1
|
Ashoori N, Ranjbar MM, Schirhagl R. In silico vaccine design: Targeting highly epitopic regions of Clostridium perfringens type D epsilon toxin and Clostridium novyi type B alpha toxin for optimal immunogenicity. Comput Struct Biotechnol J 2024; 25:153-164. [PMID: 39257963 PMCID: PMC11384337 DOI: 10.1016/j.csbj.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Livestock infections caused by highly toxic bacteria, such as Clostridium perfringens type D and Clostridium novyi type B, present significant challenges in veterinary medicine. Such infections often require complex and elusive treatment regimens. Developing effective vaccines tailored to combat these specific pathogens remains a pressing need within the field. These bacteria are notorious for their extreme toxicity and the difficulty in culturing them for vaccine production. To address this challenge, we engineered a new potential vaccine candidate capable of neutralizing the virulence of both bacterial strains. Leveraging computational techniques, we identified epitopic regions within C. perfringens Epsilon Toxin (ETX) and C. novyi Alpha Toxin (ATX). Through fusion gene design, we integrated these epitopic regions alongside the PADRE-peptide sequence. The PADRE-peptide serves as a universal adjuvant to induce an immune response. The culmination of our efforts materialized in a Recombinant Fusion Protein D (rFPD), a novel vaccine construct designed to elicit robust and specific immune defenses against both bacterial species. By combining in-silico design and molecular engineering, our study represents a promising stride toward combating the impact of these pathogenic bacteria in livestock.
Collapse
Affiliation(s)
- Nastaran Ashoori
- Groningen University, University Medical Centre Groningen, Antonius Deusinglaan 1, 9713AW Groningen, the Netherlands
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Romana Schirhagl
- Groningen University, University Medical Centre Groningen, Antonius Deusinglaan 1, 9713AW Groningen, the Netherlands
| |
Collapse
|
2
|
Umotoy JC, de Taeye SW. Antibody Conjugates for Targeted Therapy Against HIV-1 as an Emerging Tool for HIV-1 Cure. Front Immunol 2021; 12:708806. [PMID: 34276704 PMCID: PMC8282362 DOI: 10.3389/fimmu.2021.708806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/18/2021] [Indexed: 01/22/2023] Open
Abstract
Although advances in antiretroviral therapy (ART) have significantly improved the life expectancy of people living with HIV-1 (PLWH) by suppressing HIV-1 replication, a cure for HIV/AIDS remains elusive. Recent findings of the emergence of drug resistance against various ART have resulted in an increased number of treatment failures, thus the development of novel strategies for HIV-1 cure is of immediate need. Antibody-based therapy is a well-established tool in the treatment of various diseases and the engineering of new antibody derivatives is expanding the realms of its application. An antibody-based carrier of anti-HIV-1 molecules, or antibody conjugates (ACs), could address the limitations of current HIV-1 ART by decreasing possible off-target effects, reduce toxicity, increasing the therapeutic index, and lowering production costs. Broadly neutralizing antibodies (bNAbs) with exceptional breadth and potency against HIV-1 are currently being explored to prevent or treat HIV-1 infection in the clinic. Moreover, bNAbs can be engineered to deliver cytotoxic or immune regulating molecules as ACs, further increasing its therapeutic potential for HIV-1 cure. ACs are currently an important component of anticancer treatment with several FDA-approved constructs, however, to date, no ACs are approved to treat viral infections. This review aims to outline the development of AC for HIV-1 cure, examine the variety of carriers and payloads used, and discuss the potential of ACs in the current HIV-1 cure landscape.
Collapse
Affiliation(s)
- Jeffrey C Umotoy
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Center (UMC), Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Steven W de Taeye
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Center (UMC), Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
CONNOLLY S, CARLSON JM, SCHAEFER M, BERE A, KILEMBE W, ALLEN S, HUNTER E. HLA-associated preadaptation in HIV Vif is associated with higher set point viral load and faster CD4+ decline in Zambian transmission pairs. AIDS 2021; 35:1157-1165. [PMID: 33710015 PMCID: PMC8546905 DOI: 10.1097/qad.0000000000002868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE S We investigated the relationship between human leukocyte antigen (HLA)-associated preadaptation for the entire subtype C HIV-1 proteome of the transmitted founder virus and subsequent HIV-1 disease progression in a cohort of heterosexual linked transmission pairs in Zambia. DESIGN An adaptation model was used to calculate an adaptation score for each virus-HLA combination in order to quantify the degree of preadaptation of the transmitted virus to the linked recipient's HLA alleles. These scores were then assessed for their relationship to viral load and longitudinal CD4+ decline in the recipient. METHODS Viral RNA was extracted from the plasma of the donor partner and the linked recipient near the time of transmission, as well as longitudinally from the linked recipient. Viral adaptation scores were calculated for each individual and each protein in the subtype C HIV-1 proteome. RESULTS The majority of HLA-associated sites were located in Gag, Pol and Nef; however, proportional to protein length, the accessory and regulatory proteins contained a relatively high proportion of HLA-associated sites. Over the course of infection, HLA-mediated immune adaptation increased for all proteins except Vpu and gp120. Preadaptation was positively associated with higher early set point viral load and faster CD4+ decline. When examined by protein, preadaptation in Pol and Vif were statistically significantly associated with these markers of disease progression. CONCLUSION Adaptation in Pol had the greatest impact on viral control. Despite containing a large proportion of HLA-associated sites, Vif was the only regulatory or accessory protein for which preadaptation significantly correlated with disease progression.
Collapse
Affiliation(s)
- Sarah CONNOLLY
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | | | - Malinda SCHAEFER
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Alfred BERE
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | | | - Susan ALLEN
- Zambia–Emory HIV Research Project, Lusaka, Zambia
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Eric HUNTER
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
- Zambia–Emory HIV Research Project, Lusaka, Zambia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| |
Collapse
|
4
|
Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques. PLoS Pathog 2018; 14:e1006913. [PMID: 29474444 PMCID: PMC5841823 DOI: 10.1371/journal.ppat.1006913] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/07/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023] Open
Abstract
The native-like, soluble SOSIP.664 trimer based on the BG505 clade A env gene of HIV-1 is immunogenic in various animal species, of which the most studied are rabbits and rhesus macaques. The trimer induces autologous neutralizing antibodies (NAbs) consistently but at a wide range of titers and with incompletely determined specificities. A precise delineation of immunogenic neutralization epitopes on native-like trimers could help strategies to extend the NAb response to heterologous HIV-1 strains. One autologous NAb epitope on the BG505 Env trimer is known to involve residues lining a hole in the glycan shield that is blocked by adding a glycan at either residue 241 or 289. This glycan-hole epitope accounts for the NAb response of most trimer-immunized rabbits but not for that of a substantial subset. Here, we have used a large panel of mutant BG505 Env-pseudotyped viruses to define additional sites. A frequently immunogenic epitope in rabbits is blocked by adding a glycan at residue 465 near the junction of the gp120 V5 loop and β24 strand and is influenced by amino-acid changes in the structurally nearby C3 region. We name this new site the “C3/465 epitope”. Of note is that the C3 region was under selection pressure in the infected infant from whom the BG505 virus was isolated. A third NAb epitope is located in the V1 region of gp120, although it is rarely immunogenic. In macaques, NAb responses induced by BG505 SOSIP trimers are more often directed at the C3/465 epitope than the 241/289-glycan hole. A protective vaccine would constitute a breakthrough in efforts to curb the global spread of HIV. Such a vaccine should induce antibodies inhibiting infection by most strains of the virus that circulate worldwide. Engineered SOSIP trimer mimics of the envelope glycoprotein on the surface of HIV particles, which mediates viral entry into cells, can elicit such neutralizing antibodies in rabbits and rhesus monkeys. These antibodies, however, have a narrow specificity, neutralizing mainly the same virus from which the SOSIP trimer protein was derived. Here, we have mapped the sites on the SOSIP trimer to which these antibodies bind, thereby delineating both an already identified binding site and a previously unknown one. The rabbits produced neutralizing antibodies that recognize both binding sites, but the rhesus monkeys responded predominantly to the newly identified one. As immune responses in monkeys are the more likely to resemble those in humans, the findings described here might aid strategies to steer human antibody responses to sites that are cross-reactive among HIV strains. That outcome would be a major step towards an effective vaccine.
Collapse
|
5
|
Abstract
BACKGROUND HIV-1 is known to adapt to the local environment in its usage of receptors, and it can become CD4 independent in the brain where the receptor is scarce. This adaptation is through amino acid variations, but the patterns of such variation are not yet well understood. Given that infection of long-lived CD4-low and CD4-negative cells in anatomical compartments such as the brain expands cell tropism in vivo and may serve as potential viral reservoirs that pose challenge for HIV eradication, understanding the evolution to CD4 independence and envelope conformation associated with infection in the absence of CD4 will not only broaden our insights into HIV pathogenesis but may guide functional cure strategies as well. METHODS We characterize, by site-directed mutagenesis, neutralization assay, and structural analysis, a pair of CD4-dependent (cl2) and CD4-independent (cl20) envelopes concurrently isolated from the cerebral spinal fluid of an SHIV-infected macaque with neurological AIDS and with minimum sequence differences. RESULTS Residues different between cl2 and cl20 are mapped to the V1V2 and surrounding regions. Mutations of these residues in cl2 increased its CD4 independence in infection, and the effects are cumulative and likely structural. CONCLUSIONS Our data suggested that the determinants of CD4 independence in vivo mapped principally to V1V2 of gp120 that can destabilize the apex of the envelope spike, with an additional change in V4 that abrogated a potential N-linked glycan to facilitate movement of the V1V2 domain and further expose the coreceptor-binding site.
