses, but via indirect mechanisms that have yet to be determined. Here, we show that during acute influenza virus infection, AHR activation skews dendritic-cell (DC) subsets in the lung-draining lymph nodes, such that there are fewer conventional CD103(+) DCs and CD11b(+) DCs. Sorting DC subsets reveals AHR activation reduces immunostimulatory function of CD103(+) DCs in the mediastinal lymph nodes, and decreases their frequency in the lung. DNA-binding domain Ahr mutants demonstrate that alterations in DC subsets require the ligand-activated AHR to contain its inherent DNA-binding domain. To evaluate the intrinsic role of AHR in DCs, conditional knockouts were created using Cre-LoxP technology, which revealed that AHR in CD11c(+) cells plays a key role in controlling the acquisition of effector CD8(+) T cells in the infected lung. However, AHR within other leukocyte lineages contributes to diminished naïve CD8(+) T-cell activation in the draining lymphoid nodes. These findings indicate DCs are among the direct targets of AHR ligands in vivo, and AHR signaling modifies host responses to a common respiratory pathogen by affecting the complex interplay of multiple cell types.
Collapse
Affiliation(s)
- Guang-Bi Jin
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Bethany Winans
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Kyle C Martin
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.,Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
40
|
Tate MD, Job ER, Deng YM, Gunalan V, Maurer-Stroh S, Reading PC. Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses 2014; 6:1294-316. [PMID: 24638204 PMCID: PMC3970151 DOI: 10.3390/v6031294] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/03/2014] [Accepted: 03/07/2014] [Indexed: 12/22/2022] Open
Abstract
Seasonal influenza A viruses (IAV) originate from pandemic IAV and have undergone changes in antigenic structure, including addition of glycans to the hemagglutinin (HA) glycoprotein. The viral HA is the major target recognized by neutralizing antibodies and glycans have been proposed to shield antigenic sites on HA, thereby promoting virus survival in the face of widespread vaccination and/or infection. However, addition of glycans can also interfere with the receptor binding properties of HA and this must be compensated for by additional mutations, creating a fitness barrier to accumulation of glycosylation sites. In addition, glycans on HA are also recognized by phylogenetically ancient lectins of the innate immune system and the benefit provided by evasion of humoral immunity is balanced by attenuation of infection. Therefore, a fine balance must exist regarding the optimal pattern of HA glycosylation to offset competing pressures associated with recognition by innate defenses, evasion of humoral immunity and maintenance of virus fitness. In this review, we examine HA glycosylation patterns of IAV associated with pandemic and seasonal influenza and discuss recent advancements in our understanding of interactions between IAV glycans and components of innate and adaptive immunity.
Collapse
Affiliation(s)
- Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia.
| | - Emma R Job
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia.
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia.
| | - Vithiagaran Gunalan
- Bioinformatics Institute, Agency for Science, Technology and Research, 138671, Singapore.
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research, 138671, Singapore.
| | - Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia.
| |
Collapse
|
41
|
Richert LE, Rynda-Apple A, Harmsen AL, Han S, Wiley JA, Douglas T, Larson K, Morton RV, Harmsen AG. CD11c⁺ cells primed with unrelated antigens facilitate an accelerated immune response to influenza virus in mice. Eur J Immunol 2014; 44:397-408. [PMID: 24222381 PMCID: PMC3926668 DOI: 10.1002/eji.201343587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 09/17/2013] [Accepted: 11/06/2013] [Indexed: 12/24/2022]
Abstract
Recent evidence suggests that an individual's unique history and sequence of exposures to pathogens and antigens may dictate downstream immune responses to disparate antigens. We show that the i.n. delivery of nonreplicative virus-like particles (VLPs), which bear structural but no antigenic similarities to respiratory pathogens, acts to prime the lungs of both C56BL/6 and BALB/c mice, facilitating heightened and accelerated primary immune responses to high-dose influenza challenge, thus providing a nonpathogenic model of innate imprinting. These responses correspond closely to those observed following natural infection with the opportunistic fungus, Pneumocystis murina, and are characterized by accelerated antigen processing by DCs and alveolar macrophages, an enhanced influx of cells to the local tracheobronchial lymph node, and early upregulation of T-cell co-stimulatory/adhesion molecules. CD11c⁺ cells, which have been directly exposed to VLPs or Pneumocystis are necessary in facilitating enhanced clearance of influenza virus, and the repopulation of the lung by Ly-6C⁺ precursors relies on CCR2 expression. Thus, immune imprinting 72 h after VLP-priming, or 2 weeks after Pneumocystis-priming is CCR2-mediated and results from the enhanced antigen processing, maturation, and trafficking abilities of DCs and alveolar macrophages, which cause accelerated influenza-specific primary immune responses and result in superior viral clearance.
