1
|
Diakite M, Shaw-Saliba K, Lau CY. Malignancy and viral infections in Sub-Saharan Africa: A review. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2023; 3:1103737. [PMID: 37476029 PMCID: PMC10358275 DOI: 10.3389/fviro.2023.1103737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The burden of malignancy related to viral infection is increasing in Sub-Saharan Africa (SSA). In 2018, approximately 2 million new cancer cases worldwide were attributable to infection. Prevention or treatment of these infections could reduce cancer cases by 23% in less developed regions and about 7% in developed regions. Contemporaneous increases in longevity and changes in lifestyle have contributed to the cancer burden in SSA. African hospitals are reporting more cases of cancer related to infection (e.g., cervical cancer in women and stomach and liver cancer in men). SSA populations also have elevated underlying prevalence of viral infections compared to other regions. Of 10 infectious agents identified as carcinogenic by the International Agency for Research on Cancer, six are viruses: hepatitis B and C viruses (HBV and HCV, respectively), Epstein-Barr virus (EBV), high-risk types of human papillomavirus (HPV), Human T-cell lymphotropic virus type 1 (HTLV-1), and Kaposi's sarcoma herpesvirus (KSHV, also known as human herpesvirus type 8, HHV-8). Human immunodeficiency virus type 1 (HIV) also facilitates oncogenesis. EBV is associated with lymphomas and nasopharyngeal carcinoma; HBV and HCV are associated with hepatocellular carcinoma; KSHV causes Kaposi's sarcoma; HTLV-1 causes T-cell leukemia and lymphoma; HPV causes carcinoma of the oropharynx and anogenital squamous cell cancer. HIV-1, for which SSA has the greatest global burden, has been linked to increasing risk of malignancy through immunologic dysregulation and clonal hematopoiesis. Public health approaches to prevent infection, such as vaccination, safer injection techniques, screening of blood products, antimicrobial treatments and safer sexual practices could reduce the burden of cancer in Africa. In SSA, inequalities in access to cancer screening and treatment are exacerbated by the perception of cancer as taboo. National level cancer registries, new screening strategies for detection of viral infection and public health messaging should be prioritized in SSA's battle against malignancy. In this review, we discuss the impact of carcinogenic viruses in SSA with a focus on regional epidemiology.
Collapse
Affiliation(s)
- Mahamadou Diakite
- University Clinical Research Center, University of Sciences, Techniques, and Technologies, Bamako, Mali
| | - Kathryn Shaw-Saliba
- Collaborative Clinical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Chuen-Yen Lau
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
2
|
Elbahrawy A, Atalla H, Alboraie M, Alwassief A, Madian A, El Fayoumie M, Tabll AA, Aly HH. Recent Advances in Protective Vaccines against Hepatitis Viruses: A Narrative Review. Viruses 2023; 15:214. [PMID: 36680254 PMCID: PMC9862019 DOI: 10.3390/v15010214] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
Vaccination has been confirmed to be the safest and, sometimes, the only tool of defense against threats from infectious diseases. The successful history of vaccination is evident in the control of serious viral infections, such as smallpox and polio. Viruses that infect human livers are known as hepatitis viruses and are classified into five major types from A to E, alphabetically. Although infection with hepatitis A virus (HAV) is known to be self-resolving after rest and symptomatic treatment, there were 7134 deaths from HAV worldwide in 2016. In 2019, hepatitis B virus (HBV) and hepatitis C virus (HCV) resulted in an estimated 820,000 and 290,000 deaths, respectively. Hepatitis delta virus (HDV) is a satellite virus that depends on HBV for producing its infectious particles in order to spread. The combination of HDV and HBV infection is considered the most severe form of chronic viral hepatitis. Hepatitis E virus (HEV) is another orally transmitted virus, common in low- and middle-income countries. In 2015, it caused 44,000 deaths worldwide. Safe and effective vaccines are already available to prevent hepatitis A and B. Here, we review the recent advances in protective vaccines against the five major hepatitis viruses.
Collapse
Affiliation(s)
- Ashraf Elbahrawy
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Hassan Atalla
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Alboraie
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed Alwassief
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Al-Azhar University, Cairo 11884, Egypt
- Gastroenterology Unit, Department of Internal Medicine, Sultan Qaboos University Hospital, P.O. Box 50, Muscat 123, Oman
| | - Ali Madian
- Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | - Mohammed El Fayoumie
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Ashraf A. Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Center, Giza 12622, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Hussein H. Aly
- Department of Virology II, National Institute of Infectious Diseases, Toyama1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
3
|
Structural and Biophysical Characterization of the HCV E1E2 Heterodimer for Vaccine Development. Viruses 2021; 13:v13061027. [PMID: 34072451 PMCID: PMC8227786 DOI: 10.3390/v13061027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
An effective vaccine for the hepatitis C virus (HCV) is a major unmet medical and public health need, and it requires an antigen that elicits immune responses to multiple key conserved epitopes. Decades of research have generated a number of vaccine candidates; based on these data and research through clinical development, a vaccine antigen based on the E1E2 glycoprotein complex appears to be the best choice. One bottleneck in the development of an E1E2-based vaccine is that the antigen is challenging to produce in large quantities and at high levels of purity and antigenic/functional integrity. This review describes the production and characterization of E1E2-based vaccine antigens, both membrane-associated and a novel secreted form of E1E2, with a particular emphasis on the major challenges facing the field and how those challenges can be addressed.
Collapse
|
4
|
Abstract
Antibody responses in hepatitis C virus (HCV) have been a rather mysterious research topic for many investigators working in the field. Chronic HCV infection is often associated with dysregulation of immune functions particularly in B cells, leading to abnormal lymphoproliferation or the production of autoantibodies that exacerbate inflammation and extrahepatic diseases. When considering the antiviral function of antibody, it was difficult to endorse its role in HCV protection, whereas T-cell response has been shown unequivocally critical for natural recovery. Recent breakthroughs in the study of HCV and antigen-specific antibody responses provide important insights into viral vulnerability to antibodies and the immunogenetic and structural properties of the neutralizing antibodies. The new knowledge reinvigorates HCV vaccine research by illuminating a new path for the rational design of vaccine antigens to elicit broadly neutralizing antibodies for protection.
Collapse
Affiliation(s)
- Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92109, USA
| |
Collapse
|
5
|
Belz TF, Olson ME, Giang E, Law M, Janda KD. Evaluation of a Series of Lipidated Tucaresol Adjuvants in a Hepatitis C Virus Vaccine Model. ACS Med Chem Lett 2020; 11:2428-2432. [PMID: 33335664 DOI: 10.1021/acsmedchemlett.0c00413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/23/2020] [Indexed: 01/02/2023] Open
Abstract
Hepatitis C virus (HCV) infections represent a global health challenge; however, developing a vaccine for treatment of HCV infection has remained difficult as heterogeneous HCV contains distinct genotypes, and each genotype contains various subtypes and different envelope glycoproteins. Currently, there is no effective preventive vaccine for achieving global control over HCV. In our efforts to improve upon current HCV vaccines we designed a synthetically accessible adjuvant platform, wherein we synthesized 11 novel lipidated tucaresol analogues to assess their immunological potential. Using a tucaresol-based adjuvant approach, truncated lipid-variants together with an engineered E1E2 antigen construct, namely E2ΔTM3, elicited antibody (Ab) responses that were significantly higher than tucaresol. In sum, antibody end-point titer values largely corroborated HCV neutralization data with a simplified lipidated tucaresol variant affording the highest end point titer and % neutralization. This study lays the groundwork for additional permutations in tucaresol adjuvant design, including the examination of other proteins in vaccine development.
Collapse
Affiliation(s)
- Tyson F. Belz
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Margaret E. Olson
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- College of Pharmacy, Roosevelt University, 1400 North Roosevelt Boulevard, Schaumburg, Illinois 60173, United States
| | - Erick Giang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kim D. Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
6
|
Cao L, Yu B, Kong D, Cong Q, Yu T, Chen Z, Hu Z, Chang H, Zhong J, Baker D, He Y. Functional expression and characterization of the envelope glycoprotein E1E2 heterodimer of hepatitis C virus. PLoS Pathog 2019; 15:e1007759. [PMID: 31116791 PMCID: PMC6530877 DOI: 10.1371/journal.ppat.1007759] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) is a member of Hepacivirus and belongs to the family of Flaviviridae. HCV infects millions of people worldwide and may lead to cirrhosis and hepatocellular carcinoma. HCV envelope proteins, E1 and E2, play critical roles in viral cell entry and act as major epitopes for neutralizing antibodies. However, unlike other known flaviviruses, it has been challenging to study HCV envelope proteins E1E2 in the past decades as the in vitro expressed E1E2 heterodimers are usually of poor quality, making the structural and functional characterization difficult. Here we express the ectodomains of HCV E1E2 heterodimer with either an Fc-tag or a de novo designed heterodimeric tag and are able to isolate soluble E1E2 heterodimer suitable for functional and structural studies. Then we characterize the E1E2 heterodimer by electron microscopy and model the structure by the coevolution based modeling strategy with Rosetta, revealing the potential interactions between E1 and E2. Moreover, the E1E2 heterodimer is applied to examine the interactions with the known HCV receptors, neutralizing antibodies as well as the inhibition of HCV infection, confirming the functionality of the E1E2 heterodimer and the binding profiles of E1E2 with the cellular receptors. Therefore, the expressed E1E2 heterodimer would be a valuable target for both viral studies and vaccination against HCV. Hepatitis C virus (HCV) is an enveloped virus that infects millions of people worldwide and may lead to cirrhosis and hepatocellular carcinoma. HCV has two envelope proteins, E1 and E2, which form heterodimers on viral surface and are critical for HCV cell entry. However, current studies of HCV E1E2 are often limited by the poor quality of the in vitro expressed E1E2 heterodimers. Here we express the ectodomains of HCV E1E2 with different tags, and are able to isolate soluble E1E2 ectodomains suitable for structural and functional studies. Then we generate the 3D reconstruction of E1E2 heterodimer by electron microscopy and also model the E1E2 structure by the coevolution based strategy with Rosetta, showing the potential interactions between E1 and E2. Moreover, the E1E2 heterodimer is applied to examine the interactions with the HCV cellular receptors, neutralizing antibodies as well as the inhibition of HCV infection. These results suggest that the expressed E1E2 heterodimer would be a promising target for both viral studies and vaccination against HCV.
Collapse
Affiliation(s)
- Longxing Cao
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Bowen Yu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Dandan Kong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Qian Cong
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Tao Yu
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zibo Chen
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Zhenzheng Hu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Haishuang Chang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
| | - Yongning He
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
7
|
Abstract
In spite of the immense progress in hepatitis C virus (HCV) research, efforts to prevent infection, such as generating a vaccine, have not yet been successful. The high price tag associated with current treatment options for chronic infection and the spike in new infections concurrent with growing opioid abuse are strong motivators for developing effective immunization and understanding neutralizing antibodies' role in preventing infection. Humanized mice-both human liver chimeras as well as genetically humanized models-are important platforms for testing both possible vaccine candidates as well as antibody-based therapies. This chapter details the variety of ways humanized mouse technology can be employed in pursuit of learning how HCV infection can be prevented.
