1
|
Pseudotyped Viruses for Lyssavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:191-208. [PMID: 36920698 DOI: 10.1007/978-981-99-0113-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Lyssaviruses, which belong to the family Rhabdoviridae, are enveloped and bullet-shaped ssRNA viruses with genetic diversity. All members of Lyssavirus genus are known to infect warm-blooded animals and cause the fatal disease rabies. The rabies virus (RABV) in lyssavirus is the major pathogen to cause fatal rabies. The pseudotyped RABV is constructed to study the biological functions of G protein and evaluation of anti-RABV products including vaccine-induced antisera, rabies immunoglobulins (RIG), neutralizing mAbs, and other antiviral inhibitors. In this chapter, we focus on RABV as a representative and describe the construction of RABV G protein bearing pseudotyped virus and its applications. Other non-RABV lyssaviruses are also included.
Collapse
|
2
|
Feige L, Kozaki T, Dias de Melo G, Guillemot V, Larrous F, Ginhoux F, Bourhy H. Susceptibilities of CNS Cells towards Rabies Virus Infection Is Linked to Cellular Innate Immune Responses. Viruses 2022; 15:88. [PMID: 36680128 PMCID: PMC9860954 DOI: 10.3390/v15010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
Rabies is caused by neurotropic rabies virus (RABV), contributing to 60,000 human deaths annually. Even though rabies leads to major public health concerns worldwide, we still do not fully understand factors determining RABV tropism and why glial cells are unable to clear RABV from the infected brain. Here, we compare susceptibilities and immune responses of CNS cell types to infection with two RABV strains, Tha and its attenuated variant Th2P-4M, mutated on phospho- (P-protein) and matrix protein (M-protein). We demonstrate that RABV replicates in human stem cell-derived neurons and astrocytes but fails to infect human iPSC-derived microglia. Additionally, we observed major differences in transcription profiles and quantification of intracellular protein levels between antiviral immune responses mediated by neurons, astrocytes (IFNB1, CCL5, CXCL10, IL1B, IL6, and LIF), and microglia (CCL5, CXCL10, ISG15, MX1, and IL6) upon Tha infection. We also show that P- and M-proteins of Tha mediate evasion of NF-κB- and JAK-STAT-controlled antiviral host responses in neuronal cell types in contrast to glial cells, potentially explaining the strong neuron-specific tropism of RABV. Further, Tha-infected astrocytes and microglia protect neurons from Tha infection via a filtrable and transferable agent. Overall, our study provides novel insights into RABV tropism, showing the interest in studying the interplay of CNS cell types during RABV infection.
Collapse
Affiliation(s)
- Lena Feige
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 75015 Paris, France
| | - Tatsuya Kozaki
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Immunos Building, Level 3, Singapore 138648, Singapore
| | - Guilherme Dias de Melo
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 75015 Paris, France
| | - Vincent Guillemot
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, 75015 Paris, France
| | - Florence Larrous
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 75015 Paris, France
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Immunos Building, Level 3, Singapore 138648, Singapore
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Center, 20 College Road, Discovery Tower Level 8, Singapore 169856, Singapore
- Inserm U1015, Gustave Roussy, Bâtiment de Médecine Moléculaire, 114 Rue Edouard Vaillant, 94800 Villejuif, France
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 75015 Paris, France
| |
Collapse
|
3
|
Motta GH, Guimarães LP, Fernandes ER, Guedes F, de Sá LRM, Dos Ramos Silva S, Ribeiro OG, Katz ISS. Rabies virus isolated from insectivorous bats induces different inflammatory responses in experimental model. J Neuroimmunol 2022; 373:577974. [PMID: 36270078 DOI: 10.1016/j.jneuroim.2022.577974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Rabies virus (RABV) is a neurotropic virus that causes fatal neuroinflammation in mammals. The insectivorous bat RABV strains are less pathogenic for mice than strains associated with other reservoirs. We characterized the tissue inflammatory response in the CNS of RABV isolated from insectivorous bats. Eptesicus furinalis (EPBRV)-infected mice had a robust inflammatory response and a greater amount of IL-1β, IL-6 and TNF-α, while Myotis nigricans (MNBRV)-infected mice showed a higher expression of IL-17 and greater activation of IFN-β. New approaches to understand the inflammatory response to different mechanisms of action may provide insights for the development of novel therapies for rabies.
Collapse
Affiliation(s)
| | | | | | - Fernanda Guedes
- Pasteur Institute, Av. Paulista 393, São Paulo CEP 01311-000, Brazil
| | | | | | - Orlando Garcia Ribeiro
- Laboratory of Immunogenetics, Butantan Institute, Av. Vital Brasil 1500, São Paulo CEP 05503-900, Brazil
| | | |
Collapse
|
4
|
Itakura Y, Tabata K, Morimoto K, Ito N, Chambaro HM, Eguchi R, Otsuguro KI, Hall WW, Orba Y, Sawa H, Sasaki M. Glu333 in rabies virus glycoprotein is involved in virus attenuation through astrocyte infection and interferon responses. iScience 2022; 25:104122. [PMID: 35402872 PMCID: PMC8983343 DOI: 10.1016/j.isci.2022.104122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
The amino acid residue at position 333 of the rabies virus (RABV) glycoprotein (G333) is a major determinant of RABV pathogenicity. Virulent RABV strains possess Arg333, whereas the attenuated strain HEP-Flury (HEP) possesses Glu333. To investigate the potential attenuation mechanism dependent on a single amino acid at G333, comparative analysis was performed between HEP and HEP333R mutant with Arg333. We examined their respective tropism for astrocytes and the subsequent immune responses in astrocytes. Virus replication and subsequent interferon (IFN) responses in astrocytes infected with HEP were increased compared with HEP333R both in vitro and in vivo. Furthermore, involvement of IFN in the avirulency of HEP was demonstrated in IFN-receptor knockout mice. These results indicate that Glu333 contributes to RABV attenuation by determining the ability of the virus to infect astrocytes and stimulate subsequent IFN responses. Glu333 in G protein is responsible for astrocyte infection with RABV HEP strain Arg333 mutation in G protein decreases astrocyte tropism of RABV HEP RABV HEP evokes higher IFN responses in astrocytes than HEP with Arg333 mutation Glu333-dependent astrocyte infection is involved in the attenuation of RABV HEP
Collapse
Affiliation(s)
- Yukari Itakura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Koshiro Tabata
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Kohei Morimoto
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Herman M. Chambaro
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Ryota Eguchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Ken-ichi Otsuguro
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - William W. Hall
- National Virus Reference Laboratory, School of Medicine, University College of Dublin, Dublin 4, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- Global Virus Network, Baltimore, MD 21201, USA
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- Global Virus Network, Baltimore, MD 21201, USA
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- Corresponding author
| |
Collapse
|
5
|
Viruses in connectomics: Viral transneuronal tracers and genetically modified recombinants as neuroscience research tools. J Neurosci Methods 2020; 346:108917. [PMID: 32835704 DOI: 10.1016/j.jneumeth.2020.108917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Connectomic studies have become 'viral', as viral pathogens have been turned into irreplaceable neuroscience research tools. Highly sensitive viral transneuronal tracing technologies are available, based on the use of alpha-herpesviruses and a rhabdovirus (rabies virus), which function as self-amplifying markers by replicating in recipient neurons. These viruses highly differ with regard to host range, cellular receptors, peripheral uptake, replication, transport direction and specificity. Their characteristics, that make them useful for different purposes, will be highlighted and contrasted. Only transneuronal tracing with rabies virus is entirely specific. The neuroscientist toolbox currently include wild-type alpha-herpesviruses and rabies virus strains enabling polysynaptic tracing of neuronal networks across multiple synapses, as well as genetically modified viral tracers for dual transneuronal tracing, and complementary viral tools including defective and chimeric recombinants that function as single step or monosynaptically restricted tracers, or serve for monitoring and manipulating neuronal activity and gene expression. Methodological issues that are crucial for appropriate use of these technologies will be summarized. Among wild-type and genetically engineered viral tools, rabies virus and chimeric recombinants based on rabies virus as virus backbone are the most powerful, because of the ability of rabies virus to propagate exclusively among connected neurons unidirectionally (retrogradely), without affecting neuronal function. Understanding in depth viral properties is essential for neuroscientists who intend to exploit alpha-herpesviruses, rhabdoviruses or derived recombinants as research tools. Key knowledge will be summarized regarding their cellular receptors, intracellular trafficking and strategies to contrast host defense that explain their different pathophysiology and properties as research tools.
Collapse
|
6
|
Luo J, Zhang B, Lyu Z, Wu Y, Zhang Y, Guo X. Single amino acid change at position 255 in rabies virus glycoprotein decreases viral pathogenicity. FASEB J 2020; 34:9650-9663. [PMID: 32469133 DOI: 10.1096/fj.201902577r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/27/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
Previous studies have indicated that the amino acid at position 333 in the glycoprotein (G) is closely related to rabies virus (RABV) pathogenicity. However, whether there are other amino acid residues in G that relate to pathogenicity remain unclear. The aim of this study is to find new amino acid residues in G that could strongly reduce RABV pathogenicity. The present study found that the pathogenicity of a virulent strain was strongly attenuated when the amino acid glycine (Gly) replaced the aspartic acid (Asp) at position 255 in G (D255G) as intracranial (i.c.) infection with this D255G mutant virus did not cause death in adult mice. The indexes of neurotropism of the D255G mutant strain and the parent GD-SH-01 are 0.72 and 10.0, respectively, which indicate that the D255G mutation decreased the neurotropism of RABV. In addition, the D255G mutation significantly decreased RABV replication in the mouse brain. Furthermore, the D255G mutation enhanced the immune response in mice, which contributed to the clearance of RABV after infection. The Asp255 → Gly255 mutation was genetically stable in vitro and in vivo. In this study, we describe a new referenced amino acid site in G that relates to the pathogenicity of RABV.
