1
|
Shuster M, Lyu Z, Augenstreich J, Mathur S, Ganesh A, Ling J, Briken V. Salmonella Typhimurium infection inhibits macrophage IFNβ signaling in a TLR4-dependent manner. Infect Immun 2024; 92:e0009824. [PMID: 39269166 PMCID: PMC11475681 DOI: 10.1128/iai.00098-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Type I Interferons (IFNs) generally have a protective role during viral infections, but their function during bacterial infections is dependent on the bacterial species. Legionella pneumophila, Shigella sonnei and Mycobacterium tuberculosis can inhibit type I IFN signaling. Here we examined the role of type I IFN, specifically IFNβ, in the context of Salmonella enterica serovar Typhimurium (STm) macrophage infections and the capacity of STm to inhibit type I IFN signaling. We demonstrate that IFNβ has no effect on the intracellular growth of STm in infected bone marrow derived macrophages (BMDMs) derived from C57BL/6 mice. STm infection inhibits IFNβ signaling but not IFNγ signaling in a murine macrophage cell line. We show that this inhibition is independent of the type III and type VI secretion systems expressed by STm and is also independent of bacterial phagocytosis. The inhibition is Toll-like receptor 4 (TLR4)-dependent as the TLR4 ligand, lipopolysaccharide (LPS), alone is sufficient to inhibit IFNβ-mediated signaling. Cells downregulated their surface levels of IFNα/β receptor 1 (IFNAR1) in response to LPS, which may be mediating our observed inhibition. Lastly, we examined this inhibition in the context of TLR4-deficient BMDMs as well as TLR4 RNA interference and we observed a loss of inhibition with LPS stimulation as well as STm infection. In summary, we show that macrophages exposed to STm have reduced IFNβ signaling via crosstalk with TLR4 signaling, which may be mediated by reduced host cell surface IFNAR1, and that IFNβ signaling does not affect cell-autonomous host defense against STm.
Collapse
Affiliation(s)
- Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Zhihui Lyu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Jacques Augenstreich
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Shrestha Mathur
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Akshaya Ganesh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
Ashby KM, Vobořil M, Salgado OC, Lee ST, Martinez RJ, O’Connor CH, Breed ER, Xuan S, Roll CR, Bachigari S, Heiland H, Stetson DB, Kotenko SV, Hogquist KA. Sterile production of interferons in the thymus affects T cell repertoire selection. Sci Immunol 2024; 9:eadp1139. [PMID: 39058762 PMCID: PMC12052003 DOI: 10.1126/sciimmunol.adp1139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
Type I and III interferons (IFNs) are robustly induced during infections and protect cells against viral infection. Both type I and III IFNs are also produced at low levels in the thymus at steady state; however, their role in T cell development and immune tolerance is unclear. Here, we found that both type I and III IFNs were constitutively produced by a very small number of AIRE+ murine thymic epithelial cells, independent of microbial stimulation. Antigen-presenting cells were highly responsive to thymic IFNs, and IFNs were required for the activation and maturation of thymic type 1 conventional dendritic cells, macrophages, and B cells. Loss of IFN sensing led to reduced regulatory T cell selection, reduced T cell receptor (TCR) repertoire diversity, and enhanced autoreactive T cell responses to self-antigens expressed during peripheral IFN signaling. Thus, constitutive exposure to IFNs in the thymus is required for generating a tolerant and diverse TCR repertoire.
Collapse
Affiliation(s)
- K. Maude Ashby
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Matouš Vobořil
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Oscar C. Salgado
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - S. Thera Lee
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ryan J. Martinez
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Christine H. O’Connor
- Research Informatics Solutions, Laboratory Medicine and Pathology Group, Minnesota Supercomputing Institute, Minneapolis, MN 55455, USA
| | - Elise R. Breed
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Shuya Xuan
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Charles R. Roll
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Saumith Bachigari
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Hattie Heiland
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Daniel B. Stetson
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
- Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Sergei V. Kotenko
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Kristin A. Hogquist
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Shuster M, Lyu Z, Augenstreich J, Mathur S, Ganesh A, Ling J, Briken V. Salmonella Typhimurium infection inhibits macrophage IFNβ signaling in a TLR4-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583530. [PMID: 38496427 PMCID: PMC10942315 DOI: 10.1101/2024.03.05.583530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Type I Interferons (IFNs) generally have a protective role during viral infections, but their function during bacterial infections is dependent on the bacterial species. Legionella pneumophila, Shigella sonnei and Mycobacterium tuberculosis can inhibit type I IFN signaling. Here we examined the role of type I IFN, specifically IFNβ, in the context of Salmonella enterica serovar Typhimurium (STm) macrophage infections and the capacity of STm to inhibit type I IFN signaling. We demonstrate that IFNβ has no effect on the intracellular growth of STm in infected bone marrow derived macrophages (BMDMs) derived from C57BL/6 mice. STm infection inhibits IFNβ signaling but not IFNγ signaling in a murine macrophage cell line. We show that this inhibition is independent of the type III and type VI secretion systems expressed by STm and is also independent of bacterial phagocytosis. The inhibition is Toll-like receptor 4 (TLR4)-dependent as the TLR4 ligand, lipopolysaccharide (LPS), alone is sufficient to inhibit IFNβ-mediated signaling and STm-infected, TLR4-deficient BMDMs do not exhibit inhibited IFNβ signaling. In summary, we show that macrophages exposed to STm have reduced IFNβ signaling via crosstalk with TLR4 signaling, and that IFNβ signaling does not affect cell autonomous host defense against STm.
Collapse
Affiliation(s)
- Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Zhihui Lyu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Jacques Augenstreich
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Shrestha Mathur
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Akshaya Ganesh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
4
|
Jiao H, James SJ, Png CW, Cui C, Li H, Li L, Chia WN, Min N, Li W, Claser C, Rénia L, Wang H, Chen MIC, Chu JJH, Tan KSW, Deng Y, Zhang Y. DUSP4 modulates RIG-I- and STING-mediated IRF3-type I IFN response. Cell Death Differ 2024; 31:280-291. [PMID: 38383887 PMCID: PMC10923883 DOI: 10.1038/s41418-024-01269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Detection of cytosolic nucleic acids by pattern recognition receptors, including STING and RIG-I, leads to the activation of multiple signalling pathways that culminate in the production of type I interferons (IFNs) which are vital for host survival during virus infection. In addition to protective immune modulatory functions, type I IFNs are also associated with autoimmune diseases. Hence, it is important to elucidate the mechanisms that govern their expression. In this study, we identified a critical regulatory function of the DUSP4 phosphatase in innate immune signalling. We found that DUSP4 regulates the activation of TBK1 and ERK1/2 in a signalling complex containing DUSP4, TBK1, ERK1/2 and IRF3 to regulate the production of type I IFNs. Mice deficient in DUSP4 were more resistant to infections by both RNA and DNA viruses but more susceptible to malaria parasites. Therefore, our study establishes DUSP4 as a regulator of nucleic acid sensor signalling and sheds light on an important facet of the type I IFN regulatory system.