Collapse
Affiliation(s)
- Jenna M Gaska
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Qiang Ding
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Alexander Ploss
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
8
|
Tzarum N, Wilson IA, Law M. The Neutralizing Face of Hepatitis C Virus E2 Envelope Glycoprotein. Front Immunol 2018; 9:1315. [PMID: 29951061 PMCID: PMC6008530 DOI: 10.3389/fimmu.2018.01315] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022] Open
Abstract
The high genetic variability of hepatitis C virus, together with the high level of glycosylation on the viral envelope proteins shielding potential neutralizing epitopes, pose a difficult challenge for vaccine development. An effective hepatitis C virus (HCV) vaccine must target conserved epitopes and the HCV E2 glycoprotein is the main target for such neutralizing antibodies (NAbs). Recent structural investigations highlight the presence of a highly conserved and accessible surface on E2 that is devoid of N-linked glycans and known as the E2 neutralizing face. This face is defined as a hydrophobic surface comprising the front layer (FL) and the CD81 binding loop (CD81bl) that overlap with the CD81 receptor binding site on E2. The neutralizing face consists of highly conserved residues for recognition by cross-NAbs, yet it appears to be high conformationally flexible, thereby presenting a moving target for NAbs. Three main overlapping neutralizing sites have been identified in the neutralizing face: antigenic site 412 (AS412), antigenic site 434 (AS434), and antigenic region 3 (AR3). Here, we review the structural analyses of these neutralizing sites, either as recombinant E2 or epitope-derived linear peptides in complex with bNAbs, to understand the functional and preferred conformations for neutralization, and for viral escape. Collectively, these studies provide a foundation and molecular templates to facilitate structure-based approaches for HCV vaccine development.
Collapse
Affiliation(s)
- Netanel Tzarum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
9
|
Abstract
Current evidence supports a protective role for virus-neutralizing antibodies in immunity against hepatitis C virus (HCV) infection. Many cross-neutralizing monoclonal antibodies have been identified. These antibodies have been shown to provide protection or to clear infection in animal models. Previous clinical trials have shown that a gpE1/gpE2 vaccine can induce antibodies that neutralize the in vitro infectivity of all the major cell culture-derived HCV (HCVcc) genotypes around the world. However, cross-neutralization appeared to favor certain genotypes, with significant but lower neutralization against others. HCV may employ epitope masking to avoid antibody-mediated neutralization. Hypervariable region 1 (HVR1) at the amino terminus of glycoprotein E2 has been shown to restrict access to many neutralizing antibodies. Consistent with this, other groups have reported that recombinant viruses lacking HVR1 are hypersensitive to neutralization. It has been proposed that gpE1/gpE2 lacking this domain could be a better vaccine antigen to induce broadly neutralizing antibodies. In this study, we examined the immunogenicity of recombinant gpE1/gpE2 lacking HVR1 (ΔHVR1). Our results indicate that wild-type (WT) and ΔHVR1 gpE1/gpE2 antigens induced antibodies targeting many well-characterized cross-genotype-neutralizing epitopes. However, while the WT gpE1/gpE2 vaccine can induce cross-genotype protection against various genotypes of HCVcc and/or HCV-pseudotyped virus (HCVpp), antisera from ΔHVR1 gpE1/gpE2-immunized animals exhibited either reduced homologous neutralization activity compared to that of the WT or heterologous neutralization activity similar to that of the WT. These data suggest that ΔHVR1 gpE1/gpE2 is not a superior vaccine antigen. Based on previously reported chimpanzee protection data using WT gpE1/gpE2 and our current findings, we are preparing a combination vaccine including wild-type recombinant gpE1/gpE2 for clinical testing in the future. IMPORTANCE An HCV vaccine is an unmet medical need. Current evidence suggests that neutralizing antibodies play an important role in virus clearance, along with cellular immune responses. Previous clinical data showed that gpE1/gpE2 can effectively induce cross-neutralizing antibodies, although they favor certain genotypes. HCV employs HVR1 within gpE2 to evade host immune control. It has been hypothesized that the removal of this domain would improve the production of cross-neutralizing antibodies. In this study, we compared the immunogenicities of WT and ΔHVR1 gpE1/gpE2 antigens as vaccine candidates. Our results indicate that the ΔHVR1 gpE1/gpE2 antigen confers no advantages in the neutralization of HCV compared with the WT antigen. Previously, we showed that this WT antigen remains the only vaccine candidate to protect chimpanzees from chronic infection, contains multiple cross-neutralizing epitopes, and is well tolerated and immunogenic in humans. The current data support the further clinical development of this vaccine antigen component.
Collapse
|
10
|
Gopal R, Jackson K, Tzarum N, Kong L, Ettenger A, Guest J, Pfaff JM, Barnes T, Honda A, Giang E, Davidson E, Wilson IA, Doranz BJ, Law M. Probing the antigenicity of hepatitis C virus envelope glycoprotein complex by high-throughput mutagenesis. PLoS Pathog 2017; 13:e1006735. [PMID: 29253863 PMCID: PMC5749897 DOI: 10.1371/journal.ppat.1006735] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/02/2018] [Accepted: 11/04/2017] [Indexed: 12/12/2022] Open
Abstract
The hepatitis C virus (HCV) envelope glycoproteins E1 and E2 form a non-covalently linked heterodimer on the viral surface that mediates viral entry. E1, E2 and the heterodimer complex E1E2 are candidate vaccine antigens, but are technically challenging to study because of difficulties in producing natively folded proteins by standard protein expression and purification methods. To better comprehend the antigenicity of these proteins, a library of alanine scanning mutants comprising the entirety of E1E2 (555 residues) was created for evaluating the role of each residue in the glycoproteins. The mutant library was probed, by a high-throughput flow cytometry-based assay, for binding with the co-receptor CD81, and a panel of 13 human and mouse monoclonal antibodies (mAbs) that target continuous and discontinuous epitopes of E1, E2, and the E1E2 complex. Together with the recently determined crystal structure of E2 core domain (E2c), we found that several residues in the E2 back layer region indirectly impact binding of CD81 and mAbs that target the conserved neutralizing face of E2. These findings highlight an unexpected role for the E2 back layer in interacting with the E2 front layer for its biological function. We also identified regions of E1 and E2 that likely located at or near the interface of the E1E2 complex, and determined that the E2 back layer also plays an important role in E1E2 complex formation. The conformation-dependent reactivity of CD81 and the antibody panel to the E1E2 mutant library provides a global view of the influence of each amino acid (aa) on E1E2 expression and folding. This information is valuable for guiding protein engineering efforts to enhance the antigenic properties and stability of E1E2 for vaccine antigen development and structural studies.
Collapse
Affiliation(s)
- Radhika Gopal
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Kelli Jackson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Netanel Tzarum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Leopold Kong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Andrew Ettenger
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Johnathan Guest
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Jennifer M. Pfaff
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Trevor Barnes
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Andrew Honda
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Erick Giang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Edgar Davidson
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | | | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
Viruses are major pathogenic agents that can cause a variety of diseases, such as AIDS, hepatitis, respiratory diseases, and many more, in humans, plants, and animals. The most prominent of them have been adenoviruses, alphaviruses, flaviviruses, hepatitis C virus, herpesviruses, human immunodeficiency virus of type 1, and picornaviruses. This chapter presents an introductory remark on such viruses, mechanisms of their invasion, and diseases related to them. The inhibition of these viruses is of great concern to human beings. Each of these viruses encodes one or more proteases that play crucial roles in their replication, and thus they are important targets for the design and development of potent antiviral agents. The chapter, therefore, also introduces the readers to such proteases and their structures and functions. This chapter is thus a prelude to the remaining chapters in the book, which present in detail about the different viruses and their proteases.
Collapse
Affiliation(s)
- Anjana Sharma
- Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Satya P. Gupta
- National Institute of Technical Teachers’ Training and Research, Bhopal, Madhya Pradesh, India
| |
Collapse
|
12
|
Native Folding of a Recombinant gpE1/gpE2 Heterodimer Vaccine Antigen from a Precursor Protein Fused with Fc IgG. J Virol 2016; 91:JVI.01552-16. [PMID: 27795422 DOI: 10.1128/jvi.01552-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022] Open
Abstract
A recombinant strain HCV1 (hepatitis C virus [HCV] genotype 1a) gpE1/gpE2 (E1E2) vaccine candidate was previously shown by our group to protect chimpanzees and generate broad cross-neutralizing antibodies in animals and humans. In addition, recent independent studies have highlighted the importance of conserved neutralizing epitopes in HCV vaccine development that map to antigenic clusters in E2 or the E1E2 heterodimer. E1E2 can be purified using Galanthis nivalis lectin agarose (GNA), but this technique is suboptimal for global production. Our goal was to investigate a high-affinity and scalable method for isolating E1E2. We generated an Fc tag-derived (Fc-d) E1E2 that was selectively captured by protein G Sepharose, with the tag being removed subsequently using PreScission protease. Surprisingly, despite the presence of the large Fc tag, Fc-d E1E2 formed heterodimers similar to those formed by GNA-purified wild-type (WT) E1E2 and exhibited nearly identical binding profiles to HCV monoclonal antibodies that target conserved neutralizing epitopes in E2 (HC33.4, HC84.26, and AR3B) and the E1E2 heterodimer (AR4A and AR5A). Antisera from immunized mice showed that Fc-d E1E2 elicited anti-E2 antibody titers and neutralization of HCV pseudotype viruses similar to those with WT E1E2. Competition enzyme-linked immunosorbent assays (ELISAs) showed that antisera from immunized mice inhibited monoclonal antibody binding to neutralizing epitopes. Antisera from Fc-d E1E2-immunized mice exhibited stronger competition for AR3B and AR5A than the WT, whereas the levels of competition for HC84.26 and AR4A were similar. We anticipate that Fc-d E1E2 will provide a scalable purification and manufacturing process using protein A/G-based chromatography. IMPORTANCE A prophylactic HCV vaccine is still needed to control this global disease despite the availability of direct-acting antivirals. Previously, we demonstrated that a recombinant envelope glycoprotein (E1E2) vaccine (genotype 1a) elicited cross-neutralizing antibodies from human volunteers. A challenge for isolating the E1E2 antigen is the reliance on GNA, which is unsuitable for large scale-up and global vaccine delivery. We have generated a novel Fc domain-tagged E1E2 antigen that forms functional heterodimers similar to those with native E1E2. Affinity purification and removal of the Fc tag from E1E2 resulted in an antigen with a nearly identical profile of cross-neutralizing epitopes. This antigen elicited anti-HCV antibodies that targeted conserved neutralizing epitopes of E1E2. Owing to the high selectivity and cost-effective binding capacity of affinity resins for capture of the Fc-tagged rE1E2, we anticipate that our method will provide a means for large-scale production of this HCV vaccine candidate.