Collapse
Affiliation(s)
- Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Boyue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ziyu Lyu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuting Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Yin K, Li Y, Ma Z, Yang Y, Zhao H, Liu C, Jin M, Wudong G, Sun Y, Hang T, Zhang H, Wang F, Wen Y. SNAP25 regulates the release of the Rabies virus in nerve cells via SNARE complex-mediated membrane fusion. Vet Microbiol 2020; 245:108699. [PMID: 32456820 DOI: 10.1016/j.vetmic.2020.108699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 11/16/2022]
Abstract
Recent studies have reported that host proteins regulate Rabies virus (RABV) infection via distinct mechanisms. The abnormal neural function caused by RABV infection is related to the abnormal synaptic signal transmission in which the RABV glycoprotein (G) is involved. In the present study, two recombinant Rabies viruses (rRABVs), namely rSAD-SAD-Flag-G and rSAD-CVS-Flag-G, were established and rescued based on rSAD and verified by indirect fluorescence assay (IFA), and western blotting (WB). To investigate how the G protein interacts with synaptosomal-associated protein 25 (SNAP25), primary neuronal cells (PNC) of embryonic mice were cultured and infected with rRABVs. Immunoprecipitation (IP) and LC-MS/MS analysis of glycoprotein-binding proteins, which were flag tagged, were carried out to determine the interaction of G protein and soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins (SNARE) complex in PNC. G protein and the SNARE member SNAP25 were co-expressed in HEK293 cells or primary neuronal cells to investigate their colocalization. Knockdown of SNAP25 with small interfering RNA (siRNA) was conducted on mNA cells, and rRABV replication was observed by IFA, qRT-PCR, and virus titration. The results indicated that rRABVs were successfully rescued and grew well in PNC. Flag-tag IP and confocal microscopy demonstrated that SNAP25 works together with G protein and colocalizes with G on the cytomembrane of HEK293 cells. The downregulation of SNAP25, using RNA interference, resulted in a significant decrease in the number of viral mRNAs, viral proteins, and virus particles. Furthermore, the regression of SNAP25 did not affect the initial infection of the virus but reduced the infectivity of progeny virions.
Collapse
Affiliation(s)
- Kun Yin
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China; State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences CAAS, Changchun, Jilin 130112, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - Yiming Li
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - Zipeng Ma
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - Yang Yang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - Hongzhe Zhao
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - Chunyu Liu
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - Ming Jin
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - Gaowa Wudong
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - Yuming Sun
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - Tianyu Hang
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - He Zhang
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China
| | - Fengxue Wang
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China.
| | - Yongjun Wen
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, China; State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences CAAS, Changchun, Jilin 130112, China
| |
Collapse
|
8
|
Qin S, Volokhov D, Rodionova E, Wirblich C, Schnell MJ, Chizhikov V, Dabrazhynetskaya A. A new recombinant rabies virus expressing a green fluorescent protein: A novel and fast approach to quantify virus neutralizing antibodies. Biologicals 2019; 59:56-61. [PMID: 30898479 DOI: 10.1016/j.biologicals.2019.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 12/25/2022] Open
Abstract
The Rapid Fluorescent Focus Inhibition Test (RFFIT) is a standard assay used to detect and assess the titers of rabies virus neutralizing antibodies (RVNA) in blood sera. To simplify the multistep RFFIT procedure by eliminating the immunostaining step, we generated a new recombinant RV expressing a green fluorescent protein (rRV-GFP) and assess its suitability for quantifying RVNA. We rescued the rRV-GFP virus from plasmid DNA carrying a full-length genome of the CVS-N2c strain of RV in which the eGFP gene was inserted between the glycoprotein and RNA-polymerase genes. The recombinant virus was genetically stable and grew efficiently in appropriate cells expressing sufficient GFP fluorescence to detect directly 20 h post infection (hpi). We evaluated the feasibility of using rRV-GFP in RFFIT by comparing RVNA titers in 27 serum samples measured by conventional RFFIT and RFFIT-GFP. A linear regression analysis of the data demonstrated a good agreement between these two methods (r = 0.9776) including results with samples having RVNA titers close to the minimally acceptable vaccine potency threshold (0.5 IU/ml). Study results showed that the rRV-GFP virus could replace the CVS-11 challenge virus currently used in the conventional RFFIT and enabling more rapid, simpler, and less expensive detection and quantitation of RVNA.
Collapse
Affiliation(s)
- Shuyun Qin
- Laboratory of Method Development, Division of Viral Products, Center for Biologics Evaluation, Food and Drug Administration, Silver Spring, MD, USA
| | - Dmitriy Volokhov
- Laboratory of Method Development, Division of Viral Products, Center for Biologics Evaluation, Food and Drug Administration, Silver Spring, MD, USA
| | - Elvira Rodionova
- Laboratory of Method Development, Division of Viral Products, Center for Biologics Evaluation, Food and Drug Administration, Silver Spring, MD, USA
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA; Jefferson Vaccine Center at Thomas Jefferson University, Philadelphia, PA, USA
| | - Vladimir Chizhikov
- Laboratory of Method Development, Division of Viral Products, Center for Biologics Evaluation, Food and Drug Administration, Silver Spring, MD, USA
| | - Alena Dabrazhynetskaya
- Laboratory of Method Development, Division of Viral Products, Center for Biologics Evaluation, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
9
|
Thran M, Mukherjee J, Pönisch M, Fiedler K, Thess A, Mui BL, Hope MJ, Tam YK, Horscroft N, Heidenreich R, Fotin-Mleczek M, Shoemaker CB, Schlake T. mRNA mediates passive vaccination against infectious agents, toxins, and tumors. EMBO Mol Med 2018; 9:1434-1447. [PMID: 28794134 PMCID: PMC5623855 DOI: 10.15252/emmm.201707678] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The delivery of genetic information has emerged as a valid therapeutic approach. Various reports have demonstrated that mRNA, besides its remarkable potential as vaccine, can also promote expression without inducing an adverse immune response against the encoded protein. In the current study, we set out to explore whether our technology based on chemically unmodified mRNA is suitable for passive immunization. To this end, various antibodies using different designs were expressed and characterized in vitro and in vivo in the fields of viral infections, toxin exposure, and cancer immunotherapies. Single injections of mRNA-lipid nanoparticle (LNP) were sufficient to establish rapid, strong, and long-lasting serum antibody titers in vivo, thereby enabling both prophylactic and therapeutic protection against lethal rabies infection or botulinum intoxication. Moreover, therapeutic mRNA-mediated antibody expression allowed mice to survive an otherwise lethal tumor challenge. In conclusion, the present study demonstrates the utility of formulated mRNA as a potent novel technology for passive immunization.
Collapse
Affiliation(s)
| | - Jean Mukherjee
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | | | | | | | | | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | | | | | | | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | | |
Collapse
|
10
|
Yu GM, Zu SL, Zhou WW, Wang XJ, Shuai L, Wang XL, Ge JY, Bu ZG. Chimeric rabies glycoprotein with a transmembrane domain and cytoplasmic tail from Newcastle disease virus fusion protein incorporates into the Newcastle disease virion at reduced levels. J Vet Sci 2018; 18:351-359. [PMID: 27515260 PMCID: PMC5583423 DOI: 10.4142/jvs.2017.18.s1.351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/29/2016] [Accepted: 07/21/2016] [Indexed: 11/20/2022] Open
Abstract
Rabies remains an important worldwide health problem. Newcastle disease virus (NDV) was developed as a vaccine vector in animals by using a reverse genetics approach. Previously, our group generated a recombinant NDV (LaSota strain) expressing the complete rabies virus G protein (RVG), named rL-RVG. In this study, we constructed the variant rL-RVGTM, which expresses a chimeric rabies virus G protein (RVGTM) containing the ectodomain of RVG and the transmembrane domain (TM) and a cytoplasmic tail (CT) from the NDV fusion glycoprotein to study the function of RVG's TM and CT. The RVGTM did not detectably incorporate into NDV virions, though it was abundantly expressed at the surface of infected BHK-21 cells. Both rL-RVG and rL-RVGTM induced similar levels of NDV virus-neutralizing antibody (VNA) after initial and secondary vaccination in mice, whereas rabies VNA induction by rL-RVGTM was markedly lower than that induced by rL-RVG. Though rL-RVG could spread from cell to cell like that in rabies virus, rL-RVGTM lost this ability and spread in a manner similar to the parental NDV. Our data suggest that the TM and CT of RVG are essential for its incorporation into NDV virions and for spreading of the recombinant virus from the initially infected cells to surrounding cells.