Collapse
|
6
|
Structure of Simian Immunodeficiency Virus Envelope Spikes Bound with CD4 and Monoclonal Antibody 36D5. J Virol 2017; 91:JVI.00134-17. [PMID: 28539445 DOI: 10.1128/jvi.00134-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/14/2017] [Indexed: 01/29/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1)/simian immunodeficiency virus (SIV) envelope spike (Env) mediates viral entry into host cells. The V3 loop of the gp120 component of the Env trimer contributes to the coreceptor binding site and is a target for neutralizing antibodies. We used cryo-electron tomography to visualize the binding of CD4 and the V3 loop monoclonal antibody (MAb) 36D5 to gp120 of the SIV Env trimer. Our results show that 36D5 binds gp120 at the base of the V3 loop and suggest that the antibody exerts its neutralization effect by blocking the coreceptor binding site. The antibody does this without altering the dynamics of the spike motion between closed and open states when CD4 is bound. The interaction between 36D5 and SIV gp120 is similar to the interaction between some broadly neutralizing anti-V3 loop antibodies and HIV-1 gp120. Two conformations of gp120 bound with CD4 are revealed, suggesting an intrinsic dynamic nature of the liganded Env trimer. CD4 binding substantially increases the binding of 36D5 to gp120 in the intact Env trimer, consistent with CD4-induced changes in the conformation of gp120 and the antibody binding site. Binding by MAb 36D5 does not substantially alter the proportions of the two CD4-bound conformations. The position of MAb 36D5 at the V3 base changes little between conformations, indicating that the V3 base serves as a pivot point during the transition between these two states.IMPORTANCE Glycoprotein spikes on the surfaces of SIV and HIV are the sole targets available to the immune system for antibody neutralization. Spikes evade the immune system by a combination of a thick layer of polysaccharide on the surface (the glycan shield) and movement between spike domains that masks the epitope conformation. Using SIV virions whose spikes were "decorated" with the primary cellular receptor (CD4) and an antibody (36D5) at part of the coreceptor binding site, we visualized multiple conformations trapped by the rapid freezing step, which were separated using statistical analysis. Our results show that the CD4-induced conformational dynamics of the spike enhances binding of the antibody.
Collapse
|
7
|
Haddox HK, Dingens AS, Bloom JD. Experimental Estimation of the Effects of All Amino-Acid Mutations to HIV's Envelope Protein on Viral Replication in Cell Culture. PLoS Pathog 2016; 12:e1006114. [PMID: 27959955 PMCID: PMC5189966 DOI: 10.1371/journal.ppat.1006114] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/27/2016] [Accepted: 12/07/2016] [Indexed: 11/18/2022] Open
Abstract
HIV is notorious for its capacity to evade immunity and anti-viral drugs through rapid sequence evolution. Knowledge of the functional effects of mutations to HIV is critical for understanding this evolution. HIV's most rapidly evolving protein is its envelope (Env). Here we use deep mutational scanning to experimentally estimate the effects of all amino-acid mutations to Env on viral replication in cell culture. Most mutations are under purifying selection in our experiments, although a few sites experience strong selection for mutations that enhance HIV's replication in cell culture. We compare our experimental measurements of each site's preference for each amino acid to the actual frequencies of these amino acids in naturally occurring HIV sequences. Our measured amino-acid preferences correlate with amino-acid frequencies in natural sequences for most sites. However, our measured preferences are less concordant with natural amino-acid frequencies at surface-exposed sites that are subject to pressures absent from our experiments such as antibody selection. Our data enable us to quantify the inherent mutational tolerance of each site in Env. We show that the epitopes of broadly neutralizing antibodies have a significantly reduced inherent capacity to tolerate mutations, rigorously validating a pervasive idea in the field. Overall, our results help disentangle the role of inherent functional constraints and external selection pressures in shaping Env's evolution.
Collapse
Affiliation(s)
- Hugh K. Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, Washington, United States of America
| | - Adam S. Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, Washington, United States of America
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
8
|
Rationally Designed Immunogens Targeting HIV-1 gp120 V1V2 Induce Distinct Conformation-Specific Antibody Responses in Rabbits. J Virol 2016; 90:11007-11019. [PMID: 27707920 DOI: 10.1128/jvi.01409-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/23/2016] [Indexed: 11/20/2022] Open
Abstract
The V1V2 region of HIV-1 gp120 harbors a major vulnerable site targeted by a group of broadly neutralizing monoclonal antibodies (MAbs) such as PG9 through strand-strand recognition. However, this epitope region is structurally polymorphic as it can also form a helical conformation recognized by RV144 vaccine-induced MAb CH58. This structural polymorphism is a potential mechanism for masking the V1V2 vulnerable site. Designing immunogens that can induce conformation-specific antibody (Ab) responses may lead to vaccines targeting this vulnerable site. We designed a panel of immunogens engrafting the V1V2 domain into trimeric and pentameric scaffolds in structurally constrained conformations. We also fused V1V2 to an Fc fragment to mimic the unconstrained V1V2 conformation. We tested these V1V2-scaffold proteins for immunogenicity in rabbits and assessed the responses by enzyme-linked immunosorbent assay (ELISA) and competition assays. Our V1V2 immunogens induced distinct conformation-specific Ab responses. Abs induced by structurally unconstrained immunogens reacted preferentially with unconstrained V1V2 antigens, suggesting recognition of the helical configuration, while Abs induced by the structurally constrained immunogens reacted preferentially with constrained V1V2 antigens, suggesting recognition of the β-strand conformation. The Ab responses induced by the structurally constrained immunogens were more broadly reactive and had higher titers than those induced by the structurally unconstrained immunogens. Our results demonstrate that immunogens presenting the different structural conformations of the gp120 V1V2 vulnerable site can be designed and that these immunogens induce distinct Ab responses with epitope conformation specificity. Therefore, these structurally constrained V1V2 immunogens are vaccine prototypes targeting the V1V2 domain of the HIV-1 envelope. IMPORTANCE The correlates analysis of the RV144 HIV-1 vaccine trial suggested that the presence of antibodies to the V1V2 region of HIV-1 gp120 was responsible for the modest protection observed in the trial. In addition, V1V2 harbors one of the key vulnerable sites of HIV-1 Env recognized by a family of broadly neutralizing MAbs such as PG9. Thus, V1V2 is a key target for vaccine development. However, this vulnerable site is structurally polymorphic, and designing immunogens that present different conformations is crucial for targeting this site. We show here that such immunogens can be designed and that they induced conformation-specific antibody responses in rabbits. Our immunogens are therefore prototypes of vaccine candidates targeting the V1V2 region of HIV-1 Env.
Collapse
|
9
|
Animashaun T, Mahmood N, Hay AJ, Hughes RC. Inhibitory Effects of Novel Mannose-Binding Lectins on HIV-Infectivity and Syncytium Formation. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029300400303] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Several new lectins were isolated and characterized with respect to their composition and sugar binding specificities and their ability to prevent HIV-1 infection. Twelve of the 13 mannose-specific lectins were inhibitory to varying degrees. The most effective were Machaerium biovulatum agglutinin (MBA) and M. lunatus agglutinin (MLA) which at 0.4 μg ml−1 prevented the cytopathic effect of the virus. Lower protection was obtained with Bowringia mildbraedii agglutinin (BMA), Galanthus nivalis agglutinin (GNA), Lablab niger agglutinin (LNA) and Dolichos lablab agglutinin (DLA). All these lectins are more protective than Con A while MBA is nearly 10 times more potent than any previously reported lectin. In each case the selective antiviral activity appears to be due to interaction with virus and not with some component on the target cell. MBA and GNA immobilized on Sepharose specifically bound gp120. Studies of binding to glycoproteins confirmed the recognition of particular isomers of high mannose oligosaccharides Man9 to Man7GlcNAc2 by BMA and of Man5GlcNAc2 glycopeptides by GNA. By contrast, MBA did not bind oligomannosidic structures but did interact with ovalbumin, a glycoprotein rich in hybrid-type glycans.
Collapse
Affiliation(s)
- T. Animashaun
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - N. Mahmood
- MRC Collaborative Centre, 1–3 Burtonhole Lane, Mill Hill, London NW7 1AD, UK
| | - A. J. Hay
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - R. C. Hughes
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
10
|
Neurath AR, Haberfield P, Joshi B, Hewlett IK, Strick N, Jiang S. Rapid Prescreening for Antiviral Agents against HIV-1 Based on Their Inhibitory Activity in Site-Directed Immunoassays. I. The V3 Loop of gp 120 as Target. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029100200505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The anionic triphenylmethane derivative aurintricarboxylic acid (ATA) was reported to inhibit the replication and cytopathogenicity of human immunodeficiency virus type 1 (HIV-1). This antiviral effect, ascribed to the inhibitory activity of ATA on the virus reverse transcriptase, was subsequently also explained by binding of ATA to the HIV-1 envelope glycoprotein gp120 and/or to the CD4 receptor for the virus. Results presented here show: (1) the effectiveness of ATA as a potential antiviral drug by demonstrating that HIV-1 replication in vitro can be completely aborted in the presence of ATA as measured by the polymerase chain reaction; (2) that ATA inhibited the reaction between gp120 and antibodies specific for the V3 hypervariable loop of gp120; (3) that additional compounds with anti-HIV-1 activity can be rapidly identified based on their inhibitory effects measured by radioimmunoassays and/or enzyme-linked immunoadsorbent assays; and (4) that ATA also bound to synthetic peptides representing V3 loops of several HIV-1 isolates, suggesting the possibility that selected chemicals would interfere with the biological function of V3 loops of most HIV-1 isolates and would be effective for chemotherapy, and possibly for prophylaxis, of HIV-1 infections.
Collapse
Affiliation(s)
- A. R. Neurath
- The Lindsley F. Kimball Research Institute of the New York Blood Center, New York, NY, USA
| | - P. Haberfield
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - B. Joshi
- Laboratory of Retrovirology, Division of Transfusion Science, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA
| | - I. K. Hewlett
- Laboratory of Retrovirology, Division of Transfusion Science, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA
| | - N. Strick
- The Lindsley F. Kimball Research Institute of the New York Blood Center, New York, NY, USA
| | - S. Jiang
- The Lindsley F. Kimball Research Institute of the New York Blood Center, New York, NY, USA
| |
Collapse
|
11
|
Discovery and optimization of novel small-molecule HIV-1 entry inhibitors using field-based virtual screening and bioisosteric replacement. Bioorg Med Chem Lett 2015; 24:5439-45. [PMID: 25454268 DOI: 10.1016/j.bmcl.2014.10.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 11/22/2022]
Abstract
With the emergence of drug-resistant strains and the cumulative toxicities associated with current therapies, demand remains for new inhibitors of HIV-1 replication. The inhibition of HIV-1 entry is an attractive, yet underexploited therapeutic approach with implications for salvage and preexposure prophylactic regimens, as well as topical microbicides. Using the combination of a field-derived bioactive conformation template to perform virtual screening and iterative bioisosteric replacements, coupled with in silico predictions of absorption, distribution, metabolism, and excretion, we have identified new leads for HIV-1 entry inhibitors.