Collapse
|
13
|
Abstract
Hepatitis C virus (HCV) is the major cause of transfusion-associated hepatitis and accounts for a significant proportion of hepatitis cases worldwide. Most, if not all, infections become persistent and about 60% of cases develop chronic liver disease with various outcomes ranging from an asymptomatic carrier state to chronic active hepatitis and liver cirrhosis, which is strongly associated with the development of hepatocellular carcinoma. Since the initial cloning of the viral genome in 1989, our knowledge of the molecular biology of HCV has increased rapidly and led to the identification of several potential targets for antiviral intervention. In contrast, the low replication of the virus in cell culture, the lack of convenient animal models and the high genome variability present major challenges for drug development. This review will describe candidate drug targets and summarize ‘classical’ and ‘novel’ approaches currently being pursued to develop efficient HCV-specific therapies.
Collapse
Affiliation(s)
- R Bartenschlager
- Institute for Virology, Johannes-Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany
| |
Collapse
|
14
|
Nawaz A, Zaidi SF, Usmanghani K, Ahmad I. Concise review on the insight of hepatitis C. J Taibah Univ Med Sci 2015. [DOI: 10.1016/j.jtumed.2014.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
15
|
Al Olaby RR, Cocquerel L, Zemla A, Saas L, Dubuisson J, Vielmetter J, Marcotrigiano J, Khan AG, Catalan FV, Perryman AL, Freundlich JS, Forli S, Levy S, Balhorn R, Azzazy HM. Identification of a novel drug lead that inhibits HCV infection and cell-to-cell transmission by targeting the HCV E2 glycoprotein. PLoS One 2014; 9:e111333. [PMID: 25357246 PMCID: PMC4214736 DOI: 10.1371/journal.pone.0111333] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/23/2014] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C Virus (HCV) infects 200 million individuals worldwide. Although several FDA approved drugs targeting the HCV serine protease and polymerase have shown promising results, there is a need for better drugs that are effective in treating a broader range of HCV genotypes and subtypes without being used in combination with interferon and/or ribavirin. Recently, two crystal structures of the core of the HCV E2 protein (E2c) have been determined, providing structural information that can now be used to target the E2 protein and develop drugs that disrupt the early stages of HCV infection by blocking E2’s interaction with different host factors. Using the E2c structure as a template, we have created a structural model of the E2 protein core (residues 421–645) that contains the three amino acid segments that are not present in either structure. Computational docking of a diverse library of 1,715 small molecules to this model led to the identification of a set of 34 ligands predicted to bind near conserved amino acid residues involved in the HCV E2: CD81 interaction. Surface plasmon resonance detection was used to screen the ligand set for binding to recombinant E2 protein, and the best binders were subsequently tested to identify compounds that inhibit the infection of Huh-7 cells by HCV. One compound, 281816, blocked E2 binding to CD81 and inhibited HCV infection in a genotype-independent manner with IC50’s ranging from 2.2 µM to 4.6 µM. 281816 blocked the early and late steps of cell-free HCV entry and also abrogated the cell-to-cell transmission of HCV. Collectively the results obtained with this new structural model of E2c suggest the development of small molecule inhibitors such as 281816 that target E2 and disrupt its interaction with CD81 may provide a new paradigm for HCV treatment.
Collapse
Affiliation(s)
- Reem R. Al Olaby
- Department of Chemistry, The American University in Cairo, New Cairo, Egypt
| | - Laurence Cocquerel
- Center for Infection and Immunity of Lille, CNRS-UMR8204/Inserm-U1019, Pasteur Institute of Lille, University of Lille North of France, Lille, France
| | - Adam Zemla
- Pathogen Bioinformatics, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Laure Saas
- Center for Infection and Immunity of Lille, CNRS-UMR8204/Inserm-U1019, Pasteur Institute of Lille, University of Lille North of France, Lille, France
| | - Jean Dubuisson
- Center for Infection and Immunity of Lille, CNRS-UMR8204/Inserm-U1019, Pasteur Institute of Lille, University of Lille North of France, Lille, France
| | - Jost Vielmetter
- Protein Expression Center, Beckman Institute, California Institute of Technology, Pasadena, CA, United States of America
| | - Joseph Marcotrigiano
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, United States of America
| | - Abdul Ghafoor Khan
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, United States of America
| | - Felipe Vences Catalan
- Department of Medicine, Stanford University Medical Center, Stanford, CA, United States of America
| | - Alexander L. Perryman
- Department of Medicine, Division of Infectious Diseases, Center for Emerging & Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ, United States of America
| | - Joel S. Freundlich
- Department of Medicine, Division of Infectious Diseases, Center for Emerging & Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ, United States of America
- Department of Pharmacology and Physiology, Rutgers University-New Jersey Medical School, Newark, NJ, United States of America
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Shoshana Levy
- Department of Medicine, Stanford University Medical Center, Stanford, CA, United States of America
| | - Rod Balhorn
- Department of Applied Science, University of California Davis, Davis, CA, United States of America
- * E-mail:
| | - Hassan M. Azzazy
- Department of Chemistry, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
16
|
Ruwona TB, Giang E, Nieusma T, Law M. Fine mapping of murine antibody responses to immunization with a novel soluble form of hepatitis C virus envelope glycoprotein complex. J Virol 2014; 88:10459-71. [PMID: 24965471 PMCID: PMC4178869 DOI: 10.1128/jvi.01584-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/17/2014] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED The hepatitis C virus (HCV) envelope glycoprotein E1E2 complex is a candidate vaccine antigen. Previous immunization studies of E1E2 have yielded various results on its ability to induce virus-neutralizing antibodies in animal models and humans. The murine model has become a vital tool for HCV research owing to the development of humanized mice susceptible to HCV infection. In this study, we investigated the antibody responses of mice immunized with E1E2 and a novel soluble form of E1E2 (sE1E2) by a DNA prime and protein boost strategy. The results showed that sE1E2 elicited higher antibody titers and a greater breadth of reactivity than the wild-type cell-associated E1E2. However, immune sera elicited by either immunogen were only weakly neutralizing. In order to understand the contrasting results of binding and serum neutralizing activities, epitopes targeted by the polyclonal antibody responses were mapped and monoclonal antibodies (MAbs) were generated. The results showed that the majority of serum antibodies were directed to the E1 region 211 to 250 and the E2 regions 421 to 469, 512 to 539, 568 to 609, and 638 to 651, instead of the well-known immunodominant E2 hypervariable region 1 (HVR1). Unexpectedly, in MAb analysis, ∼ 12% of MAbs isolated were specific to the conserved E2 antigenic site 412 to 423, and 85% of them cross-neutralized multiple HCV isolates. The epitopes recognized by these MAbs are similar but distinct from the previously reported HCV1 and AP33 broadly neutralizing epitopes. In conclusion, E1E2 can prime B cells specific to conserved neutralizing epitopes, but the levels of serum neutralizing antibodies elicited are insufficient for effective virus neutralization. The sE1E2 constructs described in this study can be a useful template for rational antigen engineering. IMPORTANCE Hepatitis C virus infects 2 to 3% of the world's population and is a leading cause of liver failures and the need for liver transplantation. The virus envelope glycoprotein complex E1E2 produced by detergent extraction of cells overexpressing the protein was evaluated in a phase I clinical trial but failed to induce neutralizing antibodies in most subjects. In this study, we designed a novel form of E1E2 which is secreted from cells and is soluble and compared it to wild-type E1E2 by DNA immunization of mice. The results showed that this new E1E2 is more immunogenic than wild-type E1E2. Detailed mapping of the antibody responses revealed that antibodies to the conserved E2 antigenic site 412 to 423 were elicited but the serum concentrations were too low to neutralize the virus effectively. This soluble E1E2 provides a new reagent for studying HCV and for rational vaccine design.
Collapse
Affiliation(s)
- Tinashe B Ruwona
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | - Erick Giang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | - Travis Nieusma
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | - Mansun Law
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
17
|
Hagen N, Bayer K, Rösch K, Schindler M. The intraviral protein interaction network of hepatitis C virus. Mol Cell Proteomics 2014; 13:1676-89. [PMID: 24797426 DOI: 10.1074/mcp.m113.036301] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) is a global health problem and one of the main reasons for chronic liver diseases such as cirrhosis and hepatocellular carcinoma. The HCV genome is translated into a polyprotein which is proteolytically processed into 10 viral proteins. The interactome of the HCV proteins with the host cell has been worked out; however, it remains unclear how viral proteins interact with each other. We aimed to generate the interaction network of these 10 HCV proteins using a flow-cytometry-based FRET assay established in our laboratory (Banning, C., Votteler, J., Hoffmann, D., Koppensteiner, H., Warmer, M., Reimer, R., Kirchhoff, F., Schubert, U., Hauber, J., and Schindler, M. (2010) A flow cytometry-based FRET assay to identify and analyse protein-protein interactions in living cells. PLoS One 5, e9344). HCV proteins were constructed as fusions with the chromophores CFP and YFP. All HCV fusions were expressed and localized to specific subcellular compartments, indicating that they were functional. FACS-FRET measurements identified a total of 20 interactions; 13 of these were previously described and have now been confirmed in living cells via our method. Among the seven novel protein binding pairs, HCV p7 plays a pivotal role. It binds to the HCV capsid protein Core and the two glycoproteins E1 and E2. These interplays were further demonstrated in the relevant context of Huh7.5 liver cells expressing infectious HCV. Our work demonstrates the feasibility of rapidly generating small interaction networks via FACS-FRET and defines the network of intra-HCV protein interactions. Furthermore, our data support an important role of p7 in HCV assembly.
Collapse
Affiliation(s)
- Nicole Hagen
- From the ‡Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Karen Bayer
- ¶Institute of Virology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Kathrin Rösch
- From the ‡Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Michael Schindler
- From the ‡Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; ¶Institute of Virology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; ‖Institute of Medical Virology and Epidemiology of Viral Diseases, University Clinic Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
18
|
Incorporation of hepatitis C virus E1 and E2 glycoproteins: the keystones on a peculiar virion. Viruses 2014; 6:1149-87. [PMID: 24618856 PMCID: PMC3970144 DOI: 10.3390/v6031149] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/21/2014] [Accepted: 02/27/2014] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2. Their structure and mode of fusion remain unknown, and so does the virion architecture. The organization of the HCV envelope shell in particular is subject to discussion as it incorporates or associates with host-derived lipoproteins, to an extent that the biophysical properties of the virion resemble more very-low-density lipoproteins than of any virus known so far. The recent development of novel cell culture systems for HCV has provided new insights on the assembly of this atypical viral particle. Hence, the extensive E1E2 characterization accomplished for the last two decades in heterologous expression systems can now be brought into the context of a productive HCV infection. This review describes the biogenesis and maturation of HCV envelope glycoproteins, as well as the interplay between viral and host factors required for their incorporation in the viral envelope, in a way that allows efficient entry into target cells and evasion of the host immune response.