Collapse
Affiliation(s)
- Gui Mei Yu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shu Long Zu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Wei Wei Zhou
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xi Jun Wang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Lei Shuai
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xue Lian Wang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jin Ying Ge
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhi Gao Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
11
|
The phenotype of the RABV glycoprotein determines cellular and global virus load in the brain and is decisive for the pace of the disease. Virology 2017; 511:82-94. [DOI: 10.1016/j.virol.2017.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/21/2017] [Accepted: 08/14/2017] [Indexed: 11/18/2022]
|
12
|
Generation of a novel live rabies vaccine strain with a high level of safety by introducing attenuating mutations in the nucleoprotein and glycoprotein. Vaccine 2017; 35:5622-5628. [PMID: 28882441 DOI: 10.1016/j.vaccine.2017.08.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/10/2017] [Accepted: 08/20/2017] [Indexed: 12/25/2022]
Abstract
The current live rabies vaccine SAG2 is attenuated by only one mutation (Arg-to-Glu) at position 333 in the glycoprotein (G333). This fact generates a potential risk of the emergence of a pathogenic revertant by a back mutation at this position during viral propagation in the body. To circumvent this risk, it is desirable to generate a live vaccine strain highly and stably attenuated by multiple mutations. However, the information on attenuating mutations other than that at G333 is very limited. We previously reported that amino acids at positions 273 and 394 in the nucleoprotein (N273/394) (Leu and His, respectively) of fixed rabies virus Ni-CE are responsible for the attenuated phenotype by enhancing interferon (IFN)/chemokine gene expressions in infected neural cells. In this study, we found that amino acid substitutions at N273/394 (Phe-to-Leu and Tyr-to-His, respectively) attenuated the pathogenicity of the oral live vaccine ERA, which has a virulent-type Arg at G333. Then we generated ERA-N273/394-G333 attenuated by the combination of the above attenuating mutations at G333 and N273/394, and checked its safety. Similar to the ERA-G333, which is attenuated by only the mutation at G333, ERA-N273/394-G333 did not cause any symptoms in adult mice after intracerebral inoculation, indicating a low level of residual pathogenicity of ERA-N273/394-G333. Further examination revealed that infection with ERA-N273/394-G333 induces IFN-β and CXCL10 mRNA expressions more strongly than ERA-G333 infection in a neuroblastoma cell line. Importantly, we found that the ERA-N273/394-G333 stain has a lower risk for emergence of a pathogenic revertant than does the ERA-G333. These results indicate that ERA-N273/394-G333 has a potential to be a promising candidate for a live rabies vaccine strain with a high level of safety.
Collapse
|
13
|
The ectodomain of rabies virus glycoprotein determines dendritic cell activation. Antiviral Res 2017; 141:1-6. [DOI: 10.1016/j.antiviral.2017.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 12/25/2022]
|
14
|
Rescue of a wild-type rabies virus from cloned cDNA and assessment of the proliferative capacity of recombinant viruses. Virus Genes 2017; 53:573-583. [DOI: 10.1007/s11262-017-1458-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/18/2017] [Indexed: 01/07/2023]
|
15
|
Development of infectious clones of a wild-type Korean rabies virus and evaluation of their pathogenic potential. Virus Res 2016; 223:122-30. [PMID: 27397101 DOI: 10.1016/j.virusres.2016.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 11/23/2022]
Abstract
Most reverse genetic (RG) systems for rabies viruses (RVs) have been constructed on the genome background of laboratory-adapted strains. In this study, we developed an RG system using a Korean wild type (KGH) strain to investigate the pathogenic potential of different strains. We developed a RG system with the KGH strain for the first time. Following the complete genome sequencing of the KGH strain, pKGH infectious clones were constructed using the CMV/T7 promoter, and HamRz and HdvRz were introduced to allow self-cleavage of the synthesized RNA. We successfully recovered the rescued virus by constructing chimeric RVs in which we replaced a part of the construct with the partial gene from the fixed RC-HL strain. The rescued viruses formed clearer and countable plaques in an immunostaining plaque assay, with a distinct plaque morphology. Furthermore, compared with the chimeric RVs, the pKGH/RCinsΔ4 strain containing the KGH strain G protein exhibited a decreased efficiency of cell-to-cell spreading in BHK-21 cells and significantly reduced (100-1000 fold) replication kinetics. However, pKGH/RCinsΔ4 strain-infected mice revealed 100% morbidity at 11days post-infection, whereas other chimeric RV strains showed no mortality. Our RG system is a useful tool for studying differences in the cell-to-cell spreading efficiency and replication with respect to the different internalization patterns of street and fixed laboratory-adapted viruses.
Collapse
|
16
|
Delayed progression of rabies transmitted by a vampire bat. Arch Virol 2016; 161:2561-6. [PMID: 27306647 DOI: 10.1007/s00705-016-2927-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
Abstract
Here, we compared the growth kinetics, cell-to-cell spread, and virus internalization kinetics in N2a cells of RABV variants isolated from vampire bats (V-3), domestic dogs (V-2) and marmosets (V-M) as well as the clinical symptoms and mortality caused by these variants. The replication rate of V-3 was significantly higher than those of V-2 and V-M. However, the uptake and spread of these RABV variants into N2a cells were inversely proportional. Nevertheless, V-3 had longer incubation and evolution periods. Our results provide evidence that the clinical manifestations of infection with bat RABV variant occur at a later time when compared to what was observed with canine and marmoset rabies virus variants.
Collapse
|
17
|
Davis BM, Rall GF, Schnell MJ. Everything You Always Wanted to Know About Rabies Virus (But Were Afraid to Ask). Annu Rev Virol 2015; 2:451-71. [PMID: 26958924 DOI: 10.1146/annurev-virology-100114-055157] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cultural impact of rabies, the fatal neurological disease caused by infection with rabies virus, registers throughout recorded history. Although rabies has been the subject of large-scale public health interventions, chiefly through vaccination efforts, the disease continues to take the lives of about 40,000-70,000 people per year, roughly 40% of whom are children. Most of these deaths occur in resource-poor countries, where lack of infrastructure prevents timely reporting and postexposure prophylaxis and the ubiquity of domestic and wild animal hosts makes eradication unlikely. Moreover, although the disease is rarer than other human infections such as influenza, the prognosis following a bite from a rabid animal is poor: There is currently no effective treatment that will save the life of a symptomatic rabies patient. This review focuses on the major unanswered research questions related to rabies virus pathogenesis, especially those connecting the disease progression of rabies with the complex dysfunction caused by the virus in infected cells. The recent applications of cutting-edge research strategies to this question are described in detail.
Collapse
Affiliation(s)
| | - Glenn F Rall
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Matthias J Schnell
- Department of Microbiology and Immunology and.,Jefferson Vaccine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107; .,Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| |
Collapse
|
18
|
Souto S, Mérour E, Biacchesi S, Brémont M, Olveira JG, Bandín I. In vitro and in vivo characterization of molecular determinants of virulence in reassortant betanodavirus. J Gen Virol 2015; 96:1287-1296. [PMID: 25626678 DOI: 10.1099/vir.0.000064] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/19/2015] [Indexed: 01/25/2023] Open
Abstract
We previously reported that betanodavirus reassortant strains [redspotted grouper nervous necrosis virus/striped jack nervous necrosis virus (SJNNV)] isolated from Senegalese sole (Solea senegalensis) exhibited a modified SJNNV capsid amino acid sequence, with changes at aa 247 and 270. In the current study, we investigated the possible role of both residues as putative virulence determinants. Three recombinant viruses harbouring site-specific mutations in the capsid protein sequence, rSs160.03247 (S247A), rSs160.03270 (S270N) and rSs160.03247+270 (S247A/S270N), were generated using a reverse genetics system. These recombinant viruses were studied in cell culture and in vivo in the natural fish host. The three mutant viruses were shown to be infectious and able to replicate in E-11 cells, reaching final titres similar to the WT virus, although with a somewhat slower kinetics of replication. When the effect of the amino acid substitutions on virus pathogenicity was evaluated in Senegalese sole, typical clinical signs of betanodavirus infection were observed in all groups. However, fish mortality induced by all three mutant viruses was clearly affected. Roughly 40 % of the fish survived in these three groups in contrast with the WT virus which killed 100 % of the fish. These data demonstrated that aa 247 and 270 play a major role in betanodavirus virulence although when both mutated aa 247 and 270 are present, corresponding recombinant virus was not further attenuated.
Collapse
Affiliation(s)
- Sandra Souto
- Instituto de Acuicultura, Universidad de Santiago de Compostela, A Coruña, Spain
| | - Emilie Mérour
- Unité de Virologie et Immunologie Moléculaires, INRA, Jouy en Josas, France
| | - Stéphane Biacchesi
- Unité de Virologie et Immunologie Moléculaires, INRA, Jouy en Josas, France
| | - Michel Brémont
- Unité de Virologie et Immunologie Moléculaires, INRA, Jouy en Josas, France
| | - José G Olveira
- Instituto de Acuicultura, Universidad de Santiago de Compostela, A Coruña, Spain
| | - Isabel Bandín
- Instituto de Acuicultura, Universidad de Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
19
|
Hilary Koprowski, MD: A Lifetime of Work. Monoclon Antib Immunodiagn Immunother 2014; 33:1-43. [DOI: 10.1089/mab.2014.kop.biblio] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med 2014; 20:130-8. [PMID: 24504409 DOI: 10.1038/nm.3457] [Citation(s) in RCA: 495] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 12/19/2013] [Indexed: 12/12/2022]
Abstract
A common feature of many neurodegenerative diseases is the deposition of β-sheet-rich amyloid aggregates formed by proteins specific to these diseases. These protein aggregates are thought to cause neuronal dysfunction, directly or indirectly. Recent studies have strongly implicated cell-to-cell transmission of misfolded proteins as a common mechanism for the onset and progression of various neurodegenerative disorders. Emerging evidence also suggests the presence of conformationally diverse 'strains' of each type of disease protein, which may be another shared feature of amyloid aggregates, accounting for the tremendous heterogeneity within each type of neurodegenerative disease. Although there are many more questions to be answered, these studies have opened up new avenues for therapeutic interventions in neurodegenerative disorders.
