1
|
Huot N, Rascle P, Petitdemange C, Contreras V, Stürzel CM, Baquero E, Harper JL, Passaes C, Legendre R, Varet H, Madec Y, Sauermann U, Stahl-Hennig C, Nattermann J, Saez-Cirion A, Le Grand R, Keith Reeves R, Paiardini M, Kirchhoff F, Jacquelin B, Müller-Trutwin M. SIV-induced terminally differentiated adaptive NK cells in lymph nodes associated with enhanced MHC-E restricted activity. Nat Commun 2021; 12:1282. [PMID: 33627642 PMCID: PMC7904927 DOI: 10.1038/s41467-021-21402-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells play a critical understudied role during HIV infection in tissues. In a natural host of SIV, the African green monkey (AGM), NK cells mediate a strong control of SIVagm infection in secondary lymphoid tissues. We demonstrate that SIVagm infection induces the expansion of terminally differentiated NKG2alow NK cells in secondary lymphoid organs displaying an adaptive transcriptional profile and increased MHC-E-restricted cytotoxicity in response to SIV Env peptides while expressing little IFN-γ. Such NK cell differentiation was lacking in SIVmac-infected macaques. Adaptive NK cells displayed no increased NKG2C expression. This study reveals a previously unknown profile of NK cell adaptation to a viral infection, thus accelerating strategies toward NK-cell directed therapies and viral control in tissues.
Collapse
Affiliation(s)
- Nicolas Huot
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Philippe Rascle
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France ,grid.508487.60000 0004 7885 7602Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Caroline Petitdemange
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | | | - Eduard Baquero
- grid.462718.eInstitut Pasteur, Unité de Virologie Structurale, Paris, France
| | - Justin L. Harper
- grid.189967.80000 0001 0941 6502Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA USA
| | - Caroline Passaes
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Rachel Legendre
- grid.428999.70000 0001 2353 6535Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Hugo Varet
- grid.428999.70000 0001 2353 6535Biomics Platform, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Yoann Madec
- grid.428999.70000 0001 2353 6535 Institut Pasteur; Epidemiology of Emerging Diseases Unit, Paris, France
| | - Ulrike Sauermann
- grid.418215.b0000 0000 8502 7018Deutsches Primatenzentrum - Leibniz Institut für Primatenforschung, Göttingen, Germany
| | - Christiane Stahl-Hennig
- grid.418215.b0000 0000 8502 7018Deutsches Primatenzentrum - Leibniz Institut für Primatenforschung, Göttingen, Germany
| | - Jacob Nattermann
- grid.452463.2Medizinische Klinik und Poliklinik I, Universitätsklinikum Bonn, Germany; German Center for Infection Research (DZIF), Bonn, Germany
| | - Asier Saez-Cirion
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - R. Keith Reeves
- grid.38142.3c000000041936754XCenter for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Mirko Paiardini
- grid.189967.80000 0001 0941 6502Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA USA
| | | | - Beatrice Jacquelin
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Michaela Müller-Trutwin
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| |
Collapse
|
2
|
Huot N, Rascle P, Petitdemange C, Contreras V, Palgen JL, Stahl-Hennig C, Le Grand R, Beignon AS, Jacquelin B, Müller-Trutwin M. Non-human Primate Determinants of Natural Killer Cells in Tissues at Steady-State and During Simian Immunodeficiency Virus Infection. Front Immunol 2020; 11:2134. [PMID: 33013901 PMCID: PMC7511519 DOI: 10.3389/fimmu.2020.02134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells play essential roles in immunity to viruses and tumors. Their function is genetically determined but also modulated by environmental factors. The distribution and functional regulation of these cells vary depending on the tissue. NK cell behavior in lymphoid tissues is so far understudied. Non-human primate (NHP) models are essential for the development of therapies and vaccines against human diseases, and access to NHP tissues allows insights into spatial regulations of NK cells. Here, we investigated tissue-specific parameters of NK cells from NHP species, i.e., cynomolgus macaque (Macaca fascicularis), African green monkey (Chlorocebus sabaeus), rhesus macaque (Macaca mulatta), and baboon (Papio anubis). By comprehensive multi-dimensional analysis of NK cells from secondary lymphoid organs, intestinal mucosa, liver, and blood, we identified tissue- and species-specific patterns of NK cell frequencies, phenotypes, and potential activity. Also, we defined the tissue-specific characteristics of NK cells during infection by the simian immunodeficiency virus. Altogether, our results provide a comprehensive anatomic analysis of NK cells in different tissues of primates at steady-state and during a viral infection.
Collapse
Affiliation(s)
- Nicolas Huot
- Unité HIV, Inflammation et Persistance, Institut Pasteur, Paris, France
| | - Philippe Rascle
- Unité HIV, Inflammation et Persistance, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Vanessa Contreras
- CEA-Université Paris Saclay-Inserm, U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases, IMVA-HB/IDMIT, Fontenay-aux-Roses, France
| | - Jean-Louis Palgen
- CEA-Université Paris Saclay-Inserm, U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases, IMVA-HB/IDMIT, Fontenay-aux-Roses, France
| | | | - Roger Le Grand
- CEA-Université Paris Saclay-Inserm, U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases, IMVA-HB/IDMIT, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- CEA-Université Paris Saclay-Inserm, U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases, IMVA-HB/IDMIT, Fontenay-aux-Roses, France
| | | | | |
Collapse
|
3
|
Nyamota R, Owino V, Murungi EK, Villinger J, Otiende M, Masiga D, Thuita J, Lekolool I, Jeneby M. Broad diversity of simian immunodeficiency virus infecting Chlorocebus species (African green monkey) and evidence of cross-species infection in Papio anubis (olive baboon) in Kenya. J Med Primatol 2020; 49:165-178. [PMID: 32030774 DOI: 10.1111/jmp.12461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/06/2019] [Accepted: 01/19/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Simian immunodeficiency virus (SIV) naturally infects African non-human primates (NHPs) and poses a threat of transmission to humans through hunting and consumption of monkeys as bushmeat. This study investigated the as of yet unknown molecular diversity of SIV in free-ranging Chlorocebus species (African green monkeys-AGMs) and Papio anubis (olive baboons) within Mombasa, Kisumu and Naivasha urban centres in Kenya. METHODS We collected blood samples from 124 AGMs and 65 olive baboons in situ, and detected SIV by high-resolution melting analysis and sequencing of PCR products. RESULTS Simian immunodeficiency virus prevalence was 32% in AGMs and 3% in baboons. High-resolution melting (HRM) analysis demonstrated distinct melt profiles illustrating virus diversity confirmed by phylogenetic analysis. CONCLUSIONS There is persistent evolutionary diversification of SIVagm strains in its natural host, AGMs and cross-species infection to olive baboons is occurring. Further study is required to establish pathogenesis of the diverse SIVagm variants and baboon immunological responses.
Collapse
Affiliation(s)
- Richard Nyamota
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton, Kenya
| | - Vincent Owino
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton, Kenya.,International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | | | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | | | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - John Thuita
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization (BioRI-KALRO), Kikuyu, Kenya
| | | | - Maamun Jeneby
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya.,Department of Tropical and Infectious Diseases, Institute of Primate Research, Karen, Kenya
| |
Collapse
|
4
|
Nguyen QN, Martinez DR, Himes JE, Whitney Edwards R, Han Q, Kumar A, Mangan R, Nicely NI, Xie G, Vandergrift N, Shen X, Pollara J, Permar SR. Predominant envelope variable loop 2-specific and gp120-specific antibody-dependent cellular cytotoxicity antibody responses in acutely SIV-infected African green monkeys. Retrovirology 2018. [PMID: 29523166 PMCID: PMC5845189 DOI: 10.1186/s12977-018-0406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The initial envelope (Env)-specific antibody response in acutely HIV-1-infected individuals and simian immunodeficiency virus (SIV)-infected rhesus monkeys (RMs) is dominated by non-neutralizing antibodies targeting Env gp41. In contrast, natural primate SIV hosts, such as African green monkeys (AGMs), develop a predominant Env gp120-specific antibody response to SIV infection. However, the fine-epitope specificity and function of SIV Env-specific plasma IgG, and their potential role on autologous virus co-evolution in SIV-infected AGMs and RMs remain unclear. Results Unlike the dominant linear gp41-specific IgG responses in RMs, SIV-infected AGMs demonstrated a unique linear variable loop 2 (V2)-specific plasma IgG response that arose concurrently with high gp120-directed antibody-dependent cellular cytotoxicity (ADCC) activity, and SIVsab-infected cell binding responses during acute infection. Moreover, SIV variants isolated from SIV-infected AGMs exhibited high amino acid mutation frequencies within the Env V1V2 loop compared to those of RMs. Notably, the linear V2-specific IgG epitope in AGMs overlaps with an analogous region of the HIV V2 loop containing the K169 mutation epitope identified in breakthrough viruses from RV144 vaccinees. Conclusion Vaccine-elicited Env V2-specific IgG responses have been proposed as an immune correlate of reduced risk in HIV-1/SIV acquisition in humans and RMs. Yet the pathways to elicit these potentially-protective V2-specific IgG responses remain unclear. In this study, we demonstrate that SIV-infected AGMs, which are the natural hosts of SIV, exhibited high plasma linear V2-specific IgG binding responses that arose concurrently with SIV Env gp120-directed ADCC-mediating, and SIV-infected cell plasma IgG binding responses during acute SIV infection, which were not present in acutely SIV-infected RMs. The linear V2-specific antibody response in AGMs targets an overlapping epitope of the proposed site of vaccine-induced immune pressure defined in the moderately protective RV144 HIV-1 vaccine trial. Identifying host factors that control the early elicitation of Env V2-specific IgG and ADCC antibody responses in these natural SIV hosts could inform vaccination strategies aimed at rapidly inducing potentially-protective HIV-1 Env-specific responses in humans. Electronic supplementary material The online version of this article (10.1186/s12977-018-0406-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quang N Nguyen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - David R Martinez
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Jonathon E Himes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - R Whitney Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Qifeng Han
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Amit Kumar
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Riley Mangan
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Nathan I Nicely
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Guanhua Xie
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Nathan Vandergrift
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA. .,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA. .,Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA. .,Department of Immunology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
5
|
Svardal H, Jasinska AJ, Apetrei C, Coppola G, Huang Y, Schmitt CA, Jacquelin B, Ramensky V, Müller-Trutwin M, Antonio M, Weinstock G, Grobler JP, Dewar K, Wilson RK, Turner TR, Warren WC, Freimer NB, Nordborg M. Ancient hybridization and strong adaptation to viruses across African vervet monkey populations. Nat Genet 2017; 49:1705-1713. [PMID: 29083404 PMCID: PMC5709169 DOI: 10.1038/ng.3980] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 09/27/2017] [Indexed: 12/16/2022]
Abstract
Vervet monkeys are among the most widely distributed nonhuman primates, show considerable phenotypic diversity, and have long been an important biomedical model for a variety of human diseases and in vaccine research. Using whole-genome sequencing data from 163 vervets sampled from across Africa and the Caribbean, we find high diversity within and between taxa and clear evidence that taxonomic divergence was reticulate rather than following a simple branching pattern. A scan for diversifying selection across taxa identifies strong and highly polygenic selection signals affecting viral processes. Furthermore, selection scores are elevated in genes whose human orthologs interact with HIV and in genes that show a response to experimental simian immunodeficiency virus (SIV) infection in vervet monkeys but not in rhesus macaques, suggesting that part of the signal reflects taxon-specific adaptation to SIV.
