1
|
Berryman S, Feenstra F, Asfor A, Coco-Martin J, Jackson T, Tuthill TJ. Foot-and-Mouth Disease Vaccines by Design; Production of Capsid-Modified Foot-and-Mouth Disease Viruses with Improved Cell Culture Growth. Vaccines (Basel) 2025; 13:281. [PMID: 40266141 PMCID: PMC11945908 DOI: 10.3390/vaccines13030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND/OBJECTIVES Vaccination is important for controlling foot-and-mouth disease (FMD) in endemic regions and to lessen the effects of outbreaks in FMD-free countries. The adaptation of FMD virus to BHK cells is a necessary but time-consuming and costly step in vaccine production and can prove problematic for some isolates. Adaptation is, in part, driven by receptor availability and selects variants with altered receptor specificity that result from amino acid substitutions in the capsid proteins. METHODS To bypass the need for cell culture adaptation, we generated chimeric viruses with field-strain capsids and introduced amino acid substitutions associated with cell culture adaptation. We targeted two sites on the capsid: the canonical heparan sulphate binding site and the icosahedral 5-fold symmetry axes. RESULTS Our results show that some viruses with unmodified wild-type (wt) capsids grew well in BHK cells (suspension and adherent), whereas others showed poor growth. For viruses that showed good growth, the introduction of amino acid changes associated with cell culture adaptation improved the rate of growth but not virus titres or yields of 146S particles, whereas growth and 146S yields for viruses that grew poorly in BHK cells were greatly enhanced by some of the amino acid changes. For the latter viruses, the introduced changes did not appear to adversely affect virion stability or antigenicity. CONCLUSIONS For FMD viruses that grow poorly in BHK cells, this approach could be a viable alternative to protracted adaptation by serial passage and could expedite the production of a new vaccine strain from a field virus.
Collapse
Affiliation(s)
- Stephen Berryman
- Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (A.A.); (T.J.)
| | - Femke Feenstra
- Boehringer Ingelheim Animal Health Netherlands BV, P.O. Box 65, 8200 AB Lelystad, The Netherlands; (F.F.); (J.C.-M.)
| | - Amin Asfor
- Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (A.A.); (T.J.)
| | - Jose Coco-Martin
- Boehringer Ingelheim Animal Health Netherlands BV, P.O. Box 65, 8200 AB Lelystad, The Netherlands; (F.F.); (J.C.-M.)
| | - Terry Jackson
- Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (A.A.); (T.J.)
| | | |
Collapse
|
2
|
Domingo E, Martínez-González B, Somovilla P, García-Crespo C, Soria ME, de Ávila AI, Gadea I, Perales C. A general and biomedical perspective of viral quasispecies. RNA (NEW YORK, N.Y.) 2025; 31:429-443. [PMID: 39689947 PMCID: PMC11874995 DOI: 10.1261/rna.080280.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Viral quasispecies refers to the complex and dynamic mutant distributions (also termed mutant spectra, clouds, or swarms) that arise as a result of high error rates during RNA genome replication. The mutant spectrum of individual RNA virus populations is modified by continuous generation of variant genomes, competition and interactions among them, environmental influences, bottleneck events, and bloc transmission of viral particles. Quasispecies dynamics provides a new perspective on how viruses adapt, evolve, and cause disease, and sheds light on strategies to combat them. Molecular flexibility, together with ample opportunity of mutant cloud traffic in our global world, are key ingredients of viral disease emergences, as exemplified by the recent COVID-19 pandemic. In the present article, we present a brief overview of the molecular basis of mutant swarm formation and dynamics, and how the latter relates to viral disease and epidemic spread. We outline future challenges derived of the highly diverse cellular world in which viruses are necessarily installed.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049 Madrid, Spain
| | - Brenda Martínez-González
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Pilar Somovilla
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049 Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - María Eugenia Soria
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | | | - Ignacio Gadea
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Centre for Biomedical Network Research on Infectious Diseases (CIBERINFEC), 28029 Madrid, Spain
| | - Celia Perales
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| |
Collapse
|
3
|
Mushtaq H, Shah SS, Zarlashat Y, Iqbal M, Abbas W. Cell Culture Adaptive Amino Acid Substitutions in FMDV Structural Proteins: A Key Mechanism for Altered Receptor Tropism. Viruses 2024; 16:512. [PMID: 38675855 PMCID: PMC11054764 DOI: 10.3390/v16040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 04/28/2024] Open
Abstract
The foot-and-mouth disease virus is a highly contagious and economically devastating virus of cloven-hooved animals, including cattle, buffalo, sheep, and goats, causing reduced animal productivity and posing international trade restrictions. For decades, chemically inactivated vaccines have been serving as the most effective strategy for the management of foot-and-mouth disease. Inactivated vaccines are commercially produced in cell culture systems, which require successful propagation and adaptation of field isolates, demanding a high cost and laborious time. Cell culture adaptation is chiefly indebted to amino acid substitutions in surface-exposed capsid proteins, altering the necessity of RGD-dependent receptors to heparan sulfate macromolecules for virus binding. Several amino acid substations in VP1, VP2, and VP3 capsid proteins of FMDV, both at structural and functional levels, have been characterized previously. This literature review combines frequently reported amino acid substitutions in virus capsid proteins, their critical roles in virus adaptation, and functional characterization of the substitutions. Furthermore, this data can facilitate molecular virologists to develop new vaccine strains against the foot-and-mouth disease virus, revolutionizing vaccinology via reverse genetic engineering and synthetic biology.
Collapse
Affiliation(s)
- Hassan Mushtaq
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Syed Salman Shah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan
| | - Yusra Zarlashat
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Wasim Abbas
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| |
Collapse
|
4
|
Anjume H, Hossain KA, Hossain A, Hossain MA, Sultana M. Complete genome characterization of foot-and-mouth disease virus My-466 belonging to the novel lineage O/ME-SA/SA-2018. Heliyon 2024; 10:e26716. [PMID: 39790372 PMCID: PMC11713259 DOI: 10.1016/j.heliyon.2024.e26716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 01/12/2025] Open
Abstract
Foot-and-mouth disease virus (FMDV), the causative agent of the foot-and-mouth disease of cattle population possesses a rapid evolutionary rate. In Bangladesh, the first circulation of the O/ME-SA/SA-2018 lineage as a novel sublineage, MYMBD21 was reported from our laboratory. The first whole genome sequence of an isolate, BAN/MY/My-466/2021 (shortly named My-466) of the SA-2018 lineage is characterized and represented in this study. The genome is 8216 nucleotides long with 6996 nucleotides open reading frame flanked by 5ꞌ UTR (1-1100) and 3ꞌ UTR (8097-8216). VP1 was found to be highly variable among the structural proteins with crucial mutations in the major antigenic region, G-H loop. Structural variations of the VP1 against both field and proposed local vaccine strains were evidenced by the G-H loop displacement in a superimposed 3D model. The complete genome information of the isolate would be valuable for undertaking proper control measures needed to limit the spread of the newly emerged FMDV strain.
Collapse
Affiliation(s)
| | | | - Anamica Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
5
|
Sarry M, Bernelin-Cottet C, Michaud C, Relmy A, Romey A, Salomez AL, Renson P, Contrant M, Berthaud M, Huet H, Jouvion G, Hägglund S, Valarcher JF, Bakkali Kassimi L, Blaise-Boisseau S. Development of a primary cell model derived from porcine dorsal soft palate for foot-and-mouth disease virus research and diagnosis. Front Microbiol 2023; 14:1215347. [PMID: 37840704 PMCID: PMC10570842 DOI: 10.3389/fmicb.2023.1215347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals that has a significant socio-economic impact. One concern associated with this disease is the ability of its etiological agent, the FMD virus (FMDV), to persist in its hosts through underlying mechanisms that remain to be elucidated. While persistence has been described in cattle and small ruminants, it is unlikely to occur in pigs. One of the factors limiting the progress in understanding FMDV persistence and, in particular, differential persistence is the lack of suitable in vitro models. A primary bovine cell model derived from the dorsal soft palate, which is the primary site of replication and persistence of FMDV in cattle, has been developed, and it seemed relevant to develop a similar porcine model. Cells from two sites of FMDV replication in pigs, namely, the dorsal soft palate and the oropharyngeal tonsils, were isolated and cultured. The epithelial character of the cells from the dorsal soft palate was then assessed by immunofluorescence. The FMDV-sensitivity of these cells was assessed after monolayer infection with FMDV O/FRA/1/2001 Clone 2.2. These cells were also grown in multilayers at the air-liquid interface to mimic a stratified epithelium susceptible to FMDV infection. Consistent with what has been shown in vivo in pigs, our study showed no evidence of persistence of FMDV in either the monolayer or multilayer model, with no infectious virus detected 28 days after infection. The development of such a model opens up new possibilities for the study and diagnosis of FMDV in porcine cells.
Collapse
Affiliation(s)
- Morgan Sarry
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
- AgroParistech, Paris, France
| | - Cindy Bernelin-Cottet
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Caroline Michaud
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Anthony Relmy
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Aurore Romey
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Anne-Laure Salomez
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Patricia Renson
- ANSES Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Maud Contrant
- ANSES Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Maxime Berthaud
- ANSES Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Hélène Huet
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Grégory Jouvion
- Dynamyc Research Team, Université Paris-Est Créteil, Ecole Nationale Vétérinaire d’Alfort, ANSES, Créteil, France
- Unité d’Histologie et d’Anatomie Pathologique, Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | - Sara Hägglund
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Jean-François Valarcher
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Labib Bakkali Kassimi
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Sandra Blaise-Boisseau
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
6
|
Mammarenavirus Genetic Diversity and Its Biological Implications. Curr Top Microbiol Immunol 2023; 439:265-303. [PMID: 36592249 DOI: 10.1007/978-3-031-15640-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Members of the family Arenaviridae are classified into four genera: Antennavirus, Hartmanivirus, Mammarenavirus, and Reptarenavirus. Reptarenaviruses and hartmaniviruses infect (captive) snakes and have been shown to cause boid inclusion body disease (BIBD). Antennaviruses have genomes consisting of 3, rather than 2, segments, and were discovered in actinopterygian fish by next-generation sequencing but no biological isolate has been reported yet. The hosts of mammarenaviruses are mainly rodents and infections are generally asymptomatic. Current knowledge about the biology of reptarenaviruses, hartmaniviruses, and antennaviruses is very limited and their zoonotic potential is unknown. In contrast, some mammarenaviruses are associated with zoonotic events that pose a threat to human health. This review will focus on mammarenavirus genetic diversity and its biological implications. Some mammarenaviruses including lymphocytic choriomeningitis virus (LCMV) are excellent experimental model systems for the investigation of acute and persistent viral infections, whereas others including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa fever (LF) and Argentine hemorrhagic fever (AHF), respectively, are important human pathogens. Mammarenaviruses were thought to have high degree of intra-and inter-species amino acid sequence identities, but recent evidence has revealed a high degree of mammarenavirus genetic diversity in the field. Moreover, closely related mammarenavirus can display dramatic phenotypic differences in vivo. These findings support a role of genetic variability in mammarenavirus adaptability and pathogenesis. Here, we will review the molecular biology of mammarenaviruses, phylogeny, and evolution, as well as the quasispecies dynamics of mammarenavirus populations and their biological implications.