Collapse
|
21
|
Mori T, Morimoto K. Rabies virus glycoprotein variants display different patterns in rabies monosynaptic tracing. Front Neuroanat 2014; 7:47. [PMID: 24427117 PMCID: PMC3877770 DOI: 10.3389/fnana.2013.00047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/09/2013] [Indexed: 11/13/2022] Open
Abstract
Rabies virus (RV) has been widely used to trace multi-synaptic neuronal circuits. The recent development of glycoprotein-deficient rabies virus (RV-ΔG) expressing various proteins has enabled analyzes of both the structure and function of neuronal circuits. The main advantage of RV-ΔG is its ability to trace monosynaptic circuits by the complementation of rabies virus glycoprotein (RVG), but it has the disadvantage of cytotoxicity. Several strain variants of RV have different biological characteristics, such as synaptic spreading and cytotoxicity, mainly due to amino acid mutations in RVG. We developed an improved protocol for the production of a highly attenuated strain of RV-ΔG and assessed whether RVG variants affect rabies monosynaptic tracing and the health of infected neurons. We demonstrated that (1) rabies monosynaptic tracing with RVG variants traced different subsets of presynaptic partners, (2) RVG of the attenuated strain also labeled astrocytes, and (3) the cytotoxicity of RV-ΔG did not depend on RVG but on RV-ΔG. These findings indicate that RVG variants are an important determinant of rabies monosynaptic tracing.
Collapse
Affiliation(s)
- Takuma Mori
- Department of Informative Physiology, National Institute for Physiological Sciences Okazaki, Aichi, Japan
| | - Kinjiro Morimoto
- Department of Medical Pharmacy, Faculty of Pharmacy, Yasuda Women's University Hiroshima, Japan
| |
Collapse
|
22
|
Yamada K, Ito N, Takayama-Ito M, Sugiyama M, Minamoto N. Multigenic Relation to the Attenuation of Rabies Virus. Microbiol Immunol 2013; 50:25-32. [PMID: 16428870 DOI: 10.1111/j.1348-0421.2006.tb03767.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rabies virus Nishigahara strain causes lethal infection in adult mice after intracerebral inoculation. On the other hand, the RC-HL strain, derived from the Nishigahara strain, does not cause lethal infection in adult mice. We previously demonstrated that a chimeric virus, R(G), with the open reading frame of the G gene (G-ORF) from the Nishigahara strain in the background of the RC-HL genome, is virulent. Reversely, in order to demonstrate that the G gene of the RC-HL strain is related to the attenuated phenotype, we established a reverse genetics system of the Nishigahara strain and generated a chimeric virus, Ni(G), with the G-ORF from RC-HL in the background of the Nishigahara genome. Contrary to our prediction, Ni(G) killed adult mice after intracerebral inoculation with neuropathic symptoms like those of Nishigahara strain infection. Therefore, the G-ORF of the RC-HL strain is not the sole determinant of the attenuated phenotype. In additional investigation, we examined other genes, including N, P, M and L genes, and generated chimeric viruses exhaustively. We found that chimeric viruses with a single gene from the RC-HL were not attenuated and that chimeric viruses with the G-ORF and at least one other ORF from the RC-HL were attenuated. In conclusion, attenuation from the Nishigahara to RC-HL strain is multigenic.
Collapse
Affiliation(s)
- Kentaro Yamada
- The United Graduate School of Veterinary Sciences, Division of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| | | | | | | | | |
Collapse
|
23
|
Abstract
Rabies virus (RABV), which is transmitted via a bite wound caused by a rabid animal, infects peripheral nerves and then spreads to the central nervous system (CNS) before causing severe neurological symptoms and death in the infected individual. Despite the importance of this ability of the virus to spread from a peripheral site to the CNS (neuroinvasiveness) in the pathogenesis of rabies, little is known about the mechanism underlying the neuroinvasiveness of RABV. In this study, to obtain insights into the mechanism, we conducted comparative analysis of two fixed RABV strains, Nishigahara and the derivative strain Ni-CE, which cause lethal and asymptomatic infections, respectively, in mice after intramuscular inoculation. Examination of a series of chimeric viruses harboring the respective genes from Nishigahara in the genetic background of Ni-CE revealed that the Nishigahara phosphoprotein (P) gene plays a major role in the neuroinvasiveness by mediating infection of peripheral nerves. The results obtained from both in vivo and in vitro experiments strongly suggested that the Nishigahara P gene, but not the Ni-CE P gene, is important for stable viral replication in muscle cells. Further investigation based on the previous finding that RABV phosphoprotein counteracts the host interferon (IFN) system demonstrated that the Nishigahara P gene, but not the Ni-CE P gene, functions to suppress expression of the beta interferon (IFN-β) gene (Ifn-β) and IFN-stimulated genes in muscle cells. In conclusion, we provide the first data strongly suggesting that RABV phosphoprotein assists viral replication in muscle cells by counteracting the host IFN system and, consequently, enhances infection of peripheral nerves.
Collapse
|
24
|
Characterization of street rabies virus variants with an additional N-glycan at position 247 in the glycoprotein. Arch Virol 2013; 159:207-16. [DOI: 10.1007/s00705-013-1805-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/24/2013] [Indexed: 02/02/2023]
|
25
|
Variable evolutionary routes to host establishment across repeated rabies virus host shifts among bats. Proc Natl Acad Sci U S A 2012; 109:19715-20. [PMID: 23150575 DOI: 10.1073/pnas.1203456109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Determining the genetic pathways that viruses traverse to establish in new host species is crucial to predict the outcome of cross-species transmission but poorly understood for most host-virus systems. Using sequences encoding 78% of the rabies virus genome, we explored the extent, repeatability and dynamic outcome of evolution associated with multiple host shifts among New World bats. Episodic bursts of positive selection were detected in several viral proteins, including regions associated with host cell interaction and viral replication. Host shifts involved unique sets of substitutions, and few sites exhibited repeated evolution across adaptation to many bat species, suggesting diverse genetic determinants over host range. Combining these results with genetic reconstructions of the demographic histories of individual viral lineages revealed that although rabies viruses shared consistent three-stage processes of emergence in each new bat species, host shifts involving greater numbers of positively selected substitutions had longer delays between cross-species transmission and enzootic viral establishment. Our results point to multiple evolutionary routes to host establishment in a zoonotic RNA virus that may influence the speed of viral emergence.
Collapse
|
26
|
Nakagawa K, Ito N, Masatani T, Abe M, Yamaoka S, Ito Y, Okadera K, Sugiyama M. Generation of a live rabies vaccine strain attenuated by multiple mutations and evaluation of its safety and efficacy. Vaccine 2012; 30:3610-7. [PMID: 22464967 DOI: 10.1016/j.vaccine.2012.03.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 03/09/2012] [Accepted: 03/18/2012] [Indexed: 12/25/2022]
Abstract
An amino acid substitution at position 333 in rabies virus G protein is known to determine the pathogenicity: strains with Arg or Lys at that position kill adult mice after intracerebral inoculation, whereas strains with other amino acids cause non-lethal infection. Based on those findings, attenuated rabies virus strains have been established and used for oral vaccines mainly for wild animals. However, considering the possibility of back-mutation to the virulent phenotype, a strain that is attenuated by multiple mutations not only in the G protein but also in other viral proteins would be more appropriate as a safe live vaccine. We previously demonstrated that the fixed rabies virus Ni-CE strain, which causes only transient body weight loss in adult mice after intracerebral inoculation, is mainly attenuated by mutations in the N, P and M proteins, while this strain has virulent-type Arg at position 333 in the G protein. In this study, to obtain a live vaccine strain that is attenuated by multiple mutations, we generated Ni-CE mutant, Ni-CE(G333Glu) strain, which has an Arg-to-Glu mutation at position 333 in the G protein, and examined its pathogenicity and immunogenicity. We found that, in contrast to Ni-CE strain, Ni-CE(G333Glu) strain did not cause transient body weight loss in adult mice after intracerebral inoculation. The attenuated phenotype of Ni-CE(G333Glu) strain did not change even after 10 serial intracerebral passages in suckling mice. We also demonstrated that inoculation of Ni-CE(G333Glu) strain induced virus-neutralizing antibody in immunized mice and protected the mice from lethal challenge. These results indicate that Ni-CE(G333Glu) strain is a promising candidate for development of a live rabies vaccine with a high safety level.
