1
|
de Ávila AI, Soria ME, Martínez-González B, Somovilla P, Mínguez P, Salar-Vidal L, Esteban-Muñoz M, Martín-García M, Zuñiga S, Sola I, Enjuanes L, Gadea I, Perales C, Domingo E. SARS-CoV-2 biological clones are genetically heterogeneous and include clade-discordant residues. J Virol 2025:e0225024. [PMID: 40272156 DOI: 10.1128/jvi.02250-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/26/2025] [Indexed: 04/25/2025] Open
Abstract
Defective genomes are part of SARS-CoV-2 quasispecies. High-resolution, ultra-deep sequencing of bulk RNA from viral populations does not distinguish RNA mutations, insertions, and deletions in viable genomes from those in defective genomes. To quantify SARS-CoV-2 infectious variant progeny, virus from four individual plaques (biological clones) of a preparation of isolate USA-WA1/2020, formed on Vero E6 cell monolayers, was subjected to further biological cloning to yield 9 second-generation and 15 third-generation sub-clones. Consensus genomic sequences of the biological clones and sub-clones included an average of 2.8 variations per viable genome, relative to the consensus sequence of the parental USA-WA1/2020 virus. This value is 6.5-fold lower than the estimates for biological clones of other RNA viruses such as bacteriophage Qβ, foot-and-mouth disease virus, or hepatitis C virus in cell culture. The mutant spectrum complexity of the nsp12 (polymerase)- and spike (S)-coding region was unique in the progeny of each of 10 third-generation sub-clones; they shared 2.4% of the total of 164 different mutations and deletions scored in the 3,719 genomic residues that were screened. The presence of minority out-of-frame deletions revealed the ease of defective genome production from an individual infectious genome. Several low-frequency point mutations and deletions were clade-discordant in that they were not typical of USA-WA1/2020 but served to define the consensus sequences of future SARS-CoV-2 clades. Implications for SARS-CoV-2 adaptability and COVID-19 control of the viable genome heterogeneity and the generation of complex mutant spectra from individual genomes are discussed.IMPORTANCESequencing of biological clones is a means to identify mutations, insertions, and deletions located in viable genomes. This distinction is particularly important for viral populations, such as those of SARS-CoV-2, that contain large proportions of defective genomes. By sequencing biological clones and sub-clones, we quantified the heterogeneity of the viable complement of USA-WA1/2020 to be lower than exhibited by other RNA viruses. This difference may be due to a reduced mutation rate or to limited tolerance of the large coronavirus genome to incorporate mutations and deletions and remain functional or a combination of both influences. The presence of clade-discordant residues in the progeny of individual biological sub-clones suggests limitations in the occupation of sequence space by SARS-CoV-2. However, the complex and unique mutant spectra that are rapidly generated from individual genomes suggest an aptness to confront selective constraints.
Collapse
Affiliation(s)
- Ana Isabel de Ávila
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Brenda Martínez-González
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Pilar Somovilla
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autonoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Pablo Mínguez
- Department of Genetics and Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Mario Esteban-Muñoz
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Marta Martín-García
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Ignacio Gadea
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Celia Perales
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|
2
|
Aquino JR, Fox CR, Parks GD. Role of Defective Interfering Particles in Complement-Mediated Lysis of Parainfluenza Virus-Infected Cells. Viruses 2025; 17:488. [PMID: 40284931 PMCID: PMC12031084 DOI: 10.3390/v17040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
RNA viruses pose a significant global public health burden due to their high mutation rates, zoonotic potential, and ability to evade immune responses. A common aspect of their replication is the generation of defective interfering particles (DIPs), which contain truncated defective viral genomes (DVGs) that depend on full-length standard (STD) virus for replication. DVGs have gained recognition as they are increasingly detected in clinical samples from natural infections. While their role in modulating type I interferon (IFN-I) responses is well established, their impact on the complement (C') system is not understood. In this study, we examined how DVGs influence C'-mediated lysis during parainfluenza virus 5 (PIV5) infection using real-time in vitro cell viability assays. Our results demonstrated that C' effectively killed human lung epithelial cells infected with STD PIV5, whereas co-infection with DIP-enriched stocks significantly suppressed C'-mediated killing through mechanisms that were dependent on DVG replication but independent of IFN-I production. The titration of DI units in co-infection with STD PIV5 showed a strong linear relationship between DIP-mediated decreases in surface viral glycoprotein expression and the inhibition of C'-mediated lysis. Our findings reveal a previously unrecognized function of DVGs in modulating C' pathways, shedding light on their potential role in viral persistence and immune evasion.
Collapse
Affiliation(s)
| | | | - Griffith D. Parks
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.R.A.); (C.R.F.)
| |
Collapse
|
3
|
Yousaf I, Domanico L, Nambara T, Yadav K, Kelly LK, Trejo-Lopez J, Shieh WJ, Rota PA, Devaux P, Kanekiyo T, Taylor MP, Cattaneo R. The measles virus matrix F50S mutation from a lethal case of subacute sclerosing panencephalitis promotes receptor-independent neuronal spread. J Virol 2025; 99:e0175024. [PMID: 39641619 PMCID: PMC11784085 DOI: 10.1128/jvi.01750-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Subacute sclerosing panencephalitis (SSPE) is a lethal neurological disorder occurring several years after measles. Reconstruction of the evolution of the measles virus (MeV) genome in an SSPE case suggested that the matrix (M) protein mutation M-F50S, when added to other mutations, drove neuropathogenesis. However, whether and how M-F50S would promote spread independently from other mutations was in question. We investigated here the cell specificity of MeV spread in this brain and documented that both neurons and astrocytes were heavily infected. We then generated recombinant MeV with individual mutations in the three proteins of the viral membrane fusion apparatus, M, fusion (F), and hemagglutinin (H). These viruses reached similar titers as the parental wild-type virus, kept the respective mutations upon passage, and infected cells expressing the tissue-specific MeV receptors SLAM and nectin-4 with similar efficiencies. However, after inoculation of receptor-negative neurons and astrocytes differentiated from human induced pluripotent stem cells, only MeV M-F50S spread with moderate efficiency; the parental virus and its derivatives coding for a hyperfusogenic F protein, or for a cytoplasmic tail-mutated H protein, did not spread. When delivered to primary mouse neurons by cell-mediated neurite overlay, MeV M-F50S frequently reached the cell bodies and occasionally formed small infectious centers, while the other MeV reached the cell bodies only sporadically. These results demonstrate that, in neuronal cell cultures, M-F50S can enable receptor-independent spread in the absence of other mutations, and validate the inference that this single amino acid change initiated ubiquitous MeV brain spread.IMPORTANCEMeasles virus (MeV), a non-integrating negative-strand RNA virus, rarely causes subacute sclerosing panencephalitis (SSPE) several years after acute infection. During brain adaptation, the MeV genome acquires multiple mutations reducing the dependence of its membrane fusion apparatus (MFA) from an activating receptor. It was proposed that one of these mutations, matrix protein F50S, drove neuropathogenesis in an SSPE case. We report here that, in two types of neuronal cultures, a recombinant MeV with only this mutation gained receptor-independent spread, whereas viruses expressing MFA proteins with other mutations acquired during brain adaptation did not. Our results validate the inference that M-F50S initiated ubiquitous MeV brain spread resulting in lethal disease. They also prompt studies of the impact of analogous amino acid changes of the M proteins of other nonsegmented negative-strand RNA viruses on their interactions with membrane lipids and cytoskeletal components.
Collapse
Affiliation(s)
- Iris Yousaf
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Luke Domanico
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | | | - Kalpana Yadav
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Lauren K. Kelly
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jorge Trejo-Lopez
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Wun-Ju Shieh
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul A. Rota
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Patricia Devaux
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Matthew P. Taylor
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Roberto Cattaneo
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Taye B, Yousaf I, Navaratnarajah CK, Schroeder DC, Pfaller CK, Cattaneo R. A measles virus collective infectious unit that caused lethal human brain disease includes many locally restricted and few widespread copy-back defective genomes. J Virol 2024; 98:e0123224. [PMID: 39431848 PMCID: PMC11575405 DOI: 10.1128/jvi.01232-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024] Open
Abstract
During virus replication in cultured cells, copy-back defective viral genomes (cbDVGs) can arise. CbDVGs are powerful inducers of innate immune responses in vitro, but their occurrence and impact on natural infections of human hosts remain poorly defined. We asked whether cbDVGs were generated in the brain of a patient who succumbed to subacute sclerosing panencephalitis (SSPE) about 20 years after acute measles virus (MeV) infection. Previous analyses of 13 brain specimens of this patient indicated that a collective infectious unit (CIU) drove lethal MeV spread. In this study, we identified 276 replication-competent cbDVG species, each present in over 100 copies in the brain. Six species were detected in multiple forebrain locations, implying that they travelled long-distance with the CIU. The cbDVG to full-length genomes ratio was often close to 1 (0.6-1.74). Most cbDVGs were 324-2,000 bases in length, corresponding to 2%-12% of the full-length genome; all are predicted to have complementary terminal sequences. If improperly encapsidated, these sequences have the potential to form double-stranded structures that can induce innate immune responses. To assess this, we examined the transcriptome of all brain specimens. Several interferon and inflammatory response genes were upregulated, but upregulation levels did not correlate with cbDVG levels in the specimens. Thus, the CIU that drove MeV pathogenesis in this brain includes, in addition to two complementary full-length genome populations, many locally restricted and few widespread cbDVG species. The widespread cbDVG species may have been positively selected but how they impacted pathogenesis remains to be determined.IMPORTANCECopy-back defective viral genomes (cbDVGs) can drive virus-host interactions. They can suppress virus replication directly, by competing with full-length genomes, or indirectly by stimulating antiviral immunity. In vitro, cbDVG can slow down infections and promote persistence, but there is limited documentation of their presence in human hosts or of their impact on disease. We had the unique opportunity to analyze the brain of a patient who succumbed to subacute sclerosing panencephalitis, a rare but lethal consequence of measles. We detected more than 270 distinct cbDVG species; most were restricted to one specimen, but several reached all lobes of the forebrain, suggesting positive selection. Our analyses provide the missing knowledge of the diversity of cbDVG in a natural infection of a human host. They also reveal that a collective infectious unit that caused lethal human brain disease includes few widespread cbDVG, in addition to two ubiquitous complementary full-length genome populations.