Collapse
Affiliation(s)
- Huipeng Jiao
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Sharmy J James
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Chin Wen Png
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Chaoyu Cui
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518100, China
| | - Heng Li
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Liang Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wan Ni Chia
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Nyo Min
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Weiyun Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Carla Claser
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Mark I-Cheng Chen
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117597, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Kevin Shyong Wei Tan
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518100, China.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
5
|
Allen CNS, Banks DA, Shuster M, Vogel SN, O’Connor TJ, Briken V. Legionella pneumophila inhibits type I interferon signaling to avoid cell-intrinsic host cell defense. Infect Immun 2023; 91:e0036523. [PMID: 37843413 PMCID: PMC10652965 DOI: 10.1128/iai.00365-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The host type I interferon (IFN) response protects against Legionella pneumophila infections. Other bacterial pathogens inhibit type I IFN-mediated cell signaling; however, the interaction between this signaling pathway and L. pneumophila has not been well described. Here, we demonstrate that L. pneumophila inhibits the IFN-β signaling pathway but does not inhibit IFN-γ-mediated cell signaling. The addition of IFN-β to L. pneumophila-infected macrophages limited bacterial growth independently of NOS2 and reactive nitrogen species. The type IV secretion system of L. pneumophila is required to inhibit IFN-β-mediated cell signaling. Finally, we show that the inhibition of the IFN-β signaling pathway occurs downstream of STAT1 and STAT2 phosphorylation. In conclusion, our findings describe a novel host cell signaling pathway inhibited by L. pneumophila via its type IV secretion system.
Collapse
Affiliation(s)
- Charles N. S. Allen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Dallas A. Banks
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tamara J. O’Connor
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
6
|
Yaacoub C, Wehbe R, Roufayel R, Fajloun Z, Coutard B. Bee Venom and Its Two Main Components-Melittin and Phospholipase A2-As Promising Antiviral Drug Candidates. Pathogens 2023; 12:1354. [PMID: 38003818 PMCID: PMC10674158 DOI: 10.3390/pathogens12111354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Viruses are known to infect most types of organisms. In humans, they can cause several diseases that range from mild to severe. Although many antiviral therapies have been developed, viral infections continue to be a leading cause of morbidity and mortality worldwide. Therefore, the discovery of new and effective antiviral agents is desperately needed. Animal venoms are a rich source of bioactive molecules found in natural goods that have been used since ancient times in alternative medicine to treat a variety of human diseases. Recently, and with the onset of the COVID-19 pandemic, scientists have regained their interest in the possible use of natural products, such as bee venom (BV), as a potential antiviral agent to treat viral infections. BV is known to exert many therapeutic activities such as anti-proliferative, anti-bacterial, and anti-inflammatory effects. However, there is limited discussion of the antiviral activity of BV in the literature. Therefore, this review aims to highlight the antiviral properties of BV and its two primary constituents, melittin (MEL) and phospholipase A2 (PLA2), against a variety of enveloped and non-enveloped viruses. Finally, the innovative strategies used to reduce the toxicity of BV and its two compounds for the development of new antiviral treatments are also considered.
Collapse
Affiliation(s)
- Carole Yaacoub
- Unité des Virus Emergents, Aix-Marseille University, IRD 190-Inserm 1207, IHU Méditerranée Infection, 13005 Marseille, France;
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon;
| | - Rim Wehbe
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon;
- Faculty of Sciences III, Department of Biology, Michel Slayman Tripoli Campus, Lebanese University, Tripoli 1352, Lebanon
| | - Bruno Coutard
- Unité des Virus Emergents, Aix-Marseille University, IRD 190-Inserm 1207, IHU Méditerranée Infection, 13005 Marseille, France;
| |
Collapse
|
7
|
Li S, Fan G, Li X, Cai Y, Liu R. Modulation of type I interferon signaling by natural products in the treatment of immune-related diseases. Chin J Nat Med 2023; 21:3-18. [PMID: 36641230 DOI: 10.1016/s1875-5364(23)60381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/15/2023]
Abstract
Type I interferon (IFN) is considered as a bridge between innate and adaptive immunity. Proper activation or inhibition of type I IFN signaling is essential for host defense against pathogen invasion, tumor cell proliferation, and overactive immune responses. Due to intricate and diverse chemical structures, natural products and their derivatives have become an invaluable source inspiring innovative drug discovery. In addition, some natural products have been applied in clinical practice for infection, cancer, and autoimmunity over thousands of years and their promising curative effects and safety have been well-accepted. However, whether these natural products are primarily targeting type I IFN signaling and specific molecular targets involved are not fully elucidated. In the current review, we thoroughly summarize recent advances in the pharmacology researches of natural products for their type I IFN activity, including both agonism/activation and antagonism/inhibition, and their potential application as therapies. Furthermore, the source and chemical nature of natural products with type I IFN activity are highlighted and their specific molecular targets in the type I IFN pathway and mode of action are classified. In conclusion, natural products possessing type I IFN activity represent promising therapeutic strategies and have a bright prospect in the treatment of infection, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
8
|
Bühler M, Runft S, Li D, Götting J, Detje CN, Nippold V, Stoff M, Beineke A, Schulz T, Kalinke U, Baumgärtner W, Gerhauser I. IFN-β Deficiency Results in Fatal or Demyelinating Disease in C57BL/6 Mice Infected With Theiler's Murine Encephalomyelitis Viruses. Front Immunol 2022; 13:786940. [PMID: 35222374 PMCID: PMC8864290 DOI: 10.3389/fimmu.2022.786940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Type I Interferons (IFN-I) are important inducers of the antiviral immune response and immune modulators. IFN-β is the most highly expressed IFN-I in the central nervous system (CNS). The infection of SJL mice with the BeAn or the DA strain of Theiler's murine encephalomyelitis virus (TMEV) results in a progressive demyelinating disease. C57BL/6 mice are usually resistant to TMEV-induced demyelination and eliminate these strains from the CNS within several weeks. Using C57BL/6 IFN-β knockout (IFN-β-/-) mice infected with TMEV, we evaluated the role of IFN-β in neuroinfection. Despite the resistance of C57BL/6 wild type (WT) mice to TMEV infection, DA-infected IFN-β-/- mice had to be killed at 7 to 8 days post infection (dpi) due to severe clinical disease. In contrast, BeAn-infected IFN-β-/- mice survived until 98 dpi. Nevertheless at 14 dpi, BeAn-infected IFN-β-/- mice showed a stronger encephalitis and astrogliosis, higher viral load as well as higher mRNA levels of Isg15, Eif2ak2 (PKR), Tnfa, Il1b, Il10, Il12 and Ifng in the cerebrum than BeAn-infected WT mice. Moreover, the majority of IFN-β-/- mice did not clear the virus from the CNS and developed mild demyelination in the spinal cord at 98 dpi, whereas virus and lesions were absent in the spinal cord of WT mice. Persistently infected IFN-β-/- mice also had higher Isg15, Eif2ak1, Tnfa, Il1a, Il1b and Ifng mRNA levels in the spinal cord at 98 dpi than their virus-negative counterparts indicating an activation of IFN-I signaling and ongoing inflammation. Most importantly, BeAn-infected NesCre+/- IFN-βfl/fl mice, which do not express IFN-β in neurons, astrocytes and oligodendrocytes, only developed mild brain lesions similar to WT mice. Consequently, IFN-β produced by neuroectodermal cells does not seem to play a critical role in the resistance of C57BL/6 mice against fatal and demyelinating disease induced by TMEV strains.