Collapse
|
19
|
Development of murine models to study Hepatitis C virus induced liver pathogenesis. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2014; 24:151-6. [PMID: 24426270 DOI: 10.1007/s13337-013-0152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 07/26/2013] [Indexed: 10/26/2022]
Abstract
Hepatitis C virus (HCV) is involved in different liver pathologies worldwide. In contemporary scenario, HCV treatment is lagging behind owing to absence of vaccines against virus. The only consideration for HCV treatment is pegylated interferon-alpha and ribavirin that results in sustained virological response in 50 % of patients. Two feasible hosts for HCV infection are chimpanzee and humans. For decades, chimpanzees are sole host to study HCV pathogenesis, but their use is limited due to ethical issues. The dilemma behind HCV therapy is the need of sustainable animal models that can help simulate in vivo conditions. We have assembled recent advances in animal models to study liver diseases for targeted therapy.
Collapse
|
20
|
Law JLM, Chen C, Wong J, Hockman D, Santer DM, Frey SE, Belshe RB, Wakita T, Bukh J, Jones CT, Rice CM, Abrignani S, Tyrrell DL, Houghton M. A hepatitis C virus (HCV) vaccine comprising envelope glycoproteins gpE1/gpE2 derived from a single isolate elicits broad cross-genotype neutralizing antibodies in humans. PLoS One 2013; 8:e59776. [PMID: 23527266 PMCID: PMC3602185 DOI: 10.1371/journal.pone.0059776] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/18/2013] [Indexed: 12/20/2022] Open
Abstract
Although a cure for HCV is on the near horizon, emerging drug cocktails will be expensive, associated with side-effects and resistance making a global vaccine an urgent priority given the estimated high incidence of infection around the world. Due to the highly heterogeneous nature of HCV, an effective HCV vaccine which could elicit broadly cross-neutralizing antibodies has represented a major challenge. In this study, we tested for the presence of cross-neutralizing antibodies in human volunteers who were immunized with recombinant glycoproteins gpE1/gpE2 derived from a single HCV strain (HCV1 of genotype 1a). Cross neutralization was tested in Huh-7.5 human hepatoma cell cultures using infectious recombinant HCV (HCVcc) expressing structural proteins of heterologous HCV strains from all known major genotypes, 1–7. Vaccination induced significant neutralizing antibodies against heterologous HCV genotype 1a virus which represents the most common genotype in North America. Of the 16 vaccinees tested, 3 were selected on the basis of strong 1a virus neutralization for testing of broad cross-neutralizing responses. At least 1 vaccinee was shown to elicit broad cross-neutralization against all HCV genotypes. Although observed in only a minority of vaccinees, our results prove the key concept that a vaccine derived from a single strain of HCV can elicit broad cross-neutralizing antibodies against all known major genotypes of HCV and provide considerable encouragement for the further development of a human vaccine against this common, global pathogen.
Collapse
Affiliation(s)
- John Lok Man Law
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
- * E-mail: (JLML); (MH)
| | - Chao Chen
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Jason Wong
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Darren Hockman
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Deanna M. Santer
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Sharon E. Frey
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Robert B. Belshe
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Jens Bukh
- Copenhagen Hepatitis C Program, Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre and Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christopher T. Jones
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | | | - D. Lorne Tyrrell
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Michael Houghton
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
- * E-mail: (JLML); (MH)
| |
Collapse
|
21
|
Beaumont E, Roingeard P. Prospects for prophylactic hepatitis C vaccines based on virus-like particles. Hum Vaccin Immunother 2013; 9:1112-8. [PMID: 23406827 DOI: 10.4161/hv.23900] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Given the global prevalence and long-term complications of chronic hepatitis C virus (HCV) infection, HCV constitutes one of the greatest challenges to human health of this decade. Considerable efforts have focused on the development of new effective treatments, but about three to four million individuals become infected each year, adding to the world reservoir of HCV infection. The development of a prophylactic vaccine against hepatitis C virus has thus become an important medical priority. Only a few vaccine candidates have progressed to the clinical phase, and published data on both the efficacy and safety of these vaccines are limited, due to many scientific, logistic and bioethic challenges. Fortunately, new innovative vaccine formulations, modes of vaccination and delivery technologies have been developed in recent years. Several preclinical trials of virus-like particle (VLP)-based vaccination strategies are currently underway and have already generated very promising results. In this commentary, we consider the current state of prophylactic HCV vaccines, the hurdles to be overcome in the future and the various VLP-based vaccination approaches currently being developed.
Collapse
Affiliation(s)
- Elodie Beaumont
- 1 INSERM U966; Université François Rabelais and CHRU de Tours; Tours, France
| | | |
Collapse
|
22
|
Houghton M. Prospects for prophylactic and therapeutic vaccines against the hepatitis C viruses. Immunol Rev 2011; 239:99-108. [PMID: 21198667 DOI: 10.1111/j.1600-065x.2010.00977.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Encouraging efficacy data have been obtained in the hepatitis C virus (HCV) chimpanzee model using prophylactic vaccines comprising adjuvanted recombinant envelope gpE1/gpE2 glycoproteins or prime/boost immunization regimens using defective adenoviruses and plasmid DNA expressing non-structural genes. While usually not resulting in sterilizing immunity after experimental challenge, the progression to chronic, persistent infection (which is responsible for HCV-associated pathogenicity in human) is inhibited. These and other vaccine candidates are in clinical development for both prophylactic as well as possible therapeutic applications. Given that other vaccines tested in the chimpanzee model may be possibly increasing the rate of chronicity, it is very important that this model continues to be available and used prior to initiation of clinical development. Several vaccine monotherapy trials in chronically infected HCV patients are resulting in small declines in viral load, suggesting that in future, combining vaccination with antiviral drug treatment may be beneficial.
Collapse
Affiliation(s)
- Michael Houghton
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
23
|
Dorner M, Horwitz JA, Robbins JB, Barry WT, Feng Q, Mu K, Jones CT, Schoggins JW, Catanese MT, Burton DR, Law M, Rice CM, Ploss A. A genetically humanized mouse model for hepatitis C virus infection. Nature 2011; 474:208-11. [PMID: 21654804 PMCID: PMC3159410 DOI: 10.1038/nature10168] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 04/28/2011] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) remains a major medical problem. Antiviral treatment is only partially effective and a vaccine does not exist. Development of more effective therapies has been hampered by the lack of a suitable small animal model. Although xenotransplantation of immunodeficient mice with human hepatocytes has shown promise, these models are subject to important challenges. Building on the previous observation that CD81 and occludin comprise the minimal human factors required to render mouse cells permissive to HCV entry in vitro, we attempted murine humanization via a genetic approach. Here we show that expression of two human genes is sufficient to allow HCV infection of fully immunocompetent inbred mice. We establish a precedent for applying mouse genetics to dissect viral entry and validate the role of scavenger receptor type B class I for HCV uptake. We demonstrate that HCV can be blocked by passive immunization, as well as showing that a recombinant vaccinia virus vector induces humoral immunity and confers partial protection against heterologous challenge. This system recapitulates a portion of the HCV life cycle in an immunocompetent rodent for the first time, opening opportunities for studying viral pathogenesis and immunity and comprising an effective platform for testing HCV entry inhibitors in vivo.
Collapse
Affiliation(s)
- Marcus Dorner
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Vieyres G, Thomas X, Descamps V, Duverlie G, Patel AH, Dubuisson J. Characterization of the envelope glycoproteins associated with infectious hepatitis C virus. J Virol 2010; 84:10159-68. [PMID: 20668082 PMCID: PMC2937754 DOI: 10.1128/jvi.01180-10] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 07/16/2010] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C is caused by an enveloped virus whose entry is mediated by two glycoproteins, namely, E1 and E2, which have been shown to assemble as a noncovalent heterodimer. Despite extensive research in the field of such an important human pathogen, hepatitis C virus (HCV) glycoproteins have only been studied so far in heterologous expression systems, and their organization at the surfaces of infectious virions has not yet been described. Here, we characterized the envelope glycoproteins associated with cell-cultured infectious virions and compared them with their prebudding counterparts. Viral particles were analyzed by ultracentrifugation, and the envelope glycoproteins were characterized by coimmunoprecipitation and receptor pulldown assays. Furthermore, their oligomeric state was determined by sedimentation through sucrose gradients and by separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under nonreducing conditions. In sucrose gradient analyses, HCV envelope glycoproteins were associated with fractions containing the most infectious viral particles. Importantly, besides maturation of some of their glycans, HCV envelope glycoproteins showed a dramatic change in their oligomeric state after incorporation into the viral particle. Indeed, virion-associated E1 and E2 envelope glycoproteins formed large covalent complexes stabilized by disulfide bridges, whereas the intracellular forms of these proteins assembled as noncovalent heterodimers. Furthermore, the virion-associated glycoprotein complexes were recognized by the large extracellular loop of CD81 as well as conformation-sensitive antibodies, indicating that these proteins are in a functional conformation. Overall, our study fills a gap in the description of HCV outer morphology and should guide further investigations into virus entry and assembly.
