1
|
Zhang X, Tao Y, Wu L, Shu J, He Y, Feng H. PA and PA-X: two key proteins from segment 3 of the influenza viruses. Front Cell Infect Microbiol 2025; 15:1560250. [PMID: 40160474 PMCID: PMC11949978 DOI: 10.3389/fcimb.2025.1560250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
In recent years, the influenza viruses have posed an increasingly severe threat to public health. It is essential to analyze the virulence and pathogenesis of influenza viruses to prevent and control them, as well as create antiviral drugs. Previous studies have revealed that influenza virus segment 3 codes for not only the PA protein but also a novel protein, PA-X. PA protein is one subunit of the polymerase of influenza viruses and plays a critical role in its life cycle. PA presented endonuclease activity, the transcription and replication of the viral genome, viral virulence, protein degradation, and host immune response by interacting with viral proteins, including PB2, PB1, and host factors, including ANP32A, CHD6, HAX1, hCLE, HDAC6, MCM complex. PA mutations were involved in the viral replication, pathogenicity, and transmission of influenza viruses in poultry, mammals, and humans. PA-X is an open reading frame generated by +1 ribosomal code shift at the N-terminal amino acids of segment 3 and possesses the shutoff activity of host gene expression, regulating the host immune response, viral virulence and transmission. Therefore, PA is one ideal target for the development of antiviral drugs against influenza viruses. Baloxavir marboxil (BXM) and Favipiravir are two very effective anti-influenza virus drugs targeting the PA endonuclease domain of influenza A viruses. In this review, we summarized the structures, viral replication, virulent determinants and transmission, host factors, innate immunity, and antiviral drugs involved in PA and PA-X. The information is of great value for underlying the mechanism of viral replication and developing novel effective strategies to prevent and control influenza infection and the pandemic.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yingying Tao
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Li Wu
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
2
|
Nurrohman AI, Suwito H, Puspaningsih NNT, Haq KU. Molecular dynamics study on the effect of the N1 neuraminidase double mutant G147R/H274Y on oseltamivir sensitivity. RSC Adv 2024; 14:39017-39026. [PMID: 39659606 PMCID: PMC11629752 DOI: 10.1039/d4ra07713j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
Inhibition of neuraminidase is the most prominent target in influenza medication using oseltamivir as an inhibitor. However, the emerging resistance of neuraminidase toward oseltamivir due to mutation reduces the efficacy of oseltamivir. The generally reported mutation is a single mutation at H274Y, which declines the sensitivity of oseltamivir by almost 900 folds compared to the wild-type variant. Moreover, an additional mutation at G147R increases the resistance by more than 2000 folds. However, sufficient studies on the resistance mechanism of this variant have not yet been reported. Therefore, we simulated four neuraminidase proteins comprising wild-type (WT), G147R, H274Y, and G147R/H274Y using molecular dynamics simulation to disclose the binding mechanism of oseltamivir. Trajectory analysis was conducted to reveal structural stability and flexibility. Furthermore, end-point free binding energy calculations were conducted. The energy decomposition of each residue was also calculated. The end-point energy calculation showed a similar result to that of experimental data. The energy decomposition analysis revealed that G147R/H274Y showed significant reduction in oseltamivir (OST) interaction with R118. Salt-bridge disruption caused by R224-E276 was also observed. Modification to enhance the polarity of the inhibitor might be useful in overcoming these changes. However, it should be noted that such changes could worsen the pharmacokinetic property of the inhibitor. It is hoped that these findings will provide useful insights for the development of an anti-influenza drug that can withstand the mutant variant.
Collapse
Affiliation(s)
- Ardiana Ilham Nurrohman
- Bioinformatics Research Group, University-CoE-Research Center for Bio-Molecule Engineering (BIOME), Universitas Airlangga Surabaya 60115 Indonesia
- Proteomic Laboratory, University-CoE-Research Center for Bio-Molecule Engineering (BIOME), Universitas Airlangga Surabaya 60115 Indonesia
| | - Hery Suwito
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
| | - Ni Nyoman Tri Puspaningsih
- Proteomic Laboratory, University-CoE-Research Center for Bio-Molecule Engineering (BIOME), Universitas Airlangga Surabaya 60115 Indonesia
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
| | - Kautsar Ul Haq
- Bioinformatics Research Group, University-CoE-Research Center for Bio-Molecule Engineering (BIOME), Universitas Airlangga Surabaya 60115 Indonesia
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
| |
Collapse
|
3
|
Xu J, Luo Q, Huang Y, Li J, Ye W, Yan R, Zhou X, He Z, Liu G, Zhu Q. Influenza neuraminidase mutations and resistance to neuraminidase inhibitors. Emerg Microbes Infect 2024; 13:2429627. [PMID: 39530458 PMCID: PMC11600549 DOI: 10.1080/22221751.2024.2429627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/22/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Mutations in influenza virus neuraminidase (NA) can lead to viral resistance to NA inhibitors (NAIs). To update global influenza NA mutations and resistance to NAIs, we investigated epidemic information from global regions for NAIs-resistant influenza strains and analyzed their NA mutations. Drug-resistant mutations in NA, especially new mutations occurred in 2016-2024, were updated. The H274Y mutation in N1, a major contributor to NAI resistance, peaked in 2008, significantly impacting public health in countries like Japan and the USA. Three main mechanisms of NAI resistance were identified: catalytic site mutations, structural hindrance, and monomer stability changes. Although global resistance rates of H1N1pdm09, H3N2, and influenza B have remained stable at around 1%, sporadic emergence of resistant strains highlights the need for continued vigilance. The evolution of drug-resistant, transmissible strains through compensatory mutations underscores the urgency of new antiviral strategies. Strengthening global surveillance and adjusting public health policies, such as improving vaccine coverage and prudent antiviral use, remain essential to mitigating future risks.
Collapse
Affiliation(s)
- Jiapeng Xu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, People’s Republic of China
| | - Qiting Luo
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Yuanyuan Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Jieyu Li
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Wei Ye
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Ran Yan
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, People’s Republic of China
| | - Xinrui Zhou
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Zhendan He
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Ge Liu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Qinchang Zhu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, People’s Republic of China
| |
Collapse
|
4
|
Andreev K, Jones JC, Seiler P, Kandeil A, Webby RJ, Govorkova EA. Genotypic and phenotypic susceptibility of emerging avian influenza A viruses to neuraminidase and cap-dependent endonuclease inhibitors. Antiviral Res 2024; 229:105959. [PMID: 38986873 PMCID: PMC11466321 DOI: 10.1016/j.antiviral.2024.105959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Avian influenza outbreaks, including ones caused by highly pathogenic A(H5N1) clade 2.3.4.4b viruses, have devastated animal populations and remain a threat to humans. Risk elements assessed for emerging influenza viruses include their susceptibility to approved antivirals. Here, we screened >20,000 neuraminidase (NA) or polymerase acidic (PA) protein sequences of potentially pandemic A(H5Nx), A(H7Nx), and A(H9N2) viruses that circulated globally in 2010-2023. The frequencies of NA or PA substitutions associated with reduced inhibition (RI) or highly reduced inhibition (HRI) by NA inhibitors (NAIs) (oseltamivir, zanamivir) or a cap-dependent endonuclease inhibitor (baloxavir) were low: 0.60% (137/22,713) and 0.62% (126/20,347), respectively. All tested subtypes were susceptible to NAIs and baloxavir at sub-nanomolar concentrations. A(H9N2) viruses were the most susceptible to oseltamivir, with IC50s 3- to 4-fold lower than for other subtypes (median IC50: 0.18 nM; n = 22). NA-I222M conferred RI of A(H5N1) viruses by oseltamivir (with a 26-fold IC50 increase), but NA-S246N did not reduce inhibition. PA-E23G, PA-K34R, PA-I38M/T, and the previously unreported PA-A36T caused RI by baloxavir in all subtypes tested. Avian A(H9N2) viruses endemic in Egyptian poultry predominantly acquired PA-I38V, which causes only a <3-fold decrease in the baloxavir EC50 and fails to meet the RI criteria. PA-E199A/D in A(H7Nx) and A(H9N2) viruses caused a 2- to 4-fold decrease in EC50 (close to the borderline for RI) and should be closely monitored. Our data indicate antiviral susceptibility is high among avian influenza A viruses with pandemic potential and present novel markers of resistance to existing antiviral interventions.
Collapse
Affiliation(s)
- Konstantin Andreev
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeremy C Jones
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Patrick Seiler
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ahmed Kandeil
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA; Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Richard J Webby
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elena A Govorkova
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
5
|
Andreev K, Jones JC, Seiler P, Kandeil A, Turner JCM, Barman S, Rubrum AM, Webby RJ, Govorkova EA. Antiviral Susceptibility of Highly Pathogenic Avian Influenza A(H5N1) Viruses Circulating Globally in 2022-2023. J Infect Dis 2024; 229:1830-1835. [PMID: 37770028 PMCID: PMC11175693 DOI: 10.1093/infdis/jiad418] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
The antiviral susceptibility of currently circulating (2022-2023) highly pathogenic avian influenza (HPAI) A(H5N1) viruses was assessed by genotypic and phenotypic approaches. The frequency was low for neuraminidase (NA) and polymerase acidic (PA) substitutions associated with reduced inhibition by NA inhibitors (21/2698, 0.78%) or the PA inhibitor baloxavir (14/2600, 0.54%). Phenotypic testing of 22 clade 2.3.2.1a and 2.3.4.4b viruses revealed broad susceptibility to NA inhibitors and baloxavir for a conclusion that most contemporary HPAI A(H5N1) viruses retain susceptibility to antiviral drugs. Novel NA-K432E and NA-T438I substitutions (N2 numbering) were identified at elevated frequencies (104/2698, 3.85%) and caused reduced zanamivir and peramivir inhibition.
Collapse
Affiliation(s)
- Konstantin Andreev
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jeremy C Jones
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Patrick Seiler
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ahmed Kandeil
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jasmine C M Turner
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Subrata Barman
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Adam M Rubrum
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Richard J Webby
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Elena A Govorkova
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
6
|
Kwon EB, Li W, Kim YS, Kim B, Chung HS, Go Y, Ko HJ, Song JH, Kim YH, Choi CW, Choi JG. Vitisin B inhibits influenza A virus replication by multi-targeting neuraminidase and virus-induced oxidative stress. Acta Pharm Sin B 2023; 13:174-191. [PMID: 36815046 PMCID: PMC9939323 DOI: 10.1016/j.apsb.2022.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
The development of drug-resistant influenza and new pathogenic virus strains underscores the need for antiviral therapeutics. Currently, neuraminidase (NA) inhibitors are commonly used antiviral drugs approved by the US Food and Drug Administration (FDA) for the prevention and treatment of influenza. Here, we show that vitisin B (VB) inhibits NA activity and suppresses H1N1 viral replication in MDCK and A549 cells. Reactive oxygen species (ROS), which frequently occur during viral infection, increase virus replication by activating the NF-κB signaling pathway, downmodulating glucose-6-phosphate dehydrogenase (G6PD) expression, and decreasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant response activity. VB decreased virus-induced ROS generation by increasing G6PD expression and Nrf2 activity, and inhibiting NF-κB translocation to the nucleus through IKK dephosphorylation. In addition, VB reduced body weight loss, increased survival, decreased viral replication and the inflammatory response in the lungs of influenza A virus (IAV)-infected mice. Taken together, our results indicate that VB is a promising therapeutic candidate against IAV infection, complements existing drug limitations targeting viral NA. It modulated the intracellular ROS by G6PD, Nrf2 antioxidant response pathway, and NF-κB signaling pathway. These results demonstrate the feasibility of a multi-targeting drug strategy, providing new approaches for drug discovery against IAV infection.