Collapse
Affiliation(s)
- Keisuke Nakagawa
- The United Graduate School of Veterinary Sciences, Gifu University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Yamada K, Park CH, Noguchi K, Kojima D, Kubo T, Komiya N, Matsumoto T, Mitui MT, Ahmed K, Morimoto K, Inoue S, Nishizono A. Serial passage of a street rabies virus in mouse neuroblastoma cells resulted in attenuation: potential role of the additional N-glycosylation of a viral glycoprotein in the reduced pathogenicity of street rabies virus. Virus Res 2012; 165:34-45. [PMID: 22248643 DOI: 10.1016/j.virusres.2012.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 12/23/2011] [Accepted: 01/01/2012] [Indexed: 12/25/2022]
Abstract
Street rabies viruses are field isolates known to be highly neurotropic. However, the viral elements related to their pathogenicity have yet to be identified at the nucleotide or amino acid level. Here, through 30 passages in mouse neuroblastoma NA cells, we have established an attenuated variant of street rabies virus strain 1088, originating from a rabid woodchuck followed by 2 passages in the brains of suckling mice. The variant, 1088-N30, was well adapted to NA cells and highly attenuated in adult mice after intramuscular (i.m.) but not intracerebral (i.c.) inoculations. 1088-N30 had seven nucleotide substitutions, and the R196S mutation of the G protein led to an additional N-glycosylation. Street viruses usually possess one or two N-glycosylation sites on the G protein, 1088 has two, while an additional N-glycosylation site is observed in laboratory-adapted strains. We also established a cloned variant 1088-N4#14 by limiting dilution. Apart from the R196S mutation, 1088-N4#14 possessed only one amino acid substitution in the P protein, which is found in several field isolates. 1088-N4#14 also efficiently replicated in NA cells and was attenuated in adult mice after i.m. inoculations, although it was more pathogenic than 1088-N30. The spread of 1088-N30 in the brain was highly restricted after i.m. inoculations, although the pattern of 1088-N4#14's spread was intermediate between that of the parental 1088 and 1088-N30. Meanwhile, both variants strongly induced humoral immune responses in mice compared to 1088. Our results indicate that the additional N-glycosylation is likely related to the reduced pathogenicity. Taken together, we propose that the number of N-glycosylation sites in the G protein is one of the determinants of the pathogenicity of street rabies viruses.
Collapse
Affiliation(s)
- Kentaro Yamada
- Research Promotion Project, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Powerful transneuronal tracing technologies exploit the ability of some neurotropic viruses to travel across neuronal pathways and to function as self-amplifying markers. Rabies virus is the only viral tracer that is entirely specific, as it propagates exclusively between connected neurons by strictly unidirectional (retrograde) transneuronal transfer, allowing for the stepwise identification of neuronal connections of progressively higher order. Transneuronal tracing studies in primates and rodent models prior to the development of clinical disease have provided valuable information on rabies pathogenesis. We have shown that rabies virus propagation occurs at chemical synapses but not via gap junctions or cell-to-cell spread. Infected neurons remain viable, as they can express their neurotransmitters and cotransport other tracers. Axonal transport occurs at high speed, and all populations of the same synaptic order are infected simultaneously regardless of their neurotransmitters, synaptic strength, and distance, showing that rabies virus receptors are ubiquitously distributed within the CNS. Conversely, in the peripheral nervous system, rabies virus receptors are present only on motor endplates and motor axons, since uptake and transneuronal transmission to the CNS occur exclusively via the motor route, while sensory and autonomic endings are not infected. Infection of sensory and autonomic ganglia requires longer incubation times, as it reflects centrifugal propagation from the CNS to the periphery, via polysynaptic connections from sensory and autonomic neurons to the initially infected motoneurons. Virus is recovered from end organs only after the development of rabies because anterograde spread to end organs is likely mediated by passive diffusion, rather than active transport mechanisms.
Collapse
Affiliation(s)
- Gabriella Ugolini
- Neurobiologie et Développement, UPR3294 CNRS, Institut de Neurobiologie Alfred Fessard, 91198 Gif-sur-Yvette, France
| |
Collapse
|
29
|
Ge J, Wang X, Tao L, Wen Z, Feng N, Yang S, Xia X, Yang C, Chen H, Bu Z. Newcastle disease virus-vectored rabies vaccine is safe, highly immunogenic, and provides long-lasting protection in dogs and cats. J Virol 2011; 85:8241-52. [PMID: 21632762 PMCID: PMC3147977 DOI: 10.1128/jvi.00519-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/18/2011] [Indexed: 12/24/2022] Open
Abstract
Effective, safe, and affordable rabies vaccines are still being sought. Newcastle disease virus (NDV), an avian paramyxovirus, has shown promise as a vaccine vector for mammals. Here, we generated a recombinant avirulent NDV La Sota strain expressing the rabies virus glycoprotein (RVG) and evaluated its potential to serve as a vaccine against rabies. The recombinant virus, rL-RVG, retained its high-growth property in chicken eggs, with titers of up to 10⁹·⁸ 50% egg infective doses (EID₅₀)/ml of allantoic fluid. RVG expression enabled rL-RVG to spread from cell to cell in a rabies virus-like manner, and RVG was incorporated on the surface of the rL-RVG viral particle. RVG incorporation did not alter the trypsin-dependent infectivity of the NDV vector in mammalian cells. rL-RVG and La Sota NDV showed similar levels of sensitivity to a neutralization antibody against NDV and similar levels of resistance to a neutralization antibody against rabies virus. Animal studies demonstrated that rL-RVG is safe in several species, including cats and dogs, when administered as multiple high doses of recombinant vaccine. Intramuscular vaccination with rL-RVG induced a substantial rabies virus neutralization antibody response and provided complete protection from challenge with circulating rabies virus strains. Most importantly, rL-RVG induced strong and long-lasting protective neutralization antibody responses to rabies virus in dogs and cats. A low vaccine dose of 10⁸·³ EID₅₀ completely protected dogs from challenge with a circulating strain of rabies virus for more than a year. This is the first study to demonstrate that immunization with an NDV-vectored vaccine can induce long-lasting, systemic protective immunity against rabies.
Collapse
Affiliation(s)
- Jinying Ge
- Harbin Veterinary Research Institute, CAAS, 427 Maduan Street, Harbin 150001, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Roles of the fusion and hemagglutinin-neuraminidase proteins in replication, tropism, and pathogenicity of avian paramyxoviruses. J Virol 2011; 85:8582-96. [PMID: 21680512 DOI: 10.1128/jvi.00652-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virulent and moderately virulent strains of Newcastle disease virus (NDV), representing avian paramyxovirus serotype 1 (APMV-1), cause respiratory and neurological disease in chickens and other species of birds. In contrast, APMV-2 is avirulent in chickens. We investigated the role of the fusion (F) and hemagglutinin-neuraminidase (HN) envelope glycoproteins in these contrasting phenotypes by designing chimeric viruses in which the F and HN glycoproteins or their ectodomains were exchanged individually or together between the moderately virulent, neurotropic NDV strain Beaudette C (BC) and the avirulent APMV-2 strain Yucaipa. When we attempted to exchange the complete F and HN glycoproteins individually and together between the two viruses, the only construct that could be recovered was recombinant APMV-2 strain Yucaipa (rAPMV-2), containing the NDV F glycoprotein in place of its own. This substitution of NDV F into APMV-2 was sufficient to confer the neurotropic, neuroinvasive, and neurovirulent phenotypes, in spite of all being at reduced levels compared to what was seen for NDV-BC. When the ectodomains of F and HN were exchanged individually and together, two constructs could be recovered: NDV, containing both the F and HN ectodomains of APMV-2; and APMV-2, containing both ectodomains of NDV. This supported the idea that homologous cytoplasmic tails and matched F and HN ectodomains are important for virus replication. Analysis of these viruses for replication in vitro, syncytium formation, mean embryo death time, intracerebral pathogenicity index, and replication and tropism in 1-day-old chicks and 2-week-old chickens showed that the two contrasting phenotypes of NDV and APMV-2 could largely be transferred between the two backbones by transfer of homotypic F and HN ectodomains. Further analysis provided evidence that the homologous stalk domain of NDV HN is essential for virus replication, while the globular head domain of NDV HN could be replaced with that of APMV-2 with only a minimal attenuating effect. These results demonstrate that the F and HN ectodomains together determine the cell fusion, tropism, and virulence phenotypes of NDV and APMV-2 and that the regions of HN that are critical to replication and the species-specific phenotypes include the cytoplasmic tail and stalk domain but not the globular head domain.
Collapse
|
31
|
ITO N, MITA T, SHIMIZU K, ITO Y, MASATANI T, NAKAGAWA K, YAMAOKA S, ABE M, OKADERA K, MINAMOTO N, SUGIYAMA M. Amino Acid Substitution at Position 95 in Rabies Virus Matrix Protein Affects Viral Pathogenicity. J Vet Med Sci 2011; 73:1363-6. [DOI: 10.1292/jvms.11-0151] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Naoto ITO
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University
- The United Graduate School of Veterinary Sciences, Gifu University
| | - Tetsuo MITA
- The United Graduate School of Veterinary Sciences, Gifu University
| | - Kenta SHIMIZU
- The United Graduate School of Veterinary Sciences, Gifu University
| | - Yuki ITO
- The United Graduate School of Veterinary Sciences, Gifu University
| | | | - Keisuke NAKAGAWA
- The United Graduate School of Veterinary Sciences, Gifu University
| | - Satoko YAMAOKA
- The United Graduate School of Veterinary Sciences, Gifu University
| | - Masako ABE
- The United Graduate School of Veterinary Sciences, Gifu University
| | - Kota OKADERA
- The United Graduate School of Veterinary Sciences, Gifu University
| | - Nobuyuki MINAMOTO
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University
- The United Graduate School of Veterinary Sciences, Gifu University
| | - Makoto SUGIYAMA
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University
- The United Graduate School of Veterinary Sciences, Gifu University
| |
Collapse
|
32
|
Ugolini G. Advances in viral transneuronal tracing. J Neurosci Methods 2010; 194:2-20. [DOI: 10.1016/j.jneumeth.2009.12.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/28/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
|
33
|
Ito Y, Ito N, Saito S, Masatani T, Nakagawa K, Atoji Y, Sugiyama M. Amino acid substitutions at positions 242, 255 and 268 in rabies virus glycoprotein affect spread of viral infection. Microbiol Immunol 2010; 54:89-97. [PMID: 20377742 DOI: 10.1111/j.1348-0421.2009.00192.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Rabies virus Nishigahara strain kills adult mice after intracerebral inoculation, whereas the derivative RC-HL strain does not. It has previously been reported by us that the R(G 242/255/268) strain, in which amino acids at positions 242, 255 and 268 on the G protein have been replaced by those from the Nishigahara strain in the genetic background of the RC-HL strain, kills adult mice. This indicates that these three amino acids of G protein are important for pathogenicity of the Nishigahara strain. In order to obtain insights into the mechanism by which these amino acids affect pathogenicity, in this study spread of viral infection and apoptosis-inducing ability of the attenuated RC-HL strain and the virulent R(G 242/255/268) strain were compared. RC-HL infection spread less efficiently in the mouse brain than did R(G 242/255/268) infection. However, the apoptosis-inducing abilities of both viruses were almost identical, as shown by both in vitro and in vivo experiments. It was demonstrated that cell-to-cell spread of RC-HL strain was less efficient than that of R(G 242/255/268) strain in mouse neuroblastoma cells. These results indicate that the three amino acid substitutions affect efficiency of cell-to-cell spread but not apoptosis-inducing ability, probably resulting in the distinct distributions of RC-HL and R(G 242/255/268) strain-infected cells in the mouse brain and, consequently, the different pathogenicities of these strains.