Collapse
Affiliation(s)
- Gabrielle Vieyres
- Institut Pasteur de Lille, Center for Infection & Immunity of Lille (CIIL), F-59019 Lille, France; Inserm U1019, F-59019 Lille, France; CNRS UMR8204, F-59021 Lille, France; and Université Lille Nord de France, F-59000 Lille, France, Unité de Virologie Clinique, EA4294 Université de Picardie Jules Verne, Centre Hospitalier Universitaire d'Amiens, Amiens, France, the Medical Research Council—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Xavier Thomas
- Institut Pasteur de Lille, Center for Infection & Immunity of Lille (CIIL), F-59019 Lille, France; Inserm U1019, F-59019 Lille, France; CNRS UMR8204, F-59021 Lille, France; and Université Lille Nord de France, F-59000 Lille, France, Unité de Virologie Clinique, EA4294 Université de Picardie Jules Verne, Centre Hospitalier Universitaire d'Amiens, Amiens, France, the Medical Research Council—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Véronique Descamps
- Institut Pasteur de Lille, Center for Infection & Immunity of Lille (CIIL), F-59019 Lille, France; Inserm U1019, F-59019 Lille, France; CNRS UMR8204, F-59021 Lille, France; and Université Lille Nord de France, F-59000 Lille, France, Unité de Virologie Clinique, EA4294 Université de Picardie Jules Verne, Centre Hospitalier Universitaire d'Amiens, Amiens, France, the Medical Research Council—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Gilles Duverlie
- Institut Pasteur de Lille, Center for Infection & Immunity of Lille (CIIL), F-59019 Lille, France; Inserm U1019, F-59019 Lille, France; CNRS UMR8204, F-59021 Lille, France; and Université Lille Nord de France, F-59000 Lille, France, Unité de Virologie Clinique, EA4294 Université de Picardie Jules Verne, Centre Hospitalier Universitaire d'Amiens, Amiens, France, the Medical Research Council—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Arvind H. Patel
- Institut Pasteur de Lille, Center for Infection & Immunity of Lille (CIIL), F-59019 Lille, France; Inserm U1019, F-59019 Lille, France; CNRS UMR8204, F-59021 Lille, France; and Université Lille Nord de France, F-59000 Lille, France, Unité de Virologie Clinique, EA4294 Université de Picardie Jules Verne, Centre Hospitalier Universitaire d'Amiens, Amiens, France, the Medical Research Council—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Jean Dubuisson
- Institut Pasteur de Lille, Center for Infection & Immunity of Lille (CIIL), F-59019 Lille, France; Inserm U1019, F-59019 Lille, France; CNRS UMR8204, F-59021 Lille, France; and Université Lille Nord de France, F-59000 Lille, France, Unité de Virologie Clinique, EA4294 Université de Picardie Jules Verne, Centre Hospitalier Universitaire d'Amiens, Amiens, France, the Medical Research Council—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
25
|
Expression and structural properties of a chimeric protein based on the ectodomains of E1 and E2 hepatitis C virus envelope glycoproteins. Protein Expr Purif 2010; 71:123-31. [DOI: 10.1016/j.pep.2010.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 02/16/2010] [Accepted: 02/16/2010] [Indexed: 12/19/2022]
|
26
|
Li Y, Li G, Kong Y, Wang Y, Wang Y, Wen Y. Expression of structural proteins of hepatitis C virus (HCV) in mammalian cells. ACTA ACUST UNITED AC 2009; 41:47-55. [PMID: 18726270 DOI: 10.1007/bf02882705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/1997] [Indexed: 01/11/2023]
Abstract
The vaccinia viral vector containing T7 promoter was used to construct the expression plasmids carrying HCV structural genes of C, El and E2/NS1. These genes were transiently expressed in mammalian cells in the presence of the T7 RNA polymerase which was provided by the recombinant vaccinia virus vTT7. Expression of mature core protein, envelope protein El and E2 was detected by Western blot using HCV patient sera as the primary antibodies. It was found that the sera from different HCV patients reacted differently with the expressed products, so did the sera collected at different times from the same patient, from whom the HCV structural genes were isolated. Among six mammalian cell lines, Vero and HeLa were the most suitable for the expression of C, El and E2-The recombinant vaccinia viruses have been constructed to constantly produce the C, El and E2 proteins for further research.
Collapse
Affiliation(s)
- Y Li
- Shanghai Institute of Biochemistry, Chinese Academy of Sciences, China
| | | | | | | | | | | |
Collapse
|
27
|
Li HF, Huang CH, Ai LS, Chuang CK, Chen SSL. Mutagenesis of the fusion peptide-like domain of hepatitis C virus E1 glycoprotein: involvement in cell fusion and virus entry. J Biomed Sci 2009; 16:89. [PMID: 19778418 PMCID: PMC2759930 DOI: 10.1186/1423-0127-16-89] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 09/24/2009] [Indexed: 01/19/2023] Open
Abstract
Background Envelope (E) glycoprotein E2 of the hepatitis C virus (HCV) mediates binding of the virus to target cell receptors. Nevertheless, the precise role of E1 in viral entry remains elusive. Methods To understand the involvement of the fusion peptide-like domain positioned at residues 264 to 290 within envelope glycoprotein E1 in HCV infection, mutants with Ala and Asn substitutions for residues conserved between HCV and E proteins of flaviviruses or the fusion proteins of paramyxoviruses were constructed by site-directed mutagenesis and their effects on membrane fusion and viral infectivity were examined. Results None of these mutations affected the synthesis or cell surface expression of envelope proteins, nor did they alter the formation of a non-covalent E1-E2 heterodimer or E2 binding to the large extracellular loop of CD81. The Cys residues located at positions 272 and 281 were unlikely involved in intra- or intermolecular disulfide bond formation. With the exception of the G267A mutant, which showed increased cell fusion, other mutants displayed reduced or marginally inhibited cell fusion capacities compared to the wild-type (WT) E1E2. The G267A mutant was also an exception in human immunodeficiency virus type 1 (HIV-1)/HCV E1E2 pseudotyping analyses, in that it showed higher one-cycle infectivity; all other mutants exhibited greatly or partially reduced viral entry versus the WT pseudotype. All but the G278A and D279N mutants showed a WT-like profile of E1E2 incorporation into HIV-1 particles. Since C272A, C281A, G282A, and G288A pseudotypes bound to Huh7 cells as effectively as did the WT pseudotype, the reduced infectivity of these pseudotypes was due to their ability to inhibit cell fusion. Conclusion Our results indicate that specific residues, but not the structure, of this fusion peptide-like domain are required for mediating cell fusion and viral entry.
Collapse
Affiliation(s)
- Hsiao-Fen Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | | | | | | | | |
Collapse
|
28
|
Rodríguez-Rodríguez M, Tello D, Yélamos B, Gómez-Gutiérrez J, Pacheco B, Ortega S, Serrano AG, Peterson DL, Gavilanes F. Structural properties of the ectodomain of hepatitis C virus E2 envelope protein. Virus Res 2009; 139:91-9. [DOI: 10.1016/j.virusres.2008.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 10/16/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
|
29
|
Induction of broad CD4+ and CD8+ T-cell responses and cross-neutralizing antibodies against hepatitis C virus by vaccination with Th1-adjuvanted polypeptides followed by defective alphaviral particles expressing envelope glycoproteins gpE1 and gpE2 and nonstructural proteins 3, 4, and 5. J Virol 2008; 82:7492-503. [PMID: 18508900 DOI: 10.1128/jvi.02743-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Broad, multispecific CD4(+) and CD8(+) T-cell responses to the hepatitis C virus (HCV), as well as virus-cross-neutralizing antibodies, are associated with recovery from acute infection and may also be associated in chronic HCV patients with a favorable response to antiviral treatment. In order to recapitulate all of these responses in an ideal vaccine regimen, we have explored the use of recombinant HCV polypeptides combined with various Th1-type adjuvants and replication-defective alphaviral particles encoding HCV proteins in various prime/boost modalities in BALB/c mice. Defective chimeric alphaviral particles derived from the Sindbis and Venezuelan equine encephalitis viruses encoding either the HCV envelope glycoprotein gpE1/gpE2 heterodimer (E1E2) or nonstructural proteins 3, 4, and 5 (NS345) elicited strong CD8(+) T-cell responses but low CD4(+) T helper responses to these HCV gene products. In contrast, recombinant E1E2 glycoproteins adjuvanted with MF59 containing a CpG oligonucleotide elicited strong CD4(+) T helper responses but no CD8(+) T-cell responses. A recombinant NS345 polyprotein also stimulated strong CD4(+) T helper responses but no CD8(+) T-cell responses when adjuvanted with Iscomatrix containing CpG. Optimal elicitation of broad CD4(+) and CD8(+) T-cell responses to E1E2 and NS345 was obtained by first priming with Th1-adjuvanted proteins and then boosting with chimeric, defective alphaviruses expressing these HCV genes. In addition, this prime/boost regimen resulted in the induction of anti-E1E2 antibodies capable of cross-neutralizing heterologous HCV isolates in vitro. This vaccine formulation and regimen may therefore be optimal in humans for protection against this highly heterogeneous global pathogen.
Collapse
|
30
|
Iacob RE, Perdivara I, Przybylski M, Tomer KB. Mass spectrometric characterization of glycosylation of hepatitis C virus E2 envelope glycoprotein reveals extended microheterogeneity of N-glycans. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:428-444. [PMID: 18187336 PMCID: PMC2287207 DOI: 10.1016/j.jasms.2007.11.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 11/27/2007] [Accepted: 11/28/2007] [Indexed: 05/25/2023]
Abstract
Hepatitis C virus (HCV) causes acute and chronic liver disease in humans, including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. The polyprotein encoded in the HCV genome is co- and post-translationally processed by host and viral peptidases, generating the structural proteins Core, E1, E2, and p7, and five nonstructural proteins. The two envelope proteins E1 and E2 are heavily glycosylated. Studying the glycan moieties attached to the envelope E2 glycoprotein is important because the N-linked glycans on E2 envelope protein are involved in the interaction with some human neutralizing antibodies, and may also have a direct or indirect effect on protein folding. In the present study, we report the mass spectrometric characterization of the glycan moieties attached to the E2 glycoprotein. The mass spectrometric analysis clearly identified the nature, composition, and microheterogeneity of the sugars attached to the E2 glycopeptides. All 11 sites of glycosylation on E2 protein were characterized, and the majority of these sites proved to be occupied by high mannose glycans. However, complex type oligosaccharides, which have not been previously identified, were exclusively observed at two N-linked sites, and their identity and heterogeneity were determined.
Collapse
Affiliation(s)
- Roxana E. Iacob
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Irina Perdivara
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
- Department of Chemistry, Laboratory of Analytical Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Michael Przybylski
- Department of Chemistry, Laboratory of Analytical Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Kenneth B. Tomer
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| |
Collapse
|
31
|
|
32
|
Lorent E, Bierau H, Engelborghs Y, Verheyden G, Bosman F. Structural characterisation of the hepatitis C envelope glycoprotein E1 ectodomain derived from a mammalian and a yeast expression system. Vaccine 2007; 26:399-410. [PMID: 18077062 DOI: 10.1016/j.vaccine.2007.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 10/12/2007] [Accepted: 11/04/2007] [Indexed: 12/12/2022]
Abstract
The structure of the ectodomain of the hepatitis C envelope glycoprotein E1 (E1s) was characterised by spectroscopic methods. Monomeric E1s was purified from a mammalian and from a Hansenula polymorpha cell lysate, and cysteine-blocked monomers were reconstituted into stable particles. Particles from yeast E1s and mammalian E1s showed a comparable reactivity in ELISA with sera from human chronic HCV carriers, similar antibody titers in the sera of immunised mice as well as a comparable structure as analyzed by spectroscopic methods (tryptophan fluorescence, circular dichroism, and Fourier transform infrared spectroscopy). The overall secondary structure of E1s was neither influenced by the degree of glycosylation nor by the nature of cysteine modification used during purification. The structural comparability of mammalian- and H. polymorpha-expressed E1s opens new perspectives for further development of E1s-based therapeutics as yeast systems generally allow a more easy scaling up.
