1
|
Fisher BM, Cevaal PM, Roche M, Lewin SR. HIV Tat as a latency reversing agent: turning the tables on viral persistence. Front Immunol 2025; 16:1571151. [PMID: 40292298 PMCID: PMC12021871 DOI: 10.3389/fimmu.2025.1571151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
The 'shock and kill' approach to an HIV cure involves the use of latency reversing agents (LRAs) to reactivate latent HIV, with the aim to induce death of infected cells through virus induced cytolysis or immune mediated clearance. Most LRAs tested to date have been unable to overcome the blocks to transcription elongation and splicing that persist in resting CD4+ T cells. Furthermore, most LRAs target host factors and therefore have associated toxicities. Therefore, there remains a high need for HIV-specific LRAs that can also potently upregulate expression of multiply-spliced HIV RNA and viral protein. The HIV Transactivator of Transcription (Tat) protein plays an important role in viral replication - amplifying transcription from the viral promoter - but it is present at low to negligible levels in latently infected cells. As such, it has been hypothesized that providing Tat in trans could result in efficient HIV reactivation from latency. Recent studies exploring different types of Tat-based LRAs have used different nanoparticles for Tat delivery and describe potent, HIV-specific induction of multiply-spliced HIV RNA and protein ex vivo. However, there are several potential challenges to using Tat as a therapeutic, including the ability of Tat to cause systemic toxicities in vivo, limited delivery of Tat to the HIV reservoir due to poor uptake of nucleic acid by resting cells, and challenges in activating truly transcriptionally silent viruses. Identifying ways to mitigate these challenges will be critical to developing effective Tat-based LRA approaches towards an HIV cure.
Collapse
Affiliation(s)
- Bridget M. Fisher
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Paula M. Cevaal
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Michael Roche
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- ATRACT Research Centre, Infectious and Inflammatory Diseases Theme, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Rodríguez-Agustín A, Ayala-Suárez R, Díez-Fuertes F, Maleno MJ, de Villasante I, Merkel A, Coiras M, Casanova V, Alcamí J, Climent N. Intracellular HIV-1 Tat regulator induces epigenetic changes in the DNA methylation landscape. Front Immunol 2025; 16:1532692. [PMID: 40103825 PMCID: PMC11913862 DOI: 10.3389/fimmu.2025.1532692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/04/2025] [Indexed: 03/20/2025] Open
Abstract
Introduction The HIV regulatory protein Tat enhances viral transcription and also modifies host gene expression, affecting cell functions like cell cycle and apoptosis. Residual expression of Tat protein is detected in blood and other tissues even under antiretroviral treatment. Cohort studies have indicated that, despite virologic suppression, people with HIV (PWH) are at increased risk of comorbidities linked to chronic inflammation, accelerated immune ageing, and cellular senescence, sometimes associated with abnormal genomic methylation patterns. We analysed whether Tat influences DNA methylation and subsequently impacts the transcriptional signature, contributing to inflammation and accelerated ageing. Methods We transfected Jurkat cells with full-length Tat (Tat101), Tat's first exon (Tat72), or an empty vector (TetOFF). We assessed DNA methylation modifications via the Infinium MethylationEPIC array, and we evaluated transcriptomic alterations through RNA-Seq. Methylation levels in gene promoters or body regions were correlated to their expression data, and subsequently, we performed an overrepresentation analysis to identify the biological terms containing differentially methylated and expressed genes. Results Tat101 expression caused significant hyper- and hypomethylation changes at individual CpG sites, resulting in slightly global DNA hypermethylation. Methylation changes at gene promoters and bodies resulted in altered gene expression, specifically regulating gene transcription in 5.1% of differentially expressed genes (DEGs) in Tat101- expressing cells. In contrast, Tat72 had a minimal impact on this epigenetic process. The observed differentially methylated and expressed genes were involved in inflammatory responses, lipid antigen presentation, and apoptosis. Discussion Tat expression in HIV infection may constitute a key epigenetic modelling actor that contributes to HIV pathogenesis and chronic inflammation. Clinical interventions targeting Tat blockade may reduce chronic inflammation and cellular senescence related to HIV infection comorbidities.
Collapse
Affiliation(s)
- Andrea Rodríguez-Agustín
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Rubén Ayala-Suárez
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Francisco Díez-Fuertes
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María José Maleno
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Izar de Villasante
- Bioinformatics Unit, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Angelika Merkel
- Bioinformatics Unit, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Mayte Coiras
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Immunopathology and Viral Reservoir Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Víctor Casanova
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - José Alcamí
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Núria Climent
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomédiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
3
|
Patarca R, Haseltine WA. Bioinformatics Insights on Viral Gene Expression Transactivation: From HIV-1 to SARS-CoV-2. Int J Mol Sci 2024; 25:3378. [PMID: 38542351 PMCID: PMC10970485 DOI: 10.3390/ijms25063378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 11/11/2024] Open
Abstract
Viruses provide vital insights into gene expression control. Viral transactivators, with other viral and cellular proteins, regulate expression of self, other viruses, and host genes with profound effects on infected cells, underlying inflammation, control of immune responses, and pathogenesis. The multifunctional Tat proteins of lentiviruses (HIV-1, HIV-2, and SIV) transactivate gene expression by recruiting host proteins and binding to transacting responsive regions (TARs) in viral and host RNAs. SARS-CoV-2 nucleocapsid participates in early viral transcription, recruits similar cellular proteins, and shares intracellular, surface, and extracellular distribution with Tat. SARS-CoV-2 nucleocapsid interacting with the replication-transcription complex might, therefore, transactivate viral and cellular RNAs in the transcription and reactivation of self and other viruses, acute and chronic pathogenesis, immune evasion, and viral evolution. Here, we show, by using primary and secondary structural comparisons, that the leaders of SARS-CoV-2 and other coronaviruses contain TAR-like sequences in stem-loops 2 and 3. The coronaviral nucleocapsid C-terminal domains harbor a region of similarity to TAR-binding regions of lentiviral Tat proteins, and coronaviral nonstructural protein 12 has a cysteine-rich metal binding, dimerization domain, as do lentiviral Tat proteins. Although SARS-CoV-1 nucleocapsid transactivated gene expression in a replicon-based study, further experimental evidence for coronaviral transactivation and its possible implications is warranted.
Collapse
Affiliation(s)
- Roberto Patarca
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| | - William A. Haseltine
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| |
Collapse
|
4
|
Cafaro A, Schietroma I, Sernicola L, Belli R, Campagna M, Mancini F, Farcomeni S, Pavone-Cossut MR, Borsetti A, Monini P, Ensoli B. Role of HIV-1 Tat Protein Interactions with Host Receptors in HIV Infection and Pathogenesis. Int J Mol Sci 2024; 25:1704. [PMID: 38338977 PMCID: PMC10855115 DOI: 10.3390/ijms25031704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Each time the virus starts a new round of expression/replication, even under effective antiretroviral therapy (ART), the transactivator of viral transcription Tat is one of the first HIV-1 protein to be produced, as it is strictly required for HIV replication and spreading. At this stage, most of the Tat protein exits infected cells, accumulates in the extracellular matrix and exerts profound effects on both the virus and neighbor cells, mostly of the innate and adaptive immune systems. Through these effects, extracellular Tat contributes to the acquisition of infection, spreading and progression to AIDS in untreated patients, or to non-AIDS co-morbidities in ART-treated individuals, who experience inflammation and immune activation despite virus suppression. Here, we review the role of extracellular Tat in both the virus life cycle and on cells of the innate and adaptive immune system, and we provide epidemiological and experimental evidence of the importance of targeting Tat to block residual HIV expression and replication. Finally, we briefly review vaccine studies showing that a therapeutic Tat vaccine intensifies ART, while its inclusion in a preventative vaccine may blunt escape from neutralizing antibodies and block early events in HIV acquisition.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (L.S.); (R.B.); (M.C.); (F.M.); (S.F.); (M.R.P.-C.); (A.B.); (P.M.)
| | | | | | | | | | | | | | | | | | | | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (L.S.); (R.B.); (M.C.); (F.M.); (S.F.); (M.R.P.-C.); (A.B.); (P.M.)
| |
Collapse
|
5
|
Batta Y, King C, Cooper F, Johnson J, Haddad N, Boueri MG, DeBerry E, Haddad GE. Direct and indirect cardiovascular and cardiometabolic sequelae of the combined anti-retroviral therapy on people living with HIV. Front Physiol 2023; 14:1118653. [PMID: 37078025 PMCID: PMC10107050 DOI: 10.3389/fphys.2023.1118653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
With reports of its emergence as far back as the early 1900s, human immunodeficiency virus (HIV) has become one of the deadliest and most difficult viruses to treat in the era of modern medicine. Although not always effective, HIV treatment has evolved and improved substantially over the past few decades. Despite the major advancements in the efficacy of HIV therapy, there are mounting concerns about the physiological, cardiovascular, and neurological sequelae of current treatments. The objective of this review is to (Blattner et al., Cancer Res., 1985, 45(9 Suppl), 4598s-601s) highlight the different forms of antiretroviral therapy, how they work, and any effects that they may have on the cardiovascular health of patients living with HIV, and to (Mann et al., J Infect Dis, 1992, 165(2), 245-50) explore the new, more common therapeutic combinations currently available and their effects on cardiovascular and neurological health. We executed a computer-based literature search using databases such as PubMed to look for relevant, original articles that were published after 1998 to current year. Articles that had relevance, in any capacity, to the field of HIV therapy and its intersection with cardiovascular and neurological health were included. Amongst currently used classes of HIV therapies, protease inhibitors (PIs) and combined anti-retroviral therapy (cART) were found to have an overall negative effect on the cardiovascular system related to increased cardiac apoptosis, reduced repair mechanisms, block hyperplasia/hypertrophy, decreased ATP production in the heart tissue, increased total cholesterol, low-density lipoproteins, triglycerides, and gross endothelial dysfunction. The review of Integrase Strand Transfer Inhibitors (INSTI), Nucleoside Reverse Transcriptase Inhibitors (NRTI), and Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTI) revealed mixed results, in which both positive and negative effects on cardiovascular health were observed. In parallel, studies suggest that autonomic dysfunction caused by these drugs is a frequent and significant occurrence that needs to be closely monitored in all HIV + patients. While still a relatively nascent field, more research on the cardiovascular and neurological implications of HIV therapy is crucial to accurately evaluate patient risk.
Collapse
Affiliation(s)
- Yashvardhan Batta
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| | - Cody King
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| | - Farion Cooper
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| | - John Johnson
- Delaware Psychiatric Center, New Castle, DE, United States
| | - Natasha Haddad
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| | | | - Ella DeBerry
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| | - Georges E. Haddad
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| |
Collapse
|
6
|
Perkins MV, Joseph S, Dittmer DP, Mackman N. Cardiovascular Disease and Thrombosis in HIV Infection. Arterioscler Thromb Vasc Biol 2023; 43:175-191. [PMID: 36453273 PMCID: PMC10165851 DOI: 10.1161/atvbaha.122.318232] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
HIV infection has transitioned from an acute, fatal disease to a chronic one managed by antiretroviral therapy. Thus, the aging population of people living with HIV (PLWH) continues to expand. HIV infection results in a dysregulated immune system, wherein CD4+ T cells are depleted, particularly in the gastrointestinal tract, disrupting the gut epithelial barrier. Long-term HIV infection is associated with chronic inflammation through potentially direct mechanisms caused by viral replication or exposure to viral proteins and indirect mechanisms resulting from increased translocation of microbial products from the intestine or exposure to antiretroviral therapy. Chronic inflammation (as marked by IL [interleukin]-6 and CRP [C-reactive protein]) in PLWH promotes endothelial cell dysfunction and atherosclerosis. PLWH show significantly increased rates of cardiovascular disease, such as myocardial infarction (risk ratio, 1.79 [95% CI, 1.54-2.08]) and stroke (risk ratio, 2.56 [95% CI, 1.43-4.61]). In addition, PLWH have increased levels of the coagulation biomarker D-dimer and have a two to ten-fold increased risk of venous thromboembolism compared with the general population. Several small clinical trials analyzed the effect of different antithrombotic agents on platelet activation, coagulation, inflammation, and immune cell activation. Although some markers for coagulation were reduced, most agents failed to reduce inflammatory markers in PLWH. More studies are needed to understand the underlying mechanisms driving inflammation in PLWH to create better therapies for lowering chronic inflammation in PLWH. Such therapies can potentially reduce atherosclerosis, cardiovascular disease, and thrombosis rates in PLWH and thus overall mortality in this population.
