1
|
Fiske KL, Brigleb PH, Sanchez LM, Hinterleitner R, Taylor GM, Dermody TS. Strain-specific differences in reovirus infection of murine macrophages segregate with polymorphisms in viral outer-capsid protein σ3. J Virol 2024; 98:e0114724. [PMID: 39431846 PMCID: PMC11575339 DOI: 10.1128/jvi.01147-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/22/2024] [Indexed: 10/22/2024] Open
Abstract
Mammalian orthoreovirus (reovirus) strains type 1 Lang (T1L) and type 3 Dearing-RV (T3D-RV) infect the intestine in mice but differ in the induction of inflammatory responses. T1L infection is associated with the blockade of oral immunological tolerance to newly introduced dietary antigens, whereas T3D-RV is not. T1L infection leads to an increase in infiltrating phagocytes, including macrophages, in gut-associated lymphoid tissues that are not observed in T3D-RV infection. However, the function of macrophages in reovirus intestinal infection is unknown. Using cells sorted from infected intestinal tissue and primary cultures of bone-marrow-derived macrophages (BMDMs), we discovered that T1L infects macrophages more efficiently than T3D-RV. Analysis of T1L × T3D-RV reassortant viruses revealed that the viral S4 gene segment, which encodes outer-capsid protein σ3, is responsible for strain-specific differences in infection of BMDMs. Differences in the binding of T1L and T3D-RV to BMDMs also segregated with the σ3-encoding S4 gene. Paired immunoglobulin-like receptor B (PirB), which serves as a receptor for reovirus, is expressed on macrophages and engages σ3. We found that PirB-specific antibody blocks T1L binding to BMDMs and that T1L binding to PirB-/- BMDMs is significantly diminished. Collectively, our data suggest that reovirus T1L infection of macrophages is dependent on engagement of PirB by viral outer-capsid protein σ3. These findings raise the possibility that macrophages function in the innate immune response to reovirus infection that blocks immunological tolerance to new food antigens.IMPORTANCEMammalian orthoreovirus (reovirus) infects humans throughout their lifespan and has been linked to celiac disease (CeD). CeD is caused by a loss of oral immunological tolerance (LOT) to dietary gluten and leads to intestinal inflammation following gluten ingestion, which worsens with prolonged exposure and can cause malnutrition. There are limited treatment options for CeD. While there are genetic risk factors associated with the illness, triggers for disease onset are not completely understood. Enteric viruses, including reovirus, have been linked to CeD induction. We found that a reovirus strain associated with oral immunological tolerance blockade infects macrophages by virtue of its capacity to bind macrophage receptor PirB. These data contribute to an understanding of the innate immune response elicited by reovirus, which may shed light on how viruses trigger LOT and inform the development of CeD vaccines and therapeutic agents.
Collapse
Affiliation(s)
- Kay L. Fiske
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pamela H. Brigleb
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Luzmariel Medina Sanchez
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Reinhard Hinterleitner
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gwen M. Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Pan M, Alvarez-Cabrera AL, Kang JS, Wang L, Fan C, Zhou ZH. Asymmetric reconstruction of mammalian reovirus reveals interactions among RNA, transcriptional factor µ2 and capsid proteins. Nat Commun 2021; 12:4176. [PMID: 34234134 PMCID: PMC8263624 DOI: 10.1038/s41467-021-24455-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/17/2021] [Indexed: 12/02/2022] Open
Abstract
Mammalian reovirus (MRV) is the prototypical member of genus Orthoreovirus of family Reoviridae. However, lacking high-resolution structures of its RNA polymerase cofactor μ2 and infectious particle, limits understanding of molecular interactions among proteins and RNA, and their contributions to virion assembly and RNA transcription. Here, we report the 3.3 Å-resolution asymmetric reconstruction of transcribing MRV and in situ atomic models of its capsid proteins, the asymmetrically attached RNA-dependent RNA polymerase (RdRp) λ3, and RdRp-bound nucleoside triphosphatase μ2 with a unique RNA-binding domain. We reveal molecular interactions among virion proteins and genomic and messenger RNA. Polymerase complexes in three Spinoreovirinae subfamily members are organized with different pseudo-D3d symmetries to engage their highly diversified genomes. The above interactions and those between symmetry-mismatched receptor-binding σ1 trimers and RNA-capping λ2 pentamers balance competing needs of capsid assembly, external protein removal, and allosteric triggering of endogenous RNA transcription, before, during and after infection, respectively. Mammalian reovirus (MRV) is a double-stranded RNA (dsRNA) virus that affects the gastrointestinal and respiratory tracts. Here, the authors present the 3.3 Å cryo-EM asymmetric reconstruction of transcribing MRV that reveals the organization of the dsRNA genome, RNA interaction with the polymerase complex, and how the polymerase interacts extensively with its co-factor, µ2, to form a transcription enzyme complex, which engages and regulates RNA transcription.
Collapse
Affiliation(s)
- Muchen Pan
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,California NanoSystems Institute, UCLA, Los Angeles, CA, USA.,University of Chinese Academy of Sciences, Beijing, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ana L Alvarez-Cabrera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Joon S Kang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,California NanoSystems Institute, UCLA, Los Angeles, CA, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Lihua Wang
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA. .,California NanoSystems Institute, UCLA, Los Angeles, CA, USA. .,Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Structural and functional dissection of reovirus capsid folding and assembly by the prefoldin-TRiC/CCT chaperone network. Proc Natl Acad Sci U S A 2021; 118:2018127118. [PMID: 33836586 PMCID: PMC7980406 DOI: 10.1073/pnas.2018127118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with folding constraints such as complex topologies. To better understand the mechanism of TRiC folding, we investigated the biogenesis of an obligate TRiC substrate, the reovirus σ3 capsid protein. We discovered that the σ3 protein interacts with a network of chaperones, including TRiC and prefoldin. Using a combination of cryoelectron microscopy, cross-linking mass spectrometry, and biochemical approaches, we establish functions for TRiC and prefoldin in folding σ3 and promoting its assembly into higher-order oligomers. These studies illuminate the molecular dynamics of σ3 folding and establish a biological function for TRiC in virus assembly. In addition, our findings provide structural and functional insight into the mechanism by which TRiC and prefoldin participate in the assembly of protein complexes.
Collapse
|
4
|
Kumar M, Mohapatra S, Mazumder P, Singh A, Honda R, Lin C, Kumari R, Goswami R, Jha PK, Vithanage M, Kuroda K. Making Waves Perspectives of Modelling and Monitoring of SARS-CoV-2 in Aquatic Environment for COVID-19 Pandemic. CURRENT POLLUTION REPORTS 2020; 6:468-479. [PMID: 32953402 PMCID: PMC7486595 DOI: 10.1007/s40726-020-00161-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Prevalence of SARS-CoV-2 in the aquatic environment pertaining to the COVID-19 pandemic has been a global concern. Though SARS-CoV-2 is known as a respiratory virus, its detection in faecal matter and wastewater demonstrates its enteric involvement resulting in vulnerable aquatic environment. Here, we provide the latest updates on wastewater-based epidemiology, which is gaining interest in the current situation as a unique tool of surveillance and monitoring of the disease. Transport pathways with its migration through wastewater to surface and subsurface waters, probability of infectivity and ways of inactivation of SARS-CoV-2 are discussed in detail. Epidemiological models, especially compartmental projections, have been explained with an emphasis on its limitation and the assumptions on which the future predictions of disease propagation are based. Besides, this review covers various predictive models to track and project disease spread in the future and gives an insight into the probability of a future outbreak of the disease.