Collapse
Affiliation(s)
- Melanie Bühler
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sandra Runft
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Dandan Li
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jasper Götting
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Claudia N Detje
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Vanessa Nippold
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Melanie Stoff
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Andreas Beineke
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Thomas Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | | | - Ingo Gerhauser
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
9
|
Benner SE, Walter DL, Thuma JR, Courreges M, James CBL, Schwartz FL, McCall KD. Toll-Like Receptor 3 Is Critical to the Pancreatic Islet Milieu That Is Required for Coxsackievirus B4-Induced Type 1 Diabetes in Female Nonobese Diabetic Mice. Pancreas 2022; 51:48-55. [PMID: 35195595 PMCID: PMC8865205 DOI: 10.1097/mpa.0000000000001960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/08/2021] [Indexed: 12/10/2022]
Abstract
OBJECTIVE Genetic and environmental influences play a role as triggers of type 1 diabetes mellitus (T1DM). Female nonobese diabetic (NOD) mice are useful for studying T1DM as they spontaneously develop T1DM, which can be accelerated by some viruses. Toll-like receptor 3 (TLR3) is believed to play a critical role in viral-induced T1DM and β-cell destruction, because female Tlr3 knockout (Tlr3-/-) NOD mice are protected from Coxsackievirus B4 (CVB4)-induced acceleration of T1DM. However, the exact role(s) TLR3 plays in the pathogenesis of CVB4-induced T1DM remain unknown. METHODS This longitudinal study used immunostaining, laser capture microdissection, and reverse transcription real-time polymerase chain reaction of islets from female uninfected and CVB4-infected Tlr3+/+ and Tlr3-/- NOD mice. RESULTS Islets isolated from female Tlr3+/+ NOD mice 4 to 8 weeks of age had higher amounts of insulitis, Cxcl10, Il1b, Tnfa, and Tgfb1 expression compared with Tlr3-/- NOD mice. After CVB4 infection, Tlr3+/+ NOD mice had higher amounts of insulitis and T-cell infiltration at 3 days after infection compared with Tlr3-/- CVB4-infected NOD mice. CONCLUSIONS Toll-like receptor 3 is necessary for establishment of a pancreatic islet inflammatory microenvironment by increasing insulitis and cytokine expression that facilitates CVB4-induced T1DM in female NOD mice.
Collapse
Affiliation(s)
- Sarah E. Benner
- From the Molecular and Cellular Biology Program
- Department of Biological Sciences, Ohio University College of Arts & Sciences
| | - Debra L. Walter
- From the Molecular and Cellular Biology Program
- Department of Biological Sciences, Ohio University College of Arts & Sciences
| | | | | | - Calvin B. L. James
- From the Molecular and Cellular Biology Program
- Biomedical Sciences
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - Frank L. Schwartz
- Departments of Specialty Medicine
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - Kelly D. McCall
- From the Molecular and Cellular Biology Program
- Department of Biological Sciences, Ohio University College of Arts & Sciences
- Departments of Specialty Medicine
- Biomedical Sciences
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| |
Collapse
|
10
|
Ackland J, Watson A, Wilkinson TMA, Staples KJ. Interrupting the Conversation: Implications for Crosstalk Between Viral and Bacterial Infections in the Asthmatic Airway. FRONTIERS IN ALLERGY 2021; 2:738987. [PMID: 35386999 PMCID: PMC8974750 DOI: 10.3389/falgy.2021.738987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Asthma is a heterogeneous, chronic respiratory disease affecting 300 million people and is thought to be driven by different inflammatory endotypes influenced by a myriad of genetic and environmental factors. The complexity of asthma has rendered it challenging to develop preventative and disease modifying therapies and it remains an unmet clinical need. Whilst many factors have been implicated in asthma pathogenesis and exacerbations, evidence indicates a prominent role for respiratory viruses. However, advances in culture-independent detection methods and extensive microbial profiling of the lung, have also demonstrated a role for respiratory bacteria in asthma. In particular, airway colonization by the Proteobacteria species Nontypeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) is associated with increased risk of developing recurrent wheeze and asthma in early life, poor clinical outcomes in established adult asthma and the development of more severe inflammatory phenotypes. Furthermore, emerging evidence indicates that bacterial-viral interactions may influence exacerbation risk and disease severity, highlighting the need to consider the impact chronic airway colonization by respiratory bacteria has on influencing host responses to viral infection. In this review, we first outline the currently understood role of viral and bacterial infections in precipitating asthma exacerbations and discuss the underappreciated potential impact of bacteria-virus crosstalk in modulating host responses. We discuss the mechanisms by which early life infection may predispose to asthma development. Finally, we consider how infection and persistent airway colonization may drive different asthma phenotypes, with a view to identifying pathophysiological mechanisms that may prove tractable to new treatment modalities.
Collapse
Affiliation(s)
- Jodie Ackland
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
- *Correspondence: Karl J. Staples
| |
Collapse
|
11
|
Salman AA, Waheed MH, Ali-Abdulsahib AA, Atwan ZW. Low type I interferon response in COVID-19 patients: Interferon response may be a potential treatment for COVID-19. Biomed Rep 2021; 14:43. [PMID: 33786172 PMCID: PMC7995242 DOI: 10.3892/br.2021.1419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFN) are antiviral cytokines that mitigate the effects of invading viruses early on during the infection process. SARS-CoV and MERS induce weak IFN responses; hence, the clinical trials which included recombinant IFN accompanied with other antiviral drugs exhibited improved results in terms of shortening the duration of illness. The aim of the present study was to evaluate the type I IFN response in COVID-19 patients to determine whether it is sufficient to eliminate or reduce the severity of the infection, and whether it can be recommended as a potential therapy. Total RNA samples were converted to cDNA and used as templates to evaluate the gene expression levels of IFN regulatory factor (IRF)3 and IFN-β in COVID-19 patients or control. The results showed that IRF3 gene expression was upregulated ~250-fold compared with the negative samples. In contrast, IFN-β expression increased slightly in COVID-19 patients. Consistent with other coronaviruses, such as SARS-CoV and MERS, COVID-19 infection does not induce an efficient IFN response to reduce the severity of the virus. This may be attributed to an incomplete response of IRF3 in activating the IFN-β promoter in the infected patients. The results suggest IFN-β or α may be used as potential treatments.