Collapse
Affiliation(s)
- Megan V. Perkins
- UNC Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah Joseph
- UNC Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dirk P. Dittmer
- UNC Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Valyaeva AA, Tikhomirova MA, Potashnikova DM, Bogomazova AN, Snigiryova GP, Penin AA, Logacheva MD, Arifulin EA, Shmakova AA, Germini D, Kachalova AI, Saidova AA, Zharikova AA, Musinova YR, Mironov AA, Vassetzky YS, Sheval EV. Ectopic expression of HIV-1 Tat modifies gene expression in cultured B cells: implications for the development of B-cell lymphomas in HIV-1-infected patients. PeerJ 2022; 10:e13986. [PMID: 36275462 PMCID: PMC9586123 DOI: 10.7717/peerj.13986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/11/2022] [Indexed: 01/19/2023] Open
Abstract
An increased frequency of B-cell lymphomas is observed in human immunodeficiency virus-1 (HIV-1)-infected patients, although HIV-1 does not infect B cells. Development of B-cell lymphomas may be potentially due to the action of the HIV-1 Tat protein, which is actively released from HIV-1-infected cells, on uninfected B cells. The exact mechanism of Tat-induced B-cell lymphomagenesis has not yet been precisely identified. Here, we ectopically expressed either Tat or its TatC22G mutant devoid of transactivation activity in the RPMI 8866 lymphoblastoid B cell line and performed a genome-wide analysis of host gene expression. Stable expression of both Tat and TatC22G led to substantial modifications of the host transcriptome, including pronounced changes in antiviral response and cell cycle pathways. We did not find any strong action of Tat on cell proliferation, but during prolonged culturing, Tat-expressing cells were displaced by non-expressing cells, indicating that Tat expression slightly inhibited cell growth. We also found an increased frequency of chromosome aberrations in cells expressing Tat. Thus, Tat can modify gene expression in cultured B cells, leading to subtle modifications in cellular growth and chromosome instability, which could promote lymphomagenesis over time.
Collapse
Affiliation(s)
- Anna A. Valyaeva
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia,Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria A. Tikhomirova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia,Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Daria M. Potashnikova
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexandra N. Bogomazova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | | | - Maria D. Logacheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Eugene A. Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anna A. Shmakova
- Koltzov Institute of Developmental Biology, Moscow, Russia,UMR9018 (CNRS – Institut Gustave Roussy – Université Paris Saclay), Centre National de Recherche Scientifique, Villejuif, France, France
| | - Diego Germini
- UMR9018 (CNRS – Institut Gustave Roussy – Université Paris Saclay), Centre National de Recherche Scientifique, Villejuif, France, France
| | - Anastasia I. Kachalova
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Aleena A. Saidova
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Anastasia A. Zharikova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yana R. Musinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia,Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Andrey A. Mironov
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia,Institute for Information Transmission Problems, Moscow, Russia
| | - Yegor S. Vassetzky
- Koltzov Institute of Developmental Biology, Moscow, Russia,UMR9018 (CNRS – Institut Gustave Roussy – Université Paris Saclay), Centre National de Recherche Scientifique, Villejuif, France, France
| | - Eugene V. Sheval
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia,Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
T-cell evasion and invasion during HIV-1 infection: The role of HIV-1 Tat protein. Cell Immunol 2022; 377:104554. [DOI: 10.1016/j.cellimm.2022.104554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
|
9
|
HIV-1 Tat Protein Enters Dysfunctional Endothelial Cells via Integrins and Renders Them Permissive to Virus Replication. Int J Mol Sci 2020; 22:ijms22010317. [PMID: 33396807 PMCID: PMC7796023 DOI: 10.3390/ijms22010317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 12/21/2022] Open
Abstract
Previous work has shown that the Tat protein of Human Immunodeficiency Virus (HIV)-1 is released by acutely infected cells in a biologically active form and enters dendritic cells upon the binding of its arginine-glycine-aspartic acid (RGD) domain to the α5β1, αvβ3, and αvβ5 integrins. The up-regulation/activation of these integrins occurs in endothelial cells exposed to inflammatory cytokines that are increased in HIV-infected individuals, leading to endothelial cell dysfunction. Here, we show that inflammatory cytokine-activated endothelial cells selectively bind and rapidly take up nano-micromolar concentrations of Tat, as determined by flow cytometry. Protein oxidation and low temperatures reduce Tat entry, suggesting a conformation- and energy-dependent process. Consistently, Tat entry is competed out by RGD-Tat peptides or integrin natural ligands, and it is blocked by anti-α5β1, -αvβ3, and -αvβ5 antibodies. Moreover, modelling–docking calculations identify a low-energy Tat-αvβ3 integrin complex in which Tat makes contacts with both the αv and β3 chains. It is noteworthy that internalized Tat induces HIV replication in inflammatory cytokine-treated, but not untreated, endothelial cells. Thus, endothelial cell dysfunction driven by inflammatory cytokines renders the vascular system a target of Tat, which makes endothelial cells permissive to HIV replication, adding a further layer of complexity to functionally cure and/or eradicate HIV infection.
Collapse
|
10
|
Darbinian N, Darbinyan A, Merabova N, Gomberg R, Chabriere E, Simm M, Selzer ME, Amini S. DING Protein Inhibits Transcription of HIV-1 Gene through Suppression of Phosphorylation of NF-κB p65. ACTA ACUST UNITED AC 2020; 6. [PMID: 34307877 PMCID: PMC8296972 DOI: 10.16966/2380-5536.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Introduction: Novel plant DING proteins (full-length 38 kDa p38SJ, and 27 kDa p27SJ) exhibit phosphatase activity and modulate HIV-1 gene transcription. Previously, we demonstrated that DING regulates HIV-1 gene transcription by dephosphorylation and inactivation of CTD RNA polymerase II, the major elongating factor of HIV-1 Long Terminal Repeats (LTR). Because the transcription of HIV-1 is controlled by several viral and cellular factors, including p65/p50 subunits of NF-κB, we hypothesized that DING phosphatase can also affect the phosphorylation and activity of p65 NF-κB, in addition to C-terminal Domain (CTD) of RNA Polymerase II (RNAPII), to suppress HIV-1 gene transcription and inhibit HIV-1 infection. Methods: Here, we describe the inhibition of HIV-1 infection and the p65/p50 NF-κB phosphorylation by DING protein, analyzed by ELISA and northern-blot assays, western-blot assays, cell fractionation, and promoter-reporter assays in DING-expressing cells, using a pTet-on inducible system. Results: Results from HIV-1 infection assays demonstrate a strong inhibition of HIV-1 and HIV-LTR RNA expression by DING protein, determined by p24 ELISA and by northern blot assay. Results from the western blot assays and cell fractionation assays show that there is an increase in the level of hypo-phosphorylated form of p65 NF-κB in DING-expressing cells. Both fractions of p65/p50, nuclear or cytoplasmic, are affected by DING phosphatase, but more cytoplasmic accumulation of p65 NF-κB was found in the presence of DING, suggesting that subsequent activation and nuclear import of active NF-κB is affected by DING. The major portion of nuclear p65 was dephosphorylated in DING-expressing cells. The promoter-reporter assay demonstrated that DING-mediated dephosphorylation and dysregulation of NF-κB p65 lead to the suppression of its binding to HIV-1 LTR, and resulted in the inhibition of p65-mediated activation of LTR transcription. Mapping of the region within LTR that was affected by DING revealed that both, NF-κB and CTD RNA Polymerase II binding sites were important, and cooperativity of these cellular factors was diminished by DING. In addition, mapping of the region within DING-p38SJ that affected LTR transcription, revealed that phosphate-binding domain is essential for this inhibitory activity. Conclusion: We have demonstrated the effect of DING phosphatases on HIV-1 infection, phosphorylation of p65 NF-κB, and transcription of HIV-1 LTR. Our studies suggest that one possible mechanism by which DING can regulate the expression of HIV-1 LTR can be through dysregulation of the transcription factor NF-κB p65 by preventing its phosphorylation and translocation to the nucleus and binding to the HIV-1 LTR, an action that could contribute to the utility of DING p38SJ as an antiviral agent. Importantly, DING not only inhibits HIV-1 LTR gene transcription in the presence of increased p65 NF-κB, but also suppresses HIV-1 infection. DING protein improved inhibitory effects of the known anti-retroviral drugs, Tenofovir (TFV) and Emtricitabine (FTS) on HIV-1, since in the combination with these drugs; the suppression of HIV-1 by DNG was significantly higher when it was in combination with these drugs, compared to controls or cases without DING. Thus, our data support the use of neuroprotective DING proteins as novel therapeutic antiviral drugs that suppress HIV-1 LTR transcription by interfering with the function of NF-κB.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, USA
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, USA
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, USA
| | - Rebeccah Gomberg
- Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, USA
| | - Erik Chabriere
- Aix-Marseille Université, Institut Universitaire de France, IHU Mediterranée Infection, France
| | - Malgorzata Simm
- University of Pikeville, Kentucky College of Osteopathic Medicine, USA
| | - Michael E Selzer
- Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, USA
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, USA
| |
Collapse
|
11
|
Cafaro A, Tripiciano A, Picconi O, Sgadari C, Moretti S, Buttò S, Monini P, Ensoli B. Anti-Tat Immunity in HIV-1 Infection: Effects of Naturally Occurring and Vaccine-Induced Antibodies Against Tat on the Course of the Disease. Vaccines (Basel) 2019; 7:vaccines7030099. [PMID: 31454973 PMCID: PMC6789840 DOI: 10.3390/vaccines7030099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
HIV-1 Tat is an essential protein in the virus life cycle, which is required for virus gene expression and replication. Most Tat that is produced during infection is released extracellularly and it plays a key role in HIV pathogenesis, including residual disease upon combination antiretroviral therapy (cART). Here, we review epidemiological and experimental evidence showing that antibodies against HIV-1 Tat, infrequently occurring in natural infection, play a protective role against disease progression, and that vaccine targeting Tat can intensify cART. In fact, Tat vaccination of subjects on suppressive cART in Italy and South Africa promoted immune restoration, including CD4+ T-cell increase in low immunological responders, and a reduction of proviral DNA even after six years of cART, when both CD4+ T-cell gain and DNA decay have reached a plateau. Of note, DNA decay was predicted by the neutralization of Tat-mediated entry of Env into dendritic cells by anti-Tat antibodies, which were cross-clade binding and neutralizing. Anti-Tat cellular immunity also contributed to the DNA decay. Based on these data, we propose the Tat therapeutic vaccine as a pathogenesis-driven intervention that effectively intensifies cART and it may lead to a functional cure, providing new perspectives and opportunities also for prevention and virus eradication strategies.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Antonella Tripiciano
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Stefano Buttò
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome 00161, Italy.
| |
Collapse
|
12
|
Clark E, Nava B, Caputi M. Tat is a multifunctional viral protein that modulates cellular gene expression and functions. Oncotarget 2018; 8:27569-27581. [PMID: 28187438 PMCID: PMC5432358 DOI: 10.18632/oncotarget.15174] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/24/2017] [Indexed: 12/02/2022] Open
Abstract
The human immunodeficiency virus type I (HIV-1) has developed several strategies to condition the host environment to promote viral replication and spread. Viral proteins have evolved to perform multiple functions, aiding in the replication of the viral genome and modulating the cellular response to the infection. Tat is a small, versatile, viral protein that controls transcription of the HIV genome, regulates cellular gene expression and generates a permissive environment for viral replication by altering the immune response and facilitating viral spread to multiple tissues. Studies carried out utilizing biochemical, cellular, and genomic approaches show that the expression and activity of hundreds of genes and multiple molecular networks are modulated by Tat via multiple mechanisms.