Collapse
Affiliation(s)
- Manish Kumar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Room No. 336A, Block 5, Gandhinagar, Gujarat 382355 India
- Kiran C Patel Centre for Sustainable Development, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355 India
| | - Sanjeeb Mohapatra
- Environmnetal Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400076 India
| | - Payal Mazumder
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Ashwin Singh
- Discipline of Civil Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355 India
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, 9201192 Japan
| | - Chuxia Lin
- Faculty of Science, Engineering and Built Environment, Deakin University, Melbourne, Australia
| | - Rina Kumari
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat 382030 India
| | - Ritusmita Goswami
- Department of Environmental Science, The Assam Royal Global University, Guwahati, Assam 781035 India
| | - Pawan Kumar Jha
- Center of Environmental Science, University of Allahabad, Prayagraj, 211002 India
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu, 9390398 Japan
| |
Collapse
|
5
|
Selection and Characterization of a Reovirus Mutant with Increased Thermostability. J Virol 2019; 93:JVI.00247-19. [PMID: 30787157 DOI: 10.1128/jvi.00247-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
The environment represents a significant barrier to infection. Physical stressors (heat) or chemical agents (ethanol) can render virions noninfectious. As such, discrete proteins are necessary to stabilize the dual-layered structure of mammalian orthoreovirus (reovirus). The outer capsid participates in cell entry: (i) σ3 is degraded to generate the infectious subviral particle, and (ii) μ1 facilitates membrane penetration and subsequent core delivery. μ1-σ3 interactions also prevent inactivation; however, this activity is not fully characterized. Using forward and reverse genetic approaches, we identified two mutations (μ1 M258I and σ3 S344P) within heat-resistant strains. σ3 S344P was sufficient to enhance capsid integrity and to reduce protease sensitivity. Moreover, these changes impaired replicative fitness in a reassortant background. This work reveals new details regarding the determinants of reovirus stability.IMPORTANCE Nonenveloped viruses rely on protein-protein interactions to shield their genomes from the environment. The capsid, or protective shell, must also disassemble during cell entry. In this work, we identified a determinant within mammalian orthoreovirus that regulates heat resistance, disassembly kinetics, and replicative fitness. Together, these findings show capsid function is balanced for optimal replication and for spread to a new host.
Collapse
|
6
|
Components of the Reovirus Capsid Differentially Contribute to Stability. J Virol 2019; 93:JVI.01894-18. [PMID: 30381491 DOI: 10.1128/jvi.01894-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
Abstract
The mammalian orthoreovirus (reovirus) outer capsid is composed of 200 μ1-σ3 heterohexamers and a maximum of 12 σ1 trimers. During cell entry, σ3 is degraded by luminal or intracellular proteases to generate the infectious subviral particle (ISVP). When ISVP formation is prevented, reovirus fails to establish a productive infection, suggesting proteolytic priming is required for entry. ISVPs are then converted to ISVP*s, which is accompanied by μ1 rearrangements. The μ1 and σ3 proteins confer resistance to inactivating agents; however, neither the impact on capsid properties nor the mechanism (or basis) of inactivation is fully understood. Here, we utilized T1L/T3D M2 and T3D/T1L S4 to investigate the determinants of reovirus stability. Both reassortants encode mismatched subunits. When μ1-σ3 were derived from different strains, virions resembled wild-type particles in structure and protease sensitivity. T1L/T3D M2 and T3D/T1L S4 ISVPs were less thermostable than wild-type ISVPs. In contrast, virions were equally susceptible to heating. Virion associated μ1 adopted an ISVP*-like conformation concurrent with inactivation; σ3 preserves infectivity by preventing μ1 rearrangements. Moreover, thermostability was enhanced by a hyperstable variant of μ1. Unlike the outer capsid, the inner capsid (core) was highly resistant to elevated temperatures. The dual layered architecture allowed for differential sensitivity to inactivating agents.IMPORTANCE Nonenveloped and enveloped viruses are exposed to the environment during transmission to a new host. Protein-protein and/or protein-lipid interactions stabilize the particle and protect the viral genome. Mammalian orthoreovirus (reovirus) is composed of two concentric, protein shells. The μ1 and σ3 proteins form the outer capsid; contacts between neighboring subunits are thought to confer resistance to inactivating agents. We further investigated the determinants of reovirus stability. The outer capsid was disrupted concurrent with the loss of infectivity; virion associated μ1 rearranged into an altered conformation. Heat sensitivity was controlled by σ3; however, particle integrity was enhanced by a single μ1 mutation. In contrast, the inner capsid (core) displayed superior resistance to heating. These findings reveal structural components that differentially contribute to reovirus stability.
Collapse
|
7
|
Abstract
Viruses are molecular machines sustained through a life cycle that requires replication within host cells. Throughout the infectious cycle, viral and cellular components interact to advance the multistep process required to produce progeny virions. Despite progress made in understanding the virus-host protein interactome, much remains to be discovered about the cellular factors that function during infection, especially those operating at terminal steps in replication. In an RNA interference screen, we identified the eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC; also called CCT for chaperonin containing TCP-1) as a cellular factor required for late events in the replication of mammalian reovirus. We discovered that TRiC functions in reovirus replication through a mechanism that involves folding the viral σ3 major outer-capsid protein into a form capable of assembling onto virus particles. TRiC also complexes with homologous capsid proteins of closely related viruses. Our data define a critical function for TRiC in the viral assembly process and raise the possibility that this mechanism is conserved in related non-enveloped viruses. These results also provide insight into TRiC protein substrates and establish a rationale for the development of small-molecule inhibitors of TRiC as potential antiviral therapeutics.
Collapse
|
8
|
Yan S, Zhang J, Guo H, Yan L, Chen Q, Zhang F, Fang Q. VP5 autocleavage is required for efficient infection by in vitro-recoated aquareovirus particles. J Gen Virol 2015; 96:1795-800. [PMID: 25742690 DOI: 10.1099/vir.0.000116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Grass carp reovirus (GCRV) is a member of the genus Aquareovirus in the family Reoviridae, and contains five core proteins (VP1-VP4 and VP6) and two outer-capsid proteins (VP5 and VP7) in its particle. Previous studies have revealed that the outer-capsid proteins of reovirus are responsible for initiating infection, but the mechanism is poorly understood. Using baculovirus-expressed VP5 and VP7 to recoat purified cores, in vitro assembly of GCRV was achieved in this study. Recoated GCRV (R-GCRV) closely resembled native GCRV (N-GCRV) in particle morphology, protein composition and infectivity. Similar to N-GCRV, the infectivity of R-GCRV could be inhibited by treating cells with the weak base NH4Cl. In addition, recoated particles carrying an Asn→Ala substitution at residue 42 of VP5 (VP5N42A/VP7 R-GCRV) were no longer infectious. These results provide strong evidence that autocleavage of VP5 is critical for aquareovirus to initiate efficient infection.
Collapse
Affiliation(s)
- Shicui Yan
- 1State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China 2University of Chinese Academy of Sciences, Beijing, PR China
| | - Jie Zhang
- 1State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Hong Guo
- 1State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Liming Yan
- 1State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China 2University of Chinese Academy of Sciences, Beijing, PR China
| | - Qingxiu Chen
- 1State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China 2University of Chinese Academy of Sciences, Beijing, PR China
| | - Fuxian Zhang
- 1State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Qin Fang
- 1State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|
9
|
Danthi P, Holm GH, Stehle T, Dermody TS. Reovirus receptors, cell entry, and proapoptotic signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 790:42-71. [PMID: 23884585 DOI: 10.1007/978-1-4614-7651-1_3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mammalian orthoreoviruses (reoviruses) are members of the Reoviridae. Reoviruses contain 10 double-stranded (ds) RNA gene segments enclosed in two concentric protein shells, called outer capsid and core. These viruses serve as a versatile experimental system for studies of viral replication events at the virus-cell interface, including engagement of cell-surface receptors, internalization and disassembly, and activation of the innate immune response, including NF-κB-dependent cellular signaling pathways. Reoviruses also provide a model system for studies of virus-induced apoptosis and organ-specific disease in vivo.Reoviruses attach to host cells via the filamentous attachment protein, σ1. The σ1 protein of all reovirus serotypes engages junctional adhesion molecule-A (JAM-A), an integral component of intercellular tight junctions. The σ1 protein also binds to cell-surface carbohydrate, with the type of carbohydrate bound varying by serotype. Following attachment to JAM-A and carbohydrate, reovirus internalization is mediated by β1 integrins, most likely via clathrin-dependent endocytosis. In the endocytic compartment, reovirus outer-capsid protein σ3 is removed by acid-dependent cysteine proteases in most cell types. Removal of σ3 results in the exposure of a hydrophobic conformer of the viral membrane-penetration protein, μ1, which pierces the endosomal membrane and delivers transcriptionally active reovirus core particles into the cytoplasm.Reoviruses induce apoptosis in both cultured cells and infected mice. Perturbation of reovirus disassembly using inhibitors of endosomal acidification or protease activity abrogates apoptosis. The μ1-encoding M2 gene is genetically linked to strain-specific differences in apoptosis-inducing capacity, suggesting a function for μ1 in induction of death signaling. Reovirus disassembly leads to activation of transcription factor NF-κB, which modulates apoptotic signaling in numerous types of cells. Inhibition of NF-κB nuclear translocation using either pharmacologic agents or expression of transdominant forms of IκB blocks reovirus-induced apoptosis, suggesting an essential role for NF-κB activation in the death response. Multiple effector pathway s downstream of NF-κB-directed gene expression execute reovirus-induced cell death. This chapter will focus on the mechanisms by which reovirus attachment and disassembly activate NF-κB and stimulate the cellular proapoptotic machinery.