Collapse
|
12
|
Structural analysis of a novel rabbit monoclonal antibody R53 targeting an epitope in HIV-1 gp120 C4 region critical for receptor and co-receptor binding. Emerg Microbes Infect 2015; 4:e44. [PMID: 26251831 PMCID: PMC4522616 DOI: 10.1038/emi.2015.44] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/17/2015] [Accepted: 05/19/2015] [Indexed: 01/07/2023]
Abstract
The fourth conserved region (C4) in the HIV-1 envelope glycoprotein (Env) gp120 is a structural element that is important for its function, as it binds to both the receptor CD4 and the co-receptor CCR5/CXCR4. It has long been known that this region is highly immunogenic and that it harbors B-cell as well as T-cell epitopes. It is the target of a number of antibodies in animal studies, which are called CD4-blockers. However, the mechanism by which the virus shields itself from such antibody responses is not known. Here, we determined the crystal structure of R53 in complex with its epitope peptide using a novel anti-C4 rabbit monoclonal antibody R53. Our data show that although the epitope of R53 covers a highly conserved sequence (433)AMYAPPI(439), it is not available in the gp120 trimer and in the CD4-bound conformation. Our results suggest a masking mechanism to explain how HIV-1 protects this critical region from the human immune system.
Collapse
|
13
|
Functional and Structural Characterization of Human V3-Specific Monoclonal Antibody 2424 with Neutralizing Activity against HIV-1 JRFL. J Virol 2015; 89:9090-102. [PMID: 26109728 PMCID: PMC4524078 DOI: 10.1128/jvi.01280-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/06/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The V3 region of HIV-1 gp120 is important for virus-coreceptor interaction and highly immunogenic. Although most anti-V3 antibodies neutralize only the sensitive tier 1 viruses, anti-V3 antibodies effective against the more resistant viruses exist, and a better understanding of these antibodies and their epitopes would be beneficial for the development of novel vaccine immunogens against HIV. The HIV-1 isolate JRFL with its cryptic V3 is resistant to most V3-specific monoclonal antibodies (MAbs). However, the V3 MAb 2424 achieves 100% neutralization against JRFL. 2424 is encoded by IGHV3-53 and IGLV2-28 genes, a pairing rarely used by the other V3 MAbs. 2424 also has distinct binding and neutralization profiles. Studies of 2424-mediated neutralization of JRFL produced with a mannosidase inhibitor further revealed that its neutralizing activity is unaffected by the glycan composition of the virus envelope. To understand the distinct activity of 2424, we determined the crystal structure of 2424 Fab in complex with a JRFL V3 peptide and showed that the 2424 epitope is located at the tip of the V3 crown ((307)IHIGPGRAFYT(319)), dominated by interactions with His(P308), Pro(P313), and Arg(P315). The binding mode of 2424 is similar to that of the well-characterized MAb 447-52D, although 2424 is more side chain dependent. The 2424 epitope is focused on the very apex of V3, away from nearby glycans, facilitating antibody access. This feature distinguishes the 2424 epitope from the other V3 crown epitopes and indicates that the tip of V3 is a potential site to target and incorporate into HIV vaccine immunogens. IMPORTANCE HIV/AIDS vaccines are crucial for controlling the HIV epidemics that continue to afflict millions of people worldwide. However, HIV vaccine development has been hampered by significant scientific challenges, one of which is the inability of HIV vaccine candidates evaluated thus far to elicit production of potent and broadly neutralizing antibodies. The V3 loop is one of the few immunogenic targets on the virus envelope glycoprotein that can induce neutralizing antibodies, but in many viruses, parts of V3 are inaccessible for antibody recognition. This study examined a V3-specific monoclonal antibody that can completely neutralize HIV-1 JRFL, a virus isolate resistant to most V3 antibodies. Our data reveal that this antibody recognizes the most distal tip of V3, which is not as occluded as other parts of V3. Hence, the epitope of 2424 is in one of the vulnerable sites on the virus that may be exploited in designing HIV vaccine immunogens.
Collapse
|
14
|
The V1V2 Region of HIV-1 gp120 Forms a Five-Stranded Beta Barrel. J Virol 2015; 89:8003-10. [PMID: 26018158 PMCID: PMC4505664 DOI: 10.1128/jvi.00754-15] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/16/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The region consisting of the first and second variable regions (V1V2) of gp120 plays vital roles in the functioning of the HIV-1 envelope (Env). V1V2, which harbors multiple glycans and is highly sequence diverse, is located at the Env apex and stabilizes the trimeric gp120 spike on the virion surface. It shields V3 and the coreceptor binding sites in the prefusion state and exposes them upon CD4 binding. Data from the RV144 human HIV-1 vaccine trial suggested that antibody responses targeting the V1V2 region inversely correlated with the risk of infection; thus, understanding the antigenic structure of V1V2 can contribute to vaccine design. We have determined a crystal structure of a V1V2 scaffold molecule (V1V2ZM109-1FD6) in complex with 830A, a human monoclonal antibody that recognizes a V1V2 epitope overlapping the integrin-binding motif in V2. The structure revealed that V1V2 assumes a five-stranded beta barrel structure with the region of the integrin-binding site (amino acids [aa] 179 to 181) included in a "kink" followed by an extra beta strand. The complete barrel structure naturally presents the glycans on its outer surface and packs into its core conserved hydrophobic residues, including the Ile at position 181 which was highly correlated with vaccine efficacy in RV144. The epitope of monoclonal antibody 830A is discontinuous and composed of three segments: (i) Thr175, Tyr177, Leu179, and Asp180 at the kink overlapping the integrin-binding site; (ii) Arg153 and Val154 in V1; and (iii) Ile194 at the C terminus of V2. This report thus provides the atomic details of the immunogenic "V2i epitope." IMPORTANCE Data from the RV144 phase III clinical trial suggested that the presence of antibodies to the first and second variable regions (V1V2) of gp120 was associated with the modest protection afforded by the vaccine. V1V2 is a highly variable and immunogenic region of HIV-1 surface glycoprotein gp120, and structural information about this region and its antigenic landscape will be crucial in the design of an effective HIV-1 vaccine. We have determined a crystal structure of V1V2 in complex with human MAb 830A and have shown that MAb 830A recognizes a region overlapping the α4β7 integrin-binding site. We also showed that V1V2 forms a 5-stranded beta barrel, an elegant structure allowing sequence variations in the strand-connecting loops while preserving a conserved core.
Collapse
|
15
|
Khan L, Makhdoomi MA, Kumar S, Nair A, Andrabi R, Clark BE, Auyeung K, Bhattacharya J, Vajpayee M, Wig N, Pantophlet R, Luthra K. Identification of CD4-Binding Site Dependent Plasma Neutralizing Antibodies in an HIV-1 Infected Indian Individual. PLoS One 2015; 10:e0125575. [PMID: 25962059 PMCID: PMC4427266 DOI: 10.1371/journal.pone.0125575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/24/2015] [Indexed: 12/02/2022] Open
Abstract
Dissecting antibody specificities in the plasma of HIV-1 infected individuals that develop broadly neutralizing antibodies (bNAbs) is likely to provide useful information for refining target epitopes for vaccine design. Several studies have reported CD4-binding site (CD4bs) antibodies as neutralization determinants in the plasma of subtype B-infected individuals; however there is little information on the prevalence of CD4bs specificities in HIV-infected individuals in India. Here, we report on the presence of CD4bs antibodies and their contribution to virus neutralization in the plasma from a cohort of HIV-1 infected Indian individuals. Plasma from 11 of the 140 HIV-1 infected individuals (7.9%) studied here exhibited cross-neutralization activity against a panel of subtype B and C viruses. Analyses of these 11 plasma samples for the presence of CD4bs antibodies using two CD4bs-selective probes (antigenically resurfaced HXB2gp120 core protein RSC3 and hyperglycosylated JRFLgp120 mutant ΔN2mCHO) revealed that five (AIIMS 617, 619, 627, 642, 660) contained RSC3-reactive plasma antibodies and only one (AIIMS 660) contained ΔN2mCHO-reactive antibodies. Plasma antibody depletion and competition experiments confirmed that the neutralizing activity in the AIIMS 660 plasma was dependent on CD4bs antibodies. To the best of our knowledge, this is the first study to report specifically on the presence of CD4bs antibodies in the plasma of a cohort of HIV-1 infected Indian donors. The identification of CD4bs dependent neutralizing antibodies in an HIV-1 infected Indian donor is a salient finding of this study and is supportive of ongoing efforts to induce similar antibodies by immunization.
Collapse
Affiliation(s)
- Lubina Khan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ambili Nair
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Raiees Andrabi
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Brenda E. Clark
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kate Auyeung
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jayanta Bhattacharya
- HIV Vaccine Translational Research Laboratory, THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - Madhu Vajpayee
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Ralph Pantophlet
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
- * E-mail:
| |
Collapse
|
16
|
Insight into the modified Ibalizumab-human CD4 receptor interactions: using a computational binding free energy approach. J Comput Aided Mol Des 2014; 29:69-78. [PMID: 25342515 DOI: 10.1007/s10822-014-9805-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/17/2014] [Indexed: 12/19/2022]
Abstract
Antibody drugs are very useful tools for the treatment of many chronic diseases. Recently, however, patients and doctors have encountered the problem of drug resistance. How to improve the affinity of antibody drugs has therefore become a pressing issue. Ibalizumab is a humanized monoclonal antibody that binds human CD4, the primary receptor for human immunodeficiency virus type 1. This study investigates the mutation residues of the complementarity determining regions of Ibalizumab. We propose using the wild and mutations of Ibalizumab-human CD4 receptor complex structures, molecular dynamics techniques, alanine-scanning mutagenesis calculations and solvated interaction energies methods to predict the binding free energy of the Ibalizumab-human CD4 receptor complex structures. This work found that revealed three key positions (31th, 32th and 33th in HCDR-1) of the residues may play an important role in Ibalizumab-human CD4 receptor complex interactions. Therefore, bioengineering substitutions of the three key positions and increasing number of intermolecular interactions (HCDR-1 of Ibalizumab/human CD4 receptor) might improve the binding affinities of this complex structure.