Collapse
Affiliation(s)
- Biruhalem Taye
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Iris Yousaf
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Chanakha K. Navaratnarajah
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Christian K. Pfaller
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Yousaf I, Hannon WW, Donohue RC, Pfaller CK, Yadav K, Dikdan RJ, Tyagi S, Schroeder DC, Shieh WJ, Rota PA, Feder AF, Cattaneo R. Brain tropism acquisition: The spatial dynamics and evolution of a measles virus collective infectious unit that drove lethal subacute sclerosing panencephalitis. PLoS Pathog 2023; 19:e1011817. [PMID: 38127684 PMCID: PMC10735034 DOI: 10.1371/journal.ppat.1011817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
It is increasingly appreciated that pathogens can spread as infectious units constituted by multiple, genetically diverse genomes, also called collective infectious units or genome collectives. However, genetic characterization of the spatial dynamics of collective infectious units in animal hosts is demanding, and it is rarely feasible in humans. Measles virus (MeV), whose spread in lymphatic tissues and airway epithelia relies on collective infectious units, can, in rare cases, cause subacute sclerosing panencephalitis (SSPE), a lethal human brain disease. In different SSPE cases, MeV acquisition of brain tropism has been attributed to mutations affecting either the fusion or the matrix protein, or both, but the overarching mechanism driving brain adaptation is not understood. Here we analyzed MeV RNA from several spatially distinct brain regions of an individual who succumbed to SSPE. Surprisingly, we identified two major MeV genome subpopulations present at variable frequencies in all 15 brain specimens examined. Both genome types accumulated mutations like those shown to favor receptor-independent cell-cell spread in other SSPE cases. Most infected cells carried both genome types, suggesting the possibility of genetic complementation. We cannot definitively chart the history of the spread of this virus in the brain, but several observations suggest that mutant genomes generated in the frontal cortex moved outwards as a collective and diversified. During diversification, mutations affecting the cytoplasmic tails of both viral envelope proteins emerged and fluctuated in frequency across genetic backgrounds, suggesting convergent and potentially frequency-dependent evolution for modulation of fusogenicity. We propose that a collective infectious unit drove MeV pathogenesis in this brain. Re-examination of published data suggests that similar processes may have occurred in other SSPE cases. Our studies provide a primer for analyses of the evolution of collective infectious units of other pathogens that cause lethal disease in humans.
Collapse
Affiliation(s)
- Iris Yousaf
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
| | - William W. Hannon
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Ryan C. Donohue
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
| | - Christian K. Pfaller
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
| | - Kalpana Yadav
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ryan J. Dikdan
- Public Health Research Institute, Rutgers University, Newark, New Jersey, United States of America
| | - Sanjay Tyagi
- Public Health Research Institute, Rutgers University, Newark, New Jersey, United States of America
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| | - Wun-Ju Shieh
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Center for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Paul A. Rota
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Center for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Alison F. Feder
- Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Public Health Sciences and Computational Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
| |
Collapse
|
6
|
Extance A. Where do viruses hide in the human body? BMJ 2023; 382:p1156. [PMID: 37402517 DOI: 10.1136/bmj.p1156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
|
7
|
Zhou T, Gilliam NJ, Li S, Spandau S, Osborn RM, Connor S, Anderson CS, Mariani TJ, Thakar J, Dewhurst S, Mathews DH, Huang L, Sun Y. Generation and Functional Analysis of Defective Viral Genomes during SARS-CoV-2 Infection. mBio 2023; 14:e0025023. [PMID: 37074178 PMCID: PMC10294654 DOI: 10.1128/mbio.00250-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
Defective viral genomes (DVGs) have been identified in many RNA viruses as a major factor influencing antiviral immune response and viral pathogenesis. However, the generation and function of DVGs in SARS-CoV-2 infection are less known. In this study, we elucidated DVG generation in SARS-CoV-2 and its relationship with host antiviral immune response. We observed DVGs ubiquitously from transcriptome sequencing (RNA-seq) data sets of in vitro infections and autopsy lung tissues of COVID-19 patients. Four genomic hot spots were identified for DVG recombination, and RNA secondary structures were suggested to mediate DVG formation. Functionally, bulk and single-cell RNA-seq analysis indicated the interferon (IFN) stimulation of SARS-CoV-2 DVGs. We further applied our criteria to the next-generation sequencing (NGS) data set from a published cohort study and observed a significantly higher amount and frequency of DVG in symptomatic patients than those in asymptomatic patients. Finally, we observed exceptionally diverse DVG populations in one immunosuppressive patient up to 140 days after the first positive test of COVID-19, suggesting for the first time an association between DVGs and persistent viral infections in SARS-CoV-2. Together, our findings strongly suggest a critical role of DVGs in modulating host IFN responses and symptom development, calling for further inquiry into the mechanisms of DVG generation and into how DVGs modulate host responses and infection outcome during SARS-CoV-2 infection. IMPORTANCE Defective viral genomes (DVGs) are generated ubiquitously in many RNA viruses, including SARS-CoV-2. Their interference activity to full-length viruses and IFN stimulation provide the potential for them to be used in novel antiviral therapies and vaccine development. SARS-CoV-2 DVGs are generated through the recombination of two discontinuous genomic fragments by viral polymerase complex, and this recombination is also one of the major mechanisms for the emergence of new coronaviruses. Focusing on the generation and function of SARS-CoV-2 DVGs, these studies identify new hot spots for nonhomologous recombination and strongly suggest that the secondary structures within viral genomes mediate the recombination. Furthermore, these studies provide the first evidence for IFN stimulation activity of de novo DVGs during natural SARS-CoV-2 infection. These findings set up the foundation for further mechanism studies of SARS-CoV-2 recombination and provide evidence to harness the immunostimulatory potential of DVGs in the development of a vaccine and antivirals for SARS-CoV-2.
Collapse
Affiliation(s)
- Terry Zhou
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Nora J. Gilliam
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Translational Biomedical Sciences PhD Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sizhen Li
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, Oregon, USA
| | - Simone Spandau
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Raven M. Osborn
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
- Translational Biomedical Sciences PhD Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sarah Connor
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester, Rochester, New York, USA
| | - Christopher S. Anderson
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester, Rochester, New York, USA
| | - Thomas J. Mariani
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester, Rochester, New York, USA
| | - Juilee Thakar
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Stephen Dewhurst
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
| | - David H. Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Liang Huang
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, Oregon, USA
| | - Yan Sun
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
8
|
Shirogane Y, Harada H, Hirai Y, Takemoto R, Suzuki T, Hashiguchi T, Yanagi Y. Collective fusion activity determines neurotropism of an en bloc transmitted enveloped virus. SCIENCE ADVANCES 2023; 9:eadf3731. [PMID: 36706187 PMCID: PMC9882980 DOI: 10.1126/sciadv.adf3731] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 06/09/2023]
Abstract
Measles virus (MeV), which is usually non-neurotropic, sometimes persists in the brain and causes subacute sclerosing panencephalitis (SSPE) several years after acute infection, serving as a model for persistent viral infections. The persisting MeVs have hyperfusogenic mutant fusion (F) proteins that likely enable cell-cell fusion at synapses and "en bloc transmission" between neurons. We here show that during persistence, F protein fusogenicity is generally enhanced by cumulative mutations, yet mutations paradoxically reducing the fusogenicity may be selected alongside the wild-type (non-neurotropic) MeV genome. A mutant F protein having SSPE-derived substitutions exhibits lower fusogenicity than the hyperfusogenic F protein containing some of those substitutions, but by the wild-type F protein coexpression, the fusogenicity of the former F protein is enhanced, while that of the latter is nearly abolished. These findings advance the understanding of the long-term process of MeV neuropathogenicity and provide critical insight into the genotype-phenotype relationships of en bloc transmitted viruses.
Collapse
Affiliation(s)
- Yuta Shirogane
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Hidetaka Harada
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Yuichi Hirai
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Ryuichi Takemoto
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Tateki Suzuki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Yanagi
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
9
|
Defective Interfering Particles of Influenza Virus and Their Characteristics, Impacts, and Use in Vaccines and Antiviral Strategies: A Systematic Review. Viruses 2022; 14:v14122773. [PMID: 36560777 PMCID: PMC9781619 DOI: 10.3390/v14122773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Defective interfering particles (DIPs) are particles containing defective viral genomes (DVGs) generated during viral replication. DIPs have been found in various RNA viruses, especially in influenza viruses. Evidence indicates that DIPs interfere with the replication and encapsulation of wild-type viruses, namely standard viruses (STVs) that contain full-length viral genomes. DIPs may also activate the innate immune response by stimulating interferon synthesis. In this review, the underlying generation mechanisms and characteristics of influenza virus DIPs are summarized. We also discuss the potential impact of DIPs on the immunogenicity of live attenuated influenza vaccines (LAIVs) and development of influenza vaccines based on NS1 gene-defective DIPs. Finally, we review the antiviral strategies based on influenza virus DIPs that have been used against both influenza virus and SARS-CoV-2. This review provides systematic insights into the theory and application of influenza virus DIPs.