Collapse
Affiliation(s)
- Pranav Danthi
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | | | | |
Collapse
|
10
|
Reovirus variants with mutations in genome segments S1 and L2 exhibit enhanced virion infectivity and superior oncolysis. J Virol 2012; 86:7403-13. [PMID: 22532697 DOI: 10.1128/jvi.00304-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reovirus preferentially replicates in transformed cells and is being explored as a cancer therapy. Immunological and physical barriers to virotherapy inspired a quest for reovirus variants with enhanced oncolytic potency. Using a classical genetics approach, we isolated two reovirus variants (T3v1 and T3v2) with superior replication relative to wild-type reovirus serotype 3 Dearing (T3wt) on various human and mouse tumorigenic cell lines. Unique mutations in reovirus λ2 vertex protein and σ1 cell attachment protein were associated with the large plaque-forming phenotype of T3v1 and T3v2, respectively. Both T3v1 and T3v2 exhibited higher infectivity (i.e., a higher PFU-to-particle ratio) than T3wt. A detailed analysis of virus replication revealed that virus cell binding and uncoating were equivalent for variant and wild-type reoviruses. However, T3v1 and T3v2 were significantly more efficient than T3wt in initiating productive infection. Thus, when cells were infected with equivalent input virus particles, T3v1 and T3v2 produced significantly higher levels of early viral RNAs relative to T3wt. Subsequent steps of virus replication (viral RNA and protein synthesis, virus assembly, and cell death) were equivalent for all three viruses. In a syngeneic mouse model of melanoma, both T3v1 and T3v2 prolonged mouse survival compared to wild-type reovirus. Our studies reveal that oncolytic potency of reovirus can be improved through distinct mutations that increase the infectivity of reovirus particles.
Collapse
|
11
|
Assembly of Large Icosahedral Double-Stranded RNA Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:379-402. [DOI: 10.1007/978-1-4614-0980-9_17] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Danthi P, Guglielmi KM, Kirchner E, Mainou B, Stehle T, Dermody TS. From touchdown to transcription: the reovirus cell entry pathway. Curr Top Microbiol Immunol 2011; 343:91-119. [PMID: 20397070 PMCID: PMC4714703 DOI: 10.1007/82_2010_32] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Mammalian orthoreoviruses (reoviruses) are prototype members of the Reoviridae family of nonenveloped viruses. Reoviruses contain ten double-stranded RNA gene segments enclosed in two concentric protein shells, outer capsid and core. These viruses serve as a versatile experimental system for studies of virus cell entry, innate immunity, and organ-specific disease. Reoviruses engage cells by binding to cell-surface carbohydrates and the immunoglobulin superfamily member, junctional adhesion molecule-A (JAM-A). JAM-A is a homodimer formed by extensive contacts between its N-terminal immunoglobulin-like domains. Reovirus attachment protein σ1 disrupts the JAM-A dimer, engaging a single JAM-A molecule by virtually the same interface used for JAM-A homodimerization. Following attachment to JAM-A and carbohydrate, reovirus internalization is promoted by β1 integrins, most likely via clathrin-dependent endocytosis. In the endocytic compartment, reovirus outer-capsid protein σ3 is removed by cathepsin proteases, which exposes the viral membrane-penetration protein, μ1. Proteolytic processing and conformational rearrangements of μ1 mediate endosomal membrane rupture and delivery of transcriptionally active reovirus core particles into the host cell cytoplasm. These events also allow the φ cleavage fragment of μ1 to escape into the cytoplasm where it activates NF-κB and elicits apoptosis. This review will focus on mechanisms of reovirus cell entry and activation of innate immune response signaling pathways.
Collapse
Affiliation(s)
- Pranav Danthi
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | | | | | | | | | |
Collapse
|
13
|
A strategy for genetic modification of the spike-encoding segment of human reovirus T3D for reovirus targeting. Gene Ther 2008; 15:1567-78. [PMID: 18650851 DOI: 10.1038/gt.2008.118] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human Orthoreovirus Type 3 Dearing is not pathogenic to humans and has been evaluated clinically as an oncolytic agent. Its transduction efficiency and the tumor cell selectivity may be enhanced by incorporating ligands for alternative receptors. However, the genetic modification of reoviruses has been difficult, and genetic targeting of reoviruses has not been reported so far. Here we describe a technique for generating genetically targeted reoviruses. The propagation of wild-type reoviruses on cells expressing a modified sigma 1-encoding segment embedded in a conventional RNA polymerase II transcript leads to substitution of the wild-type genome segment by the modified version. This technique was used for generating reoviruses that are genetically targeted to an artificial receptor expressed on U118MG cells. These cells lack the junction adhesion molecule-1 and therefore resist infection by wild-type reoviruses. The targeted reoviruses were engineered to carry the ligand for this receptor at the C terminus of the sigma 1 spike protein. This demonstrates that the C terminus of the sigma 1 protein is a suitable locale for the insertion of oligopeptide ligands and that targeting of reoviruses is feasible. The genetically targeted viruses can be propagated using the modified U118MG cells as helper cells. This technique may be applicable for the improvement of human reoviruses as oncolytic agents.
Collapse
|
14
|
Middleton JK, Agosto MA, Severson TF, Yin J, Nibert ML. Thermostabilizing mutations in reovirus outer-capsid protein mu1 selected by heat inactivation of infectious subvirion particles. Virology 2007; 361:412-25. [PMID: 17208266 PMCID: PMC1913285 DOI: 10.1016/j.virol.2006.11.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 10/31/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The 76-kDa mu1 protein of nonfusogenic mammalian reovirus is a major component of the virion outer capsid, which contains 200 mu1 trimers arranged in an incomplete T=13 lattice. In virions, mu1 is largely covered by a second major outer-capsid protein, sigma3, which limits mu1 conformational mobility. In infectious subvirion particles, from which sigma3 has been removed, mu1 is broadly exposed on the surface and can be promoted to rearrange into a protease-sensitive and hydrophobic conformer, leading to membrane perforation or penetration. In this study, mutants that resisted loss of infectivity upon heat inactivation (heat-resistant mutants) were selected from infectious subvirion particles of reovirus strains Type 1 Lang and Type 3 Dearing. All of the mutants were found to have mutations in mu1, and the heat-resistance phenotype was mapped to mu1 by both recoating and reassortant genetics. Heat-resistant mutants were also resistant to rearrangement to the protease-sensitive conformer of mu1, suggesting that heat inactivation is associated with mu1 rearrangement, consistent with published results. Rate constants of heat inactivation were determined, and the dependence of inactivation rate on temperature was consistent with the Arrhenius relationship. The Gibbs free energy of activation was calculated with reference to transition-state theory and was found to be correlated with the degree of heat resistance in each of the analyzed mutants. The mutations are located in upper portions of the mu1 trimer, near intersubunit contacts either within or between trimers in the viral outer capsid. We propose that the mutants stabilize the outer capsid by interfering with unwinding of the mu1 trimer.