Collapse
Affiliation(s)
- Hannes Svardal
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Anna J Jasinska
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, USA
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Giovanni Coppola
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, USA
- Department of Neurology, University of California Los Angeles, USA
| | - Yu Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | | | | | - Vasily Ramensky
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, USA
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Martin Antonio
- Medical Research Council (MRC), The Gambia Unit, The Gambia
| | - George Weinstock
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - J Paul Grobler
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - Ken Dewar
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, USA
- Department of Anthropology, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Trudy R Turner
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, USA
| | - Nelson B Freimer
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, USA
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
6
|
Kapusinszky B, Mulvaney U, Jasinska AJ, Deng X, Freimer N, Delwart E. Local Virus Extinctions following a Host Population Bottleneck. J Virol 2015; 89:8152-61. [PMID: 26018153 PMCID: PMC4524239 DOI: 10.1128/jvi.00671-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A small number of African green monkeys (AGMs) were introduced into the Caribbean from West Africa in the 1600s. To determine the impact of this population bottleneck on the AGM virome, we used metagenomics to compare the viral nucleic acids in the plasma of 43 wild AGMs from West Africa (Gambia) to those in 44 AGMs from the Caribbean (St. Kitts and Nevis). Three viruses were detected in the blood of Gambian primates: simian immunodeficiency virus (SIVagm; in 42% of animals), a novel simian pegivirus (SPgVagm; in 7% of animals), and numerous novel simian anelloviruses (in 100% of animals). Only anelloviruses were detected in the Caribbean AGMs with a prevalence and levels of viral genetic diversity similar to those in the Gambian animals. A host population bottleneck therefore resulted in the exclusion of adult-acquired SIV and pegivirus from the Caribbean AGMs. The successful importation of AGM anelloviruses into the Caribbean may be the result of their early transmission to infants, very high prevalence in African AGMs, and frequent coinfections with as many as 11 distinct variants. IMPORTANCE The extent to which viruses can persist in small isolated populations depends on multiple host, viral, and environmental factors. The absence of prior infections may put an immunologically naive population at risk for disease outbreaks. Isolated populations originating from a small number of founder individuals are therefore considered at increased risk following contact with populations with a greater variety of viruses. Here, we compared the plasma virome of West African green monkeys to that in their descendants after importation of a small number of animals to the Caribbean. A lentivirus and a pegivirus were found in the West African population but not in the Caribbean population. Highly diverse anelloviruses were found in both populations. A small founder population, limited to infants and young juvenile monkeys, may have eliminated the sexually transmitted viruses from the Caribbean AGMs, while anelloviruses, acquired at an earlier age, persisted through the host population bottleneck.
Collapse
Affiliation(s)
- Beatrix Kapusinszky
- Blood Systems Research Institute, San Francisco, California, USA Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California, USA
| | - Usha Mulvaney
- Blood Systems Research Institute, San Francisco, California, USA University of San Francisco, Department of Biology, San Francisco, California, USA
| | - Anna J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, California, USA
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, USA Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California, USA
| | - Nelson Freimer
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, California, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, USA Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Plasmacytoid Dendritic Cell Infection and Sensing Capacity during Pathogenic and Nonpathogenic Simian Immunodeficiency Virus Infection. J Virol 2015; 89:6918-27. [PMID: 25903334 DOI: 10.1128/jvi.00332-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/17/2015] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques (MAC) lead to chronic inflammation and AIDS. Natural hosts, such as African green monkeys (AGM) and sooty mangabeys (SM), are protected against SIV-induced chronic inflammation and AIDS. Here, we report that AGM plasmacytoid dendritic cells (pDC) express extremely low levels of CD4, unlike MAC and human pDC. Despite this, AGM pDC efficiently sensed SIVagm, but not heterologous HIV/SIV isolates, indicating a virus-host adaptation. Moreover, both AGM and SM pDC were found to be, in contrast to MAC pDC, predominantly negative for CCR5. Despite such limited CD4 and CCR5 expression, lymphoid tissue pDC were infected to a degree similar to that seen with CD4(+) T cells in both MAC and AGM. Altogether, our finding of efficient pDC infection by SIV in vivo identifies pDC as a potential viral reservoir in lymphoid tissues. We discovered low expression of CD4 on AGM pDC, which did not preclude efficient sensing of host-adapted viruses. Therefore, pDC infection and efficient sensing are not prerequisites for chronic inflammation. The high level of pDC infection by SIVagm suggests that if CCR5 paucity on immune cells is important for nonpathogenesis of natural hosts, it is possibly not due to its role as a coreceptor. IMPORTANCE The ability of certain key immune cell subsets to resist infection might contribute to the asymptomatic nature of simian immunodeficiency virus (SIV) infection in its natural hosts, such as African green monkeys (AGM) and sooty mangabeys (SM). This relative resistance to infection has been correlated with reduced expression of CD4 and/or CCR5. We show that plasmacytoid dendritic cells (pDC) of natural hosts display reduced CD4 and/or CCR5 expression, unlike macaque pDC. Surprisingly, this did not protect AGM pDC, as infection levels were similar to those found in MAC pDC. Furthermore, we show that AGM pDC did not consistently produce type I interferon (IFN-I) upon heterologous SIVmac/HIV type 1 (HIV-1) encounter, while they sensed autologous SIVagm isolates. Pseudotyping SIVmac/HIV-1 overcame this deficiency, suggesting that reduced uptake of heterologous viral strains underlays this lack of sensing. The distinct IFN-I responses depending on host species and HIV/SIV isolates reveal the host/virus species specificity of pDC sensing.
Collapse
|
8
|
Duchêne S, Holmes EC, Ho SYW. Analyses of evolutionary dynamics in viruses are hindered by a time-dependent bias in rate estimates. Proc Biol Sci 2015; 281:rspb.2014.0732. [PMID: 24850916 DOI: 10.1098/rspb.2014.0732] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Time-scales of viral evolution and emergence have been studied widely, but are often poorly understood. Molecular analyses of viral evolutionary time-scales generally rely on estimates of rates of nucleotide substitution, which vary by several orders of magnitude depending on the timeframe of measurement. We analysed data from all major groups of viruses and found a strong negative relationship between estimates of nucleotide substitution rate and evolutionary timescale. Strikingly, this relationship was upheld both within and among diverse groups of viruses. A detailed case study of primate lentiviruses revealed that the combined effects of sequence saturation and purifying selection can explain this time-dependent pattern of rate variation. Therefore, our analyses show that studies of evolutionary time-scales in viruses require a reconsideration of substitution rates as a dynamic, rather than as a static, feature of molecular evolution. Improved modelling of viral evolutionary rates has the potential to change our understanding of virus origins.
Collapse
Affiliation(s)
- Sebastián Duchêne
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Edward C Holmes
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Simon Y W Ho
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
9
|
MHC polymorphism in Caribbean African green monkeys. Immunogenetics 2014; 66:353-60. [PMID: 24676686 DOI: 10.1007/s00251-014-0770-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/14/2014] [Indexed: 11/27/2022]
Abstract
African green monkeys (AGM) are among the most widely used nonhuman primate models used in various fields of medical research. One species of AGM that originated from West Africa, Chlorocebus sabaeus, was introduced three centuries ago in the Caribbean islands. We present here a systematic study of the major histocompatibility complex (MHC) polymorphism of Caribbean AGM which is currently frequently used as an animal model. We studied 54 animals originated from Barbados (N=25) or Saint Kitts (N=29). The MHC polymorphism was characterized by means of 17 MHC microsatellites spread across MHC and DRB genotyping by DGGE sequencing. We defined nine frequent MHC haplotypes of which two were found in the two insular populations suggesting either past exchanges between the two populations or a common origin of the founders of the two populations. By the analysis of a previously described EST library, we characterized 38 MHC cDNA sequences (17 class I and 21 class II). In conclusion, we characterized for the first time the MHC polymorphism of Barbados and Saint Kitts AGM. We found a restricted polymorphism due to a founding effect, which is responsible for a strong bottleneck. The poorness of MHC polymorphism observed in the Caribbean AGM populations is similar to that observed in the Mauritian cynomolgus macaque population.
Collapse
|
10
|
Factors associated with siman immunodeficiency virus transmission in a natural African nonhuman primate host in the wild. J Virol 2014; 88:5687-705. [PMID: 24623416 DOI: 10.1128/jvi.03606-13] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED African green monkeys (AGMs) are naturally infected with simian immunodeficiency virus (SIV) at high prevalence levels and do not progress to AIDS. Sexual transmission is the main transmission route in AGM, while mother-to-infant transmission (MTIT) is negligible. We investigated SIV transmission in wild AGMs to assess whether or not high SIV prevalence is due to differences in mucosal permissivity to SIV (i.e., whether the genetic bottleneck of viral transmission reported in humans and macaques is also observed in AGMs in the wild). We tested 121 sabaeus AGMs (Chlorocebus sabaeus) from the Gambia and found that 53 were SIV infected (44%). By combining serology and viral load quantitation, we identified 4 acutely infected AGMs, in which we assessed the diversity of the quasispecies by single-genome amplification (SGA) and documented that a single virus variant established the infections. We thus show that natural SIV transmission in the wild is associated with a genetic bottleneck similar to that described for mucosal human immunodeficiency virus (HIV) transmission in humans. Flow cytometry assessment of the immune cell populations did not identify major differences between infected and uninfected AGM. The expression of the SIV coreceptor CCR5 on CD4+ T cells dramatically increased in adults, being higher in infected than in uninfected infant and juvenile AGMs. Thus, the limited SIV MTIT in natural hosts appears to be due to low target cell availability in newborns and infants, which supports HIV MTIT prevention strategies aimed at limiting the target cells at mucosal sites. Combined, (i) the extremely high prevalence in sexually active AGMs, (ii) the very efficient SIV transmission in the wild, and (iii) the existence of a fraction of multiparous females that remain uninfected in spite of massive exposure to SIV identify wild AGMs as an acceptable model of exposed, uninfected individuals. IMPORTANCE We report an extensive analysis of the natural history of SIVagm infection in its sabaeus monkey host, the African green monkey species endemic to West Africa. Virtually no study has investigated the natural history of SIV infection in the wild. The novelty of our approach is that we report for the first time that SIV infection has no discernible impact on the major immune cell populations in natural hosts, thus confirming the nonpathogenic nature of SIV infection in the wild. We also focused on the correlates of SIV transmission, and we report, also for the first time, that SIV transmission in the wild is characterized by a major genetic bottleneck, similar to that described for HIV-1 transmission in humans. Finally, we report here that the restriction of target cell availability is a major correlate of the lack of SIV transmission to the offspring in natural hosts of SIVs.
Collapse
|
11
|
Dube S, Saksena N, Spicer T, Healey J, Benz P, Dube DK, Poiesz BJ. Delayed seroconversion to STLV-1 infection is associated with mutations in the pol and rex genes. Virol J 2013; 10:282. [PMID: 24025129 PMCID: PMC3851238 DOI: 10.1186/1743-422x-10-282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/28/2013] [Indexed: 12/05/2022] Open
Abstract
Background Simian T-cell lymphoma/leukemia virus-1 (STLV-1) infection of non-human primates can serve as a model for human T-cell lymphoma/leukemia virus infection. Methods Two tantalus and 2 patas monkeys were transfused with intraspecies whole blood infected with STLV-1. Infection was determined by ELISA, western blot and DNA PCR analyses. The entire genome of the STLV-1 Tan 90 strain and some of the STVL-1 Pat74 strain were amplified using over-lapping primer-pairs and subsequently sequenced. Results Followup studies conducted over 2 years indicated that all 4 monkeys remained healthy despite being infected with STLV-1, as determined by PCR, cloning and sequencing analyses. ELISA and Western blot analyses indicated that both patas monkeys seroconverted within 2 months of transfusion, while one tantalus monkey required one year to seroconvert and the other never fully seroconverted. The tantalus monkey which never fully seroconverted, failed to react to HTLV-1 p24 Gag antigen. Sequence analyses indicated that, while unique, the deduced p24 Gag amino acid sequence of the STLV-1 Tan 90 strain used for infection was still highly homologous to the HTLV-1 p24 Gag amino acids present in the ELISA and WB assays. However, a mutation in the pol sequence of STLV-1 Tan 90 encoded a putative stop codon, while a common deletion in the pol/rex regulatory gene causes significant changes in the Pol, and p27 Rex proteins. These same mutations were also observed in the viral DNA of both recipient infected tantalus monkeys and were not present in the STLV-1 Pat 74 strain. Conclusion Our data suggest that seroconversion to STLV-1 infection may be prolonged due to the above mutations, and that compensatory molecular events must have occurred to allow for virus transmission.