Collapse
Affiliation(s)
- Yuki Ito
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Rabies virus, the prototypical neurotropic virus, causes one of the most lethal zoonotic diseases. According to official estimates, over 55,000 people die of the disease annually, but this is probably a severe underestimation. A combination of virulence factors enables the virus to enter neurons at peripheral sites and travel through the spinal cord to the brain of the infected host, where it often induces aggression that facilitates the transfer of the virus to a new host. This Review summarizes the current knowledge of the replication cycle of rabies virus and virus- host cell interactions, both of which are fundamental elements in our quest to understand the life cycle of rabies virus and the pathogenesis of rabies.
Collapse
|
35
|
Faber M, Dietzschold B, Li J. Immunogenicity and safety of recombinant rabies viruses used for oral vaccination of stray dogs and wildlife. Zoonoses Public Health 2009; 56:262-9. [PMID: 19486317 DOI: 10.1111/j.1863-2378.2008.01215.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rabies is a zoonotic disease and stray dogs, wild carnivores and bats are the natural reservoirs of rabies. Oral immunization with live vaccines is the only practical approach to eradicate rabies in free ranging terrestrial animals. We have developed the double glycoprotein (G) rabies virus (RV) variant SPBNGAS-GAS that has great promise to be used as a live-attenuated vaccine. Oral immunization of rodents and several target animal species with this double G RV variant resulted in the induction of protective immunity, superior to that induced by a single RV G variant (SPBNGAS). The high oral efficacy of SPBNGAS-GAS is likely because of its increased ability to infect monocytes or immature dendritic cells (DCs), thereby inducing their conversion into mature DCs. Furthermore, infection of DCs with the double G variant resulted in a strong up-regulation of the expression of genes related to the NFjB signalling pathway including IFN-α and IFN-β, which might underlie the protection conferred by this live RV vaccine. A potential problem associated with the use of live RVs for oral vaccination could rest in the possibility of reversion to the pathogenic phenotype because of the high mutation rate characteristic for all RNA viruses. In this respect, the presence of a second non-pathogenic G gene decreases considerably the risk of reversion to the pathogenic phenotype because a nonpathogenic G is dominant over a pathogenic G in determining the pathogenicity of the double G RV variant. Because of its excellent efficacy and safety, the SPBNGAS-GAS vaccine may provide a distinct advantage over other live RV vaccine in its ability to vaccinate a broad range of mammalian species.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Animals, Domestic
- Animals, Wild
- Antigens, Viral
- Chiroptera
- Disease Reservoirs/veterinary
- Disease Reservoirs/virology
- Dogs
- Glycoproteins/genetics
- Glycoproteins/immunology
- Humans
- Rabies/immunology
- Rabies/prevention & control
- Rabies/veterinary
- Rabies/virology
- Rabies Vaccines/administration & dosage
- Rabies Vaccines/genetics
- Rabies Vaccines/immunology
- Rabies virus/genetics
- Rabies virus/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Zoonoses
Collapse
Affiliation(s)
- M Faber
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | |
Collapse
|
36
|
Abstract
Lagos bat virus (LBV) constitutes genotype (gt) 2 in the Lyssavirus genus. In contrast to the gt1 lyssavirus, rabies virus (RABV), LBV was reported to have markedly reduced levels of peripheral pathogenicity. However, this opinion was based on a study of one isolate of LBV only and the reduction in pathogenicity was essentially attributed to the amino-acid substitution at position 333 of glycoprotein ectodomain. In the present study we have demonstrated that peripheral pathogenicity of representatives of LBV in a murine model is as high as that of RABV. Comparison of amino-acid substitutions among the viral glycoproteins, demonstrated significant differences within two antigenic sites between different phylogenetic lineages of LBV. Such molecular variability potentially contributes to differences in peripheral pathogenicity of lyssaviruses.
Collapse
|
37
|
Roy A, Hooper DC. Immune evasion by rabies viruses through the maintenance of blood-brain barrier integrity. J Neurovirol 2008; 14:401-11. [PMID: 19016377 DOI: 10.1080/13550280802235924] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The attenuated rabies virus (RV) strain Challenge Virus Standard (CVS)-F3 and a highly pathogenic strain associated with the silver-haired bats (SHBRV) can both be cleared from the central nervous system (CNS) tissues by appropriate antiviral immune mechanisms if the effectors are provided access across the blood-brain barrier (BBB). In the case of SHBRV infection, antiviral immunity develops normally in the periphery but fails to open the BBB, generally resulting in a lethal outcome. To determine whether or not an absence in the CNS targeted immune response is associated with the infection with other pathogenic RV strains, we have assessed the development of immunity, BBB permeability, and immune cell infiltration into the CNS tissues of mice infected with a variety of RV strains, including the dog variants responsible for the majority of human rabies cases. We demonstrate that the lethal outcomes of infection with a variety of known pathogenic RV strains are indeed associated with the inability to deliver immune effectors across the BBB. Survival from infection with certain of these viruses is improved in mice prone to CNS inflammation. The results suggest that competition between the activity of the immune effectors reaching CNS tissues and the inherent pathological attributes of the virus dictates the outcome and that intervention to deliver RV-specific immune effectors into CNS tissues may have general therapeutic value in rabies.
Collapse
Affiliation(s)
- Anirban Roy
- Center for Neurovirology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-6799, USA
| | | |
Collapse
|
38
|
Abstract
Rabies is a zoonotic disease that remains an important public health problem worldwide and causes more than 70,000 human deaths each year. The causative agent of rabies is rabies virus (RV), a negative-stranded RNA virus of the rhabdovirus family. Neuroinvasiveness and neurotropism are the main features that define the pathogenesis of rabies. Although RV pathogenicity is a multigenic trait involving several elements of the RV genome, the RV glycoprotein plays a major role in RV pathogenesis by controlling the rate of virus uptake and trans-synaptic virus spread, and by regulating the rate of virus replication. Pathogenic street RV strains differ significantly from tissue culture-adapted RV strains in their neuroinvasiveness. Whereas street RV strains are highly neuroinvasive, most tissue culture-adapted RV strains have either no or only limited ability to invade the CNS from a peripheral site. The high neuroinvasiveness of pathogenic street RVs is, at least in part, due to their ability to evade immune responses and to conserve the structures of neurons. The finding that tissue culture-adapted RV strains replicate very fast and induce strong innate and adaptive immune responses opens new avenues for therapeutic intervention against rabies.
Collapse
Affiliation(s)
- Bernhard Dietzschold
- Department of Microbiology & Immunology, Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, PA, USA, Tel.: +1 215 503 4692; Fax: +1 215 503 5393;
| | - Jianwei Li
- Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA, USA, Tel.: +1 215 503 4696; Fax: +1 215 503 5393; jianwei.x.li.@jefferson.edu
| | - Milosz Faber
- Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA, USA, Tel.: +1 215 503 4696; Fax: +1 215 503 5393;
| | - Matthias Schnell
- Department of Microbiology & Immunology, Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, PA, USA, Tel.: +1 215 503 4634; Fax: +1 215 503 5393;
| |
Collapse
|
39
|
The glycoprotein and the matrix protein of rabies virus affect pathogenicity by regulating viral replication and facilitating cell-to-cell spread. J Virol 2007; 82:2330-8. [PMID: 18094173 DOI: 10.1128/jvi.02327-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
While the glycoprotein (G) of rabies virus (RV) is known to play a predominant role in the pathogenesis of rabies, the function of the RV matrix protein (M) in RV pathogenicity is not completely clear. To further investigate the roles of these proteins in viral pathogenicity, we constructed chimeric recombinant viruses by exchanging the G and M genes of the attenuated SN strain with those of the highly pathogenic SB strain. Infection of mice with these chimeric viruses revealed a significant increase in the pathogenicity of the SN strain bearing the RV G from the pathogenic SB strain. Moreover, the pathogenicity was further increased when both G and M from SB were introduced into SN. Interestingly, the replacement of the G or M gene or both in SN by the corresponding genes of SB was associated with a significant decrease in the rate of viral replication and viral RNA synthesis. In addition, a chimeric SN virus bearing both the M and G genes from SB exhibited more efficient cell-to-cell spread than a chimeric SN virus in which only the G gene was replaced. Together, these data indicate that both G and M play an important role in RV pathogenesis by regulating virus replication and facilitating cell-to-cell spread.