Collapse
Affiliation(s)
- Jason K Middleton
- Department of Chemical and Biological Engineering, College of Engineering, The Graduate School, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
15
|
Guglielmi KM, Johnson EM, Stehle T, Dermody TS. Attachment and cell entry of mammalian orthoreovirus. Curr Top Microbiol Immunol 2006; 309:1-38. [PMID: 16909895 DOI: 10.1007/3-540-30773-7_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mammalian orthoreoviruses (reoviruses) serve as a tractable model system for studies of viral pathogenesis. Reoviruses infect virtually all mammals, but cause disease only in the very young. Prototype strains of the three reovirus serotypes differ in pathogenesis following infection of newborn mice. Reoviruses are nonenveloped, icosahedral particles that consist of ten segments of double-stranded RNA encapsidated within two protein shells, the inner core and outer capsid. High-resolution structures of individual components of the reovirus outer capsid and a single viral receptor have been solved and provide insight into the functions of these molecules in viral attachment, entry, and pathogenesis. Attachment of reovirus to target cells is mediated by the reovirus sigma1 protein, a filamentous trimer that projects from the outer capsid. Junctional adhesion molecule-A is a serotype-independent receptor for reovirus, and sialic acid is a coreceptor for serotype 3 strains. After binding to receptors on the cell surface, reovirus is internalized via receptor-mediated endocytosis. Internalization is followed by stepwise disassembly of the viral outer capsid in the endocytic compartment. Uncoating events, which require acidic pH and endocytic proteases, lead to removal of major outer-capsid protein sigma3, resulting in exposure of membrane-penetration mediator micro1 and a conformational change in attachment protein sigma1. After penetration of endosomes by uncoated particles, the transcriptionally active viral core is released into the cytoplasm, where replication proceeds. Despite major advances in defining reovirus attachment and entry mechanisms, many questions remain. Ongoing research is aimed at understanding serotype-dependent differences in reovirus tropism, viral cell-entry pathways, the individual and corporate roles of acidic pH and proteases in viral entry, and micro1 function in membrane penetration.
Collapse
Affiliation(s)
- K M Guglielmi
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
16
|
Clark KM, Wetzel JD, Gu Y, Ebert DH, McAbee SA, Stoneman EK, Baer GS, Zhu Y, Wilson GJ, Prasad BVV, Dermody TS. Reovirus variants selected for resistance to ammonium chloride have mutations in viral outer-capsid protein sigma3. J Virol 2006; 80:671-81. [PMID: 16378970 PMCID: PMC1346852 DOI: 10.1128/jvi.80.2.671-681.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mammalian reoviruses are internalized into cells by receptor-mediated endocytosis. Within the endocytic compartment, the viral outer capsid undergoes acid-dependent proteolysis resulting in removal of the sigma3 protein and proteolytic cleavage of the mu1/mu1C protein. Ammonium chloride (AC) is a weak base that blocks disassembly of reovirus virions by inhibiting acidification of intracellular vacuoles. To identify domains in reovirus proteins that influence pH-sensitive steps in viral disassembly, we adapted strain type 3 Dearing (T3D) to growth in murine L929 cells treated with AC. In comparison to wild-type (wt) T3D, AC-adapted (ACA-D) variant viruses exhibited increased yields in AC-treated cells. AC resistance of reassortant viruses generated from a cross of wt type 1 Lang and ACA-D variant ACA-D1 segregated with the sigma3-encoding S4 gene. The deduced sigma3 amino acid sequences of six independently derived ACA-D variants contain one or two mutations each, affecting a total of six residues. Four of these mutations, I180T, A246G, I347S, and Y354H, cluster in the virion-distal lobe of sigma3. Linkage of these mutations to AC resistance was confirmed in experiments using reovirus disassembly intermediates recoated with wt or mutant sigma3 proteins. In comparison to wt virions, ACA-D viruses displayed enhanced susceptibility to proteolysis by endocytic protease cathepsin L. Image reconstructions of cryoelectron micrographs of three ACA-D viruses that each contain a single mutation in the virion-distal lobe of sigma3 demonstrated native capsid protein organization and minimal alterations in sigma3 structure. These results suggest that mutations in sigma3 that confer resistance to inhibitors of vacuolar acidification identify a specific domain that regulates proteolytic disassembly.
Collapse
Affiliation(s)
- Kimberly M Clark
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37241, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang X, Tang J, Walker SB, O’Hara D, Nibert ML, Duncan R, Baker TS. Structure of avian orthoreovirus virion by electron cryomicroscopy and image reconstruction. Virology 2005; 343:25-35. [PMID: 16153672 PMCID: PMC4152769 DOI: 10.1016/j.virol.2005.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 06/06/2005] [Accepted: 08/04/2005] [Indexed: 12/30/2022]
Abstract
Among members of the genus Orthoreovirus, family Reoviridae, a group of non-enveloped viruses with genomes comprising ten segments of double-stranded RNA, only the "non-fusogenic" mammalian orthoreoviruses (MRVs) have been studied to date by electron cryomicroscopy and three-dimensional image reconstruction. In addition to MRVs, this genus comprises other species that induce syncytium formation in cultured cells, a property shared with members of the related genus Aquareovirus. To augment studies of these "fusogenic" orthoreoviruses, we used electron cryomicroscopy and image reconstruction to analyze the virions of a fusogenic avian orthoreovirus (ARV). The structure of the ARV virion, determined from data at an effective resolution of 14.6 A, showed strong similarities to that of MRVs. Of particular note, the ARV virion has its pentameric lambda-class core turret protein in a closed conformation as in MRVs, not in a more open conformation as reported for aquareovirus. Similarly, the ARV virion contains 150 copies of its monomeric sigma-class core-nodule protein as in MRVs, not 120 copies as reported for aquareovirus. On the other hand, unlike that of MRVs, the ARV virion lacks "hub-and-spokes" complexes within the solvent channels at sites of local sixfold symmetry in the incomplete T=13l outer capsid. In MRVs, these complexes are formed by C-terminal sequences in the trimeric mu-class outer-capsid protein, sequences that are genetically missing from the homologous protein of ARVs. The channel structures and C-terminal sequences of the homologous outer-capsid protein are also genetically missing from aquareoviruses. Overall, the results place ARVs between MRVs and aquareoviruses with respect to the highlighted features.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jinghua Tang
- Department of Chemistry and Biochemistry and Department of Molecular Biology, University of California-San Diego, La Jolla, CA 92093, USA
| | - Stephen B. Walker
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - David O’Hara
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H4H7
| | - Max L. Nibert
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada B3H4H7
| | - Timothy S. Baker
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry and Biochemistry and Department of Molecular Biology, University of California-San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
18
|
Golden JW, Schiff LA. Neutrophil elastase, an acid-independent serine protease, facilitates reovirus uncoating and infection in U937 promonocyte cells. Virol J 2005; 2:48. [PMID: 15927073 PMCID: PMC1180477 DOI: 10.1186/1743-422x-2-48] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 05/31/2005] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Mammalian reoviruses naturally infect their hosts through the enteric and respiratory tracts. During enteric infections, proteolysis of the reovirus outer capsid protein sigma3 is mediated by pancreatic serine proteases. In contrast, the proteases critical for reovirus replication in the lung are unknown. Neutrophil elastase (NE) is an acid-independent, inflammatory serine protease predominantly expressed by neutrophils. In addition to its normal role in microbial defense, aberrant expression of NE has been implicated in the pathology of acute respiratory distress syndrome (ARDS). Because reovirus replication in rodent lungs causes ARDS-like symptoms and induces an infiltration of neutrophils, we investigated the capacity of NE to promote reovirus virion uncoating. RESULTS The human promonocyte cell line U937 expresses NE. Treatment of U937 cells with the broad-spectrum cysteine-protease inhibitor E64 [trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane] and with agents that increase vesicular pH did not inhibit reovirus replication. Even when these inhibitors were used in combination, reovirus replicated to significant yields, indicating that an acid-independent non-cysteine protease was capable of mediating reovirus uncoating in U937 cell cultures. To identify the protease(s) responsible, U937 cells were treated with phorbol 12-myristate 13-acetate (PMA), an agent that induces cellular differentiation and results in decreased expression of acid-independent serine proteases, including NE and cathepsin (Cat) G. In the presence of E64, reovirus did not replicate efficiently in PMA-treated cells. To directly assess the role of NE in reovirus infection of U937 cells, we examined viral growth in the presence of N-Ala-Ala-Pro-Val chloromethylketone, a NE-specific inhibitor. Reovirus replication in the presence of E64 was significantly reduced by treatment of cells with the NE inhibitor. Incubation of virions with purified NE resulted in the generation of infectious subviron particles that did not require additional intracellular proteolysis. CONCLUSION Our findings reveal that NE can facilitate reovirus infection. The fact that it does so in the presence of agents that raise vesicular pH supports a model in which the requirement for acidic pH during infection reflects the conditions required for optimal protease activity. The capacity of reovirus to exploit NE may impact viral replication in the lung and other tissues during natural infections.