Collapse
|
7
|
Marichannegowda MH, Song H. Immune escape mutations selected by neutralizing antibodies in natural HIV-1 infection can alter coreceptor usage repertoire of the transmitted/founder virus. Virology 2022; 568:72-76. [DOI: 10.1016/j.virol.2022.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/20/2022]
|
8
|
A Vaccine Strain of the A/ASIA/Sea-97 Lineage of Foot-and-Mouth Disease Virus with a Single Amino Acid Substitution in the P1 Region That Is Adapted to Suspension Culture Provides High Immunogenicity. Vaccines (Basel) 2021; 9:vaccines9040308. [PMID: 33805012 PMCID: PMC8063925 DOI: 10.3390/vaccines9040308] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/03/2022] Open
Abstract
There are seven viral serotypes of foot-and-mouth disease virus (FMDV): A, O, C, Asia 1, and Southern African Territories 1, 2, and 3 (SAT 1–3). Unlike serotype O FMDV vaccine strains, vaccine strains of serotype A FMDV do not provide broad-range cross-reactivity in serological matching tests with field isolates. Therefore, the topotype/lineage vaccine strain circulating in many countries and a highly immunogenic strain might be advantageous to control serotype A FMDV. We developed a new vaccine strain, A/SKR/Yeoncheon/2017 (A-1), which belongs to the A/ASIA/Sea-97 lineage that frequently occurs in Asian countries. Using virus plaque purification, we selected a vaccine virus with high antigen productivity and the lowest numbers of P1 mutations among cell-adapted virus populations. The A/SKR/Yeoncheon/2017 (A-1) vaccine strain has a single amino acid mutation, VP2 E82K, in the P1 region, and it is perfectly adapted to suspension culture. The A/SKR/Yeoncheon/2017 (A-1) experimental vaccine conferred high immunogenicity in pigs. The vaccine strain was serologically matched with various field isolates in two-dimensional virus neutralization tests using bovine serum. Vaccinated mice were protected against an A/MAY/97 virus that was serologically mismatched with the vaccine strain. Thus, A/SKR/Yeoncheon/2017 (A-1) might be a promising vaccine candidate for protection against the emerging FMDV serotype A in Asia.
Collapse
|
9
|
Ioannou M, Stanway G. Tropism of Coxsackie virus A9 depends on the +1 position of the RGD (arginine- glycine- aspartic acid) motif found at the C' terminus of its VP1 capsid protein. Virus Res 2020; 294:198292. [PMID: 33388395 DOI: 10.1016/j.virusres.2020.198292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/06/2020] [Accepted: 12/25/2020] [Indexed: 11/16/2022]
Abstract
An understanding of how viruses interact with their receptors is vital as this step is a major determinant of host susceptibility and disease. The enterovirus coxsackievirus A9 (CVA9) is an important pathogen responsible for respiratory infections, myocarditis, infections of the central nervous system, chronic dilated cardiomyopathy and possibly type I diabetes. CVA9 harbours an integrin- recognition motif, RGD (Arg-Gly-Asp), in the capsid protein VP1 and this motif is believed to be primarily responsible for binding to integrins αvβ6 and/or αvβ3 during cell entry. Despite the consistent conservation of RGD-flanking amino acids in multiple RGD-containing picornaviruses, the significance of these amino acids to cell tropism has not been thoroughly investigated. In this study we used 10 CVA9 mutants and a panel of cells to analyse cell tropism. We showed that CVA9 infection proceeds by either an RGD- dependent or an apparently RGD- independent pathway. Differences in the amino acid found at the +1 position of the RGD motif affect the cell tropism of CVA9 when an RGD- dependent pathway is used. Naturally occurring CVA9 isolates have either the sequence RGDM and RGDL and we found that the corresponding viruses in our panel infected cells most efficiently. There was also a strong selection pressure for RGDL in adaptation experiments. However, there was also an unexpected selection of an RGDL variant in an apparently RGD- independent cell line. There was also no simple relationship between infection of cells and expression of integrins αvβ3 and αvβ6. The results obtained have greatly improved our understanding of how CVA9 infects cells. This will be useful in the design of antivirus drugs and also gives a framework for the modification of CVA9 or other RGD containing picornaviruses for specific targeting of cancer cells for oncolytic therapy.
Collapse
Affiliation(s)
- Marina Ioannou
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom
| | - Glyn Stanway
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom.
| |
Collapse
|
10
|
Rodríguez-Habibe I, Celis-Giraldo C, Patarroyo ME, Avendaño C, Patarroyo MA. A Comprehensive Review of the Immunological Response against Foot-and-Mouth Disease Virus Infection and Its Evasion Mechanisms. Vaccines (Basel) 2020; 8:vaccines8040764. [PMID: 33327628 PMCID: PMC7765147 DOI: 10.3390/vaccines8040764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease, which has been reported for over 100 years, and against which the struggle has lasted for the same amount of time. It affects individuals from the order Artiodactyla, such as cattle, swine, sheep, wild animals from this order, and a few non-cloven hoofed species, such as mice and elephants. FMD causes large-scale economic losses for agricultural production systems; morbidity is almost 100% in an affected population, accompanied by a high mortality rate in young animals due to myocarditis or an inability to suckle if a mother is ill. The aetiological agent is an Aphthovirus from the family Picornaviridae, having seven serotypes: A, O, C, SAT1, SAT2, SAT3, and Asia 1. Serotype variability means that an immune response is serospecific and vaccines are thus designed to protect against each serotype independently. A host’s adaptive immune response is key in defence against pathogens; however, this virus uses successful strategies (along with most microorganisms) enabling it to evade a host’s immune system to rapidly and efficiently establish itself within such host, and thus remain there. This review has been aimed at an in-depth analysis of the immune response in cattle and swine regarding FMD virus, the possible evasion mechanisms used by the virus and describing some immunological differences regarding these species. Such aspects can provide pertinent knowledge for developing new FMD control and prevention strategies.
Collapse
Affiliation(s)
- Ibett Rodríguez-Habibe
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia; (I.R.-H.); (C.C.-G.)
- Masters Programme in Veterinary Science, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | - Carmen Celis-Giraldo
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia; (I.R.-H.); (C.C.-G.)
| | - Manuel Elkin Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia; (I.R.-H.); (C.C.-G.)
- Correspondence: (C.A.); (M.A.P.); Tel.: +57-6684-700 (C.A.); +57-1324-4672 (M.A.P.)
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 112111, Colombia
- Correspondence: (C.A.); (M.A.P.); Tel.: +57-6684-700 (C.A.); +57-1324-4672 (M.A.P.)
| |
Collapse
|
11
|
Single Amino Acid Substitutions Surrounding the Icosahedral Fivefold Symmetry Axis Are Critical for Alternative Receptor Usage of Foot-and-Mouth Disease Virus. Viruses 2020; 12:v12101147. [PMID: 33050303 PMCID: PMC7650640 DOI: 10.3390/v12101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022] Open
Abstract
The integrins function as the primary receptor molecules for the pathogenic infection of foot-and-mouth disease virus (FMDV) in vivo, while the acquisition of a high affinity for heparan sulfate (HS) of some FMDV variants could be privileged to facilitate viral infection and expanded cell tropism in vitro. Here, we noted that a BHK-adapted Cathay topotype derivative (O/HN/CHA/93tc) but not its genetically engineered virus (rHN), was able to infect HS-positive CHO-K1 cells and mutant pgsD-677 cells. There were one or three residue changes in the capsid proteins of O/HN/CHA/93tc and rHN, as compared with that of their tissue-originated isolate (O/HN/CHA/93wt). The phenotypic properties of a set of site-directed mutants of rHN revealed that E83K of VP1 surrounding the fivefold symmetry axis was necessary for the integrin-independent infection of O/HN/CHA/93tc. L80 in VP2 was essential for the occurrence of E83K in VP1 during the adaptation of O/HN/CHA/93wt to BHK-21 cells. L80M in VP2 and D138G in VP1 of rHN was deleterious, which could be compensated by K83R of VP1 for restoring an efficient infection of integrin-negative CHO cell lines. These might have important implications for understanding the molecular and evolutionary mechanisms of the recognition and binding of FMDV with alternative cellular receptors.
Collapse
|
12
|
Lee G, Hwang JH, Kim A, Park JH, Lee MJ, Kim B, Kim SM. Analysis of Amino Acid Mutations of the Foot-and-Mouth Disease Virus Serotype O Using both Heparan Sulfate and JMJD6 Receptors. Viruses 2020; 12:v12091012. [PMID: 32927791 PMCID: PMC7551012 DOI: 10.3390/v12091012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 01/04/2023] Open
Abstract
Foot-and-mouth disease (FMD) is an economically devastating animal disease. Adapting the field virus to cells is critical to the vaccine production of FMD viruses (FMDV), and heparan sulfate (HS) and Jumonji C-domain-containing protein 6 (JMJD6) are alternative receptors of cell-adapted FMDV. We performed serial passages of FMDV O/SKR/Andong/2010, classified as the O/Mya-98 topotype/lineage and known as a highly virulent strain, to develop a vaccine seed virus. We traced changes in the amino acid sequences of the P1 region, plaque phenotypes, and the receptor usage of the viruses, and then structurally analyzed the mutations. VP3 H56R and D60G mutations were observed in viruses using the HS receptor and led to changes in the hydrogen bonding between VP3 56 and 60. A VP1 P208L mutation was observed in the virus using the JMJD6 receptor during cell adaptation, enabling the interaction with JMJD6 through the formation of a new hydrogen bond with JMJD6 residue 300. Furthermore, VP1 208 was near the VP1 95/96 amino acids, previously reported as critical mutations for JMJD6 receptor interactions. Thus, the mutation at VP1 208 could be critical for cell adaptation related to the JMJD6 receptor and may serve as a basis for mechanism studies on FMDV cell adaptation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Su-Mi Kim
- Correspondence: ; Tel.: +82-054-912-0907; Fax: +82-054-912-0890
| |
Collapse
|
13
|
Chitray M, Kotecha A, Nsamba P, Ren J, Maree S, Ramulongo T, Paul G, Theron J, Fry EE, Stuart DI, Maree FF. Symmetrical arrangement of positively charged residues around the 5-fold axes of SAT type foot-and-mouth disease virus enhances cell culture of field viruses. PLoS Pathog 2020; 16:e1008828. [PMID: 32991636 PMCID: PMC7577442 DOI: 10.1371/journal.ppat.1008828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 10/21/2020] [Accepted: 07/22/2020] [Indexed: 11/18/2022] Open
Abstract
Field isolates of foot-and-mouth disease viruses (FMDVs) utilize integrin-mediated cell entry but many, including Southern African Territories (SAT) viruses, are difficult to adapt to BHK-21 cells, thus hampering large-scale propagation of vaccine antigen. However, FMDVs acquire the ability to bind to cell surface heparan sulphate proteoglycans, following serial cytolytic infections in cell culture, likely by the selection of rapidly replicating FMDV variants. In this study, fourteen SAT1 and SAT2 viruses, serially passaged in BHK-21 cells, were virulent in CHO-K1 cells and displayed enhanced affinity for heparan, as opposed to their low-passage counterparts. Comparative sequence analysis revealed the fixation of positively charged residues clustered close to the icosahedral 5-fold axes of the virus, at amino acid positions 83-85 in the βD-βE loop and 110-112 in the βF-βG loop of VP1 upon adaptation to cultured cells. Molecular docking simulations confirmed enhanced binding of heparan sulphate to a model of the adapted SAT1 virus, with the region around VP1 arginine 112 contributing the most to binding. Using this information, eight chimeric field strain mutant viruses were constructed with additional positive charges in repeated clusters on the virion surface. Five of these bound heparan sulphate with expanded cell tropism, which should facilitate large-scale propagation. However, only positively charged residues at position 110-112 of VP1 enhanced infectivity of BHK-21 cells. The symmetrical arrangement of even a single amino acid residue in the FMD virion is a powerful strategy enabling the virus to generate novel receptor binding and alternative host-cell interactions.