Collapse
|
17
|
Visualization of retroviral envelope spikes in complex with the V3 loop antibody 447-52D on intact viruses by cryo-electron tomography. J Virol 2014; 88:12265-75. [PMID: 25122783 DOI: 10.1128/jvi.01596-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The gp120 portion of the envelope spike on human immunodeficiency virus type 1 (HIV-1) plays a critical role in viral entry into host cells and is a key target for the humoral immune response, and yet many structural details remain elusive. We have used cryoelectron tomography to visualize the binding of the broadly neutralizing monoclonal antibody (MAb) 447-52D to intact envelope spikes on virions of HIV-1 MN strain. Antibody 447-52D has previously been shown to bind to the tip of the V3 loop. Our results show antibody arms radiating from the sides of the gp120 protomers at a range of angles and place the antibody-bound V3 loop in an orientation that differs from that predicted by most current models but consistent with the idea that antibody binding dislodges the V3 loop from its location in the Env spike, making it flexible and disordered. These data reveal information on the position of the V3 loop and its relative flexibility and suggest that 447-52D neutralizes HIV-1 MN by capturing the V3 loop, blocking its interaction with the coreceptor and altering the structure of the envelope spike. IMPORTANCE Antibody neutralization is one of the primary ways that the body fights infection with HIV. Because HIV is a highly mutable virus, the body must constantly produce new antibodies to counter new strains of HIV that the body itself is producing. Consequently, antibodies capable of neutralizing multiple HIV strains are comparatively few. An improved understanding of the mechanism of antibody neutralization might advance the development of immunogens. Most neutralizing antibodies target the Env glycoprotein spikes found on the virus surface. The broadly neutralizing antibody 447-52D targets the highly conserved β-turn of variable loop 3 (V3) of gp120. The importance of V3 lies in its contribution to the coreceptor binding site on the target cell. We show here that 447-52D binding to V3 converts the Env conformation from closed to open and makes the V3 loop highly flexible, implying disruption of coreceptor binding and attachment to the target cell.
Collapse
|
18
|
Chandramouli B, Chillemi G, Desideri A. Structural dynamics of V3 loop in a trimeric ambiance, a molecular dynamics study on gp120–CD4 trimeric mimic. J Struct Biol 2014; 186:132-40. [DOI: 10.1016/j.jsb.2014.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/03/2014] [Accepted: 02/20/2014] [Indexed: 11/24/2022]
|
19
|
Enhanced fusion and virion incorporation for HIV-1 subtype C envelope glycoproteins with compact V1/V2 domains. J Virol 2013; 88:2083-94. [PMID: 24335304 DOI: 10.1128/jvi.02308-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In infected people, the HIV-1 envelope glycoprotein (Env) constantly evolves to escape the immune response while retaining the essential elements needed to mediate viral entry into target cells. The extensive genetic variation of Env is particularly striking in the V1/V2 hypervariable domains. In this study, we investigated the trade-off, in terms of fusion efficiency, for encoding V1/V2 domains of different lengths. We found that natural variations in V1/V2 length exert a profound impact on HIV-1 entry. Variants encoding compact V1/V2 domains mediated fusion with higher efficiencies than related Envs encoding longer V1/V2 domains. By exchanging the V1/V2 domains between Envs of the same infected person or between two persons linked by a transmission event, we further demonstrated that V1/V2 domains critically influence both Env incorporation into viral particles and fusion to primary CD4 T cells and monocyte-derived dendritic cells. Shortening the V1/V2 domains consistently increased Env incorporation and fusion, whereas lengthening the V1/V2 domains decreased Env incorporation and fusion. Given that in a new host transmitted founder viruses are distinguished by compact Envs with fewer glycosylation sites, our study points to fusion and possibly Env incorporation into virions as limiting steps for transmission of HIV-1 to a new host and suggests that the length and/or the N-glycosylation profile of the V1/V2 domain influences these early steps in the HIV life cycle.
Collapse
|
20
|
Electrochemical sensor based on direct electron transfer of HIV-1 Virus at Au nanoparticle modified ITO electrode. Biosens Bioelectron 2013; 49:531-5. [DOI: 10.1016/j.bios.2013.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/29/2013] [Accepted: 06/05/2013] [Indexed: 11/19/2022]
|
21
|
Bhatia S, Patil SS, Sood R. Bovine immunodeficiency virus: a lentiviral infection. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2013; 24:332-41. [PMID: 24426295 DOI: 10.1007/s13337-013-0165-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 09/16/2013] [Indexed: 12/11/2022]
Abstract
The bovine immunodeficiency virus (BIV) is a lentivirus which is known to infect cattle worldwide. Though serological and genomic evidence of BIV in cattle has been found throughout the world, isolation of the virus has been reported only from few places. Very little is known about its impact on animal health status, pathogenesis and mode of transmission. BIV is considered generally non-pathogenic and is not known to cause any serious disease in cattle. BIV is genetically and antigenically related to Jembrana disease virus (JDV), the cause of an acute disease in Bali cattle (Bos javanicus) and human immunodeficiency virus, the cause of acquired immunodeficiency syndrome in human. Therefore, it is important to monitor the presence of BIV in cattle to keep vigil over its possible evolution in its natural host to emerge as pathogenic lentivirus like JDV. Differentiation of BIV infection in cattle from the acutely pathogenic JDV is important for diagnosis of the latter. Currently, BIV is considered as a safe model for understanding the complex genome of lentiviruses. Further research on BIV is indeed needed to elucidate its possible role in animal health as well as for insight into the molecular mechanisms adopted by related lentiviruses.
Collapse
Affiliation(s)
- Sandeep Bhatia
- High Security Animal Disease Laboratory (HSADL), Indian Veterinary Research Institute (IVRI), Bhopal, India
| | - S S Patil
- Project Directorate on Animal Disease Monitoring and Surveillance (PD-ADMAS), Bengaluru, India
| | - R Sood
- High Security Animal Disease Laboratory (HSADL), Indian Veterinary Research Institute (IVRI), Bhopal, India
| |
Collapse
|
22
|
María Velasco A, Becerra A, Hernández-Morales R, Delaye L, Jiménez-Corona ME, Ponce-de-Leon S, Lazcano A. Low complexity regions (LCRs) contribute to the hypervariability of the HIV-1 gp120 protein. J Theor Biol 2013; 338:80-6. [PMID: 24021867 DOI: 10.1016/j.jtbi.2013.08.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 08/01/2013] [Accepted: 08/31/2013] [Indexed: 01/27/2023]
Abstract
Low complexity regions (LCRs) are sequences of nucleic acids or proteins defined by a compositional bias. Their occurrence has been confirmed in sequences of the three cellular lineages (Bacteria, Archaea and Eucarya), and has also been reported in viral genomes. We present here the results of a detailed computer analysis of the LCRs present in the HIV-1 glycoprotein 120 (gp120) encoded by the viral gene env. The analysis was performed using a sample of 3637 Env polyprotein sequences derived from 4117 completely sequenced and translated HIV-1 genomes available in public databases as of December 2012. We have identified 1229 LCRs located in four different regions of the gp120 protein that correspond to four of the five regions that have been identified as hypervariable (V1, V2, V4 and V5). The remaining 29 LCRs are found in the signal peptide and in the conserved regions C2, C3, C4 and C5. No LCR has been identified in the hypervariable region V3. The LCRs detected in the V1, V2, V4, and V5 hypervariable regions exhibit a high Asn content in their amino acid composition, which very likely correspond to glycosylation sites, which may contribute to the retroviral ability to avoid the immune system. In sharp contrast with what is observed in gp120 proteins lacking LCRs, the glycosylation sites present in LCRs tend to be clustered towards the center of the region forming well-defined islands. The results presented here suggest that LCRs represent a hitherto undescribed source of genomic variability in lentivirus, and that these repeats may represent an important source of antigenic variation in HIV-1 populations. The results reported here may exemplify the evolutionary processes that may have increased the size of primitive cellular RNA genomes and the role of LCRs as a source of raw material during the processes of evolutionary acquisition of new functions.
Collapse
Affiliation(s)
- Ana María Velasco
- Facultad de Ciencias, UNAM, Ciudad Universitaria, Apdo. Postal 70-407, México D. F. 04510, Mexico; Laboratorios de Biológicos y Reactivos de México, Amores 1240, Colonia Del Valle, México D. F. 03100, Mexico
| | | | | | | | | | | | | |
Collapse
|
23
|
Sun X, Shan X, Yan Z, Zhang Y, Guan L. Prediction and characterization of the linear IgE epitopes for the major soybean allergen β-conglycinin using immunoinformatics tools. Food Chem Toxicol 2013; 56:254-60. [PMID: 23454299 DOI: 10.1016/j.fct.2013.02.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/07/2013] [Accepted: 02/10/2013] [Indexed: 11/17/2022]
Abstract
The α subunit of β-conglycinin is a major allergen in soybean. The objective of this study was to predict and identify the linear immunoglobulin (Ig)E epitopes of the soybean α subunit of β-conglycinin. Three immunoinformatics tools were used to predict the potential epitopes and were confirmed by dot-blot inhibition using sera from soybean allergic subjects. As a result, 15 peptides were predicted and assembled by solid-phase synthesis. Eleven epitopes were identified by the dot-blot inhibition test. Moreover, peptide 3 had IgE binding capability with all sera(5/5) tested, while peptide 1, 4, 6, 8 and12 could bind to 4/5 of the sera samples. Secondary structure prediction of peptide 3 and circular dichroism test validated that the structure of peptide 3 was a random coil.
Collapse
Affiliation(s)
- Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, Wuxi, Jiangsu 214122, China.
| | | | | | | | | |
Collapse
|
24
|
Andrabi R, Kumar R, Bala M, Nair A, Ss P, Kushwaha V, Luthra K. Envelope diversity, characteristics of V3 region and predicted co-receptor usage of human immunodeficiency viruses infecting north Indians. J Microbiol 2012; 50:869-73. [PMID: 23124759 DOI: 10.1007/s12275-012-2136-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/12/2012] [Indexed: 11/27/2022]
Abstract
Subtypes of human immunodeficiency virus type 1 circulating in 21 north Indian patients were characterized based on the partial sequence of the gp120 envelope protein. A majority of viruses (85.7%, 18/21) were subtype C, while 14.3% (3/21) were subtype A. Sequence analysis revealed that the V3 region was highly conserved compared with V4 and V5. The predicted use of co-receptors indicated exclusive usage of R5, except for two subtype A viruses (AIIMS279 and AIIMS281). Our results demonstrate conservation within the V3 loop of subtype C viruses, and suggest the emergence of non-clade C viruses in the north Indian population.