Collapse
Affiliation(s)
- Joseph W Golden
- Department of Microbiology, University of Minnesota, Mayo Mail Code 196, 420 Delaware St. S.E., Minneapolis, Minnesota 55455, USA
| | - Leslie A Schiff
- Department of Microbiology, University of Minnesota, Mayo Mail Code 196, 420 Delaware St. S.E., Minneapolis, Minnesota 55455, USA
| |
Collapse
|
19
|
Mohd Jaafar F, Attoui H, Bahar MW, Siebold C, Sutton G, Mertens PPC, De Micco P, Stuart DI, Grimes JM, De Lamballerie X. The Structure and Function of the Outer Coat Protein VP9 of Banna Virus. Structure 2005; 13:17-28. [PMID: 15642258 DOI: 10.1016/j.str.2004.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 10/21/2004] [Accepted: 10/21/2004] [Indexed: 11/22/2022]
Abstract
Banna virus (BAV: genus Seadornavirus, family Reoviridae) has a double-shelled morphology similar to rotavirus and bluetongue virus. The structure of BAV outer-capsid protein VP9 was determined by X-ray crystallography at 2.6 A resolution, revealing a trimeric molecule, held together by an N-terminal helical bundle, reminiscent of coiled-coil structures found in fusion-active proteins such as HIV gp41. The major domain of VP9 contains stacked beta sheets with marked structural similarities to the receptor binding protein VP8 of rotavirus. Anti-VP9 antibodies neutralize viral infectivity, and, remarkably, pretreatment of cells with trimeric VP9 increased viral infectivity, indicating that VP9 is involved in virus attachment to cell surface and subsequent internalization. Sequence similarities were also detected between BAV VP10 and VP5 portion of rotavirus VP4, suggesting that the receptor binding and internalization apparatus, which is a single gene product activated by proteoloysis in rotavirus, is the product of two separate genome segments in BAV.
Collapse
Affiliation(s)
- Fauziah Mohd Jaafar
- Unité des Virus Emergents EA3292, EFS Alpes-Méditerranée and Faculté de Médecine, Université de la Méditerranée, 27 Bd Jean Moulin, 13005 Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Helander A, Miller CL, Myers KS, Neutra MR, Nibert ML. Protective immunoglobulin A and G antibodies bind to overlapping intersubunit epitopes in the head domain of type 1 reovirus adhesin sigma1. J Virol 2004; 78:10695-705. [PMID: 15367636 PMCID: PMC516417 DOI: 10.1128/jvi.78.19.10695-10705.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonfusogenic mammalian orthoreovirus (reovirus) is an enteric pathogen of mice and a useful model for studies of how an enteric virus crosses the mucosal barrier of its host and is subject to control by the mucosal immune system. We recently generated and characterized a new murine immunoglobulin A (IgA)-class monoclonal antibody (MAb), 1E1, that binds to the adhesin fiber, sigma1, of reovirus type 1 Lang (T1L) and thereby neutralizes the infectivity of that strain in cell culture. 1E1 is produced in hybridoma cultures as a mixture of monomers, dimers, and higher polymers and is protective against peroral challenges with T1L either when the MAb is passively administered or when it is secreted into the intestines of mice bearing subcutaneous hybridoma tumors. In the present study, selection and analysis of mutants resistant to neutralization by 1E1 identified the region of T1L sigma1 to which the MAb binds. The region bound by a previously characterized type 1 sigma1-specific neutralizing IgG MAb, 5C6, was identified in the same way. Each of the 15 mutants isolated and analyzed was found to be much less sensitive to neutralization by either 1E1 or 5C6, suggesting the two MAbs bind to largely overlapping regions of sigma1. The tested mutants retained the capacity to recognize specific glycoconjugate receptors on rabbit M cells and cultured epithelial cells, even though viral binding to epithelial cells was inhibited by both MAbs. S1 sequence determinations for 12 of the mutants identified sigma1 mutations at four positions between residues 415 and 447, which contribute to forming the receptor-binding head domain. When aligned with the sigma1 sequence of reovirus type 3 Dearing (T3D) and mapped onto the previously reported crystal structure of the T3D sigma1 trimer, the four positions cluster on the side of the sigma1 head, across the interface between two subunits. Three such interface-spanning epitopes are thus present per sigma1 trimer and require the intact quaternary structure of the head domain for MAb binding. Identification of these intersubunit epitopes on sigma1 opens the way for further studies of the mechanisms of antibody-based neutralization and protection with type 1 reoviruses.
Collapse
Affiliation(s)
- Anna Helander
- GI Cell Biology Laboratory, Children's Hospital, Department of Pediatrics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
21
|
Stewart PL, Dermody TS, Nemerow GR. Structural basis of nonenveloped virus cell entry. ADVANCES IN PROTEIN CHEMISTRY 2004; 64:455-91. [PMID: 13677056 DOI: 10.1016/s0065-3233(03)01013-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Phoebe L Stewart
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
22
|
Golden JW, Bahe JA, Lucas WT, Nibert ML, Schiff LA. Cathepsin S supports acid-independent infection by some reoviruses. J Biol Chem 2003; 279:8547-57. [PMID: 14670972 DOI: 10.1074/jbc.m309758200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In murine fibroblasts, efficient proteolysis of reovirus outer capsid protein sigma3 during cell entry by virions requires the acid-dependent lysosomal cysteine protease cathepsin L. The importance of cathepsin L for infection of other cell types is unknown. Here we report that the acid-independent lysosomal cysteine protease cathepsin S mediates outer capsid processing in macrophage-like P388D cells. P388D cells supported infection by virions of strain Lang, but not strain c43. Genetic studies revealed that this difference is determined by S4, the viral gene segment that encodes sigma3. c43-derived subvirion particles that lack sigma3 replicated normally in P388D cells, suggesting that the difference in infectivity of Lang and c43 virions is at the level of sigma3 processing. Infection of P388D cells with Lang virions was inhibited by the broad spectrum cysteine protease inhibitor trans-epoxysuccinyl-l-leucylamido-(4-guanidino)butane but not by NH(4)Cl, which raises the endocytic pH and thereby inhibits acid-dependent proteases such as cathepsins L and B. Outer capsid processing and infection of P388D cells with Lang virions were also inhibited by a cathepsin S-specific inhibitor. Furthermore, in the presence of NH(4)Cl, cell lines engineered to express cathepsin S supported infection by Lang, but not c43, virions. Our results thus indicate that differences in susceptibility to cathepsin S-mediated sigma3 processing are responsible for strain differences in reovirus infection of macrophage-like P388D cells and other cathepsin S-expressing cells. Additionally, our data suggest that the acid dependence of reovirus infections of most other cell types may reflect the low pH requirement for the activities of most other lysosomal proteases rather, than some other acid-dependent aspect of cell entry.
Collapse
Affiliation(s)
- Joseph W Golden
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
23
|
Chandran K, Nibert ML. Animal cell invasion by a large nonenveloped virus: reovirus delivers the goods. Trends Microbiol 2003; 11:374-82. [PMID: 12915095 DOI: 10.1016/s0966-842x(03)00178-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Kartik Chandran
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, 02115, Boston, MA, USA
| | | |
Collapse
|
24
|
Rouault E, Lemay G. Incorporation of epitope-tagged viral σ3 proteins to reovirus virions. Can J Microbiol 2003; 49:407-17. [PMID: 14569281 DOI: 10.1139/w03-043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tagging of viral capsid proteins is a powerful tool to study viral assembly; it also raises the possibility of using viral particles to present exogenous epitopes in vaccination or gene therapy strategies. The ability of reoviruses to induce strong mucosal immune response and their large host range and low pathogenicity in humans are some of the advantages of using reoviruses in such applications. In the present study, the feasibility of introducing foreign epitopes, "tags", to the σ3 protein, a major component of the reovirus outer capsid, was investigated. Among eight different positions, the amino-terminal end of the protein appeared as the best location to insert exogenous sequences. Additional amino acids at this position do not preclude interaction with the µ1 protein, the other major constituent of the viral outer capsid, but strongly interfere with µ1 to µ1C cleavage. Nevertheless, the tagged σ3 protein was still incorporated to virions upon recoating of infectious subviral particles to which authentic σ3 protein was removed by proteolysis, indicating that µ1 cleavage is not a prerequisite for outer capsid assembly. The recently published structure of the σ3-µ1 complex suggests that the amino-terminally inserted epitope could be exposed at the outer surface of viral particles.Key words: reovirus, recombinant viruses, epitope tagging, vaccination vectors, virus assembly.