Collapse
Affiliation(s)
- Evan Clark
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Brenda Nava
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Massimo Caputi
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
13
|
Ronsard L, Rai T, Rai D, Ramachandran VG, Banerjea AC. In silico Analyses of Subtype Specific HIV-1 Tat-TAR RNA Interaction Reveals the Structural Determinants for Viral Activity. Front Microbiol 2017; 8:1467. [PMID: 28848502 PMCID: PMC5550727 DOI: 10.3389/fmicb.2017.01467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/20/2017] [Indexed: 11/24/2022] Open
Abstract
HIV-1 Tat transactivates viral genes through strong interaction with TAR RNA. The stem-loop bulged region of TAR consisting of three nucleotides at the position 23–25 and the loop region consisting of six nucleotides at the position 30–35 are essential for viral transactivation. The arginine motif of Tat (five arginine residues on subtype TatC) is critically important for TAR interaction. Any mutations in this motif could lead to reduce transactivation ability and pathogenesis. Here, we identified structurally important residues (arginine and lysine residues) of Tat in this motif could bind to TAR via hydrogen bond interactions which is critical for transactivation. Natural mutant Ser46Phe in the core motif could likely led to conformational change resulting in more hydrogen bond interactions than the wild type Tat making it highly potent transactivator. Importantly, we report the possible probabilities of number of hydrogen bond interactions in the wild type Tat and the mutants with TAR complexes. This study revealed the differential transactivation of subtype B and C Tat could likely be due to the varying number of hydrogen bonds with TAR. Our data support that the N-terminal and the C-terminal domains of Tat is involved in the TAR interactions through hydrogen bonds which is important for transactivation. This study highlights the evolving pattern of structurally important determinants of Tat in the arginine motif for viral transactivation.
Collapse
Affiliation(s)
- Larance Ronsard
- Laboratory of Virology, National Institute of ImmunologyNew Delhi, India.,Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur HospitalNew Delhi, India
| | - Tripti Rai
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical SciencesNew Delhi, India
| | - Devesh Rai
- Department of Microbiology, All India Institute of Medical SciencesNew Delhi, India
| | - Vishnampettai G Ramachandran
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur HospitalNew Delhi, India
| | - Akhil C Banerjea
- Laboratory of Virology, National Institute of ImmunologyNew Delhi, India
| |
Collapse
|
14
|
Gurwitz KT, Burman RJ, Murugan BD, Garnett S, Ganief T, Soares NC, Raimondo JV, Blackburn JM. Time-Dependent, HIV-Tat-Induced Perturbation of Human Neurons In Vitro: Towards a Model for the Molecular Pathology of HIV-Associated Neurocognitive Disorders. Front Mol Neurosci 2017; 10:163. [PMID: 28611588 PMCID: PMC5447036 DOI: 10.3389/fnmol.2017.00163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/11/2017] [Indexed: 12/29/2022] Open
Abstract
A significant proportion of human immunodeficiency virus type 1 (HIV)-positive individuals are affected by the cognitive, motor and behavioral dysfunction that characterizes HIV-associated neurocognitive disorders (HAND). While the molecular etiology of HAND remains largely uncharacterized, HIV transactivator of transcription (HIV-Tat) is thought to be an important etiological cause. Here we have used mass spectrometry (MS)-based discovery proteomics to identify the quantitative, cell-wide changes that occur when non-transformed, differentiated human neurons are treated with HIV-Tat over time. We identified over 4000 protein groups (false discovery rate <0.01) in this system with 131, 118 and 45 protein groups differentially expressed at 6, 24 and 48 h post treatment, respectively. Alterations in the expression of proteins involved in gene expression and cytoskeletal maintenance were particularly evident. In tandem with proteomic evidence of cytoskeletal dysregulation we observed HIV-Tat induced functional alterations, including a reduction of neuronal intrinsic excitability as assessed by patch-clamp electrophysiology. Our findings may be relevant for understanding in vivo molecular mechanisms in HAND.
Collapse
Affiliation(s)
- Kim T Gurwitz
- Division of Chemical and Biological Systems, Department of Integrative Biomedical Sciences, University of Cape TownCape Town, South Africa
| | - Richard J Burman
- Division of Physiological Sciences, Department of Human Biology, University of Cape TownCape Town, South Africa.,Neurosciences Institute, University of Cape TownCape Town, South Africa
| | - Brandon D Murugan
- Division of Chemical and Biological Systems, Department of Integrative Biomedical Sciences, University of Cape TownCape Town, South Africa
| | - Shaun Garnett
- Division of Chemical and Biological Systems, Department of Integrative Biomedical Sciences, University of Cape TownCape Town, South Africa
| | - Tariq Ganief
- Division of Chemical and Biological Systems, Department of Integrative Biomedical Sciences, University of Cape TownCape Town, South Africa
| | - Nelson C Soares
- Division of Chemical and Biological Systems, Department of Integrative Biomedical Sciences, University of Cape TownCape Town, South Africa
| | - Joseph V Raimondo
- Division of Physiological Sciences, Department of Human Biology, University of Cape TownCape Town, South Africa.,Neurosciences Institute, University of Cape TownCape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
| | - Jonathan M Blackburn
- Division of Chemical and Biological Systems, Department of Integrative Biomedical Sciences, University of Cape TownCape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape Town, South Africa
| |
Collapse
|
15
|
Ronsard L, Ganguli N, Singh VK, Mohankumar K, Rai T, Sridharan S, Pajaniradje S, Kumar B, Rai D, Chaudhuri S, Coumar MS, Ramachandran VG, Banerjea AC. Impact of Genetic Variations in HIV-1 Tat on LTR-Mediated Transcription via TAR RNA Interaction. Front Microbiol 2017; 8:706. [PMID: 28484443 PMCID: PMC5399533 DOI: 10.3389/fmicb.2017.00706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/05/2017] [Indexed: 01/10/2023] Open
Abstract
HIV-1 evades host defense through mutations and recombination events, generating numerous variants in an infected patient. These variants with an undiminished virulence can multiply rapidly in order to progress to AIDS. One of the targets to intervene in HIV-1 replication is the trans-activator of transcription (Tat), a major regulatory protein that transactivates the long terminal repeat promoter through its interaction with trans-activation response (TAR) RNA. In this study, HIV-1 infected patients (n = 120) from North India revealed Ser46Phe (20%) and Ser61Arg (2%) mutations in the Tat variants with a strong interaction toward TAR leading to enhanced transactivation activities. Molecular dynamics simulation data verified that the variants with this mutation had a higher binding affinity for TAR than both the wild-type Tat and other variants that lacked Ser46Phe and Ser61Arg. Other mutations in Tat conferred varying affinities for TAR interaction leading to differential transactivation abilities. This is the first report from North India with a clinical validation of CD4 counts to demonstrate the influence of Tat genetic variations affecting the stability of Tat and its interaction with TAR. This study highlights the co-evolution pattern of Tat and predominant nucleotides for Tat activity, facilitating the identification of genetic determinants for the attenuation of viral gene expression.
Collapse
Affiliation(s)
- Larance Ronsard
- Laboratory of Virology, National Institute of ImmunologyDelhi, India.,Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur HospitalDelhi, India
| | - Nilanjana Ganguli
- Laboratory of Virology, National Institute of ImmunologyDelhi, India
| | - Vivek K Singh
- Centre for Bioinformatics, School of Life Sciences, Pondicherry UniversityPondicherry, India
| | - Kumaravel Mohankumar
- Department of Biochemistry and Molecular Biology, Pondicherry UniversityPondicherry, India.,Department of Veterinary Physiology and Pharmacology, Texas A&M University, College StationTX, USA
| | - Tripti Rai
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical SciencesDelhi, India
| | - Subhashree Sridharan
- Department of Biochemistry and Molecular Biology, Pondicherry UniversityPondicherry, India.,Department of Symptom Research, The University of Texas MD Anderson Cancer Center, HoustonTX, USA
| | - Sankar Pajaniradje
- Department of Biochemistry and Molecular Biology, Pondicherry UniversityPondicherry, India
| | - Binod Kumar
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, ChicagoIL, USA
| | - Devesh Rai
- Department of Microbiology, All India Institute of Medical SciencesDelhi, India
| | - Suhnrita Chaudhuri
- Department of Neurological Surgery, Northwestern University, ChicagoIL, USA
| | - Mohane S Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry UniversityPondicherry, India
| | | | - Akhil C Banerjea
- Laboratory of Virology, National Institute of ImmunologyDelhi, India
| |
Collapse
|
16
|
Ruiz AP, Prasad VR. Measuring the Uptake and Transactivation Function of HIV-1 Tat Protein in a Trans-cellular Cocultivation Setup. Methods Mol Biol 2016; 1354:353-66. [PMID: 26714724 DOI: 10.1007/978-1-4939-3046-3_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
HIV-1 Tat protein is secreted from infected cells and is endocytosed by uninfected bystander cells. Subsequently, Tat is translocated to the nucleus and binds to promoters of host cell genes, increasing the production of inflammatory host cytokines and chemokines. This inflammatory activation of uninfected cells by HIV-1 Tat protein contributes to the overall inflammatory burden in the central nervous system (CNS) that leads to the development of HIV-associated neurocognitive disorders (HAND). Here we describe methods to evaluate the uptake and transcriptional impact of HIV-1 Tat on uninfected cells by using a trans-cellular transactivation system. Cell lines transiently transfected with Tat expression constructs secrete Tat into the culture medium. Trans-cellular uptake and transactivation caused by secreted Tat can be measured by co-culturing LTR-responsive reporter cells with Tat-transfected cells. Such Tat-producer cells can also be co-cultured with immune cell lines, such as monocytic THP-1 cells or lymphocytic Jurkat T-cells, to evaluate transcriptional changes elicited by Tat taken up by the uninfected cells.
Collapse
Affiliation(s)
- Arthur P Ruiz
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - Vinayaka R Prasad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA.
| |
Collapse
|
17
|
Fiume G, Scialdone A, Albano F, Rossi A, Tuccillo FM, Rea D, Palmieri C, Caiazzo E, Cicala C, Bellevicine C, Falcone C, Vecchio E, Pisano A, Ceglia S, Mimmi S, Iaccino E, de Laurentiis A, Pontoriero M, Agosti V, Troncone G, Mignogna C, Palma G, Arra C, Mallardo M, Buonaguro FM, Scala G, Quinto I. Impairment of T cell development and acute inflammatory response in HIV-1 Tat transgenic mice. Sci Rep 2015; 5:13864. [PMID: 26343909 PMCID: PMC4561375 DOI: 10.1038/srep13864] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/07/2015] [Indexed: 01/22/2023] Open
Abstract
Immune activation and chronic inflammation are hallmark features of HIV infection causing T-cell depletion and cellular immune dysfunction in AIDS. Here, we addressed the issue whether HIV-1 Tat could affect T cell development and acute inflammatory response by generating a transgenic mouse expressing Tat in lymphoid tissue. Tat-Tg mice showed thymus atrophy and the maturation block from DN4 to DP thymic subpopulations, resulting in CD4+ and CD8+ T cells depletion in peripheral blood. In Tat-positive thymus, we observed the increased p65/NF-κB activity and deregulated expression of cytokines/chemokines and microRNA-181a-1, which are involved in T-lymphopoiesis. Upon LPS intraperitoneal injection, Tat-Tg mice developed an abnormal acute inflammatory response, which was characterized by enhanced lethality and production of inflammatory cytokines. Based on these findings, Tat-Tg mouse could represent an animal model for testing adjunctive therapies of HIV-1-associated inflammation and immune deregulation.