Collapse
Affiliation(s)
- Raiees Andrabi
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
25
|
Kubrycht J, Sigler K, Souček P. Virtual interactomics of proteins from biochemical standpoint. Mol Biol Int 2012; 2012:976385. [PMID: 22928109 PMCID: PMC3423939 DOI: 10.1155/2012/976385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 12/24/2022] Open
Abstract
Virtual interactomics represents a rapidly developing scientific area on the boundary line of bioinformatics and interactomics. Protein-related virtual interactomics then comprises instrumental tools for prediction, simulation, and networking of the majority of interactions important for structural and individual reproduction, differentiation, recognition, signaling, regulation, and metabolic pathways of cells and organisms. Here, we describe the main areas of virtual protein interactomics, that is, structurally based comparative analysis and prediction of functionally important interacting sites, mimotope-assisted and combined epitope prediction, molecular (protein) docking studies, and investigation of protein interaction networks. Detailed information about some interesting methodological approaches and online accessible programs or databases is displayed in our tables. Considerable part of the text deals with the searches for common conserved or functionally convergent protein regions and subgraphs of conserved interaction networks, new outstanding trends and clinically interesting results. In agreement with the presented data and relationships, virtual interactomic tools improve our scientific knowledge, help us to formulate working hypotheses, and they frequently also mediate variously important in silico simulations.
Collapse
Affiliation(s)
- Jaroslav Kubrycht
- Department of Physiology, Second Medical School, Charles University, 150 00 Prague, Czech Republic
| | - Karel Sigler
- Laboratory of Cell Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic
| |
Collapse
|
26
|
Heterologous protection elicited by candidate monomeric recombinant HIV-1 gp120 vaccine in the absence of cross neutralising antibodies in a macaque model. Retrovirology 2012; 9:56. [PMID: 22799593 PMCID: PMC3418562 DOI: 10.1186/1742-4690-9-56] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/09/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Current data suggest that an efficacious human immunodeficiency virus type 1 (HIV-1) vaccine should elicit both adaptive humoral and cell mediated immune responses. Such a vaccine will also need to protect against infection from a range of heterologous viral variants. Here we have developed a simian-human immunodeficiency virus (SHIV) based model in cynomolgus macaques to investigate the breadth of protection conferred by HIV-1W61D recombinant gp120 vaccination against SHIVsbg and SHIVSF33 challenge, and to identify correlates of protection. RESULTS High titres of anti-envelope antibodies were detected in all vaccinees. The antibodies reacted with both the homologous HIV-1W61D and heterologous HIV-1IIIB envelope rgp120 which has an identical sequence to the SHIVsbg challenge virus. Significant titres of virus neutralising antibodies were detected against SHIVW61D expressing an envelope homologous with the vaccine, but only limited cross neutralisation against SHIVsbg, SHIV-4 and SHIVSF33 was observed. Protection against SHIVsbg infection was observed in vaccinated animals but none was observed against SHIVSF33 challenge. Transfer of immune sera from vaccinated macaques to naive recipients did not confer protection against SHIVsbg challenge. In a follow-up study, T cell proliferative responses detected after immunisation with the same vaccine against a single peptide present in the second conserved region 2 of HIV-1 W61D and HIV-1 IIIB gp120, but not SF33 gp120. CONCLUSIONS Following extended vaccination with a HIV-1 rgp120 vaccine, protection was observed against heterologous virus challenge with SHIVsbg, but not SHIVSF33. Protection did not correlate with serological responses generated by vaccination, but might be associated with T cell proliferative responses against an epitope in the second constant region of HIV-1 gp120. Broader protection may be obtained with recombinant HIV-1 envelope based vaccines formulated with adjuvants that generate proliferative T cell responses in addition to broadly neutralising antibodies.
Collapse
|
27
|
Balasubramanian C, Chillemi G, Abbate I, Capobianchi MR, Rozera G, Desideri A. Importance of V3 Loop Flexibility and Net Charge in the Context of Co-Receptor Recognition. A Molecular Dynamics Study on HIV gp120. J Biomol Struct Dyn 2012; 29:879-91. [DOI: 10.1080/07391102.2012.10507416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Wang YT, Su ZY. Modelling and predicting the binding mechanics of HIV P1053-0.5β antibody complex. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2010.533274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Curlin ME, Zioni R, Hawes SE, Liu Y, Deng W, Gottlieb GS, Zhu T, Mullins JI. HIV-1 envelope subregion length variation during disease progression. PLoS Pathog 2010; 6:e1001228. [PMID: 21187897 PMCID: PMC3002983 DOI: 10.1371/journal.ppat.1001228] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 11/11/2010] [Indexed: 01/29/2023] Open
Abstract
The V3 loop of the HIV-1 Env protein is the primary determinant of viral coreceptor usage, whereas the V1V2 loop region is thought to influence coreceptor binding and participate in shielding of neutralization-sensitive regions of the Env glycoprotein gp120 from antibody responses. The functional properties and antigenicity of V1V2 are influenced by changes in amino acid sequence, sequence length and patterns of N-linked glycosylation. However, how these polymorphisms relate to HIV pathogenesis is not fully understood. We examined 5185 HIV-1 gp120 nucleotide sequence fragments and clinical data from 154 individuals (152 were infected with HIV-1 Subtype B). Sequences were aligned, translated, manually edited and separated into V1V2, C2, V3, C3, V4, C4 and V5 subregions. V1-V5 and subregion lengths were calculated, and potential N-linked glycosylation sites (PNLGS) counted. Loop lengths and PNLGS were examined as a function of time since infection, CD4 count, viral load, and calendar year in cross-sectional and longitudinal analyses. V1V2 length and PNLGS increased significantly through chronic infection before declining in late-stage infection. In cross-sectional analyses, V1V2 length also increased by calendar year between 1984 and 2004 in subjects with early and mid-stage illness. Our observations suggest that there is little selection for loop length at the time of transmission; following infection, HIV-1 adapts to host immune responses through increased V1V2 length and/or addition of carbohydrate moieties at N-linked glycosylation sites. V1V2 shortening during early and late-stage infection may reflect ineffective host immunity. Transmission from donors with chronic illness may have caused the modest increase in V1V2 length observed during the course of the pandemic. The HIV envelope gene (env) encodes viral surface proteins (Env) that are vital to the basic processes used by the virus to infect and cause disease in humans. Adaptations in env determine which cells the virus can infect, and permit the virus to avoid elimination by the immune system. Env is one of the most variable genes known, and it can change dramatically over time in a single individual. However, Env-host cell interactions are complex and incompletely understood, and changes in this viral protein during infection have not yet been systematically described. We examined a large number of env sequences from 154 individuals at various stages of HIV infection but who had never received antiretroviral treatment. We found that the env V1V2 region lengthens during chronic infection and becomes more heavily glycosylated. However, these changes partially reverse during late-stage illness, possibly in response to a weakening host immune system. V1V2 lengths are also increasing over time in the epidemic at large, possibly related to the epidemiology of HIV transmission within the subtype B epidemic. These results provide fundamental insights into the biology of HIV.
Collapse
Affiliation(s)
- Marcel E Curlin
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Purified hexameric Epstein-Barr virus-encoded BARF1 protein for measuring anti-BARF1 antibody responses in nasopharyngeal carcinoma patients. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:298-304. [PMID: 21123521 DOI: 10.1128/cvi.00193-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
WHO type III nasopharyngeal carcinoma (NPC) is highly prevalent in Indonesia and 100% associated with Epstein-Barr virus (EBV). NPC tumor cells express viral proteins, including BARF1, which is secreted and is considered to have oncogenic and immune-modulating properties. Recently, we found conserved mutations in the BARF1 gene in NPC isolates. This study describes the expression and purification of NPC-derived BARF1 and analyzes humoral immune responses against prototype BARF1 (B95-8) and purified native hexameric BARF1 in sera of Indonesian NPC patients (n = 155) compared to healthy EBV-positive (n = 56) and EBV-negative (n = 16) individuals. BARF1 (B95-8) expressed in Escherichia coli and baculovirus, as well as BARF1-derived peptides, did not react with IgG or IgA antibodies in NPC. Purified native hexameric BARF1 protein isolated from culture medium was used in enzyme-linked immunosorbent assay (ELISA) and revealed relatively weak IgG and IgA responses in human sera, although it had strong antibody responses to other EBV proteins. Higher IgG reactivity was found in NPC patients (P = 0.015) than in regional Indonesian controls or EBV-negative individuals (P < 0.001). IgA responses to native BARF1 were marginal. NPC sera with the highest IgG responses to hexameric BARF1 in ELISA showed detectable reactivity with denatured BARF1 by immunoblotting. In conclusion, BARF1 has low immunogenicity for humoral responses and requires native conformation for antibody binding. The presence of antibodies against native BARF1 in the blood of NPC patients provides evidence that the protein is expressed and secreted as a hexameric protein in NPC patients.
Collapse
|
31
|
Costers S, Vanhee M, Van Breedam W, Van Doorsselaere J, Geldhof M, Nauwynck HJ. GP4-specific neutralizing antibodies might be a driving force in PRRSV evolution. Virus Res 2010; 154:104-13. [PMID: 20837070 DOI: 10.1016/j.virusres.2010.08.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 08/27/2010] [Accepted: 08/27/2010] [Indexed: 12/31/2022]
Abstract
The structural envelope glycoprotein GP4 of European porcine reproductive and respiratory syndrome virus (PRRSV) strains contains a highly variable neutralizing epitope that is susceptible to neutralizing antibody-mediated selective pressure in vitro. In this study, it was analyzed what happens with this neutralizing epitope during infection in vivo in the presence of neutralizing antibodies. A neutralizing antibody-mediated selective pressure was created in 30 pigs by vaccination prior to inoculation with infectious Lelystad virus (LV). Nine viable neutralizing antibody-escape variants were isolated from 9 of these pigs and their neutralizing antibody-escape mutant-identity was confirmed by the acquired resistance to neutralization by autologous neutralizing sera. Six out of 9 neutralizing antibody-escape variants contained aa substitutions in the GP4 neutralizing epitope and had become resistant to neutralization by a monoclonal antibody (mAb) against this epitope. In addition, in all 6 corresponding pigs, antibodies against this epitope were detected early in infection. In contrast to these 6 virus variants, the 3 other antibody-escape variants did not contain aa substitutions in the GP4 neutralizing epitope and were still sensitive to neutralization by the GP4-specific mAb. These antibody-escape variants were isolated from pigs that did not contain antibodies against this epitope early in infection. All these findings together strongly indicate that aa substitutions in the GP4 neutralizing epitope can abrogate antibody recognition, and that neutralizing antibodies might be responsible for the selection of neutralizing antibody-resistant variants with aa substitutions in the neutralizing epitope on GP4. In conclusion, this study indicates that neutralizing antibodies in pigs might be a driving force in the rapid evolution of the neutralizing epitope on GP4 of European PRRSV strains.