Collapse
Affiliation(s)
- Etienne Rouault
- Départment de microbiologie et immunologie, Université de Montréal, Canada
| | | |
Collapse
|
25
|
Odegard AL, Chandran K, Liemann S, Harrison SC, Nibert ML. Disulfide bonding among micro 1 trimers in mammalian reovirus outer capsid: a late and reversible step in virion morphogenesis. J Virol 2003; 77:5389-400. [PMID: 12692241 PMCID: PMC153963 DOI: 10.1128/jvi.77.9.5389-5400.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined how a particular type of intermolecular disulfide (ds) bond is formed in the capsid of a cytoplasmically replicating nonenveloped animal virus despite the normally reducing environment inside cells. The micro 1 protein, a major component of the mammalian reovirus outer capsid, has been implicated in penetration of the cellular membrane barrier during cell entry. A recent crystal structure determination supports past evidence that the basal oligomer of micro 1 is a trimer and that 200 of these trimers surround the core in the fenestrated T=13 outer capsid of virions. We found in this study that the predominant forms of micro 1 seen in gels after the nonreducing disruption of virions are ds-linked dimers. Cys679, near the carboxyl terminus of micro 1, was shown to form this ds bond with the Cys679 residue from another micro 1 subunit. The crystal structure in combination with a cryomicroscopy-derived electron density map of virions indicates that the two subunits that contribute a Cys679 residue to each ds bond must be from adjacent micro 1 trimers in the outer capsid, explaining the trimer-dimer paradox. Successful in vitro assembly of the outer capsid by a nonbonding mutant of micro 1 (Cys679 substituted by serine) confirmed the role of Cys679 and suggested that the ds bonds are not required for assembly. A correlation between micro 1-associated ds bond formation and cell death in experiments in which virions were purified from cells at different times postinfection indicated that the ds bonds form late in infection, after virions are exposed to more oxidizing conditions than those in healthy cells. The infectivity measurements of the virions with differing levels of ds-bonded micro 1 showed that these bonds are not required for infection in culture. The ds bonds in purified virions were susceptible to reduction and reformation in situ, consistent with their initial formation late in morphogenesis and suggesting that they may undergo reduction during the entry of reovirus particles into new cells.
Collapse
Affiliation(s)
- Amy L Odegard
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
26
|
Wilson GJ, Nason EL, Hardy CS, Ebert DH, Wetzel JD, Venkataram Prasad BV, Dermody TS. A single mutation in the carboxy terminus of reovirus outer-capsid protein sigma 3 confers enhanced kinetics of sigma 3 proteolysis, resistance to inhibitors of viral disassembly, and alterations in sigma 3 structure. J Virol 2002; 76:9832-43. [PMID: 12208961 PMCID: PMC136532 DOI: 10.1128/jvi.76.19.9832-9843.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian reoviruses undergo acid-dependent proteolytic disassembly within endosomes, resulting in formation of infectious subvirion particles (ISVPs). ISVPs are obligate intermediates in reovirus disassembly that mediate viral penetration into the cytoplasm. The initial biochemical event in the reovirus disassembly pathway is the proteolysis of viral outer-capsid protein sigma 3. Mutant reoviruses selected during persistent infection of murine L929 cells (PI viruses) demonstrate enhanced kinetics of viral disassembly and resistance to inhibitors of endocytic acidification and proteolysis. To identify sequences in sigma 3 that modulate acid-dependent and protease-dependent steps in reovirus disassembly, the sigma 3 proteins of wild-type strain type 3 Dearing; PI viruses L/C, PI 2A1, and PI 3-1; and four novel mutant sigma 3 proteins were expressed in insect cells and used to recoat ISVPs. Treatment of recoated ISVPs (rISVPs) with either of the endocytic proteases cathepsin L or cathepsin D demonstrated that an isolated tyrosine-to-histidine mutation at amino acid 354 (Y354H) enhanced sigma 3 proteolysis during viral disassembly. Yields of rISVPs containing Y354H in sigma3 were substantially greater than those of rISVPs lacking this mutation after growth in cells treated with either acidification inhibitor ammonium chloride or cysteine protease inhibitor E64. Image reconstructions of electron micrographs of virus particles containing wild-type or mutant sigma 3 proteins revealed structural alterations in sigma 3 that correlate with the Y354H mutation. These results indicate that a single mutation in sigma 3 protein alters its susceptibility to proteolysis and provide a structural framework to understand mechanisms of sigma 3 cleavage during reovirus disassembly.
Collapse
Affiliation(s)
- Gregory J Wilson
- Departments of Pediatrics and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Chandran K, Farsetta DL, Nibert ML. Strategy for nonenveloped virus entry: a hydrophobic conformer of the reovirus membrane penetration protein micro 1 mediates membrane disruption. J Virol 2002; 76:9920-33. [PMID: 12208969 PMCID: PMC136509 DOI: 10.1128/jvi.76.19.9920-9933.2002] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms employed by nonenveloped animal viruses to penetrate the membranes of their host cells remain enigmatic. Membrane penetration by the nonenveloped mammalian reoviruses is believed to deliver a partially uncoated, but still large ( approximately 70-nm), particle with active transcriptases for viral mRNA synthesis directly into the cytoplasm. This process is likely initiated by a particle form that resembles infectious subvirion particles (ISVPs), disassembly intermediates produced from virions by proteolytic uncoating. Consistent with that idea, ISVPs, but not virions, can induce disruption of membranes in vitro. Both activities ascribed to ISVP-like particles, membrane disruption in vitro and membrane penetration within cells, are linked to N-myristoylated outer-capsid protein micro 1, present in 600 copies at the surfaces of ISVPs. To understand how micro 1 fulfills its role as the reovirus penetration protein, we monitored changes in ISVPs during the permeabilization of red blood cells induced by these particles. Hemolysis was preceded by a major structural transition in ISVPs, characterized by conformational change in micro 1 and elution of fibrous attachment protein sigma 1. The altered conformer of micro 1 was required for hemolysis and was markedly hydrophobic. The structural transition in ISVPs was further accompanied by derepression of genome-dependent mRNA synthesis by the particle-associated transcriptases. We propose a model for reovirus entry in which (i) primed and triggered conformational changes, analogous to those in enveloped-virus fusion proteins, generate a hydrophobic micro 1 conformer capable of inserting into and disrupting cell membranes and (ii) activation of the viral particles for membrane interaction and mRNA synthesis are concurrent events. Reoviruses provide an opportune system for defining the molecular details of membrane penetration by a large nonenveloped animal virus.
Collapse
Affiliation(s)
- Kartik Chandran
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
28
|
Golden JW, Linke J, Schmechel S, Thoemke K, Schiff LA. Addition of exogenous protease facilitates reovirus infection in many restrictive cells. J Virol 2002; 76:7430-43. [PMID: 12097555 PMCID: PMC136394 DOI: 10.1128/jvi.76.15.7430-7443.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2001] [Accepted: 04/26/2002] [Indexed: 12/14/2022] Open
Abstract
Virion uncoating is a critical step in the life cycle of mammalian orthoreoviruses. In cell culture, and probably in extraintestinal tissues in vivo, reovirus virions undergo partial proteolysis within endosomal or/or lysosomal compartments. This process converts the virion into a form referred to as an intermediate subvirion particle (ISVP). In natural enteric reovirus infections, proteolytic uncoating takes place extracellularly within the intestinal lumen. The resultant proteolyzed particles, unlike intact virions, have the capacity to penetrate cell membranes and thereby gain access to cytoplasmic components required for viral gene expression. We hypothesized that the capacity of reovirus outer capsid proteins to be proteolyzed is a determinant of cellular host range. To investigate this hypothesis, we asked if the addition of protease to cell culture medium would expand the range of cultured mammalian cell lines that can be productively infected by reoviruses. We identified many transformed and nontransformed cell lines, as well as primary cells, that restrict viral infection. In several of these restrictive cells, virion uncoating is inefficient or blocked. Addition of proteases to the cell culture medium generates ISVP-like particles and promotes viral growth in nearly all cell lines tested. Interestingly, we found that some cell lines that restrict reovirus uncoating still express mature cathepsin L, a lysosomal protease required for virion disassembly in murine L929 cells. This finding suggests that factors in addition to cathepsin L are required for efficient intracellular proteolysis of reovirus virions. Our results demonstrate that virion uncoating is a critical determinant of reovirus cellular host range and that many cells which otherwise support productive reovirus infection cannot efficiently mediate this essential early step in the virus life cycle.