Collapse
Affiliation(s)
- Eric Lorent
- Laboratory of Biomolecular Dynamics, KULeuven, Celestijnenlaan 200G, 3001 Leuven, Belgium
| | | | | | | | | |
Collapse
|
33
|
Dreux M, Cosset FL. The scavenger receptor BI and its ligand, HDL: partners in crime against HCV neutralizing antibodies. J Viral Hepat 2007; 14 Suppl 1:68-76. [PMID: 17958646 DOI: 10.1111/j.1365-2893.2007.00919.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Better knowledge of the viral and host factors that determine HCV clearance vs. persistence at the acute stage of infection is needed in order to improve antiviral therapy and develop efficient vaccines. Spontaneous HCV clearance is associated with a strong, early and broad cellular immune response. Yet, several observations suggest that antibody-mediated neutralisation occurs during HCV infection in vivo and that polyclonal antibodies to HCV can be protective. The recent development of HCV infection assays has confirmed that sera from HCV-infected patients neutralise infection in vitro. Recent studies have demonstrated that Nt-antibodies, of narrow specificity, are induced during the early phase of infection and could play a role in controlling viral infection or clearance. Yet, high-titre, broadly cross-reacting Nt-antibodies are readily detected in chronically infected patients, suggesting that their effectiveness is limited in patients who do not resolve the disease. The factors that mitigate the impact of the Nt-antibody response need to be clarified. Here we review some essential features of the Nt-antibody responses to HCV. We then discuss an original mechanism that HCV may use in vivo to attenuate Nt-antibodies, which involves the hyper-variable region-1 of the HCV-E2 glycoprotein, high-density lipoprotein (HDL) and the physiologic activity of the scavenger receptor BI, a receptor shared by both HCV and HDL.
Collapse
Affiliation(s)
- M Dreux
- Université de Lyon, (UCB-Lyon1), IFR128, Lyon; INSERM, U758, Lyon, France
| | | |
Collapse
|
34
|
Nakai K, Okamoto T, Kimura-Someya T, Ishii K, Lim CK, Tani H, Matsuo E, Abe T, Mori Y, Suzuki T, Miyamura T, Nunberg JH, Moriishi K, Matsuura Y. Oligomerization of hepatitis C virus core protein is crucial for interaction with the cytoplasmic domain of E1 envelope protein. J Virol 2006; 80:11265-73. [PMID: 16971440 PMCID: PMC1642162 DOI: 10.1128/jvi.01203-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hepatitis C virus (HCV) contains two membrane-associated envelope glycoproteins, E1 and E2, which assemble as a heterodimer in the endoplasmic reticulum (ER). In this study, predictive algorithms and genetic analyses of deletion mutants and glycosylation site variants of the E1 glycoprotein were used to suggest that the glycoprotein can adopt two topologies in the ER membrane: the conventional type I membrane topology and a polytopic topology in which the protein spans the ER membrane twice with an intervening cytoplasmic loop (amino acid residues 288 to 360). We also demonstrate that the E1 glycoprotein is able to associate with the HCV core protein, but only upon oligomerization of the core protein in the presence of tRNA to form capsid-like structures. Yeast two-hybrid and immunoprecipitation analyses reveal that oligomerization of the core protein is promoted by amino acid residues 72 to 91 in the core. Furthermore, the association between the E1 glycoprotein and the assembled core can be recapitulated using a fusion protein containing the putative cytoplasmic loop of the E1 glycoprotein. This fusion protein is also able to compete with the intact E1 glycoprotein for binding to the core. Mutagenesis of the cytoplasmic loop of E1 was used to define a region of four amino acids (residues 312 to 315) that is important for interaction with the assembled HCV core. Taken together, our studies suggest that interaction between the self-oligomerized HCV core and the E1 glycoprotein is mediated through the cytoplasmic loop present in a polytopic form of the E1 glycoprotein.
Collapse
Affiliation(s)
- Kousuke Nakai
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Majid AM, Ezelle H, Shah S, Barber GN. Evaluating replication-defective vesicular stomatitis virus as a vaccine vehicle. J Virol 2006; 80:6993-7008. [PMID: 16809305 PMCID: PMC1489030 DOI: 10.1128/jvi.00365-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have generated replication-competent (VSV-C/E1/E2) and nonpropagating (VSVDeltaG-C/E1/E2) vesicular stomatitis virus (VSV) contiguously expressing the structural proteins of hepatitis C virus (HCV; core [C] and glycoproteins E1 and E2) and report on their immunogenicity in murine models. VSV-C/E1/E2 and VSVDeltaG-C/E1/E2 expressed high levels of HCV C, E1, and E2, which were authentically posttranslationally processed. Both VSV-expressed HCV E1-E2 glycoproteins were found to form noncovalently linked heterodimers and appeared to be correctly folded, as confirmed by coimmunoprecipitation analysis using conformationally sensitive anti-HCV-E2 monoclonal antibodies (MAbs). Intravenous or intraperitoneal immunization of BALB/c mice with VSV-C/E1/E2 or VSVDeltaG-C/E1/E2 resulted in significant and surprisingly comparable HCV core or E2 antibody responses compared to those of control mice. In addition, both virus types generated HCV C-, E1-, or E2-specific gamma interferon (IFN-gamma)-producing CD8(+) T cells, as determined by enzyme-linked immunospot (ELISPOT) analysis. Mice immunized with VSVDeltaG-C/E1/E2 were also protected against the formation of tumors expressing HCV E2 (CT26-hghE2t) and exhibited CT26-hghE2t-specific IFN-gamma-producing and E2-specific CD8(+) T-cell activity. Finally, recombinant vaccinia virus (vvHCV.S) expressing the HCV structural proteins replicated at significantly lower levels when inoculated into mice immunized with VSV-C/E1/E2 or VSVDeltaG-C/E1/E2, but not with control viruses. Our data therefore illustrate that potentially safer replication-defective VSV can be successfully engineered to express high levels of antigenically authentic HCV glycoproteins. In addition, this strategy may therefore serve in effective vaccine and immunotherapy-based approaches to the treatment of HCV-related disease.
Collapse
Affiliation(s)
- Ayaz M Majid
- Department of Microbiology and Immunology, University of Miami School of Medicine, FL 33136, USA
| | | | | | | |
Collapse
|
36
|
Dreux M, Pietschmann T, Granier C, Voisset C, Ricard-Blum S, Mangeot PE, Keck Z, Foung S, Vu-Dac N, Dubuisson J, Bartenschlager R, Lavillette D, Cosset FL. High Density Lipoprotein Inhibits Hepatitis C Virus-neutralizing Antibodies by Stimulating Cell Entry via Activation of the Scavenger Receptor BI. J Biol Chem 2006; 281:18285-95. [PMID: 16675450 DOI: 10.1074/jbc.m602706200] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) exploits serum-dependent mechanisms that inhibit neutralizing antibodies. Here we demonstrate that high density lipoprotein (HDL) is a key serum factor that attenuates neutralization by monoclonal and HCV patient-derived polyclonal antibodies of infectious pseudo-particles (HCVpp) harboring authentic E1E2 glycoproteins and cell culture-grown genuine HCV (HCVcc). Over 10-fold higher antibody concentrations are required to neutralize either HCV-enveloped particles in the presence of HDL or human serum, and less than 3-5-fold reduction of infectious titers are obtained at saturating antibody concentrations, in contrast to complete inhibition in serum-free conditions. We show that HDL interaction with the scavenger receptor BI (SR-BI), a proposed cell entry co-factor of HCV and a receptor mediating lipid transfer with HDL, strongly reduces neutralization of HCVpp and HCVcc. We found that HDL activation of target cells strongly stimulates cell entry of viral particles by accelerating their endocytosis, thereby suppressing a 1-h time lag during which cell-bound virions are not internalized and can be targeted by antibodies. Compounds that inhibit lipid transfer functions of SR-BI fully restore neutralization by antibodies in human serum. We demonstrate that this functional HDL/SR-BI interaction only interferes with antibodies blocking HCV-E2 binding to CD81, a major HCV receptor, reflecting its prominent role during the cell entry process. Moreover, we identify monoclonal antibodies targeted to epitopes in the E1E2 complex that are not inhibited by HDL. Consistently, we show that antibodies targeted to HCV-E1 efficiently neutralize HCVpp and HCVcc in the presence of human serum.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/blood
- Antibodies, Monoclonal/immunology
- Antibody Specificity
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Epitopes
- Hepacivirus/immunology
- Hepatitis C/blood
- Hepatitis C/virology
- Hepatitis C Antibodies/immunology
- Hepatitis C Antibodies/metabolism
- Hepatitis C, Chronic/blood
- Hepatitis C, Chronic/virology
- Humans
- Immunity, Innate
- Lipoproteins, HDL/immunology
- Lipoproteins, HDL/metabolism
- Lipoproteins, HDL/pharmacology
- Protein Binding/immunology
- Scavenger Receptors, Class B/immunology
- Scavenger Receptors, Class B/metabolism
- Tetraspanin 28
- Virus Replication/immunology
Collapse
|
37
|
Rosa D, Saletti G, De Gregorio E, Zorat F, Comar C, D'Oro U, Nuti S, Houghton M, Barnaba V, Pozzato G, Abrignani S. Activation of naïve B lymphocytes via CD81, a pathogenetic mechanism for hepatitis C virus-associated B lymphocyte disorders. Proc Natl Acad Sci U S A 2005; 102:18544-9. [PMID: 16339892 PMCID: PMC1310512 DOI: 10.1073/pnas.0509402102] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Indexed: 12/14/2022] Open
Abstract
Infection with hepatitis C virus (HCV), a leading cause of chronic liver diseases, can associate with B lymphocyte proliferative disorders, such as mixed cryoglobulinemia and non-Hodgkin lymphoma. The major envelope protein of HCV (HCV-E2) binds, with high affinity CD81, a tetraspanin expressed on several cell types. Here, we show that engagement of CD81 on human B cells by a combination of HCV-E2 and an anti-CD81 mAb triggers the JNK pathway and leads to the preferential proliferation of the naïve (CD27-) B cell subset. In parallel, we have found that B lymphocytes from the great majority of chronic hepatitis C patients are activated and that naïve cells display a higher level of activation markers than memory (CD27+) B lymphocytes. Moreover, eradication of HCV infection by IFN therapy is associated with normalization of the activation-markers expression. We propose that CD81-mediated activation of B cells in vitro recapitulates the effects of HCV binding to B cell CD81 in vivo and that polyclonal proliferation of naïve B lymphocytes is a key initiating factor for the development of the HCV-associated B lymphocyte disorders.
Collapse
|
38
|
Abstract
The recent discovery of natural immunity to the hepatitis C virus and vaccine efficacy in the chimpanzee challenge model has allowed optimism about the development of at least a partly effective vaccine against this heterogeneous pathogen that is responsible for much of the chronic liver disease around the world. The immune systems of some infected individuals can spontaneously clear the virus, whereas other people need treatment with antivirals that work partly by stimulating humoral and cellular immune responses. Therefore, therapeutic vaccine strategies are also being pursued to improve treatment outcome.