Collapse
Affiliation(s)
- Sarah Costers
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | | | | | | |
Collapse
|
32
|
Yamashina I. The trail of my studies on glycoproteins from enterokinase to tumor markers. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:578-587. [PMID: 20551595 PMCID: PMC3081172 DOI: 10.2183/pjab.86.578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/03/2010] [Indexed: 05/29/2023]
Abstract
This review describes the results of the author's studies on glycoproteins which have been carried out for more than 50 years. Starting from the elucidation of basic structures of glycoproteins, i.e. the structure of the linkage between an amino acid and a sugar and the occurrence of the beta-mannosidic linkage as the common structure of glycoproteins, the author became interested in the cell membrane glycoproteins focused on the comparison of cancer cells versus normal cells. These studies were then extended to the establishment of sugar-directed and cancer-associated monoclonal antibodies. Some of the monoclonal antibodies are useful for cancer diagnosis.
Collapse
|
33
|
Nandi A, Lavine CL, Wang P, Lipchina I, Goepfert PA, Shaw GM, Tomaras GD, Montefiori DC, Haynes BF, Easterbrook P, Robinson JE, Sodroski JG, Yang X. Epitopes for broad and potent neutralizing antibody responses during chronic infection with human immunodeficiency virus type 1. Virology 2009; 396:339-48. [PMID: 19922969 DOI: 10.1016/j.virol.2009.10.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 10/22/2009] [Accepted: 10/28/2009] [Indexed: 11/29/2022]
Abstract
Neutralizing antibody (nAb) response is sporadic and has limited potency and breadth during infection with human immunodeficiency virus type 1 (HIV-1). In rare cases, broad and potent nAbs are actually induced in vivo. Identifying specific epitopes targeted by such broad and potent nAb response is valuable in guiding the design of a prophylactic vaccine aimed to induce nAb. In this study, we have defined neutralizing epitope usage in 7 out of 17 subjects with broad and potent nAbs by using targeted mutagenesis in known neutralizing epitopes of HIV-1 glycoproteins and by using in vitro depletion of serum neutralizing activity by various recombinant HIV-1 glycoproteins. Consistent with recent reports, the CD4 binding site (CD4BS) is targeted by nAbs in vivo (4 of the 7 subjects with defined neutralizing epitopes). The new finding from this study is that epitopes in the gp120 outer domain are also targeted by nAbs in vivo (5 of the 7 subjects). The outer domain epitopes include glycan-dependent epitopes (2 subjects), conserved nonlinear epitope in the V3 region (2 subjects), and a CD4BS epitope composed mainly of the elements in the outer domain (1 subject). Importantly, we found indication for epitope poly-specificity, a dual usage of the V3 and CD4BS epitopes, in only one subject. This study provides a more complete profile of epitope usage for broad and potent nAb responses during HIV-1 infection.
Collapse
Affiliation(s)
- Avishek Nandi
- Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, E/CLS-1011, 3 Blackfan Circle, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Transitions to and from the CD4-bound conformation are modulated by a single-residue change in the human immunodeficiency virus type 1 gp120 inner domain. J Virol 2009; 83:8364-78. [PMID: 19535453 DOI: 10.1128/jvi.00594-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Binding to the primary receptor CD4 induces conformational changes in the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein that allow binding to the coreceptor (CCR5 or CXCR4) and ultimately trigger viral membrane-cell membrane fusion mediated by the gp41 transmembrane envelope glycoprotein. Here we report the derivation of an HIV-1 gp120 variant, H66N, that confers envelope glycoprotein resistance to temperature extremes. The H66N change decreases the spontaneous sampling of the CD4-bound conformation by the HIV-1 envelope glycoproteins, thus diminishing CD4-independent infection. The H66N change also stabilizes the HIV-1 envelope glycoprotein complex once the CD4-bound state is achieved, decreasing the probability of CD4-induced inactivation and revealing the enhancing effects of soluble CD4 binding on HIV-1 infection. In the CD4-bound conformation, the highly conserved histidine 66 is located between the receptor-binding and gp41-interactive surfaces of gp120. Thus, a single amino acid change in this strategically positioned gp120 inner domain residue influences the propensity of the HIV-1 envelope glycoproteins to negotiate conformational transitions to and from the CD4-bound state.
Collapse
|
35
|
Granados-González V, Piedrahita LD, Martínez M, Genin C, Riffard S, Urcuqui-Inchima S. [Role of the HIV-1 gp120 V1/V2 domains in the induction of neutralizing antibodies]. Enferm Infecc Microbiol Clin 2009; 27:523-30. [PMID: 19409660 DOI: 10.1016/j.eimc.2008.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 02/11/2008] [Indexed: 11/25/2022]
Abstract
The development of a preventive vaccine against human immunodeficiency virus type-1 (HIV-1) provides hope for control of the pandemic over the coming years. Nevertheless, it is clear that one of the greatest difficulties in achieving this vaccine is the high mutation rate of the virus, which enables it to evade the host's immune response. The production of neutralizing antibodies (NAb) against the HIV-1 envelope proteins is believed to play an important role in controlling the infection and in providing effective protection following vaccination. Several studies have shown that the V1/V2 domain of the HIV-1 gp120 envelope protein is involved in viral tropism during infection, in masking conserved neutralizing epitopes, in the conformational changes occurring after coreceptor binding, and in NAb induction. Nonetheless, this domain has been poorly investigated. However, because the V1/V2 domain is highly glycosylated, numerous studies have determined the influence of carbohydrates on NAb production. The present review focuses on the importance of NAb directed against epitopes of the variable regions, mainly V1/V2, their importance in protecting against HIV-1 infection, and the role these regions play in evading the immune response. Lastly, we will discuss the importance of NAb in the search for an effective vaccine against HIV-1.
Collapse
Affiliation(s)
- Viviana Granados-González
- Groupe Immunité des Muqueuses et Agents Pathogènes, University of Saint Etienne, Saint Etienne, Francia.
| | | | | | | | | | | |
Collapse
|
36
|
Sagar M, Laeyendecker O, Lee S, Gamiel J, Wawer MJ, Gray RH, Serwadda D, Sewankambo NK, Shepherd JC, Toma J, Huang W, Quinn TC. Selection of HIV variants with signature genotypic characteristics during heterosexual transmission. J Infect Dis 2009; 199:580-9. [PMID: 19143562 PMCID: PMC2755256 DOI: 10.1086/596557] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Newly infected subjects acquire a limited number of human immunodeficiency virus type 1 (HIV-1) variants with specific genotypic and phenotypic features from the array of viruses present in a chronically infected transmitting partner. METHODS We examined HIV-1 envelope sequences from the earliest available serum sample after HIV-1 acquisition in 13 newly infected subjects and from their epidemiologically linked HIV-1-infected heterosexual partner. Samples from both members were collected on the same day in the Rakai Community Cohort Study. RESULTS Ten couples were infected with subtype D HIV-1, and 3 pairs had subtype A HIV-1. Newly infected subjects acquired a subset of the viruses that were circulating in the transmitting partner; transmitted variants had less diversity and divergence and were more closely related to the ancestral sequences. The majority of signature amino acid differences among donor and recipient sequences were in and immediately following the V3 loop. Envelopes from recipients were significantly shorter and had a lower V3 charge than envelopes from donors, but there was no significant difference in the number of potential N-linked glycosylation sites. CONCLUSION A minority subset of HIV-1 variants with signature genotypes is favored for transmission in this population.
Collapse
Affiliation(s)
- Manish Sagar
- Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Graham DRM, Mitsak MJ, Elliott ST, Chen D, Whelan SA, Hart GW, Van Eyk JE. Two-dimensional gel-based approaches for the assessment of N-Linked and O-GlcNAc glycosylation in human and simian immunodeficiency viruses. Proteomics 2008; 8:4919-30. [PMID: 19072736 PMCID: PMC2785494 DOI: 10.1002/pmic.200800608] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The glycosylation state of envelope glycoproteins in human and simian immunodeficiency viruses (HIV/SIV) is critical to viral infectivity and tropism, viral protein processing, and in virus evasion of the immune system. Using a rapid fluorescent 2-D gel-based method coupled with enzymatic pre-treatment of virus with PNGase F (Peptide: N-Glycosidase F) and fluorescent 2-D gels or 2-D gel Western blotting, we show significant differences in the glycosylation patterns of two SIV strains widely used in animal models of HIV disease and vaccine studies. We also demonstrate the modification of a host protein important in HIV biology (HLA-DR) by O-GlcNAc. Further, this experimental pipeline allows for the identification of the modified protein and the site of N-linked glycosylation by fluorescent 2-DE coupled with MS and the qualitative and semi-quantitative assessment of viral glycosylation. The method is fully compatible with downstream glycomics analysis. This approach will permit correlation of virus glycosylation status with pathological severity and may serve as a rapid screen of viruses from physiological samples for further study by more advanced MS methodology.