Collapse
Affiliation(s)
- Syamalima Dube
- Division of Hematology/Oncology, Department of Medicine, State University of New York, Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Ma D, Jasinska A, Kristoff J, Grobler JP, Turner T, Jung Y, Schmitt C, Raehtz K, Feyertag F, Martinez Sosa N, Wijewardana V, Burke DS, Robertson DL, Tracy R, Pandrea I, Freimer N, Apetrei C. SIVagm infection in wild African green monkeys from South Africa: epidemiology, natural history, and evolutionary considerations. PLoS Pathog 2013; 9:e1003011. [PMID: 23349627 PMCID: PMC3547836 DOI: 10.1371/journal.ppat.1003011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022] Open
Abstract
Pathogenesis studies of SIV infection have not been performed to date in wild monkeys due to difficulty in collecting and storing samples on site and the lack of analytical reagents covering the extensive SIV diversity. We performed a large scale study of molecular epidemiology and natural history of SIVagm infection in 225 free-ranging AGMs from multiple locations in South Africa. SIV prevalence (established by sequencing pol, env, and gag) varied dramatically between infant/juvenile (7%) and adult animals (68%) (p<0.0001), and between adult females (78%) and males (57%). Phylogenetic analyses revealed an extensive genetic diversity, including frequent recombination events. Some AGMs harbored epidemiologically linked viruses. Viruses infecting AGMs in the Free State, which are separated from those on the coastal side by the Drakensberg Mountains, formed a separate cluster in the phylogenetic trees; this observation supports a long standing presence of SIV in AGMs, at least from the time of their speciation to their Plio-Pleistocene migration. Specific primers/probes were synthesized based on the pol sequence data and viral loads (VLs) were quantified. VLs were of 10(4)-10(6) RNA copies/ml, in the range of those observed in experimentally-infected monkeys, validating the experimental approaches in natural hosts. VLs were significantly higher (10(7)-10(8) RNA copies/ml) in 10 AGMs diagnosed as acutely infected based on SIV seronegativity (Fiebig II), which suggests a very active transmission of SIVagm in the wild. Neither cytokine levels (as biomarkers of immune activation) nor sCD14 levels (a biomarker of microbial translocation) were different between SIV-infected and SIV-uninfected monkeys. This complex algorithm combining sequencing and phylogeny, VL quantification, serology, and testing of surrogate markers of microbial translocation and immune activation permits a systematic investigation of the epidemiology, viral diversity and natural history of SIV infection in wild African natural hosts.
Collapse
Affiliation(s)
- Dongzhu Ma
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Thippeshappa R, Ruan H, Kimata JT. Breaking Barriers to an AIDS Model with Macaque-Tropic HIV-1 Derivatives. BIOLOGY 2012; 1:134-64. [PMID: 23336082 PMCID: PMC3546514 DOI: 10.3390/biology1020134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 12/15/2022]
Abstract
The development of an animal model of human immunodeficiency virus type 1 (HIV-1)/AIDS that is suitable for preclinical testing of antiretroviral therapy, vaccines, curative strategies, and studies of pathogenesis has been hampered by the human-specific tropism of HIV-1. Although simian immunodeficiency virus (SIV) or HIV-1/SIV chimeric viruses (SHIVs)-rhesus macaque models are excellent surrogates for AIDS research, the genetic differences between SIV or SHIV and HIV-1 limit their utility as model systems. The identification of innate retro viral restriction factors has increased our understanding about blockades to HIV-1 replication in macaques and provided a guide for the construction of macaque-tropic HIV-1 clones. However, while these viruses replicate in macaque cells in vitro, they are easily controlled and have not caused AIDS in host animals, indicating that we may not fully understand the restrictive barriers of innate immunity. In this review, we discuss recent findings regarding HIV-1 restriction factors, particularly as they apply to cross-species transmission of primate lentiviruses and the development of a macaque model of HIV-1/AIDS.
Collapse
Affiliation(s)
| | | | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.T.); (H.R.)
| |
Collapse
|
14
|
Jacquelin B, Mayau V, Targat B, Liovat AS, Kunkel D, Petitjean G, Dillies MA, Roques P, Butor C, Silvestri G, Giavedoni LD, Lebon P, Barré-Sinoussi F, Benecke A, Müller-Trutwin MC. Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response. J Clin Invest 2010; 119:3544-55. [PMID: 19959873 DOI: 10.1172/jci40093] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 10/19/2009] [Indexed: 01/12/2023] Open
Abstract
African green monkeys (AGMs) infected with the AGM type of SIV (SIVagm) do not develop chronic immune activation and AIDS, despite viral loads similar to those detected in humans infected with HIV-1 and rhesus macaques (RMs) infected with the RM type of SIV (SIVmac). Because chronic immune activation drives progressive CD4+ T cell depletion and immune cell dysfunctions, factors that characterize disease progression, we sought to understand the molecular basis of this AGM phenotype. To this end, we longitudinally assessed the gene expression profiles of blood- and lymph node-derived CD4+ cells from AGMs and RMs in response to SIVagm and SIVmac infection, respectively, using a genomic microarray platform. The molecular signature of acute infection was characterized, in both species, by strong upregulation of type I IFN-stimulated genes (ISGs). ISG expression returned to basal levels after postinfection day 28 in AGMs but was sustained in RMs, especially in the lymph node-derived cells. We also found that SIVagm induced IFN-alpha production by AGM cells in vitro and that low IFN-alpha levels were sufficient to induce strong ISG responses. In conclusion, SIV infection triggered a rapid and strong IFN-alpha response in vivo in both AGMs and RMs, with this response being efficiently controlled only in AGMs, possibly as a result of active regulatory mechanisms.
Collapse
Affiliation(s)
- Béatrice Jacquelin
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Simian immunodeficiency virus SIVagm from African green monkeys does not antagonize endogenous levels of African green monkey tetherin/BST-2. J Virol 2009; 83:11673-81. [PMID: 19726508 DOI: 10.1128/jvi.00569-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Vpu accessory gene that originated in the primate lentiviral lineage leading to human immunodeficiency virus type 1 is an antagonist of human tetherin/BST-2 restriction. Most other primate lentivirus lineages, including the lineage represented by simian immunodeficiency virus SIVagm from African green monkeys (AGMs), do not encode Vpu. While some primate lineages encode gene products other than Vpu that overcome tetherin/BST-2, we find that SIVagm does not antagonize physiologically relevant levels of AGM tetherin/BST-2. AGM tetherin/BST-2 can be induced by low levels of type I interferon and can potently restrict two independent strains of SIVagm. Although SIVagm Nef had an effect at low levels of AGM tetherin/BST-2, simian immunodeficiency virus SIVmus Vpu, from a virus that infects the related monkey Cercopithecus cephus, is able to antagonize even at high levels of AGM tetherin/BST-2 restriction. We propose that since the replication of SIVagm does not induce interferon production in vivo, tetherin/BST-2 is not induced, and therefore, SIVagm does not need Vpu. This suggests that primate lentiviruses evolve tetherin antagonists such as Vpu or Nef only if they encounter tetherin during the typical course of natural infection.
Collapse
|
16
|
Dating the age of the SIV lineages that gave rise to HIV-1 and HIV-2. PLoS Comput Biol 2009; 5:e1000377. [PMID: 19412344 PMCID: PMC2669881 DOI: 10.1371/journal.pcbi.1000377] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 03/30/2009] [Indexed: 12/12/2022] Open
Abstract
Great strides have been made in understanding the evolutionary history of simian immunodeficiency virus (SIV) and the zoonoses that gave rise to HIV-1 and HIV-2. What remains unknown is how long these SIVs had been circulating in non-human primates before the transmissions to humans. Here, we use relaxed molecular clock dating techniques to estimate the time of most recent common ancestor for the SIVs infecting chimpanzees and sooty mangabeys, the reservoirs of HIV-1 and HIV-2, respectively. The date of the most recent common ancestor of SIV in chimpanzees is estimated to be 1492 (1266–1685), and the date in sooty mangabeys is estimated to be 1809 (1729–1875). Notably, we demonstrate that SIV sequences sampled from sooty mangabeys possess sufficient clock-like signal to calibrate a molecular clock; despite the differences in host biology and viral dynamics, the rate of evolution of SIV in sooty mangabeys is indistinguishable from that of its human counterpart, HIV-2. We also estimate the ages of the HIV-2 human-to-human transmissible lineages and provide the first age estimate for HIV-1 group N at 1963 (1948–1977). Comparisons between the SIV most recent common ancestor dates and those of the HIV lineages suggest a difference on the order of only hundreds of years. Our results suggest either that SIV is a surprisingly young lentiviral lineage or that SIV and, perhaps, HIV dating estimates are seriously compromised by unaccounted-for biases. HIV/AIDS continues to be a major health problem worldwide. An understanding of the evolution of HIV in humans may be greatly improved by detailed knowledge of its predecessor, simian immunodeficiency virus (SIV), in non-human primates. While HIV causes AIDS in humans, SIV generally produces a benign infection in its natural hosts. This avirulence is often attributed to coevolution between the virus and its host, possibly due to codivergence over millions of years. Here, we provide a temporal reference for evolution of SIV in its natural primate hosts. Using state-of-the-art molecular clock dating techniques, we estimate the time of most recent common ancestor for SIV in sooty mangabeys and chimpanzees at 1809 (1729–1875) and 1492 (1266–1685), respectively. These ages indicate that SIV may have infected these natural hosts for only hundreds of years before giving rise to HIV. This short duration suggests that viral–host coevolution over millions of years is not a likely explanation for the widespread avirulence of SIV. Finally, despite differences between SIV and HIV in host biology and viral pathogenicity, we have found clear and direct evidence that SIV evolves at a rapid rate in its natural hosts, an evolutionary rate that is indistinguishable from that of HIV in humans.
Collapse
|
17
|
Gag p27-specific B- and T-cell responses in Simian immunodeficiency virus SIVagm-infected African green monkeys. J Virol 2008; 83:2770-7. [PMID: 19109377 DOI: 10.1128/jvi.01841-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonpathogenic simian immunodeficiency virus SIVagm infection of African green monkeys (AGMs) is characterized by the absence of a robust antibody response against Gag p27. To determine if this is accompanied by a selective loss of T-cell responses to Gag p27, we studied CD4(+) and CD8(+) T-cell responses against Gag p27 and other SIVagm antigens in the peripheral blood and lymph nodes of acutely and chronically infected AGMs. Our data show that AGMs can mount a T-cell response against Gag p27, indicating that the absence of anti-p27 antibodies is not due to the absence of Gag p27-specific T cells.
Collapse
|
18
|
Antonovics J, Hood M, Partain J. The ecology and genetics of a host shift: microbotryum as a model system. Am Nat 2008; 160 Suppl 4:S40-53. [PMID: 18707452 DOI: 10.1086/342143] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The need to prevent and cure emerging diseases often precludes their continuing study in situ. We present studies on the process of disease emergence by host shifts using the model system of anther-smut disease (Microbotryum violaceum) on the plant genus Silene (Caryophyllaceae). This system has little direct social impact, and it is readily amenable to experimental manipulation. Our microevolutionary studies have focused on the host shift of Microbotryum from Silene alba (=latifolia; white campion) onto Silene vulgaris (bladder campion) in a population in Virginia. Karyotypic variation shows that the host shift is recent and originates from the disease on sympatric S. alba. Analysis of the spatial pattern of disease shows that the host shift has been contingent on the co-occurrence of the two species at a local scale. Cross-inoculation studies show that families of the new host differ greatly in their susceptibility to the pathogen, indicating the potential for rapid evolution of resistance. Disease expression on the new host is frequently abnormal, suggesting that the pathogen is imperfectly adapted to its new host. In experimental populations, disease transmission within populations of the old host is greater than within populations of the new host. However, there is also a high transmission rate of the disease from the new host back to the old host, suggesting a feedback effect that increases disease prevalence in the community as a whole. Continuing studies of these populations are designed to determine whether this new host-pathogen system is likely to be self-sustaining and to quantify evolutionary changes in both the host and the pathogen.
Collapse
Affiliation(s)
- Janis Antonovics
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | |
Collapse
|
19
|
Wertheim JO, Worobey M. A challenge to the ancient origin of SIVagm based on African green monkey mitochondrial genomes. PLoS Pathog 2008; 3:e95. [PMID: 17616975 PMCID: PMC1904472 DOI: 10.1371/journal.ppat.0030095] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 05/17/2007] [Indexed: 11/19/2022] Open
Abstract
While the circumstances surrounding the origin and spread of HIV are becoming clearer, the particulars of the origin of simian immunodeficiency virus (SIV) are still unknown. Specifically, the age of SIV, whether it is an ancient or recent infection, has not been resolved. Although many instances of cross-species transmission of SIV have been documented, the similarity between the African green monkey (AGM) and SIVagm phylogenies has long been held as suggestive of ancient codivergence between SIVs and their primate hosts. Here, we present well-resolved phylogenies based on full-length AGM mitochondrial genomes and seven previously published SIVagm genomes; these allowed us to perform the first rigorous phylogenetic test to our knowledge of the hypothesis that SIVagm codiverged with the AGMs. Using the Shimodaira-Hasegawa test, we show that the AGM mitochondrial genomes and SIVagm did not evolve along the same topology. Furthermore, we demonstrate that the SIVagm topology can be explained by a pattern of west-to-east transmission of the virus across existing AGM geographic ranges. Using a relaxed molecular clock, we also provide a date for the most recent common ancestor of the AGMs at approximately 3 million years ago. This study substantially weakens the theory of ancient SIV infection followed by codivergence with its primate hosts.