Collapse
Affiliation(s)
- Melanie Chitray
- Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Abhay Kotecha
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Headington, Oxford, United Kingdom
| | - Peninah Nsamba
- Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, South Africa
- Makerere University, College of Veterinary Medicine, Animal Resources and Biosecurity, Kampala, Uganda
| | - Jingshan Ren
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Headington, Oxford, United Kingdom
| | - Sonja Maree
- Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, South Africa
| | - Tovhowani Ramulongo
- Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Elizabeth E. Fry
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Headington, Oxford, United Kingdom
| | - David I. Stuart
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Headington, Oxford, United Kingdom
| | - Francois F. Maree
- Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
14
|
Lee G, Hwang JH, Park JH, Lee MJ, Kim B, Kim SM. Vaccine strain of O/ME-SA/Ind-2001e of foot-and-mouth disease virus provides high immunogenicity and broad antigenic coverage. Antiviral Res 2020; 182:104920. [PMID: 32828822 DOI: 10.1016/j.antiviral.2020.104920] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/24/2020] [Accepted: 08/14/2020] [Indexed: 11/17/2022]
Abstract
Foot-and-mouth disease (FMD) is an economically devastating animal disease. There are seven serotypes, A, O, C, Asia 1, Southern African Territories 1, 2, and 3 (SAT1, SAT2, and SAT3), among which serotype O shows the greatest distribution worldwide. Specifically, the O/ME-SA/Ind-2001 lineage, which was reported in India in 2001, has since emerged worldwide, with the O/ME-SA/Ind-2001d and O/ME-SA/Ind-2001e sublineages recently emerging in North Africa, Middle East Asia, Southeast Asia, and East Asia. The antigenic relationship (r1) value for the O1 Manisa and O/Mya-98 lineage inactivated vaccine against various O/ME-SA/Ind-2001 lineages of FMDV isolates, were matching (r1 > 0.3) or non-matching (r1 < 0.3), indicating that the vaccine based on the O/ME-SA/Ind-2001 lineage FMDV, is valuable. In this study, we developed a new vaccine strain, O/SKR/Boeun/2017 isolate, belonging to the O/ME-SA/Ind-2001e sublineage as an outbreak of this sublineage occurred in 2017 in the Boeun county of the Republic of Korea (O/SKR/Boeun/2017). This experimental vaccine exhibited high immunogenicity in pigs and cattle and was antigenically matched with representative FMDV lineages (ME-SA, O/ME-SA/PanAsia, O/SEA/Mya-98, and O/Cathay) in Asia, as demonstrated by two-dimensional virus neutralization tests (2D-VNT). In addition, a 100% survival rate in C56BL/6 mice vaccinated with 1/15 of a pig dose was observed following challenge with FMDV O/VIT/2013 (O/ME-SA/PanAsia) at 10 days post-vaccination. Further, we analyzed the major antigenic sites of the O/SKR/Boeun/2017 vaccine strain as well as other viruses, by 2D-VNT. These results suggest that the O/ME-SA/Ind-2001e sublineage is a promising vaccine strain candidate in Asia, and other countries, for protection against the emerging FMDV.
Collapse
Affiliation(s)
- Gyeongmin Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Ji-Hyeon Hwang
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Jong-Hyeon Park
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Min Ja Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Byounghan Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Su-Mi Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea.
| |
Collapse
|
15
|
Fish I, Stenfeldt C, Palinski RM, Pauszek SJ, Arzt J. Into the Deep (Sequence) of the Foot-and-Mouth Disease Virus Gene Pool: Bottlenecks and Adaptation during Infection in Naïve and Vaccinated Cattle. Pathogens 2020; 9:pathogens9030208. [PMID: 32178297 PMCID: PMC7157448 DOI: 10.3390/pathogens9030208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) infects hosts as a population of closely related viruses referred to as a quasispecies. The behavior of this quasispecies has not been described in detail in natural host species. In this study, virus samples collected from vaccinated and non-vaccinated cattle up to 35 days post-experimental infection with FMDV A24-Cruzeiro were analyzed by deep-sequencing. Vaccination induced significant differences compared to viruses from non-vaccinated cattle in substitution rates, entropy, and evidence for adaptation. Genomic variation detected during early infection reflected the diversity inherited from the source virus (inoculum), whereas by 12 days post infection, dominant viruses were defined by newly acquired mutations. Mutations conferring recognized fitness gain occurred and were associated with selective sweeps. Persistent infections always included multiple FMDV subpopulations, suggesting distinct foci of infection within the nasopharyngeal mucosa. Subclinical infection in vaccinated cattle included very early bottlenecks associated with reduced diversity within virus populations. Viruses from both animal cohorts contained putative antigenic escape mutations. However, these mutations occurred during later stages of infection, at which time transmission is less likely to occur. This study improves upon previously published work by analyzing deep sequences of samples, allowing for detailed characterization of FMDV populations over time within multiple hosts.
Collapse
Affiliation(s)
- Ian Fish
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
- Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN 37830, USA
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Rachel M. Palinski
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
| | - Steven J. Pauszek
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, ARS, USDA, Orient, NY 11957, USA; (I.F.); (C.S.); (R.M.P.); (S.J.P.)
- Correspondence:
| |
Collapse
|
16
|
Ramulongo TD, Maree FF, Scott K, Opperman P, Mutowembwa P, Theron J. Pathogenesis, biophysical stability and phenotypic variance of SAT2 foot-and-mouth disease virus. Vet Microbiol 2020; 243:108614. [PMID: 32273026 DOI: 10.1016/j.vetmic.2020.108614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 11/27/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious vesicular disease of cloven-hoofed animals, which severely decreases livestock productivity. FMD virus (FMDV), the causative agent, initiates infection by interaction with integrin cellular receptors on pharyngeal epithelium cells, causing clinical signs one to four days after transmission to a susceptible host. However, some Southern African Territories (SAT) viruses have been reported to cause mild or subclinical infections that may go undiagnosed in field conditions and are likely to be more common than previously expected. The studies presented here demonstrate that not all SAT2 viruses are equally virulent in cattle. The two SAT2 viruses, ZIM/5/83 and ZIM/7/83, were both highly attenuated in cattle, as evidenced by the mild clinical signs observed after needle challenge, while two incongruent SAT2 viruses showed significantly different clinical signs in challenged cattle. We then explored the ability of the SAT2 viruses to infect different cell types with defined receptors that are utilised by FMDV and found differences in their ability to lyse cells in culture and to compete in a controlled cell culture environment. The population sequence variation between ZIM/5/83 and ZIM/7/83 revealed multiple sites of single nucleotide variants of low frequency between the predominant virus populations, as could be expected from the genome of an RNA virus. An assessment of the biophysical stability of SAT2 virions during acidification indicated that the SAT2 virus EGY/09/12 was more resilient to acidification than the ZIM/5/83 and ZIM/7/83 viruses; however, whether this difference relates to differences in virulence in vivo is unclear. This study is a consolidated view of the key findings of SAT2 viruses studied over a 14-year period involving many different experiments.
Collapse
Affiliation(s)
- Tovhowani D Ramulongo
- Transboundary Animal Diseases, Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Research Institute, Agricultural Research Council, Onderstepoort, Pretoria, 0110, South Africa; Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | - Francois F Maree
- Transboundary Animal Diseases, Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Research Institute, Agricultural Research Council, Onderstepoort, Pretoria, 0110, South Africa; Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0002, South Africa.
| | - Katherine Scott
- Transboundary Animal Diseases, Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Research Institute, Agricultural Research Council, Onderstepoort, Pretoria, 0110, South Africa
| | - Pamela Opperman
- Transboundary Animal Diseases, Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Research Institute, Agricultural Research Council, Onderstepoort, Pretoria, 0110, South Africa; Department Animal Production Studies, Faculty of Veterinary Sciences, University of Pretoria, Pretoria, 0110, South Africa
| | - Paidamwoyo Mutowembwa
- Transboundary Animal Diseases, Vaccine Production Programme, Onderstepoort Veterinary Research Institute, Agricultural Research Council, Onderstepoort, Pretoria, 0110, South Africa
| | - Jacques Theron
- Department Animal Production Studies, Faculty of Veterinary Sciences, University of Pretoria, Pretoria, 0110, South Africa
| |
Collapse
|
17
|
Najafi H, FallahMehrabadi MH, Hosseini H, Ziafati Kafi Z, Modiri Hamdan A, Ghalyanchilangeroudi A. The first full genome characterization of an Iranian foot and mouth disease virus. Virus Res 2020; 279:197888. [PMID: 32023478 DOI: 10.1016/j.virusres.2020.197888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/20/2019] [Accepted: 02/01/2020] [Indexed: 10/25/2022]
Abstract
High transmissibility of FMDV and drop in productivity following infection, make FMD an important economically disease of livestock. According to the endemic nature of the disease in Iran, vaccines have been routinely applied, but not able to prevent frequent outbreaks. Circulation of different FMDV types in Iran along with unrestricted animal movements complicates epidemiological situations. The relatively short length of VP1 does not provide high resolution molecular epidemiological data, therefore FMDV full genome sequencing has been employed. Outbreaks of FMD occurred in Qom province, Iran during 2017. A 8190 nucleotide-long FMDV complete genome was sequenced. Phylogenetic analysis clustered the virus into Asia 1 serotype. Complete genome analysis revealed a high level of homology of the virus to Asia 1 viruses previously detected in Turkey, India, Israel, and Pakistan. The data suggest that Asia 1/Shimi/2017 probably originated from India, have circulating in Iran since the last couple of years and reached Turkey in 2013. The results highlight the role of Iran in westward spreading of FMDV among South-central Asia, hinting the urgent need for an effective vaccine against Asia 1 type FMDV and also applying restriction rules on animal movements.
Collapse
Affiliation(s)
- Hamideh Najafi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohammad Hossein FallahMehrabadi
- Department of Poultry Diseases, RAZI Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Hossein Hosseini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Zahra Ziafati Kafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Modiri Hamdan
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
18
|
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided into basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
19
|
Hwang JH, Moon Y, Lee G, Kim MY, Lee KN, Park JH, Lee M, Kim B, Kim SM. Three-percent sucrose acts as a thermostabilizer for cell-adapted foot-and-mouth disease virus without any negative effect on viral growth. J Appl Microbiol 2019; 128:1524-1531. [PMID: 31883170 DOI: 10.1111/jam.14565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/24/2019] [Accepted: 12/23/2019] [Indexed: 11/27/2022]
Abstract
AIMS As cell-adapted foot-and-mouth disease virus (FMDV) with H56R mutation in VP3 has reduced thermostability, this study aimed to investigate the effect of thermostabilizers on cell-adapted FMDV for vaccine production. METHODS AND RESULTS We examined the effect of 3% sucrose, 10% (or 25%) glycerol or 10% FBS on cell-adapted FMDV O/SKR/JC/2014, containing H56R mutation in VP3, as vaccine seed virus at -80, 4, 25 or 37°C for 2, 4 or 7 days. The stabilizing effect of 3% sucrose on O/SKR/JC/2014 was observed at 25, 37°C, and after repeated freeze-thaw cycles. Additionally, we tested the effect of 3% sucrose on the growth of FMDV or cells and did not observe any decrease in either viral growth or cell viability. CONCLUSIONS Our study showed the protective effect of 3% sucrose on FMDV infectivity at various temperatures; this virus stock in 3% sucrose could be used for infecting cells without the removal of sucrose. SIGNIFICANCE AND IMPACT OF THE STUDY We suggest that 3% sucrose-containing medium could be beneficial for the stable storage and transport of cell-adapted FMDV.