Collapse
Affiliation(s)
| | | | | | - Zeenah Weheed Atwan
- Genetic Engineering Laboratory, Biology Department, College of Science, Basrah University, Basrah, Iraq
| |
Collapse
|
12
|
microRNA-induced translational control of antiviral immunity by the cap-binding protein 4EHP. Mol Cell 2021; 81:1187-1199.e5. [PMID: 33581076 DOI: 10.1016/j.molcel.2021.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
Type I interferons (IFNs) are critical cytokines in the host defense against invading pathogens. Sustained production of IFNs, however, is detrimental to the host, as it provokes autoimmune diseases. Thus, the expression of IFNs is tightly controlled. We report that the mRNA 5' cap-binding protein 4EHP plays a key role in regulating type I IFN concomitant with controlling virus replication, both in vitro and in vivo. Mechanistically, 4EHP suppresses IFN-β production by effecting the miR-34a-induced translational silencing of Ifnb1 mRNA. miR-34a is upregulated by both RNA virus infection and IFN-β induction, prompting a negative feedback regulatory mechanism that represses IFN-β expression via 4EHP. These findings demonstrate the direct involvement of 4EHP in virus-induced host response, underscoring a critical translational silencing mechanism mediated by 4EHP and miR-34a to impede sustained IFN production. This study highlights an intrinsic regulatory function for miRNA and the translation machinery in maintaining host homeostasis.
Collapse
|
13
|
Fox LE, Locke MC, Lenschow DJ. Context Is Key: Delineating the Unique Functions of IFNα and IFNβ in Disease. Front Immunol 2020; 11:606874. [PMID: 33408718 PMCID: PMC7779635 DOI: 10.3389/fimmu.2020.606874] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Type I interferons (IFNs) are critical effector cytokines of the immune system and were originally known for their important role in protecting against viral infections; however, they have more recently been shown to play protective or detrimental roles in many disease states. Type I IFNs consist of IFNα, IFNβ, IFNϵ, IFNκ, IFNω, and a few others, and they all signal through a shared receptor to exert a wide range of biological activities, including antiviral, antiproliferative, proapoptotic, and immunomodulatory effects. Though the individual type I IFN subtypes possess overlapping functions, there is growing appreciation that they also have unique properties. In this review, we summarize some of the mechanisms underlying differential expression of and signaling by type I IFNs, and we discuss examples of differential functions of IFNα and IFNβ in models of infectious disease, cancer, and autoimmunity.
Collapse
Affiliation(s)
- Lindsey E. Fox
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Marissa C. Locke
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Deborah J. Lenschow
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
14
|
Host genetic susceptibility to viral infections: the role of type I interferon induction. Genes Immun 2020; 21:365-379. [PMID: 33219336 PMCID: PMC7677911 DOI: 10.1038/s41435-020-00116-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
The innate immune response is the major front line of defense against viral infections. It involves hundreds of genes with antiviral properties which expression is induced by type I interferons (IFNs) and are therefore called interferon stimulated genes (ISGs). Type I IFNs are produced after viral recognition by pathogen recognition receptors, which trigger a cascade of activation events. Human and mouse studies have shown that defective type I IFNs induction may hamper the ability to control viral infections. In humans, moderate to high-effect variants have been identified in individuals with particularly severe complications following viral infection. In mice, functional studies using knock-out alleles have revealed the specific role of most genes of the IFN pathway. Here, we review the role of the molecular partners of the type I IFNs induction pathway and their implication in the control of viral infections and of their complications.
Collapse
|
15
|
Liou TG, Adler FR, Cahill BC, Cox DR, Cox JE, Grant GJ, Hanson KE, Hartsell SC, Hatton ND, Helms MN, Jensen JL, Kartsonaki C, Li Y, Leung DT, Marvin JE, Middleton EA, Osburn-Staker SM, Packer KA, Shakir SM, Sturrock AB, Tardif KD, Warren KJ, Waddoups LJ, Weaver LJ, Zimmerman E, Paine R. SARS-CoV-2 Innate Effector Associations and Viral Load in Early Nasopharyngeal Infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.30.20223545. [PMID: 33173878 PMCID: PMC7654861 DOI: 10.1101/2020.10.30.20223545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
To examine innate immune responses in early SARS-CoV-2 infection that may change clinical outcomes, we compared nasopharyngeal swab data from 20 virus-positive and 20 virus-negative individuals. Multiple innate immune-related and ACE-2 transcripts increased with infection and were strongly associated with increasing viral load. We found widespread discrepancies between transcription and translation. Interferon proteins were unchanged or decreased in infected samples suggesting virally-induced shut-off of host anti-viral protein responses. However, IP-10 and several interferon-stimulated gene proteins increased with viral load. Older age was associated with modifications of some effects. Our findings may characterize the disrupted immune landscape of early disease.
Collapse
|
16
|
Saikh KU, Morazzani EM, Piper AE, Bakken RR, Glass PJ. A small molecule inhibitor of MyD88 exhibits broad spectrum antiviral activity by up regulation of type I interferon. Antiviral Res 2020; 181:104854. [PMID: 32621945 DOI: 10.1016/j.antiviral.2020.104854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 01/04/2023]
Abstract
Recent studies highlight that infection with Coxsackievirus B3, Venezuelan equine encephalitis virus (VEEV), Marburg virus, or stimulation using poly I:C (dsRNA), upregulates the signaling adaptor protein MyD88 and impairs the host antiviral type I interferon (IFN) responses. In contrast, MyD88 deficiency (MyD88-/-) increases the type I IFN and survivability of mice implying that MyD88 up regulation limits the type I IFN response. Reasoning that MyD88 inhibition in a virus-like manner may increase type I IFN responses, our studies revealed lipopolysaccharide stimulation of U937 cells or poly I:C stimulation of HEK293-TLR3, THP1 or U87 cells in the presence of a previously reported MyD88 inhibitor (compound 4210) augmented IFN-β and RANTES production. Consistent with these results, overexpression of MyD88 decreased IFN-β, whereas MyD88 inhibition rescued IFN-β production concomitant with increased IRF3 phosphorylation, suggesting IRF-mediated downstream signaling to the IFN-β response. Further, compound 4210 treatment inhibited MyD88 interaction with IRF3/IRF7 indicating that MyD88 restricts type I IFN signaling through sequestration of IRF3/IRF7. In cell based infection assays, compound 4210 treatment suppressed replication of VEEV, Eastern equine encephalitis virus, Ebola virus (EBOV), Rift Valley Fever virus, Lassa virus, and Dengue virus with IC50 values ranging from 11 to 42 μM. Notably, administration of compound 4210 improved survival, weight change, and clinical disease scores in mice following challenge with VEEV TC-83 and EBOV. Collectively, these results provide evidence that viral infections responsive to MyD88 inhibition lead to activation of IRF3/IRF7 and promoted a type I IFN response, thus, raising the prospect of an approach of host-directed antiviral therapy.