Collapse
Affiliation(s)
- Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Annarita Scialdone
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Albano
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Annalisa Rossi
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncogenesis Unit, Department of Experimental Oncology, Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, 80131, Naples, Italy
| | - Domenica Rea
- Molecular Biology and Viral Oncogenesis Unit, Department of Experimental Oncology, Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, 80131, Naples, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Elisabetta Caiazzo
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131, Naples, Italy
| | - Carla Cicala
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131, Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| | - Cristina Falcone
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Antonio Pisano
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Simona Ceglia
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Annamaria de Laurentiis
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Marilena Pontoriero
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Valter Agosti
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| | - Chiara Mignogna
- Science of Health Department, University of Catanzaro "Magna Graecia", Italy
| | - Giuseppe Palma
- Molecular Biology and Viral Oncogenesis Unit, Department of Experimental Oncology, Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, 80131, Naples, Italy
| | - Claudio Arra
- Molecular Biology and Viral Oncogenesis Unit, Department of Experimental Oncology, Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, 80131, Naples, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Department of Experimental Oncology, Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, 80131, Naples, Italy
| | - Giuseppe Scala
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
18
|
Cafaro A, Tripiciano A, Sgadari C, Bellino S, Picconi O, Longo O, Francavilla V, Buttò S, Titti F, Monini P, Ensoli F, Ensoli B. Development of a novel AIDS vaccine: the HIV-1 transactivator of transcription protein vaccine. Expert Opin Biol Ther 2015; 15 Suppl 1:S13-29. [PMID: 26096836 DOI: 10.1517/14712598.2015.1021328] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Classical approaches aimed at targeting the HIV-1 envelope as well as other structural viral proteins have largely failed. The HIV-1 transactivator of transcription (Tat) is a key HIV virulence factor, which plays pivotal roles in virus gene expression, replication, transmission and disease progression. Notably, anti-Tat Abs are uncommon in natural infection and, when present, correlate with the asymptomatic state and lead to lower or no disease progression. Hence, targeting Tat represents a pathogenesis-driven intervention. AREAS COVERED Here, we review the rationale and the translational development of a therapeutic vaccine targeting the Tat protein. Preclinical and Phase I studies, Phase II trials with Tat in anti-Tat Ab-negative, virologically suppressed highly active antiretroviral therapy-treated subjects in Italy and South Africa were conducted. The results indicate that Tat-induced immune responses are necessary to restore immune homeostasis, to block the replenishment and to reduce the size of the viral reservoir. Additionally, they may help in establishing key parameters for highly active antiretroviral therapy intensification and a functional cure. EXPERT OPINION We propose the therapeutic setting as the most feasible to speed up the testing and comparison of preventative vaccine candidates, as the distinction lies in the use of the vaccine in uninfected versus infected subjects and not in the vaccine formulation.
Collapse
Affiliation(s)
- Aurelio Cafaro
- Istituto Superiore di Sanità, National AIDS Center , Rome , Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dhamija N, Choudhary D, Ladha JS, Pillai B, Mitra D. Tat predominantly associates with host promoter elements in HIV-1-infected T-cells - regulatory basis of transcriptional repression of c-Rel. FEBS J 2014; 282:595-610. [PMID: 25472883 DOI: 10.1111/febs.13168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/19/2014] [Accepted: 12/02/2014] [Indexed: 11/28/2022]
Abstract
HIV-1 Tat is a multifunctional regulatory protein that, in addition to its primary function of transactivating viral transcription, also tends to modulate cellular gene expression, for which the molecular mechanism remains to be clarified. We have reported earlier nuclear factor kappa B (NFκB) enhancer binding activity of Tat and proposed this DNA binding activity as a possible molecular basis for Tat-mediated regulation of cellular gene expression in infected cells. In the present study, we analyzed the genome-wide occupancy of Tat protein on host cell chromatin in HIV-1-infected T-cells to investigate a potential role of Tat on cellular gene expression. The results obtained identify a spectrum of binding sites of Tat protein on the chromatin and reveal that Tat is also recruited on a number of cellular gene promoters in HIV-1-infected T-cells, indicating its possible involvement in the regulation of gene expression of such cellular genes. Tat was identified as a repressor of one such validated gene, c-Rel, because it downregulates the expression of c-Rel in both Tat expressing and HIV-1-infected T-cells. The results also show that Tat downregulates c-Rel promoter activity by interacting with specific NFκB sites on the c-Rel promoter, thus providing a molecular basis of Tat-mediated regulation of cellular gene expression. Thus, in the present study, we have not only identified recruitment sites of Tat on the chromatin in HIV-1-infected T-cells, but also report for the first time that c-Rel is downregulated in HIV-1-infected cells specifically by interaction of Tat with NFκB binding sites on the promoter.
Collapse
|
20
|
Bouwman RD, Palser A, Parry CM, Coulter E, Rasaiyaah J, Kellam P, Jenner RG. Human immunodeficiency virus Tat associates with a specific set of cellular RNAs. Retrovirology 2014; 11:53. [PMID: 24990269 PMCID: PMC4086691 DOI: 10.1186/1742-4690-11-53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/18/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Human Immunodeficiency Virus 1 (HIV-1) exhibits a wide range of interactions with the host cell but whether viral proteins interact with cellular RNA is not clear. A candidate interacting factor is the trans-activator of transcription (Tat) protein. Tat is required for expression of virus genes but activates transcription through an unusual mechanism; binding to an RNA stem-loop, the transactivation response element (TAR), with the host elongation factor P-TEFb. HIV-1 Tat has also been shown to alter the expression of host genes during infection, contributing to viral pathogenesis but, whether Tat also interacts with cellular RNAs is unknown. RESULTS Using RNA immunoprecipitation coupled with microarray analysis, we have discovered that HIV-1 Tat is associated with a specific set of human mRNAs in T cells. mRNAs bound by Tat share a stem-loop structural element and encode proteins with common biological roles. In contrast, we do not find evidence that Tat associates with microRNAs or the RNA-induced silencing complex (RISC). The interaction of Tat with cellular RNA requires an intact RNA binding domain and Tat RNA binding is linked to an increase in RNA abundance in cell lines and during infection of primary CD4+ T cells by HIV. CONCLUSIONS We conclude that Tat interacts with a specific set of human mRNAs in T cells, many of which show changes in abundance in response to Tat and HIV infection. This work uncovers a previously unrecognised interaction between HIV and its host that may contribute to viral alteration of the host cellular environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Richard G Jenner
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London WC1E 6BT, UK.
| |
Collapse
|
21
|
Ronsard L, Lata S, Singh J, Ramachandran VG, Das S, Banerjea AC. Molecular and genetic characterization of natural HIV-1 Tat Exon-1 variants from North India and their functional implications. PLoS One 2014; 9:e85452. [PMID: 24465566 PMCID: PMC3900424 DOI: 10.1371/journal.pone.0085452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 11/27/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Designing an ideal vaccine against HIV-1 has been difficult due to enormous genetic variability as a result of high replication rate and lack of proofreading activity of reverse transcriptase leading to emergence of genetic variants and recombinants. Tat transactivates HIV-1 LTR, resulting in a remarkable increase in viral gene expression, and plays a vital role in pathogenesis. The aim of this study was to characterize the genetic variations of Tat exon-1 from HIV-1 infected patients from North India. METHODS Genomic DNA was isolated from PBMCs and Tat exon-1 was PCR amplified with specific primers followed by cloning, sequencing and sequence analyses using bioinformatic tools for predicting HIV-1 subtypes, recombination events, conservation of domains and phosphorylation sites, and LTR transactivation by luciferase assay. RESULTS Phylogenetic analysis of Tat exon-1 variants (n = 120) revealed sequence similarity with South African Tat C sequences and distinct geographical relationships were observed for B/C recombinants. Bootscan analysis of our variants showed 90% homology to Tat C and 10% to B/C recombinants with a precise breakpoint. Natural substitutions were observed with high allelic frequencies which may be beneficial for virus. High amino acid conservation was observed in Tat among Anti Retroviral Therapy (ART) recipients. Barring few changes, most of the functional domains, predicted motifs and phosphorylation sites were well conserved in most of Tat variants. dN/dS analysis revealed purifying selection, implying the importance of functional conservation of Tat exon-1. Our Indian Tat C variants and B/C recombinants showed differential LTR transactivation. CONCLUSIONS The possible role of Tat exon-1 variants in shaping the current HIV-1 epidemic in North India was highlighted. Natural substitutions across conserved functional domains were observed and provided evidence for the emergence of B/C recombinants within the ORF of Tat exon-1. These events are likely to have implications for viral pathogenesis and vaccine formulations.
Collapse
Affiliation(s)
- Larance Ronsard
- Virology Laboratory, National Institute of Immunology, New Delhi, India
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - Sneh Lata
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - Jyotsna Singh
- Virology Laboratory, National Institute of Immunology, New Delhi, India
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | | | - Shukla Das
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - Akhil C. Banerjea
- Virology Laboratory, National Institute of Immunology, New Delhi, India
- * E-mail: ,
| |
Collapse
|
22
|
Nicoli F, Finessi V, Sicurella M, Rizzotto L, Gallerani E, Destro F, Cafaro A, Marconi P, Caputo A, Ensoli B, Gavioli R. The HIV-1 Tat protein induces the activation of CD8+ T cells and affects in vivo the magnitude and kinetics of antiviral responses. PLoS One 2013; 8:e77746. [PMID: 24223723 PMCID: PMC3817196 DOI: 10.1371/journal.pone.0077746] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/06/2013] [Indexed: 11/19/2022] Open
Abstract
T cells are functionally compromised during HIV infection despite their increased activation and proliferation. Although T cell hyperactivation is one of the best predictive markers for disease progression, its causes are poorly understood. Anti-tat natural immunity as well as anti-tat antibodies induced by Tat immunization protect from progression to AIDS and reverse signs of immune activation in HIV-infected patients suggesting a role of Tat in T cell dysfunctionality. The Tat protein of HIV-1 is known to induce, in vitro, the activation of CD4(+) T lymphocytes, but its role on CD8(+) T cells and how these effects modulate, in vivo, the immune response to pathogens are not known. To characterize the role of Tat in T cell hyperactivation and dysfunction, we examined the effect of Tat on CD8(+) T cell responses and antiviral immunity in different ex vivo and in vivo models of antigenic stimulation, including HSV infection. We demonstrate for the first time that the presence of Tat during priming of CD8(+) T cells favors the activation of antigen-specific CTLs. Effector CD8(+) T cells generated in the presence of Tat undergo an enhanced and prolonged expansion that turns to a partial dysfunctionality at the peak of the response, and worsens HSV acute infection. Moreover, Tat favors the development of effector memory CD8(+) T cells and a transient loss of B cells, two hallmarks of the chronic immune activation observed in HIV-infected patients. Our data provide evidence that Tat affects CD8(+) T cell responses to co-pathogens and suggest that Tat may contribute to the CD8(+) T cell hyperactivation observed in HIV-infected individuals.