Collapse
Affiliation(s)
- J-H Hwang
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-City, Republic of Korea
| | - Y Moon
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-City, Republic of Korea
| | - G Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-City, Republic of Korea
| | - M-Y Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-City, Republic of Korea
| | - K-N Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-City, Republic of Korea
| | - J-H Park
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-City, Republic of Korea
| | - M Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-City, Republic of Korea
| | - B Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-City, Republic of Korea
| | - S-M Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-City, Republic of Korea
| |
Collapse
|
20
|
Cell culture propagation of foot-and-mouth disease virus: adaptive amino acid substitutions in structural proteins and their functional implications. Virus Genes 2019; 56:1-15. [PMID: 31776851 PMCID: PMC6957568 DOI: 10.1007/s11262-019-01714-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/13/2019] [Indexed: 11/18/2022]
Abstract
Foot-and-mouth disease is endemic in livestock in large parts of Africa and Asia, where it is an important driver of food insecurity and a major obstacle to agricultural development and the international trade in animal products. Virtually all commercially available vaccines are inactivated whole-virus vaccines produced in cell culture, but the adaptation of a field isolate of the virus to growth in culture is laborious and time-consuming. This is of particular concern for the development of vaccines to newly emerging virus lineages, where long lead times from virus isolate to vaccine can delay the implementation of effective control programs. High antigen yields in production cells are also necessary to make vaccines affordable for less developed countries in endemic areas. Therefore, a rational approach to cell culture adaptation that combines prior knowledge of common adaptive mutations and reverse genetics techniques is urgently required. This review provides an overview of amino acid exchanges in the viral capsid proteins in the context of adaptation to cell culture.
Collapse
|
21
|
Hägglund S, Laloy E, Näslund K, Pfaff F, Eschbaumer M, Romey A, Relmy A, Rikberg A, Svensson A, Huet H, Gorna K, Zühlke D, Riedel K, Beer M, Zientara S, Bakkali-Kassimi L, Blaise-Boisseau S, Valarcher JF. Model of persistent foot-and-mouth disease virus infection in multilayered cells derived from bovine dorsal soft palate. Transbound Emerg Dis 2019; 67:133-148. [PMID: 31419374 PMCID: PMC7003861 DOI: 10.1111/tbed.13332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022]
Abstract
Foot‐and‐mouth disease virus (FMDV) causes a highly contagious vesicular disease in livestock, with serious consequences for international trade. The virus persists in the nasopharynx of cattle and this slows down the process to obtain an FMDV‐free status after an outbreak. To study biological mechanisms, or to identify molecules that can be targeted to diagnose or interfere with persistence, we developed a model of persistent FMDV infection in bovine dorsal soft palate (DSP). Primary DSP cells were isolated after commercial slaughter and were cultured in multilayers at the air‐liquid interface. After 5 weeks of culture without further passage, the cells were infected with FMDV strain O/FRA/1/2001. Approximately, 20% of cells still had a polygonal morphology and displayed tight junctions as in stratified squamous epithelia. Subsets of cells expressed cytokeratin and most or all cells expressed vimentin. In contrast to monolayers in medium, multilayers in air demonstrated only a limited cytopathic effect. Integrin αVβ6 expression was observed in mono‐ but not in multilayers. FMDV antigen, FMDV RNA and live virus were detected from day 1 to 28, with peaks at day 1 and 2. The proportion of infected cells was highest at 24 hr (3% and 36% of cells at an MOI of 0.01 and 1, respectively). At day 28 after infection, at a time when animals that still harbour FMDV are considered carriers, FMDV antigen was detected in 0.2%–2.1% of cells, in all layers, and live virus was isolated from supernatants of 6/8 cultures. On the consensus level, the viral genome did not change within the first 24 hr after infection. Only a few minor single nucleotide variants were detected, giving no indication of the presence of a viral quasispecies. The air‐liquid interface model of DSP brings new possibilities to investigate FMDV persistence in a controlled manner.
Collapse
Affiliation(s)
- Sara Hägglund
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Eve Laloy
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Katarina Näslund
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Aurore Romey
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Anthony Relmy
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Annika Rikberg
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Anna Svensson
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Helene Huet
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Kamila Gorna
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Daniela Zühlke
- Institute of Microbiology, Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Stephan Zientara
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Labib Bakkali-Kassimi
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Sandra Blaise-Boisseau
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Jean François Valarcher
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| |
Collapse
|
22
|
Foot-and-Mouth Disease Virus: Immunobiology, Advances in Vaccines and Vaccination Strategies Addressing Vaccine Failures-An Indian Perspective. Vaccines (Basel) 2019; 7:vaccines7030090. [PMID: 31426368 PMCID: PMC6789522 DOI: 10.3390/vaccines7030090] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
A mass vaccination campaign in India seeks to control and eventually eradicate foot-and-mouth disease (FMD). Biosanitary measures along with FMD monitoring are being conducted along with vaccination. The implementation of the FMD control program has drastically reduced the incidence of FMD. However, cases are still reported, even in regions where vaccination is carried out regularly. Control of FMD outbreaks is difficult when the virus remains in circulation in the vaccinated population. Various FMD risk factors have been identified that are responsible for FMD in vaccinated areas. The factors are discussed along with strategies to address these challenges. The current chemically inactivated trivalent vaccine formulation containing strains of serotype O, A, and Asia 1 has limitations including thermolability and induction of only short-term immunity. Advantages and disadvantages of several new-generation alternate vaccine formulations are discussed. It is unfeasible to study every incidence of FMD in vaccinated animals/areas in such a big country as India with its huge livestock population. However, at the same time, it is absolutely necessary to identify the precise reason for vaccination failure. Failure to vaccinate is one reason for the occurrence of FMD in vaccinated areas. FMD epidemiology, emerging and re-emerging virus strains, and serological status over the past 10 years are discussed to understand the impact of vaccination and incidences of vaccination failure in India. Other factors that are important in vaccination failure that we discuss include disrupted herd immunity, health status of animals, FMD carrier status, and FMD prevalence in other species. Recommendations to boost the search of alternate vaccine formulation, strengthen the veterinary infrastructure, bolster the real-time monitoring of FMD, as well as a detailed investigation and documentation of every case of vaccination failure are provided with the goal of refining the control program.
Collapse
|
23
|
Fernandez-Sainz I, Gavitt TD, Koster M, Ramirez-Medina E, Rodriguez YY, Wu P, Silbart LK, de Los Santos T, Szczepanek SM. The VP1 G-H loop hypervariable epitope contributes to protective immunity against Foot and Mouth Disease Virus in swine. Vaccine 2019; 37:3435-3442. [PMID: 31085001 DOI: 10.1016/j.vaccine.2019.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Foot and Mouth Disease is a highly contagious and economically important disease of livestock. While vaccination is often effective at controlling viral spread, failures can occur due to strain mismatch or viral mutation. Foot and Mouth Disease Virus (FMDV) possesses a hypervariable region within the G-H Loop of VP1, a capsid protein commonly associated with virus neutralization. Here, we investigate the effect of replacement of the G-H loop hypervariable epitope with a xenoepitope from PRRS virus on the immunogenicity and efficacy of an adenovirus vectored FMDV vaccine (Ad5-FMD). Pigs were vaccinated with Ad5-FMD, the modified Ad5-FMDxeno, or PBS, followed by intradermal challenge with FDMV strain O1 Manisa at 21 days post-vaccination. While overall serum antibody titers were significantly higher in Ad5-FMDxeno vaccinated animals, neutralizing antibody titers were decreased in pigs that received Ad5-FMDxeno, when compared to those vaccinated with Ad5-FMD, prior to viral challenge, indicative of immune redirection away from VP1 towards non-neutralizing epitopes. As expected, animals vaccinated with unmodified Ad5-FMD were protected from lesions, fever, and viremia. In contrast, animals vaccinated with Ad5-FMDxeno developed clinical signs and viremia, but at lower levels than that observed in PBS-treated controls. No significant difference was found in nasal shedding of virions between the two Ad5-FMD vaccinated groups. This data suggests that the hypervariable epitope of the VP1 G-H loop contributes to protective immunity conferred by Ad5 vector-delivered FMD vaccines in swine, and cannot be substituted without a loss of immunogenicity.
Collapse
Affiliation(s)
- Ignacio Fernandez-Sainz
- Plum Island Animal Disease Center, Agricultural Research Services, North East Area, U.S Department of Agriculture, Orient, NY, USA; Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Tyler D Gavitt
- Centers of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA; Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Marla Koster
- Plum Island Animal Disease Center, Agricultural Research Services, North East Area, U.S Department of Agriculture, Orient, NY, USA
| | - Elizabeth Ramirez-Medina
- Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN, USA
| | - Yelitza Y Rodriguez
- Plum Island Animal Disease Center, Agricultural Research Services, North East Area, U.S Department of Agriculture, Orient, NY, USA; Plum Island Animal Disease Center, Animal and Plant Health Inspection Service, North East Area, U.S Department of Agriculture, Orient, NY, USA; Plum Island Animal Disease Center, Animal and Plant Health Inspection Service, National Veterinary Services Laboratory, North East Area, U.S Department of Agriculture, Orient, NY, USA
| | - Ping Wu
- Plum Island Animal Disease Center, Agricultural Research Services, North East Area, U.S Department of Agriculture, Orient, NY, USA; Plum Island Animal Disease Center, Animal and Plant Health Inspection Service, North East Area, U.S Department of Agriculture, Orient, NY, USA; Plum Island Animal Disease Center, Animal and Plant Health Inspection Service, National Veterinary Services Laboratory, North East Area, U.S Department of Agriculture, Orient, NY, USA
| | - Lawrence K Silbart
- Centers of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA; Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Teresa de Los Santos
- Plum Island Animal Disease Center, Agricultural Research Services, North East Area, U.S Department of Agriculture, Orient, NY, USA
| | - Steven M Szczepanek
- Centers of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA; Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
24
|
Malasao R, Khamrin P, Kumthip K, Ushijima H, Maneekarn N. Molecular epidemiology and genetic diversity of human parechoviruses in children hospitalized with acute diarrhea in Thailand during 2011-2016. Arch Virol 2019; 164:1743-1752. [PMID: 30972593 DOI: 10.1007/s00705-019-04249-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/13/2019] [Indexed: 12/25/2022]
Abstract
Little is known about human parechovirus (HPeV) infection in Thailand. The genotype distribution of HPeV strains in children admitted to hospitals with acute gastroenteritis was investigated using polymerase chain reaction (PCR) and nucleotide sequencing of the VP1 region as the detection and genotype identification methods, respectively. Of a total of 2,002 stool samples, 49 (2.4%) were positive for HPeV. Of these, HPeV-1 was the most predominant genotype (40.8%), followed by HPeV-3 (16.3%) and HPeV-14 (16.3%), while HPeV-5, -6, -2, -4, and -8 strains were less frequently detected, at 10.2%, 8.2%, 2%, 2%, and 2%, respectively. HPeV infections were detected throughout the year with the biannual peaks of infection in the rainy (Jun-Jul-Aug) and winter (Nov-Dec-Jan) months in Thailand. Based on VP1 amino acid sequence alignment, the arginyl-glycyl-aspartic acid (RGD) motif was found in HPeV-1, -2, -4, and -6 strains. Additionally, an amino acid insertion at the N-terminus of VP1 was observed in HPeV-4 and HPeV-5 strains. Phylogenetic analysis revealed that small clades of HPeV-1 and HPeV-3 strains emerged in 2016 and 2015, respectively, and dominated in the year of their emergence. The HPeV strains detected in Thailand in this study were most closely related to reference strains from Asia and Europe. The evolutionary rate of HPeV strains was 2.87 × 10-4 (95% highest posterior density (HPD) 0.10-6.14 × 10-4) substitutions/site/year. These findings provide information about the genetic diversity and evolutionary dynamics of HPeV genotypes circulating in pediatric patients with acute gastroenteritis in Thailand.