Collapse
Affiliation(s)
- Joel O Wertheim
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America.
| | | |
Collapse
|
20
|
VandeWoude S, Apetrei C. Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin Microbiol Rev 2006; 19:728-62. [PMID: 17041142 PMCID: PMC1592692 DOI: 10.1128/cmr.00009-06] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Over 40 nonhuman primate (NHP) species harbor species-specific simian immunodeficiency viruses (SIVs). Similarly, more than 20 species of nondomestic felids and African hyenids demonstrate seroreactivity against feline immunodeficiency virus (FIV) antigens. While it has been challenging to study the biological implications of nonfatal infections in natural populations, epidemiologic and clinical studies performed thus far have only rarely detected increased morbidity or impaired fecundity/survival of naturally infected SIV- or FIV-seropositive versus -seronegative animals. Cross-species transmissions of these agents are rare in nature but have been used to develop experimental systems to evaluate mechanisms of pathogenicity and to develop animal models of HIV/AIDS. Given that felids and primates are substantially evolutionarily removed yet demonstrate the same pattern of apparently nonpathogenic lentiviral infections, comparison of the biological behaviors of these viruses can yield important implications for host-lentiviral adaptation which are relevant to human HIV/AIDS infection. This review therefore evaluates similarities in epidemiology, lentiviral genotyping, pathogenicity, host immune responses, and cross-species transmission of FIVs and factors associated with the establishment of lentiviral infections in new species. This comparison of consistent patterns in lentivirus biology will expose new directions for scientific inquiry for understanding the basis for virulence versus avirulence.
Collapse
Affiliation(s)
- Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, College of Veterinary and Biomedical Sciences, Colorado State University, Fort Collins, CO 80538-1619, USA
| | | |
Collapse
|
21
|
Goldstein S, Brown CR, Ourmanov I, Pandrea I, Buckler-White A, Erb C, Nandi JS, Foster GJ, Autissier P, Schmitz JE, Hirsch VM. Comparison of simian immunodeficiency virus SIVagmVer replication and CD4+ T-cell dynamics in vervet and sabaeus African green monkeys. J Virol 2006; 80:4868-77. [PMID: 16641278 PMCID: PMC1472054 DOI: 10.1128/jvi.80.10.4868-4877.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The simian immunodeficiency viruses (SIV) naturally infect a wide range of African primates, including African green monkeys (AGM). Despite moderate to high levels of plasma viremia in naturally infected AGM, infection is not associated with immunodeficiency. We recently reported that SIVagmVer90 isolated from a naturally infected vervet AGM induced AIDS following experimental inoculation of pigtailed macaques. The goal of the present study was to evaluate the replication of this isolate in two species of AGM, sabaeus monkeys (Chlorocebus sabaeus) and vervets (C. pygerythrus). Inoculation of sabaeus AGM with SIVagmVer90 resulted in low and variable primary and set-point viremia (<10(2) to 10(4) copies/ml). In contrast, inoculation of vervet AGM with either SIVagmVer90 or blood from a naturally infected vervet (Ver1) resulted in high primary viremia and moderate plateau levels, similar to the range seen in naturally infected vervets from this cohort. CD4(+) T cells remained stable throughout infection, even in AGM with persistent high viremia. Despite the lack of measurable lymphadenopathy, infection was associated with an increased number of Ki-67(+) T cells in lymph node biopsies, consistent with an early antiviral immune response. The preferential replication of SIVagmVer in vervet versus sabaeus AGM shows that it is critical to match AGM species and SIV strains for experimental models of natural SIV infection.
Collapse
Affiliation(s)
- Simoy Goldstein
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pandrea I, Apetrei C, Dufour J, Dillon N, Barbercheck J, Metzger M, Jacquelin B, Bohm R, Marx PA, Barre-Sinoussi F, Hirsch VM, Müller-Trutwin MC, Lackner AA, Veazey RS. Simian immunodeficiency virus SIVagm.sab infection of Caribbean African green monkeys: a new model for the study of SIV pathogenesis in natural hosts. J Virol 2006; 80:4858-67. [PMID: 16641277 PMCID: PMC1472068 DOI: 10.1128/jvi.80.10.4858-4867.2006] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Caribbean-born African green monkeys (AGMs) were classified as Chlorocebus sabaeus by cytochrome b sequencing. Guided by these phylogenetic analyses, we developed a new model for the study of simian immunodeficiency virus (SIV) infection in natural hosts by inoculating Caribbean AGMs with their species-specific SIVagm.sab. SIVagm.sab replicated efficiently in Caribbean AGM peripheral blood mononuclear cells in vitro. During SIVagm.sab primary infection of six Caribbean AGMs, the virus replicated at high levels, with peak viral loads (VLs) of 10(7) to 10(8) copies/ml occurring by day 8 to 10 postinfection (p.i.). Set-point values of up to 2 x 10(5) copies/ml were reached by day 42 p.i. and maintained throughout follow-up (through day 450 p.i.). CD4(+) T-cell counts in the blood showed a transient depletion at the peak of VL, and then returned to near preinfection values by day 28 p.i. and remained relatively stable during the chronic infection. Preservation of CD4 T cells was also found in lymph nodes (LNs) of chronic SIVagm.sab-infected Caribbean AGMs. No activation of CD4(+) T cells was detected in the periphery in SIV-infected Caribbean AGMs. These virological and immunological profiles from peripheral blood and LNs were identical to those previously reported in African-born AGMs infected with the same viral strain (SIVagm.sab92018). Due to these similarities, we conclude that Caribbean AGMs are a useful alternative to AGMs of African origin as a model for the study of SIV infection in natural African hosts.
Collapse
Affiliation(s)
- Ivona Pandrea
- Tulane National Primate Research Center, Covington, LA 70433, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hurtrel B, Petit F, Arnoult D, Müller-Trutwin M, Silvestri G, Estaquier J. Apoptosis in SIV infection. Cell Death Differ 2006; 12 Suppl 1:979-90. [PMID: 15818408 DOI: 10.1038/sj.cdd.4401600] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pathogenic human immunodeficiency virus (HIV)/Simian immunodeficiency virus (SIV) infection is associated with increased T-cell apoptosis. In marked contrast to HIV infection in humans and SIV infection in macaques, the SIV infection of natural host species is typically nonpathogenic despite high levels of viral replication. In these nonpathogenic primate models, no observation of T-cell apoptosis was observed, suggesting that either SIV is less capable of directly inducing apoptosis in natural hosts (likely as a result of coevolution/coadaptation with the host) or, alternatively, that the indirect T-cell apoptosis plays the key role in determining the HIV-associated T-cell depletion and progression to acquired immune deficiency syndrome (AIDS). Understanding the molecular and cellular mechanisms responsible for the disease-free equilibrium in natural hosts for SIV infection, including those determining the absence of high levels of T-cell apoptosis, is likely to provide important clues regarding the mechanisms of AIDS pathogenesis in humans.
Collapse
Affiliation(s)
- B Hurtrel
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, Paris, cedex 15, France
| | | | | | | | | | | |
Collapse
|
24
|
Onanga R, Souquière S, Makuwa M, Mouinga-Ondeme A, Simon F, Apetrei C, Roques P. Primary simian immunodeficiency virus SIVmnd-2 infection in mandrills (Mandrillus sphinx). J Virol 2006; 80:3301-9. [PMID: 16537597 PMCID: PMC1440382 DOI: 10.1128/jvi.80.7.3301-3309.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mandrills are the only nonhuman primate (NHP) naturally infected by two types of simian immunodeficiency virus (SIV): SIVmnd-1 and SIVmnd-2. We have already reported that the high SIVmnd-1 replication during primary infection contrasts with only transient changes in CD4+ and CD8+ cell counts. Since early virus-host interactions predict viral control and disease progression in human immunodeficiency virus-infected patients, we investigated the dynamics of SIVmnd-2 primary infection in mandrills to examine the impact on immune effectors in blood and lymph nodes (LNs). To avoid in vitro strain selection, all mandrills in this study received plasma from SIVmnd-2-infected mandrills. SIVmnd-2 plasma viremia peaked at 10(7) to 10(8) RNA copies/ml between days 7 and 10. This peak was followed in all four monkeys by a decline in virus replication, with a set point level of 10(5) to 10(6) RNA copies/ml at day 42 postinfection (p.i.). Viral DNA load in PBMC and LNs also peaked between days 7 and 10 (10(5) to 10(6) DNA copies/10(6) cells) and stabilized at 10(3) to 10(4) DNA copies/10(6) cells during the chronic phase. Anti-SIVmnd-2 antibodies were detected starting from days 28 to 32. A transitory decline of CD3+ CD4+ cells in the LNs occurred in animals with high peak VLs. CD4+ and CD8+ T-cell activation in blood and LNs was noted between days 5 and 17 p.i., surrounding the peak of viral replication. This was most significant in the LNs. Activation markers then returned to preinfection values despite continuous and active viral replication during the chronic infection. The dynamics of SIVmnd-2 infection in mandrills showed a pattern similar to that of SIVmnd-1 infection. This might be a general feature of nonpathogenic SIV natural African NHP models.
Collapse
Affiliation(s)
- Richard Onanga
- Département de Virologie, Centre International de Recherche Médicales, Gabon.
| | | | | | | | | | | | | |
Collapse
|
25
|
Mortara L, Ploquin MJY, Faye A, Scott-Algara D, Vaslin B, Butor C, Hosmalin A, Barré-Sinoussi F, Diop OM, Müller-Trutwin MC. Phenotype and function of myeloid dendritic cells derived from African green monkey blood monocytes. J Immunol Methods 2005; 308:138-55. [PMID: 16325847 DOI: 10.1016/j.jim.2005.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 07/08/2005] [Accepted: 10/21/2005] [Indexed: 01/19/2023]
Abstract
Myeloid dendritic cells probably play an important role in the immune response against HIV and SIV, and in the enhancement of CD4+ T cell infection. Here, we have investigated phenotypic and functional features of myeloid monocyte-derived DC (MDDC) from African green monkeys (AGMs). AGMs are natural hosts of SIV and exhibit no signs of abnormal T cell activation despite high SIV plasma viremia. We identified mAbs that cross-react specifically with homologous molecules expressed on AGM DC. We adapted a protocol to derive AGM MDDC by culture in the presence of GM-CSF and IL-4. The differentiated cells possessed a typical dendritic morphology and the majority were CD11c+ DC-SIGN+. AGM MDDC displayed a high expression of typical maturation markers, such as CD83, CD86 and DC-LAMP, and moderate immunostimulatory capacity, suggesting that the cells were in a semi-mature state. Stimulation resulted in further maturation, as shown by up-regulation of CD80 and decrease of endocytosis ability. However, neither increase of HLA-DR or CD40 expression nor enhanced immunostimulatory capacity was observed. The latter was associated with a low pro-inflammatory cytokine production during mixed lymphocyte reactions and a cytokine balance in favour of IL-10 in contrast to human MDDC. This is the first characterization of AGM MDDC. The tools described here are a crucial step for future studies in vivo or in vitro on the function of myeloid DC using the AGM animal model.
Collapse
Affiliation(s)
- Lorenzo Mortara
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, 25, rue du Docteur Roux, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dazza MC, Ekwalanga M, Nende M, Shamamba KB, Bitshi P, Paraskevis D, Saragosti S. Characterization of a novel vpu-harboring simian immunodeficiency virus from a Dent's Mona monkey (Cercopithecus mona denti). J Virol 2005; 79:8560-71. [PMID: 15956597 PMCID: PMC1143702 DOI: 10.1128/jvi.79.13.8560-8571.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 02/24/2005] [Indexed: 02/04/2023] Open
Abstract
We report the identification of a new simian immunodeficiency virus (SIV), designated SIVden, in a naturally infected Dent's Mona monkey (Cercopithecus mona denti), which was kept as pet in Kinshasa, capital of the Democratic Republic of Congo. SIVden is genetically distinct from the previously characterized primate lentiviruses. Analysis of the full-length genomic sequence revealed the presence of a vpu open reading frame. This gene is also found in the virus lineage of human immunodeficiency virus type 1 (HIV-1) and chimpanzee immunodeficiency virus (SIVcpz) and was recently described in viruses isolated from Cercopithecus nictitans, Cercopithecus mona, and Cercopithecus cephus. The SIVden vpu coding region is shorter than the HIV-1/SIVcpz and the SIVgsn, SIVmon, and SIVmus counterparts. Unlike Pan troglodytes schweinfurthii viruses (SIVcpzPts) and Cercopithecus monkey viruses (SIVgsn, SIVmon, and SIVmus), the SIVden Vpu contains the characteristic DSGXES motif which was shown to be involved in Vpu-mediated CD4 and IkappaBalpha proteolysis in HIV-1 infected cells. Although it harbors a vpu gene, SIVden is phylogenetically closer to SIVdeb isolated from De Brazza's monkeys (Cercopithecus neglectus), which lacks a vpu gene, than to Cercopithecus monkey viruses, which harbor a vpu sequence.