Collapse
|
10
|
Zhou T, Gilliam NJ, Li S, Spaudau S, Osborn RM, Anderson CS, Mariani TJ, Thakar J, Dewhurst S, Mathews DH, Huang L, Sun Y. Generation and functional analysis of defective viral genomes during SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.22.509123. [PMID: 36172120 PMCID: PMC9516852 DOI: 10.1101/2022.09.22.509123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Defective viral genomes (DVGs) have been identified in many RNA viruses as a major factor influencing antiviral immune response and viral pathogenesis. However, the generation and function of DVGs in SARS-CoV-2 infection are less known. In this study, we elucidated DVG generation in SARS-CoV-2 and its relationship with host antiviral immune response. We observed DVGs ubiquitously from RNA-seq datasets of in vitro infections and autopsy lung tissues of COVID-19 patients. Four genomic hotspots were identified for DVG recombination and RNA secondary structures were suggested to mediate DVG formation. Functionally, bulk and single cell RNA-seq analysis indicated the IFN stimulation of SARS-CoV-2 DVGs. We further applied our criteria to the NGS dataset from a published cohort study and observed significantly higher DVG amount and frequency in symptomatic patients than that in asymptomatic patients. Finally, we observed unusually high DVG frequency in one immunosuppressive patient up to 140 days after admitted to hospital due to COVID-19, first-time suggesting an association between DVGs and persistent viral infections in SARS-CoV-2. Together, our findings strongly suggest a critical role of DVGs in modulating host IFN responses and symptom development, calling for further inquiry into the mechanisms of DVG generation and how DVGs modulate host responses and infection outcome during SARS-CoV-2 infection. Importance Defective viral genomes (DVGs) are ubiquitously generated in many RNA viruses, including SARS-CoV-2. Their interference activity to full-length viruses and IFN stimulation provide them the potential for novel antiviral therapies and vaccine development. SARS-CoV-2 DVGs are generated through the recombination of two discontinuous genomic fragments by viral polymerase complex and the recombination is also one of the major mechanisms for the emergence of new coronaviruses. Focusing on the generation and function of SARS-CoV-2 DVGs, these studies identify new hotspots for non-homologous recombination and strongly suggest that the secondary structures within viral genomes mediate the recombination. Furthermore, these studies provide the first evidence for IFN stimulation activity of de novo DVGs during natural SARS-CoV-2 infection. These findings set up the foundation for further mechanism studies of SARS-CoV-2 recombination and provide the evidence to harness DVGs’ immunostimulatory potential in the development of vaccine and antivirals for SARS-CoV-2.
Collapse
Affiliation(s)
- Terry Zhou
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, NY 14642
| | - Nora J. Gilliam
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, NY 14642
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- Translational Biomedical Sciences PhD Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Sizhen Li
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, OR 97331
| | - Simone Spaudau
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, NY 14642
| | - Raven M. Osborn
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, NY 14642
- Translational Biomedical Sciences PhD Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Christopher S. Anderson
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas J. Mariani
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester
| | - Juilee Thakar
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, NY 14642
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Stephen Dewhurst
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, NY 14642
| | - David H. Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642
| | - Liang Huang
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, OR 97331
| | - Yan Sun
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
11
|
González Aparicio LJ, López CB, Felt SA. A Virus Is a Community: Diversity within Negative-Sense RNA Virus Populations. Microbiol Mol Biol Rev 2022; 86:e0008621. [PMID: 35658541 PMCID: PMC9491172 DOI: 10.1128/mmbr.00086-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Negative-sense RNA virus populations are composed of diverse viral components that interact to form a community and shape the outcome of virus infections. At the genomic level, RNA virus populations consist not only of a homogeneous population of standard viral genomes but also of an extremely large number of genome variants, termed viral quasispecies, and nonstandard viral genomes, which include copy-back viral genomes, deletion viral genomes, mini viral RNAs, and hypermutated RNAs. At the particle level, RNA virus populations are composed of pleomorphic particles, particles missing or having additional genomes, and single particles or particle aggregates. As we continue discovering more about the components of negative-sense RNA virus populations and their crucial functions during virus infection, it will become more important to study RNA virus populations as a whole rather than their individual parts. In this review, we will discuss what is known about the components of negative-sense RNA virus communities, speculate how the components of the virus community interact, and summarize what vaccines and antiviral therapies are being currently developed to target or harness these components.
Collapse
Affiliation(s)
- Lavinia J. González Aparicio
- Department of Molecular Microbiology Washington University School of Medicine, St Louis, Missouri, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Carolina B. López
- Department of Molecular Microbiology Washington University School of Medicine, St Louis, Missouri, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sébastien A. Felt
- Department of Molecular Microbiology Washington University School of Medicine, St Louis, Missouri, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
12
|
Kuniholm J, Coote C, Henderson AJ. Defective HIV-1 genomes and their potential impact on HIV pathogenesis. Retrovirology 2022; 19:13. [PMID: 35764966 PMCID: PMC9238239 DOI: 10.1186/s12977-022-00601-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
Defective HIV-1 proviruses represent a population of viral genomes that are selected for by immune pressures, and clonally expanded to dominate the persistent HIV-1 proviral genome landscape. There are examples of RNA and protein expression from these compromised genomes which are generated by a variety of mechanisms. Despite the evidence that these proviruses are transcribed and translated, their role in HIV pathogenesis has not been fully explored. The potential for these genomes to participate in immune stimulation is particularly relevant considering the accumulation of cells harboring these defective proviruses over the course of antiretroviral therapy in people living with HIV. The expression of defective proviruses in different cells and tissues could drive innate sensing mechanisms and inflammation. They may also alter antiviral T cell responses and myeloid cell functions that directly contribute to HIV-1 associated chronic comorbidities. Understanding the impact of these defective proviruses needs to be considered as we advance cure strategies that focus on targeting the diverse population of HIV-1 proviral genomes.
Collapse
Affiliation(s)
- Jeffrey Kuniholm
- Department of Microbiology, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, 02116, USA
| | - Carolyn Coote
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, 02116, USA
| | - Andrew J Henderson
- Department of Microbiology, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, 02116, USA.
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, 02116, USA.
| |
Collapse
|
13
|
Abstract
DNA viruses often persist in the body of their host, becoming latent and recurring many months or years later. By contrast, most RNA viruses cause acute infections that are cleared from the host as they lack the mechanisms to persist. However, it is becoming clear that viral RNA can persist after clinical recovery and elimination of detectable infectious virus. This persistence can either be asymptomatic or associated with late progressive disease or nonspecific lingering symptoms, such as may be the case following infection with Ebola or Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Why does viral RNA sometimes persist after recovery from an acute infection? Where does the RNA come from? And what are the consequences?
Collapse
|
14
|
López CB. Defective Viral Particles. Virology 2021. [DOI: 10.1002/9781119818526.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Defective viral genomes are key drivers of the virus-host interaction. Nat Microbiol 2019; 4:1075-1087. [PMID: 31160826 PMCID: PMC7097797 DOI: 10.1038/s41564-019-0465-y] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
Viruses survive often harsh host environments, yet we know little about the strategies they utilize to adapt and subsist given their limited genomic resources. We are beginning to appreciate the surprising versatility of viral genomes and how replication-competent and -defective virus variants can provide means for adaptation, immune escape and virus perpetuation. This Review summarizes current knowledge of the types of defective viral genomes generated during the replication of RNA viruses and the functions that they carry out. We highlight the universality and diversity of defective viral genomes during infections and discuss their predicted role in maintaining a fit virus population, their impact on human and animal health, and their potential to be harnessed as antiviral tools. This Review describes recent findings on the biogenesis and the role of defective viral genomes during replication of RNA viruses and discusses their impact on viral dynamics and evolution.
Collapse
|
16
|
Abstract
Defective viral genomes (DVGs) are generated during viral replication and are unable to carry out a full replication cycle unless coinfected with a full-length virus. DVGs are produced by many viruses, and their presence correlates with alterations in infection outcomes. Historically, DVGs were studied for their ability to interfere with standard virus replication as well as for their association with viral persistence. More recently, a critical role for DVGs in inducing the innate immune response during infection was appreciated. Here we review the role of DVGs of RNA viruses in shaping outcomes of experimental as well as natural infections and explore the mechanisms by which DVGs impact infection outcome.
Collapse
Affiliation(s)
- Emmanuelle Genoyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
17
|
Pabbaraju K, Fonseca K, Wong S, Koch MW, Joseph JT, Tipples GA, Tellier R. Genetic characterization of measles virus genotype D6 subacute sclerosing panencephalitis case, Alberta, Canada. J Neurovirol 2018; 24:720-729. [PMID: 30291564 DOI: 10.1007/s13365-018-0668-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 07/09/2018] [Accepted: 07/26/2018] [Indexed: 11/29/2022]
Abstract
Subacute sclerosing panencephalitis (SSPE) is a progressive and eventually fatal neurological disease arising from a persistent infection with measles virus (MV) acquired at a young age. SSPE measles virus strains are defective and unable to produce progeny virions, due to multiple and extensive mutations in a number of key genes. We sequenced the full MV genome from our recently reported SSPE case, which typed as genotype D6, and compared it with other genotype D6 wild type and SSPE sequences. The Alberta D6 strain was significantly different from other reported SSPE D6 sequences. Mutations were observed in all the genes of the Alberta strain, with the greatest sequence divergence noted in the M gene with 17.6% nucleotide and 31% amino acid variation. The L gene showed the least variation with 1.3% nucleotide and 0.7% amino acid differences respectively. The nucleotide variability for 15,672 bases of the complete genome compared to the wild type and other SSPE D6 strains was around 3%.