Collapse
Affiliation(s)
- Kamal U Saikh
- Department of Bacterial Immunology, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA.
| | - Elaine M Morazzani
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA
| | - Ashley E Piper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA
| | - Russell R Bakken
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA
| | - Pamela J Glass
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA
| |
Collapse
|
17
|
Wu W, Metcalf JP. The Role of Type I IFNs in Influenza: Antiviral Superheroes or Immunopathogenic Villains? J Innate Immun 2020; 12:437-447. [PMID: 32564033 PMCID: PMC7747089 DOI: 10.1159/000508379] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/03/2020] [Indexed: 12/29/2022] Open
Abstract
The important role of interferons (IFNs) in antiviral innate immune defense is well established. Although recombinant IFN-α was approved for cancer and chronic viral infection treatment by regulatory agencies in many countries starting in 1986, no IFNs are approved for treatment of influenza A virus (IAV) infection. This is partially due to the complex effects of IFNs in acute influenza infection. IAV attacks the human respiratory system and causes significant morbidity and mortality globally. During influenza infection, depending on the strain of IAV and the individual host, type I IFNs can have protective antiviral effects or can contribute to immunopathology. In the context of virus infection, the immune system has complicated mechanisms regulating the expression and effects of type I IFN to maximize the antiviral response by both activating and enhancing beneficial innate cell function, while limiting immunopathological responses that lead to exaggerated tissue damage. In this review, we summarize the complicated, but important, role of type I IFNs in influenza infections. This includes both protective and harmful effects of these important cytokines during infection.
Collapse
Affiliation(s)
- Wenxin Wu
- Department of Medicine, Pulmonary, Critical Care and Sleep Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA,
| | - Jordan P Metcalf
- Department of Medicine, Pulmonary, Critical Care and Sleep Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Pulmonary Section, Medicine Service, Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
18
|
Distinct Roles of Interferon Alpha and Beta in Controlling Chikungunya Virus Replication and Modulating Neutrophil-Mediated Inflammation. J Virol 2019; 94:JVI.00841-19. [PMID: 31619554 DOI: 10.1128/jvi.00841-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/04/2019] [Indexed: 12/19/2022] Open
Abstract
Type I interferons (IFNs) are key mediators of the innate immune response. Although members of this family of cytokines signal through a single shared receptor, biochemical and functional variation exists in response to different IFN subtypes. While previous work has demonstrated that type I IFNs are essential to control infection by chikungunya virus (CHIKV), a globally emerging alphavirus, the contributions of individual IFN subtypes remain undefined. To address this question, we evaluated CHIKV pathogenesis in mice lacking IFN-β (IFN-β knockout [IFN-β-KO] mice or mice treated with an IFN-β-blocking antibody) or IFN-α (IFN regulatory factor 7 knockout [IRF7-KO] mice or mice treated with a pan-IFN-α-blocking antibody). Mice lacking either IFN-α or IFN-β developed severe clinical disease following infection with CHIKV, with a marked increase in foot swelling compared to wild-type mice. Virological analysis revealed that mice lacking IFN-α sustained elevated infection in the infected ankle and in distant tissues. In contrast, IFN-β-KO mice displayed minimal differences in viral burdens within the ankle or at distal sites and instead had an altered cellular immune response. Mice lacking IFN-β had increased neutrophil infiltration into musculoskeletal tissues, and depletion of neutrophils in IFN-β-KO but not IRF7-KO mice mitigated musculoskeletal disease caused by CHIKV. Our findings suggest disparate roles for the IFN subtypes during CHIKV infection, with IFN-α limiting early viral replication and dissemination and IFN-β modulating neutrophil-mediated inflammation.IMPORTANCE Type I interferons (IFNs) possess a range of biological activity and protect against a number of viruses, including alphaviruses. Despite signaling through a shared receptor, there are established biochemical and functional differences among the IFN subtypes. The significance of our research is in demonstrating that IFN-α and IFN-β both have protective roles during acute chikungunya virus (CHIKV) infection but do so by distinct mechanisms. IFN-α limits CHIKV replication and dissemination, whereas IFN-β protects from CHIKV pathogenesis by limiting inflammation mediated by neutrophils. Our findings support the premise that the IFN subtypes have distinct biological activities in the antiviral response.
Collapse
|
19
|
Liang X, Huang Y, Pan X, Hao Y, Chen X, Jiang H, Li J, Zhou B, Yang Z. Erucic acid from Isatis indigotica Fort. suppresses influenza A virus replication and inflammation in vitro and in vivo through modulation of NF-κB and p38 MAPK pathway. J Pharm Anal 2019; 10:130-146. [PMID: 32373385 PMCID: PMC7192973 DOI: 10.1016/j.jpha.2019.09.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 01/09/2023] Open
Abstract
Isatis indigotica Fort. (Ban-Lan-Gen) is an herbal medicine prescribed for influenza treatment. However, its active components and mode of action remain mostly unknown. In the present study, erucic acid was isolated from Isatis indigotica Fort., and subsequently its underlying mechanism against influenza A virus (IAV) infection was investigated in vitro and in vivo. Our results demonstrated that erucic acid exhibited broad-spectrum antiviral activity against IAV resulting from reduction of viral polymerase transcription activity. Erucic acid was found to exert inhibitory effects on IAV or viral (v) RNA-induced pro-inflammatory mediators as well as interferons (IFNs). The molecular mechanism by which erucic acid with antiviral and anti-inflammatory properties was attributed to inactivation of NF-κB and p38 MAPK signaling. Furthermore, the NF-κB and p38 MAPK inhibitory effect of erucic acid led to diminishing the transcriptional activity of interferon-stimulated gene factor 3 (ISGF-3), and thereby reducing IAV-triggered pro-inflammatory response amplification in IFN-β-sensitized cells. Additionally, IAV- or vRNA-triggered apoptosis of alveolar epithelial A549 cells was prevented by erucic acid. In vivo, erucic acid administration consistently displayed decreased lung viral load and viral antigens expression. Meanwhile, erucic acid markedly reduced CD8+ cytotoxic T lymphocyte (CTL) recruitment, pro-apoptotic signaling, hyperactivity of multiple signaling pathways, and exacerbated immune inflammation in the lung, which resulted in decreased lung injury and mortality in mice with a mouse-adapted A/FM/1/47-MA(H1N1) strain infection. Our findings provided a mechanistic basis for the action of erucic acid against IAV-mediated inflammation and injury, suggesting that erucic acid may have a therapeutic potential in the treatment of influenza. Erucic acid from Isatis indigotica Fort. exhibited broad-spectrum anti-influenza virus activity. Erucic acid reduced IAV polymerase transcription activity. Erucic acid suppressed IAV-triggered inflammation as well as pro-inflammatory amplification effects in IFN-sensitized cells. Erucic acid protected mice from lethal IAV infection.