Collapse
Affiliation(s)
- Eun-Bin Kwon
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Young Soo Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Buyun Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
- Corresponding authors. Tel./Fax.: +82 42 8215933/+82 42 8236566, +82 31 8886131/+82 31 8886139, +82 53 9403866/+82 53 9403899
| | - Chun Whan Choi
- Natural Product Research Team, Biocenter, Gyeonggido Business and Science Accelerator, Gyeonggi-Do 16229, Republic of Korea
- Corresponding authors. Tel./Fax.: +82 42 8215933/+82 42 8236566, +82 31 8886131/+82 31 8886139, +82 53 9403866/+82 53 9403899
| | - Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
- Corresponding authors. Tel./Fax.: +82 42 8215933/+82 42 8236566, +82 31 8886131/+82 31 8886139, +82 53 9403866/+82 53 9403899
| |
Collapse
|
7
|
Structural and inhibitor sensitivity analysis of influenza B-like viral neuraminidases derived from Asiatic toad and spiny eel. Proc Natl Acad Sci U S A 2022; 119:e2210724119. [PMID: 36191180 PMCID: PMC9586306 DOI: 10.1073/pnas.2210724119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza virus neuraminidase (NA) is an important target for antiviral development because it plays a crucial role in releasing newly assembled viruses. Two unique influenza-like virus genomes were recently reported in the Wuhan Asiatic toad and Wuhan spiny eel. Their NA genes appear to be highly divergent from all known influenza NAs, raising key questions as to whether the Asiatic toad influenza-like virus NA (tNA) and spiny eel NA (eNA) have canonical NA activities and structures and whether they show sensitivity to NA inhibitors (NAIs). Here, we found that both tNA and eNA have neuraminidase activities. A detailed structural analysis revealed that tNA and eNA present similar overall structures to currently known NAs, with a conserved calcium binding site. Inhibition assays indicated that tNA is resistant to NAIs, while eNA is still sensitive to NAIs. E119 is conserved in canonical NAs. The P119E substitution in tNA can restore sensitivity to NAIs, and, in contrast, the E119P substitution in eNA decreased its sensitivity to NAIs. The structures of NA-inhibitor complexes further provide a detailed insight into NA-inhibitor interactions at the atomic level. Moreover, tNA and eNA have unique N-glycosylation sites compared with canonical NAs. Collectively, the structural features, NA activities, and sensitivities to NAIs suggest that fish- and amphibian-derived influenza-like viruses may circulate in these vertebrates. More attention should be paid to these influenza-like viruses because their NA molecules may play roles in the emergence of NAI resistance.
Collapse
|
8
|
Kumar A, Sambandam S, Ramalingam A, Krishnamoorthy R, Arumugam D, Oyeneyin OE. Synthesis, molecular docking of 3-(2-chloroethyl)-2,6-diphenylpiperidin-4-one: Hirshfeld surface, spectroscopic and DFT based analyses. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132993] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Zhang W, Xu H, Guan S, Wang C, Dong G. Frequency and distribution of H1N1 influenza A viruses with oseltamivir-resistant mutations worldwide before and after the 2009 pandemic. J Med Virol 2022; 94:4406-4416. [PMID: 35585032 DOI: 10.1002/jmv.27870] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/06/2022]
Abstract
H1N1 influenza has brought serious threats to people's health and a high socio-economic burden to society. Oseltamivir, a kind of neuraminidase (NA) inhibitor, is the second-generation specific drug that is broadly used currently. However, H1N1 influenza viruses have exhibited oseltamivir resistance in the past decades, which might be a hidden danger. To understand the frequency and distribution laws of oseltamivir-resistant viruses, we conducted a thorough and deep analysis of the available NA protein sequences of H1N1 influenza viruses worldwide from 1918 to 2020. The differences and similarities before and after 2009 were also considered since the dominant viruses changed in this period. Results showed that 3.76% of H1N1 viruses harbored oseltamivir resistance currently. Among various significative mutations, H274Y had the highest frequency of 3.30%, while the frequencies of the other mutations were far below this whether before or after 2009. The oseltamivir resistance was mainly found in three hosts, human, swine, and avian. Different mutation sites could exhibit different distributions in each host. Our results showed that the resistance level reached a peak during the 2007-2008 influenza season and then quickly decreased in 2009. The resistance also displayed a global distribution. The densely populated countries usually had a high resistance level. However, frequent significative mutations were also found in some small countries. Our findings indicated the necessity of monitoring oseltamivir resistance around the world. The study could provide a unique perspective towards the cognition of viruses and facilitate the future study of both pandemic and drug development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Weixu Zhang
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Hefeng Xu
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Shuxuan Guan
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Chengmin Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangdong Province, Guangzhou, 510260, China
| | - Guoying Dong
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
10
|
Abstract
The neuraminidase (NA) of influenza A and B viruses plays a distinct role in viral replication and has a highly conserved catalytic site. Numerous sialic (neuraminic) acid analogs that competitively bind to the NA active site and potently inhibit enzyme activity have been synthesized and tested. Four NA inhibitors are now licensed in various parts of the world (zanamivir, oseltamivir, peramivir, and laninamivir) to treat influenza A and B infections. NA changes, naturally occurring or acquired under selective pressure, have been shown to reduce drug binding, thereby affecting the effectiveness of NA inhibitors. Drug resistance and other drawbacks have prompted the search for the next-generation NA-targeting therapeutics. One of the promising approaches is the identification of monoclonal antibodies (mAbs) targeting the conserved NA epitopes. Anti-NA mAbs demonstrate Fab-based antiviral activity supplemented with Fc-mediated immune effector functions. Antiviral Fc-conjugates offer another cutting-edge strategy that is based on a multimodal mechanism of action. These novel antiviral agents are composed of a small-molecule NA inhibitor and an Fc-region that simultaneously engages the immune system. The significant advancements made in recent years further support the value of NA as an attractive target for the antiviral development.
Collapse
Affiliation(s)
- Larisa Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329-4027, USA
| | - Teena Mohan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329-4027, USA
| |
Collapse
|
11
|
Molecular Docking and Virtual Screening of an Influenza Virus Inhibitor That Disrupts Protein-Protein Interactions. Viruses 2021; 13:v13112229. [PMID: 34835035 PMCID: PMC8620322 DOI: 10.3390/v13112229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 02/02/2023] Open
Abstract
Influenza is an acute respiratory infection caused by the influenza virus, but few drugs are available for its treatment. Consequently, researchers have been engaged in efforts to discover new antiviral mechanisms that can lay the foundation for novel anti-influenza drugs. The viral RNA-dependent RNA polymerase (RdRp) is an enzyme that plays an indispensable role in the viral infection process, which is directly linked to the survival of the virus. Methods of inhibiting PB1-PB2 (basic polymerase 1-basic polymerase 2) interactions, which are a key part of RdRp enzyme activity, are integral in the design of novel antiviral drugs, a specific PB1-PB2 interactions inhibitor has not been reported. We have screened Enamine's database and conducted a parallel screening of multiple docking schemes, followed by simulations of molecular dynamics to determine the structure of a stable ligand-PB1 complex. We also calculated the free energy of binding between the screened compounds and PB1 protein. Ultimately, we screened and identified a potential PB1-PB2 inhibitor using the ADMET prediction model.
Collapse
|
12
|
Wan Z, Kan Q, Zhao Z, Shao H, Deliberto TJ, Wan XF, Qin A, Ye J. Characterization of Subtype H6 Avian Influenza A Viruses Isolated From Wild Birds in Poyang Lake, China. Front Vet Sci 2021; 8:685399. [PMID: 34589532 PMCID: PMC8473872 DOI: 10.3389/fvets.2021.685399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Subtype H6 avian influenza A viruses (IAVs) are enzootic and genetically diverse in both domestic poultry and wild waterfowl and may cause spillovers in both pigs and humans. Thus, it is important to understand the genetic diversity of H6 IAVs in birds and their zoonotic potential. Compared with that in domestic poultry, the genetic diversity of H6 viruses in wild birds in China has not been well-understood. In this study, five H6 viruses were isolated from wild birds in Poyang Lake, China, and genetic analyses showed that these isolates are clustered into four genotypes associated with reassortments among avian IAVs from domestic poultry and wild birds in China and those from Eurasia and North America and that these viruses exhibited distinct phenotypes in growth kinetics analyses with avian and mammalian cells lines and in mouse challenge experiments. Of interest is that two H6 isolates from the Eurasian teal replicated effectively in the mouse lung without prior adaptation, whereas the other three did not. Our study suggested that there are variations in the mammalian viral replication efficiency phenotypic among genetically diverse H6 IAVs in wild birds and that both intra- and inter-continental movements of IAVs through wild bird migration may facilitate the emergence of novel H6 IAV reassortants with the potential for replicating in mammals, including humans. Continued surveillance to monitor the diversity of H6 IAVs in wild birds is necessary to increase our understanding of the natural history of IAVs.
Collapse
Affiliation(s)
- Zhimin Wan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Qiuqi Kan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Zhehong Zhao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Thomas J Deliberto
- National Wildlife Disease Program, Wildlife Services, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Fort Collins, CO, United States
| | - Xiu-Feng Wan
- University of Missouri Center for Influenza and Emerging infectious Diseases, University of Missouri, Columbia, MO, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States.,Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Electrical Engineering and Computer Science, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Yeo SJ, Hoang VT, Duong TB, Nguyen NM, Tuong HT, Azam M, Sung HW, Park H. Emergence of a Novel Reassortant H5N3 Avian Influenza Virus in Korean Mallard Ducks in 2018. Intervirology 2021; 65:1-16. [PMID: 34438407 DOI: 10.1159/000517057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/29/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The avian influenza (AI) virus causes a highly contagious disease which is common in wild and domestic birds and sporadic in humans. Mutations and genetic reassortments among the 8 negative-sense RNA segments of the viral genome alter its pathogenic potential, demanding well-targeted, active surveillance for infection control. METHODS Wild duck fecal samples were collected during the 2018 bird health annual surveillance in South Korea for tracking variations of the AI virus. One low-pathogenic avian influenza H5N3 reassortment virus (A/mallard duck/South Korea/KNU18-91/2018 [H5N3]) was isolated and genomically characterized by phylogenetic and molecular analyses in this study. RESULTS It was devoid of polybasic amino acids at the hemagglutinin (HA) cleavage site and exhibited a stalk region without deletion in the neuraminidase (NA) gene and NA inhibitor resistance-linked E/D627K/N and D701N marker mutations in the PB2 gene, suggesting its low-pathogenic AI. It showed a potential of a reassortment where only HA originated from the H5N3 poultry virus of China and other genes were derived from Mongolia. In phylogenetic analysis, HA was different from that of the isolate of H5N3 in Korea, 2015. In addition, this novel virus showed adaptation in Madin-Darby canine kidney cells, with 8.05 ± 0.14 log10 50% tissue culture infectious dose (TCID50) /mL at 36 h postinfection. However, it could not replicate in mice well, showing positive growth at 3 days postinfection (dpi) (2.1 ± 0.13 log10 TCID50/mL) but not at 6 dpi. CONCLUSIONS The HA antigenic relationship of A/mallard duck/South Korea/KNU18-91/2018 (H5N3) showed differences toward one of the old low-pathogenic H5N3 viruses in Korea. These results indicated that a novel reassortment low-pathogenic avian influenza H5N3 subtype virus emerged in South Korea in 2018 via novel multiple reassortments with Eurasian viruses, rather than one of old Korean H5N3 strains.