Collapse
Affiliation(s)
- K Pabbaraju
- Provincial Laboratory for Public Health, Calgary, Alberta, Canada.
| | - K Fonseca
- Provincial Laboratory for Public Health, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - S Wong
- Provincial Laboratory for Public Health, Calgary, Alberta, Canada
| | - M W Koch
- Departments of Clinical Neurosciences and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - J T Joseph
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - G A Tipples
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Edmonton, Alberta, Canada
| | - R Tellier
- Provincial Laboratory for Public Health, Calgary, Alberta, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Manzoni TB, López CB. Defective (interfering) viral genomes re-explored: impact on antiviral immunity and virus persistence. Future Virol 2018; 13:493-503. [PMID: 30245734 PMCID: PMC6136085 DOI: 10.2217/fvl-2018-0021] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/03/2018] [Indexed: 11/21/2022]
Abstract
Defective viral genomes (DVGs) are natural products of virus replication that occur in many positive and negative sense RNA viruses, including Ebola, dengue and respiratory syncytial virus. DVGs, which have severe genomic truncations and require a helper virus to replicate, have three well-described functions: interference with standard virus replication, immunostimulation, and establishment of virus persistence. These functions of DVGs were first described almost 50 years ago, yet only recent studies have shown the molecular intersection between their immunostimulatory and pro-persistence activities. Here, we review more than half a century of scientific literature on the immunostimulatory and pro-persistence functions of DVGs. We highlight recent advances in the field and the critical role DVGs have in both the acute and long-term virus-host interactions.
Collapse
Affiliation(s)
- Tomaz B Manzoni
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
MiRNA-124 is a link between measles virus persistent infection and cell division of human neuroblastoma cells. PLoS One 2017; 12:e0187077. [PMID: 29073265 PMCID: PMC5658143 DOI: 10.1371/journal.pone.0187077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/12/2017] [Indexed: 01/12/2023] Open
Abstract
Measles virus (MV) infects a variety of lymphoid and non-lymphoid peripheral organs. However, in rare cases, the virus can persistently infect cells within the central nervous system. Although some of the factors that allow MV to persist are known, the contribution of host cell-encoded microRNAs (miRNA) have not been described. MiRNAs are a class of noncoding RNAs transcribed from genomes of all multicellular organisms and some viruses, which regulate gene expression in a sequence-specific manner. We have studied the contribution of host cell-encoded miRNAs to the establishment of MV persistent infection in human neuroblastoma cells. Persistent MV infection was accompanied by differences in the expression profile and levels of several host cell-encoded microRNAs as compared to uninfected cells. MV persistence infection of a human neuroblastoma cell line (UKF-NB-MV), exhibit high miRNA-124 expression, and reduced expression of cyclin dependent kinase 6 (CDK6), a known target of miRNA-124, resulting in slower cell division but not cell death. By contrast, acute MV infection of UKF-NB cells did not result in increased miRNA-124 levels or CDK6 reduction. Ectopic overexpression of miRNA-124 affected cell viability only in UKF-NB-MV cells, causing cell death; implying that miRNA-124 over expression can sensitize cells to death only in the presence of MV persistent infection. To determine if miRNA-124 directly contributes to the establishment of MV persistence, UKF-NB cells overexpressing miRNA-124 were acutely infected, resulting in establishment of persistently infected colonies. We propose that miRNA-124 triggers a CDK6-dependent decrease in cell proliferation, which facilitates the establishment of MV persistence in neuroblastoma cells. To our knowledge, this is the first report to describe the role of a specific miRNA in MV persistence.
Collapse
|
20
|
Arai T, Terao-Muto Y, Uchida S, Lin C, Honda T, Takenaka A, Ikeda F, Sato H, Yoneda M, Kai C. The P gene of rodent brain-adapted measles virus plays a critical role in neurovirulence. J Gen Virol 2017; 98:1620-1629. [PMID: 28708054 DOI: 10.1099/jgv.0.000842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In rare cases, measles virus (MV) in children leads to fatal neurological complications such as primary measles encephalitis, post-acute measles encephalitis, subacute sclerosing panencephalitis and measles inclusion-body encephalitis. To investigate the pathogenesis of MV-induced encephalitis, rodent brain-adapted MV strains CAM/RB and CAMR40 were generated. These strains acquired mutations to adapt to the rodent brain during 40 passages in rat brain. However, it is still unknown which genes confer the neurovirulence of MV. We previously established a rescue system for recombinant MVs possessing the backbone of wild-type strain HL, an avirulent strain in mice. In the present study, to identify the genes in CAMR40 that elicit neurovirulence, we generated chimeric recombinant MVs based on strain HL. As a result, recombinant wild-type MV in which the haemagglutinin (H) gene was substituted with that of CAMR40 caused a non-lethal mild disease in mice, while additional substitution of the HL phosphoprotein (P) gene with that of strain CAMR40 caused lethal severe neurological signs comparable to those of CAMR40. These results clearly indicated that, in addition to the H gene, the P gene is required for the neurovirulence of MV CAMR40.
Collapse
Affiliation(s)
- Tetsuro Arai
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuri Terao-Muto
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shotaro Uchida
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Che Lin
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoyuki Honda
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Akiko Takenaka
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Fusako Ikeda
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroki Sato
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Misako Yoneda
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Chieko Kai
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
21
|
Paramyxovirus glycoprotein incorporation, assembly and budding: a three way dance for infectious particle production. Viruses 2014; 6:3019-54. [PMID: 25105277 PMCID: PMC4147685 DOI: 10.3390/v6083019] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 12/21/2022] Open
Abstract
Paramyxoviruses are a family of negative sense RNA viruses whose members cause serious diseases in humans, such as measles virus, mumps virus and respiratory syncytial virus; and in animals, such as Newcastle disease virus and rinderpest virus. Paramyxovirus particles form by assembly of the viral matrix protein, the ribonucleoprotein complex and the surface glycoproteins at the plasma membrane of infected cells and subsequent viral budding. Two major glycoproteins expressed on the viral envelope, the attachment protein and the fusion protein, promote attachment of the virus to host cells and subsequent virus-cell membrane fusion. Incorporation of the surface glycoproteins into infectious progeny particles requires coordinated interplay between the three viral structural components, driven primarily by the matrix protein. In this review, we discuss recent progress in understanding the contributions of the matrix protein and glycoproteins in driving paramyxovirus assembly and budding while focusing on the viral protein interactions underlying this process and the intracellular trafficking pathways for targeting viral components to assembly sites. Differences in the mechanisms of particle production among the different family members will be highlighted throughout.
Collapse
|
22
|
Tatlı B, Ekici B, Özmen M. Current therapies and future perspectives in subacute sclerosing panencephalitis. Expert Rev Neurother 2014; 12:485-92. [DOI: 10.1586/ern.12.21] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
|
24
|
Ishida H, Ayata M, Shingai M, Matsunaga I, Seto Y, Katayama Y, Iritani N, Seya T, Yanagi Y, Matsuoka O, Yamano T, Ogura H. Infection of Different Cell Lines of Neural Origin with Subacute Sclerosing Panencephalitis (SSPE) Virus. Microbiol Immunol 2013; 48:277-87. [PMID: 15107538 DOI: 10.1111/j.1348-0421.2004.tb03524.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Measles virus is the causative agent of subacute sclerosing panencephalitis (SSPE). The viruses isolated from brain cells of patients with SSPE (called SSPE viruses) are defective in cell-free virus production in vitro. To investigate the cell tropism of three strains of SSPE virus (Osaka-1, Osaka-2, Osaka-3), SSPE virus-infected cell cultures were treated with cytochalasin D to prepare virus-like particles (CD-VLPs). All CD-VLPs formed syncytia after infection in CHO cells expressing CD150 but not in those expressing CD46. In addition, an antibody to CD46 did not block the infection of Vero cells by SSPE CDVLPs. The results were consistent with our previous suggestion that one or more unidentified receptors might be involved in the entry process. Infection with the CD-VLPs from three SSPE strains was further examined in different human cell lines, including those of neural origin, and was found to induce syncytia in epithelial cells (HeLa and 293T) as well as neuroblastoma cells (IMR-32 and SK-N-SH) with varying efficiency. SSPE CD-VLPs also infected glioblastoma cells (A172) and astrocytoma cells (U-251) but syncytial formation was rarely induced. These epithelial and neural cell lines were not permissive for the replication of wild-type MV. Together with our previous observations, these results suggest that the cell entry receptor is the major factor determining the cell tropism of SSPE viruses. Further studies are necessary to identify other viral and/or cellular factors that might be involved in the replication of SSPE virus in specific neural cells and in the brain.
Collapse
Affiliation(s)
- Hiroshi Ishida
- Department of Virology, Osaka City University Medical School, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Griffin DE, Lin WH, Pan CH. Measles virus, immune control, and persistence. FEMS Microbiol Rev 2012; 36:649-62. [PMID: 22316382 DOI: 10.1111/j.1574-6976.2012.00330.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 12/31/2022] Open
Abstract
Measles remains one of the most important causes of child morbidity and mortality worldwide with the greatest burden in the youngest children. Most acute measles deaths are owing to secondary infections that result from a poorly understood measles-induced suppression of immune responses. Young children are also vulnerable to late development of subacute sclerosing panencephalitis, a progressive, uniformly fatal neurologic disease caused by persistent measles virus (MeV) infection. During acute infection, the rash marks the appearance of the adaptive immune response and CD8(+) T cell-mediated clearance of infectious virus. However, after clearance of infectious virus, MeV RNA persists and can be detected in blood, respiratory secretions, urine, and lymphoid tissue for many weeks to months. This prolonged period of virus clearance may help to explain measles immunosuppression and the development of lifelong immunity to re-infection, as well as occasional infection of the nervous system. Once MeV infects neurons, the virus can spread trans-synaptically and the envelope proteins needed to form infectious virus are unnecessary, accumulate mutations, and can establish persistent infection. Identification of the immune mechanisms required for the clearance of MeV RNA from multiple sites will enlighten our understanding of the development of disease owing to persistent infection.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
26
|
Measles virus infection of the CNS: human disease, animal models, and approaches to therapy. Med Microbiol Immunol 2010; 199:261-71. [PMID: 20390298 DOI: 10.1007/s00430-010-0153-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Indexed: 01/13/2023]
Abstract
Viral infections of the central nervous system(CNS) mostly represent clinically important, often life-threatening complications of systemic viral infections. After acute measles, CNS complications may occur early (acute postinfectious measles encephalitis, APME) or after years of viral persistence (subacute sclerosing panencephalitis, SSPE). In spite of a presumably functional cell-mediated immunity and high antiviral antibody titers, an immunological control of the CNS infection is not achieved in patients suffering from SSPE. There is still no specific therapy for acute complications and persistent MV infections of the CNS. Hamsters, rats, and (genetically unmodified and modified) mice have been used as model systems to study mechanisms of MV-induced CNS infections. Functional CD4+ and CD8+ T cells together with IFN-gamma are required to overcome the infection. With the help of recombinant measles viruses and mice expressing endogenous or transgenic receptors, interesting aspects such as receptor-dependent viral spread and viral determinants of virulence have been investigated. However, many questions concerning the lack of efficient immune control in the CNS are still open. Recent research opened new perspectives using specific antivirals such as short interfering RNA (siRNA) or small molecule inhibitors. Inspite of obvious hurdles, these treatments are the most promising approaches to future therapies.