Collapse
Affiliation(s)
- Francesco Nicoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Valentina Finessi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mariaconcetta Sicurella
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Lara Rizzotto
- Department of Biomedical Sciences, Azienda Ospedaliero Universitaria Sant'Anna, Ferrara, Italy
| | - Eleonora Gallerani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Federica Destro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Peggy Marconi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Antonella Caputo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Riccardo Gavioli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- * E-mail:
| |
Collapse
|
23
|
Yokley BH, Selby ST, Posch PE. A stimulation-dependent alternate core promoter links lymphotoxin α expression with TGF-β1 and fibroblast growth factor-7 signaling in primary human T cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:4573-84. [PMID: 23547113 DOI: 10.4049/jimmunol.1201068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lymphotoxin (LT)-α regulates many biologic activities, yet little is known of the regulation of its gene. In this study, the contribution to LTA transcriptional regulation of the region between the transcription and translation start sites (downstream segment) was investigated. The LTA downstream segment was found to be required for, and alone to be sufficient for, maximal transcriptional activity in both T and B lymphocytes. The latter observation suggested that an alternate core promoter might be present in the downstream segment. Characterization of LTA mRNAs isolated from primary and from transformed human T cells under different stimulation conditions identified eight unique transcript variants (TVs), including one (LTA TV8) that initiated within a polypyrimidine tract near the 3' end of the downstream segment. Further investigation determined that the LTA downstream segment alternate core promoter that produces the LTA TV8 transcript most likely consists of a stimulating protein 1 binding site and an initiator element and that factors involved in transcription initiation (stimulating protein 1, TFII-I, and RNA polymerase II) bind to this LTA region in vivo. Interestingly, the LTA downstream segment alternate core promoter was active only after specific cellular stimulation and was the major promoter used when human T cells were stimulated with TGF-β1 and fibroblast growth factor-7. Most importantly, this study provides evidence of a direct link for crosstalk between T cells and epithelial/stromal cells that has implications for LT signaling by T cells in the cooperative regulation of various processes typically associated with TGF-βR and fibroblast growth factor-R2 signaling.
Collapse
Affiliation(s)
- Brian H Yokley
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | |
Collapse
|
24
|
Expression of human endogenous retrovirus type K (HML-2) is activated by the Tat protein of HIV-1. J Virol 2012; 86:7790-805. [PMID: 22593154 DOI: 10.1128/jvi.07215-11] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human endogenous retroviruses (HERVs) make up 8% of the human genome. The expression of HERV-K (HML-2), the family of HERVs that most recently entered the genome, is tightly regulated but becomes markedly increased after infection with HIV-1. To better understand the mechanisms involved in this activation, we explored the role of the HIV-1 Tat protein in inducing the expression of these endogenous retroviral genes. Administration of recombinant HIV-1 Tat protein caused a 13-fold increase in HERV-K (HML-2) gag RNA transcripts in Jurkat T cells and a 10-fold increase in primary lymphocytes, and the expression of the HERV-K (HML-2) rec and np9 oncogenes was also markedly increased. This activation was seen especially in lymphocytes and monocytic cells, the natural hosts for HIV-1 infection. Luciferase reporter gene assays demonstrated that the effect of Tat on HERV-K (HML-2) expression occurred at the level of the transcriptional promoter. The transcription factors NF-κB and NF-AT contribute to the Tat-induced activation of the promoter, as shown by chromatin immunoprecipitation assays, mutational analysis of the HERV-K (HML-2) long terminal repeat, and treatments with agents that inhibit NF-κB or NF-AT activation. These studies demonstrate that HIV-1 Tat plays an important role in activating expression of HERV-K (HML-2) in the setting of HIV-1 infection.
Collapse
|
25
|
Fiume G, Vecchio E, De Laurentiis A, Trimboli F, Palmieri C, Pisano A, Falcone C, Pontoriero M, Rossi A, Scialdone A, Fasanella Masci F, Scala G, Quinto I. Human immunodeficiency virus-1 Tat activates NF-κB via physical interaction with IκB-α and p65. Nucleic Acids Res 2011; 40:3548-62. [PMID: 22187158 PMCID: PMC3333881 DOI: 10.1093/nar/gkr1224] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor (NF)-κB is a master regulator of pro-inflammatory genes and is upregulated in human immunodeficiency virus 1 (HIV-1) infection. Mechanisms underlying the NF-κB deregulation by HIV-1 are relevant for immune dysfunction in AIDS. We report that in single round HIV-1 infection, or single-pulse PMA stimulation, the HIV-1 Tat transactivator activated NF-κB by hijacking the inhibitor IκB-α and by preventing the repressor binding to the NF-κB complex. Moreover, Tat associated with the p65 subunit of NF-κB and increased the p65 DNA-binding affinity and transcriptional activity. The arginine- and cysteine-rich domains of Tat were required for IκB-α and p65 association, respectively, and for sustaining the NF-κB activity. Among an array of NF-κB-responsive genes, Tat mostly activated the MIP-1α expression in a p65-dependent manner, and bound to the MIP-1α NF-κB enhancer thus promoting the recruitment of p65 with displacement of IκB-α; similar findings were obtained for the NF-κB-responsive genes CSF3, LTA, NFKBIA and TLR2. Our results support a novel mechanism of NF-κB activation via physical interaction of Tat with IκB-α and p65, and may contribute to further insights into the deregulation of the inflammatory response by HIV-1.
Collapse
Affiliation(s)
- Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro Magna Graecia, Viale Europa-Germaneto, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Honda JR, Shang S, Shanley CA, Caraway ML, Henao-Tamayo M, Chan ED, Basaraba RJ, Orme IM, Ordway DJ, Flores SC. Immune Responses of HIV-1 Tat Transgenic Mice to Mycobacterium Tuberculosis W-Beijing SA161. Open AIDS J 2011; 5:86-95. [PMID: 22046211 PMCID: PMC3204420 DOI: 10.2174/1874613601105010086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/22/2011] [Accepted: 05/11/2011] [Indexed: 11/30/2022] Open
Abstract
Background: Mycobacterium tuberculosis remains among the leading causes of death from an infectious agent in the world and exacerbates disease caused by the human immunodeficiency virus (HIV). HIV infected individuals are prone to lung infections by a variety of microbial pathogens, including M. tuberculosis. While the destruction of the adaptive immune response by HIV is well understood, the actual pathogenesis of tuberculosis in co-infected individuals remains unclear. Tat is an HIV protein essential for efficient viral gene transcription, is secreted from infected cells, and is known to influence a variety of host inflammatory responses. We hypothesize Tat contributes to pathophysiological changes in the lung microenvironment, resulting in impaired host immune responses to infection by M. tuberculosis. Results: Herein, we show transgenic mice that express Tat by lung alveolar cells are more susceptible than non-transgenic control littermates to a low-dose aerosol infection of M. tuberculosis W-Beijing SA161. Survival assays demonstrate accelerated mortality rates of the Tat transgenic mice compared to non-transgenics. Tat transgenic mice also showed poorly organized lung granulomata-like lesions. Analysis of the host immune response using quantitative RT-PCR, flow cytometry for surface markers, and intracellular cytokine staining showed increased expression of pro-inflammatory cytokines in the lungs, increased numbers of cells expressing ICAM1, increased numbers of CD4+CD25+Foxp3+ T regulatory cells, and IL-4 producing CD4+ T cells in the Tat transgenics compared to infected non-tg mice. Conclusions: Our data show quantitative differences in the inflammatory response to the SA161 clinical isolate of M. tuberculosis W-Beijing between Tat transgenic and non-transgenic mice, suggesting Tat contributes to the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Jennifer R Honda
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ensoli B, Bellino S, Tripiciano A, Longo O, Francavilla V, Marcotullio S, Cafaro A, Picconi O, Paniccia G, Scoglio A, Arancio A, Ariola C, Ruiz Alvarez MJ, Campagna M, Scaramuzzi D, Iori C, Esposito R, Mussini C, Ghinelli F, Sighinolfi L, Palamara G, Latini A, Angarano G, Ladisa N, Soscia F, Mercurio VS, Lazzarin A, Tambussi G, Visintini R, Mazzotta F, Di Pietro M, Galli M, Rusconi S, Carosi G, Torti C, Di Perri G, Bonora S, Ensoli F, Garaci E. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART. PLoS One 2010; 5:e13540. [PMID: 21085635 PMCID: PMC2978690 DOI: 10.1371/journal.pone.0013540] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 09/28/2010] [Indexed: 11/18/2022] Open
Abstract
Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4+ T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks) on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002). Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002), served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4+ and CD8+ cellular activation (CD38 and HLA-DR) together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4+ T cells and B cells with reduction of CD8+ T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4+ and CD8+ T cells were accompanied by increases of CD4+ and CD8+ T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite, absent or partial in the OBS population. These findings support the use of Tat immunization to intensify HAART efficacy and to restore immune homeostasis.
Collapse
Affiliation(s)
- Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tansi FL, Blanchard V, Berger M, Tauber R, Reutter W, Fan H. Interaction of human dipeptidyl peptidase IV and human immunodeficiency virus type-1 transcription transactivator in Sf9 cells. Virol J 2010; 7:267. [PMID: 20942971 PMCID: PMC2967539 DOI: 10.1186/1743-422x-7-267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 10/13/2010] [Indexed: 12/14/2022] Open
Abstract
Background Dipeptidyl peptidase IV (DPPIV) also known as the T cell activation marker CD26 is a multifunctional protein which is involved in various biological processes. The association of human-DPPIV with components of the human immunodeficiency virus type-1 (HIV1) is well documented and raised some discussions. Several reports implicated the interaction of human-DPPIV with the HIV1 transcription transactivator protein (HIV1-Tat) and the inhibition of the dipeptidyl peptidase activity of DPPIV by the HIV1-Tat protein. Furthermore, enzyme kinetic data implied another binding site for the HIV1-Tat other than the active centre of DPPIV. However, the biological significance of this interaction of the HIV1-Tat protein and human-DPPIV has not been studied, yet. Therefore, we focused on the interaction of HIV1-Tat protein with DPPIV and investigated the subsequent biological consequences of this interaction in Spodoptera frugiperda cells, using the BAC-TO-BAC baculovirus system. Results The HIV1-Tat protein (Tat-BRU) co-localized and co-immunoprecipitated with human-DPPIV protein, following co-expression in the baculovirus-driven Sf9 cell expression system. Furthermore, tyrosine phosphorylation of DPPIV protein was up-regulated in Tat/DPPIV-co-expressing cells after 72 h culturing and also in DPPIV-expressing Sf9 cells after application of purified recombinant Tat protein. As opposed to the expression of Tat alone, serine phosphorylation of the Tat protein was decreased when co-expressed with human-DPPIV protein. Conclusions We show for the first time that human-DPPIV and HIV1-Tat co-immunoprecipitate. Furthermore, our findings indicate that the interaction of HIV1-Tat and human-DPPIV may be involved in signalling platforms that regulate the biological function of both human-DPPIV and HIV1-Tat.
Collapse
Affiliation(s)
- Felista L Tansi
- Institut für Biochemie und Molekularbiologie, Charité-Universitätsmedizin Berlin, Arnimallee 22 Berlin-Dahlem, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Foucault M, Mayol K, Receveur-Bréchot V, Bussat MC, Klinguer-Hamour C, Verrier B, Beck A, Haser R, Gouet P, Guillon C. UV and X-ray structural studies of a 101-residue long Tat protein from a HIV-1 primary isolate and of its mutated, detoxified, vaccine candidate. Proteins 2010; 78:1441-56. [PMID: 20034112 DOI: 10.1002/prot.22661] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 101-residue long Tat protein of primary isolate 133 of the human immunodeficiency virus type 1 (HIV-1), wt-Tat(133) displays a high transactivation activity in vitro, whereas the mutant thereof, STLA-Tat(133), a vaccine candidate for HIV-1, has none. These two proteins were chemically synthesized and their biological activity was validated. Their structural properties were characterized using circular dichroism (CD), fluorescence emission, gel filtration, dynamic light scattering, and small angle X-ray scattering (SAXS) techniques. SAXS studies revealed that both proteins were extended and belong to the family of intrinsically unstructured proteins. CD measurements showed that wt-Tat(133) or STLA-Tat(133) underwent limited structural rearrangements when complexed with specific fragments of antibodies. Crystallization trials have been performed on the two forms, assuming that the Tat(133) proteins might have a better propensity to fold in supersaturated conditions, and small crystals have been obtained. These results suggest that biologically active Tat protein is natively unfolded and requires only a limited gain of structure for its function.