Collapse
Affiliation(s)
- Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, Republic of Korea,
| | - Vui Thi Hoang
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Tuan Bao Duong
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Ngoc Minh Nguyen
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Hien Thi Tuong
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Mudsser Azam
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyun Park
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
14
|
Heo GB, Kye SJ, Sagong M, Lee EK, Lee KN, Lee YN, Choi KS, Lee MH, Lee YJ. Genetic characterization of H9N2 avian influenza virus previously unrecognized in Korea. J Vet Sci 2021; 22:e21. [PMID: 33774937 PMCID: PMC8007441 DOI: 10.4142/jvs.2021.22.e21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
In this study, we describe the isolation and characterization of previously unreported Y280-lineage H9N2 viruses from two live bird markets in Korea in June 2020. Genetic analysis revealed that they were distinct from previous H9N2 viruses circulating in Korea and had highest homology to A/chicken/Shandong/1844/2019(H9N2) viruses. Their genetic constellation showed they belonged to genotype S, which is the predominant genotype in China since 2010, where genotype S viruses have infected humans and acted as internal gene donors to H5 and H7 zoonotic influenza viruses. Active surveillance and control measures need to be enhanced to protect the poultry industry and public health.
Collapse
Affiliation(s)
- Gyeong Beom Heo
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.,College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Soo Jeong Kye
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Mingeun Sagong
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Eun Kyoung Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Kwang Nyeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Yu Na Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Kang Seuk Choi
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Myoung Heon Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Youn Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.
| |
Collapse
|
15
|
Svyatchenko SV, Goncharova NI, Marchenko VY, Kolosova NP, Shvalov AN, Kovrizhkina VL, Durymanov AG, Onkhonova GS, Tregubchak TV, Susloparov IM, Gudymo AS, Ilyicheva TN, Ryzhikov AB. An influenza A(H5N8) virus isolated during an outbreak at a poultry farm in Russia in 2017 has an N294S substitution in the neuraminidase and shows reduced susceptibility to oseltamivir. Antiviral Res 2021; 191:105079. [PMID: 33933515 DOI: 10.1016/j.antiviral.2021.105079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022]
Abstract
This study aimed to assess the antiviral susceptibility of influenza A(H5N8) viruses isolated in Russia in 2014-2018. Genetic analysis of 57 Russian isolates with full genome sequences did not find any markers of reduced susceptibility to baloxavir. Only one strain bore an amino acid substitution associated with adamantane resistance (M2-S31N). The neuraminidase of 1 strain had an NA-N293/294S (N8/N2 numbering) substitution associated with reduced inhibition by oseltamivir and normal inhibition by zanamivir, which was confirmed phenotypically. There were no other strains with reduced inhibition by oseltamivir and zanamivir in the phenotypic analysis. In order to estimate the worldwide prevalence of influenza A(H5N8) viruses bearing genetic markers of antiviral resistance, genome sequences deposited in the GISAID database were analyzed (database access: October 2020). The M2 protein of A(H5N8) viruses from the 2.3.4.4c clade had an M2-S31N substitution associated with reduced susceptibility to adamantanes. On the contrary, the majority (94%) of viruses from the 2.3.4.4b clade had the M2-S31 genotype. Fewer than 1% of analyzed viruses had amino acid substitutions associated with reduced susceptibility to baloxavir (PA-E199G, PA-E199E/G) or reduced or highly reduced inhibition by neuraminidase inhibitors (NA-R150/152K, NA-I221/222M, NA-I221/222I/M, NA-I221/222V, NA-I115/117V, NA-G145/147R, NA-R291/292R/K). An NA-N293/294S substitution was not present in sequences from the GISAID database. To the best of our knowledge, influenza A(H5N8) viruses with reduced inhibition by oseltamivir bearing an NA-N293/294S substitution have not been previously reported in epidemiological surveillance studies.
Collapse
Affiliation(s)
- Svetlana V Svyatchenko
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation.
| | - Natalia I Goncharova
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Vasiliy Y Marchenko
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Natalia P Kolosova
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Alexander N Shvalov
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Valentina L Kovrizhkina
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Alexander G Durymanov
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Galina S Onkhonova
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Tatyana V Tregubchak
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Ivan M Susloparov
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Andrey S Gudymo
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Tatyana N Ilyicheva
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| | - Alexander B Ryzhikov
- State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk Region, 630559, Russian Federation
| |
Collapse
|
16
|
Antivirals Targeting the Surface Glycoproteins of Influenza Virus: Mechanisms of Action and Resistance. Viruses 2021; 13:v13040624. [PMID: 33917376 PMCID: PMC8067422 DOI: 10.3390/v13040624] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/25/2022] Open
Abstract
Hemagglutinin and neuraminidase, which constitute the glycoprotein spikes expressed on the surface of influenza A and B viruses, are the most exposed parts of the virus and play critical roles in the viral lifecycle. As such, they make prominent targets for the immune response and antiviral drugs. Neuraminidase inhibitors, particularly oseltamivir, constitute the most commonly used antivirals against influenza viruses, and they have proved their clinical utility against seasonal and emerging influenza viruses. However, the emergence of resistant strains remains a constant threat and consideration. Antivirals targeting the hemagglutinin protein are relatively new and have yet to gain global use but are proving to be effective additions to the antiviral repertoire, with a relatively high threshold for the emergence of resistance. Here we review antiviral drugs, both approved for clinical use and under investigation, that target the influenza virus hemagglutinin and neuraminidase proteins, focusing on their mechanisms of action and the emergence of resistance to them.
Collapse
|
17
|
Karnchanapandh K, Hanpaibool C, Mahalapbutr P, Rungrotmongkol T. Source of oseltamivir resistance due to single E276D, R292K, and double E276D/R292K mutations in H10N4 influenza neuraminidase. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Jeong JH, Choi WS, Antigua KJC, Choi YK, Govorkova EA, Webby RJ, Baek YH, Song MS. In Vitro Profiling of Laninamivir-Resistant Substitutions in N3 to N9 Avian Influenza Virus Neuraminidase Subtypes and Their Association with In Vivo Susceptibility. J Virol 2020; 95:e01679-20. [PMID: 33055248 PMCID: PMC7737746 DOI: 10.1128/jvi.01679-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/05/2020] [Indexed: 11/20/2022] Open
Abstract
Laninamivir (LAN) is a long-acting neuraminidase (NA) inhibitor (NAI) with a similar binding profile in the influenza NA enzyme active site as those of other NAIs, oseltamivir (OS), zanamivir (ZAN), and peramivir, and may share common resistance markers with these NAIs. We screened viruses with NA substitutions previously found during OS and ZAN selection in avian influenza viruses (AIVs) of the N3 to N9 subtypes for LAN susceptibility. Of the 72 NA substitutions, 19 conferred resistance to LAN, which ranged from 11.2- to 549.8-fold-decreased inhibitory activity over that of their parental viruses. Ten NA substitutions reduced the susceptibility to all four NAIs, whereas the remaining 26 substitutions yielded susceptibility to one or more NAIs. To determine whether the in vitro susceptibility of multi-NAI-resistant AIVs is associated with in vivo susceptibility, we infected BALB/c mice with recombinant AIVs with R292K (ma81K-N3R292K) or Q136K (ma81K-N8Q136K) NA substitutions, which impart in vitro susceptibility only to LAN or OS, respectively. Both ma81K-N3R292K and ma81K-N8Q136K virus-infected mice exhibited reduced weight loss, mortality, and lung viral titers when treated with their susceptible NAIs, confirming the in vitro susceptibility of these substitutions. Together, LAN resistance profiling of AIVs of a range of NA subtypes improves the understanding of NAI resistance mechanisms. Furthermore, the association of in vitro and in vivo NAI susceptibility indicates that our models are useful tools for monitoring NAI susceptibility of AIVs.IMPORTANCE The chemical structures of neuraminidase inhibitors (NAIs) possess similarities, but slight differences can result in variable susceptibility of avian influenza viruses (AIVs) carrying resistance-associated NA substitutions. Therefore, comprehensive susceptibility profiling of these substitutions in AIVs is critical for understanding the mechanism of antiviral resistance. In this study, we profiled resistance to the anti-influenza drug laninamivir in AIVs with substitutions known to impart resistance to other NAIs. We found 10 substitutions that conferred resistance to all four NAIs tested. On the other hand, we found that the remaining 26 NA substitutions were susceptible to at least one or more NAIs and showed for a small selection that in vitro data predicted in vivo behavior. Therefore, our findings highlight the usefulness of screening resistance markers in NA enzyme inhibition assays and animal models of AIV infections.
Collapse
Affiliation(s)
- Ju Hwan Jeong
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Won-Suk Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Khristine Joy C Antigua
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Young Ki Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yun Hee Baek
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Min-Suk Song
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| |
Collapse
|
19
|
Identification and Screening of Natural Neuraminidase Inhibitors from Reduning Injection via One-Step High-Performance Liquid Chromatography-Fraction Collector and UHPLC/Q-TOF-MS. Int J Anal Chem 2020. [DOI: 10.1155/2020/8838025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neuraminidase plays an essential role in the spread of influenza viruses via cleaving sialic acids from the host cell receptors and virions. Neuraminidase has been regarded as an essential target for prevention and treatment of influenza infection. The one-step high-performance liquid chromatography-fraction collector (HPLC-FC) was selected to prepare fractions from Reduning (RDN) injection, while ultra-high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) was used to identify fractions depending on their retention time and molecular ion. As a result, 75 fractions were prepared and 28 fractions out of them exhibited NA inhibitory effects with the dose-effect relationship. Exploring it further, six components including neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, isochlorogenic acid B, isochlorogenic acid A, and isochlorogenic acid C were the main components that accounted for almost 80% of inhibitory activity of RDN injection. Accordingly, these results demonstrated that this strategy could not only rapidly identify but also accurately screen active components from traditional Chinese medicine.
Collapse
|
20
|
Bialy D, Shelton H. Functional neuraminidase inhibitor resistance motifs in avian influenza A(H5Nx) viruses. Antiviral Res 2020; 182:104886. [PMID: 32750468 PMCID: PMC7534037 DOI: 10.1016/j.antiviral.2020.104886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Neuraminidase inhibitors (NAIs) are antiviral agents recommended worldwide to treat or prevent influenza virus infections in humans. Past influenza virus pandemics seeded by zoonotic infection by avian influenza viruses (AIV) as well as the increasing number of human infections with AIV have shown the importance of having information about resistance to NAIs by avian NAs that could cross the species barrier. In this study we introduced four NAI resistance-associated mutations (N2 numbering) previously found in human infections into the NA of three current AIV subtypes of the H5Nx genotype that threaten the poultry industry and human health: highly pathogenic H5N8, H5N6 and H5N2. Using the established MUNANA assay we showed that a R292K substitution in H5N6 and H5N2 viruses significantly reduced susceptibility to three licenced NAIs: oseltamivir, zanamivir and peramivir. In contrast the mutations E119V, H274Y and N294S had more variable effects with NAI susceptibility being drug- and strain-specific. We measured the replicative fitness of NAI resistant H5N6 viruses and found that they replicated to comparable or significantly higher titres in primary chicken cells and in embryonated hens' eggs as compared to wild type - despite the NA activity of the viral neuraminidase proteins being reduced. The R292K and N294S drug resistant H5N6 viruses had single amino acid substitutions in their haemagglutinin (HA): Y98F and A189T, respectively (H3 numbering) which reduced receptor binding properties possibly balancing the reduced NA activity seen. Our results demonstrate that the H5Nx viruses can support drug resistance mutations that confer reduced susceptibility to licenced NAIs and that these H5N6 viruses did not show diminished replicative fitness in avian cell cultures. Our results support the requirement for on-going surveillance of these strains in bird populations to include motifs associated with human drug resistance.