Collapse
Affiliation(s)
- Xiaoli Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yuan Huang
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou, 510515, China
| | - Xiping Pan
- Institute of Combination Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yanbing Hao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaowei Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
| | - Haiming Jiang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
| | - Jing Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
| | - Beixian Zhou
- Department of Pharmacy, The People's Hospital of Gaozhou, Gaozhou, 525200, Guangdong, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, PR China
| |
Collapse
|
20
|
Kanmani P, Kim H. Immunobiotic Strains Modulate Toll-Like Receptor 3 Agonist Induced Innate Antiviral Immune Response in Human Intestinal Epithelial Cells by Modulating IFN Regulatory Factor 3 and NF-κB Signaling. Front Immunol 2019; 10:1536. [PMID: 31333667 PMCID: PMC6618302 DOI: 10.3389/fimmu.2019.01536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/19/2019] [Indexed: 12/31/2022] Open
Abstract
Many studies have demonstrated that immunobiotics with immunoregulatory functions improve the outcomes of several bacterial and viral infections by modulating the mucosal immune system. However, the precise mechanisms underlying the immunoregulatory and antiviral activities of immunobiotics have not yet been elucidated in detail. The present study was conducted to determine whether selected lactic acid bacteria (LAB) modulate toll-like receptor 3 (TLR3) agonist polyinosinic:polycytidylic acid (PolyI:C) induced viral response in human intestinal epithelial cells (IECs). PolyI:C increased the expression of interferon-β (IFN-β), interleukin-6 (IL-6), interleukin-8 (IL-8), monocyte chemoattractant protein (MCP-1), and interleukin-1β (IL-1β) in HCT116 cells, and these up-regulations were significantly altered when cells were pre-stimulated with LAB isolated from Korean fermented foods. LAB strains were capable to up-regulate IFN-β but down-regulated IL-6, IL-8, MCP-1, and IL-1β mRNA levels as compared with PolyI: C. HCT-116 cell treatment with LABs beneficially modulated the mRNA levels of C-X-C motif chemokine 10 (CXCL-10), 2-5A oligoadenylate synthetase 1 (OSA1), myxovirus resistance protein (MxA), TLR3, and retinoic acid inducible gene-I (RIG-I), and TLR negative regulators. In addition, LABs increased IFN-β, IFN-α, and interleukin-10 (IL-10) and decreased tumor necrosis factor-α (TNF-α) and IL-1β protein/mRNA levels in THP-1 cells. LABs also protected the cells by maintaining tight-junction proteins (zonula occludens-1 and occludin). The beneficial effects of these LABs were mediated via modulation of the interferon regulatory factor 3 (IRF3) and nuclear factor-kappa B (NF-κB) pathways. Overall, the results of this study indicate that immunobiotics have potent antiviral and anti-inflammatory activities that may use as antiviral substitutes for human and animal applications.
Collapse
Affiliation(s)
- Paulraj Kanmani
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University Ilsan Hospital, Gyeongj-si, South Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University Ilsan Hospital, Gyeongj-si, South Korea
| |
Collapse
|
21
|
Mesev EV, LeDesma RA, Ploss A. Decoding type I and III interferon signalling during viral infection. Nat Microbiol 2019; 4:914-924. [PMID: 30936491 PMCID: PMC6554024 DOI: 10.1038/s41564-019-0421-x] [Citation(s) in RCA: 365] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/22/2019] [Indexed: 02/08/2023]
Abstract
Interferon (IFN)-mediated antiviral responses are central to host defence against viral infection. Despite the existence of at least 20 IFNs, there are only three known cell surface receptors. IFN signalling and viral evasion mechanisms form an immensely complex network that differs across species. In this Review, we begin by highlighting some of the advances that have been made towards understanding the complexity of differential IFN signalling inputs and outputs that contribute to antiviral defences. Next, we explore some of the ways viruses can interfere with, or circumvent, these defences. Lastly, we address the largely under-reviewed impact of IFN signalling on host tropism, and we offer perspectives on the future of research into IFN signalling complexity and viral evasion across species.
Collapse
Affiliation(s)
- Emily V Mesev
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Robert A LeDesma
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Alexander Ploss
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
22
|
Ali S, Mann-Nüttel R, Schulze A, Richter L, Alferink J, Scheu S. Sources of Type I Interferons in Infectious Immunity: Plasmacytoid Dendritic Cells Not Always in the Driver's Seat. Front Immunol 2019; 10:778. [PMID: 31031767 PMCID: PMC6473462 DOI: 10.3389/fimmu.2019.00778] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Type I Interferons (IFNs) are hallmark cytokines produced in immune responses to all classes of pathogens. Type I IFNs can influence dendritic cell (DC) activation, maturation, migration, and survival, but also directly enhance natural killer (NK) and T/B cell activity, thus orchestrating various innate and adaptive immune effector functions. Therefore, type I IFNs have long been considered essential in the host defense against virus infections. More recently, it has become clear that depending on the type of virus and the course of infection, production of type I IFN can also lead to immunopathology or immunosuppression. Similarly, in bacterial infections type I IFN production is often associated with detrimental effects for the host. Although most cells in the body are thought to be able to produce type I IFN, plasmacytoid DCs (pDCs) have been termed the natural "IFN producing cells" due to their unique molecular adaptations to nucleic acid sensing and ability to produce high amounts of type I IFN. Findings from mouse reporter strains and depletion experiments in in vivo infection models have brought new insights and established that the role of pDCs in type I IFN production in vivo is less important than assumed. Production of type I IFN, especially the early synthesized IFNβ, is rather realized by a variety of cell types and cannot be mainly attributed to pDCs. Indeed, the cell populations responsible for type I IFN production vary with the type of pathogen, its tissue tropism, and the route of infection. In this review, we summarize recent findings from in vivo models on the cellular source of type I IFN in different infectious settings, ranging from virus, bacteria, and fungi to eukaryotic parasites. The implications from these findings for the development of new vaccination and therapeutic designs targeting the respectively defined cell types are discussed.