Collapse
Affiliation(s)
- Rungnapa Malasao
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Suthep Rd, Si Phum, Amphoe Muang, Chiang Mai, 50200, Thailand
| | - Kattareeya Kumthip
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Suthep Rd, Si Phum, Amphoe Muang, Chiang Mai, 50200, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand.
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Suthep Rd, Si Phum, Amphoe Muang, Chiang Mai, 50200, Thailand.
| |
Collapse
|
25
|
Bai XW, Bao HF, Li PH, Ma XQ, Sun P, Bai QF, Zhang M, Yuan H, Chen DD, Li K, Chen YL, Cao YM, Fu YF, Zhang J, Li D, Lu ZJ, Liu ZX, Luo JX. Engineering Responses to Amino Acid Substitutions in the VP0- and VP3-Coding Regions of PanAsia-1 Strains of Foot-and-Mouth Disease Virus Serotype O. J Virol 2019; 93:e02278-18. [PMID: 30700601 PMCID: PMC6430551 DOI: 10.1128/jvi.02278-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/15/2019] [Indexed: 12/05/2022] Open
Abstract
The presence of sequence divergence through adaptive mutations in the major capsid protein VP1, and also in VP0 (VP4 and VP2) and VP3, of foot-and-mouth disease virus (FMDV) is relevant to a broad range of viral characteristics. To explore the potential role of isolate-specific residues in the VP0 and VP3 coding regions of PanAsia-1 strains in genetic and phenotypic properties of FMDV, a series of recombinant full-length genomic clones were constructed using Cathay topotype infectious cDNA as the original backbone. The deleterious and compensatory effects of individual amino acid substitutions at positions 4008 and 3060 and in several different domains of VP2 illustrated that the chain-based spatial interaction patterns of VP1, VP2, and VP3 (VP1-3), as well as between the internal VP4 and the three external capsid proteins of FMDV, might contribute to the assembly of eventually viable viruses. The Y2079H site-directed mutants dramatically induced a decrease in plaque size on BHK-21 cells and viral pathogenicity in suckling mice. Remarkably, the 2079H-encoding viruses displayed a moderate increase in acid sensitivity correlated with NH4Cl resistance compared to the Y2079-encoding viruses. Interestingly, none of all the 16 rescued viruses were able to infect heparan sulfate-expressing CHO-K1 cells. However, viral infection in BHK-21 cells was facilitated by utilizing non-integrin-dependent, heparin-sensitive receptor(s) and replacements of four uncharged amino acids at position 3174 in VP3 of FMDV had no apparent influence on heparin affinity. These results provide particular insights into the correlation of evolutionary biology with genetic diversity in adapting populations of FMDV.IMPORTANCE The sequence variation within the capsid proteins occurs frequently in the infection of susceptible tissue cultures, reflecting the high levels of genetic diversity of FMDV. A systematic study for the functional significance of isolate-specific residues in VP0 and VP3 of FMDV PanAsia-1 strains suggested that the interaction of amino acid side chains between the N terminus of VP4 and several potential domains of VP1-3 had cascading effects on the viability and developmental characteristics of progeny viruses. Y2079H in VP0 of the indicated FMDVs could affect plaque size and pathogenicity, as well as acid sensitivity correlated with NH4Cl resistance, whereas there was no inevitable correlation in viral plaque and acid-sensitive phenotypes. The high affinity of non-integrin-dependent FMDVs for heparin might be explained by the differences in structures of heparan sulfate proteoglycans on the surfaces of different cell lines. These results may contribute to our understanding of the distinct phenotypic properties of FMDV in vitro and in vivo.
Collapse
Affiliation(s)
- Xing-Wen Bai
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hui-Fang Bao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ping-Hua Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xue-Qing Ma
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Qi-Feng Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Meng Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hong Yuan
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Dong-Dong Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Kun Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ying-Li Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yi-Mei Cao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yuan-Fang Fu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zeng-Jun Lu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zai-Xin Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jian-Xun Luo
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
26
|
Medina GN, Segundo FDS, Stenfeldt C, Arzt J, de Los Santos T. The Different Tactics of Foot-and-Mouth Disease Virus to Evade Innate Immunity. Front Microbiol 2018; 9:2644. [PMID: 30483224 PMCID: PMC6241212 DOI: 10.3389/fmicb.2018.02644] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022] Open
Abstract
Like all pathogens, foot-and-mouth disease virus (FMDV) is recognized by the immune system inducing a heightened immune response mainly mediated by type I and type III IFNs. To overcome the strong antiviral response induced by these cytokines, FMDV has evolved many strategies exploiting each region of its small RNA genome. These include: (a) inhibition of IFN induction at the transcriptional and translational level, (b) inhibition of protein trafficking; (c) blockage of specific post-translational modifications in proteins that regulate innate immune signaling; (d) modulation of autophagy; (e) inhibition of stress granule formation; and (f) in vivo modulation of immune cell function. Here, we summarize and discuss FMDV virulence factors and the host immune footprint that characterize infection in cell culture and in the natural hosts.
Collapse
Affiliation(s)
- Gisselle N Medina
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States.,Codagenix Inc., Farmingdale, NY, United States
| | - Fayna Díaz-San Segundo
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States.,Animal and Plant Health Inspection Service, Plum Island Animal Disease Center, United States Department of Agriculture, Orient, NY, United States
| | - Carolina Stenfeldt
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Jonathan Arzt
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States
| | - Teresa de Los Santos
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States
| |
Collapse
|
27
|
Helenius A. Virus Entry: Looking Back and Moving Forward. J Mol Biol 2018; 430:1853-1862. [PMID: 29709571 PMCID: PMC7094621 DOI: 10.1016/j.jmb.2018.03.034] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/29/2022]
Abstract
Research over a period of more than half a century has provided a reasonably accurate picture of mechanisms involved in animal virus entry into their host cells. Successive steps in entry include binding to receptors, endocytosis, passage through one or more membranes, targeting to specific sites within the cell, and uncoating of the genome. For some viruses, the molecular interactions are known in great detail. However, as more viruses are analyzed, and as the focus shifts from tissue culture to in vivo experiments, it is evident that viruses display considerable redundancy and flexibility in receptor usage, endocytic mechanism, location of penetration, and uncoating mechanism. For many viruses, the picture is still elusive because the interactions that they engage in rely on sophisticated adaptation to complex cellular functions and defense mechanisms. Studies using a broad combination of technologies have provided detailed information on the entry and uncoating of many animal viruses. Not only the identity of cell surface receptors but their distribution in plasma membrane and in microdomains defines cell tropism and infection efficiency. The majority of viruses enter by endocytic mechanisms and penetrate into the cytosol intracellularly from a variety of different organelles. The picture is often elusive because many viruses display redundancy in receptor choice and entry strategy.
Collapse
Affiliation(s)
- Ari Helenius
- ETH Zurich, Institute of Biochemistry, Otto-Stern-Weg 3, Zurich 8093, Switzerland.
| |
Collapse
|
28
|
Dill V, Hoffmann B, Zimmer A, Beer M, Eschbaumer M. Influence of cell type and cell culture media on the propagation of foot-and-mouth disease virus with regard to vaccine quality. Virol J 2018; 15:46. [PMID: 29548334 PMCID: PMC5857075 DOI: 10.1186/s12985-018-0956-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/06/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Suspension culture of BHK cells allows large-scale virus propagation and cost-efficient vaccine production, while the shift to animal-component-free cell culture media without serum is beneficial for the quality and downstream processing of the product. Foot-and-mouth disease virus is still endemic in many parts of the world and high-quality vaccines are essential for the eradication of this highly contagious and economically devastating disease. METHODS Changes to the viral genome sequence during passaging in an adherent and a suspension cell culture system were compared and the impact of amino acid substitutions on receptor tropism, antigenicity and particle stability was examined. Virus production in suspension cells in animal-component-free media and in serum-containing media as well as in adherent cells in serum-containing media was compared. Infection kinetics were determined and the yield of intact viral particles was estimated in all systems using sucrose density gradient centrifugation. RESULTS Capsid protein sequence alterations were serotype-specific, but varied between cell lines. But The A24-2P virus variant had expanded its receptor tropism, but virus neutralization tests found no changes in the antigenic profile in comparison to the original viruses. There were no differences in viral titer between a suspension and an adherent cell culture system, independent of the type of media used. Also, the usage of a serum-free suspension culture system promoted viral growth and allowed an earlier harvest. For serotype O isolates, no differences were seen in the yield of 146S particles. Serotype A preparations revealed a decreased yield of 146S particles in suspension cells independent of the culture media. CONCLUSION The selective pressure of the available surface receptors in different cell culture systems may be responsible for alterations in the capsid coding sequence of culture-grown virus. Important vaccine potency characteristics such as viral titer and the neutralization profile were unaffected, but the 146S particle yield differed for one of the tested serotypes.
Collapse
Affiliation(s)
- Veronika Dill
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald–Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald–Insel Riems, Germany
| | - Aline Zimmer
- Merck KGaA, Merck Life Sciences, Upstream R&D, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald–Insel Riems, Germany
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald–Insel Riems, Germany
| |
Collapse
|
29
|
Abubakar M, Manzoor S, Ahmed A. Interplay of foot and mouth disease virus with cell-mediated and humoral immunity of host. Rev Med Virol 2017; 28. [PMID: 29282795 DOI: 10.1002/rmv.1966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 11/08/2022]
Abstract
Foot and mouth disease virus (FMDV) causes a communicable disease of cloven hoofed animals, resulting in major economic losses during disease outbreaks. Like other members of the Picornaviridae FMDV has a relatively short infectious cycle; initiation of infection and dissemination, with production of infectious virions occurs in less than a week. The components of innate immunity as well as cell-mediated and humoral immunity play a crucial role in control of FMDV. However, it has been shown in vitro using a mouse model that FMDV has evolved certain mechanisms to counteract host immune responses ensuring its survival and spread. The viral leader proteinase, L pro, deters interferon beta (IFN-β) mRNA synthesis, thus, inhibiting host cell translation. Another viral proteinase, 3C pro, disrupts host cell transcription by cleaving histone H3. A transient lymphopenia in swine as a consequence of FMDV infection has also been observed, but the mechanism involved and viral protein(s) associated with this process are not clearly understood. In this review, we have covered the interaction of FMDV with different immune cells including lymphocytes and antigen presenting cells and their consequences.