Collapse
|
21
|
Guk K, Kim H, Lee M, Choi YA, Hwang SG, Han G, Kim HN, Kim H, Park H, Yong D, Kang T, Lim EK, Jung J. Development of A4 antibody for detection of neuraminidase I223R/H275Y-associated antiviral multidrug-resistant influenza virus. Nat Commun 2020; 11:3418. [PMID: 32647286 PMCID: PMC7347576 DOI: 10.1038/s41467-020-17246-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/11/2020] [Indexed: 11/08/2022] Open
Abstract
The emergence and spread of antiviral drug-resistant viruses have been a worldwide challenge and a great concern for patient care. We report A4 antibody specifically recognizing and binding to the mutant I223R/H275Y neuraminidase and prove the applicability of A4 antibody for direct detection of antiviral multidrug-resistant viruses in various sensing platforms, including naked-eye detection, surface-enhanced Raman scattering-based immunoassay, and lateral flow system. The development of the A4 antibody enables fast, simple, and reliable point-of-care assays of antiviral multidrug-resistant influenza viruses. In addition to current influenza virus infection testing methods that do not provide information on the antiviral drug-resistance of the virus, diagnostic tests for antiviral multidrug-resistant viruses will improve clinical judgment in the treatment of influenza virus infections, avoid the unnecessary prescription of ineffective drugs, and improve current therapies.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibody Affinity/immunology
- Antigens, Viral/metabolism
- Body Fluids/virology
- DNA Mutational Analysis
- Dogs
- Drug Resistance, Multiple/immunology
- Drug Resistance, Viral/immunology
- Epitopes/chemistry
- Epitopes/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/enzymology
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/enzymology
- Influenza A Virus, H3N2 Subtype/immunology
- Madin Darby Canine Kidney Cells
- Molecular Docking Simulation
- Mutation/genetics
- Neuraminidase/genetics
- Optical Imaging
- Protein Binding
- Spectrum Analysis, Raman
Collapse
Affiliation(s)
- Kyeonghye Guk
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hyeran Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Miyeon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoon-Aa Choi
- BioNano Health Guard Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seul Gee Hwang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Gaon Han
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hye-Nan Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hongki Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul, 05006, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
22
|
Shi WZ, Jiang LZ, Song GP, Wang S, Xiong P, Ke CW. Study on the Antiviral Activities and Hemagglutinin-Based Molecular Mechanism of Novel Chlorogenin 3- O-β-Chacotrioside Derivatives Against H5N1 Subtype Viruses. Viruses 2020; 12:E304. [PMID: 32168921 PMCID: PMC7150989 DOI: 10.3390/v12030304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 12/27/2022] Open
Abstract
The objective of this study was to investigate the inhibitory effect of chlorogenin 3-O-β-chacotrioside derivatives against H5N1 subtype of the highly pathogenic avian influenza (HPAI) viruses and its molecular mechanism. A series of novel small molecule pentacyclic triterpene derivatives were designed and synthesized and their antiviral activities on HPAI H5N1 viruses were detected. The results displayed that the derivatives UA-Nu-ph-5, XC-27-1 and XC-27-2 strongly inhibited wild-type A/Duck/Guangdong/212/2004 H5N1 viruses with the IC50 values of 15.59 ± 2.4 μM, 16.83 ± 1.45 μM, and 12.45 ± 2.27 μM, respectively, and had the selectivity index (SI) > 3, which was consistent with the efficacy against A/Thailand/kan353/2004 pseudo-typed viruses. Four dealt patterns were compared via PRNT. The prevention dealt pattern showed the strongest inhibitory effects than other patterns, suggesting that these derivatives act on the entry process at the early stages of H5N1 viral infection, providing protection for cells against infection. Further studies through hemagglutinin inhibition (HI) and neuraminidase inhibitory (NAI) assay confirmed that these derivatives inhibited H5N1 virus replication by interfering with the viral hemagglutinin function. The derivatives could recognize specifically HA protein with binding affinity constant KD values of 2.57 × 10-4 M and 3.67 × 10-4 M. In addition, through site-directed mutagenesis combined with a pseudovirion system, we identified that the high-affinity docking sites underlying interaction were closely associated with amino acid residues I391 and T395 of HA. However, the potential binding sites of the derivatives with HA did not locate at HA1 sialic acids receptor binding domain (RBD). Taken together, these study data manifested that chlorogenin 3-O-β-chacotrioside derivatives generated antiviral effect against HPAI H5N1 viruses by targeting the hemagglutinin fusion machinery.
Collapse
Affiliation(s)
- Wan-Zhen Shi
- Department of Pharmaceutical Engineering, South China Agricultural University, Guangzhou 510640, China; (W.-Z.S.); (G.-P.S.)
| | - Ling-Zhi Jiang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Gao-Peng Song
- Department of Pharmaceutical Engineering, South China Agricultural University, Guangzhou 510640, China; (W.-Z.S.); (G.-P.S.)
| | - Sheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Ping Xiong
- Department of Pharmaceutical Engineering, South China Agricultural University, Guangzhou 510640, China; (W.-Z.S.); (G.-P.S.)
| | - Chang-Wen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China;
| |
Collapse
|
23
|
Host Innate Immune Response of Geese Infected with Clade 2.3.4.4 H5N6 Highly Pathogenic Avian Influenza Viruses. Microorganisms 2020; 8:microorganisms8020224. [PMID: 32046051 PMCID: PMC7074872 DOI: 10.3390/microorganisms8020224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 11/16/2022] Open
Abstract
Since 2014, highly pathogenic avian influenza (HPAI) H5N6 viruses have circulated in waterfowls and caused human infections in China, posing significant threats to the poultry industry and the public health. However, the genetics, pathogenicity and innate immune response of H5N6 HPAIVs in geese remain largely unknown. In this study, we analyzed the genetic characteristic of the two H5N6 viruses (GS38 and DK09) isolated from apparently healthy domestic goose and duck in live poultry markets (LPMs) of Southern China in 2016. Phylogenetic analysis showed that the HA genes of the two H5N6 viruses belonged to clade 2.3.4.4 and were clustered into the MIX-like group. The MIX-like group viruses have circulated in regions such as China, Japan, Korea, and Vietnam. The NA genes of the two H5N6 viruses were classified into the Eurasian sublineage. The internal genes including PB2, PB1, PA, NP, M, and NS of the two H5N6 viruses derived from the MIX-like. Therefore, our results suggested that the two H5N6 viruses were reassortants of the H5N1 and H6N6 viruses and likely derived from the same ancestor. Additionally, we evaluated the pathogenicity and transmission of the two H5N6 viruses in domestic geese. Results showed that both the two viruses caused serious clinical symptoms in all inoculated geese and led to high mortality in these birds. Both the two viruses were transmitted efficiently to contact geese and caused lethal infection in these birds. Furthermore, we found that mRNA of pattern recognition receptors (PRRs), interferons (IFNs), and stimulated genes (ISGs) exhibited different levels of activation in the lungs and spleens of the two H5N6 viruses-inoculated geese though did not protect these birds from H5N6 HPAIVs infection. Our results suggested that the clade 2.3.4.4 waterfowl-origin H5N6 HPAIVs isolated from LPMs of Southern China could cause high mortality in geese and innate immune-related genes were involved in the geese innate immune response to H5N6 HPAIVs infection. Therefore, we should pay more attention to the evolution, pathogenic variations of these viruses and enhance virological surveillance of clade 2.3.4.4 H5N6 HPAIVs in waterfowls in China.
Collapse
|
24
|
Dong Z, Ya X, Wang D, Liu C, Shen Q, Xia Y. Genetic Characterization of a Novel Reassortant H5N6 Avian Influenza Virus Identified from a 10-Year-Old Girl. Jpn J Infect Dis 2020; 73:36-43. [DOI: 10.7883/yoken.jjid.2019.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Zefeng Dong
- Suzhou Center for Disease Prevention and Control
| | - Xuerong Ya
- Suzhou Center for Disease Prevention and Control
| | - Di Wang
- Suzhou Center for Disease Prevention and Control
| | - Cheng Liu
- Suzhou Center for Disease Prevention and Control
| | - Qiang Shen
- Suzhou Center for Disease Prevention and Control
| | - Yu Xia
- Suzhou Center for Disease Prevention and Control
| |
Collapse
|
25
|
Tepper V, Nykvist M, Gillman A, Skog E, Wille M, Lindström HS, Tang C, Lindberg RH, Lundkvist Å, Järhult JD. Influenza A/H4N2 mallard infection experiments further indicate zanamivir as less prone to induce environmental resistance development than oseltamivir. J Gen Virol 2019; 101:816-824. [PMID: 31855133 DOI: 10.1099/jgv.0.001369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neuraminidase inhibitors (NAIs) are the gold standard treatment for influenza A virus (IAV). Oseltamivir is mostly used, followed by zanamivir (ZA). NAIs are not readily degraded in conventional wastewater treatment plants and can be detected in aquatic environments. Waterfowl are natural IAV hosts and replicating IAVs could thus be exposed to NAIs in the environment and develop resistance. Avian IAVs form the genetic basis for new human IAVs, and a resistant IAV with pandemic potential poses a serious public health threat, as NAIs constitute a pandemic preparedness cornerstone. Resistance development in waterfowl IAVs exposed to NAIs in the water environment has previously been investigated in an in vivo mallard model and resistance development was demonstrated in several avian IAVs after the exposure of infected ducks to oseltamivir, and in an H1N1 IAV after exposure to ZA. The N1 and N2 types of IAVs have different characteristics and resistance mutations, and so the present study investigated the exposure of an N2-type IAV (H4N2) in infected mallards to 1, 10 and 100 µg l-1 of ZA in the water environment. Two neuraminidase substitutions emerged, H274N (ZA IC50 increased 5.5-fold) and E119G (ZA IC50 increased 110-fold) at 10 and 100 µg l-1 of ZA, respectively. Reversion towards wild-type was observed for both substitutions in experiments with removed drug pressure, indicating reduced fitness of both resistant viruses. These results corroborate previous findings that the development of resistance to ZA in the environment seems less likely to occur than the development of resistance to oseltamivir, adding information that is useful in planning for prudent drug use and pandemic preparedness.
Collapse
Affiliation(s)
- Viktoria Tepper
- Institute of Environmental Engineering, ETH Zürich, Switzerland.,Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Marie Nykvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna Gillman
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Erik Skog
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Michelle Wille
- Present address: WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hanna Söderström Lindström
- Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, Umeå University, Umeå, Sweden
| | - Chaojun Tang
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Suttie A, Deng YM, Greenhill AR, Dussart P, Horwood PF, Karlsson EA. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes 2019; 55:739-768. [PMID: 31428925 PMCID: PMC6831541 DOI: 10.1007/s11262-019-01700-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Avian influenza viruses (AIVs) circulate globally, spilling over into domestic poultry and causing zoonotic infections in humans. Fortunately, AIVs are not yet capable of causing sustained human-to-human infection; however, AIVs are still a high risk as future pandemic strains, especially if they acquire further mutations that facilitate human infection and/or increase pathogenesis. Molecular characterization of sequencing data for known genetic markers associated with AIV adaptation, transmission, and antiviral resistance allows for fast, efficient assessment of AIV risk. Here we summarize and update the current knowledge on experimentally verified molecular markers involved in AIV pathogenicity, receptor binding, replicative capacity, and transmission in both poultry and mammals with a broad focus to include data available on other AIV subtypes outside of A/H5N1 and A/H7N9.