Collapse
|
27
|
Abstract
Subacute sclerosing panencephalitis (SSPE) is a demyelinating central nervous system disease caused by a persistent measles virus (MV) infection of neurons and glial cells. There is still no specific therapy available, and in spite of an intact innate and adaptive immune response, SSPE leads inevitably to death. In order to select effective antiviral short interfering RNAs (siRNAs), we established a plasmid-based test system expressing the mRNA of DsRed2 fused with mRNA sequences of single viral genes, to which certain siRNAs were directed. siRNA sequences were expressed as short hairpin RNA (shRNA) from a lentiviral vector additionally expressing enhanced green fluorescent protein (EGFP) as an indicator. Evaluation by flow cytometry of the dual-color system (DsRed and EGFP) allowed us to find optimal shRNA sequences. Using the most active shRNA constructs, we transduced persistently infected human NT2 cells expressing virus-encoded HcRed (piNT2-HcRed) as an indicator of infection. shRNA against N, P, and L mRNAs of MV led to a reduction of the infection below detectable levels in a high percentage of transduced piNT2-HcRed cells within 1 week. The fraction of virus-negative cells in these cultures was constant over at least 3 weeks posttransduction in the presence of a fusion-inhibiting peptide (Z-Phe-Phe-Gly), preventing the cell fusion of potentially cured cells with persistently infected cells. Transduced piNT2 cells that lost HcRed did not fuse with underlying Vero/hSLAM cells, indicating that these cells do not express viral proteins any more and are "cured." This demonstrates in tissue culture that NT2 cells persistently infected with MV can be cured by the transduction of lentiviral vectors mediating the long-lasting expression of anti-MV shRNA.
Collapse
|
28
|
Abstract
This review describes the two interrelated and interdependent processes of transcription and replication for measles virus. First, we concentrate on the ribonucleoprotein (RNP) complex, which contains the negative sense genomic template and in encapsidated in every virion. Second, we examine the viral proteins involved in these processes, placing particular emphasis on their structure, conserved sequence motifs, their interaction partners and the domains which mediate these associations. Transcription is discussed in terms of sequence motifs in the template, editing, co-transcriptional modifications of the mRNAs and the phase of the gene start sites within the genome. Likewise, replication is considered in terms of promoter strength, copy numbers and the remarkable plasticity of the system. The review emphasises what is not known or known only by analogy rather than by direct experimental evidence in the MV replication cycle and hence where additional research, using reverse genetic systems, is needed to complete our understanding of the processes involved.
Collapse
Affiliation(s)
- B K Rima
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | | |
Collapse
|
29
|
Moeller-Ehrlich K, Ludlow M, Beschorner R, Meyermann R, Rima BK, Duprex WP, Niewiesk S, Schneider-Schaulies J. Two functionally linked amino acids in the stem 2 region of measles virus haemagglutinin determine infectivity and virulence in the rodent central nervous system. J Gen Virol 2007; 88:3112-3120. [PMID: 17947537 DOI: 10.1099/vir.0.83235-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rodent brain-adapted measles virus (MV) strains, such as CAM/RB and recombinant MVs based on the Edmonston strain containing the haemagglutinin (H) of CAM/RB, cause acute encephalitis after intracerebral infection of newborn rodents. We have demonstrated that rodent neurovirulence is modulated by two mutations at amino acid positions 195 and 200 in the H protein, one of these positions (200) being a potential glycosylation site. In order to analyse the effects of specific amino acids at these positions, we introduced a range of individual and combined mutations into the open reading frame of the H gene to generate a number of eukaryotic expression plasmids. The functionality of the mutant H proteins was assessed in transfected cells and by generating recombinant viruses. Interestingly, viruses caused acute encephalitis only if the amino acid Ser at position 200 was coupled with Gly at position 195, whereas viruses with single or combined mutations at these positions, including glycosylation at position 200, were attenuated. Neurovirulence was associated with virus spread and induction of neuronal apoptosis, whereas attenuated viruses failed to infect brain cells. Similar results were obtained by using primary brain-cell cultures. Our findings indicate that a structural alteration in the stem 2 region of the H protein at position 195 or 200 interferes with infectivity of rodent neurons, and suggest that the interaction of the viral attachment protein with cellular receptors on neurons is affected.
Collapse
Affiliation(s)
- K Moeller-Ehrlich
- Institut für Virologie und Immunbiologie, University of Würzburg, D-97078 Würzburg, Germany
| | - M Ludlow
- School of Biomedical Sciences, Centre for Cancer Research and Cell Biology, The Queen's University of Belfast, Belfast BT9 7BL, UK
| | - R Beschorner
- Institut für Hirnforschung, University of Tübingen, D-72076 Tübingen, Germany
| | - R Meyermann
- Institut für Hirnforschung, University of Tübingen, D-72076 Tübingen, Germany
| | - B K Rima
- School of Biomedical Sciences, Centre for Cancer Research and Cell Biology, The Queen's University of Belfast, Belfast BT9 7BL, UK
| | - W P Duprex
- School of Biomedical Sciences, Centre for Cancer Research and Cell Biology, The Queen's University of Belfast, Belfast BT9 7BL, UK
| | - S Niewiesk
- College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210-1093, USA
| | - J Schneider-Schaulies
- Institut für Virologie und Immunbiologie, University of Würzburg, D-97078 Würzburg, Germany
| |
Collapse
|
30
|
Ayata M, Shingai M, Ning X, Matsumoto M, Seya T, Otani S, Seto T, Ohgimoto S, Ogura H. Effect of the alterations in the fusion protein of measles virus isolated from brains of patients with subacute sclerosing panencephalitis on syncytium formation. Virus Res 2007; 130:260-8. [PMID: 17825451 DOI: 10.1016/j.virusres.2007.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 07/26/2007] [Accepted: 07/27/2007] [Indexed: 10/22/2022]
Abstract
Measles virus (MV) is the causative agent of subacute sclerosing panencephalitis (SSPE) and viruses isolated from brains of the patients contain numerous mutations. We have previously demonstrated that the hemagglutinin (H) protein of MV SSPE strains can interact with the signaling lymphocyte activation molecule (SLAM) and an unidentified molecule on Vero cells, but not with CD46, as a receptor. The mechanism by which MV SSPE strains can induce cell-cell fusion in SLAM-negative Vero cells is not understood. We report here on the effect of mutations in the fusion (F) proteins of three MV SSPE strains on syncytium formation. The F proteins of the three SSPE strains were functional and co-expression with H protein from the MV wild-type or SSPE strains in this study induced formation of large syncytia in Vero cells as well as in cell lines expressing SLAM or CD46. Expression of chimeric F proteins of SSPE strains showed that amino acid substitutions in the F protein extracellular as well as cytoplasmic domain contributed to enhanced cell-cell fusion in Vero cells. These findings suggest a common molecular mechanism and a key role of the F protein for syncytium formation in cells expressing an unidentified third receptor for MV.
Collapse
Affiliation(s)
- Minoru Ayata
- Department of Virology, Osaka City University Medical School, Asahimachi, Abeno-ku, Osaka 545-8585, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Santak M, Baricević M, Mazuran R, Forcić D. Intra- and intergenotype characterization of D6 measles virus genotype. INFECTION GENETICS AND EVOLUTION 2007; 7:645-50. [PMID: 17499028 DOI: 10.1016/j.meegid.2007.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/29/2007] [Accepted: 04/11/2007] [Indexed: 11/18/2022]
Abstract
Determination of inter- and intragenotype stability and variability are the basic tools for the molecular epidemiology and evolutionary investigation of measles virus (MV). We made a comparison between complete genome sequences of four MVs (two wt MV strains-WA.USA/17.98 and 97-45881, and two SSPE MV strains-MVs/Zagreb.CRO/47.02/and MVs/Zagreb.CRO/08.03/), all belonging to genotype D6. Results of analyses clearly confirm that MV genome continuously changes within the viruses of the same or different genotypes by accumulation of mutations in different parts of the genome. Only a small number of these accumulated mutations induce amino acid substitutions and thus possibly introduce new biological characteristics or a new genotype over a long time period. This study clearly reveals a long untranslated region between M and F genes as the most variable region of the MV genome and detects the presence of unique residues on the level of the entire genome as a new important parameter in the investigation of molecular evolution of MVs.
Collapse
Affiliation(s)
- Maja Santak
- Molecular Biomedicine Unit, Department for Research and Development, Institute of Immunology Inc., Zagreb, Croatia
| | | | | | | |
Collapse
|
32
|
Baricevic M, Forcic D, Santak M, Mazuran R. A comparison of complete untranslated regions of measles virus genomes derived from wild-type viruses and SSPE brain tissues. Virus Genes 2006; 35:17-27. [PMID: 17039408 DOI: 10.1007/s11262-006-0035-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 08/22/2006] [Indexed: 10/24/2022]
Abstract
We compared complete untranslated regions (UTRs) of two subacute sclerosing panencephalitis (SSPE) measles virus (MV) strains and two wild-type (wt) MV strains, all belonging to the same genotype (D6). In comparison to wt MVs of the same genotype, base changes were identified in the two SSPE measles virus strains at 27 and 33 noncoding positions, respectively. Majority of these residues are unique for each of the SSPE virus sequences in comparison to all other reported measles virus strain sequences. The location of some of these changes indicates that they may modify cis-acting regulatory sequences including gene-end signal of the P gene, H/L gene junction and Kozak consensus element of the L gene. Further, within the long UTR between M and F genes, deletions and insertions were identified. Thus, our study could be significant for additional investigation using reverse genetics and recombinant viruses, of possible influence of mutations in UTRs on establishment and maintenance of chronic progressive CNS disease caused by MV persistence.