Collapse
|
30
|
Ensoli B, Fiorelli V, Ensoli F, Lazzarin A, Visintini R, Narciso P, Di Carlo A, Tripiciano A, Longo O, Bellino S, Francavilla V, Paniccia G, Arancio A, Scoglio A, Collacchi B, Ruiz Alvarez MJ, Tambussi G, Tassan Din C, Palamara G, Latini A, Antinori A, D’Offizi G, Giuliani M, Giulianelli M, Carta M, Monini P, Magnani M, Garaci E. The preventive phase I trial with the HIV-1 Tat-based vaccine. Vaccine 2009; 28:371-8. [DOI: 10.1016/j.vaccine.2009.10.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 10/01/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
|
31
|
Fanales-Belasio E, Moretti S, Fiorelli V, Tripiciano A, Pavone Cossut MR, Scoglio A, Collacchi B, Nappi F, Macchia I, Bellino S, Francavilla V, Caputo A, Barillari G, Magnani M, Laguardia ME, Cafaro A, Titti F, Monini P, Ensoli F, Ensoli B. HIV-1 Tat Addresses Dendritic Cells to Induce a Predominant Th1-Type Adaptive Immune Response That Appears Prevalent in the Asymptomatic Stage of Infection. THE JOURNAL OF IMMUNOLOGY 2009; 182:2888-97. [DOI: 10.4049/jimmunol.0711406] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Kalantari P, Harandi OF, Hankey PA, Henderson AJ. HIV-1 Tat mediates degradation of RON receptor tyrosine kinase, a regulator of inflammation. THE JOURNAL OF IMMUNOLOGY 2008; 181:1548-55. [PMID: 18606710 DOI: 10.4049/jimmunol.181.2.1548] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HIV encodes several proteins, including Tat, that have been demonstrated to modulate the expression of receptors critical for innate immunity, including MHC class I, mannose receptor, and beta(2)-microglobulin. We demonstrate that Tat targets the receptor tyrosine kinase recepteur d'origine nantais (RON), which negatively regulates inflammation and HIV transcription, for proteosome degradation. Tat decreases cell surface RON expression in HIV-infected monocytic cells, and Tat-mediated degradation of RON protein is blocked by inhibitors of proteosome activity. Tat specifically induced down-regulation of RON and not other cell surface receptors, such as the transferrin receptor, the receptor tyrosine kinase TrkA, or monocytic markers CD14 and ICAM-1. The Tat trans activation domain is required for RON degradation, and this down-regulation is dependent on the integrity of the kinase domain of RON receptor. We propose that Tat mediates degradation of RON through a ubiquitin-proteosome pathway, and suggest that by targeting signals that modulate inflammation, Tat creates a microenvironment that is optimal for HIV replication and progression of AIDS-associated diseases.
Collapse
Affiliation(s)
- Parisa Kalantari
- Graduate Program in Pathobiology, Center for Molecular Immunology and Infectious Diseases, Pennsylvania State University, PA 16802, USA
| | | | | | | |
Collapse
|
33
|
Human immunodeficiency virus type 1 Tat protein inhibits the SIRT1 deacetylase and induces T cell hyperactivation. Cell Host Microbe 2008; 3:158-67. [PMID: 18329615 DOI: 10.1016/j.chom.2008.02.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 01/07/2008] [Accepted: 02/08/2008] [Indexed: 12/23/2022]
Abstract
Symptoms of T cell hyperactivation shape the course and outcome of HIV-1 infection, but the mechanism(s) underlying this chronic immune activation are not well understood. We find that the viral transactivator Tat promotes hyperactivation of T cells by blocking the nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase SIRT1. Tat directly interacts with the deacetylase domain of SIRT1 and blocks the ability of SIRT1 to deacetylate lysine 310 in the p65 subunit of NF-kappaB. Because acetylated p65 is more active as a transcription factor, Tat hyperactivates the expression of NF-kappaB-responsive genes, a function lost in SIRT1-/- cells. These results support a model where the normal function of SIRT1 as a negative regulator of T cell activation is suppressed by Tat during HIV infection. These events likely contribute to the state of immune cell hyperactivation found in HIV-infected individuals.
Collapse
|
34
|
Siddappa NB, Venkatramanan M, Venkatesh P, Janki MV, Jayasuryan N, Desai A, Ravi V, Ranga U. Transactivation and signaling functions of Tat are not correlated: biological and immunological characterization of HIV-1 subtype-C Tat protein. Retrovirology 2006; 3:53. [PMID: 16916472 PMCID: PMC1564039 DOI: 10.1186/1742-4690-3-53] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 08/18/2006] [Indexed: 12/04/2022] Open
Abstract
Background Of the diverse subtypes of Human Immunodeficiency Virus Type-1 (HIV-1), subtype-C strains cause a large majority of infections worldwide. The reasons for the global dominance of HIV-1 subtype-C infections are not completely understood. Tat, being critical for viral infectivity and pathogenesis, may differentially modulate pathogenic properties of the viral subtypes. Biochemical studies on Tat are hampered by the limitations of the current purification protocols. Tat purified using standard protocols often is competent for transactivation activity but defective for a variety of other biological functions. Keeping this limitation in view, we developed an efficient protein purification strategy for Tat. Results Tat proteins obtained using the novel strategy described here were free of contaminants and retained biological functions as evaluated in a range of assays including the induction of cytokines, upregulation of chemokine coreceptor, transactivation of the viral promoter and rescue of a Tat-defective virus. Given the highly unstable nature of Tat, we evaluated the effect of the storage conditions on the biological function of Tat following purification. Tat stored in a lyophilized form retained complete biological activity regardless of the storage temperature. To understand if variations in the primary structure of Tat could influence the secondary structure of the protein and consequently its biological functions, we determined the CD spectra of subtype-C and -B Tat proteins. We demonstrate that subtype-C Tat may have a relatively higher ordered structure and be less flexible than subtype-B Tat. We show that subtype-C Tat as a protein, but not as a DNA expression vector, was consistently inferior to subtype-B Tat in a variety of biological assays. Furthermore, using ELISA, we evaluated the anti-Tat antibody titers in a large number of primary clinical samples (n = 200) collected from all four southern Indian states. Our analysis of the Indian populations demonstrated that Tat is non-immunodominant and that a large variation exists in the antigen-specific antibody titers. Conclusion Our report not only describes a simple protein purification strategy for Tat but also demonstrates important structural and functional differences between subtype-B and -C Tat proteins. Furthermore, this is the first report of protein purification and characterization of subtype-C Tat.
Collapse
Affiliation(s)
- Nagadenahalli Byrareddy Siddappa
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Mohanram Venkatramanan
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Prasanna Venkatesh
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | | | - Anita Desai
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Vasanthapuram Ravi
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Udaykumar Ranga
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
35
|
White MK, Gorrill TS, Khalili K. Reciprocal transactivation between HIV-1 and other human viruses. Virology 2006; 352:1-13. [PMID: 16725168 DOI: 10.1016/j.virol.2006.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 03/14/2006] [Accepted: 04/06/2006] [Indexed: 01/08/2023]
Abstract
A variety of rare clinical syndromes are seen with strikingly increased prevalence in HIV-1-infected individuals, many with underlying viral etiologies. The emergence of these diseases in AIDS reflects a reduction in the ability of the immune system to mount an adequate defense against viruses in general due to the damage inflicted to the immune system by HIV-1 infection. However, in many cases, it has been found that HIV-1 can enhance the level of expression and hence the life cycle of other viruses independently of immunosuppression through specific interactions with the viruses. This can occur either directly by HIV-1 proteins such as Tat enhancing the activity of heterologous viral promoters, and/or indirectly by HIV-1 inducing the expression of cytokines and activation of their downstream signaling that eventually promotes the multiplication of the other virus. In a reciprocal manner, the effects of other viruses can enhance the pathogenicity of HIV-1 infection in individuals with AIDS through stimulation of the HIV-1 promoter activity and genome expression. The purpose of this review is to examine the cross-interactions between these viruses and HIV-1.
Collapse
Affiliation(s)
- Martyn K White
- Center for Neurovirology, Department of Neuroscience, Temple University School of Medicine, 1900 North 12th Street, 015-96, Room 203, Philadelphia, PA 19122, USA.
| | | | | |
Collapse
|
36
|
Cross JGR, Harrison GA, Coggill P, Sims S, Beck S, Deakin JE, Graves JAM. Analysis of the genomic region containing the tammar wallaby (Macropus eugenii) orthologues of MHC class III genes. Cytogenet Genome Res 2006; 111:110-7. [PMID: 16103651 DOI: 10.1159/000086379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2004] [Accepted: 01/13/2005] [Indexed: 11/19/2022] Open
Abstract
Major histocompatibility complex (MHC) molecules are central to development and regulation of the immune system in all jawed vertebrates. MHC class III cytokine genes from the tumor necrosis factor core family, including tumor necrosis factor (TNF) and lymphotoxin alpha and beta (LTA, LTB), are well studied in human and mouse. Orthologues have been identified in several other eutherian species and the cDNA sequences have been reported for a model marsupial, the tammar wallaby. Comparative genomics can help to determine gene function, to understand the evolution of a gene or gene family, and to identify potential regulatory regions. We therefore cloned the genomic region containing the tammar LTB, TNF, and LTA orthologues by "genome walking", using primers designed from known tammar sequences and regions conserved in other species. We isolated two tammar BAC clones containing all three genes. These tammar genes show similar intergenic distances and the same transcriptional orientation as in human and mouse. Gene structures and sequences are also very conserved. By comparing the tammar, human and mouse genomic sequences we were able to identify candidate regulatory regions for these genes in mammals. Full length sequencing of BACs containing the three genes has been partially completed, and reveals the presence of a number of other tammar MHC III orthologues in this region.
Collapse
Affiliation(s)
- J G R Cross
- Comparative Genomics Unit, ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, Australian National University, Canberra, Australia.
| | | | | | | | | | | | | |
Collapse
|
37
|
Flora G, Pu H, Lee YW, Ravikumar R, Nath A, Hennig B, Toborek M. Proinflammatory synergism of ethanol and HIV-1 Tat protein in brain tissue. Exp Neurol 2005; 191:2-12. [PMID: 15589507 DOI: 10.1016/j.expneurol.2004.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2004] [Revised: 06/01/2004] [Accepted: 06/07/2004] [Indexed: 12/24/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat protein is a potent transactivator of viral replication. It is actively released from HIV-infected cells and has been shown to induce cell injury effects. Alcohol abuse is a risk factor of HIV infection and we hypothesize that alcohol and Tat may interact in an additive or synergistic fashion to influence molecular processes which can contribute to their toxic effects. To study this possibility, we investigated the effects of two intraperitoneal injections of ethanol (EtOH, 3 g/kg each, 16 h apart) and a single intracerebral injection of Tat (25 microg/microl into the right hippocampus, injected 12 h after the first EtOH injection) on generation of cellular oxidative stress, DNA binding activity of redox-responsive transcription factors, and induction of inflammatory genes in the hippocampus and corpus striatum of mouse brain. As compared to control animals, treatment with EtOH plus Tat resulted in increased production of reactive oxygen species in both brain regions. In addition, DNA binding activities of nuclear factor-kappaB (NF-kappaB) and CREB in both brain regions and SP-1 in the hippocampus were more pronounced in mice injected with Tat plus EtOH as compared to the effects of Tat or EtOH alone. Among studied inflammatory genes, induction of IL-1beta and MCP-1 was potentiated in animals injected with EtOH plus Tat. These results indicate that Tat and EtOH can cross-amplify their cellular effects, leading to alterations of redox-regulated inflammatory pathways in the brain. Such potentiation of proinflammatory stimulation may further contribute to CNS pathology in HIV-infected patients who are alcohol abusers.