Collapse
|
27
|
Pandrea I, Kornfeld C, Ploquin MJY, Apetrei C, Faye A, Rouquet P, Roques P, Simon F, Barré-Sinoussi F, Müller-Trutwin MC, Diop OM. Impact of viral factors on very early in vivo replication profiles in simian immunodeficiency virus SIVagm-infected African green monkeys. J Virol 2005; 79:6249-59. [PMID: 15858009 PMCID: PMC1091729 DOI: 10.1128/jvi.79.10.6249-6259.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To better understand which factors govern the levels of viral loads in early lentiviral infections of primates, we developed a model that allows distinguishing between the influences of host and viral factors on viremia. Herein we report that two species of African green monkeys (Chlorocebus sabaeus and C. pygerythrus) infected with their respective wild-type simian immunodeficiency virus SIVagm viruses (SIVagm.sab92018 and SIVagm.ver644) consistently showed reproducible differences in viremia during primary infection but not at later stages of infection. Cross-infections of SIVagm.sab92018 and SIVagm.ver644 into, respectively, C. pygerythrus and C. sabaeus revealed that the dynamics of viral replication during primary infection were dependent on the viral strain used for the infection but not on the host. Hence, the kinetics of SIVagm.sab92018 and SIVagm.ver644 were similar in both sabaeus and vervet animals, indicating that the difference in viremia levels between the two groups during the early phase of infection was not associated with the host. Coreceptor usage for these two strains showed a larger coreceptor repertoire for SIVagm.sab92018, which is able to efficiently use CXCR4 in addition to CCR5, than for SIVagm.ver644, which showed a classical CCR5 coreceptor usage pattern. These differences could not be explained by different charges of the V3 loop for SIVagm.sab92018 and for SIVagm.ver644. In conclusion, our study showed that the extent of virus replication during the primary infection is primarily dependent on viral determinants.
Collapse
Affiliation(s)
- Ivona Pandrea
- Division of Comparative Pathology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Goldstein S, Ourmanov I, Brown CR, Plishka R, Buckler-White A, Byrum R, Hirsch VM. Plateau levels of viremia correlate with the degree of CD4+-T-cell loss in simian immunodeficiency virus SIVagm-infected pigtailed macaques: variable pathogenicity of natural SIVagm isolates. J Virol 2005; 79:5153-62. [PMID: 15795299 PMCID: PMC1069563 DOI: 10.1128/jvi.79.8.5153-5162.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian immunodeficiency virus from African green monkeys (SIVagm) results in asymptomatic infection in its natural host species. The virus is not inherently apathogenic, since infection of pigtailed (PT) macaques (Macaca nemestrina) with one isolate of SIVagm results in an immunodeficiency syndrome characterized by progressive CD4+-T-cell depletion and opportunistic infections. This virus was passaged once in a PT macaque and, thus, may not be entirely reflective of the virulence of the parental strain. The goal of the present study was to assess the pathogenicity of the PT-passaged isolate (SIVagm9063) and two primary SIVagm isolates in PT macaques, including the parental strain of the PT-passaged variant. Infection of macaques with any of the three isolates resulted in high levels of primary plasma viremia by 1 week after inoculation. Viremia was quickly controlled following infection with SIVagm155; these animals have maintained CD4+-T-cell subsets and remain healthy. The plateau levels among SIVagm90- and SIVagm9063-inoculated macaques varied widely from 100 to 1 million copies/ml of plasma. Three of four animals from each of these groups progressed to AIDS. Setpoint viremia and the degree of CD4+-T-cell loss at 6 months postinfection were not significantly different between macaques inoculated with SIVagm90 and SIVagm9063. However these parameters were significantly different in SIVagm155-inoculated macaques (P values of <0.01). Considering all the macaques, the degree of CD4+-T-cell loss by 6 months postinfection correlated with the plateau levels of viremia. Thus, similar to SIVsm/mac infection of macaques and human AIDS, viral load is an excellent prognostic indicator of disease course. The inherent pathogenicity of natural SIVagm isolates varies, but such natural isolates are capable of inducing AIDS in macaques without prior macaque passage.
Collapse
Affiliation(s)
- Simoy Goldstein
- LMM, NIAID, NIH, Twinbrook II Facility, 12441 Parklawn Dr., Rockville, MD 20852, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Ndongmo CB, Switzer WM, Pau CP, Zeh C, Schaefer A, Pieniazek D, Folks TM, Kalish ML. New multiple antigenic peptide-based enzyme immunoassay for detection of simian immunodeficiency virus infection in nonhuman primates and humans. J Clin Microbiol 2005; 42:5161-9. [PMID: 15528710 PMCID: PMC525168 DOI: 10.1128/jcm.42.11.5161-5169.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections with human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2, respectively) are zoonotic infections. In Africa, the potential exists for additional cross-species transmissions from at least 33 different species of simian immunodeficiency virus (SIV)-infected nonhuman primates (NHPs) through hunting and butchering of these animals for food. Here we describe a highly sensitive and specific enzyme immunoassay (EIA) with chemically modified, multiple antigenic peptides (MAPs) developed for the detection and discrimination of antibodies to SIV genetic lineages. The SIV EIA was developed by using a comprehensive array of MAPs covering two envelope gene regions from all of the SIV lineages for which env sequences were available. Assay sensitivity was evaluated by using 63 plasma or serum samples obtained from primates naturally or experimentally infected with SIVs from 10 genetic lineages. Assay specificity was determined by using 97 known SIV-negative plasma specimens from these same species. Also used in the evaluations were 369 human samples: 198 HIV seronegative, 170 HIV-1 and/or HIV-2 seropositive, and 1 from a human SIVsm infection. Overall assay sensitivity and specificity were 100% with both immunodominant region (IDR) and V3 region MAPs. Although SIV env sequences from talapoin monkeys were not available for specific MAP inclusion, 5 (100%) of 5 SIVtal-infected samples were detected through cross-reactivity with other SIV IDR MAPs used in the assay. The one human SIVsm infection was identified. In conclusion, our SIV MAP EIA proved to be highly sensitive and specific for detecting SIV infections in NHPs and humans. As shown with SIV-infected talapoin monkeys, this assay has the potential to detect previously unidentified SIV strains and should be suitable for sentinel surveillance for potential new cross-species transmissions of SIVs to humans.
Collapse
Affiliation(s)
- C B Ndongmo
- Division of AIDS, STD, and TB Laboratory, National Center for HIV, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bibollet-Ruche F, Bailes E, Gao F, Pourrut X, Barlow KL, Clewley JP, Mwenda JM, Langat DK, Chege GK, McClure HM, Mpoudi-Ngole E, Delaporte E, Peeters M, Shaw GM, Sharp PM, Hahn BH. New simian immunodeficiency virus infecting De Brazza's monkeys (Cercopithecus neglectus): evidence for a cercopithecus monkey virus clade. J Virol 2004; 78:7748-62. [PMID: 15220449 PMCID: PMC434087 DOI: 10.1128/jvi.78.14.7748-7762.2004] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nearly complete sequences of simian immunodeficiency viruses (SIVs) infecting 18 different nonhuman primate species in sub-Saharan Africa have now been reported; yet, our understanding of the origins, evolutionary history, and geographic distribution of these viruses still remains fragmentary. Here, we report the molecular characterization of a lentivirus (SIVdeb) naturally infecting De Brazza's monkeys (Cercopithecus neglectus). Complete SIVdeb genomes (9,158 and 9227 bp in length) were amplified from uncultured blood mononuclear cell DNA of two wild-caught De Brazza's monkeys from Cameroon. In addition, partial pol sequences (650 bp) were amplified from four offspring of De Brazza's monkeys originally caught in the wild in Uganda. Full-length (9068 bp) and partial pol (650 bp) SIVsyk sequences were also amplified from Sykes's monkeys (Cercopithecus albogularis) from Kenya. Analysis of these sequences identified a new SIV clade (SIVdeb), which differed from previously characterized SIVs at 40 to 50% of sites in Pol protein sequences. The viruses most closely related to SIVdeb were SIVsyk and members of the SIVgsn/SIVmus/SIVmon group of viruses infecting greater spot-nosed monkeys (Cercopithecus nictitans), mustached monkeys (Cercopithecus cephus), and mona monkeys (Cercopithecus mona), respectively. In phylogenetic trees of concatenated protein sequences, SIVdeb, SIVsyk, and SIVgsn/SIVmus/SIVmon clustered together, and this relationship was highly significant in all major coding regions. Members of this virus group also shared the same number of cysteine residues in their extracellular envelope glycoprotein and a high-affinity AIP1 binding site (YPD/SL) in their p6 Gag protein, as well as a unique transactivation response element in their viral long terminal repeat; however, SIVdeb and SIVsyk, unlike SIVgsn, SIVmon, and SIVmus, did not encode a vpu gene. These data indicate that De Brazza's monkeys are naturally infected with SIVdeb, that this infection is prevalent in different areas of the species' habitat, and that geographically diverse SIVdeb strains cluster in a single virus group. The consistent clustering of SIVdeb with SIVsyk and the SIVmon/SIVmus/SIVgsn group also suggests that these viruses have evolved from a common ancestor that likely infected a Cercopithecus host in the distant past. The vpu gene appears to have been acquired by a subset of these Cercopithecus viruses after the divergence of SIVdeb and SIVsyk.
Collapse
|
31
|
Gueye A, Diop OM, Ploquin MJY, Kornfeld C, Faye A, Cumont MC, Hurtrel B, Barré-Sinoussi F, Müller-Trutwin MC. Viral load in tissues during the early and chronic phase of non-pathogenic SIVagm infection. J Med Primatol 2004; 33:83-97. [PMID: 15061721 DOI: 10.1111/j.1600-0684.2004.00057.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
African green monkeys (AGMs) persistently infected with SIVagm do not develop AIDS, although their plasma viremia levels can reach those reported for pathogenic HIV-1 and SIVmac infections. In contrast, the viral burden in lymph nodes in SIVagm-infected AGMs is generally lower in comparison with HIV/SIVmac pathogenic infections, at least during the chronic phase of SIVagm infection. We searched for the primary targets of viral replication, which might account for the high viremias in SIVagm-infected AGMs. We evaluated for the first time during primary infection SIVagm dissemination in various lymphoid and non-lymphoid tissues. Sixteen distinct organs at a time point corresponding to maximal virus production were analyzed for viral RNA and DNA load. At days 8 and 9 p.i., viral RNA could be detected in a wide range of tissues, such as jejunum, spleen, mesenteric lymph nodes, thymus and lung. Quantification of viral DNA and RNA as well as of productively infected cells revealed that viral replication during this early phase takes place mainly in secondary lymphoid organs and in the gut (5 x 10(4)-5 x 10(8) RNA copies/10(6) cells). By 4 years p.i., RNA copy numbers were below detection level in thymus and lung. Secondary lymphoid organs displayed 6 x 10(2)-2 x 10(6) RNA copies/10(6) cells, while some tissue fragments of ileum and jejunum still showed high viral loads (up to 10(9) copies/10(6) cells). Altogether, these results indicate a rapid dissemination of SIVagm into lymphoid tissues, including the small intestine. The latter, despite showing marked regional variations, most likely contributes significantly to the high levels of viremia observed during SIVagm infection.
Collapse
Affiliation(s)
- A Gueye
- Unité de Biologie des Rétrovirus, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Viruses, especially those with RNA genomes, represent ideal organisms to study the dynamics of microevolutionary change. In particular, their rapid rate of nucleotide substitution means that the epidemiological processes that shape their diversity act on the same time-scale as mutations are fixed in viral populations. Consequently, the branching structure of virus phylogenies provides a unique insight into spatial and temporal dynamics. Herein, I describe the key processes in virus phylogeography. These are generally associated with the relative rates of dispersal among populations and virus-host codivergence (vicariance), and the division between acute (short-term) and persistent (long-term) infections. These processes will be illustrated by important human viruses - HIV, dengue, rabies, polyomavirus JC and human papillomavirus - which display varying spatial and temporal structures and virus-host relationships. Key research questions for the future will also be established.