Collapse
Affiliation(s)
| | | | - Afshan Ahmed
- FAO FMD Project (GCP/PAK/123/USA), Islamabad, Pakistan
| |
Collapse
|
30
|
Abstract
Adult C57BL/6J mice have been used to study Foot-and-mouth disease virus (FMDV) biology. In this work, two variants of an FMDV A/Arg/01 strain exhibiting differential pathogenicity in adult mice were identified and characterized: a non-lethal virus (A01NL) caused mild signs of disease, whereas a lethal virus (A01L) caused death within 24-48h independently of the dose used. Both viruses caused a systemic infection with pathological changes in the exocrine pancreas. Virus A01L reached higher viral loads in plasma and organs of inoculated mice as well as increased replication in an ovine kidney cell line. Complete consensus sequences revealed 6 non-synonymous changes between A01L and A10NL genomes that might be linked to replication differences, as suggested by in silico prediction studies. Our results highlight the biological significance of discrete genomic variations and reinforce the usefulness of this animal model to study viral determinants of lethality.
Collapse
|
31
|
Lawrence P, Rieder E. Insights into Jumonji C-domain containing protein 6 (JMJD6): a multifactorial role in foot-and-mouth disease virus replication in cells. Virus Genes 2017; 53:340-351. [PMID: 28364140 DOI: 10.1007/s11262-017-1449-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/18/2017] [Indexed: 12/24/2022]
Abstract
The Jumonji C-domain containing protein 6 (JMJD6) has had a convoluted history, and recent reports indicating a multifactorial role in foot-and-mouth disease virus (FMDV) infection have further complicated the functionality of this protein. It was first identified as the phosphatidylserine receptor on the cell surface responsible for recognizing phosphatidylserine on the surface of apoptotic cells resulting in their engulfment by phagocytic cells. Subsequent study revealed a nuclear subcellular localization, where JMJD6 participated in lysine hydroxylation and arginine demethylation of histone proteins and other non-histone proteins. Interestingly, to date, JMDJ6 remains the only known arginine demethylase with a growing list of known substrate molecules. These conflicting associations rendered the subcellular localization of JMJD6 to be quite nebulous. Further muddying this area, two different groups illustrated that JMJD6 could be induced to redistribute from the cell surface to the nucleus of a cell. More recently, JMJD6 was demonstrated to be a host factor contributing to the FMDV life cycle, where it was not only exploited for its arginine demethylase activity, but also served as an alternative virus receptor. This review attempts to coalesce these divergent roles for a single protein into one cohesive account. Given the diverse functionalities already characterized for JMJD6, it is likely to continue to be a confounding protein resulting in much contention going into the near future.
Collapse
Affiliation(s)
- Paul Lawrence
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA.
| | - Elizabeth Rieder
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA
| |
Collapse
|
32
|
Bachanek-Bankowska K, Mero HR, Wadsworth J, Mioulet V, Sallu R, Belsham GJ, Kasanga CJ, Knowles NJ, King DP. Development and evaluation of tailored specific real-time RT-PCR assays for detection of foot-and-mouth disease virus serotypes circulating in East Africa. J Virol Methods 2016; 237:114-120. [PMID: 27575682 DOI: 10.1016/j.jviromet.2016.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 11/27/2022]
Abstract
Rapid, reliable and accurate diagnostic methods provide essential support to programmes that monitor and control foot-and-mouth disease (FMD). While pan-specific molecular tests for FMD virus (FMDV) detection are well established and widely used in endemic and FMD-free countries, current serotyping methods mainly rely either on antigen detection ELISAs or nucleotide sequencing approaches. This report describes the development of a panel of serotype-specific real-time RT-PCR assays (rRT-PCR) tailored to detect FMDV lineages currently circulating in East Africa. These assays target sequences within the VP1-coding region that share high intra-lineage identity, but do not cross-react with FMD viruses from other serotypes that circulate in the region. These serotype-specific assays operate with the same thermal profile as the pan-diagnostic tests making it possible to run them in parallel to produce CT values comparable to the pan-diagnostic test detecting the 3D-coding region. These assays were evaluated alongside the established pan-specific molecular test using field samples and virus isolates collected from Tanzania, Kenya and Ethiopia that had been previously characterised by nucleotide sequencing. Samples (n=71) representing serotype A (topotype AFRICA, lineage G-I), serotype O (topotypes EA-2 and EA-4), serotype SAT 1 (topotype I (NWZ)) and serotype SAT2 (topotype IV) were correctly identified with these rRT-PCR assays. Furthermore, FMDV RNA from samples that did not contain infectious virus could still be serotyped using these assays. These serotype-specific real-time RT-PCR assays can detect and characterise FMDVs currently circulating in East Africa and hence improve disease control in this region.
Collapse
Affiliation(s)
| | - Herieth R Mero
- Department of Microbiology and Parasitology & Southern African Centre for Infectious diseases Surveillance, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Jemma Wadsworth
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Valerie Mioulet
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Raphael Sallu
- Tanzania Veterinary Laboratory Agency, P. O. Box 9252, Dar es Salaam, Tanzania
| | - Graham J Belsham
- National Veterinary Institute, Technical University of Denmark, Lindholm, Kalvehave DK-4771, Denmark
| | - Christopher J Kasanga
- Department of Microbiology and Parasitology & Southern African Centre for Infectious diseases Surveillance, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Nick J Knowles
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Donald P King
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| |
Collapse
|
33
|
Structure of human Aichi virus and implications for receptor binding. Nat Microbiol 2016; 1:16150. [DOI: 10.1038/nmicrobiol.2016.150] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/21/2016] [Indexed: 12/14/2022]
|
34
|
Gulbahar MY, Davis WC, Guvenc T, Yarim M, Parlak U, Kabak YB. Myocarditis Associated with Foot-and-Mouth Disease Virus Type O in Lambs. Vet Pathol 2016; 44:589-99. [PMID: 17846231 DOI: 10.1354/vp.44-5-589] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study describes the pathogenetic mechanisms of myocarditis in 9 lambs that died in a foot-and-mouth disease outbreak in Samsun, Turkey. In all the heart samples tested, ELISA and sequencing for phylogenetic analyses showed that the virus, namely O/TUR/Samsun/05, was associated with the PanAsia pandemic strain of foot-and-mouth disease virus (FMDV) type O. The lambs had myocardial lesions but no typical vesicular lesions. In situ reverse transcription showed that many cardiomyocytes and some interstitial cells were positive for FMDV type O. Inflammatory infiltration, hyaline degeneration, and necrosis of sheets of myocytes were observed. The cellular infiltrates were mononuclear cells, including many lymphocytes, macrophages, a few plasma cells, and neutrophils. Major histocompatibility complex Class II+ dendritic and mononuclear cells, γδ T cells, CD172A+ and CD14+ macrophages and monocytes, and IgM+ B cells were detected mainly in the infected hearts. Inducible nitric oxide synthetase (iNOS) was seen mostly in areas of inflammation infiltrated by large numbers of cells. Of the 2 α-subunits of integrin known to be used as receptors by FMDV in epithelial tissues, CD49e (integrin α5) was detected in the membranes of cardiac myocytes with intercalated discs, but CD51 (integrin αV) was not detected in cardiac myocytes from infected or normal lambs. Interstitial and inflammatory cells were positive for both integrin subunits. The terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL)-positive signal was detected in the nuclei of both cardiac myocytes and interstitial cells from infected lambs. These findings suggest that the iNOS expressed by inflammatory cells in lesions may have a deleterious effect on cardiac myocytes in these lesions.
Collapse
Affiliation(s)
- M Y Gulbahar
- University of Ondokuz Mayis, Faculty of Veterinary Medicine, Department of Pathology, Kurupelit, 55139 Samsun, Turkey.
| | | | | | | | | | | |
Collapse
|
35
|
Lawrence P, Pacheco J, Stenfeldt C, Arzt J, Rai DK, Rieder E. Pathogenesis and micro-anatomic characterization of a cell-adapted mutant foot-and-mouth disease virus in cattle: Impact of the Jumonji C-domain containing protein 6 (JMJD6) and route of inoculation. Virology 2016; 492:108-17. [PMID: 26914509 DOI: 10.1016/j.virol.2016.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/11/2016] [Accepted: 02/08/2016] [Indexed: 11/24/2022]
Abstract
A companion study reported Jumonji-C domain containing protein 6 (JMJD6) is involved in an integrin- and HS-independent pathway of FMDV infection in CHO cells. JMJD6 localization was investigated in animal tissues from cattle infected with either wild type A24-FMDV (A24-WT) or mutant FMDV (JMJD6-FMDV) carrying E95K/S96L and RGD to KGE mutations in VP1. Additionally, pathogenesis of mutant JMJD6-FMDV was investigated in cattle through aerosol and intraepithelial lingual (IEL) inoculation. Interestingly, JMJD6-FMDV pathogenesis was equivalent to A24-WT administered by IEL route. In contrast, JMJD6-FMDV aerosol-infected cattle did not manifest signs of FMD and animals showed no detectable viremia. Immunofluorescent microscopy of post-mortem tissue revealed JMJD6-FMDV exclusively co-localized with JMJD6(+) cells while A24-WT was occasionally found in JMJD6(+) cells. In vitro, chemical uptake inhibitors demonstrated JMJD6-FMDV entered cells via clathrin-coated pit endocytosis. In vivo, JMJD6-FMDV exhibited preference for JMJD6(+) cells, but availability of this alternative receptor likely depends on route of inoculation.
Collapse
Affiliation(s)
- Paul Lawrence
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Juan Pacheco
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Devendra K Rai
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Elizabeth Rieder
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States.
| |
Collapse
|
36
|
Lawrence P, Rai D, Conderino JS, Uddowla S, Rieder E. Role of Jumonji C-domain containing protein 6 (JMJD6) in infectivity of foot-and-mouth disease virus. Virology 2016; 492:38-52. [PMID: 26896934 DOI: 10.1016/j.virol.2016.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 11/29/2022]
Abstract
Foot-and-mouth disease virus (FMDV) utilizes four integrins (αvβ1, αvβ3, αvβ6, and αvβ8) as its primary cell receptor. During cell culture propagation, FMDV frequently adapts to use heparan sulfate (HS), and rarely utilizes an unidentified third receptor. Capsid mutations acquired by a soluble integrin resistant FMDV cause (i) adaptation to CHO-677 cells (ii) increased affinity to membrane-bound Jumonji C-domain containing protein 6 (JMJD6) (iii) induced JMJD6 re-localization from the cell surface and cytoplasm to the nucleus. Interestingly, pre-treatment of cells with N- and C-terminal JMJD6 antibodies or by simultaneous incubation of mutant virus with soluble JMJD6 (but not by treatment with HS or αvβ6) impaired virus infectivity in cultured cells. JMJD6 and mutant virus co-purified by reciprocal co-immunoprecipitation. Molecular docking predictions suggested JMJD6 C-terminus interacts with mutated VP1 capsid protein. We conclude when specific VP1 mutations are displayed, JMJD6 contributes to FMDV infectivity and may be a previously unidentified FMDV receptor.