Collapse
Affiliation(s)
- Marijana Baricevic
- Molecular Biomedicine Unit, Institute of Immunology Inc.,, Rockefeller street 10, 10000, Zagreb, Croatia
| | | | | | | |
Collapse
|
33
|
Reuter T, Weissbrich B, Schneider-Schaulies S, Schneider-Schaulies J. RNA interference with measles virus N, P, and L mRNAs efficiently prevents and with matrix protein mRNA enhances viral transcription. J Virol 2006; 80:5951-7. [PMID: 16731933 PMCID: PMC1472597 DOI: 10.1128/jvi.02453-05] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In contrast to studies with genetically modified viruses, RNA interference allows the analysis of virus infections with identical viruses and posttranscriptional ablation of individual gene functions. Using RNase III-generated multiple short interfering RNAs (siRNAs) against the six measles virus genes, we found efficient downregulation of viral gene expression in general with siRNAs against the nucleocapsid (N), phosphoprotein (P), and polymerase (L) mRNAs, the translation products of which form the ribonucleoprotein (RNP) complex. Silencing of the RNP mRNAs was highly efficient in reducing viral messenger and genomic RNAs. siRNAs against the mRNAs for the hemagglutinin (H) and fusion (F) proteins reduced the extent of cell-cell fusion. Interestingly, siRNA-mediated knockdown of the matrix (M) protein not only enhanced cell-cell fusion but also increased the levels of both mRNAs and genomic RNA by a factor of 2 to 2.5 so that the genome-to-mRNA ratio was constant. These findings indicate that M acts as a negative regulator of viral polymerase activity, affecting mRNA transcription and genome replication to the same extent.
Collapse
Affiliation(s)
- Thorsten Reuter
- Institut für Virologie und Immunbiologie, Julius Maximilians Universität, Würzburg, Germany
| | | | | | | |
Collapse
|
34
|
Pohl-Koppe A, Kaiser R, Meulen VT, Liebert UG. Antibody reactivity to individual structural proteins of measles virus in the CSF of SSPE and MS patients. ACTA ACUST UNITED AC 2005; 4:135-47. [PMID: 15566835 DOI: 10.1016/0928-0197(95)00006-t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/1994] [Accepted: 02/07/1995] [Indexed: 11/21/2022]
Abstract
BACKGROUND Chronic progressive disorders of the central nervous system (CNS) impose diagnostic problems, particularly in younger patients. The demonstration of antibodies against measles virus (MV) in the cerebrospinal fluid (CSF) plays a major role in the laboratory diagnosis of subacute sclerosing panencephalitis (SSPE) as well as multiple sclerosis (MS). OBJECTIVES Because intrathecally synthesized antibodies against MV can be found in both diseases, it is necessary to establish easy and reliable methods to improve the differential diagnosis. STUDY DESIGN Seventy-one paired serum/CSF samples obtained from patients with the diagnosis of SSPE (n = 23), MS (n = 14), or acute postinfectious measles encephalitis (APME, n = 8) have been examined. The reactivity of intrathecally synthesized immunoglobulin to individual recombinant MV structural proteins was assessed using Western blot analysis, ELISA as well as isoelectric focusing (IEF). RESULTS All CSF samples obtained from patients suffering from SSPE showed a strong antibody response to MV-nucleocapsid (N) and phosphoprotein (P). Sera from 15 of the 23 SSPE patients were reactive to MV-fusion protein (F). Faint reactivity was obtained against MV-matrix (M) or hemagglutinin protein (H) in the minority of samples (40 and 20%, respectively). CSF samples of MS patients only revealed a clear response to N, and in two cases to F. The other proteins were not recognized in the CSF samples of MS patients. In contrast to SSPE, the IEF of CSF from MS patients revealed only few MV-specific oligoclonal bands. In the CSF samples from APME patients, intrathecal MV antibodies were not detected. CONCLUSIONS This study shows that discrimination between SSPE and MS can be achieved in doubtful cases by IEF using MV-N, P and F proteins.
Collapse
Affiliation(s)
- A Pohl-Koppe
- Institut für Virologie und Immunbiologie, Universität Würzburg, Versbacher Strasse 7, 97078 Würzburg, Germany
| | | | | | | |
Collapse
|
35
|
Abstract
Components of paramyxoviruses are assembled at the plasma membrane of infected cells, and progeny viruses are formed by the budding process. Although the molecular mechanisms that drive budding (membrane curving and "pinching-off" reaction) are not well understood, the viral matrix (M) protein is thought to play a major role in the process. The M protein forms a dense layer tightly associated with the inner leaflet of the plasma membrane of infected cells. Expression of the M protein of some paramyxoviruses results in the formation and release of virus-like particles that contain the M protein; thus, in these viruses, the M protein alone can apparently trigger all steps required for the formation and release of virus-like particles. M also interacts specifically with viral envelope glycoproteins and nucleocapsids and is involved in directed transport of viral components to the budding site at the apical surface of polarized cells. In addition, protein-protein interactions between M and the cytoplasmic tail of viral glycoproteins and between M and the nucleocapsid affect the efficiency of virus production. The structural organization of the virion and the functions of the M protein clearly indicate that this protein orchestrates the budding of paramyxovirus.
Collapse
Affiliation(s)
- Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 672, Rochester, NY 14642, USA.
| | | |
Collapse
|
36
|
Ogata S, Ogata A, Schneider-Schaulies S, Schneider-Schaulies S, Schneider-Schaulies J. Expression of the interferon-alpha/beta-inducible MxA protein in brain lesions of subacute sclerosing panencephalitis. J Neurol Sci 2004; 223:113-9. [PMID: 15337611 DOI: 10.1016/j.jns.2004.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 04/20/2004] [Accepted: 04/21/2004] [Indexed: 10/26/2022]
Abstract
The type-I interferon (IFN) inducible human MxA protein exhibits antiviral activity against a variety of RNA viruses including the measles virus (MV). In this study, we investigated the association between the expression of MV antigens and MxA in subacute sclerosing panencephalitis (SSPE) brains. We analyzed the MxA expression in and around lesions in brains of three SSPE patients and compared it with normal brains. Double staining with antibodies against MxA and the MV nucleocapsid revealed that MxA was highly expressed in a belt surrounding MV-antigen-positive lesions in SSPE brains. In normal appearing regions distant from a lesion in SSPE brains and in normal brains, MxA was not detected. Furthermore, MxA was often less or not expressed in the center of lesions expressing high amounts of MV antigens. Such a pattern of MxA expression in SSPE brains clearly indicates that newly infected cells release type I IFN and will become demarcated by a protecting barrier of MxA expressing cells. Double staining with antibodies against MxA and glial fibrillary acidic protein (GFAP) showed that the MxA protein was expressed mainly in the cytoplasm of astrocytes. MxA expression did not correlate with the presence of cellular infiltrates of inflammatory cells, although some lymphoid cells were also positive for MxA. Since MxA inhibits the replication of MV, these findings suggest that the IFN-induced MxA protein plays an important role in slowing down the viral spread in SSPE brains and by doing so may contribute to the persistence of the MV-infection.
Collapse
Affiliation(s)
- Seiko Ogata
- Institut für Virologie und Immunbiologie, Versbacher Strasse. 7, D-97078 Würzburg, Germany
| | | | | | | | | |
Collapse
|
37
|
Barrero PR, Grippo J, Viegas M, Mistchenko AS. Wild-type measles virus in brain tissue of children with subacute sclerosing panencephalitis, Argentina. Emerg Infect Dis 2004; 9:1333-6. [PMID: 14609476 PMCID: PMC3033091 DOI: 10.3201/eid0910.030180] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We studied eight children who had measles at 6 to 10 months of age during the 1998 Argentine measles outbreak and in whom subacute sclerosing panencephalitis developed 4 years later. We report the genetic characterization of brain tissue–associated measles virus samples from three patients. Phylogenetic relationships clustered these viruses with the wild-type D6 genotype isolated during the 1998 outbreak. The children received measles vaccine; however, vaccinal strains were not found.
Collapse
Affiliation(s)
- Paola Roxana Barrero
- Laboratorio de Virología, Hospital de Niños Dr. Ricardo Gutiérrez, Gallo 1330 (1425), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
38
|
Abstract
Despite the extensive media exposure that viruses such as West Nile, Norwalk, and Ebola have received lately, and the emerging threat that old pathogens may reappear as new agents of terrorism, measles virus (MV) persists as one of the leading causes of death by infectious agents worldwide, approaching the annual mortality rate of human immunodeficiency virus (HIV)-1. For most MV victims, fatality is indirect: Virus-induced transient immunosuppression predisposes the individual to opportunistic infections that, left untreated, can result in mortality. In rare cases, MV may also cause progressive neurodegenerative disease. During the past five years (1998-2002), development of animal models and the application of reverse genetics and immunological assays have collectively contributed to major progress in our understanding of MV biology and pathogenesis. Nevertheless, questions and controversies remain that are the basis for future research. In this review, major advances and current debates are discussed, including MV receptor usage, the cellular basis of immunosuppression, the suspected role of MV in "nonviral" diseases such as multiple sclerosis and Paget's disease, and the controversy surrounding MV vaccine safety.