Collapse
Affiliation(s)
- Michael Houghton
- Chiron Corporation, 4560 Horton Street, Emeryville, California 94608, USA.
| | | |
Collapse
|
39
|
O'Hagan DT, Singh M, Dong C, Ugozzoli M, Berger K, Glazer E, Selby M, Wininger M, Ng P, Crawford K, Paliard X, Coates S, Houghton M. Cationic microparticles are a potent delivery system for a HCV DNA vaccine. Vaccine 2005; 23:672-80. [PMID: 15542189 DOI: 10.1016/j.vaccine.2004.06.037] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 06/10/2004] [Accepted: 06/15/2004] [Indexed: 01/20/2023]
Abstract
We initially evaluated in mice the ability of naked DNA encoding intracellular forms of the E1E2 envelope proteins from HCV to induce antibody responses and compared the responses induced with the same plasmid adsorbed onto cationic poly (lactide co-glycolide) (PLG) microparticles. Although naked DNA was only able to induce detectable responses at the 100 microg dose level, making this approach impractical for evaluation in larger animals, PLG/DNA induced detectable responses at 10 microg. In addition, the PLG/DNA microparticles induced significantly enhanced responses to naked DNA when compared at the same dose level. Remarkably, PLG/DNA induced comparable responses to recombinant E1E2 protein adjuvanted with the emulsion MF59. Furthermore, PLG/DNA effectively primed for a booster response with protein immunization, while naked DNA did not. Therefore, PLG/DNA was selected for further evaluation in a non-human primate model. In a study in rhesus macaques, PLG/DNA induced seroconversion in 3/3 animals following three immunizations. Although the antibody responses appeared lower than those induced with recombinant protein adjuvanted with MF59, following a fourth dose, PLG/DNA and protein induced comparable responses. However, a single booster dose of recombinant protein administered to the animals previously immunized with PLG/DNA induced much higher responses. In addition, one of three animals immunized with PLG/DNA showed a cytotoxic T lymphocyte response in peripheral blood lymphocytes. In conclusion, cationic PLG microparticles with adsorbed HCV DNA generates potent immune responses.
Collapse
Affiliation(s)
- Derek T O'Hagan
- Vaccines Research, Chiron Corporation, 4560 Horton St., M/S 4.3, Emeryville, CA 94608 USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Hepatitis C virus (HCV) has infected millions of people worldwide and has emerged as a global health crisis. The currently available therapy is interferon (IFN) either alone or in combination with ribavirin. However, the disappointing efficacy of IFN has led to the considerable need for improved treatments and a number of new therapies are under evaluation in clinical trials. These include pegylated IFNs, which have altered physiochemical characteristics allowing once-weekly dosing. Combination of pegylated IFN with ribavirin should further improve sustained response rates. However, not all patients are successfully treated with IFNs, particularly those infected with genotype 1 of the virus, and it is likely that potent, specific drugs will be required. The majority of new approaches currently trying to combat this viral disease are aimed at inhibition of viral targets. Most effort has been directed towards inhibition of the NS3 serine protease, and potent inhibitors have now been described. However, a clinical candidate is yet to emerge against this difficult target. Considerable work by leading researchers has provided crystal structures of the key replicative enzymes, NS3 protease, NS3 helicase, NS5B polymerase and full-length NS3 protease-helicase, and there is much hope that such structural information will bear fruit. More recently, inhibition of host targets, particularly inosine monophosphate dehydrogenase (IMPDH), has become of interest and there are on-going clinical trials with such inhibitors. Research aimed at novel treatments for HCV disease is gathering pace and very recent developments in cell-based assay systems can only hasten the discovery of improved therapies.
Collapse
Affiliation(s)
- B W Dymock
- Roche Discovery Welwyn, Broadwater Road, Welwyn Garden City, Herts, AL7 3AY, UK.
| |
Collapse
|
41
|
Brazzoli M, Helenius A, Foung SKH, Houghton M, Abrignani S, Merola M. Folding and dimerization of hepatitis C virus E1 and E2 glycoproteins in stably transfected CHO cells. Virology 2005; 332:438-53. [PMID: 15661174 DOI: 10.1016/j.virol.2004.11.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 11/08/2004] [Accepted: 11/29/2004] [Indexed: 01/27/2023]
Abstract
The recombinant E1E2 heterodimer of the hepatitis C virus is a candidate for a subunit vaccine. Folding analysis of E1 and E2 glycoproteins, stably expressed in CHO cells, showed that E1 folding was faster and more efficient than E2. The oxidized DTT-resistant conformation of E1 was completed within 2 h post-synthesis, while E2 not only required up to 6 h but also generated non-native species. Calnexin was found to assist E1 folding, whereas no chaperone association was found with E2. The assembly of E1 and E2 was assessed by co-immunoprecipitation and sedimentation velocity analysis. We found that the formation of native E1E2 heterodimers paralleled E2 oxidation kinetics, suggesting that E2 completed its folding process after association with E1. Once formed, sedimentation of the native E1E2 heterodimers was consistent with the absence of additional associated factors. Taken together, our data strongly suggest that productive folding of the major HCV spike protein E2 is assisted by E1.
Collapse
|
42
|
Suzuki R, Sakamoto S, Tsutsumi T, Rikimaru A, Tanaka K, Shimoike T, Moriishi K, Iwasaki T, Mizumoto K, Matsuura Y, Miyamura T, Suzuki T. Molecular determinants for subcellular localization of hepatitis C virus core protein. J Virol 2005; 79:1271-81. [PMID: 15613354 PMCID: PMC538550 DOI: 10.1128/jvi.79.2.1271-1281.2005] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) core protein is a putative nucleocapsid protein with a number of regulatory functions. In tissue culture cells, HCV core protein is mainly located at the endoplasmic reticulum as well as mitochondria and lipid droplets within the cytoplasm. However, it is also detected in the nucleus in some cells. To elucidate the mechanisms by which cellular trafficking of the protein is controlled, we performed subcellular fractionation experiments and used confocal microscopy to examine the distribution of heterologously expressed fusion proteins involving various deletions and point mutations of the HCV core combined with green fluorescent proteins. We demonstrated that a region spanning amino acids 112 to 152 can mediate association of the core protein not only with the ER but also with the mitochondrial outer membrane. This region contains an 18-amino-acid motif which is predicted to form an amphipathic alpha-helix structure. With regard to the nuclear targeting of the core protein, we identified a novel bipartite nuclear localization signal, which requires two out of three basic-residue clusters for efficient nuclear translocation, possibly by occupying binding sites on importin-alpha. Differences in the cellular trafficking of HCV core protein, achieved and maintained by multiple targeting functions as mentioned above, may in part regulate the diverse range of biological roles of the core protein.
Collapse
Affiliation(s)
- Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan 162-8640
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bartenschlager R, Frese M, Pietschmann T. Novel insights into hepatitis C virus replication and persistence. Adv Virus Res 2005; 63:71-180. [PMID: 15530561 DOI: 10.1016/s0065-3527(04)63002-8] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatitis C virus (HCV) is a small enveloped RNA virus that belongs to the family Flaviviridae. A hallmark of HCV is its high propensity to establish a persistent infection that in many cases leads to chronic liver disease. Molecular studies of the virus became possible with the first successful cloning of its genome in 1989. Since then, the genomic organization has been delineated, and viral proteins have been studied in some detail. In 1999, an efficient cell culture system became available that recapitulates the intracellular part of the HCV life cycle, thereby allowing detailed molecular studies of various aspects of viral RNA replication and persistence. This chapter attempts to summarize the current state of knowledge in these most actively worked on fields of HCV research.
Collapse
Affiliation(s)
- Ralf Bartenschlager
- Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
44
|
Voisset C, Callens N, Blanchard E, Op De Beeck A, Dubuisson J, Vu-Dac N. High density lipoproteins facilitate hepatitis C virus entry through the scavenger receptor class B type I. J Biol Chem 2005; 280:7793-9. [PMID: 15632171 DOI: 10.1074/jbc.m411600200] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The scavenger receptor class B type I (SR-BI) has recently been shown to interact with hepatitis C virus (HCV) envelope glycoprotein E2, suggesting that it might be involved at some step of HCV entry into host cells. However, due to the absence of a cell culture system to efficiently amplify HCV, it is not clear how SR-BI contributes to HCV entry. Here, we sought to determine how high density lipoproteins (HDLs), the natural ligand of SR-BI, affect HCV entry. By using the recently described infectious HCV pseudotyped particles (HCVpps) that display functional E1E2 glycoprotein complexes, we showed that HDLs are able to markedly enhance HCVpp entry. We did not find any evidence of HDL association with HCVpps, suggesting that HCVpps do not enter into target cells using HDL as a carrier to bind to its receptor. Interestingly, lipid-free apoA-I and apoA-II, the major HDL apolipoproteins, were unable to enhance HCVpp infectivity. In addition, drugs inhibiting HDL cholesteryl transfer (block lipid transport (BLT)-2 and BLT-4) reduced HDL enhancement of HCVpp entry, suggesting a role for lipid transfer in facilitating HCVpp entry. Importantly, silencing of SR-BI expression in target cells by RNA interference markedly reduced HDL-mediated enhancement of HCVpp entry. Finally, enhancement of HCVpp entry was also suppressed when the SR-BI binding region on HCV glycoprotein E2 was deleted. Altogether, these data indicate that HDL-mediated enhancement of HCVpp entry involves a complex interplay between SR-BI, HDL, and HCV envelope glycoproteins, and they highlight the active role of HDLs in HCV entry.
Collapse
Affiliation(s)
- Cécile Voisset
- CNRS-UPR2511, Institut de Biologie de Lille and Institut Pasteur de Lille, Lille 59021, France
| | | | | | | | | | | |
Collapse
|
45
|
Song HC, Seo MY, Stadler K, Yoo BJ, Choo QL, Coates SR, Uematsu Y, Harada T, Greer CE, Polo JM, Pileri P, Eickmann M, Rappuoli R, Abrignani S, Houghton M, Han JH. Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein. J Virol 2004; 78:10328-35. [PMID: 15367599 PMCID: PMC516425 DOI: 10.1128/jvi.78.19.10328-10335.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have expressed and characterized the severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein in cDNA-transfected mammalian cells. The full-length spike protein (S) was newly synthesized as an endoglycosidase H (endo H)-sensitive glycoprotein (gp170) that is further modified into an endo H-resistant glycoprotein (gp180) in the Golgi apparatus. No substantial proteolytic cleavage of S was observed, suggesting that S is not processed into head (S1) and stalk (S2) domains as observed for certain other coronaviruses. While the expressed full-length S glycoprotein was exclusively cell associated, a truncation of S by excluding the C-terminal transmembrane and cytoplasmic tail domains resulted in the expression of an endoplasmic reticulum-localized glycoprotein (gp160) as well as a Golgi-specific form (gp170) which was ultimately secreted into the cell culture medium. Chemical cross-linking, thermal denaturation, and size fractionation analyses suggested that the full-length S glycoprotein of SARS-CoV forms a higher order structure of approximately 500 kDa, which is consistent with it being an S homotrimer. The latter was also observed in purified virions. The intracellular form of the C-terminally truncated S protein (but not the secreted form) also forms trimers, but with much less efficiency than full-length S. Deglycosylation of the full-length homotrimer with peptide N-glycosidase-F under native conditions abolished recognition of the protein by virus-neutralizing antisera raised against purified virions, suggesting the importance of the carbohydrate in the correct folding of the S protein. These data should aid in the design of recombinant vaccine antigens to prevent the spread of this emerging pathogen.