Collapse
Affiliation(s)
- Govinder Flora
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Sánchez-Alavez M, Gombart LM, Huitrón-Reséndiz S, Carr JR, Wills DN, Berg G, Campbell IL, Gauvin DV, Henriksen SJ, Criado JR. Physiological and behavioral effects of methamphetamine in a mouse model of endotoxemia: a preliminary study. Pharmacol Biochem Behav 2004; 77:365-70. [PMID: 14751466 DOI: 10.1016/j.pbb.2003.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the effects of methamphetamine (METH) on core body temperature (Tb) and motor activity (MA) with or without exposure to a peripheral immune challenge. Mice were exposed to an escalating METH treatment and then to a METH treatment known to cause neurotoxicity (binge METH treatment). This was followed by a challenge with lipopolysaccharide (LPS). Three days later, METH and saline-treated control groups were challenged with an acute test dose of METH (METH test). Animals exposed to the escalating METH treatment exhibited a significant increase in Tb only after the initial exposure to METH (Day 1) and following the METH test (Day 7). The hyperthermic effect produced by the METH test (Day 7) was reduced in mice previously exposed to combined exposure to binge METH and LPS treatments. The escalating METH treatment produced MA sensitization to the METH test. Animals treated with the binge METH, LPS injection or both treatments combined prevented MA sensitization to the METH test. These findings suggest that induction of peripheral endotoxemia in animals with a history of METH reduced the hyperthermic response to a subsequent challenge with METH.
Collapse
Affiliation(s)
- Manuel Sánchez-Alavez
- Department of Neuropharmacology, The Scripps Research Institute, CVN-13, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Neuveut C, Scoggins RM, Camerini D, Markham RB, Jeang KT. Requirement for the second coding exon of Tat in the optimal replication of macrophage-tropic HIV-1. J Biomed Sci 2003. [DOI: 10.1007/bf02256316] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
40
|
Samaniego F, Pati S, Karp JE, Prakash O, Bose D. Human herpesvirus 8 K1-associated nuclear factor-kappa B-dependent promoter activity: role in Kaposi's sarcoma inflammation? J Natl Cancer Inst Monogr 2003:15-23. [PMID: 11158202 DOI: 10.1093/oxfordjournals.jncimonographs.a024252] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The growing number of human immunodeficiency virus type 1 (HIV-1) infections worldwide and the increasing use of immunosuppressive modalities for organ transplantation have contributed to an epidemic of Kaposi's sarcoma (KS), which has been etiologically linked to human herpesvirus 8 (HHV8) or KS-associated virus. Since the onset of the acquired immunodeficiency syndrome epidemic, inflammation has been recognized as an essential component of KS pathology. HHV8 bears a gene (K1) encoding a transmembrane protein with an immunoreceptor tyrosine-based activation motif. This motif is present in receptors that mediate inflammation. PURPOSE To dissect the cellular effects of K1 function and the eventual role of K1 in KS, we developed a cell model for studying K1 expression. METHODS K1 was cloned from BC-3 lymphoma cells. To monitor transcriptional activation, K1 was coexpressed with plasmids containing luciferase under control of various promoters. K1 expression was monitored by indirect immunofluorescence and by combined immunoprecipitation/immunoblot analysis. Inflammatory cytokines were measured by enzyme-linked immunosorbent assay. RESULTS Cellular transfection of the K1 gene induced reporter expression under control of nuclear factor-kappa B (NF-kappaB), which controls the transcription of numerous proteins involved in inflammation. Treatment of cells with aspirin, an agent that targets this intracellular pathway and blocks cell inflammatory responses, blocked K1-induced NF-kappaB-dependent promoter activity. When a second KS cofactor, i.e., the HIV-1-transactivating gene tat, was coexpressed with K1, we observed an additive effect on NF-kappaB-dependent transcription. K1 transfection stimulated the secretion of cytokines interleukin (IL) 6, granulocyte-macrophage colony-stimulating factor, and IL-12. Cells treated with the conditioned media of K1 transfectants exhibited similar characteristics of K1 transfectants, indicating that a paracrine loop was being activated. CONCLUSION Thus, K1 may activate cells in which it is expressed, as well as other cells in a paracrine manner. K1 cooperates in signaling with HIV-1 Tat, suggesting that both of the proteins from these viruses converge to reach an enhanced level of inflammation that may underlie progressive KS.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Aspirin/pharmacology
- COS Cells
- Chlorocebus aethiops
- Culture Media, Conditioned/pharmacology
- Cytokines/biosynthesis
- Cytokines/metabolism
- Dermatitis/etiology
- Gene Expression Regulation, Viral
- Gene Products, tat/physiology
- Genes, tat
- HIV-1/genetics
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/physiology
- Humans
- Hyperplasia
- Lymphoma, Non-Hodgkin/pathology
- Lymphoma, Non-Hodgkin/virology
- NF-kappa B/physiology
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/physiopathology
- Paracrine Communication
- Promoter Regions, Genetic/genetics
- Recombinant Fusion Proteins/physiology
- Sarcoma, Kaposi/blood supply
- Sarcoma, Kaposi/complications
- Sarcoma, Kaposi/virology
- Skin/pathology
- Skin/virology
- Skin Neoplasms/blood supply
- Skin Neoplasms/complications
- Skin Neoplasms/virology
- Transcriptional Activation
- Transfection
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/virology
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/physiology
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- F Samaniego
- Department of Lymphoma/Myeloma and Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
41
|
Buonaguro FM, Tornesello ML, Buonaguro L, Satriano RA, Ruocco E, Castello G, Ruocco V. Kaposi's sarcoma: aetiopathogenesis, histology and clinical features. J Eur Acad Dermatol Venereol 2003; 17:138-154. [PMID: 12705742 DOI: 10.1046/j.1468-3083.2003.00670.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UNLABELLED Kaposi's sarcoma (KS) represents today one of the most common skin cancers in transplanted Mediterranean subjects and, since the epidemic of human immunodeficiency virus/acquired immune deficiency syndrome, in young unmarried single men. The disease has been associated with the recent identified human herpesvirus (HHV)-8 or KS herpesvirus and its incidence in the general population shows a north to south gradient that parallels the HHV-8 increasing prevalence from Nordic countries to sub-Saharan regions. The identification of the aetiopathogenetic mechanisms (viral agents and immunodeficiency) involved in the pathogenesis of KS, are relevant for identifying susceptible subjects (HHV-8 seropositive subjects), monitoring the immune levels in iatrogenic immune suppressed patients, and developing new therapeutic approaches based on antiviral and immune modulators. LEARNING OBJECTIVE This article should enable the reader: (i) to learn about the clinical and molecular aspects of KS in order to have a multidisciplinary approach to a tumour that shows unique features; (ii) to consider the role of viral agents and immunity; and (iii) to recognize properties of an opportunistic neoplasm. The identification of the HHV-8 role in KS pathogenesis should establish a relevant tool in the clinical management of KS patients.
Collapse
Affiliation(s)
- F M Buonaguro
- Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori Fondazione Pascale, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Flora G, Lee YW, Nath A, Hennig B, Maragos W, Toborek M. Methamphetamine potentiates HIV-1 Tat protein-mediated activation of redox-sensitive pathways in discrete regions of the brain. Exp Neurol 2003; 179:60-70. [PMID: 12504868 DOI: 10.1006/exnr.2002.8048] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tat is a major regulatory protein encoded by human immunodeficiency viral genome, which has been implicated in the pathogenesis of HIV infection, including neurologic complications associated with this disease. In addition, drug abuse has been identified as a major risk factor of HIV infection. We hypothesize that abusive drugs, such as methamphetamine (METH), can directly influence specific molecular processes that can further contribute to toxic effects of Tat. To elucidate the molecular signaling pathways of Tat- and/or METH-induced toxicity, we investigated the effects of a single injection of Tat (25 microg/microl into the right hippocampus) and/or METH (10 mg/kg, intraperitoneally) on the generation of cellular oxidative stress, DNA-binding activity of specific redox-responsive transcription factors, and expression of inflammatory genes. Administration of Tat or METH resulted in stimulation of cellular oxidative stress and activation of redox-regulated transcription factors in the cortical, striatal, and hippocampal regions of the mouse brain. In addition, DNA-binding activities of NF-kappaB, AP-1, and CREB in the frontal cortex and hippocampus were more pronounced in mice injected with Tat plus METH compared to the effects of Tat or METH alone. Intercellular adhesion molecule-1 gene expression also was upregulated in a synergistic manner in cortical, striatal, and hippocampal regions in mice which received injections of Tat combined with METH compared to the effects of these agents alone. Moreover, synergistic effects of Tat plus METH on the tumor necrosis factor-alpha and interleukin-1beta mRNA levels were observed in the striatal region. These results indicate that Tat and METH can cross-amplify their cellular effects, leading to alterations of redox-regulated inflammatory pathways in the brain. Such synergistic proinflammatory stimulation may have significant implications in HIV-infected patients who abuse drugs.
Collapse
Affiliation(s)
- Govinder Flora
- Department of Surgery, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
43
|
Pieper GM, Olds CL, Bub JD, Lindholm PF. Transfection of human endothelial cells with HIV-1 tat gene activates NF-kappa B and enhances monocyte adhesion. Am J Physiol Heart Circ Physiol 2002; 283:H2315-21. [PMID: 12427593 DOI: 10.1152/ajpheart.00469.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus (HIV)-1 Tat released from HIV-1-infected monocytes is believed to enter other cells via an integrin-facilitated pathway, resulting in altered gene expression. Indeed, exogenous Tat protein can increase cell adhesion molecule gene expression in human endothelial cells. Signaling pathways initiated by Tat in endothelial cells are not known. We evaluated the ability of endogenous tat to stimulate monocyte adhesion via activation of nuclear factor-kappaB (NF-kappaB) within human umbilical vein endothelial cells. Transfection with pcTat, but not control vector DNA, increased NF-kappaB binding activity, NF-kappaB luciferase reporter activity, and monocyte adhesion. pcTat also increased kappaB-dependent HIV-1-LTR-CAT reporter activity 28-fold compared with a 3-fold increase produced by transfection with an equivalent amount of pcTax (from human leukemia virus). The pcTat-induced increase in pNF-kappaB-Luc activity and monocyte adhesion to endothelial cells was blocked by cotransfection with dominant-negative mutant IkappaBalpha and by incubation with 10 mM aspirin. We conclude that monocyte adhesion to human endothelial cells stimulated by pcTat is mediated via an NF-kappaB-dependent mechanism. Furthermore, inhibition studies using aspirin suggest that pcTat-stimulated NF-kappaB activation and monocyte adhesion occur via a redox-sensitive mechanism.