Collapse
Affiliation(s)
- Annika Suttie
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
- School of Health and Life Sciences, Federation University, Churchill, Australia
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yi-Mo Deng
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andrew R Greenhill
- School of Health and Life Sciences, Federation University, Churchill, Australia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia.
| |
Collapse
|
27
|
Source of oseltamivir resistance due to single E119D and double E119D/H274Y mutations in pdm09H1N1 influenza neuraminidase. J Comput Aided Mol Des 2019; 34:27-37. [PMID: 31773463 DOI: 10.1007/s10822-019-00251-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 11/09/2019] [Indexed: 12/24/2022]
Abstract
Influenza epidemics are responsible for an average of 3-5 millions of severe cases and up to 500,000 deaths around the world. One of flu pandemic types is influenza A(H1N1)pdm09 virus (pdm09H1N1). Oseltamivir is the antiviral drug used to treat influenza targeting at neuraminidase (NA) located on the viral surface. Influenza virus undergoes high mutation rates and leads to drug resistance, and thus the development of more efficient drugs is required. In the present study, all-atom molecular dynamics simulations were applied to understand the oseltamivir resistance caused by the single E119D and double E119D/H274Y mutations on NA. The obtained results in terms of binding free energy and intermolecular interactions in the ligand-protein interface showed that the oseltamivir could not be well accommodated in the binding pocket of both NA mutants and the 150-loop moves out from oseltamivir as an "open" state. A greater number of water molecules accessible to the binding pocket could disrupt the oseltamivir binding with NA target as seen be high mobility of oseltamivir at the active site. Additionally, our finding could guide to the design and development of novel NA inhibitor drugs.
Collapse
|
28
|
Eom G, Hwang A, Kim H, Yang S, Lee DK, Song S, Ha K, Jeong J, Jung J, Lim EK, Kang T. Diagnosis of Tamiflu-Resistant Influenza Virus in Human Nasal Fluid and Saliva Using Surface-Enhanced Raman Scattering. ACS Sens 2019; 4:2282-2287. [PMID: 31407570 DOI: 10.1021/acssensors.9b00697] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Influenza viruses cause respiratory infection, spread through respiratory secretions, and are shed into the nasal secretion and saliva specimens. Therefore, nasal fluid and saliva are effective clinical samples for the diagnosis of influenza virus-infected patients. Although several methods have been developed to detect various types of influenza viruses, approaches for detecting mutant influenza viruses in clinical samples are rarely reported. Herein, we report for the first time a surface-enhanced Raman scattering (SERS)-based sensing platform for oseltamivir-resistant pandemic H1N1 (pH1N1) virus detection in human nasal fluid and saliva. By combining SERS-active urchin Au nanoparticles and oseltamivir hexylthiol, an excellent receptor for the pH1N1/H275Y mutant virus, we detected the pH1N1/H275Y virus specifically and sensitively in human saliva and nasal fluid samples. Considering that the current influenza virus infection testing methods do not provide information on the antiviral drug resistance of the virus, the proposed SERS-based diagnostic test for the oseltamivir-resistant virus will inform clinical decisions about the treatment of influenza virus infections, avoiding the unnecessary prescription of ineffective drugs and greatly improving therapy.
Collapse
Affiliation(s)
- Gayoung Eom
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Ahreum Hwang
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | | | - Siyeong Yang
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | | | | | | | - Jinyoung Jeong
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea
| | - Juyeon Jung
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea
| | - Eun-Kyung Lim
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea
| | - Taejoon Kang
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea
| |
Collapse
|
29
|
Oh DY, Panozzo J, Vitesnik S, Farrukee R, Piedrafita D, Mosse J, Hurt AC. Selection of multi-drug resistant influenza A and B viruses under zanamivir pressure and their replication fitness in ferrets. Antivir Ther 2019; 23:295-306. [PMID: 28195559 DOI: 10.3851/imp3135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Intravenous zanamivir has been used to treat patients with severe influenza. Because the majority of cases (including immunocompromised patients) require the drug for an extended period of treatment, there is a higher risk that the virus will develop resistance. Therefore, knowing the possible amino acid substitutions that may arise in recently circulating influenza strains under prolonged zanamivir exposure and their impact on antiviral susceptibility is important. METHODS Influenza A(H1N1)pdm09, A(H3N2) and B virus were serially passaged under increasing zanamivir pressure in vitro. Neuraminidase (NA) mutations that arose were introduced into recombinant viruses and the susceptibility to oseltamivir, zanamivir, peramivir and laninamivir was determined. The replication fitness of the recombinant variants was assessed in the ferret. RESULTS NA mutations E119D (N1 numbering) and E117D (B numbering) were detected in A(H1N1)pdm09 and B (Victoria-lineage) viruses respectively and were associated with reduced susceptibility to all four NA inhibitors. No NA mutations were detected in the A(H3N2) or B (Yamagata-lineage) viruses. In ferrets, the A(H1N1)pdm09 E119D variant caused a lower degree of morbidity and the mutation was found to be unstable with E119 reverted virus detected 4 days post-infection of ferrets with the variant E119D virus. In contrast, the influenza B E117D variant was genetically stable in ferrets, caused a noticeable level of morbidity but had a significant reduction in replication fitness compared to wild-type virus. CONCLUSIONS The NA mutations E119D in influenza A(H1N1)pdm09 and E117D in influenza B viruses that arose under zanamivir pressure conferred resistance to multiple NA inhibitors but had compromised viral replication in ferrets compared to wild-type virus without antiviral drug pressure.
Collapse
Affiliation(s)
- Ding Yuan Oh
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,School of Applied and Biomedical Sciences, Federation University, Churchill, Australia
| | - Jacqueline Panozzo
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,School of Applied and Biomedical Sciences, Federation University, Churchill, Australia
| | - Sophie Vitesnik
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Rubaiyea Farrukee
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David Piedrafita
- School of Applied and Biomedical Sciences, Federation University, Churchill, Australia
| | - Jennifer Mosse
- School of Applied and Biomedical Sciences, Federation University, Churchill, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Melbourne School of Population and Global Health, University of Melbourne, Parkville, Australia
| |
Collapse
|
30
|
Complete genome sequence of a novel reassortant H3N3 avian influenza virus. Arch Virol 2019; 164:2881-2885. [PMID: 31456087 DOI: 10.1007/s00705-019-04386-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
Abstract
Aquatic birds are known to be a reservoir for the most common influenza A viruses (IAVs). In the annual surveillance program, we collected the feces of migratory birds for the detection of IAVs in South Korea in November 2016. A novel reassorted H3N3 avian influenza virus (AIV) containing genes from viruses of wild and domestic birds was identified and named A/aquatic bird/South Korea/sw006/2016(H3N3). The polymerase basic 2 (PB2) and non-structural (NS) genes of this isolate are most closely related to those of wild-bird-origin AIV, while the polymerase basic 1 (PB1), polymerase acidic (PA), hemagglutinin (HA), nucleoprotein (NP), neuraminidase (NA), and matrix (M) genes are most closely related to those of domestic-bird-origin AIV. A/aquatic bird/South Korea/sw006/2016 contains PA, NP, M, and NS genes were most closely related to those of AIV subtype H4 and PB2, PB1, and HA genes that are most closely related to those of AIV subtype H3N8, while the NA gene was most closely related to those of subtype H10, which was recently detected in humans in China. These results suggest that novel reassortment of AIV strains occurred due to interaction between wild and domestic birds. Hence, we emphasize the need for continued surveillance of avian influenza virus in bird populations.
Collapse
|
31
|
Kiso M, Lopes TJS, Yamayoshi S, Ito M, Yamashita M, Nakajima N, Hasegawa H, Neumann G, Kawaoka Y. Combination Therapy With Neuraminidase and Polymerase Inhibitors in Nude Mice Infected With Influenza Virus. J Infect Dis 2019; 217:887-896. [PMID: 29186472 DOI: 10.1093/infdis/jix606] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/23/2017] [Indexed: 12/24/2022] Open
Abstract
Background Treatment of immunocompromised, influenza virus-infected patients with the viral neuraminidase inhibitor oseltamivir often leads to the emergence of drug-resistant variants. Combination therapy with compounds that target different steps in the viral life cycle may improve treatment outcomes and reduce the emergence of drug-resistant variants. Methods Here, we infected immunocompromised nude mice with an influenza A virus and treated them with neuraminidase (oseltamivir, laninamivir) or viral polymerase (favipiravir) inhibitors, or combinations thereof. Results Combination therapy for 28 days increased survival times compared with monotherapy, but the animals died after treatment was terminated. Mono- and combination therapies did not consistently reduce lung virus titers. Prolonged viral replication led to the emergence of neuraminidase inhibitor-resistant variants, although viruses remained sensitive to favipiravir. Overall, favipiravir provided greater benefit than neuraminidase inhibitors. Conclusions Collectively, our data demonstrate that combination therapy in immunocompromised hosts increases survival times, but does not suppress the emergence of neuraminidase inhibitor-resistant variants.
Collapse
Affiliation(s)
- Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Tiago J S Lopes
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Mutsumi Ito
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Makoto Yamashita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Tokyo
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison.,ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
32
|
Kode SS, Pawar SD, Tare DS, Keng SS, Hurt AC, Mullick J. A novel I117T substitution in neuraminidase of highly pathogenic avian influenza H5N1 virus conferring reduced susceptibility to oseltamivir and zanamivir. Vet Microbiol 2019; 235:21-24. [PMID: 31282375 DOI: 10.1016/j.vetmic.2019.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
Occurrence of avian influenza (AI) with Neuraminidase (NA) mutations which confer reduced neuraminidase inhibitor (NAI) susceptibility has remained a cause of concern. The susceptibility to NAIs of 67 highly pathogenic avian influenza H5N1 viruses isolated during 2006-2012 in India was tested in phenotypic fluorescence-based NA inhibition assay, sequence analysis and in ovo. One isolate showed a novel NA I117T amino acid substitution (N2 numbering) and eight isolates showed previously known NAI-resistance marker mutations (I117V, E119D, N294S, total 9/67). The overall incidence of resistant variants was 13.4%. The novel I117T substitution reduced oseltamivir susceptibility by 18.6-fold and zanamivir susceptibility by 11.8-fold, compared to the wild type AI H5N1virus, thus showed cross-resistance to both oseltamivir and zanamivir in NA inhibition assays. However, the other two isolates with I117V substitution were sensitive to both the NAIs. In addition, the comparison of growth of the I117T and I117V variants in presence of NAI's in the in ovo assays exhibited difference in growth levels. The present study reports the natural occurrence of a novel I117T mutation in AI H5N1 virus conferring cross-resistance to oseltamivir and zanamivir highlighting the urgent need of antiviral surveillance of AI viruses.