Collapse
Affiliation(s)
- Laura E. Richert
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Agnieszka Rynda-Apple
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Ann L. Harmsen
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Soo Han
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - James A. Wiley
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Trevor Douglas
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, USA
| | - Kyle Larson
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Rachelle V. Morton
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Allen G. Harmsen
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
42
|
Abstract
Influenza virus infection induces a potent initial innate immune response, which serves to limit the extent of viral replication and virus spread. However, efficient (and eventual) viral clearance within the respiratory tract requires the subsequent activation, rapid proliferation, recruitment, and expression of effector activities by the adaptive immune system, consisting of antibody producing B cells and influenza-specific T lymphocytes with diverse functions. The ensuing effector activities of these T lymphocytes ultimately determine (along with antibodies) the capacity of the host to eliminate the viruses and the extent of tissue damage. In this review, we describe this effector T cell response to influenza virus infection. Based on information largely obtained in experimental settings (i.e., murine models), we will illustrate the factors regulating the induction of adaptive immune T cell responses to influenza, the effector activities displayed by these activated T cells, the mechanisms underlying the expression of these effector mechanisms, and the control of the activation/differentiation of these T cells, in situ, in the infected lungs.
Collapse
|
43
|
Tripathi S, White MR, Hartshorn KL. The amazing innate immune response to influenza A virus infection. Innate Immun 2013; 21:73-98. [PMID: 24217220 DOI: 10.1177/1753425913508992] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Influenza A viruses (IAVs) remain a major health threat and a prime example of the significance of innate immunity. Our understanding of innate immunity to IAV has grown dramatically, yielding new concepts that change the way we view innate immunity as a whole. Examples include the role of p53, autophagy, microRNA, innate lymphocytes, endothelial cells and gut commensal bacteria in pulmonary innate immunity. Although the innate response is largely beneficial, it also contributes to major complications of IAV, including lung injury, bacterial super-infection and exacerbation of reactive airways disease. Research is beginning to dissect out which components of the innate response are helpful or harmful. IAV uses its limited genetic complement to maximum effect. Several viral proteins are dedicated to combating innate responses, while other viral structural or replication proteins multitask as host immune modulators. Many host innate immune proteins also multitask, having roles in cell cycle, signaling or normal lung biology. We summarize the plethora of new findings and attempt to integrate them into the larger picture of how humans have adapted to the threat posed by this remarkable virus. We explore how our expanded knowledge suggests ways to modulate helpful and harmful inflammatory responses, and develop novel treatments.
Collapse
Affiliation(s)
- Shweta Tripathi
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| | - Mitchell R White
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| | - Kevan L Hartshorn
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| |
Collapse
|
44
|
de Geus ED, Vervelde L. Regulation of macrophage and dendritic cell function by pathogens and through immunomodulation in the avian mucosa. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:341-351. [PMID: 23542704 DOI: 10.1016/j.dci.2013.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/14/2013] [Indexed: 06/02/2023]
Abstract
Macrophages (MPh) and dendritic cells (DC) are members of the mononuclear phagocyte system. In chickens, markers to distinguish MPh from DC are lacking, but whether MPh and DC can be distinguished in humans and mice is under debate, despite the availability of numerous markers. Mucosal MPh and DC are strategically located to ingest foreign antigens, suggesting they can rapidly respond to invading pathogens. This review addresses our current understanding of DC and MPh function, the receptors expressed by MPh and DC involved in pathogen recognition, and the responses of DC and MPh against respiratory and intestinal pathogens in the chicken. Furthermore, potential opportunities are described to modulate MPh and DC responses to enhance disease resistance, highlighting modulation through nutraceuticals and vaccination.