Collapse
Affiliation(s)
- Galen M Pieper
- Division of Transplant Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee 53226, USA.
| | | | | | | |
Collapse
|
44
|
Toschi E, Sgadari C, Monini P, Barillari G, Bacigalupo I, Palladino C, Baccarini S, Carlei D, Grosso G, Sirianni MC, Ensoli B. Treatment of Kaposi's sarcoma--an update. Anticancer Drugs 2002; 13:977-87. [PMID: 12439331 DOI: 10.1097/00001813-200211000-00001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Kaposi's sarcoma (KS) is an angioproliferative disease of multifactorial origin arising in different clinic-epidemiologic forms, which show the same histopathological features. It generally starts as a hyperplastic reactive-inflammatory and angiogenic process, which may evolve into monomorphic nodules of KS cells that can be clonal (late-stage lesions) and resemble a true sarcoma. Infection with the human herpesvirus 8, cytokine- and angiogenic factor-induced growth together with an immuno-dysregulated state represent fundamental conditions for the development of this tumor. Several local therapies are used to eradicate early and confined skin lesions, whereas widely disseminated, progressive or symptomatic disease requires a more aggressive treatment. Although different chemotherapeutic agents have been used to treat aggressive KS, the growing understanding of the pathogenetic factors participating in KS development has provided a strong rationale for using less- or non-cytotoxic agents that block the mechanisms involved in KS pathogenesis. The angiogenic nature of KS makes it particularly suitable for using therapies based on anti-angiogenic agents. Of note on this goal, recent studies indicate that the highly active anti-retroviral therapy, including at least one human immunodeficiency virus (HIV) protease inhibitor (PI), is associated with a dramatic decrease in the incidence of AIDS-KS and with a regression of KS in treated individuals. Consistent with this, results from preclinical studies indicate that PIs have potent and direct anti-angiogenic and anti-KS activities, suggesting that they should be further investigated, alone or combined with other therapies, as a novel treatment for KS in both HIV seropositive or seronegative individuals.
Collapse
Affiliation(s)
- Elena Toschi
- Laboratory of Virology, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sgarbanti M, Borsetti A, Moscufo N, Bellocchi MC, Ridolfi B, Nappi F, Marsili G, Marziali G, Coccia EM, Ensoli B, Battistini A. Modulation of human immunodeficiency virus 1 replication by interferon regulatory factors. J Exp Med 2002; 195:1359-70. [PMID: 12021315 PMCID: PMC2193759 DOI: 10.1084/jem.20010753] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Transcription of the human immunodeficiency virus (HIV)-1 is controlled by the cooperation of virally encoded and host regulatory proteins. The Tat protein is essential for viral replication, however, expression of Tat after virus entry requires HIV-1 promoter activation. A sequence in the 5' HIV-1 LTR, containing a binding site for transcription factors of the interferon regulatory factors (IRF) family has been suggested to be critical for HIV-1 transcription and replication. Here we show that IRF-1 activates HIV-1 LTR transcription in a dose-dependent fashion and in the absence of Tat. This has biological significance since IRF-1 is produced early upon virus entry, both in cell lines and in primary CD4+ T cells, and before expression of Tat. IRF-1 also cooperates with Tat in amplifying virus gene transcription and replication. This cooperation depends upon a physical interaction that is blocked by overexpression of IRF-8, the natural repressor of IRF-1, and, in turn is released by overexpression of IRF-1. These data suggest a key role of IRF-1 in the early phase of viral replication and/or during viral reactivation from latency, when viral transactivators are absent or present at very low levels, and suggest that the interplay between IRF-1 and IRF-8 may play a key role in virus latency.
Collapse
Affiliation(s)
- Marco Sgarbanti
- Laboratory of Virology, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cota-Gomez A, Flores NC, Cruz C, Casullo A, Aw TY, Ichikawa H, Schaack J, Scheinman R, Flores SC. The human immunodeficiency virus-1 Tat protein activates human umbilical vein endothelial cell E-selectin expression via an NF-kappa B-dependent mechanism. J Biol Chem 2002; 277:14390-9. [PMID: 11827962 DOI: 10.1074/jbc.m108591200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus infection is associated with inflammation and endothelial cell activation that cannot be ascribed to direct infection by the virus or to the presence of opportunistic infections. Factors related to the virus itself, to the host and/or to environmental exposures probably account for these observations. The HIV protein Tat, a viral regulator required for efficient transcription of the viral genome in host cells is secreted from infected cells and taken up by uninfected by-stander cells. Tat can also act as a general transcriptional activator of key inflammatory molecules. We have examined whether Tat contributes to this endothelial cell activation by activating NF-kappaB. Human endothelial cells exposed to Tat in the culture medium activated E-selectin expression with delayed kinetics compared with tumor necrosis factor (TNF). Tat-mediated E-selectin up-regulation required the basic domain of Tat and was inhibited by a Tat antibody. Transfection of human E-selectin promoter-luciferase reporter constructs into Tat-bearing cells or into endothelial cells co-transfected with a Tat expression vector resulted in induction of luciferase expression. Either Tat or TNF activated p65 translocation and binding to an oligonucleotide containing the E-selectin kappaB site 3 sequence. Tat-mediated p65 translocation was also delayed compared with TNF. Neither agent induced new synthesis of p65. A super-repressor adenovirus (AdIkappaBalphaSR) that constitutively sequesters IkappaB in the cytoplasm as well as cycloheximide or actinomycin D inhibited Tat- or TNF-mediated kappaB translocation and E-selectin up-regulation.
Collapse
Affiliation(s)
- Adela Cota-Gomez
- Webb-Waring Institute for Cancer, Aging and Antioxidant Research, the Department of Microbiology, School of Pharmacy, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Human papillomavirus (HPV) infection of the lower genital tract is now considered the most important factor in the initiation of neoplasia. Human immunodeficiency virus (HIV) infection appears to alter the natural history of HPV-associated oncogenesis, but its impact on gynaecology has only recently been defined; the Centers for Disease Control (CDC) designated moderate and severe cervical dysplasia as a category B defining condition, and invasive cervical cancer as a category C defining condition of AIDS in 1993. Anal HPV infection and anal squamous intra-epithelial lesions have been found to be highly prevalent among HIV-positive homosexual men, and recent preliminary data suggest a relatively high prevalence among HIV-positive women as well. Moreover, HPV infection and associated lesions are also observed in body sites other than the anogenital area, particularly the skin and the oral cavity.
Collapse
Affiliation(s)
- A Del Mistro
- Department of Oncology and Surgical Sciences, Oncology Section, University of Padova, and Servizio Citologia Diagnostica Molecolare Oncologica, Azienda Ospedaliera di Padova, via Gattamelata, 64, 35128, Padova, Italy.
| | | |
Collapse
|
48
|
Douglas JL, Lin WY, Panis ML, Veres G. Efficient human immunodeficiency virus-based vector transduction of unstimulated human mobilized peripheral blood CD34+ cells in the SCID-hu Thy/Liv model of human T cell lymphopoiesis. Hum Gene Ther 2001; 12:401-13. [PMID: 11242532 DOI: 10.1089/10430340150504028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The methods available to efficiently transduce human CD34(+) hematopoietic stem cells (HSCs) derived from mobilized peripheral blood, such that they fully retain their engraftment potential and maintain high levels of transgene expression in vivo, have been unsatisfactory. The current murine retrovirus-based gene transfer systems require dividing cells for efficient transduction, and therefore the target HSCs must be activated ex vivo by cytokines to cycle, which may limit their engrafting ability. Lentivirus-based gene transfer systems do not require cell division and, thus, may allow for efficient gene transfer to human HSCs in the absence of any ex vivo cytokine stimulation. We constructed human immunodeficiency virus (HIV)-based vectors and compared them in vitro and in vivo with MuLV-based vectors in their ability to transduce unstimulated human CD34(+) HSCs isolated from mobilized peripheral blood. Both sets of vectors contained the marker gene that expresses the enhanced green fluorescent protein (EGFP) for evaluating transduction efficiency and were pseudotyped with either vesicular stomatitis virus glycoprotein (VSV-G) or the amphotropic murine leukemia virus envelope (A-MULV Env). The VSV-G-pseudotyped HIV-based vectors containing an internal mouse phosphoglycerate kinase promoter (PGK) were able to transduce up to 48% of the unstimulated CD34(+) cells as measured by EGFP expression. When these cells were injected into the human fetal thymus implants of irradiated SCID-hu Thy/Liv mice, up to 18% expressed EGFP after 8 weeks in vivo. In contrast, the MULV-based vectors were effective at transducing HSCs only in the presence of cytokines. Our results demonstrate that the improved HIV-based gene transfer system can effectively transduce unstimulated human CD34(+) HSCs, which can then differentiate into thymocytes and provide long-term transgene expression in vivo.
Collapse
|
49
|
Arese M, Ferrandi C, Primo L, Camussi G, Bussolino F. HIV-1 Tat protein stimulates in vivo vascular permeability and lymphomononuclear cell recruitment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:1380-8. [PMID: 11145723 DOI: 10.4049/jimmunol.166.2.1380] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HIV-1 Tat protein released by infected cells is a chemotactic molecule for leukocytes and induces a proinflammatory program in endothelial cells (EC) by activating vascular endothelial growth factor (VEGF) receptors expressed on both cell types. Its potential role in causing vascular permeability and leukocyte recruitment was studied in vivo following its s.c. injection in mice. Tat caused a dose-dependent early (15 min) and late (6 h) wave of permeability that were inhibited by a neutralizing Ab anti-VEGF receptor type 2. Tissue infiltration of lymphomononuclear cells, mainly monocytes (76%), was evident at 6 h and persisted up to 24 h. WEB2170, a platelet activating factor (PAF) receptor antagonist, reduced the early leakage by 70-80%, but only slightly inhibited the late wave and cell recruitment. In vitro, Tat induced a dose-dependent flux of albumin through the EC monolayer that was inhibited by Ab anti-vascular VEGF receptor type 2 and WEB2170, and PAF synthesis in EC that was blocked by the Ab anti-VEGF receptor type 2. Lastly, an anti-monocyte chemotactic peptide-1 (MCP-1) Ab significantly reduced the lymphomononuclear infiltration elicited by Tat. In vitro, Tat induced a dose-dependent production of MCP-1 by EC after a 24-h stimulation. These results highlighted the role of PAF and MCP-1 as secondary mediators in the onset of lymphomononuclear cell recruitment in tissues triggered by Tat.
Collapse
Affiliation(s)
- M Arese
- Institute for Cancer Research and Treatment and Department of Genetics, Biology and Biochemistry, School of Medicine, University of Torino, Candiolo. Italy
| | | | | | | | | |
Collapse
|
50
|
Knuchel MC, Speck RF, Schlaepfer E, Kuster H, Ott P, Günthard HF, Opravil M, Cone RW, Weber R. Impact of TNFalpha, LTalpha, Fc gammaRII and complement receptor on HIV-1 trapping in lymphoid tissue from HIV-infected patients. AIDS 2000; 14:2661-9. [PMID: 11125884 DOI: 10.1097/00002030-200012010-00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To investigate HIV trapping mechanisms in patients with acute infection and in asymptomatic individuals prior to and during antiretroviral therapy. To determine the role of complement receptor (CR), Fc gamma receptor II (Fc gammaRII), tumour necrosis factor alpha (TNFalpha), and lymphotoxin alpha (LTalpha) expression in HIV trapping efficiency. METHODS Lymphoid tissues from three acutely HIV-infected patients and six asymptomatic, chronically HIV-infected patients collected prior to and during antiretroviral therapy were compared with lymphoid tissues from six HIV-seronegative subjects. HIV, TNFalpha and LTalpha RNA expression was detected and quantified by fluorescence in situ hybridization. CR, Fc gammaRII and HIV p24 antigen were detected and quantified by fluorescence immunohistochemistry. RESULTS The amount of trapped HIV did not differ significantly between patients with acute HIV infection and asymptomatic individuals, and was independent of the presence of CR or Fc gammaRII expression. However, in patients with acute infection, the amount of trapped virus was correlated inversely with the number of HIV-infected cells (P = 0.0092) and with the size of the light zone (P = 0.037). In these patients, the number of TNFalpha-expressing cells was correlated inversely with the amount of trapped virus (P = 0.014) and positively correlated with the size of the light zone in germinal centers (P = 0.041). No correlations were observed between TNFalpha or LTalpha expression and Fc gammaRII or CR expression. CONCLUSION This report provides the first evidence that in humans TNFalpha is involved in the development of lymphoid follicles, HIV trapping, and, consequently, in early host immune responses. A model is proposed for early events in patients during acute HIV infection.
Collapse
Affiliation(s)
- M C Knuchel
- Department of Internal Medicine, University Hospital Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|