Collapse
Affiliation(s)
- Joseph W Golden
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
29
|
Ebert DH, Deussing J, Peters C, Dermody TS. Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells. J Biol Chem 2002; 277:24609-17. [PMID: 11986312 DOI: 10.1074/jbc.m201107200] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After attachment to receptors, reovirus virions are internalized by endocytosis and exposed to acid-dependent proteases that catalyze viral disassembly. Previous studies using the cysteine protease inhibitor E64 and a mutant cell line that does not support reovirus disassembly suggest a requirement for specific endocytic proteases in reovirus entry. This study identifies the endocytic proteases that mediate reovirus disassembly in murine fibroblast cells. Infection of both L929 cells treated with the cathepsin L inhibitor Z-Phe-Tyr(t-Bu)-diazomethyl ketone and cathepsin L-deficient mouse embryo fibroblasts resulted in inefficient proteolytic disassembly of viral outer-capsid proteins and decreased viral yields. In contrast, both L929 cells treated with the cathepsin B inhibitor CA-074Me and cathepsin B-deficient mouse embryo fibroblasts support reovirus disassembly and growth. However, removal of both cathepsin B and cathepsin L activity completely abrogates disassembly and growth of reovirus. Concordantly, cathepsin L mediates reovirus disassembly more efficiently than cathepsin B in vitro. These results demonstrate that either cathepsin L or cathepsin B is required for reovirus entry into murine fibroblasts and indicate that cathepsin L is the primary mediator of reovirus disassembly. Moreover, these findings suggest that specific endocytic proteases can determine host cell susceptibility to infection by intracellular pathogens.
Collapse
Affiliation(s)
- Daniel H Ebert
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
30
|
Jané-Valbuena J, Breun LA, Schiff LA, Nibert ML. Sites and determinants of early cleavages in the proteolytic processing pathway of reovirus surface protein sigma3. J Virol 2002; 76:5184-97. [PMID: 11967333 PMCID: PMC136125 DOI: 10.1128/jvi.76.10.5184-5197.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entry of mammalian reovirus virions into target cells requires proteolytic processing of surface protein sigma3. In the virion, sigma3 mostly covers the membrane-penetration protein mu1, appearing to keep it in an inactive form and to prevent it from interacting with the cellular membrane until the proper time in infection. The molecular mechanism by which sigma3 maintains mu1 in this inactive state and the structural changes that accompany sigma3 processing and mu1 activation, however, are not well understood. In this study we characterized the early steps in sigma3 processing and determined their effects on mu1 function and particle infectivity. We identified two regions of high protease sensitivity, "hypersensitive" regions located at residues 208 to 214 and 238 to 244, within which all proteases tested selectively cleaved sigma3 as an early step in processing. Further processing of sigma3 was required for infection, consistent with the fact that the fragments resulting from these early cleavages remained bound to the particles. Reovirus type 1 Lang (T1L), type 3 Dearing (T3D), and T1L x T3D reassortant virions differed in the sites of early sigma3 cleavage, with T1L sigma3 being cleaved mainly at residues 238 to 244 and T3D sigma3 being cleaved mainly at residues 208 to 214. These virions also differed in the rates at which the early cleavages occurred, with cleavage of T1L sigma3 occurring faster than cleavage of T3D sigma3. Analyses using chimeric and site-directed mutants of recombinant sigma3 identified carboxy-proximal residues 344, 347, and 353 as the primary determinants of these strain differences. The spatial relationships between these more carboxy-proximal residues and the hypersensitive regions were discerned from the sigma3 crystal structure. The results indicate that proteolytic processing of sigma3 during reovirus disassembly is a multistep pathway with a number of molecular determinants.
Collapse
Affiliation(s)
- Judit Jané-Valbuena
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
31
|
Luongo CL, Zhang X, Walker SB, Chen Y, Broering TJ, Farsetta DL, Bowman VD, Baker TS, Nibert ML. Loss of activities for mRNA synthesis accompanies loss of lambda2 spikes from reovirus cores: an effect of lambda2 on lambda1 shell structure. Virology 2002; 296:24-38. [PMID: 12036315 DOI: 10.1006/viro.2001.1258] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 144-kDa lambda2 protein, a component of the transcriptionally active reovirus core particle, catalyzes the last three enzymatic activities for formation of the 5' cap 1 structure on the viral plus-strand transcripts. Limited evidence suggests it may also play a role in transcription per se. Particle-associated lambda2 forms pentameric turrets ("spikes") around the fivefold axes of the icosahedral core. To address the requirements for lambda2 in core functions other than the known functions in RNA capping, particles depleted of lambda2 were generated from cores in vitro by a series of treatments involving heat, protease, and ionic detergent. The resulting particles contained less than 5% of pretreatment levels of lambda2 but showed negligible loss of the other four core proteins or the 10 double-stranded RNA genome segments. Transmission cryo-electron microscopy (cryo-TEM) and scanning cryo-electron microscopy demonstrated loss of the lambda2 spikes from these otherwise intact particles. In functional analyses, the "spikeless cores" showed greatly reduced activities not only for RNA capping but also for transcription and nucleoside triphosphate hydrolysis, suggesting enzymatic or structural roles for lambda2 in all these activities. Comparison of the core and spikeless core structures obtained by cryo-TEM and three-dimensional image reconstruction revealed changes in the lambda1 core shell that accompany lambda2 loss, most notably the elimination of small pores that span the shell near the icosahedral fivefold axes. Changes in the shell may explain the reductions in transcriptase-related activities by spikeless cores.
Collapse
Affiliation(s)
- Cindy L Luongo
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Middleton JK, Severson TF, Chandran K, Gillian AL, Yin J, Nibert ML. Thermostability of reovirus disassembly intermediates (ISVPs) correlates with genetic, biochemical, and thermodynamic properties of major surface protein mu1. J Virol 2002; 76:1051-61. [PMID: 11773381 PMCID: PMC135780 DOI: 10.1128/jvi.76.3.1051-1061.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kinetic analyses of infectivity loss during thermal inactivation of reovirus particles revealed substantial differences between virions and infectious subvirion particles (ISVPs), as well as between the ISVPs of reoviruses type 1 Lang (T1L) and type 3 Dearing (T3D). The difference in thermal inactivation of T1L and T3D ISVPs was attributed to the major surface protein mu1 by genetic analyses with reassortant viruses and recoated cores. Irreversible conformational changes in ISVP-bound mu1 were shown to accompany thermal inactivation. The thermal inactivation of ISVPs approximated first-order kinetics over a range of temperatures, permitting the use of Arrhenius plots to estimate activation enthalpies and entropies that account for the different behaviors of T1L and T3D. An effect similar to enthalpy-entropy compensation was additionally noted for the ISVPs of these two isolates. Kinetic analyses with other ISVP-like particles, including ISVPs of a previously reported thermostable mutant, provided further insights into the role of mu1 as a determinant of thermostability. Intact virions, which contain final sigma3 bound to mu1 as their major surface proteins, exhibited greater thermostability than ISVPs and underwent thermal inactivation with kinetics that deviated from first order, suggesting a role for final sigma3 in both these properties. The distinct inactivation behaviors of ISVPs are consistent with their role as an essential intermediate in reovirus entry.