Collapse
Affiliation(s)
- Glenn F Rall
- Division of Basic Science, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, Pennsylvania 19111, USA.
| |
Collapse
|
39
|
Shingai M, Ayata M, Ishida H, Matsunaga I, Katayama Y, Seya T, Tatsuo H, Yanagi Y, Ogura H. Receptor use by vesicular stomatitis virus pseudotypes with glycoproteins of defective variants of measles virus isolated from brains of patients with subacute sclerosing panencephalitis. J Gen Virol 2003; 84:2133-2143. [PMID: 12867645 DOI: 10.1099/vir.0.19091-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The vaccine or Vero cell-adapted strains of measles virus (MV) have been reported to use CD46 as a cell entry receptor, while lymphotropic MVs preferentially use the signalling lymphocyte activation molecule (SLAM or CD150). In contrast to the virus obtained from patients with acute measles, little is known about the receptor that is used by defective variants of MV isolated from patients with subacute sclerosing panencephalitis (SSPE). The receptor-binding properties of SSPE strains of MV were analysed using vesicular stomatitis virus pseudotypes expressing the envelope glycoproteins of SSPE strains of MV. Such pseudotype viruses could use SLAM but not CD46 for entry. The pseudotype viruses with SSPE envelope glycoproteins could enter Vero cells, which do not express SLAM. In addition, their entry was not blocked by the monoclonal antibody to CD46, pointing to another entry receptor for SSPE strains on Vero cells. Furthermore, the unknown receptor(s), distinct from SLAM and CD46, may be present on cell lines derived from lymphoid and neural cells. Biochemical characterization of the receptor present on Vero cells and SK-N-SH neuroblastoma cells was consistent with a glycoprotein. Identification of additional entry receptors for MV will provide new insights into the mechanism of spread of MV in the central nervous system and possible reasons for differences between MVs isolated from patients with acute measles and SSPE.
Collapse
Affiliation(s)
- Masashi Shingai
- Department of Virology, Osaka City University Medical School, Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Minoru Ayata
- Department of Virology, Osaka City University Medical School, Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Hiroshi Ishida
- Department of Pediatrics, Osaka City University Medical School, Asahimachi, Abeno-ku, Osaka 545-8585, Japan
- Department of Virology, Osaka City University Medical School, Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Isamu Matsunaga
- Department of Virology, Osaka City University Medical School, Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Yuko Katayama
- Department of Virology, Osaka City University Medical School, Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Tsukasa Seya
- Department of Immunology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka 537-8511, Japan
| | - Hironobu Tatsuo
- Department of Virology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusuke Yanagi
- Department of Virology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hisashi Ogura
- Department of Virology, Osaka City University Medical School, Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
40
|
Abstract
A number of viruses can initiate central nervous system (CNS) diseases that include demyelination as a major feature of neuropathology. In humans, the most prominent demyelinating diseases are progressive multifocal leukoencephalopathy, caused by JC papovirus destruction of oligodendrocytes, and subacute sclerosing panencephalitis, an invariably fatal childhood disease caused by persistent measles virus. The most common neurological disease of young adults in the developed world, multiple sclerosis, is also characterized by lesions of inflammatory demyelination; however, the etiology of this disease remains an enigma. A viral etiology is possible, because most demyelinating diseases of known etiology in both man and animals are viral. Understanding of the pathogenesis of virus-induced demyelination derives for the most part from the study of animal models. Studies with neurotropic strains of mouse hepatitis virus, Theiler's virus, and Semliki Forest virus have been at the forefront of this research. These models demonstrate how viruses enter the brain, spread, persist, and interact with immune responses. Common features are an ability to infect and persist in glial cells, generation of predominantly CD8(+) responses, which control and clear the early phase of virus replication but which fail to eradicate the infection, and lesions of inflammatory demyelination. In most cases demyelination is to a limited extent the result of direct virus destruction of oligodendrocytes, but for the most part is the consequence of immune and inflammatory responses. These models illustrate the roles of age and genetic susceptibility and establish the concept that persistent CNS infection can lead to the generation of CNS autoimmune responses.
Collapse
Affiliation(s)
- John K Fazakerley
- Centre for Infectious Diseases, University of Edinburgh, Summerhall, Edinburgh, United Kingdom.
| | | |
Collapse
|
41
|
Patterson CE, Daley JK, Rall GF. Neuronal survival strategies in the face of RNA viral infection. J Infect Dis 2002; 186 Suppl 2:S215-9. [PMID: 12424700 PMCID: PMC7110185 DOI: 10.1086/344265] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neurons of the mammalian central nervous system (CNS) are an essential and largely nonrenewable cell population. Thus, viral infections that result in neuronal depletion, either by viral lysis or by induction of the cytolytic immune response, would likely lead to profound neurologic impairment. However, many viral infections that result in tissue destruction elsewhere in the host produce few overt symptoms in the CNS, despite readily detectable virus expression. This observation has lead to the speculation that neurons possess strategies to limit the replication and spread of otherwise cytopathic viruses. These strategies either favor the clearance of virus in the absence of appreciable neuronal loss or promote the establishment of noncytolytic persistent infections. This review discusses some of these strategies, with an emphasis on how such survival techniques lessen the potential for CNS neuropathology.
Collapse
Affiliation(s)
- Catherine E. Patterson
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Reprints or correspondence: Dr. Glenn F. Rall, Division of Basic Science, Fox Chase Cancer Center, 7701 Burholme Ave., Philadelphia, PA 19111 ()
| | - John K. Daley
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Glenn F. Rall
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
42
|
Solomon T, Hart CA, Vinjamuri S, Beeching NJ, Malucci C, Humphrey P. Treatment of subacute sclerosing panencephalitis with interferon-alpha, ribavirin, and inosiplex. J Child Neurol 2002; 17:703-5. [PMID: 12503650 DOI: 10.1177/088307380201700911] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Subacute sclerosing panencephalitis is an almost universally fatal late complication of measles infection for which there is no established treatment. We report a patient with subacute sclerosing panencephalitis who was bed-bound and ataxic and had a left hemiparesis and frequent myoclonus. He was started on a new regimen consisting of intraventricular interferon-alpha (starting at 100,000 U/m2/day, building up to 1 million U/m2/day), ribavirin (60 mg/kg/day intravenously), and inosiplex (3 g/day) and improved markedly. At 10 weeks, the intraventricular reservoir was removed because of bacterial infection, and he was discharged home on oral ribavirin (1200 mg/kg/day) and inosiplex. He continued to improve as judged by neurologic examination, functional independence measurement, neuropsychometry and single photon emission computed tomography (SPECT) imaging. However, after 10 months, he deteriorated suddenly and died before further intraventricular treatment could be instituted. Further trials are needed to evaluate long-term combination therapy in subacute sclerosing panencephalitis.
Collapse
Affiliation(s)
- Tom Solomon
- Department of Neurological Science, University of Liverpool, United Kingdom.
| | | | | | | | | | | |
Collapse
|
43
|
Shusta EV, Zhu C, Boado RJ, Pardridge WM. Subtractive expression cloning reveals high expression of CD46 at the blood-brain barrier. J Neuropathol Exp Neurol 2002; 61:597-604. [PMID: 12125738 DOI: 10.1093/jnen/61.7.597] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A subtractive expression cloning methodology was used to identify proteins having enriched expression at the blood-brain barrier (BBB) in comparison to liver and kidney tissues. A bovine brain capillary COS-1 cell cDNA expression library was screened with a BBB-specific antiserum. This strategy revealed that the membrane cofactor protein CD46, which is a regulator of complement activation in vivo and is also a potential measles virus receptor, is highly expressed at the BBB. The selective CD46 expression in brain at the BBB was confirmed by Northern blot analysis and confocal microscopy. The finding of selective expression of CD46 at the BBB is consistent with an important role played by the microvasculature in the immune surveillance of the brain.
Collapse
MESH Headings
- Amino Acid Sequence/genetics
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/isolation & purification
- Astrocytes/cytology
- Astrocytes/immunology
- Astrocytes/metabolism
- Base Sequence/genetics
- Blood-Brain Barrier/genetics
- Blood-Brain Barrier/immunology
- COS Cells
- Cattle
- Chemotaxis, Leukocyte/immunology
- Cloning, Molecular
- DNA, Complementary/analysis
- DNA, Complementary/genetics
- Endothelium, Vascular/cytology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Gene Expression/immunology
- Glial Fibrillary Acidic Protein/metabolism
- Glucose Transporter Type 1
- Immunohistochemistry
- Immunologic Surveillance/immunology
- Kidney/immunology
- Kidney/metabolism
- Liver/immunology
- Liver/metabolism
- Membrane Cofactor Protein
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/isolation & purification
- Molecular Sequence Data
- Monosaccharide Transport Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- Rats
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Eric V Shusta
- Department of Medicine, UCLA School of Medicine, Los Angeles, California 90024, USA
| | | | | | | |
Collapse
|
44
|
Ehrengruber MU, Ehler E, Billeter MA, Naim HY. Measles virus spreads in rat hippocampal neurons by cell-to-cell contact and in a polarized fashion. J Virol 2002; 76:5720-8. [PMID: 11992000 PMCID: PMC137054 DOI: 10.1128/jvi.76.11.5720-5728.2002] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2001] [Accepted: 03/01/2002] [Indexed: 12/22/2022] Open
Abstract
Measles virus (MV) can infect the central nervous system and, in rare cases, causes subacute sclerosing panencephalitis, characterized by a progressive degeneration of neurons. The route of MV transmission in neurons was investigated in cultured rat hippocampal slices by using MV expressing green fluorescent protein. MV infected hippocampal neurons and spread unidirectionally, in a retrograde manner, from CA1 to CA3 pyramidal cells and from there to the dentate gyrus. Spreading of infection depended on cell-to-cell contact and occurred without any detectable release of infectious particles. The role of the viral proteins in the retrograde MV transmission was determined by investigating their sorting in infected pyramidal cells. MV glycoproteins, the fusion protein (F) and hemagglutinin (H), the matrix protein (M), and the phosphoprotein (P), which is part of the viral ribonucleoprotein complex, were all sorted to the dendrites. While M, P, and H proteins remained more intracellular, the F protein localized to prominent, spine-type domains at the surface of infected cells. The detected localization of MV proteins suggests that local microfusion events may be mediated by the F protein at sites of synaptic contacts and is consistent with a mechanism of retrograde transmission of MV infection.