Collapse
Affiliation(s)
- Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Ritu Mann-Nüttel
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Anja Schulze
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Lisa Richter
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Judith Alferink
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
23
|
Banks DA, Ahlbrand SE, Hughitt VK, Shah S, Mayer-Barber KD, Vogel SN, El-Sayed NM, Briken V. Mycobacterium tuberculosis Inhibits Autocrine Type I IFN Signaling to Increase Intracellular Survival. THE JOURNAL OF IMMUNOLOGY 2019; 202:2348-2359. [PMID: 30833347 DOI: 10.4049/jimmunol.1801303] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/15/2019] [Indexed: 12/17/2022]
Abstract
The type I IFNs (IFN-α and -β) are important for host defense against viral infections. In contrast, their role in defense against nonviral pathogens is more ambiguous. In this article, we report that IFN-β signaling in murine bone marrow-derived macrophages has a cell-intrinsic protective capacity against Mycobacterium tuberculosis via the increased production of NO. The antimycobacterial effects of type I IFNs were mediated by direct signaling through the IFN-α/β-receptor (IFNAR), as Ab-mediated blocking of IFNAR1 prevented the production of NO. Furthermore, M. tuberculosis is able to inhibit IFNAR-mediated cell signaling and the subsequent transcription of 309 IFN-β-stimulated genes in a dose-dependent way. The molecular mechanism of inhibition by M. tuberculosis involves reduced phosphorylation of the IFNAR-associated protein kinases JAK1 and TYK2, leading to reduced phosphorylation of the downstream targets STAT1 and STAT2. Transwell experiments demonstrated that the M. tuberculosis-mediated inhibition of type I IFN signaling was restricted to infected cells. Overall, our study supports the novel concept that M. tuberculosis evolved to inhibit autocrine type I IFN signaling to evade host defense mechanisms.
Collapse
Affiliation(s)
- Dallas A Banks
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Sarah E Ahlbrand
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - V Keith Hughitt
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
| | - Swati Shah
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814; and
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Najib M El-Sayed
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742;
| |
Collapse
|
24
|
Ding Y, Guan Y, Huang X, Ao J, Chen X. Characterization and function of a group II type I interferon in the perciform fish, large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2019; 86:152-159. [PMID: 30448445 DOI: 10.1016/j.fsi.2018.11.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Teleost fish possess two groups of type I interferons (IFNs) with two (group I IFNs) or four (group II IFNs) conserved cysteines, which are further classified into seven subgroups. In our previous study, two group I type I IFNs, LcIFNd and LcIFNh (a new subgroup member), were identified in the perciform fish, large yellow croaker (Larimichthys crocea). Here, we identified a group II type I IFN, LcIFNc, in this species. The deduced LcIFNc contained six cysteines, four of which are highly conserved (C1: C28, C2:C53, C3: C130, and C4:C159) in the fish group II type I IFNs, and a typical type I IFN signature motif was also found in it. Phylogenetic analysis indicated that LcIFNc belongs to the IFNc subgroup of fish group II type I IFNs. LcIFNc was constitutively expressed in all examined tissues, and was rapidly up-regulated in spleen and head kidney by poly(I:C) and Aeromonas hydrophila. Recombinant LcIFNc protein (rLcIFNc) could increase the expression of antiviral genes, Mx1, PKR and ISG15, in large yellow croaker peripheral blood leukocytes (PBLs). The rLcIFNc also exhibited obvious antiviral activity based on less cytopathic effect (CPE) and decreased expression levels of several viral genes in the rLcIFNc-treated grouper spleen (GS) cells following Singapore grouper iridovirus (SGIV) infection. Additionally, rLcIFNc was able to induce the expression of LcIFNc, as well as LcIFNd and LcIFNh in the PBLs and primary head kidney cells (HKCs) from large yellow croaker. These results therefore indicated that LcIFNc not only had antiviral activity, but also mediated the regulation of type I IFN response.
Collapse
Affiliation(s)
- Yang Ding
- Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, PR China
| | - Yanyun Guan
- Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, PR China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, PR China
| | - Xinhua Chen
- Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
25
|
Shepardson K, Larson K, Cho H, Johns LL, Malkoc Z, Stanek K, Wellhman J, Zaiser S, Daggs-Olson J, Moodie T, Klonoski JM, Huber VC, Rynda-Apple A. A Novel Role for PDZ-Binding Motif of Influenza A Virus Nonstructural Protein 1 in Regulation of Host Susceptibility to Postinfluenza Bacterial Superinfections. Viral Immunol 2019; 32:131-143. [PMID: 30822217 DOI: 10.1089/vim.2018.0118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Influenza A viruses (IAVs) have multiple mechanisms for altering the host immune response to aid in virus survival and propagation. While both type I and II interferons (IFNs) have been associated with increased bacterial superinfection (BSI) susceptibility, we found that in some cases type I IFNs can be beneficial for BSI outcome. Specifically, we have shown that antagonism of the type I IFN response during infection by some IAVs can lead to the development of deadly BSI. The nonstructural protein 1 (NS1) from IAV is well known for manipulating host type I IFN responses, but the viral proteins mediating BSI severity remain unknown. In this study, we demonstrate that the PDZ-binding motif (PDZ-bm) of the NS1 C-terminal region from mouse-adapted A/Puerto Rico/8/34-H1N1 (PR8) IAV dictates BSI susceptibility through regulation of IFN-α/β production. Deletion of the NS1 PDZ-bm from PR8 IAV (PR8-TRUNC) resulted in 100% survival and decreased bacterial burden in superinfected mice compared with 0% survival in mice superinfected after PR8 infection. This reduction in BSI susceptibility after infection with PR8-TRUNC was due to the presence of IFN-β, as protection from BSI was lost in Ifn-β-/- mice, resembling BSI during PR8 infection. PDZ-bm in PR8-infected mice inhibited the production of IFN-β posttranscriptionally, and both delayed and reduced expression of the tunable interferon-stimulated genes. Finally, a similar lack of BSI susceptibility, due to the presence of IFN-β on day 7 post-IAV infection, was also observed after infection of mice with A/TX98-H3N2 virus that naturally lacks a PDZ-bm in NS1, indicating that this mechanism of BSI regulation by NS1 PDZ-bm may not be restricted to PR8 IAV. These results demonstrate that the NS1 C-terminal PDZ-bm, like the one present in PR8 IAV, is involved in controlling susceptibility to BSI through the regulation of IFN-β, providing new mechanisms for NS1-mediated manipulation of host immunity and BSI severity.