Collapse
Affiliation(s)
- Jason K Middleton
- Department of Chemical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
33
|
Chandran K, Zhang X, Olson NH, Walker SB, Chappell JD, Dermody TS, Baker TS, Nibert ML. Complete in vitro assembly of the reovirus outer capsid produces highly infectious particles suitable for genetic studies of the receptor-binding protein. J Virol 2001; 75:5335-42. [PMID: 11333914 PMCID: PMC114938 DOI: 10.1128/jvi.75.11.5335-5342.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian reoviruses, prototype members of the Reoviridae family of nonenveloped double-stranded RNA viruses, use at least three proteins--sigma1, mu1, and sigma3--to enter host cells. sigma1, a major determinant of cell tropism, mediates viral attachment to cellular receptors. Studies of sigma1 functions in reovirus entry have been restricted by the lack of methodologies to produce infectious virions containing engineered mutations in viral proteins. To mitigate this problem, we produced virion-like particles by "recoating" genome-containing core particles that lacked sigma1, mu1, and sigma3 with recombinant forms of these proteins in vitro. Image reconstructions from cryoelectron micrographs of the recoated particles revealed that they closely resembled native virions in three-dimensional structure, including features attributable to sigma1. The recoated particles bound to and infected cultured cells in a sigma1-dependent manner and were approximately 1 million times as infectious as cores and 0.5 times as infectious as native virions. Experiments with recoated particles containing recombinant sigma1 from either of two different reovirus strains confirmed that differences in cell attachment and infectivity previously observed between those strains are determined by the sigma1 protein. Additional experiments showed that recoated particles containing sigma1 proteins with engineered mutations can be used to analyze the effects of such mutations on the roles of particle-bound sigma1 in infection. The results demonstrate a powerful new system for molecular genetic dissections of sigma1 with respect to its structure, assembly into particles, and roles in entry.
Collapse
Affiliation(s)
- K Chandran
- Department of Biochemistry and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ebert DH, Wetzel JD, Brumbaugh DE, Chance SR, Stobie LE, Baer GS, Dermody TS. Adaptation of reovirus to growth in the presence of protease inhibitor E64 segregates with a mutation in the carboxy terminus of viral outer-capsid protein sigma3. J Virol 2001; 75:3197-206. [PMID: 11238846 PMCID: PMC114113 DOI: 10.1128/jvi.75.7.3197-3206.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reovirus virions are internalized into cells by receptor-mediated endocytosis. Within the endocytic compartment, the viral outer capsid undergoes acid-dependent proteolysis leading to degradation of sigma3 protein and proteolytic cleavage of micro1/micro1C protein. E64 is a specific inhibitor of cysteine-containing proteases that blocks disassembly of reovirus virions. To identify domains in reovirus proteins that influence susceptibility to E64-mediated inhibition of disassembly, we selected variant viruses by serial passage of strain type 3 Dearing (T3D) in murine L929 cells treated with E64. E64-adapted variant viruses (D-EA viruses) produced 7- to 17-fold-greater yields than T3D did after infection of cells treated with 100 microM E64. Viral genes that segregate with growth of D-EA viruses in the presence of E64 were identified by using reassortant viruses isolated from independent crosses of E64-sensitive strain type 1 Lang and two prototype D-EA viruses. Growth of reassortant viruses in the presence of E64 segregated with the S4 gene, which encodes outer-capsid protein sigma3. Sequence analysis of S4 genes of three D-EA viruses isolated from independent passage series revealed a common tyrosine-to-histidine mutation at amino acid 354 in the deduced amino acid sequence of sigma3. Proteolysis of D-EA virions by endocytic protease cathepsin L occurred with faster kinetics than proteolysis of wild-type T3D virions. Treatment of D-EA virions, but not T3D virions, with cathepsin D resulted in proteolysis of sigma3, a property that also was found to segregate with the D-EA S4 gene. These results indicate that a region in sigma3 protein containing amino acid 354 influences susceptibility of sigma3 to proteolysis during reovirus disassembly.
Collapse
Affiliation(s)
- D H Ebert
- Departments of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Olland AM, Jané-Valbuena J, Schiff LA, Nibert ML, Harrison SC. Structure of the reovirus outer capsid and dsRNA-binding protein sigma3 at 1.8 A resolution. EMBO J 2001; 20:979-89. [PMID: 11230122 PMCID: PMC145474 DOI: 10.1093/emboj/20.5.979] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2000] [Revised: 01/08/2001] [Accepted: 01/09/2001] [Indexed: 11/13/2022] Open
Abstract
The crystallographically determined structure of the reovirus outer capsid protein sigma3 reveals a two-lobed structure organized around a long central helix. The smaller of the two lobes includes a CCHC zinc-binding site. Residues that vary between strains and serotypes lie mainly on one surface of the protein; residues on the opposite surface are conserved. From a fit of this model to a reconstruction of the whole virion from electron cryomicroscopy, we propose that each sigma3 subunit is positioned with the small lobe anchoring it to the protein mu1 on the surface of the virion, and the large lobe, the site of initial cleavages during entry-related proteolytic disassembly, protruding outwards. The surface containing variable residues faces solvent. The crystallographic asymmetric unit contains two sigma3 subunits, tightly associated as a dimer. One broad surface of the dimer has a positively charged surface patch, which extends across the dyad. In infected cells, sigma3 binds dsRNA and inhibits the interferon response. The location and extent of the positively charged surface patch suggest that the dimer is the RNA-binding form of sigma3.
Collapse
Affiliation(s)
- A M Olland
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
36
|
Baker TS, Olson NH, Fuller SD. Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol Mol Biol Rev 1999; 63:862-922, table of contents. [PMID: 10585969 PMCID: PMC98980 DOI: 10.1128/mmbr.63.4.862-922.1999] [Citation(s) in RCA: 367] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses are cellular parasites. The linkage between viral and host functions makes the study of a viral life cycle an important key to cellular functions. A deeper understanding of many aspects of viral life cycles has emerged from coordinated molecular and structural studies carried out with a wide range of viral pathogens. Structural studies of viruses by means of cryo-electron microscopy and three-dimensional image reconstruction methods have grown explosively in the last decade. Here we review the use of cryo-electron microscopy for the determination of the structures of a number of icosahedral viruses. These studies span more than 20 virus families. Representative examples illustrate the use of moderate- to low-resolution (7- to 35-A) structural analyses to illuminate functional aspects of viral life cycles including host recognition, viral attachment, entry, genome release, viral transcription, translation, proassembly, maturation, release, and transmission, as well as mechanisms of host defense. The success of cryo-electron microscopy in combination with three-dimensional image reconstruction for icosahedral viruses provides a firm foundation for future explorations of more-complex viral pathogens, including the vast number that are nonspherical or nonsymmetrical.
Collapse
Affiliation(s)
- T S Baker
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| | | | | |
Collapse
|
37
|
Chandran K, Walker SB, Chen Y, Contreras CM, Schiff LA, Baker TS, Nibert ML. In vitro recoating of reovirus cores with baculovirus-expressed outer-capsid proteins mu1 and sigma3. J Virol 1999; 73:3941-50. [PMID: 10196289 PMCID: PMC104172 DOI: 10.1128/jvi.73.5.3941-3950.1999] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/1998] [Accepted: 01/20/1999] [Indexed: 11/20/2022] Open
Abstract
Reovirus outer-capsid proteins mu1, sigma3, and sigma1 are thought to be assembled onto nascent core-like particles within infected cells, leading to the production of progeny virions. Consistent with this model, we report the in vitro assembly of baculovirus-expressed mu1 and sigma3 onto purified cores that lack mu1, sigma3, and sigma1. The resulting particles (recoated cores, or r-cores) closely resembled native virions in protein composition (except for lacking cell attachment protein sigma1), buoyant density, and particle morphology by scanning cryoelectron microscopy. Transmission cryoelectron microscopy and image reconstruction of r-cores confirmed that they closely resembled virions in the structure of the outer capsid and revealed that assembly of mu1 and sigma3 onto cores had induced rearrangement of the pentameric lambda2 turrets into a conformation approximating that in virions. r-cores, like virions, underwent proteolytic conversion to particles resembling native ISVPs (infectious subvirion particles) in protein composition, particle morphology, and capacity to permeabilize membranes in vitro. r-cores were 250- to 500-fold more infectious than cores in murine L cells and, like virions but not ISVPs or cores, were inhibited from productively infecting these cells by the presence of either NH4Cl or E-64. The latter results suggest that r-cores and virions used similar routes of entry into L cells, including processing by lysosomal cysteine proteinases, even though the former particles lacked the sigma1 protein. To examine the utility of r-cores for genetic dissections of mu1 functions in reovirus entry, we generated r-cores containing a mutant form of mu1 that had been engineered to resist cleavage at the delta:phi junction during conversion to ISVP-like particles by chymotrypsin in vitro. Despite their deficit in delta:phi cleavage, these ISVP-like particles were fully competent to permeabilize membranes in vitro and to infect L cells in the presence of NH4Cl, providing new evidence that this cleavage is dispensable for productive infection.
Collapse
Affiliation(s)
- K Chandran
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|