Collapse
Affiliation(s)
- David R M Graham
- Department of Medicine, Division of Cardiology, The JHU Bayview Proteomics Center, The Johns Hopkins University, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Sun C, Zhang B, Jin J, Montelaro RC. Binding of equine infectious anemia virus to the equine lentivirus receptor-1 is mediated by complex discontinuous sequences in the viral envelope gp90 protein. J Gen Virol 2008; 89:2011-2019. [PMID: 18632973 DOI: 10.1099/vir.0.83646-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The identification and characterization of a functional cellular receptor for equine infectious anemia virus (EIAV), designated equine lentivirus receptor-1 (ELR1), a member of the tumour necrosis factor receptor protein family, has been reported previously [Zhang, B. et al. (2005). Proc Natl Acad Sci U S A, 102 , 9918-9923]. The finding of a single receptor for EIAV is distinct from feline, simian and human immunodeficiency viruses, which typically utilize two co-receptors for infection, but is similar to avian and murine oncoviruses, which use single receptors. This study sought to determine ELR1-binding domains of EIAV gp90. Towards this goal, a GFP-tagged gp90 fusion protein (gp90GFP) expression vector was constructed and a specific cell-cell binding assay was developed to measure EIAV gp90 binding to ELR1. Using these assays, the receptor-binding properties of 41 gp90GFP mutants were evaluated, each with a sequential replacement 11 aa linear epitope peptide from the vesicular stomatitis virus glycoprotein (VSV-G tag), as well as eight mutants containing individual gp90 variable-domain deletions. The results of these studies demonstrated that, in general, gp90 constructs containing substitutions or deletions in the N-terminal third of gp90 retained their receptor-binding activity. In contrast, segment substitutions or deletions in the C-terminal two-thirds of gp90 eliminated receptor-binding activity. Thus, these results reveal for the first time that the ELR1-binding domains of EIAV gp90 are located in the C-terminal two-thirds of EIAV gp90, apparently as a complex of discontinuous determinants.
Collapse
Affiliation(s)
- Chengqun Sun
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Baoshan Zhang
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jing Jin
- Department of Infectious Disease and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ronald C Montelaro
- Department of Infectious Disease and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
39
|
Role of the membrane-spanning domain of human immunodeficiency virus type 1 envelope glycoprotein in cell-cell fusion and virus infection. J Virol 2008; 82:5417-28. [PMID: 18353944 DOI: 10.1128/jvi.02666-07] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The membrane-spanning domain (MSD) of the human immunodeficiency virus type 1 (HIV-1) gp41 glycoprotein is critical for its biological activity. Previous C-terminal truncation studies have predicted an almost invariant core structure of 12 amino acid residues flanked by basic amino acids in the HIV-1 MSD that function to anchor the glycoprotein in the lipid bilayer. To further understand the role of specific amino acids within the MSD core, we initially replaced the core region with 12 leucine residues and then constructed recovery-of-function mutants in which specific amino acid residues (including a GGXXG motif) were reintroduced. We show here that conservation of the MSD core sequence is not required for normal expression, processing, intracellular transport, and incorporation into virions of the envelope glycoprotein (Env). However, the amino acid composition of the MSD core does influence the ability of Env to mediate cell-cell fusion and plays a critical role in the infectivity of HIV-1. Replacement of conserved amino acid residues with leucine blocked virus-to-cell fusion and subsequent viral entry into target cells. This restriction could not be released by C-terminal truncation of the gp41 glycoprotein. These studies imply that the highly conserved core residues of the HIV Env MSD, in addition to serving as a membrane anchor, play an important role in mediating membrane fusion during viral entry.
Collapse
|
40
|
In silico segmentations of lentivirus envelope sequences. BMC Bioinformatics 2007; 8:99. [PMID: 17376229 PMCID: PMC1847453 DOI: 10.1186/1471-2105-8-99] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 03/21/2007] [Indexed: 11/20/2022] Open
Abstract
Background The gene encoding the envelope of lentiviruses exhibits a considerable plasticity, particularly the region which encodes the surface (SU) glycoprotein. Interestingly, mutations do not appear uniformly along the sequence of SU, but they are clustered in restricted areas, called variable (V) regions, which are interspersed with relatively more stable regions, called constant (C) regions. We look for specific signatures of C/V regions, using hidden Markov models constructed with SU sequences of the equine, human, small ruminant and simian lentiviruses. Results Our models yield clear and accurate delimitations of the C/V regions, when the test set and the training set were made up of sequences of the same lentivirus, but also when they were made up of sequences of different lentiviruses. Interestingly, the models predicted the different regions of lentiviruses such as the bovine and feline lentiviruses, not used in the training set. Models based on composite training sets produce accurate segmentations of sequences of all these lentiviruses. Conclusion Our results suggest that each C/V region has a specific statistical oligonucleotide composition, and that the C (respectively V) regions of one of these lentiviruses are statistically more similar to the C (respectively V) regions of the other lentiviruses, than to the V (respectively C) regions of the same lentivirus.
Collapse
|
41
|
Harrington PR, Nelson JAE, Kitrinos KM, Swanstrom R. Independent evolution of human immunodeficiency virus type 1 env V1/V2 and V4/V5 hypervariable regions during chronic infection. J Virol 2007; 81:5413-7. [PMID: 17329337 PMCID: PMC1900199 DOI: 10.1128/jvi.02554-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Using DNA heteroduplex tracking assays, we characterized human immunodeficiency virus type 1 env V4/V5 genetic populations in multiple blood plasma samples collected over an average of 7 months from 24 chronically infected human subjects. We observed complex and dynamic V4/V5 genetic populations in most subjects. Comparisons of V4/V5 and V1/V2 population changes over the course of the study showed that major shifts in genetic populations frequently occurred in one region but not the other, and these observations were independently confirmed in one subject by single-genome sequencing. These results suggest that the V1/V2 and V4/V5 regions of env often evolve independently during chronic infection.
Collapse
Affiliation(s)
- Patrick R Harrington
- University of North Carolina at Chapel Hill, 22-062 Lineberger Cancer Center, CB#7295, Chapel Hill, NC 27599-7295, USA
| | | | | | | |
Collapse
|
42
|
Sagar M, Wu X, Lee S, Overbaugh J. Human immunodeficiency virus type 1 V1-V2 envelope loop sequences expand and add glycosylation sites over the course of infection, and these modifications affect antibody neutralization sensitivity. J Virol 2006; 80:9586-98. [PMID: 16973562 PMCID: PMC1617272 DOI: 10.1128/jvi.00141-06] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over the course of infection, human immunodeficiency virus type 1 (HIV-1) continuously adapts to evade the evolving host neutralizing antibody responses. Changes in the envelope variable loop sequences, particularly the extent of glycosylation, have been implicated in antibody escape. To document modifications that potentially influence antibody susceptibility, we compared envelope variable loops 1 and 2 (V1-V2) from multiple sequences isolated at the primary phase of infection to those isolated around 2 to 3 years into the chronic phase of infection in nine women with HIV-1 subtype A. HIV-1 sequences isolated during chronic infection had significantly longer V1-V2 loops, with a significantly higher number of potential N-linked glycosylation sites, than the sequences isolated early in infection. To assess the effects of these V1-V2 changes on antibody neutralization and infectivity, we created chimeric envelope sequences, which incorporated a subject's V1-V2 sequences into a common subtype A envelope backbone and then used them to generate pseudotyped viruses. Compared to the parent virus, the introduction of a subject's early-infection V1-V2 envelope variable loops rendered the chimeric envelope more sensitive to that subject's plasma samples but only to plasma samples collected >6 months after the sequences were isolated. Neutralization was not detected with the same plasma when the early-infection V1-V2 sequences were replaced with chronic-infection V1-V2 sequences, suggesting that changes in V1-V2 contribute to antibody escape. Pseudotyped viruses with V1-V2 segments from different times in infection, however, showed no significant difference in neutralization sensitivity to heterologous pooled plasma, suggesting that viruses with V1-V2 loops from early in infection were not inherently more neutralization sensitive. Pseudotyped viruses bearing chimeric envelopes with early-infection V1-V2 sequences showed a trend in infecting cells with low CD4 concentrations more efficiently, while engineered viruses with V1-V2 sequences isolated during chronic infection were moderately better at infecting cells with low CCR5 concentrations. These studies suggest that changes within the V1-V2 envelope domains over the course of an infection influence sensitivity to autologous neutralizing antibodies and may also impact host receptor/coreceptor interactions.
Collapse
Affiliation(s)
- Manish Sagar
- Department of Medicine, Brigham and Women's Hospital, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
43
|
Jobes DV, Daoust M, Nguyen V, Padua A, Michele S, Lock MD, Chen A, Sinangil F, Berman PW. High incidence of unusual cysteine variants in gp120 envelope proteins from early HIV type 1 infections from a Phase 3 vaccine efficacy trial. AIDS Res Hum Retroviruses 2006; 22:1014-21. [PMID: 17067272 DOI: 10.1089/aid.2006.22.1014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the course of a large-scale HIV-1 vaccine field trial (VAX004), full-length gp120 sequences were determined for 349 new HIV-1 infections. The data collected represent the largest survey of full-length gp120 sequences from new HIV-1 infections ever assembled. Previous studies have shown that subtype B viruses typically possess 18 cysteine residues that are covalently linked to form 9 conserved disulfide bridges. However, in this study we found that approximately 20% of the trial participants possessed envelope proteins with an unusual number of cysteine residues that could very likely result in unusual protein structures. One class of variants included envelope proteins with two additional cysteine residues in close proximity, potentially yielding additional disulfide-bonded loops. Other classes of variants included envelope proteins where amino acid replacements increased or decreased the number of cysteine residues by one, resulting in molecules with either 19 or 17 cysteines, respectively. Initial functional analysis demonstrated that envelope proteins with 19 cysteine residues bind to CD4 and the CCR5 chemokine coreceptor, and are infectious. These results suggest that the protein structure of gp120 in newly transmitted viruses may be more heterogeneous than previously appreciated and potentially represent a new mechanism of virus variation. The disulfide variation that we report here may have important implications for HIV vaccine and drug development efforts.