Collapse
Affiliation(s)
- Sadhana S Kode
- Avian Influenza Group, Microbial Containment Complex, ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune 411021, India
| | - Shailesh D Pawar
- Avian Influenza Group, Microbial Containment Complex, ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune 411021, India.
| | - Deeksha S Tare
- Avian Influenza Group, Microbial Containment Complex, ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune 411021, India
| | - Sachin S Keng
- Avian Influenza Group, Microbial Containment Complex, ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune 411021, India
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza (VIDRL), Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Jayati Mullick
- Avian Influenza Group, Microbial Containment Complex, ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune 411021, India
| |
Collapse
|
33
|
Abstract
Outbreaks of severe virus infections with the potential to cause global pandemics are increasing. In many instances these outbreaks have been newly emerging (SARS coronavirus), re-emerging (Ebola virus, Zika virus) or zoonotic (avian influenza H5N1) virus infections. In the absence of a targeted vaccine or a pathogen-specific antiviral, broad-spectrum antivirals would function to limit virus spread. Given the direct antiviral effects of type I interferons (IFNs) in inhibiting the replication of both DNA and RNA viruses at different stages of their replicative cycles, and the effects of type I IFNs on activating immune cell populations to clear virus infections, IFNs-α/β present as ideal candidate broad-spectrum antivirals.
Collapse
Affiliation(s)
- Ben X Wang
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Eleanor N Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada; Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
34
|
In Vitro and In Vivo Characterization of Novel Neuraminidase Substitutions in Influenza A(H1N1)pdm09 Virus Identified Using Laninamivir-Mediated In Vitro Selection. J Virol 2019; 93:JVI.01825-18. [PMID: 30602610 DOI: 10.1128/jvi.01825-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/01/2018] [Indexed: 12/25/2022] Open
Abstract
Neuraminidase (NA) inhibitors (NAIs) are widely used antiviral drugs for the treatment of humans with influenza virus infections. There have been widespread reports of NAI resistance among seasonal A(H1N1) viruses, and most have been identified in oseltamivir-exposed patients or those treated with other NAIs. Thus, monitoring and identifying NA markers conferring resistance to NAIs-particularly newly introduced treatments-are critical to the management of viral infections. Therefore, we screened and identified substitutions conferring resistance to laninamivir by enriching random mutations in the NA gene of the 2009 pandemic influenza [A(H1N1)pdm09] virus followed by deep sequencing of the laninamivir-selected variants. After the generation of single mutants possessing each identified mutation, two A(H1N1)pdm09 recombinants possessing novel NA gene substitutions (i.e., D199E and P458T) were shown to exhibit resistance to more than one NAI. Of note, mutants possessing P458T-which is located outside of the catalytic or framework residue of the NA active site-exhibited highly reduced inhibition by all four approved NAIs. Using MDCK cells, we observed that the in vitro viral replication of the two recombinants was lower than that of the wild type (WT). Additionally, in infected mice, decreased mortality and/or mean lung viral titers were observed in mutants compared with the WT. Reverse mutations to the WT were observed in lung homogenate samples from D199E-infected mice after 3 serial passages. Overall, the novel NA substitutions identified could possibly emerge in influenza A(H1N1)pdm09 viruses during laninamivir therapy and the viruses could have altered NAI susceptibility, but the compromised in vitro/in vivo viral fitness may limit viral spreading.IMPORTANCE With the widespread emergence of NAI-resistant influenza virus strains, continuous monitoring of mutations that confer antiviral resistance is needed. Laninamivir is the most recently approved NAI in several countries; few data exist related to the in vitro selection of viral mutations conferring resistance to laninamivir. Thus, we screened and identified substitutions conferring resistance to laninamivir by random mutagenesis of the NA gene of the 2009 pandemic influenza [A(H1N1)pdm09] virus strain followed by deep sequencing of the laninamivir-selected variants. We found several novel substitutions in NA (D199E and P458T) in an A(H1N1)pdm09 background which conferred resistance to NAIs and which had an impact on viral fitness. Our study highlights the importance of continued surveillance for potential antiviral-resistant variants and the development of alternative therapeutics.
Collapse
|
35
|
Kwon JJ, Choi WS, Jeong JH, Kim EH, Lee OJ, Yoon SW, Hwang J, Webby RJ, Govorkova EA, Choi YK, Baek YH, Song MS. An I436N substitution confers resistance of influenza A(H1N1)pdm09 viruses to multiple neuraminidase inhibitors without affecting viral fitness. J Gen Virol 2019; 99:292-302. [PMID: 29493493 DOI: 10.1099/jgv.0.001029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The resistance of influenza viruses to neuraminidase (NA) inhibitors (NAIs; i.e. oseltamivir, zanamivir, peramivir and laninamivir) can be associated with several NA substitutions, with differing effects on viral fitness. To identify novel molecular markers conferring multi-NAI resistance, the NA gene of oseltamivir-resistant (H275Y, N1 numbering) 2009 pandemic influenza [A(H1N1)pdm09] virus was enriched with random mutations. This randomly mutated viral library was propagated in Madin-Darby canine kidney (MDCK) cells under zanamivir pressure and gave rise to additional changes within NA, including an I436N substitution located outside the NA enzyme active site. We generated four recombinant A(H1N1)pdm09 viruses containing either wild-type NA or NA with single (I436N or H275Y) or double (H275Y-I436N) substitutions. The double H275Y-I436N mutation significantly reduced inhibition by oseltamivir and peramivir and reduced inhibition by zanamivir and laninamivir. I436N alone reduced inhibition by all NAIs, suggesting that it is a multi-NAI resistance marker. I436N did not affect viral fitness in vitro or in a murine model; however, H275Y and I436N together had a negative impact on viral fitness. Further, I436N alone did not have an appreciable impact on viral replication in the upper respiratory tract or transmissibility in ferrets. However, the rg-H275Y-I436N double mutant transmitted less efficiently than either single mutant via the direct contact and respiratory droplet routes in ferrets. Overall, these results highlight the usefulness of a random mutagenesis approach for identifying potential molecular markers of resistance and the importance of I436N NA substitution in A(H1N1)pdm09 virus as a marker for multi-NAI resistance.
Collapse
Affiliation(s)
- Jin Jung Kwon
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Won-Suk Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Ju Hwan Jeong
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Ok-Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Sun-Woo Yoon
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jungwon Hwang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Elena A Govorkova
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Yun Hee Baek
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
36
|
Eom G, Hwang A, Lee DK, Guk K, Moon J, Jeong J, Jung J, Kim B, Lim EK, Kang T. Superb Specific, Ultrasensitive, and Rapid Identification of the Oseltamivir-Resistant H1N1 Virus: Naked-Eye and SERS Dual-Mode Assay Using Functional Gold Nanoparticles. ACS APPLIED BIO MATERIALS 2019; 2:1233-1240. [DOI: 10.1021/acsabm.8b00807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gayoung Eom
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Ahreum Hwang
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Do Kyung Lee
- BioNano Health Guard Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Kyeonghye Guk
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea
| | - Jeong Moon
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jinyoung Jeong
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea
- Environmental Disease Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea
| | - Bongsoo Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea
| |
Collapse
|
37
|
Mostafa A, Abdelwhab EM, Mettenleiter TC, Pleschka S. Zoonotic Potential of Influenza A Viruses: A Comprehensive Overview. Viruses 2018; 10:v10090497. [PMID: 30217093 PMCID: PMC6165440 DOI: 10.3390/v10090497] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/24/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023] Open
Abstract
Influenza A viruses (IAVs) possess a great zoonotic potential as they are able to infect different avian and mammalian animal hosts, from which they can be transmitted to humans. This is based on the ability of IAV to gradually change their genome by mutation or even reassemble their genome segments during co-infection of the host cell with different IAV strains, resulting in a high genetic diversity. Variants of circulating or newly emerging IAVs continue to trigger global health threats annually for both humans and animals. Here, we provide an introduction on IAVs, highlighting the mechanisms of viral evolution, the host spectrum, and the animal/human interface. Pathogenicity determinants of IAVs in mammals, with special emphasis on newly emerging IAVs with pandemic potential, are discussed. Finally, an overview is provided on various approaches for the prevention of human IAV infections.
Collapse
Affiliation(s)
- Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Giza 12622, Egypt.
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
| |
Collapse
|
38
|
Rapid and simple detection of Tamiflu-resistant influenza virus: Development of oseltamivir derivative-based lateral flow biosensor for point-of-care (POC) diagnostics. Sci Rep 2018; 8:12999. [PMID: 30158601 PMCID: PMC6115449 DOI: 10.1038/s41598-018-31311-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/16/2018] [Indexed: 01/16/2023] Open
Abstract
We have developed a novel oseltamivir derivative (oseltamivir hexylthiol; OHT) that exhibits a higher binding affinity for Tamiflu-resistant virus (Tamiflu resistance) than for the wild-type virus (Tamiflu-susceptible virus; WT) as an antibody. First, OHT-modified gold nanoparticles (OHT-GNPs) are used in a simple colorimetric assay as nanoprobes for the Tamiflu-resistant virus. In the presence of Tamiflu-resistant virus, they show a colorimetric change from deep red to purple because of the OHT-GNP aggregation driven by strong interactions between OHT and neuraminidase (NA) on the surface of the Tamiflu-resistance. Moreover, the color gradually turns purple as the concentration of the Tamiflu-resistant virus increases, allowing the determination of the presence of the virus with the naked eye. Furthermore, an OHT-based lateral flow assay (LFA) has been developed as a rapid and easy detection device for Tamiflu resistance. It shows detection specificity for various virus concentrations of Tamiflu-resistant virus even for the mixture of WT and Tamiflu-resistant viruses, where the limit of detection (LOD) is 5 × 102 ~ 103 PFU per test (=1 × 104 PFU/mL). It has been confirmed that this platform can provide accurate information on whether a virus exhibits Tamiflu resistance, thus supporting the selection of appropriate treatments using point-of-care (POC) diagnostics.
Collapse
|
39
|
Sood R, Kumar N, Bhatia S, Chanu KV, Gupta CL, Pateriya AK, Mishra A, Khandia R, Mawale N, Singh VP. Neuraminidase inhibitors susceptibility profiles of highly pathogenic influenza A (H5N1) viruses isolated from avian species in India (2006-2015). Antiviral Res 2018; 158:143-146. [PMID: 30125616 DOI: 10.1016/j.antiviral.2018.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 11/29/2022]
Abstract
We tested 65 highly pathogenic avian influenza (HPAI) A(H5N1) viruses, isolated from avian species in India between 2006 and 2015, for susceptibility to the FDA approved neuraminidase (NA) inhibitors (NAIs), oseltamivir and zanamivir using a phenotypic fluorescence-based assay. The overall incidence of resistant variants among HPAI A(H5N1) viruses was 7.69% (5/65). The NA inhibition assay identified 3 viruses resistant to oseltamivir (N294S substitution, N2 numbering) and 2 cross-resistant to oseltamivir and zanamivir (E119A or I117V+E119A substitutions), all of which belonged to hemagglutinin (HA) clade 2.2 (5/17) and predominantly circulated in Indian poultry during 2006-2010. In comparison to E119A substitution alone, viruses with I117V+E119A double substitutions showed greater reduction in susceptibility to both oseltamivir and zanamivir. The NAI resistance-associated NA markers, identified in this study, were as a result of naturally occurring mutations. Of note, 48 viruses of HA clade 2.3.2.1 that circulated in Indian poultry during 2011-2015 were susceptible to both oseltamivir and zanamivir. It is essential to monitor NAI susceptibility among human and avian HPAI A(H5N1) viruses that would provide baseline data to develop strategies for pandemic preparedness and therapeutic interventions.