Collapse
MESH Headings
- Animals
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- COS Cells
- Cell Line
- Chlorocebus aethiops
- Cricetinae
- Culture Media/chemistry
- DNA, Complementary
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Endoplasmic Reticulum/chemistry
- Glycoside Hydrolases/metabolism
- Golgi Apparatus/chemistry
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Molecular Weight
- Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism
- Protein Folding
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Protein Subunits/analysis
- Protein Transport
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Severe acute respiratory syndrome-related coronavirus/genetics
- Spike Glycoprotein, Coronavirus
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- Hyun Chul Song
- Vaccines Research, Chiron Corporation, 4560 Horton St., Emeryville, CA 94608, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Hepatitis C virus (HCV) is the major causative agent of chronic non-A, non-B hepatitis. The life cycle of HCV is largely unknown because a reliable culture system has not yet been established. HCV presumably binds to specific receptor(s) and enters cells through endocytosis, as do other members of Flaviviridae. The viral genome is translated into a precursor polyprotein after uncoating, and viral RNA is synthesized by a virus-encoded polymerase complex. Progeny viral particles are released into the luminal side of the endoplasmic reticulum and secreted from the cell after passage through the Golgi apparatus. Understanding the mechanisms of HCV infection is essential to the development of effective new therapies for chronic HCV infection. Several host membrane proteins have been identified as receptor candidates for HCV. Recent advances using pseudotype virus systems have provided information surrounding the initial steps of HCV infection. An HCV RNA replicon system has been useful for elucidating the replication mechanism of HCV. In this review, we summarize our current understanding of the mechanisms of HCV infection and discuss potential antiviral strategies against HCV infection.
Collapse
Affiliation(s)
- Kohji Moriishi
- Research Centre for Emerging Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | |
Collapse
|
47
|
Beyene A, Basu A, Meyer K, Ray R. Influence of N-linked glycans on intracellular transport of hepatitis C virus E1 chimeric glycoprotein and its role in pseudotype virus infectivity. Virology 2004; 324:273-85. [PMID: 15207615 DOI: 10.1016/j.virol.2004.03.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 03/10/2004] [Accepted: 03/23/2004] [Indexed: 12/23/2022]
Abstract
We have previously reported a functional role associated with hepatitis C virus (HCV) E1 glycoprotein using vesicular stomatitis virus (VSV)/HCV pseudotype. In this study, we have investigated the role of glycosylation upon intracellular transport of chimeric E1-G, and in infectivity of the pseudotyped virus. Interestingly, surface expressed E1-G exhibited sensitivity to Endoglycosidase H (Endo H) treatment, which was similar to full-length E1, suggesting that additional complex oligosaccharides were not added while E1-G was in transit from the endoplasmic reticulum (ER) to the mammalian cell surface. As a next step, each of the four potential N-linked glycosylation sites located at amino acid position 196, 209, 234, or 305 of the E1 ectodomain were mutated separately (asparagine --> glutamine), or in some combination. FACS analysis suggested that mutation(s) of the glycosylation sites affect the translocation of E1-G to the cell surface to different extents, with no single site being particularly essential. VSV pseudotype virus generated from glycosylation mutants exhibited a decrease in titer with an increasing number of mutations at the glycosylation sites on chimeric E1-G. In a separate experiment, N-glycosidase F treatment of pseudotype generated from the already synthesized E1-G or its mutants decreased virus titer by approximately 35%, and the neutralization activity of patient sera was not significantly altered with N-glycosidase F-treated pseudotype virus. Taken together, our results suggested that E1-G does not add complex sugar moieties during transport to the cell surface and retain the glycosylation profile of its parental E1 sequence. Additionally, the removal of glycans from the E1-G reduced, but does not completely impair, virus infectivity.
Collapse
Affiliation(s)
- Aster Beyene
- Department of Internal Medicine, Saint Louis University, 3635 Vista Avenue, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
48
|
Nielsen SU, Bassendine MF, Burt AD, Bevitt DJ, Toms GL. Characterization of the genome and structural proteins of hepatitis C virus resolved from infected human liver. J Gen Virol 2004; 85:1497-1507. [PMID: 15166434 PMCID: PMC1810391 DOI: 10.1099/vir.0.79967-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the absence of satisfactory cell culture systems for hepatitis C virus (HCV), virtually all that is known about the proteins of the virus has been learned by the study of recombinant proteins. Characterization of virus proteins from patients with HCV has been retarded by the low virus titre in blood and limited availability of infected tissue. Here, the authors have identified a primary infection in a liver transplanted into an immunodeficient patient with chronic HCV. The patient required re-transplant and the infected liver, removed 6 weeks after the initial transplant, had a very high titre of HCV, 5 x 10(9) International Units (IU) per gram of liver. The density distribution of HCV in iodixanol gradients showed a peak at 1.04 g x ml(-1) with 73 % of virus below 1.08 g x ml(-1). Full-length HCV RNA was detected by Northern blotting and the ratio between positive- and negative-strand HCV RNA was determined as 60. HCV was partially purified by precipitation with heparin/Mn(2+) and a single species of each of the three structural proteins, core, E1 and E2, was detected by Western blotting. The molecular mass of core was 20 kDa, which corresponds to the mature form from recombinant sources. The molecular mass of glycoprotein E1 was 31 kDa before and 21 kDa after deglycosylation with PNGase F or endoglycosidase H. Glycoprotein E2 was 62 kDa before and 36 kDa after deglycosylation, but E2-P7 was not detected. This was in contrast to recombinant sources of E2 which contain E2-P7.
Collapse
Affiliation(s)
- Søren U. Nielsen
- School of Clinical Medical Sciences, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Margaret F. Bassendine
- School of Clinical Medical Sciences, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alastair D. Burt
- School of Clinical Medical Sciences, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- School of Clinical and Laboratory Sciences, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Debra J. Bevitt
- School of Clinical Medical Sciences, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Geoffrey L. Toms
- School of Clinical Medical Sciences, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
49
|
Op De Beeck A, Voisset C, Bartosch B, Ciczora Y, Cocquerel L, Keck Z, Foung S, Cosset FL, Dubuisson J. Characterization of functional hepatitis C virus envelope glycoproteins. J Virol 2004; 78:2994-3002. [PMID: 14990718 PMCID: PMC353750 DOI: 10.1128/jvi.78.6.2994-3002.2004] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2, that assemble as a noncovalent heterodimer which is mainly retained in the endoplasmic reticulum. Because assembly into particles and secretion from the cell lead to structural changes in viral envelope proteins, characterization of the proteins associated with the virion is necessary in order to better understand how they mature to be functional in virus entry. There is currently no efficient and reliable cell culture system to amplify HCV, and the envelope glycoproteins associated with the virion have therefore not been characterized yet. Recently, infectious pseudotype particles that are assembled by displaying unmodified HCV envelope glycoproteins on retroviral core particles have been successfully generated. Because HCV pseudotype particles contain fully functional envelope glycoproteins, these envelope proteins, or at least a fraction of them, should be in a mature conformation similar to that on the native HCV particles. In this study, we used conformation-dependent monoclonal antibodies to characterize the envelope glycoproteins associated with HCV pseudotype particles. We showed that the functional unit is a noncovalent E1E2 heterodimer containing complex or hybrid type glycans. We did not observe any evidence of maturation by a cellular endoprotease during the transport of these envelope glycoproteins through the secretory pathway. These envelope glycoproteins were recognized by a panel of conformation-dependent monoclonal antibodies as well as by CD81, a molecule involved in HCV entry. The functional envelope glycoproteins associated with HCV pseudotype particles were also shown to be sensitive to low-pH treatment. Such conformational changes are likely necessary to initiate fusion.
Collapse
Affiliation(s)
- Anne Op De Beeck
- CNRS-UPR2511, Institut de Biologie de Lille and Institut Pasteur de Lille, Lille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Slater-Handshy T, Droll DA, Fan X, Di Bisceglie AM, Chambers TJ. HCV E2 glycoprotein: mutagenesis of N-linked glycosylation sites and its effects on E2 expression and processing. Virology 2004; 319:36-48. [PMID: 14967486 DOI: 10.1016/j.virol.2003.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 10/07/2003] [Accepted: 10/07/2003] [Indexed: 12/31/2022]
Abstract
An expression system for analysis of the synthesis and processing of the E2 glycoprotein of a hepatitis C virus (HCV) genotype 1a strain was developed in transiently transfected cells. E2 proteins representing the entire length of the protein, including the transmembrane segment (E2) as well as two truncated versions (E2(660) and E2(715)), were characterized for acquisition of N-linked glycans and transport to the media of transfected cells. To investigate the utilization of the 10 potential N-linked glycosylation sites on this E2 protein, a series of mutations consisting of single or multiple (two, three, four or eight) ablations of asparagine residues in the background of the E2(660) construct were analyzed. E2(660) proteins harboring single or multiple site mutations were produced at levels similar to that of wild-type protein, but secretion of the single mutants was mildly diminished, and elimination of two or more sites dramatically reduced delivery of the protein to the media. Similar results were obtained in Huh-7 cells with respect to intracellular synthesis and secretion of the mutant proteins. Analysis of oligosaccharide composition using endoglycosidase digestion revealed that all of the glycan residues on the intracellular forms of E2(660), E2(715), and E2 contained N-linked glycans modified into high-mannose carbohydrates, in contrast to the secreted forms, which were endo H resistant. The parental E2(660) protein could be readily detected in Huh-7 cells using anti-polyhistidine or antibody to recombinant E2. In contrast, E2(660) lacking the eight N-linked glycans was expressed but not detectable with anti-E2 antibody, and proteins lacking four glycans exhibited reduced reactivity. These experiments provide direct evidence that the presence of multiple N-linked glycans is required for the proper folding of the E2 protein in the ER and secretory pathway as well as for formation of its antigenic structure.
Collapse
Affiliation(s)
- Tiffany Slater-Handshy
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, MO 63104, USA.
| | | | | | | | | |
Collapse
|