Collapse
|
40
|
Ito N, Sugiyama M. [Progression in studies on pathogenesis of rabies virus]. Uirusu 2007; 57:191-198. [PMID: 18357757 DOI: 10.2222/jsv.57.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Rabies virus causes lethal neurological symptoms in humans and animals. Rabies epidemics have continued to occur throughout the world, despite the fact that rabies can be effectively prevented by vaccination. The development of inexpensive and safe attenuated live vaccines and the establishment of cures are the keys to control rabies. To achieve these objectives, it is important to elucidate mechanism by which rabies virus causes disease. Here, previous studies on the pathogenesis of rabies virus are reviewed and ways to apply previous findings to rabies control are also discussed.
Collapse
Affiliation(s)
- Naoto Ito
- Laboratory of Zoonotic Diseases, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University 1-1 Yanagido, Gifu, 501-1193, Japan.
| | | |
Collapse
|
41
|
Phares TW, Fabis MJ, Brimer CM, Kean RB, Hooper DC. A peroxynitrite-dependent pathway is responsible for blood-brain barrier permeability changes during a central nervous system inflammatory response: TNF-alpha is neither necessary nor sufficient. THE JOURNAL OF IMMUNOLOGY 2007; 178:7334-43. [PMID: 17513784 DOI: 10.4049/jimmunol.178.11.7334] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Elevated blood-brain barrier (BBB) permeability is associated with both the protective and pathological invasion of immune and inflammatory cells into CNS tissues. Although a variety of processes have been implicated in the changes at the BBB that result in the loss of integrity, there has been no consensus as to their induction. TNF-alpha has often been proposed to be responsible for increased BBB permeability but there is accumulating evidence that peroxynitrite (ONOO(-))-dependent radicals may be the direct trigger. We demonstrate here that enhanced BBB permeability in mice, whether associated with rabies virus (RV) clearance or CNS autoimmunity, is unaltered in the absence of TNF-alpha. Moreover, the induction of TNF-alpha expression in CNS tissues by RV infection has no impact on BBB integrity in the absence of T cells. CD4 T cells are required to enhance BBB permeability in response to the CNS infection whereas CD8 T cells and B cells are not. Like CNS autoimmunity, elevated BBB permeability in response to RV infection is evidently mediated by ONOO(-). However, as opposed to the invading cells producing ONOO(-) that have been implicated in the pathogenesis of CNS inflammation, during virus clearance ONOO(-) is produced without pathological sequelae by IFN-gamma-stimulated neurovascular endothelial cells.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- CD4-Positive T-Lymphocytes/virology
- Cell Membrane Permeability/genetics
- Cell Membrane Permeability/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Cerebellum/immunology
- Cerebellum/pathology
- Cerebellum/virology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/virology
- Female
- Lymphopenia/immunology
- Lymphopenia/pathology
- Lymphopenia/virology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Peroxynitrous Acid/physiology
- Rabies virus/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- T-Lymphocyte Subsets/virology
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/deficiency
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/physiology
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
- Viral Load
Collapse
Affiliation(s)
- Timothy W Phares
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
42
|
Faber M, Faber ML, Li J, Preuss MAR, Schnell MJ, Dietzschold B. Dominance of a nonpathogenic glycoprotein gene over a pathogenic glycoprotein gene in rabies virus. J Virol 2007; 81:7041-7. [PMID: 17459937 PMCID: PMC1933278 DOI: 10.1128/jvi.00357-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 04/12/2007] [Indexed: 01/10/2023] Open
Abstract
The nonpathogenic phenotype of the live rabies virus (RV) vaccine SPBNGAN is determined by an Arg-->Glu exchange at position 333 in the glycoprotein, designated GAN. We recently showed that after several passages of SPBNGAN in mice, an Asn-->Lys mutation arose at position 194 of GAN, resulting in GAK, which was associated with a reversion to the pathogenic phenotype. Because an RV vaccine candidate containing two GAN genes (SPBNGAN-GAN) exhibits increased immunogenicity in vivo compared to the single-GAN construct, we tested whether the presence of two GAN genes might also enhance the probability of reversion to pathogenicity. Comparison of SPBNGAN-GAN with RVs constructed to contain either both GAN and GAK genes (SPBNGAN-GAK and SPBNGAK-GAN) or two GAK genes (SPBNGAK-GAK) showed that while SPBNGAK-GAK was pathogenic, SPBNGAN-GAN and SPBNGAN-GAK were completely nonpathogenic and SPBNGAK-GAN showed strongly reduced pathogenicity. Analysis of genomic RV RNA in mouse brain tissue revealed significantly lower virus loads in SPBNGAN-GAK- and SPBNGAK-GAN-infected brains than those detected in SPBNGAK-GAK-infected brains, indicating the dominance of the nonpathogenic phenotype determined by GAN over the GAK-associated pathogenic phenotype. Virus production and viral RNA synthesis were markedly higher in SPBNGAN-, SPBNGAK-GAN-, and SPBNGAN-GAK-infected neuroblastoma cells than in the SPBNGAK- and SPBNGAK-GAK-infected counterparts, suggesting control of GAN dominance at the level of viral RNA synthesis. These data point to the lower risk of reversion to pathogenicity of a recombinant RV carrying two identical GAN genes compared to that of an RV carrying only a single GAN gene.
Collapse
Affiliation(s)
- Milosz Faber
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
43
|
Shimizu K, Ito N, Mita T, Yamada K, Hosokawa-Muto J, Sugiyama M, Minamoto N. Involvement of nucleoprotein, phosphoprotein, and matrix protein genes of rabies virus in virulence for adult mice. Virus Res 2007; 123:154-60. [PMID: 17010466 DOI: 10.1016/j.virusres.2006.08.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 08/30/2006] [Accepted: 08/31/2006] [Indexed: 10/24/2022]
Abstract
Rabies virus Ni-CE strain causes nonlethal infection in adult mice after intracerebral inoculation, whereas the parental Nishigahara strain kills mice. In this study, to identify viral gene(s) related to the difference in pathogenicity between Ni-CE and Nishigahara strains, we generated chimeric viruses with respective genes of the virulent Nishigahara strain in the background of the avirulent Ni-CE genome. Since chimeric viruses, which had the N, P, or M genes of the Nishigahara strain, respectively, killed adult mice after intracerebral inoculation, it became evident that the N, P, and M genes are related to the difference in pathogenicity between Ni-CE and Nishigahara strains. Previously, we showed that the G gene is a major contributor to the difference in pathogenicity between another avirulent strain, RC-HL, and the parental Nishigahara strain. These results imply that the attenuation mechanism of the Ni-CE strain is different from that of the RC-HL strain, thus suggesting that rabies virus can be attenuated by diverse mechanisms. This is the first report of changes in viral genes other than the G gene of rabies virus causing the reversion of pathogenicity of an avirulent strain.
Collapse
Affiliation(s)
- Kenta Shimizu
- The United Graduate School of Veterinary Sciences, Gifu University, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Garver KA, Batts WN, Kurath G. Virulence Comparisons of Infectious Hematopoietic Necrosis Virus U and M Genogroups in Sockeye Salmon and Rainbow Trout. JOURNAL OF AQUATIC ANIMAL HEALTH 2006; 18:232-243. [PMID: 26599159 DOI: 10.1577/h05-038.1] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Infectious hematopoietic necrosis virus (IHNV) is an aquatic rhabdovirus that infects salmonids in the Pacific Northwest of the United States, Europe, and Asia. Isolates of IHNV have been phylogenetically classified into three major viral genogroups, designated U, M, and L. To characterize virulence of IHNV in the context of these three viral genogroups, seven strains of IHNV (three U genogroup strains, three M strains, and one L strain) were compared for their pathogenicity in juvenile sockeye salmon Oncorhynchus nerka, kokanee (lacustrine sockeye salmon), and rainbow trout O. mykiss. Fish were waterborne-exposed to the different viral strains, and virulence was assessed by comparing mortality curves and final cumulative percent mortality (CPM) in both species of fish at 10°C and 15°C. In sockeye salmon and kokanee, the U genogroup virus types were extremely virulent, causing average CPMs of 69-100%, while the M genogroup virus types caused very little or no mortality (CPM = 0-4%). The endangered Redfish Lake sockeye salmon stock exhibited extreme differences in susceptibility to the U and M genogroups. Conversely, in two stocks of rainbow trout, the M genogroup virus types were more virulent, inducing average CPMs of 25-85%, while the U genogroup viruses caused lower mortality (CPM = 5-41%). In both fish species, the single L genogroup strain caused low to intermediate mortality (CPM = 13-53%). Viral glycoprotein sequence comparisons of the seven challenge strains revealed three amino acid sites (247, 256, and 270) that consistently differed between the U and M genogroups, possibly contributing to pathogenicity differences.