Collapse
Affiliation(s)
- Edward C Holmes
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS. UK.
| |
Collapse
|
33
|
Ploquin MJY, Diop OM, Sol-Foulon N, Mortara L, Faye A, Soares MA, Nerrienet E, Le Grand R, Van Kooyk Y, Amara A, Schwartz O, Barré-Sinoussi F, Müller-Trutwin MC. DC-SIGN from African green monkeys is expressed in lymph nodes and mediates infection in trans of simian immunodeficiency virus SIVagm. J Virol 2004; 78:798-810. [PMID: 14694112 PMCID: PMC368752 DOI: 10.1128/jvi.78.2.798-810.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
African green monkeys (AGMs) infected by simian immunodeficiency virus (SIV) SIVagm are resistant to AIDS. SIVagm-infected AGMs exhibit levels of viremia similar to those described during pathogenic human immunodeficiency virus type 1 (HIV-1) and SIVmac infections in humans and macaques, respectively, but contain lower viral loads in their lymph nodes. We addressed the potential role of dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN; CD209) in viral dissemination. In previous studies, it has been shown that human DC-SIGN and macaque DC-SIGN allow transmission of HIV and SIVmac to T cells. Here, we looked at the ability of DC-SIGN derived from AGM lymph nodes to interact with SIVagm. We show that DC-SIGN-expressing cells are present mainly in the medulla and often within the cortex and/or paracortex of AGM lymph nodes. We describe the isolation and characterization of at least three isoforms of dc-sign mRNA in lymph nodes of AGMs. The predicted amino acid sequence from the predominant mRNA isoform, DC-SIGNagm1, is 92 and 99% identical to the corresponding human and rhesus macaque DC-SIGN amino acid sequences, respectively. DC-SIGNagm1 is characterized by the lack of the fourth motif in the repeat domain. This deletion was also detected in the dc-sign gene derived from thirteen animals belonging to five other African monkey species and from four macaques (Macaca fascicularis and M. mulatta). Despite three- to seven-amino-acid modifications compared to DC-SIGNmac, DC-SIGNagm1 allows transmission of SIVagm to T cells. Furthermore, AGM monocyte-derived dendritic cells (MDDC) expressed at least 100,000 DC-SIGN molecules and were able to transmit SIVagm to T cells. At a low multiplicity of infection (10(-5) 50% tissue culture infective doses/cell), viral transmission by AGM MDDC was mainly DC-SIGN dependent. The present study reveals that DC-SIGN from a natural host species of SIV has the ability to act as an efficient attachment and transmission factor for SIVagm and suggests the absence of a direct link between this ability and viral load levels in lymph nodes.
Collapse
|
34
|
Courgnaud V, Abela B, Pourrut X, Mpoudi-Ngole E, Loul S, Delaporte E, Peeters M. Identification of a new simian immunodeficiency virus lineage with a vpu gene present among different cercopithecus monkeys (C. mona, C. cephus, and C. nictitans) from Cameroon. J Virol 2004; 77:12523-34. [PMID: 14610175 PMCID: PMC262559 DOI: 10.1128/jvi.77.23.12523-12534.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During a large serosurvey of wild-caught primates from Cameroon, we found 2 mona monkeys (Cercopithecus mona) out of 8 and 47 mustached monkeys (Cercopithecus cephus) out of 302 with human immunodeficiency virus (HIV)-simian immunodeficiency virus (SIV) cross-reactive antibodies. In this report, we describe the full-length genome sequences of two novel SIVs, designated SIVmon-99CMCML1 and SIVmus-01CM1085, isolated from one mona (CML1) and one mustached (1085) monkey, respectively. Interestingly, these viruses displayed the same genetic organization (i.e., presence of a vpu homologue) as members of the SIVcpz-HIV type 1 lineage and SIVgsn isolated from greater spot-nosed monkeys (Cercopithecus nictitans). Phylogenetic analyses of SIVmon and SIVmus revealed that these viruses were genetically distinct from other known primate lentiviruses but were more closely related to SIVgsn all across their genomes, thus forming a monophyletic lineage within the primate lentivirus family, which we designated the SIVgsn lineage. Interestingly, mona, mustached, and greater spot-nosed monkeys are phylogenetically related species belonging to three different groups of the genus Cercopithecus, the C. mona, C. cephus, and Cercopithecus mitis groups, respectively. The presence of new viruses closely related to SIVgsn in two other species reinforces the hypothesis that a recombination event between ancestral SIVs from the family Cercopithecinae is the origin of the present SIVcpz that is widespread among the chimpanzee population.
Collapse
Affiliation(s)
- Valérie Courgnaud
- UR36, Institut de Recherche pour le Développement (IRD), and University of Montpellier I, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Salemi M, De Oliveira T, Courgnaud V, Moulton V, Holland B, Cassol S, Switzer WM, Vandamme AM. Mosaic genomes of the six major primate lentivirus lineages revealed by phylogenetic analyses. J Virol 2003; 77:7202-13. [PMID: 12805419 PMCID: PMC164811 DOI: 10.1128/jvi.77.13.7202-7213.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2002] [Accepted: 04/03/2003] [Indexed: 11/20/2022] Open
Abstract
To clarify the origin and evolution of the primate lentiviruses (PLVs), which include human immunodeficiency virus types 1 and 2 as well as their simian relatives, simian immunodeficiency viruses (SIVs), isolated from several host species, we investigated the phylogenetic relationships among the six supposedly nonrecombinant PLV lineages for which the full genome sequences are available. Employing bootscanning as an exploratory tool, we located several regions in the PLV genome that seem to have uncertain or conflicting phylogenetic histories. Phylogeny reconstruction based on distance and maximum-likelihood algorithms followed by a number of statistical tests confirms the existence of at least five putative recombinant fragments in the PLV genome with different clustering patterns. Split decomposition analysis also shows that phylogenetic relationships among PLVs may be better represented by network-based graphs, such as the ones produced by SplitsTree. Our findings not only imply that the six so-called pure PLV lineages have in fact mosaic genomes but also make more unlikely the hypothesis of cospeciation of SIVs and their simian hosts.
Collapse
Affiliation(s)
- Marco Salemi
- Rega Institute for Medical Research, KULeuven, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hu J, Switzer WM, Foley BT, Robertson DL, Goeken RM, Korber BT, Hirsch VM, Beer BE. Characterization and comparison of recombinant simian immunodeficiency virus from drill (Mandrillus leucophaeus) and mandrill (Mandrillus sphinx) isolates. J Virol 2003; 77:4867-80. [PMID: 12663793 PMCID: PMC152139 DOI: 10.1128/jvi.77.8.4867-4880.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since simian immunodeficiency virus (SIV) was found to be the source of the human AIDS pandemic, a major goal has been to characterize the diversity of SIV strains in the wild and to assess their potential for crossover into humans. In the present study, SIV was isolated from a seropositive drill (Mandrillus leucophaeus) and three seropositive mandrills (Mandrillus sphinx) by using macaque peripheral blood mononuclear cells (PBMC). Full-length sequences were obtained from a drill and mandrill and designated SIVdrl1FAO and SIVmnd5440, respectively. A 182-bp fragment of the pol genes of the two remaining mandrill SIV isolates was also analyzed. Phylogenetic analyses demonstrated that SIVdrl1FAO formed a monophyletic clade with SIVmnd5440 and SIVmndM14, recently designated SIVmnd type 2. Both the SIVdrl and SIVmnd type 2 genomes carried a vpx gene and appeared to share a common ancestor with SIVrcm in the 5' region of the genome and with SIVmndGB1 (type 1) in the 3' region of the genome. A statistically significant recombination breakpoint was detected at the beginning of envelope, suggesting that the viruses were descendents of the same recombinant. Phylogenetic analysis of vpx and vpr genes demonstrated that the vpx genes formed a monophyletic cluster that grouped with vpr from SIVagm. In addition, both SIVdrl1FAO and SIVmnd5440 replicated in human PBMC and therefore could pose a risk of transmission to the human population.
Collapse
Affiliation(s)
- Jinjie Hu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Courgnaud V, Formenty P, Akoua-Koffi C, Noe R, Boesch C, Delaporte E, Peeters M. Partial molecular characterization of two simian immunodeficiency viruses (SIV) from African colobids: SIVwrc from Western red colobus (Piliocolobus badius) and SIVolc from olive colobus (Procolobus verus). J Virol 2003; 77:744-8. [PMID: 12477880 PMCID: PMC140619 DOI: 10.1128/jvi.77.1.744-748.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2002] [Accepted: 09/24/2002] [Indexed: 11/20/2022] Open
Abstract
In order to study primate lentivirus evolution in the Colobinae subfamily, in which only one simian immunodeficiency virus (SIV) has been described to date, we screened additional species from the three different genera of African colobus monkeys for SIV infection. Blood was obtained from 13 West African colobids, and HIV cross-reactive antibodies were observed in 5 of 10 Piliocolobus badius, 1 of 2 Procolobus verus, and 0 of 1 Colobus polykomos specimens. Phylogenetic analyses of partial pol sequences revealed that the new SIVs were more closely related to each other than to the other SIVs and especially did not cluster with the previously described SIVcol from Colobus guereza. This study presents evidence that the three genera of African colobus monkeys are naturally infected with an SIV and indicates also that there was no coevolution between virus and hosts at the level of the Colobinae subfamily.
Collapse
|
39
|
König RR, Flory E, Steidl S, Neumann J, Coulibaly C, Holznagel E, Holzammer S, Norley S, Cichutek K. Engineered CD4- and CXCR4-using simian immunodeficiency virus from African green monkeys is neutralization sensitive and replicates in nonstimulated lymphocytes. J Virol 2002; 76:10627-36. [PMID: 12368305 PMCID: PMC136611 DOI: 10.1128/jvi.76.21.10627-10636.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During human immunodeficiency virus type 1 (HIV-1) infection, disease progression correlates with the occurrence of variants using the coreceptor CXCR4 for cell entry. In contrast, apathogenic simian immunodeficiency virus (SIV) from African green monkeys (SIVagm), specifically the molecular virus clone SIVagm3mc, uses CCR5, Bob, and Bonzo as coreceptors throughout the course of infection. The influence of an altered coreceptor usage on SIVagm3mc replication was studied in vitro and in vivo. The putative coreceptor binding domain, the V3 region of the surface envelope (SU) glycoprotein, was replaced by the V3 loop of a CD4- and CXCR4-tropic HIV-1 strain. The resulting virus, termed SIVagm3-X4mc, exclusively used CD4 and CXCR4 for cell entry. Consequently, its in vitro replication was inhibited by SDF-1, the natural ligand of CXCR4. Surprisingly, SIVagm3-X4mc was able to replicate in vitro not only in interleukin-2- and phytohemagglutinin-stimulated but also in nonstimulated peripheral blood mononuclear cells (PBMCs) from nonhuman primates. After experimental infection of two pig-tailed macaques with either SIVagm3-X4mc or SIVagm3mc, the coreceptor usage was maintained during in vivo replication. Cell-associated and plasma viral loads, as well as viral DNA copy numbers, were found to be comparable between SIVagm3mc and SIVagm 3-X4mc infections, and no pathological changes were observed up to 14 months postinfection. Interestingly, the V3 loop exchange rendered SIVagm3-X4mc susceptible to neutralizing antibodies present in the sera of SIVagm3-X4mc- and SIVagm3mc-infected pig-tailed macaques. Our study describes for the first time a successful exchange of a V3 loop in nonpathogenic SIVagm resulting in CD4 and CXCR4 usage and modulation of virus replication in nonstimulated PBMCs as well as sensitivity toward neutralization.