Collapse
Affiliation(s)
- Eveline D de Geus
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| | | |
Collapse
|
45
|
Mikhak Z, Strassner JP, Luster AD. Lung dendritic cells imprint T cell lung homing and promote lung immunity through the chemokine receptor CCR4. ACTA ACUST UNITED AC 2013; 210:1855-69. [PMID: 23960189 PMCID: PMC3754856 DOI: 10.1084/jem.20130091] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
T cell trafficking into the lung is critical for lung immunity, but the mechanisms that mediate T cell lung homing are not well understood. Here, we show that lung dendritic cells (DCs) imprint T cell lung homing, as lung DC-activated T cells traffic more efficiently into the lung in response to inhaled antigen and at homeostasis compared with T cells activated by DCs from other tissues. Consequently, lung DC-imprinted T cells protect against influenza more effectively than do gut and skin DC-imprinted T cells. Lung DCs imprint the expression of CCR4 on T cells, and CCR4 contributes to T cell lung imprinting. Lung DC-activated, CCR4-deficient T cells fail to traffic into the lung as efficiently and to protect against influenza as effectively as lung DC-activated, CCR4-sufficient T cells. Thus, lung DCs imprint T cell lung homing and promote lung immunity in part through CCR4.
Collapse
Affiliation(s)
- Zamaneh Mikhak
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
46
|
Innate and adaptive immune responses in patients with pandemic influenza A(H1N1)pdm09. Arch Virol 2013; 158:2267-72. [PMID: 23728719 PMCID: PMC3825157 DOI: 10.1007/s00705-013-1692-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 03/02/2013] [Indexed: 12/20/2022]
Abstract
Innate and adaptive immune responses play critical roles in the body’s defense against viruses. We investigated the host immune response against the 2009 pandemic H1N1 influenza virus [A(H1N1)pdm09] in patients before and after anti-influenza therapy and found that the numbers of dendritic cells and T cells were significantly reduced compared with those of a healthy control group. In contrast, the frequency of natural killer, γδT and T regulatory (Treg) cells increased, and the concentrations of plasma interferon (IFN)-α/γ and interleukin (IL-15) were significantly higher than those of the control. Following therapy the frequency of γδT and Treg cells returned to normal; the counts of myeloid dendritic and plasmacytoid dendritic cells were still lower than the control, while the concentrations of IFN-α/γ and IL-15 remained high. We show that infection with A (H1N1)pdm09 was accompanied by changes in peripheral blood lymphocyte subgroups and cytokine profiles, leading to deleterious imbalances in innate and adaptive immunity.
Collapse
|
47
|
Burchill MA, Tamburini BA, Pennock ND, White JT, Kurche JS, Kedl RM. T cell vaccinology: exploring the known unknowns. Vaccine 2012; 31:297-305. [PMID: 23137843 DOI: 10.1016/j.vaccine.2012.10.096] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/22/2012] [Accepted: 10/25/2012] [Indexed: 02/06/2023]
Abstract
The objective of modern vaccine development is the safe generation of protective long-term immune memory, both prophylactic and therapeutic. Live attenuated vaccines generate potent cellular and humoral immunity [1-3], but numerous problems exist with these vaccines, ranging from production and storage issues to adverse reactions and reversion to virulence. Subunit vaccines are safer, more stable, and more amenable to mass production. However the protection they produce is frequently inferior to live attenuated vaccines and is typically confined to humoral, and not cellular immunity. Unfortunately, there are presently no subunit vaccines available clinically that are effective at eliciting cellular responses let alone cellular memory [4]. This article will provide and overview of areas of investigation that we see as important for the development of vaccines with the capacity to induce robust and enduring cellular immune responses.