Collapse
Affiliation(s)
- Kyle A Garver
- a Department of Pathobiology , University of Washington , Seattle , Washington , 98195 , USA
- b U.S. Geological Survey, Biological Resources Discipline, Western Fisheries Research Center , 6505 Northeast 65th Street , Seattle , Washington , 98115 , USA
| | - William N Batts
- b U.S. Geological Survey, Biological Resources Discipline, Western Fisheries Research Center , 6505 Northeast 65th Street , Seattle , Washington , 98115 , USA
| | - Gael Kurath
- b U.S. Geological Survey, Biological Resources Discipline, Western Fisheries Research Center , 6505 Northeast 65th Street , Seattle , Washington , 98115 , USA
| |
Collapse
|
45
|
Phares TW, Kean RB, Mikheeva T, Hooper DC. Regional differences in blood-brain barrier permeability changes and inflammation in the apathogenic clearance of virus from the central nervous system. THE JOURNAL OF IMMUNOLOGY 2006; 176:7666-75. [PMID: 16751414 DOI: 10.4049/jimmunol.176.12.7666] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The loss of blood-brain barrier (BBB) integrity in CNS inflammatory responses triggered by infection and autoimmunity has generally been associated with the development of neurological signs. In the present study, we demonstrate that the clearance of the attenuated rabies virus CVS-F3 from the CNS is an exception; increased BBB permeability and CNS inflammation occurs in the absence of neurological sequelae. We speculate that regionalization of the CNS inflammatory response contributes to its lack of pathogenicity. Despite virus replication and the expression of several chemokines and IL-6 in both regions being similar, the up-regulation of MIP-1beta, TNF-alpha, IFN-gamma, and ICAM-1 and the loss of BBB integrity was more extensive in the cerebellum than in the cerebral cortex. The accumulation of CD4- and CD19-positive cells was higher in the cerebellum than the cerebral cortex. Elevated CD19 levels were paralleled by kappa-L chain expression levels. The timing of BBB permeability changes, kappa-L chain expression in CNS tissues, and Ab production in the periphery suggest that the in situ production of virus-neutralizing Ab may be more important in virus clearance than the infiltration of circulating Ab. The data indicate that, with the possible exception of CD8 T cells, the effectors of rabies virus clearance are more commonly targeted to the cerebellum. This is likely the result of differences in the capacity of the tissues of the cerebellum and cerebral cortex to mediate the events required for BBB permeability changes and cell invasion during virus infection.
Collapse
Affiliation(s)
- Timothy W Phares
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
46
|
Jackson AC, Rasalingam P, Weli SC. Comparative pathogenesis of recombinant rabies vaccine strain SAD-L16 and SAD-D29 with replacement of Arg333 in the glycoprotein after peripheral inoculation of neonatal mice: less neurovirulent strain is a stronger inducer of neuronal apoptosis. Acta Neuropathol 2006; 111:372-8. [PMID: 16453143 DOI: 10.1007/s00401-005-0006-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 09/14/2005] [Accepted: 09/19/2005] [Indexed: 10/25/2022]
Abstract
Less neurovirulent strains of rabies virus have been recognized to be stronger inducers of neuronal apoptosis in vitro than more neurovirulent strains, but few studies have clarified whether this also applies in vivo. A comparative study was performed in two-day-old ICR mice inoculated in a hindlimb thigh muscle with recombinant rabies virus vaccine strain SAD-L16 (L16) or SAD-D29 (D29), which contains an attenuating substitution of Arg333 in the rabies virus glycoprotein. Histopathological and immunohistochemical analyses of brains were performed at early daily time points and in moribund animals. Both viruses caused progressive limb weakness; mortality with L16 was 100% at day 7 post-inoculation (p.i.) and 75% at 17 days p.i. for D29 and Kaplan-Meyer survival curves were significantly different. L16 spread to the brain more quickly than D29, and both viruses produced multifocal lesions in the brainstem and cerebellum associated with inflammatory changes and neuronal apoptosis. There was more disseminated involvement of the brain and many more infected neurons in L16 infection, particularly in the neostriatum, hippocampus, and cerebral cortex. Both viruses induced neuronal apoptosis, which was most marked in the brainstem tegmentum and internal granular layer of the cerebellum. In light of the lower burden of infection and smaller number of neurons infected with D29, this less virulent virus was a stronger inducer of neuronal apoptosis than the more virulent L16. These findings support previous in vitro studies indicating that there is an inverse relationship between pathogenicity and apoptosis. Induction of apoptosis, which is an innate mechanism in which the host restricts viral spread, may contribute to severe clinical neurological disease when there is viral invasion into the central nervous system.
Collapse
Affiliation(s)
- Alan C Jackson
- Department of Medicine (Neurology), Queen's University, Kingston General Hospital, Connell 725, 76 Stuart Street, K7L 2V7 Kingston, ON, Canada.
| | | | | |
Collapse
|
47
|
Takayama-Ito M, Inoue KI, Shoji Y, Inoue S, Iijima T, Sakai T, Kurane I, Morimoto K. A highly attenuated rabies virus HEP-Flury strain reverts to virulent by single amino acid substitution to arginine at position 333 in glycoprotein. Virus Res 2006; 119:208-15. [PMID: 16473429 DOI: 10.1016/j.virusres.2006.01.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 12/22/2005] [Accepted: 01/10/2006] [Indexed: 10/25/2022]
Abstract
An amino acid at position 333 in the glycoprotein of several fixed rabies virus strains is responsible for the pathogenicity in adult mice. Substitution of arginine at this position largely reduces the viral pathogenicity in adult mice. Attenuation by this single amino acid substitution has been established by using escape mutants selected by monoclonal antibodies and point-mutated virus generated by reverse-genetics. A highly attenuated HEP-Flury strain, which was selected by serial passages in cell cultures, has glutamine at this position. In this study, a point-mutated rHEP333R virus, having arginine at position 333, was generated and examined for the responsibility of this substitution in rabies pathogenicity. The rHEP333R acquired an ability to spread and propagate in mouse brain but the parental rHEP did not. The pathogenicity of rHEP333R to adult mice by intracerebral inoculation largely increased. We confirmed that an arginine at position 333 contributed to reversion of the pathogenicity in a highly attenuated HEP-Flury strain.
Collapse
Affiliation(s)
- Mutsuyo Takayama-Ito
- Department of Virology I, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Faber M, Faber ML, Papaneri A, Bette M, Weihe E, Dietzschold B, Schnell MJ. A single amino acid change in rabies virus glycoprotein increases virus spread and enhances virus pathogenicity. J Virol 2006; 79:14141-8. [PMID: 16254349 PMCID: PMC1280225 DOI: 10.1128/jvi.79.22.14141-14148.2005] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several rabies virus (RV) vaccine strains containing an aspartic acid (Asp) or glutamic acid (Glu) instead of an arginine (Arg) at position 333 of the RV glycoprotein (G) are apathogenic for immunocompetent mice even after intracranial inoculation. However, we previously showed that the nonpathogenic phenotype of the highly attenuated RV strain SPBNGA, which contains a Glu at position 333 of G, is unstable when this virus is passaged in newborn mice. While the Glu(333) remained unchanged after five mouse passages, an Asn(194)-->Lys(194) mutation occurred in RV G. This mutation was associated with increased pathogenicity for adult mice. Using site-directed mutagenesis to exchange Asn(194) with Lys(194) in the G protein of SPBNGA, resulting in SPBNGA-K, we show here that this mutation is solely responsible for the increase in pathogenicity and that the Asn(194)-->Lys(194) mutation does not arise when Asn(194) is exchanged with Ser(194) (SPBNGA-S). Our data presented indicate that the increased pathogenicity of SPBNGA-K is due to increased viral spread in vivo and in vitro, faster internalization of the pathogenic virus into cells, and a shift in the pH threshold for membrane fusion. These results are consistent with the notion that the RV G protein is a major contributor to RV pathogenesis and that the more pathogenic RVs escape the host responses by a faster spread than that of less pathogenic RVs.
Collapse
Affiliation(s)
- Milosz Faber
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Rabies is a central nervous system (CNS) disease that is almost invariably fatal. The causative agent is rabies virus (RV), a negative-stranded RNA virus of the rhabdovirus family. RV pathogenesis, like that of other viruses, is a multigenic trait. Recent findings indicate that in addition to the RV G protein viral elements that regulate gene expression, especially expression of the L gene, are also likely to play a role in RV pathogenesis. In vivo, RV infects almost exclusively neurons, and neuroinvasiveness is the major defining characteristic of a classical RV infection. A key factor in the neuroinvasion of RV is transsynaptic neuronal spread. While the ability of RV to spread from the post-synaptic site to the pre-synaptic site is mediated by the RV G protein, the RV P protein might be an important determinant of retrograde transport of the virus within axons. Although the mechanism(s) by which an RV infection cause(s) a lethal neurological disease are still not well understood, the most significant factor underlying the lethal outcome of an RV infection appears to be the neuronal dysfunction due to drastically inhibited synthesis of proteins required in maintaining neuronal functions.
Collapse
Affiliation(s)
- B Dietzschold
- Department of Microbiology, Center for Neurovirology, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | |
Collapse
|
50
|
Schnell MJ, Tan GS, Dietzschold B. The application of reverse genetics technology in the study of rabies virus (RV) pathogenesis and for the development of novel RV vaccines. J Neurovirol 2005; 11:76-81. [PMID: 15804964 DOI: 10.1080/13550280590900436] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Rabies is a central nervous system (CNS) disease that is almost invariably fatal. Neurotropism, neuroinvasiveness, and transsynaptic spread are the main features that determine the pathogenesis of rabies. Recent advances in rabies virus (RV) research, which made direct genetic manipulations of the RV genome possible, greatly improved the understanding of the role of different viral and host cell factors in the pathogenesis of rabies. Here the authors discuss molecular mechanisms associated with rabies RV infection and its spread to the CNS.
Collapse
Affiliation(s)
- Matthias J Schnell
- Department of Biochemistry and Molecular Pharmacology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107-6799, USA.
| | | | | |
Collapse
|