Collapse
Affiliation(s)
- Richa Sood
- ICAR- National Institute of High Security Animal Diseases, Anand Nagar, Bhopal 462022, Madhya Pradesh, India.
| | - Naveen Kumar
- ICAR- National Institute of High Security Animal Diseases, Anand Nagar, Bhopal 462022, Madhya Pradesh, India
| | - Sandeep Bhatia
- ICAR- National Institute of High Security Animal Diseases, Anand Nagar, Bhopal 462022, Madhya Pradesh, India
| | - Khangembam Victoria Chanu
- ICAR- National Institute of High Security Animal Diseases, Anand Nagar, Bhopal 462022, Madhya Pradesh, India
| | - Chhedi Lal Gupta
- Department of Computer Science, University College London, Gower Street, WC1E 6BT, London, UK
| | - Atul Kumar Pateriya
- ICAR- National Institute of High Security Animal Diseases, Anand Nagar, Bhopal 462022, Madhya Pradesh, India
| | - Anamika Mishra
- ICAR- National Institute of High Security Animal Diseases, Anand Nagar, Bhopal 462022, Madhya Pradesh, India
| | - Rekha Khandia
- ICAR- National Institute of High Security Animal Diseases, Anand Nagar, Bhopal 462022, Madhya Pradesh, India
| | - Namrata Mawale
- ICAR- National Institute of High Security Animal Diseases, Anand Nagar, Bhopal 462022, Madhya Pradesh, India
| | - Vijendra Pal Singh
- ICAR- National Institute of High Security Animal Diseases, Anand Nagar, Bhopal 462022, Madhya Pradesh, India
| |
Collapse
|
40
|
Guan S, Xu Y, Qiao Y, Kuai Z, Qian M, Jiang X, Wang S, Zhang H, Kong W, Shan Y. A novel small molecule displays two different binding modes during inhibiting H1N1 influenza A virus neuraminidases. J Struct Biol 2018; 202:142-149. [DOI: 10.1016/j.jsb.2017.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/08/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
|
41
|
Deecke L, Dobrovolny HM. Intermittent treatment of severe influenza. J Theor Biol 2018; 442:129-138. [PMID: 29355540 DOI: 10.1016/j.jtbi.2018.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/30/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022]
Abstract
Severe, long-lasting influenza infections are often caused by new strains of the virus. The long duration of these infections leads to an increased opportunity for the emergence of drug resistant mutants. This is particularly problematic since for new strains there is often no vaccine, so drug treatment is the first line of defense. One strategy for trying to minimize drug resistance is to apply drugs periodically. During treatment phases the wild-type virus decreases, but resistant virus might increase; when there is no treatment, wild-type virus will hopefully out-compete the resistant virus, driving down the number of resistant virus. A stochastic model of severe influenza is combined with a model of drug resistance to simulate long-lasting infections and intermittent treatment with two types of antivirals: neuraminidase inhibitors, which block release of virions; and adamantanes, which block replication of virions. Each drug's ability to reduce emergence of drug resistant mutants is investigated. We find that cell regeneration is required for successful implementation of intermittent treatment and that the optimal cycling parameters change with regeneration rate.
Collapse
Affiliation(s)
- Lucas Deecke
- Institut für Theoretische Physik, Universität zu Köln, Cologne, Germany
| | - Hana M Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
42
|
Stertz S, Paul Duprex W, Harris M. A novel mutation in the neuraminidase gene of the 2009 pandemic H1N1 influenza A virus confers multidrug resistance. J Gen Virol 2018; 99:275-276. [PMID: 29493494 DOI: 10.1099/jgv.0.001030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Silke Stertz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - W Paul Duprex
- Department of Microbiology, Boston University School of Medicine, Boston, MA 01228, USA
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
43
|
Koo BS, Kim HK, Song D, Na W, Song MS, Kwon JJ, Wong SS, Noh JY, Ahn MJ, Kim DJ, Webby RJ, Yoon SW, Jeong DG. Virological and pathological characterization of an avian H1N1 influenza A virus. Arch Virol 2018; 163:1153-1162. [PMID: 29368065 DOI: 10.1007/s00705-018-3730-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
Abstract
Gene segments from avian H1N1 influenza A viruses have reassorted with other influenza viruses to generate pandemic strains over the past century. Nevertheless, little effort has been invested in understanding the characteristics of avian H1N1 influenza viruses. Here, we present the genome sequence and a molecular and virological characterization of an avian influenza A virus, A/wild bird/Korea/SK14/2014 (A/SK14, H1N1), isolated from migratory birds in South Korea during the winter season of 2014-2015. Full-genome sequencing and phylogenetic analysis revealed that the virus belongs to the Eurasian avian lineage. Although it retained avian-receptor binding preference, A/SK14 virus also exhibited detectable human-like receptor binding and was able to replicate in differentiated primary normal human bronchial epithelial cells. In animal models, A/SK14 virus was moderately pathogenic in mice, and virus was detected in nasal washes from inoculated guinea pigs, but not in direct-contact guinea pigs. Although A/SK14 showed moderate pathogenicity and no evidence of transmission in a mammalian model, our results suggest that the dual receptor specificity of A/SK14-like virus might allow for a more rapid adaptation to mammals, emphasizing the importance of further continuous surveillance and risk-assessment activities.
Collapse
Affiliation(s)
- Bon-Sang Koo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Hye Kwon Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Daesub Song
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong, 30019, South Korea
| | - Woonsung Na
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong, 30019, South Korea
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Chongju, 28644, South Korea
| | - Jin Jung Kwon
- College of Medicine and Medical Research Institute, Chungbuk National University, Chongju, 28644, South Korea
| | - Sook-San Wong
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ji Yeong Noh
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Min-Ju Ahn
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea.,University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sun-Woo Yoon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea. .,University of Science and Technology (UST), Daejeon, 34113, South Korea.
| | - Dae Gwin Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea. .,University of Science and Technology (UST), Daejeon, 34113, South Korea.
| |
Collapse
|
44
|
Nykvist M, Gillman A, Söderström Lindström H, Tang C, Fedorova G, Lundkvist Å, Latorre-Margalef N, Wille M, Järhult JD. In vivo mallard experiments indicate that zanamivir has less potential for environmental influenza A virus resistance development than oseltamivir. J Gen Virol 2017; 98:2937-2949. [PMID: 29139346 DOI: 10.1099/jgv.0.000977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neuraminidase inhibitors are a cornerstone of influenza pandemic preparedness before vaccines can be mass-produced and thus a neuraminidase inhibitor-resistant pandemic is a serious threat to public health. Earlier work has demonstrated the potential for development and persistence of oseltamivir resistance in influenza A viruses exposed to environmentally relevant water concentrations of the drug when infecting mallards, the natural influenza reservoir that serves as the genetic base for human pandemics. As zanamivir is the major second-line neuraminidase inhibitor treatment, this study aimed to assess the potential for development and persistence of zanamivir resistance in an in vivo mallard model; especially important as zanamivir will probably be increasingly used. Our results indicate less potential for development and persistence of resistance due to zanamivir than oseltamivir in an environmental setting. This conclusion is based on: (1) the lower increase in zanamivir IC50 conferred by the mutations caused by zanamivir exposure (2-17-fold); (2) the higher zanamivir water concentration needed to induce resistance (at least 10 µg l-1); (3) the lack of zanamivir resistance persistence without drug pressure; and (4) the multiple resistance-related substitutions seen during zanamivir exposure (V116A, A138V, R152K, T157I and D199G) suggesting lack of one straight-forward evolutionary path to resistance. Our study also adds further evidence regarding the stability of the oseltamivir-induced substitution H275Y without drug pressure, and demonstrates the ability of a H275Y-carrying virus to acquire secondary mutations, further boosting oseltamivir resistance when exposed to zanamivir. Similar studies using influenza A viruses of the N2-phylogenetic group of neuraminidases are recommended.
Collapse
Affiliation(s)
- Marie Nykvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna Gillman
- Section for Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Hanna Söderström Lindström
- Department of Chemistry, Umeå University, Umeå, Sweden.,Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, Umeå University, Umeå, Sweden
| | - Chaojun Tang
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Ganna Fedorova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Czech Republic
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Neus Latorre-Margalef
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | - Michelle Wille
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Present address: WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Josef D Järhult
- Section for Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
45
|
Hsu KC, Hung HC, HuangFu WC, Sung TY, Eight Lin T, Fang MY, Chen IJ, Pathak N, Hsu JTA, Yang JM. Identification of neuraminidase inhibitors against dual H274Y/I222R mutant strains. Sci Rep 2017; 7:12336. [PMID: 28951584 PMCID: PMC5615050 DOI: 10.1038/s41598-017-12101-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/31/2017] [Indexed: 01/03/2023] Open
Abstract
Influenza is an annual seasonal epidemic that has continually drawn public attentions, due to the potential death toll and drug resistance. Neuraminidase, which is essential for the spread of influenza virus, has been regarded as a valid target for the treatment of influenza infection. Although neuraminidase drugs have been developed, they are susceptible to drug-resistant mutations in the sialic-binding site. In this study, we established computational models (site-moiety maps) of H1N1 and H5N1 to determine properties of the 150-cavity, which is adjacent to the drug-binding site. The models reveal that hydrogen-bonding interactions with residues R118, D151, and R156 and van der Waals interactions with residues Q136, D151, and T439 are important for identifying 150-cavitiy inhibitors. Based on the models, we discovered three new inhibitors with IC50 values <10 μM that occupies both the 150-cavity and sialic sites. The experimental results identified inhibitors with similar activities against both wild-type and dual H274Y/I222R mutant neuraminidases and showed little cytotoxic effects. Furthermore, we identified three new inhibitors situated at the sialic-binding site with inhibitory effects for normal neuraminidase, but lowered effects for mutant strains. The results suggest that the new inhibitors can be used as a starting point to combat drug-resistant strains.
Collapse
Affiliation(s)
- Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hui-Chen Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Wei-Chun HuangFu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ying Sung
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Yu Fang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - I-Jung Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Nikhil Pathak
- TIGP-Bioinformatics, Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - John T-A Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan. .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan. .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
46
|
Agunos A, Pierson FW, Lungu B, Dunn PA, Tablante N. Review of Nonfoodborne Zoonotic and Potentially Zoonotic Poultry Diseases. Avian Dis 2017; 60:553-75. [PMID: 27610715 DOI: 10.1637/11413-032416-review.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Emerging and re-emerging diseases are continuously diagnosed in poultry species. A few of these diseases are known to cross the species barrier, thus posing a public health risk and an economic burden. We identified and synthesized global evidence for poultry nonfoodborne zoonoses to better understand these diseases in people who were exposed to different poultry-related characteristics (e.g., occupational or nonoccupational, operational types, poultry species, outbreak conditions, health status of flocks). This review builds on current knowledge on poultry zoonoses/potentially zoonotic agents transmitted via the nonfoodborne route. It also identifies research gaps and potential intervention points within the poultry industry to reduce zoonotic transmission by using various knowledge synthesis tools such as systematic review (SR) and qualitative (descriptive) and quantitative synthesis methods (i.e., meta-analysis). Overall, 1663 abstracts were screened and 156 relevant articles were selected for further review. Full articles (in English) were retrieved and critically appraised using routine SR methods. In total, eight known zoonotic diseases were reviewed: avian influenza (AI) virus (n = 85 articles), Newcastle disease virus (n = 8), West Nile virus (WNV, n = 2), avian Chlamydia (n = 24), Erysipelothrix rhusiopathiae (n = 3), methicillin-resistant Staphylococcus aureus (MRSA, n = 15), Ornithonyssus sylvarium (n = 4), and Microsporum gallinae (n = 3). In addition, articles on other viral poultry pathogens (n = 5) and poultry respiratory allergens derived from mites and fungi (n = 7) were reviewed. The level of investigations (e.g., exposure history, risk factor, clinical disease in epidemiologically linked poultry, molecular studies) to establish zoonotic linkages varied across disease agents and across studies. Based on the multiple outcome measures captured in this review, AI virus seems to be the poultry zoonotic pathogen that may have considerable and significant public health consequences; however, epidemiologic reports have only documented severe human cases clustered in Asia and not in North America. In contrast, avian Chlamydia and MRSA reports clustered mainly in Europe and less so in North America and other regions. Knowledge gaps in other zoonoses or other agents were identified, including potential direct (i.e., nonmosquito-borne) transmission of WNV from flocks to poultry workers, the public health and clinical significance of poultry-derived (livestock-associated) MRSA, the zoonotic significance of other viruses, and the role of poultry allergens in the pathophysiology of respiratory diseases of poultry workers. Across all pathogens reviewed, the use of personal protective equipment was commonly cited as the most important preventive measure to reduce the zoonotic spread of these diseases and the use of biosecurity measures to reduce horizontal transmission in flock populations. The studies also emphasized the need for flock monitoring and an integrated approach to prevention (i.e., veterinary-public health coordination with regard to diagnosis, and knowledge translation and education in the general population) to reduce zoonotic transmission.