Collapse
Affiliation(s)
- David V Jobes
- VaxGen Inc., South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
McBurney SP, Young KR, Ross TM. Membrane embedded HIV-1 envelope on the surface of a virus-like particle elicits broader immune responses than soluble envelopes. Virology 2006; 358:334-46. [PMID: 17011011 DOI: 10.1016/j.virol.2006.08.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 08/07/2006] [Accepted: 08/22/2006] [Indexed: 11/24/2022]
Abstract
Virally regulated HIV-1 particles were expressed from DNA plasmids encoding Gag, protease, reverse transcriptase, Vpu, Tat, Rev, and Env. The sequences for integrase, Vpr, Vif, Nef, and the long terminal repeats (LTRs) were deleted. Mutations were engineered into the VLP genome to produce particles deficient in activities associated with viral reverse transcriptase, RNase H, and RNA packaging. Each plasmid efficiently secreted particles from primate cells in vitro and particles were purified from the supernatants and used as immunogens. Mice (BALB/c) were vaccinated intranasally (day 1 and weeks 3 and 6) with purified VLPs and the elicited immunity was compared to particles without Env (Gag(p55)), to soluble monomeric Env(gp120), or to soluble trimerized Env(gp140). Only mice vaccinated with VLPs had robust anti-Env cellular immunity. In contrast, all mice had high titer anti-Env serum antibody (IgG). However, VLP-vaccinated mice had antisera that detected a broader number of linear Env peptides, had anti-Env mucosal IgA and IgG, as well as higher titers of serum neutralizing antibodies. VLPs elicited high titer antibodies that recognized linear regions in V4-C5 and the ectodomain of gp41, but did not recognize V3. These lentiviral VLPs are effective mucosal immunogens that elicit broader immunity against Env determinants in both the systemic and mucosal immune compartments than soluble forms of Env.
Collapse
Affiliation(s)
- Sean P McBurney
- Center for Vaccine Research for Emerging Diseases and Biodefense, University of Pittsburgh School of Medicine, 9047 Biomedical Sciences Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
45
|
Yuan W, Bazick J, Sodroski J. Characterization of the multiple conformational States of free monomeric and trimeric human immunodeficiency virus envelope glycoproteins after fixation by cross-linker. J Virol 2006; 80:6725-37. [PMID: 16809278 PMCID: PMC1489074 DOI: 10.1128/jvi.00118-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior and gp41 transmembrane envelope glycoproteins assemble into trimers on the virus surface that represent potential targets for antibodies. Potent neutralizing antibodies bind the monomeric gp120 glycoprotein with small changes in entropy, whereas unusually large decreases in entropy accompany gp120 binding by soluble CD4 and less potent neutralizing antibodies. The high degree of conformational flexibility in the free gp120 molecule implied by these observations has been suggested to contribute to masking the trimer from antibodies that recognize the gp120 receptor-binding regions. Here we use cross-linking and recognition by antibodies to investigate the conformational states of gp120 monomers and soluble and cell surface forms of the trimeric HIV-1 envelope glycoproteins. The fraction of monomeric and trimeric envelope glycoproteins able to be recognized after fixation was inversely related to the entropic changes associated with ligand binding. In addition, fixation apparently limited the access of antibodies to the V3 loop and gp41-interactive surface of gp120 only in the context of trimeric envelope glycoproteins. The results support a model in which the unliganded monomeric and trimeric HIV-1 envelope glycoproteins sample several different conformations. Depletion of particular fixed conformations by antibodies allowed characterization of the relationships among the conformational states. Potent neutralizing antibodies recognize the greatest number of conformations and therefore can bind the virion envelope glycoproteins more rapidly and completely than weakly neutralizing antibodies. Thus, the conformational flexibility of the HIV-1 envelope glycoproteins creates thermodynamic and kinetic barriers to neutralization by antibodies directed against the receptor-binding regions of gp120.
Collapse
Affiliation(s)
- Wen Yuan
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 44 Binney Street-JFB 824, Boston, MA 02115, USA
| | | | | |
Collapse
|
46
|
Tu YB, Zhou T, Yuan XF, Qiu HJ, Xue F, Sun CQ, Wang L, Wu DL, Peng JM, Kong XG, Tong GZ. Long terminal repeats are not the sole determinants of virulence for equine infectious anemia virus. Arch Virol 2006; 152:209-18. [PMID: 16932982 DOI: 10.1007/s00705-006-0830-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
The long terminal repeats (LTRs) of equine infectious anemia virus donkey leukocyte-attenuated virus (EIAV-DLA) were substituted with those of the wild-type EIAV-L (wt EIAV-L, the parent virus of EIAV-DLA). The resulting chimeric plasmid was designated pOK-LTR DLA/L. Purified pOK-LTR DLA/L was transfected into monocyte-derived macrophage (MDM) cultures prepared from EIAV-negative, heparinized whole blood from a donkey. Eighth-passage cell cultures developed the typical cytopathogenic effects (CPE) of EIAV infection, and virions with typical EIAV profiles were observed with an electron microscope. Horses were inoculated with the chimeric virus or EIAV-DLA and challenged with the wt EIAV-L strain six months later. All of the horses inoculated with either the chimeric virus or EIAV-DLA were protected from disease, whereas the control horses died with typical EIA symptoms.
Collapse
Affiliation(s)
- Y-B Tu
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The glycoprotein (gp) 120 subunit is an important part of the envelope spikes that decorate the surface of HIV-1 and a major target for neutralizing antibodies. However, immunization with recombinant gp120 does not elicit neutralizing antibodies against multiple HIV-1 isolates (broadly neutralizing antibodies), and gp120 failed to demonstrate vaccine efficacy in recent clinical trials. Ongoing crystallographic studies of gp120 molecules from HIV-1 and SIV increasingly reveal how conserved regions, which are the targets of broadly neutralizing antibodies, are concealed from immune recognition. Based on this structural insight and that from studies of antibody structures, a number of strategies are being pursued to design immunogens that can elicit broadly neutralizing antibodies to gp120. These include (a) the construction of mimics of the viral envelope spike and (b) the design of antigens specifically tailored to induce broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Ralph Pantophlet
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
48
|
Söllner J, Mayer B. Machine learning approaches for prediction of linear B-cell epitopes on proteins. J Mol Recognit 2006; 19:200-8. [PMID: 16598694 DOI: 10.1002/jmr.771] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Identification and characterization of antigenic determinants on proteins has received considerable attention utilizing both, experimental as well as computational methods. For computational routines mostly structural as well as physicochemical parameters have been utilized for predicting the antigenic propensity of protein sites. However, the performance of computational routines has been low when compared to experimental alternatives. Here we describe the construction of machine learning based classifiers to enhance the prediction quality for identifying linear B-cell epitopes on proteins. Our approach combines several parameters previously associated with antigenicity, and includes novel parameters based on frequencies of amino acids and amino acid neighborhood propensities. We utilized machine learning algorithms for deriving antigenicity classification functions assigning antigenic propensities to each amino acid of a given protein sequence. We compared the prediction quality of the novel classifiers with respect to established routines for epitope scoring, and tested prediction accuracy on experimental data available for HIV proteins. The major finding is that machine learning classifiers clearly outperform the reference classification systems on the HIV epitope validation set.
Collapse
|
49
|
Micoli KJ, Mamaeva O, Piller SC, Barker JL, Pan G, Hunter E, McDonald JM. Point mutations in the C-terminus of HIV-1 gp160 reduce apoptosis and calmodulin binding without affecting viral replication. Virology 2005; 344:468-79. [PMID: 16229872 PMCID: PMC1489811 DOI: 10.1016/j.virol.2005.08.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 06/01/2005] [Accepted: 08/22/2005] [Indexed: 11/21/2022]
Abstract
One hallmark of AIDS progression is a decline in CD4+ T lymphocytes, though the mechanism is poorly defined. There is ample evidence that increased apoptosis is responsible for some, if not all, of the decline. Prior studies have shown that binding of cellular calmodulin to the envelope glycoprotein (Env) of HIV-1 increases sensitivity to fas-mediated apoptosis and that calmodulin antagonists can block this effect. We show that individual mutation of five residues in the C-terminal calmodulin-binding domain of Env is sufficient to significantly reduce fas-mediated apoptosis in transfected cells. The A835W mutation in the cytoplasmic domain of gp41 eliminated co-immunoprecipitation of Env with calmodulin in studies with stably transfected cells. Four point mutations (A835W, A838W, A838I, and I842R) and the corresponding region of HIV-1 HXB2 were cloned into the HIV-1 proviral vector pNL4-3 with no significant effect on viral production or envelope expression, although co-immunoprecipitation of calmodulin and Env was decreased in three of these mutant viruses. Only wild-type envelope-containing virus induced significantly elevated levels of spontaneous apoptosis by day 5 post-infection. Fas-mediated apoptosis levels positively correlated with the degree of calmodulin co-immunoprecipitation, with the lowest apoptosis levels occurring in cells infected with the A835W envelope mutation. While spontaneous apoptosis appears to be at least partially calmodulin-independent, the effects of HIV-1 Env on fas-mediated apoptosis are directly related to calmodulin binding.
Collapse
Affiliation(s)
- Keith J. Micoli
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Olga Mamaeva
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sabine C. Piller
- Westmead Millennium Institute, University of Sydney, Westmead, NSW 2145, Australia
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer L. Barker
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - George Pan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Eric Hunter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jay M. McDonald
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran’s Administration Medical Center, Birmingham, AL 35233, USA
- * Corresponding author. Department of Pathology, University of Alabama at Birmingham, 701 19th Street South LHRB 509 Birmingham, AL 35294-0007, USA. Fax: +1 205 975 9927. E-mail address: (J.M. McDonald)
| |
Collapse
|
50
|
Ren X, Sodroski J, Yang X. An unrelated monoclonal antibody neutralizes human immunodeficiency virus type 1 by binding to an artificial epitope engineered in a functionally neutral region of the viral envelope glycoproteins. J Virol 2005; 79:5616-24. [PMID: 15827176 PMCID: PMC1082744 DOI: 10.1128/jvi.79.9.5616-5624.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutralizing antibodies often recognize regions of viral envelope glycoproteins that play a role in receptor binding or other aspects of virus entry. To address whether this is a necessary feature of a neutralizing antibody, we identified the V4 region of the gp120 envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) as a sequence that is tolerant of drastic change and thus appears to play a negligible role in envelope glycoprotein function. An artificial epitope tag was inserted into the V4 region without a significant effect on virus entry or neutralization by antibodies that recognize HIV-1 envelope glycoprotein sequences. An antibody directed against the artificial epitope tag was able to neutralize the modified, but not the wild-type, HIV-1. Thus, the specific target of a neutralizing antibody need not contribute functionally to the process of virus entry.
Collapse
Affiliation(s)
- Xinping Ren
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 44 Binney Street, JFB 824, Boston, MA 02115, USA
| | | | | |
Collapse
|