Collapse
Affiliation(s)
- Renate R König
- Department of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Onanga R, Kornfeld C, Pandrea I, Estaquier J, Souquière S, Rouquet P, Mavoungou VP, Bourry O, M'Boup S, Barré-Sinoussi F, Simon F, Apetrei C, Roques P, Müller-Trutwin MC. High levels of viral replication contrast with only transient changes in CD4(+) and CD8(+) cell numbers during the early phase of experimental infection with simian immunodeficiency virus SIVmnd-1 in Mandrillus sphinx. J Virol 2002; 76:10256-63. [PMID: 12239301 PMCID: PMC136548 DOI: 10.1128/jvi.76.20.10256-10263.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early events during human immunodeficiency virus infections are considered to reflect the capacity of the host to control infection. We have studied early virus and host parameters during the early phase of simian immunodeficiency virus SIVmnd-1 nonpathogenic infection in its natural host, Mandrillus sphinx. Four mandrills were experimentally infected with a primary SIVmnd-1 strain derived from a naturally infected mandrill. Two noninfected control animals were monitored in parallel. Blood and lymph nodes were collected at three time points before infection, twice a week during the first month, and at days 60, 180, and 360 postinfection (p.i.). Anti-SIVmnd-1 antibodies were detected starting from days 28 to 32 p.i. Neither elevated temperature nor increased lymph node size were observed. The viral load in plasma peaked between days 7 to 10 p.i. (2 x 10(6) to 2 x 10(8) RNA equivalents/ml). Viremia then decreased 10- to 1,000-fold, reaching the viral set point between days 30 to 60 p.i. The levels during the chronic phase of infection were similar to that in the naturally infected donor mandrill (2 x 10(5) RNA equivalents/ml). The CD4(+) cell numbers and percentages in blood and lymph nodes decreased slightly (<10%) during primary infection, and CD8(+) cell numbers increased transiently. All values returned to preinfection infection levels by day 30 p.i. CD8(+) cell numbers or percentages, in peripheral blood and lymph nodes, did not increase during the 1 year of follow-up. In conclusion, SIVmnd-1 has the capacity for rapid and extensive replication in mandrills. Despite high levels of viremia, CD4(+) and CD8(+) cell numbers remained stable in the post-acute phase of infection, raising questions regarding the susceptibility of mandrill T cells to activation and/or cell death in response to SIVmnd-1 infection in vivo.
Collapse
Affiliation(s)
- Richard Onanga
- Département de Virologie, Centre de Primatologie, Centre International de Recherches Médicales, Franceville BP 769, Gabon
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Courgnaud V, Salemi M, Pourrut X, Mpoudi-Ngole E, Abela B, Auzel P, Bibollet-Ruche F, Hahn B, Vandamme AM, Delaporte E, Peeters M. Characterization of a novel simian immunodeficiency virus with a vpu gene from greater spot-nosed monkeys (Cercopithecus nictitans) provides new insights into simian/human immunodeficiency virus phylogeny. J Virol 2002; 76:8298-309. [PMID: 12134035 PMCID: PMC155126 DOI: 10.1128/jvi.76.16.8298-8309.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, we describe a new simian immunodeficiency virus (SIV), designated SIVgsn, naturally infecting greater spot-nosed monkeys (Cercopithecus nictitans) in Cameroon. Together with SIVsyk, SIVgsn represents the second virus isolated from a monkey belonging to the Cercopithecus mitis group of the Cercopithecus genus. Full-length genome sequence analysis of two SIVgsn strains, SIVgsn-99CM71 and SIVgsn-99CM166, revealed that despite the close phylogenetic relationship of their hosts, SIVgsn was highly divergent from SIVsyk. First of all, they differ in their genomic organization. SIVgsn codes for a vpu homologue, so far a unique feature of the members of the SIVcpz/human immunodeficiency virus type 1 (HIV-1) lineage, and detailed phylogenetic analyses of various regions of the viral genome indicated that SIVgsn might be a mosaic of sequences with different evolutionary histories. SIVgsn was related to SIVsyk in Gag and part of Pol and related to SIVcpz in Env, and the middle part of the genome did not cluster significantly with any of the known SIV lineages. When comparing the two SIVgsn Env sequences with that of SIVcpz, a remarkable conservation was seen in the V3 loop, indicating a possible common origin for the envelopes of these two viruses. The habitats of the two subspecies of chimpanzees infected by SIVcpz overlap the geographic ranges of greater spot-nosed monkeys and other monkey species, allowing cross-species transmission and recombination between coinfecting viruses. The complex genomic structure of SIVgsn, the presence of a vpu gene, and its relatedness to SIVcpz in the envelope suggest a link between SIVgsn and SIVcpz and provide new insights about the origin of SIVcpz in chimpanzees.
Collapse
Affiliation(s)
- Valérie Courgnaud
- UR36, Institut de Recherche pour le Développement, and University of Montpellier I, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Holznagel E, Norley S, Holzammer S, Coulibaly C, Kurth R. Immunological changes in simian immunodeficiency virus (SIV(agm))-infected African green monkeys (AGM): expanded cytotoxic T lymphocyte, natural killer and B cell subsets in the natural host of SIV(agm). J Gen Virol 2002; 83:631-640. [PMID: 11842258 DOI: 10.1099/0022-1317-83-3-631] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The African green monkey (AGM) model system for simian immunodeficiency virus (SIV(agm)) has been used to examine why prolonged infection with the relevant virus does not result in the development of immunodeficiency in its natural host. Blood lymphocyte subset values were determined in uninfected (n=88) and naturally SIV(agm)-infected AGMs (n=74). A number of blood cell subsets, such as CD8alpha(+)CD3(+)CD28(neg), CD8alpha(+)CD3(neg) and CD20(+) cells, were expanded significantly in clinically asymptomatic animals carrying a relatively high plasma load of viral RNA (10(4)-10(7) RNA copies/ml plasma). The expanded CD8alpha(+)CD3(+)CD28(neg) subpopulation (1094 +/- 986 cells/microl blood in infected animals versus 402 +/- 364 cells/microl blood, P=0.03) comprised cells that resembled terminally differentiated effector CD8 T cells (CD27(neg) and CD11a(+)). In SIV(agm)-infected animals, the expanded CD8alpha(+)CD3(neg) cell subset shared identity with the CD16(+) population (natural killer cells). These results demonstrate for the first time that apathogenic SIV(agm) infection causes significant changes in the immune system of its natural host. Although previous studies had indicated that noncytotoxic mechanisms might play an important role in the suppression of virus replication in the natural host of SIV(agm), this study sheds new light on the possible role of cytotoxic T lymphocytes, the innate immune system and double-positive T helper cells (CD4(+)CD8alpha(+)CD3(+)) in suppressing virus replication in this animal model of AIDS.
Collapse
Affiliation(s)
- Edgar Holznagel
- Paul-Ehrlich-Institute, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany1
| | - Stephen Norley
- Paul-Ehrlich-Institute, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany1
| | - Silke Holzammer
- Paul-Ehrlich-Institute, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany1
| | - Cheick Coulibaly
- Paul-Ehrlich-Institute, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany1
| | - Reinhard Kurth
- Paul-Ehrlich-Institute, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany1
| |
Collapse
|
43
|
Beer BE, Foley BT, Kuiken CL, Tooze Z, Goeken RM, Brown CR, Hu J, St Claire M, Korber BT, Hirsch VM. Characterization of novel simian immunodeficiency viruses from red-capped mangabeys from Nigeria (SIVrcmNG409 and -NG411). J Virol 2001; 75:12014-27. [PMID: 11711592 PMCID: PMC116097 DOI: 10.1128/jvi.75.24.12014-12027.2001] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two novel simian immunodeficiency virus (SIV) strains from wild-caught red-capped mangabeys (Cercocebus torquatus torquatus) from Nigeria were characterized. Sequence analysis of the fully sequenced SIV strain rcmNG411 (SIVrcmNG411) and gag and pol sequence of SIVrcmNG409 revealed that they were genetically most closely related to the recently characterized SIVrcm from Gabon (SIVrcmGB1). Thus, red-capped mangabeys from distant geographic locations harbor a common lineage of SIV. SIVrcmNG411 carried a vpx gene in addition to vpr, suggesting a common evolutionary ancestor with SIVsm (from sooty mangabeys). However, SIVrcm was only marginally closer to SIVsm in that region than to any of the other lentiviruses. SIVrcm showed the highest similarity in pol with SIVdrl, isolated from a drill, a primate that is phylogenetically distinct from mangabey monkeys, and clustered with other primate lentiviruses (primarily SIVcpz [from chimpanzees] and SIVagmSab [from African green monkeys]) discordantly in different regions of the genome, suggesting a history of recombination. Despite the genetic relationship to SIVcpz in the pol gene, SIVrcmNG411 did not replicate in chimpanzee peripheral blood mononuclear cells (PBMC), although two other viruses unrelated to SIVcpz, SIVmndGB1 (from mandrills) and SIVlhoest (from L'Hoest monkeys), were able to grow in chimpanzee PBMC. The CCR5 24-bp deletion previously described in red-capped mangabeys from Gabon was also observed in Nigerian red-capped mangabeys, and SIVrcmNG411, like SIVrcmGB1, used CCR2B and STRL33 as coreceptors for virus entry. SIVrcm, SIVsm, SIVmndGB1, and all four SIVlhoest isolates but not SIVsun (from sun-tailed monkeys) replicated efficiently in human PBMC, suggesting that the ability to infect the human host can vary within one lineage.
Collapse
Affiliation(s)
- B E Beer
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hu X, Javadian A, Gagneux P, Robertson BH. Paired chimpanzee hepatitis B virus (ChHBV) and mtDNA sequences suggest different ChHBV genetic variants are found in geographically distinct chimpanzee subspecies. Virus Res 2001; 79:103-8. [PMID: 11551650 DOI: 10.1016/s0168-1702(01)00334-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The surface antigen gene region from five chronic hepatitis B virus (HBV) infected chimpanzees was amplified by PCR and the sequence determined. Sequence comparison confirmed that all of the sequences were chimpanzee hepatitis B virus (chHBV) and they appeared to represent three distinct clusters or branches. To address the question of whether the three branches represented recently identified subspecies of chimpanzees, we determined the sequence of the mitochondrial DNA hypervariable D loop from hair samples obtained from these five chimpanzees. The results indicated that the three chHBV branches reflected three distinct subspecies of chimpanzees that are from different geographic regions in West Africa. The complete HBV sequence from members of the Pan troglodytes troglodytes cluster and the Pan troglodytes verus cluster are in the published literature; we determined the complete genome sequence for the third branch of HBV present in Pan troglodytes vellerosus.
Collapse
Affiliation(s)
- X Hu
- Hepatitis Branch A33, Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | | | | | | |
Collapse
|
45
|
Kuhmann SE, Madani N, Diop OM, Platt EJ, Morvan J, Müller-Trutwin MC, Barré-Sinoussi F, Kabat D. Frequent substitution polymorphisms in African green monkey CCR5 cluster at critical sites for infections by simian immunodeficiency virus SIVagm, implying ancient virus-host coevolution. J Virol 2001; 75:8449-60. [PMID: 11507190 PMCID: PMC115090 DOI: 10.1128/jvi.75.18.8449-8460.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to humans, several primate species are believed to have harbored simian immunodeficiency viruses (SIVs) since ancient times. In particular, the geographically dispersed species of African green monkeys (AGMs) are all infected with highly diversified SIVagm viruses at high prevalences (greater than 50% of sexually mature individuals) without evident diseases, implying that the progenitor monkeys were infected prior to their dispersal. If this is correct, AGMs would be expected to have accumulated frequent resistance-conferring polymorphisms in host genes that are important for SIV replication. Accordingly, we analyzed the coding sequences of the CCR5 coreceptors from 26 AGMs (52 alleles) in distinct populations of the four species. These samples contained 29 nonsynonymous coding changes and only 15 synonymous nucleotide substitutions, implying intense functional selection. Moreover, 24 of the resulting amino acid substitutions were tightly clustered in the CCR5 amino terminus (D13N in the vervets and Y14N in the tantalus species) or in the first extracellular loop (Q93R and Q93K in all species). The Y14N substitution was extremely frequent in the 12 wild-born African tantalus, with 7 monkeys being homozygous for this substitution and 4 being heterozygous. Although two of these heterozygotes and the only wild-type homozygote were naturally infected with SIVagm, none of the Y14N homozygotes were naturally infected. A focal infectivity assay for SIVagm indicated that all five tested SIVagms efficiently use CCR5 as a coreceptor and that they also use CXCR6 (STRL33/Bonzo) and GPR15 (BOB) with lower efficiencies but not CXCR4. Interestingly, the D13N, Y14N, Q93R, and Q93K substitutions in AGM CCR5 all strongly inhibited infections by the SIVagm isolates in vitro. The Y14N substitution eliminates a tyrosine sulfation site that is important for infections and results in partial N-linked glycosylation (i.e., 60% efficiency) at this position. Nevertheless, the CCR5(Y14N) component that lacks an N-linked oligosaccharide binds the chemokine MIP-lbeta with a normal affinity and is fully active in signal transduction. Similarly, D13N and Q93R substitutions did not interfere with signal transduction. Thus, the common substitution polymorphisms in AGM CCR5 strongly inhibit SIVagm infections while substantially preserving chemokine signaling. In contrast, polymorphisms of human CCR5 are relatively infrequent, and the amino acid substitutions are randomly situated and generally without effects on coreceptor function. These results support an ancient coevolution of AGMs and SIVagm viruses and establish AGMs as a highly informative model for learning about host proteins that play critical roles in immunodeficiency virus infections.