Collapse
Affiliation(s)
- Paul Lawrence
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Devendra Rai
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Joseph S Conderino
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Sabena Uddowla
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Elizabeth Rieder
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States.
| |
Collapse
|
37
|
Han SC, Guo HC, Sun SQ, Jin Y, Wei YQ, Feng X, Yao XP, Cao SZ, Xiang Liu D, Liu XT. Productive Entry of Foot-and-Mouth Disease Virus via Macropinocytosis Independent of Phosphatidylinositol 3-Kinase. Sci Rep 2016; 6:19294. [PMID: 26757826 PMCID: PMC4725844 DOI: 10.1038/srep19294] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/08/2015] [Indexed: 12/12/2022] Open
Abstract
Virus entry is an attractive target for therapeutic intervention. Here, using a combination of electron microscopy, immunofluorescence assay, siRNA interference, specific pharmacological inhibitors, and dominant negative mutation, we demonstrated that the entry of foot-and-mouth disease virus (FMDV) triggered a substantial amount of plasma membrane ruffling. We also found that the internalization of FMDV induced a robust increase in fluid-phase uptake, and virions internalized within macropinosomes colocalized with phase uptake marker dextran. During this stage, the Rac1-Pak1 signaling pathway was activated. After specific inhibition on actin, Na(+)/H(+) exchanger, receptor tyrosine kinase, Rac1, Pak1, myosin II, and protein kinase C, the entry and infection of FMDV significantly decreased. However, inhibition of phosphatidylinositol 3-kinase (PI3K) did not reduce FMDV internalization but increased the viral entry and infection to a certain extent, implying that FMDV entry did not require PI3K activity. Results showed that internalization of FMDV exhibited the main hallmarks of macropinocytosis. Moreover, intracellular trafficking of FMDV involves EEA1/Rab5-positive vesicles. The present study demonstrated macropinocytosis as another endocytic pathway apart from the clathrin-mediated pathway. The findings greatly expand our understanding of the molecular mechanisms of FMDV entry into cells, as well as provide potential insights into the entry mechanisms of other picornaviruses.
Collapse
Affiliation(s)
- Shi-Chong Han
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hui-Chen Guo
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shi-Qi Sun
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ye Jin
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yan-Quan Wei
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xia Feng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xue-Ping Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Sui-Zhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Ding Xiang Liu
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Xiang-Tao Liu
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
38
|
Domingo E. Interaction of Virus Populations with Their Hosts. VIRUS AS POPULATIONS 2016. [PMCID: PMC7150142 DOI: 10.1016/b978-0-12-800837-9.00004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided in basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
39
|
Abstract
The family Arenaviridae currently comprises over 20 viral species, each of them associated with a main rodent species as the natural reservoir and in one case possibly phyllostomid bats. Moreover, recent findings have documented a divergent group of arenaviruses in captive alethinophidian snakes. Human infections occur through mucosal exposure to aerosols or by direct contact of abraded skin with infectious materials. Arenaviruses merit interest both as highly tractable experimental model systems to study acute and persistent infections and as clinically important human pathogens including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa and Argentine hemorrhagic fevers (AHFs), respectively, for which there are no FDA-licensed vaccines, and current therapy is limited to an off-label use of ribavirin (Rib) that has significant limitations. Arenaviruses are enveloped viruses with a bi-segmented negative strand (NS) RNA genome. Each genome segment, L (ca 7.3 kb) and S (ca 3.5 kb), uses an ambisense coding strategy to direct the synthesis of two polypeptides in opposite orientation, separated by a noncoding intergenic region (IGR). The S genomic RNA encodes the virus nucleoprotein (NP) and the precursor (GPC) of the virus surface glycoprotein that mediates virus receptor recognition and cell entry via endocytosis. The L genome RNA encodes the viral RNA-dependent RNA polymerase (RdRp, or L polymerase) and the small (ca 11 kDa) RING finger protein Z that has functions of a bona fide matrix protein including directing virus budding. Arenaviruses were thought to be relatively stable genetically with intra- and interspecies amino acid sequence identities of 90-95 % and 44-63 %, respectively. However, recent evidence has documented extensive arenavirus genetic variability in the field. Moreover, dramatic phenotypic differences have been documented among closely related LCMV isolates. These data provide strong evidence of viral quasispecies involvement in arenavirus adaptability and pathogenesis. Here, we will review several aspects of the molecular biology of arenaviruses, phylogeny and evolution, and quasispecies dynamics of arenavirus populations for a better understanding of arenavirus pathogenesis, as well as for the development of novel antiviral strategies to combat arenavirus infections.
Collapse
Affiliation(s)
- Esteban Domingo
- Campus de Cantoblanco, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Peter Schuster
- The Santa Fe Institute, Santa Fe, NM, USA and Institut f. Theoretische Chemie, Universität Wien, Vienna, Austria
| |
Collapse
|
40
|
Chamberlain K, Fowler VL, Barnett PV, Gold S, Wadsworth J, Knowles NJ, Jackson T. Identification of a novel cell culture adaptation site on the capsid of foot-and-mouth disease virus. J Gen Virol 2015; 96:2684-2692. [PMID: 26296881 PMCID: PMC4635497 DOI: 10.1099/jgv.0.000222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vaccination remains the most effective tool for control of foot-and-mouth disease both in endemic countries and as an emergency preparedness for new outbreaks. Foot-and-mouth disease vaccines are chemically inactivated virus preparations and the production of new vaccines is critically dependent upon cell culture adaptation of field viruses, which can prove problematic. A major driver of cell culture adaptation is receptor availability. Field isolates of foot-and-mouth disease virus (FMDV) use RGD-dependent integrins as receptors, whereas cell culture adaptation often selects for variants with altered receptor preferences. Previously, two independent sites on the capsid have been identified where mutations are associated with improved cell culture growth. One is a shallow depression formed by the three major structural proteins (VP1–VP3) where mutations create a heparan sulphate (HS)-binding site (the canonical HS-binding site). The other involves residues of VP1 and is located at the fivefold symmetry axis. For some viruses, changes at this site result in HS binding; for others, the receptors are unknown. Here, we report the identification of a novel site on VP2 where mutations resulted in an expanded cell tropism of a vaccine variant of A/IRN/87 (called A − ). Furthermore, we show that introducing the same mutations into a different type A field virus (A/TUR/2/2006) resulted in the same expanded cell culture tropism as the A/IRN/87 A − vaccine variant. These observations add to the evidence for multiple cell attachment mechanisms for FMDV and may be useful for vaccine manufacture when cell culture adaptation proves difficult.
Collapse
Affiliation(s)
- Kyle Chamberlain
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Veronica L Fowler
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Paul V Barnett
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Sarah Gold
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Jemma Wadsworth
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Nick J Knowles
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Terry Jackson
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| |
Collapse
|
41
|
Wang G, Wang Y, Shang Y, Zhang Z, Liu X. How foot-and-mouth disease virus receptor mediates foot-and-mouth disease virus infection. Virol J 2015; 12:9. [PMID: 25645358 PMCID: PMC4322448 DOI: 10.1186/s12985-015-0246-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/19/2015] [Indexed: 11/16/2022] Open
Abstract
This study reviews the FMDV receptor-binding domain, integrin receptors, and heparan sulfate receptors to provide references for studies regarding the mechanisms underlying FMDV infection.
Collapse
Affiliation(s)
- Guangxiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou, 730046, China. .,Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Yanhua Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou, 730046, China. .,Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Youjun Shang
- National Foot-and-Mouth Disease Reference Laboratory, Lanzhou, 730046, China. .,Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou, 730046, China.
| | - Zhidong Zhang
- National Foot-and-Mouth Disease Reference Laboratory, Lanzhou, 730046, China. .,Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Xiangtao Liu
- National Foot-and-Mouth Disease Reference Laboratory, Lanzhou, 730046, China. .,Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
42
|
Han SC, Guo HC, Sun SQ. Three-dimensional structure of foot-and-mouth disease virus and its biological functions. Arch Virol 2014; 160:1-16. [PMID: 25377637 DOI: 10.1007/s00705-014-2278-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/31/2014] [Indexed: 11/26/2022]
Abstract
Foot-and-mouth disease (FMD), an acute, violent, infectious disease of cloven-hoofed animals, remains widespread in most parts of the world. It can lead to a major plague of livestock and an economical catastrophe. Structural studies of FMD virus (FMDV) have greatly contributed to our understanding of the virus life cycle and provided new horizons for the control and eradication of FMDV. To examine host-FMDV interactions and viral pathogenesis from a structural perspective, the structures of viral structural and non-structural proteins are reviewed in the context of their relevance for virus assembly and dissociation, formation of capsid-like particles and virus-receptor complexes, and viral penetration and uncoating. Moreover, possibilities for devising novel antiviral treatments are discussed.
Collapse
Affiliation(s)
- Shi-Chong Han
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | | | | |
Collapse
|
43
|
Biswal JK, Mohapatra JK, Bisht P, Subramaniam S, Sanyal A, Pattnaik B. A positively charged lysine residue at VP2 131 position allows for the enhanced adaptability of foot-and-mouth disease virus serotype A in BHK-21 cells. Biologicals 2014; 43:71-8. [PMID: 25439090 DOI: 10.1016/j.biologicals.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/13/2014] [Accepted: 07/06/2014] [Indexed: 11/28/2022] Open
Abstract
Field outbreak strains of foot-and-mouth disease virus (FMDV) infect host cells through certain Arg-Gly-Asp (RGD) dependent integrin family of cellular receptors. In contrast, FMDV adapted in non-host cell cultures are reported to acquire the ability to infect cells via heparin sulphate (HS) or other unidentified cell surface molecules. It has been reported that during the serial passage of FMDV serotype A in BHK-21 cell culture, VP2 E131K (E2131K) substitution was fixed within the heparin sulphate binding site. The fixation of positively charged residue at position VP2 131 of serotype A is considered to associate with the ability to utilise alternative receptor. In this study, an infectious full-length cDNA clone for Indian FMDV vaccine strain A IND 40/2000 was constructed. Through site-directed mutagenesis on the cDNA clone, recombinant virus containing positive charged amino acid residue at position VP2 131 was rescued. The recombinant mutated virus was shown to have specific and strong affinity for HS and demonstrated an enhanced infectivity in BHK-21 cell line. The introduction of lysine residue at VP2 131 position that allows cell culture adaptation of FMDV serotype A could be exploited for the generation of vaccine seed stocks with improved growth properties in BHK-21 cell line.