Collapse
|
45
|
Plumb J, Duprex WP, Cameron CHS, Richter-Landsberg C, Talbot P, McQuaid S. Infection of human oligodendroglioma cells by a recombinant measles virus expressing enhanced green fluorescent protein. J Neurovirol 2002; 8:24-34. [PMID: 11847589 PMCID: PMC7095342 DOI: 10.1080/135502802317247785] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
One of the hallmarks of the human CNS disease subacute sclerosing panencephalitis (SSPE) is a high level of measles virus (MV) infection of oligodendrocytes. It is therefore surprising that there is only one previous report of MV infection of rat oligodendrocytes in culture and no reports of human oligodendrocyte infection in culture. In an attempt to develop a model system to study MV infection of oligodendrocytes, time-lapse confocal microscopy, immunocytochemistry, and electron microscopy (EM) were used to study infection of the human oligodendroglioma cell line, MO3.13. A rat oligodendrocyte cell line, OLN-93, was also studied as a control. MO3.13 cells were shown to be highly susceptible to MV infection and virus budding was observed from the surface of infected MO3.13 cells by EM. Analysis of the infection in real time and by immunocytochemistry revealed that virus spread occurred by cell-to-cell fusion and was also facilitated by virus transport in cell processes. MO3.13 cells were shown to express CD46, a MV receptor, but were negative for the recently discovered MV receptor, signaling leucocyte activation molecule (SLAM). Immunohistochemical studies on SSPE tissue sections demonstrated that CD46 was also expressed on populations of human oligodendrocytes. SLAM expression was not detected on oligodendrocytes. These studies, which are the first to show MV infection of human oligodendrocytes in culture, show that the cells are highly susceptible to MV infection and this model cell line has been used to further our understanding of MV spread in the CNS.
Collapse
Affiliation(s)
- Jonnie Plumb
- Neuropathology Laboratory, Royal Group of Hospitals Trust, BT12 6BL Belfast, Northern Ireland UK
| | - W. Paul Duprex
- School of Biology and Biochemistry, The Queen’s University of Belfast, Belfast, Northern Ireland UK
| | | | | | - Pierre Talbot
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Quebec Canada
| | - Stephen McQuaid
- Neuropathology Laboratory, Royal Group of Hospitals Trust, BT12 6BL Belfast, Northern Ireland UK
| |
Collapse
|
46
|
Liebert UG. Slow and persistent virus infections of neurones--a compromise for neuronal survival. Curr Top Microbiol Immunol 2001; 253:35-60. [PMID: 11417139 DOI: 10.1007/978-3-662-10356-2_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- U G Liebert
- Institute of Virology, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| |
Collapse
|
47
|
Duprex WP, McQuaid S, Roscic-Mrkic B, Cattaneo R, McCallister C, Rima BK. In vitro and in vivo infection of neural cells by a recombinant measles virus expressing enhanced green fluorescent protein. J Virol 2000; 74:7972-9. [PMID: 10933705 PMCID: PMC112328 DOI: 10.1128/jvi.74.17.7972-7979.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This study focused on the in vitro infection of mouse and human neuroblastoma cells and the in vivo infection of the murine central nervous system with a recombinant measles virus. An undifferentiated mouse neuroblastoma cell line (TMN) was infected with the vaccine strain of measles virus (MVeGFP), which expresses enhanced green fluorescent protein (EGFP). MVeGFP infected the cells, and cell-to-cell spread was studied by virtue of the resulting EGFP autofluorescence, using real-time confocal microscopy. Cells were differentiated to a neuronal phenotype, and extended processes, which interconnected the cells, were observed. It was also possible to infect the differentiated neuroblastoma cells (dTMN) with MVeGFP. Single autofluorescent EGFP-positive cells were selected at the earliest possible point in the infection, and the spread of EGFP autofluorescence was monitored. In this instance the virus used the interconnecting processes to spread from cell to cell. Human neuroblastoma cells (SH-SY-5Y) were also infected with MVeGFP. The virus infected these cells, and existing processes were used to initiate new foci of infection at distinct regions of the monolayer. Transgenic animals expressing CD46, a measles virus receptor, and lacking interferon type 1 receptor gene were infected intracerebrally with MVeGFP. A productive infection ensued, and the mice exhibited clinical signs of infection, such as ataxia and an awkward gait, identical to those previously observed for the parental virus (Edtag). Mice were sacrificed, and brain sections were examined for EGFP autofluorescence by confocal scanning laser microscopy over a period of 6 h. EGFP was detected in discrete focal regions of the brain and in processes, which extended deep into the parenchyma. Collectively, these results indicate (i) that MVeGFP can be used to monitor virus replication sensitively, in real time, in animal tissues, (ii) that infection of ependymal cells and neuroblasts provides a route by which measles virus can enter the central nervous system in mouse models of encephalitis, and (iii) that upon infection, the virus spreads transneuronally.
Collapse
Affiliation(s)
- W P Duprex
- School of Biology and Biochemistry, The Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland, United Kingdom.
| | | | | | | | | | | |
Collapse
|
48
|
Lawrence DM, Patterson CE, Gales TL, D'Orazio JL, Vaughn MM, Rall GF. Measles virus spread between neurons requires cell contact but not CD46 expression, syncytium formation, or extracellular virus production. J Virol 2000; 74:1908-18. [PMID: 10644364 PMCID: PMC111669 DOI: 10.1128/jvi.74.4.1908-1918.2000] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In patients with subacute sclerosing panencephalitis (SSPE), which is associated with persistent measles virus (MV) infection in the brain, little infectious virus can be recovered despite the presence of viral RNA and protein. Based on studies of brain tissue from SSPE patients and our work with MV-infected NSE-CD46(+) mice, which express the measles receptor CD46 on neurons, several lines of evidence suggest that the mechanism of viral spread in the central nervous system differs from that in nonneuronal cells. To examine this alternate mechanism of viral spread, as well as the basis for the loss of normal transmission mechanisms, infection and spread of MV Edmonston was evaluated in primary CD46(+) neurons from transgenic mice and differentiated human NT2 neurons. As expected, unlike that between fibroblasts, viral spread between neurons occurred in the absence of syncytium formation and with minimal extracellular virus. Electron microscopy analysis showed that viral budding did not occur from the neuronal surface, although nucleocapsids were present in the cytoplasm and aligned at the cell membrane. We observed many examples of nucleocapsids present in the neuronal processes and aligned at presynaptic neuronal membranes. Cocultures of CD46(+) and CD46(-) neurons showed that cell contact but not CD46 expression is required for MV spread between neurons. Collectively, these results suggest that the neuronal environment prevents the normal mechanisms of MV spread between neurons at the level of viral assembly but allows an alternate, CD46-independent mechanism of viral transmission, possibly through the synapse.
Collapse
Affiliation(s)
- D M Lawrence
- The Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | |
Collapse
|
49
|
Haffar A, Libeau G, Moussa A, Cécile M, Diallo A. The matrix protein gene sequence analysis reveals close relationship between peste des petits ruminants virus (PPRV) and dolphin morbillivirus. Virus Res 1999; 64:69-75. [PMID: 10500284 DOI: 10.1016/s0168-1702(99)00080-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The gene encoding the matrix protein of peste des petits ruminants virus (PPRV) has been cloned and its nucleotide sequence determined. This gene is 1466 nucleotides long and contains an open reading frame (ORF) capable of encoding a basic protein of 335 amino acid residues with a predicted molecular weight of 38,057 Da. This ORF starts at position 33-35 and ends with the codon TAA at position 1038-1040 thus leaving a long untranslated region (426 nucleotides) at the 3' end of the messenger RNA. This fragment is very G/C rich (68.5%) and in contrast to the ORF region appears to be least conserved in the M gene sequence of the morbilliviruses. A comparison of the PPRV M protein with those of other viruses in the group confirms the previously noted high degree of conservation for this protein sequence. The percent of identity within the group ranges from 76.7 to 86.9%, the highest being with the dolphin morbillivirus matrix protein.
Collapse
Affiliation(s)
- A Haffar
- Département d'Elevage et de Médecine Vétérinaire, Cirad-emvt, Campus International de Baillarguet, 34032 Montellier, BP 5035, Montpellier, France
| | | | | | | | | |
Collapse
|
50
|
Schneider-Schaulies S, ter Meulen V. Pathogenic aspects of measles virus infections. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 1999; 15:139-58. [PMID: 10470275 DOI: 10.1007/978-3-7091-6425-9_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Measles virus (MV) infections normally cause an acute self limiting disease which is resumed by a virus-specific immune response and leads to the establishment of a lifelong immunity. Complications associated with acute measles can, on rare occasions, involve the central nervous system (CNS). These are postinfectious measles encephalitis which develops soon after infection, and, months to years after the acute disease, measles inclusion body encephalitis (MIBE) and subacute sclerosing panencephalitis (SSPE) which are based on a persistent MV infection of brain cells. Before the advent of HIV, SSPE was the best studied slow viral infection of the CNS, and particular restrictions of MV gene expression as well as MV interactions with neural cells have revealed important insights into the pathogenesis of persistent viral CNS infections. MV CNS complication do, however, not large contribute to the high rate of mortality seen in association with acute measles worldwide. The latter is due to a virus-induced suppression of immune functions which favors the establishment of opportunistic infections. Mechanisms underlying MV-mediated immunosuppression are not well understood. Recent studies have indicated that MV-induced disruption of immune functions may be multifactorial including the interference with cytokine synthesis, the induction of soluble inhibitory factors or apoptosis and negative signalling to T cells by the viral glycoproteins expressed on the surface of infected cells, particularly dendritic cells.
Collapse
|