Collapse
Affiliation(s)
- S E Kuhmann
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Souquière S, Bibollet-Ruche F, Robertson DL, Makuwa M, Apetrei C, Onanga R, Kornfeld C, Plantier JC, Gao F, Abernethy K, White LJ, Karesh W, Telfer P, Wickings EJ, Mauclère P, Marx PA, Barré-Sinoussi F, Hahn BH, Müller-Trutwin MC, Simon F. Wild Mandrillus sphinx are carriers of two types of lentivirus. J Virol 2001; 75:7086-96. [PMID: 11435589 PMCID: PMC114437 DOI: 10.1128/jvi.75.15.7086-7096.2001] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mandrillus sphinx, a large primate living in Cameroon and Gabon and belonging to the Papionini tribe, was reported to be infected by a simian immunodeficiency virus (SIV) (SIVmndGB1) as early as 1988. Here, we have identified a second, highly divergent SIVmnd (designated SIVmnd-2). Genomic organization differs between the two viral types; SIVmnd-2 has the additional vpx gene, like other SIVs naturally infecting the Papionini tribe (SIVsm and SIVrcm) and in contrast to the other SIVmnd type (here designated SIVmnd-1), which is more closely related to SIVs infecting l'hoest (Cercopithecus lhoesti lhoesti) and sun-tailed (Cercopithecus lhoesti solatus) monkeys. Importantly, our epidemiological studies indicate a high prevalence of both types of SIVmnd; all 10 sexually mature wild-living monkeys and 3 out of 17 wild-born juveniles tested were infected. The geographic distribution of SIVmnd seems to be distinct for the two types: SIVmnd-1 viruses were exclusively identified in mandrills from central and southern Gabon, whereas SIVmnd-2 viruses were identified in monkeys from northern and western Gabon, as well as in Cameroon. SIVmnd-2 full-length sequence analysis, together with analysis of partial sequences from SIVmnd-1 and SIVmnd-2 from wild-born or wild-living mandrills, shows that the gag and pol regions of SIVmnd-2 are closest to those of SIVrcm, isolated from red-capped mangabeys (Cercocebus torquatus), while the env gene is closest to that of SIVmnd-1. pol and env sequence analyses of SIV from a related Papionini species, the drill (Mandrillus leucophaeus), shows a closer relationship of SIVdrl to SIVmnd-2 than to SIVmnd-1. Epidemiological surveys of human immunodeficiency virus revealed a case in Cameroon of a human infected by a virus serologically related to SIVmnd, raising the possibility that mandrills represent a viral reservoir for humans similar to sooty mangabeys in Western Africa and chimpanzees in Central Africa.
Collapse
Affiliation(s)
- S Souquière
- Laboratoire de Virologie, UGENET, SEGC, Réserve de la Lopé, Centre International de Recherches Médicales, Franceville, Gabon
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Simon F, Souquière S, Damond F, Kfutwah A, Makuwa M, Leroy E, Rouquet P, Berthier JL, Rigoulet J, Lecu A, Telfer PT, Pandrea I, Plantier JC, Barré-Sinoussi F, Roques P, Müller-Trutwin MC, Apetrei C. Synthetic peptide strategy for the detection of and discrimination among highly divergent primate lentiviruses. AIDS Res Hum Retroviruses 2001; 17:937-52. [PMID: 11461679 DOI: 10.1089/088922201750290050] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We developed a simple, rapid, inexpensive, and highly sensitive and specific strategy for the detection and lineage differentiation of primate lentiviruses (PIV-ELISA). It is based on the use of two indirect ELISA methods using synthetic peptides mapping the gp41/36 region (detection component) and the V3 region (differentiation component) of four lentivirus lineages, namely SIVcpz/HIV-1 (groups M, O, N, and SIVcpz-gab), SIVmnd, SIVagm, and SIVsm/SIVmac/HIV-2. This strategy was evaluated with panels of sera originating from both humans and nonhuman primates. The human reference panel consisted of 144 HIV Western blot (WB)-positive sera in which the corresponding virus had been genotyped (HIV-1: 72 group M, 28 group O, and 6 group N; HIV-2: 21 subtype A and 10 subtype B; and 7 HIV-1+2) and 105 HIV WB-negative samples. The nonhuman primate reference panel consisted of 24 sera from monkeys infected by viruses belonging to the four lineages included in the PIV-ELISA strategy (5 chimpanzees, 5 macaques, 8 mandrills, and 6 vervets) and 42 samples from seronegative animals. Additional field evaluation panels consisted of 815 human sera from Gabon, Cameroon, and France and 537 samples from 25 nonhuman primate species. All the samples from the two reference panels were correctly detected and discriminated by PIV-ELISA. In the human field evaluation panel, the gp41/36 component correctly identified all the test samples, with 98% specificity. The V3 component discriminated 206 HIV-1 group M, 98 group O, 12 group M+O, and 128 HIV-2 sera. In the primate field evaluation panel, both gp41/36 and V3 detected and discriminated all the WB-positive samples originating from monkeys infected with SIVcpz, SIVagm-ver, SIVmnd-1, SIVmnd-2, SIVdrl, or SIVsun. These results were confirmed by genotyping in every case. Four SIV-infected red-capped mangabeys (confirmed by PCR) were correctly identified by gp41/36, but only two reacted with the V3 peptides in the absence of a specific SIVrcm V3 peptide. Addition of a V3 SIVrcm peptide discriminated all the SIVrcm-positive samples. Fourteen Papio papio samples were positive for SIVsm gp 36 and by WB, but negative by PCR, whereas three Papio cynocephalus samples were positive by gp41/36 but indeterminate by WB and negative by PCR. This combined ELISA system is thus highly sensitive and specific for antibodies directed against HIV and SIV. In addition, the V3-based serotyping results always agreed with genotyping results. This method should prove useful for studies of lentivirus prevalence and diversity in human and nonhuman primates, and may also have the potential to detect previously undescribed SIVs.
Collapse
Affiliation(s)
- F Simon
- Laboratoire de Virologie and Centre de Primatologie, Centre International de Recherches Médicales, Franceville, Gabon
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Marx PA, Alcabes PG, Drucker E. Serial human passage of simian immunodeficiency virus by unsterile injections and the emergence of epidemic human immunodeficiency virus in Africa. Philos Trans R Soc Lond B Biol Sci 2001; 356:911-20. [PMID: 11405938 PMCID: PMC1088484 DOI: 10.1098/rstb.2001.0867] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is compelling evidence that both human immunodeficiency virus (HIV) types emerged from two dissimilar simian immunodeficiency viruses (SIVs) in separate geographical regions of Africa. Each of the two HIVs has its own simian progenitor and specific genetic precursor, and all of the primates that carry these SIVs have been in close contact with humans for thousands of years without the emergence of epidemic HIV. To date no plausible mechanism has been identified to account for the sudden emergence in the mid-20th century of these epidemic HIVs. In this study we examine the conditions needed for SIV to complete the genetic transition from individual human SIV infections to epidemic HIV in humans. The genetic distance from SIV to HIV and the mutational activity needed to achieve this degree of adaptation to human hosts is placed within a mathematical model to estimate the probabilities of SIV completing this transition within a single SIV-infected human host. We found that the emergence of even one epidemic HIV strain, following a single human exposure to SIV, was very unlikely. And the probability of four or more such transitions (i.e. HIV-1 groups M, O and HIV-2 subtypes A and B) occurring in a brief period is vanishingly small. We conclude that SIV cannot become a zoonosis, but requires adaptive mutations to become HIV. Some modern event must have aided in the transition of SIV to HIV. Our research indicates that serial passage of partially adapted SIV between humans could produce the series of cumulative mutations sufficient for the emergence of epidemic HIV strains. We examined the rapid growth of unsterile injections in Africa beginning in the 1950s as a biologically plausible event capable of greatly increasing serial human passage of SIV and generating HIV by a series of multiple genetic transitions. We conclude that increased unsterile injecting in Africa during the period 1950-1970 provided the agent for SIV human infections to emerge as epidemic HIV in the modern era.
Collapse
Affiliation(s)
- P A Marx
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA.
| | | | | |
Collapse
|
49
|
Joy A, Vogelnest L, Middleton DJ, Dale CJ, Campagna D, Purcell DF, Kent SJ. Simian immunodeficiency virus infections in vervet monkeys (Clorocebus aethiops) at an Australian zoo. Aust Vet J 2001; 79:406-8. [PMID: 11491218 DOI: 10.1111/j.1751-0813.2001.tb12984.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A number of monkey species, including African green monkeys and African vervet monkeys (Chlorocebus aethiops), are frequently infected in the wild and in captivity with a Simian immunodeficiency virus strain, SIVagm, a primate lentivirus. Up to 50% of African green monkeys are estimated to be infected with SIVagm. SIV strains are very closely related to HIV-2 strains, which are a cause of AIDS in humans, predominantly in western Africa, although cases in Australia have also been reported. It is generally thought that SIV is non-pathogenic in several natural hosts, including African green monkeys. Nevertheless many SIV strains induce a profound immunodeficiency virtually identical to HIV-1 induced AIDS in humans when administered to Asian macaque species such as rhesus (Macaca mulatta) or pigtailed macaques (M nemestrina). SIV infection of Asian macaque species is frequently employed as an animal model for AIDS vaccine studies. In November 1996 a group of 10 African vervet monkeys were imported from the USA for display at Victoria's Open Range Zoo in Werribee. Two animals in this group of monkeys later developed a fatal gastroenteric illness. These diagnoses led us to initiate SIV testing of the colony.
Collapse
Affiliation(s)
- A Joy
- AIDS Pathogenesis Research Unit, Macfarlane Burnet Centre for Medical Research, Fairfield, Victoria
| | | | | | | | | | | | | |
Collapse
|
50
|
Broussard SR, Staprans SI, White R, Whitehead EM, Feinberg MB, Allan JS. Simian immunodeficiency virus replicates to high levels in naturally infected African green monkeys without inducing immunologic or neurologic disease. J Virol 2001; 75:2262-75. [PMID: 11160730 PMCID: PMC114810 DOI: 10.1128/jvi.75.5.2262-2275.2001] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African green monkeys can maintain long-term persistent infection with simian immunodeficiency viruses (SIVagm) without developing AIDS and thus provide an important model for understanding mechanisms of natural host resistance to disease. This study assessed the levels and anatomic distribution of SIVagm in healthy, naturally infected monkeys. Quantitative competitive reverse transcriptase PCR assays developed to measure SIVagm from two African green monkey subspecies demonstrated high levels of SIV RNA in plasma (>6 x 10(6) RNA copies/ml) in sabaeus and vervet monkeys. Infectious virus was readily recovered from plasma and peripheral blood mononuclear cells and shown to be highly cytopathic in human cell lines and macrophages. SIVagm DNA levels were highest in the gastrointestinal tract, suggesting that the gut is a major site for SIVagm replication in vivo. Appreciable levels of virus were also found within the brain parenchyma and the cerebrospinal fluid (CSF), with lower levels detected in peripheral blood cells and lymph nodes. Virus isolates from the CSF and brain parenchyma readily infected macrophages in culture, whereas lymph node isolates were more restricted to growth in human T-cell lines. Comparison of env V2-C4 sequences showed extensive amino acid diversity between SIVagm recovered from the central nervous system and that recovered from lymphoid tissues. Homology between brain and CSF viruses, macrophage tropism, and active replication suggest compartmentalization in the central nervous system without associated neuropathology in naturally infected monkeys. These studies provide evidence that the nonpathogenic nature of SIVagm in the natural host can be attributed neither to more effective host control over viral replication nor to differences in the tissue and cell tropism from those for human immunodeficiency virus type 1-infected humans or SIV-infected macaques.
Collapse
Affiliation(s)
- S R Broussard
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas 78227, USA
| | | | | | | | | | | |
Collapse
|