Collapse
Affiliation(s)
- Jitendra K Biswal
- Project Directorate on Foot-and-Mouth Disease (ICAR), Mukteswar, 263138 Nainital, Uttarakhand, India
| | - Jajati K Mohapatra
- Project Directorate on Foot-and-Mouth Disease (ICAR), Mukteswar, 263138 Nainital, Uttarakhand, India
| | - Punam Bisht
- Project Directorate on Foot-and-Mouth Disease (ICAR), Mukteswar, 263138 Nainital, Uttarakhand, India
| | - Saravanan Subramaniam
- Project Directorate on Foot-and-Mouth Disease (ICAR), Mukteswar, 263138 Nainital, Uttarakhand, India
| | - Aniket Sanyal
- Project Directorate on Foot-and-Mouth Disease (ICAR), Mukteswar, 263138 Nainital, Uttarakhand, India
| | - Bramhadev Pattnaik
- Project Directorate on Foot-and-Mouth Disease (ICAR), Mukteswar, 263138 Nainital, Uttarakhand, India.
| |
Collapse
|
44
|
Maree FF, Kasanga CJ, Scott KA, Opperman PA, Melanie C, Sangula AK, Raphael S, Yona S, Wambura PN, King DP, Paton DJ, Rweyemamu MM. Challenges and prospects for the control of foot-and-mouth disease: an African perspective. VETERINARY MEDICINE-RESEARCH AND REPORTS 2014; 5:119-138. [PMID: 32670853 PMCID: PMC7337166 DOI: 10.2147/vmrr.s62607] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/23/2014] [Indexed: 11/23/2022]
Abstract
The epidemiology of foot-and-mouth disease (FMD) in Africa is unique in the sense that six of the seven serotypes of FMD viruses (Southern African Territories [SAT] 1, SAT2, SAT3, A, O, and C), with the exception of Asia-1, have occurred in the last decade. Due to underreporting of FMD, the current strains circulating throughout sub-Saharan Africa are in many cases unknown. For SAT1, SAT2, and serotype A viruses, the genetic diversity is reflected in antigenic variation, and indications are that vaccine strains may be needed for each topotype. This has serious implications for control using vaccines and for choice of strains to include in regional antigen banks. The epidemiology is further complicated by the fact that SAT1, SAT2, and SAT3 viruses are maintained and spread by wildlife, persistently infecting African buffalo in particular. Although the precise mechanism of transmission of FMD from buffalo to cattle is not well understood, it is facilitated by direct contact between these two species. Once cattle are infected they may maintain SAT infections without the further involvement of buffalo. No single strategy for control of FMD in Africa is applicable. Decision on the most effective regional control strategy should focus on an ecosystem approach, identification of primary endemic areas, animal husbandry practices, climate, and animal movement. Within each ecosystem, human behavior could be integrated in disease control planning. Different regions in sub-Saharan Africa are at different developmental stages and are thus facing unique challenges and priorities in terms of veterinary disease control. Many science-based options targeting improved vaccinology, diagnostics, and other control measures have been described. This review therefore aims to emphasize, on one hand, the progress that has been achieved in the development of new technologies, including research towards improved tailored vaccines, appropriate vaccine strain selection, vaccine potency, and diagnostics, and how it relates to the conditions in Africa. On the other hand, we focus on the unique epidemiological, ecological, livestock farming and marketing, socioeconomic, and governance issues that constrain effective FMD control. Any such new technologies should have the availability of safe livestock products for trade as the ultimate goal.
Collapse
Affiliation(s)
- Francois F Maree
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, Pretoria, South Africa.,Department of Microbiology and Plant Pathology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| | - Christopher J Kasanga
- Southern African Centre for Infectious Diseases Surveillance, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Katherine A Scott
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, Pretoria, South Africa
| | - Pamela A Opperman
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, Pretoria, South Africa.,Department of Microbiology and Plant Pathology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| | - Chitray Melanie
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, Pretoria, South Africa.,Department of Microbiology and Plant Pathology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Sallu Raphael
- Southern African Centre for Infectious Diseases Surveillance, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Sinkala Yona
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Philemon N Wambura
- Southern African Centre for Infectious Diseases Surveillance, Sokoine University of Agriculture, Morogoro, Tanzania
| | | | | | - Mark M Rweyemamu
- Southern African Centre for Infectious Diseases Surveillance, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
45
|
Bai X, Bao H, Li P, Wei W, Zhang M, Sun P, Cao Y, Lu Z, Fu Y, Xie B, Chen Y, Li D, Luo J, Liu Z. Effects of two amino acid substitutions in the capsid proteins on the interaction of two cell-adapted PanAsia-1 strains of foot-and-mouth disease virus serotype O with heparan sulfate receptor. Virol J 2014; 11:132. [PMID: 25056022 PMCID: PMC4118260 DOI: 10.1186/1743-422x-11-132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/22/2014] [Indexed: 12/01/2022] Open
Abstract
Background Some cell-adapted strains of foot-and-mouth disease virus (FMDV) can utilize heparan sulfate (HS) as a receptor to facilitate viral infection in cultured cells. A number of independent sites on the capsid that might be involved in FMDV-HS interaction have been studied. However, the previously reported residues do not adequately explain HS-dependent infection of two cell-adapted PanAsia-1 strains (O/Tibet/CHA/6/99tc and O/Fujian/CHA/9/99tc) of FMDV serotype O. To identify the molecular determinant(s) for the interaction of O/Tibet/CHA/6/99tc and O/Fujian/CHA/9/99tc with HS receptor, several chimeric viruses and site-directed mutants were generated by using an infectious cDNA of a non-HS-utilizing rescued virus (Cathay topotype) as the genomic backbone. Phenotypic properties of these viruses were determined by plaque assays and virus adsorption and penetration assays in cultured cells. Results Only two of the rescued viruses encoding VP0 of O/Tibet/CHA/6/99tc or VP1 of O/Fujian/CHA/9/99tc formed plaques on wild-type Chinese hamster ovary (WT-CHO; HS+) cells, but not on HS-negative pgsD-677 cells. The formation of plaques by these two chimeric viruses on WT-CHO cells could be abolished by the introduction of single amino acid mutations Gln-2080 → Leu in VP2 of O/Tibet/CHA/6/99tc and Lys-1083 → Glu in VP1 of O/Fujian/CHA/9/99tc, respectively. Nonetheless, the introduced mutation Leu-2080 → Gln in VP2 of O/Fujian/CHA/9/99tc for the construction of expectant recombinant plasmid led to non-infectious progeny virus in baby hamster kidney 21 (BHK-21) cells, and the site-directed mutant encoding Glu-1083 → Lys in VP1 of O/Tibet/CHA/6/99tc did not acquire the ability to produce plaques on WT-CHO cells. Significant differences in the inhibition of the infectivity of four HS-utilizing viruses by heparin and RGD-containing peptide were observed in BHK-21 cells. Interestingly, the chimeric virus encoding VP0 of O/Fujian/CHA/9/99tc, and the site-directed mutant encoding Gln-2080 → Leu in VP2 of O/Tibet/CHA/6/99tc could bind to HS, but there was no expression of the 3A protein of these two viruses in WT-CHO cells. Conclusion The results suggest that the cooperation of certain specific amino acid residues in the capsid proteins of these two cell-adapted PanAsia-1 strains is essential for viral infectivity, the heparin affinity and the capability on FMDV-HS interaction.
Collapse
Affiliation(s)
- Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Engineering Research Center of Biological Detection of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yin C, Chen W, Hu Q, Wen Z, Wang X, Ge J, Yin Q, Zhi H, Xia C, Bu Z. Induction of protective immune response against both PPRV and FMDV by a novel recombinant PPRV expressing FMDV VP1. Vet Res 2014; 45:62. [PMID: 24898430 PMCID: PMC4059095 DOI: 10.1186/1297-9716-45-62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 05/27/2014] [Indexed: 11/17/2022] Open
Abstract
Peste des petits ruminants (PPR) and foot-and-mouth disease (FMD) are both highly contagious diseases of small domestic and wild ruminants caused by the PPR virus (PPRV) and the FMD virus (FMDV). In this study, a recombinant PPRV expressing the FMDV VP1 gene (rPPRV/VP1) was generated and FMDV VP1 expression did not impair replication of the recombinant virus in vitro and immunogenicity in inducing neutralizing antibody against PPR in goats. Vaccination with one dose of rPPRV/VP1 induced FMDV neutralizing antibody in goats and protected them from challenge with virulent FMDV. Our results suggest that the recombinant PPRV expressing the FMDV VP1 protein is a potential dual live vectored vaccine against PPRV and FMDV.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China.
| | | |
Collapse
|
47
|
Wildenbeest JG, Harvala H, Pajkrt D, Wolthers KC. The need for treatment against human parechoviruses: how, why and when? Expert Rev Anti Infect Ther 2014; 8:1417-29. [DOI: 10.1586/eri.10.130] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Fowler V, Bashiruddin JB, Belsham GJ, Stenfeldt C, Bøtner A, Knowles NJ, Bankowski B, Parida S, Barnett P. Characteristics of a foot-and-mouth disease virus with a partial VP1 G-H loop deletion in experimentally infected cattle. Vet Microbiol 2013; 169:58-66. [PMID: 24438986 DOI: 10.1016/j.vetmic.2013.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/09/2013] [Accepted: 12/15/2013] [Indexed: 11/20/2022]
Abstract
Previous work in cattle illustrated the protective efficacy and negative marker potential of a A serotype foot-and-mouth disease virus (FMDV) vaccine prepared from a virus lacking a significant portion of the VP1 G-H loop (termed A(-)). Since this deletion also includes the arginine-glycine-aspartate (RGD) motif required for virus attachment to the host cell in vivo, it was hypothesised that this virus would be attentuated in naturally susceptible animals. The A(-) virus was passaged three times in cattle via needle inoculation of virus suspension delivered into the intradermal space of the tongue (intradermolingual: IDL). Included in the study were three direct contact cattle, two of which were used for the third cattle passage (by inoculation) after direct contact exposure for three days. Cattle were monitored for clinical signs and samples were collected for sequencing as well as antibody and viral genome detection by ELISA and qRT-PCR. Following needle inoculation with the A(-) virus, naïve cattle developed typical clinical signs of FMDV infection, diagnostic assays also provided positive serological and virological results. However, the contact cattle did not develop clinical signs or generate serological or virological markers indicative of FMDV infection even when the cattle were subsequently needle inoculated with 10(5) TCID50 A(-) FMDV delivered IDL following three days of direct contact exposure. The results suggest that the A(-) virus is not attentuated in cattle when inoculated IDL. This virus could be useful as a tool to understand further the natural pathogenesis, receptor usage and internalisation pathways of FMDV.
Collapse
Affiliation(s)
- Veronica Fowler
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom.
| | - John B Bashiruddin
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom
| | - Graham J Belsham
- National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Carolina Stenfeldt
- National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Anette Bøtner
- National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Nick J Knowles
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom
| | - Bartlomiej Bankowski
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom
| | - Satya Parida
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom
| | - Paul Barnett
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom
| |
Collapse
|
49
|
Affiliation(s)
- Cadhla Firth
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032; ,
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032; ,
| |
Collapse
|
50
|
Positively charged residues at the five-fold symmetry axis of cell culture-adapted foot-and-mouth disease virus permit novel receptor interactions. J Virol 2013; 87:8735-44. [PMID: 23740982 DOI: 10.1128/jvi.01138-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Field isolates of foot-and-mouth disease virus (FMDV) have a restricted cell tropism which is limited by the need for certain RGD-dependent integrin receptors. In contrast, cell culture-adapted viruses use heparan sulfate (HS) or other unidentified molecules as receptors to initiate infection. Here, we report several novel findings resulting from cell culture adaptation of FMDV. In cell culture, a virus with the capsid of the A/Turkey/2/2006 field isolate gained the ability to infect CHO and HS-deficient CHO cells as a result of a single glutamine (Q)-to-lysine (K) substitution at VP1-110 (VP1-(Q)110(K)). Using site-directed mutagenesis, the introduction of lysine at this same site also resulted in an acquired ability to infect CHO cells by type O and Asia-1 FMDV. However, this ability appeared to require a second positively charged residue at VP1-109. CHO cells express two RGD-binding integrins (α5β1 and αvβ5) that, although not used by FMDV, have the potential to be used as receptors; however, viruses with the VP1-(Q)110(K) substitution did not use these integrins. In contrast, the VP1-(Q)110(K) substitution appeared to result in enhanced interactions with αvβ6, which allowed a virus with KGE in place of the normal RGD integrin-binding motif to use αvβ6 as a receptor. Thus, our results confirmed the existence of nonintegrin, non-HS receptors for FMDV on CHO cells and revealed a novel, non-RGD-dependent use of αvβ6 as a receptor. The introduction of lysine at VP1-110 may allow for cell culture adaptation of FMDV by design, which may prove useful for vaccine manufacture when cell culture adaptation proves intractable.
Collapse
|