Collapse
Affiliation(s)
- Agnes Agunos
- A Public Health Agency of Canada, Guelph, Ontario, Canada N1G5B2
| | - F William Pierson
- B Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Bwalya Lungu
- C Department of Food Science and Technology, University of California, Davis, CA 95616
| | - Patricia A Dunn
- D Animal Diagnostic Laboratory (PADLS-PSU), Pennsylvania State University, University Park, PA 16802
| | - Nathaniel Tablante
- E Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD 20740
| |
Collapse
|
47
|
Kobayashi M, Kodama M, Noshi T, Yoshida R, Kanazu T, Nomura N, Soda K, Isoda N, Okamatsu M, Sakoda Y, Yamano Y, Sato A, Kida H. Therapeutic efficacy of peramivir against H5N1 highly pathogenic avian influenza viruses harboring the neuraminidase H275Y mutation. Antiviral Res 2016; 139:41-48. [PMID: 28012921 DOI: 10.1016/j.antiviral.2016.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 11/24/2022]
Abstract
High morbidity and mortality associated with human cases of highly pathogenic avian influenza (HPAI) viruses, including H5N1 influenza virus, have been reported. The purpose of the present study was to evaluate the antiviral effects of peramivir against HPAI viruses. In neuraminidase (NA) inhibition and virus replication inhibition assays, peramivir showed strong inhibitory activity against H5N1, H7N1 and H7N7 HPAI viruses with sub-nanomolar activity in enzyme assays. In H5N1 viruses containing the NA H275Y mutation, the antiviral activity of peramivir against the variant was lower than that against the wild-type. Evaluation of the in vivo antiviral activity showed that a single intravenous treatment of peramivir (10 mg/kg) prevented lethality in mice infected with wild-type H5N1 virus and also following infection with H5N1 virus with the H275Y mutation after a 5 day administration of peramivir (30 mg/kg). Furthermore, mice injected with peramivir showed low viral titers and low levels of proinflammatory cytokines in the lungs. These results suggest that peramivir has therapeutic activity against HPAI viruses even if the virus harbors the NA H275Y mutation.
Collapse
Affiliation(s)
- Masanori Kobayashi
- Drug Discovery & Disease Research Laboratories, Shionogi & Co., Ltd., Osaka, Japan
| | - Makoto Kodama
- Drug Discovery & Disease Research Laboratories, Shionogi & Co., Ltd., Osaka, Japan
| | - Takeshi Noshi
- Drug Discovery & Disease Research Laboratories, Shionogi & Co., Ltd., Osaka, Japan
| | - Ryu Yoshida
- Drug Discovery & Disease Research Laboratories, Shionogi & Co., Ltd., Osaka, Japan
| | - Takushi Kanazu
- Research Laboratory for Development, Shionogi & Co., Ltd., Osaka, Japan
| | - Naoki Nomura
- Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan; Laboratory for Biologics Development, Research Center for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Kosuke Soda
- Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan; Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Norikazu Isoda
- Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan; Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido, Japan; Unit of Risk Analysis and Management, Research Center for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Masatoshi Okamatsu
- Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Yoshihiro Sakoda
- Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan; Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido, Japan
| | - Yoshinori Yamano
- Drug Discovery & Disease Research Laboratories, Shionogi & Co., Ltd., Osaka, Japan
| | - Akihiko Sato
- Drug Discovery & Disease Research Laboratories, Shionogi & Co., Ltd., Osaka, Japan; Research Center for Zoonosis Control, Hokkaido University, Hokkaido, Japan.
| | - Hiroshi Kida
- Research Center for Zoonosis Control, Hokkaido University, Hokkaido, Japan; Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido, Japan
| |
Collapse
|
48
|
Hoffmann A, Schade D, Kirchmair J, Clement B, Sauerbrei A, Schmidtke M. Platform for determining the inhibition profile of neuraminidase inhibitors in an influenza virus N1 background. J Virol Methods 2016; 237:192-199. [PMID: 27659246 DOI: 10.1016/j.jviromet.2016.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/04/2016] [Accepted: 09/19/2016] [Indexed: 01/21/2023]
Abstract
Efforts to develop novel neuraminidase inhibitors (NAIs) for the treatment of influenza are ongoing. Novel NAIs should in particular be also effective against seasonal and/or pandemic N1 that carry a H274Y or N294S substitution (N2 numbering), which are most commonly linked to oseltamivir resistance. Here we report a platform for profiling the efficacy of novel NAIs in the N1 genetic background of influenza A virus. Employing reverse genetics, a set of influenza virus variants containing an amino acid substitution associated with oseltamivir resistance in N1 isolates (H274Y, N294S, Y155H or Q136L) was generated. In parallel, so far unreported mutations of I427 (I427Q and I427M) were investigated. These possibly interfere with the side chain orientation of R371 and alter the binding affinity of most relevant NAIs. The profiling platform was validated with both oseltamivir and zanamivir and exemplarily applied to three analogs with differing decorations at positions 4 and 5. Besides confirming the inhibition profile of zanamivir and oseltamivir, the distinct effect of I427Q/M on the activity of both NAIs was shown. For 5-amidino and 5-guanidino analogs of oseltamivir a significantly stronger inhibition of virus variants carrying a NA-H274Y was confirmed, and additionally shown for NA-N294S and NA-Y155H substitutions as compared to the parent compound. Hence, the herein presented profiling platform is a valid tool for defining the inhibition profile of novel NAIs in the N1 background.
Collapse
Affiliation(s)
- Anja Hoffmann
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Dennis Schade
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Johannes Kirchmair
- Center for Bioinformatics, University of Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany
| | - Bernd Clement
- Department of Pharmaceutical Chemistry, Pharmaceutical Institute, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Andreas Sauerbrei
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Michaela Schmidtke
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knoell-Strasse 2, 07745 Jena, Germany.
| |
Collapse
|
49
|
Abed Y, Bouhy X, L'Huillier AG, Rhéaume C, Pizzorno A, Retamal M, Fage C, Dubé K, Joly MH, Beaulieu E, Mallett C, Kaiser L, Boivin G. The E119D neuraminidase mutation identified in a multidrug-resistant influenza A(H1N1)pdm09 isolate severely alters viral fitness in vitro and in animal models. Antiviral Res 2016; 132:6-12. [PMID: 27185624 DOI: 10.1016/j.antiviral.2016.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
We recently isolated an influenza A(H1N1)pdm09 E119D/H275Y neuraminidase (NA) variant from an immunocompromised patient who received oseltamivir and zanamivir therapies. This variant demonstrated cross resistance to zanamivir, oseltamivir, peramivir and laninamivir. In this study, the viral fitness of the recombinant wild-type (WT), E119D and E119D/H275Y A(H1N1)pdm09 viruses was evaluated in vitro and in experimentally-infected C57BL/6 mice and guinea pigs. In replication kinetics experiments, viral titers obtained with the E119D and E119D/H275Y recombinants were up to 2- and 4-log lower compared to the WT virus in MDCK and ST6GalI-MDCK cells, respectively. Enzymatic studies revealed that the E119D mutation significantly decreased the surface NA activity. In experimentally-infected mice, a 50% mortality rate was recorded in the group infected with the WT recombinant virus whereas no mortality was observed in the E119D and E119D/H275Y groups. Mean lung viral titers on day 5 post-inoculation for the WT (1.2 ± 0.57 × 10(8) PFU/ml) were significantly higher than those of the E119D (9.75 ± 0.41 × 10(5) PFU/ml, P < 0.01) and the E119D/H275Y (1.47 ± 0.61 × 10(6) PFU/ml, P < 0.01) groups. In guinea pigs, comparable seroconversion rates and viral titers in nasal washes (NW) were obtained for the WT and mutant index and contact groups. However, the D119E reversion was observed in most NW samples of the E119D and E119D/H275Y animals. In conclusion, the E119D NA mutation that could emerge in A(H1N1)pdm09 viruses during zanamivir therapy has a significant impact on viral fitness and such mutant is unlikely to be highly transmissible.
Collapse
Affiliation(s)
- Yacine Abed
- CHUQ-CHUL and Laval University, Québec City, Québec, Canada
| | - Xavier Bouhy
- CHUQ-CHUL and Laval University, Québec City, Québec, Canada
| | | | | | | | - Miguel Retamal
- CHUQ-CHUL and Laval University, Québec City, Québec, Canada
| | - Clément Fage
- CHUQ-CHUL and Laval University, Québec City, Québec, Canada
| | | | | | | | | | - Laurent Kaiser
- Laboratory of Virology, University of Geneva Hospitals, Geneva, Switzerland
| | - Guy Boivin
- CHUQ-CHUL and Laval University, Québec City, Québec, Canada.
| |
Collapse
|
50
|
Alame MM, Massaad E, Zaraket H. Peramivir: A Novel Intravenous Neuraminidase Inhibitor for Treatment of Acute Influenza Infections. Front Microbiol 2016; 7:450. [PMID: 27065996 PMCID: PMC4815007 DOI: 10.3389/fmicb.2016.00450] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/21/2016] [Indexed: 12/20/2022] Open
Abstract
Peramivir is a novel cyclopentane neuraminidase inhibitor of influenza virus. It was approved by the Food and Drug Administration in December 2014 for treatment of acute uncomplicated influenza in patients 18 years and older. For several months prior to approval, the drug was made clinically available under Emergency Use authorization during the 2009 H1N1 influenza pandemic. Peramivir is highly effective against human influenza A and B isolates as well as emerging influenza virus strains with pandemic potential. Clinical trials demonstrated that the drug is well-tolerated in adult and pediatric populations. Adverse events are generally mild to moderate and similar in frequency to patients receiving placebo. Common side effects include gastrointestinal disorders and decreased neutrophil counts but are self-limiting. Peramivir is administered as a single-dose via the intravenous route providing a valuable therapeutic alternative for critically ill patients or those unable to tolerate other administration routes. Successful clinical trials and post-marketing data in pediatric populations in Japan support the safety and efficacy of peramivir in this population where administration of other antivirals might not be feasible.
Collapse
Affiliation(s)
- Malak M Alame
- The School of Pharmacy, Lebanese International University Beirut, Lebanon
| | - Elie Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of BeirutBeirut, Lebanon; Center for Infectious Diseases Research, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|