Collapse
Affiliation(s)
- Matt A Burchill
- Integrated Department of Immunology, University of Colorado Denevr and National Jewish Health, Denver, CO 80206, United States
| | | | | | | | | | | |
Collapse
|
48
|
Brand JD, Ballinger CA, Tuggle KL, Fanucchi MV, Schwiebert LM, Postlethwait EM. Site-specific dynamics of CD11b+ and CD103+ dendritic cell accumulations following ozone exposure. Am J Physiol Lung Cell Mol Physiol 2012; 303:L1079-86. [PMID: 23087018 DOI: 10.1152/ajplung.00185.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pulmonary dendritic cells (DCs) are among the first responders to inhaled environmental stimuli such as ozone (O(3)), which has been shown to activate these cells. O(3) reacts with epithelial lining fluid (ELF) components in an anatomically site-specific manner dictated by O(3) concentration, airway flow patterns, and ELF substrate concentration. Accordingly, the anatomical distribution of ELF reaction products and airway injury are hypothesized to produce selective DC maturation differentially within the airways. To investigate how O(3) affects regional airway DC populations, we utilized a model of O(3)-induced pulmonary inflammation, wherein C57BL/6 mice were exposed to 0.8 ppm O(3) 8 h/day for 1, 3, and 5 days. This model induced mild inflammation and no remarkable epithelial injury. Tracheal, but not more distant airway sites, and mediastinal lymph node (MLN) DC numbers were increased significantly after the third exposure day. The largest increase in each tissue was of the CD103(+) DC phenotype. After 3 days of exposure, fewer DCs expressed CD80, CD40, and CCR7, and, at this same time point, total MLN T cell numbers increased. Together, these data demonstrate that O(3) exposure induced site-specific and phenotype changes in the pulmonary and regional lymph node DC populations. Possibly contributing to ozone-mediated asthma perturbation, the phenotypic changes to DCs within pulmonary regions may alter responses to antigenic stimuli. Decreased costimulatory molecule expression within the MLN suggests induction of tolerance mechanisms; increased tracheal DC number may raise the potential for allergic sensitization and asthmatic exacerbation, thus overcoming O(3)-induced decrements in costimulatory molecule expression.
Collapse
Affiliation(s)
- Jeffrey D Brand
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Influenza A virus (IAV) is a dangerous virus equipped with the potential to evoke widespread pandemic disease. The 2009 H1N1 pandemic highlights the urgency for developing effective therapeutics against IAV infection. Vaccination is a major weapon to combat IAV and efforts to improve current regimes are critically important. Here, we will review the role of dendritic cells (DCs), a pivotal cell type in the initiation of robust IAV immunity. The complexity of DC subset heterogeneity in the respiratory tract and lymph node that drains the IAV infected lung will be discussed, together with the varied and in some cases, conflicting contributions of individual DC populations to presenting IAV associated antigen to T cells.
Collapse
Affiliation(s)
- Jason Waithman
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, West Perth, WA, Australia
| | | |
Collapse
|
50
|
Hackstein H, Wachtendorf A, Kranz S, Lohmeyer J, Bein G, Baal N. Heterogeneity of respiratory dendritic cell subsets and lymphocyte populations in inbred mouse strains. Respir Res 2012; 13:94. [PMID: 23066782 PMCID: PMC3493345 DOI: 10.1186/1465-9921-13-94] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 08/17/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inbred mouse strains are used in different models of respiratory diseases but the variation of critical respiratory leukocyte subpopulations across different strains is unknown. METHODS By using multiparameter flow cytometry we have quantitated respiratory leukocyte subsets including dendritic cells subpopulations, macrophages, classical T and B cells, natural killer cells, γδTCR+ T cells and lineage-negative leukocytes in the five most common inbred mouse strains BALB/c, C57BL/6, DBA/2, 129SV and C3H. To minimize confounding environmental factors, age-matched animals were received from the same provider and were housed under identical specific-pathogen-free conditions. RESULTS Results revealed significant strain differences with respect to respiratory neutrophils (p=0.005; up to 1.4 fold differences versus C57BL/6 mice), eosinophils (p=0.029; up to 2.7 fold), certain dendritic cell subsets (p≤0.0003; up to 3.4 fold), T (p<0.001; up to 1.6 fold) and B lymphocyte subsets (p=0.005; up to 0.4 fold), γδ T lymphocytes (p=0.003; up to 1.6 fold), natural killer cells (p<0.0001; up to 0.6 fold) and lineage-negative innate leukocytes (p≤0.007; up to 3.6 fold). In contrast, total respiratory leukocytes, macrophages, total dendritic cells and bronchoalveolar lavage leukocytes did not differ significantly. Stimulation of respiratory leukocytes via Toll-like receptor 4 and 9 as well as CD3/CD28 revealed significant strain differences of TNF-α and IL-10 production. CONCLUSION Our study demonstrates significant strain heterogeneity of respiratory leukocyte subsets that may impact respiratory immunity in different disease models. Additionally, the results may help identification of optimal strains for purification of rare respiratory leukocyte subsets for ex vivo analyses.
Collapse
Affiliation(s)
- Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Member of the German Center for Lung Research, Langhansstr 7, D-35390, Giessen, Germany.
| | | | | | | | | | | |
Collapse
|