Collapse
Affiliation(s)
- Kelly Shepardson
- 1 Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Kyle Larson
- 1 Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Hanbyul Cho
- 1 Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Laura Logan Johns
- 1 Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Zeynep Malkoc
- 1 Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Kayla Stanek
- 1 Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Julia Wellhman
- 1 Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Sarah Zaiser
- 2 Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Jaelyn Daggs-Olson
- 2 Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Travis Moodie
- 2 Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Joshua M Klonoski
- 2 Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Victor C Huber
- 2 Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Agnieszka Rynda-Apple
- 1 Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| |
Collapse
|
26
|
Miura TA. Respiratory epithelial cells as master communicators during viral infections. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:10-17. [PMID: 31592409 PMCID: PMC6779166 DOI: 10.1007/s40588-019-0111-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Communication by epithelial cells during respiratory viral infections is critical in orchestrating effective anti-viral responses but also can lead to excessive inflammation. This review will evaluate studies that investigate how respiratory epithelial cells influence the behavior of immune cells and how epithelial cell/immune cell interactions contribute to antiviral responses and immunopathology outcomes. RECENT FINDINGS Previous studies have characterized cytokine responses of virus-infected epithelial cells. More recent studies have carefully demonstrated the effects of these cytokines on cellular behaviors within the infected lung. Infected epithelial cells release exosomes that specifically regulate responses of monocytes and neighboring epithelial cells without promoting spread of virus. In contrast, rhinovirus-infected cells induce monocytes to upregulate expression of the viral receptor, promoting spread of the virus to alternate cell types. The precise alteration of PDL expression on infected epithelial cells has been shown to switch between inhibition and activation of antiviral responses. SUMMARY These studies have more precisely defined the interactions between epithelial and immune cells during viral infections. This level of understanding is critical for the development of novel therapeutic strategies that promote effective antiviral responses or epithelial repair, or inhibit damaging inflammatory responses during severe respiratory viral infections.
Collapse
Affiliation(s)
- Tanya A Miura
- Department of Biological Sciences and Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA,
| |
Collapse
|
27
|
Role of Type I Interferons on Filovirus Pathogenesis. Vaccines (Basel) 2019; 7:vaccines7010022. [PMID: 30791589 PMCID: PMC6466283 DOI: 10.3390/vaccines7010022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 01/19/2023] Open
Abstract
Filoviruses, such as Ebola and Marburg virus, encode viral proteins with the ability to counteract the type I interferon (IFN-I) response. These IFN-I antagonist proteins are crucial to ensure virus replication, prevent an antiviral state in infected and bystander cells, and impair the ability of antigen-presenting cells to initiate adaptive immune responses. However, in recent years, a number of studies have underscored the conflicting data between in vitro studies and in vivo data obtained in animal models and clinical studies during outbreaks. This review aims to summarize these data and to discuss the relative contributions of IFN-α and IFN-β to filovirus pathogenesis in animal models and humans. Finally, we evaluate the putative utilization of IFN-I in post-exposure therapy and its implications as a biomarker of vaccine efficacy.
Collapse
|
28
|
Huang B, Wang ZX, Liang Y, Zhai SW, Huang WS, Nie P. Identification of four type I IFNs from Japanese eel with differential expression properties and Mx promoter inducibility. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:62-71. [PMID: 30240715 DOI: 10.1016/j.dci.2018.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Type I IFNs are a family of cytokines with antiviral, anti-proliferative and immune-modulatory functions. In this study, four type I IFNs (termed AjIFN1-4) have been cloned from the Japanese eel, Anguilla japonica. The open reading frames of AjIFN1-4 are 552, 534, 546 and 561 bp in length, encoding 183, 177, 181, and 186 amino acids (aa), respectively. Sequence comparison and phylogenetic analysis results revealed that AjIFN1 and AjIFN2 belong to group one (2C-containing) IFNs, while AjIFN3 and AjIFN4 belong to group two (4C-containing) IFNs. Syntenic comparison showed that chromosome block duplication and rearrangement events might have occurred at IFN loci in different teleost lineages. Expression analysis revealed the rapid induction of AjIFNl and AjIFN2 in response to poly I:C stimulation, while AjIFN3 and AjIFN4 were predominantly expressed at later time points. Two Mx promoter reporter assays were conducted to assess the Mx-inducing capability of AjIFN1-4. It is shown that the overexpression of AjIFN1-4 all promoted the luciferase activity of MxB reporter, but the activity of MxC reporter increased only in cells transfected with AjIFN1. Collectively, it is suggested that teleost IFNs were evolved independently in different lineages of fish and may function differently in teleost antiviral immunity.
Collapse
Affiliation(s)
- B Huang
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Z X Wang
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Y Liang
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - S W Zhai
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - W S Huang
- Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Collaborative Innovation Center for Development and Utilization of Marine Biological Resources, Xiamen, 361005, China.
| | - P Nie
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
29
|
A virus-encoded type I interferon decoy receptor enables evasion of host immunity through cell-surface binding. Nat Commun 2018; 9:5440. [PMID: 30575728 PMCID: PMC6303335 DOI: 10.1038/s41467-018-07772-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
Soluble cytokine decoy receptors are potent immune modulatory reagents with therapeutic applications. Some virus-encoded secreted cytokine receptors interact with glycosaminoglycans expressed at the cell surface, but the biological significance of this activity in vivo is poorly understood. Here, we show the type I interferon binding protein (IFNα/βBP) encoded by vaccinia and ectromelia viruses requires of this cell binding activity to confer full virulence to these viruses and to retain immunomodulatory activity. Expression of a variant form of the IFNα/βBP that inhibits IFN activity, but does not interact with cell surface glycosaminoglycans, results in highly attenuated viruses with a virulence similar to that of the IFNα/βBP deletion mutant viruses. Transcriptomics analysis and infection of IFN receptor-deficient mice confirmed that the control of IFN activity is the main function of the IFNα/βBP in vivo. We propose that retention of secreted cytokine receptors at the cell surface may largely enhance their immunomodulatory activity.
Collapse
|
30
|
Lu Y, Liu X, Huang Y, Liao Y, Xi T, Zhang Y, Shu S, Fang F. The Effects of IL10 and NK Cells on the Susceptibility to Mouse Cytomegalovirus in BALB/c Mice despite the Compensation of IFNγ. Intervirology 2018; 61:111-122. [PMID: 30336455 DOI: 10.1159/000493316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/27/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The aim of this study was to determine which factors lead to the susceptibility to mouse cytomegalovirus (MCMV) in the spleens of BALB/c mice. METHODS BALB/c and C57BL/6 mice were randomly divided into a control group and an infection group and sacrificed on day 0, 1, 3, 7, 14, and 28 postinfection. The cytotoxicity of NK cells was determined by evaluating lactate dehydrogenase contents. Flow cytometry was used to analyze activated NK cells, IFNγ+ NK cells, and total NK cells in the spleen. The pathological changes of spleens in each group were analyzed by HE staining. The expression of IL10, IL18, IFNγ, Thpok, and IFNβ of spleens was determined by quantitative reverse transcriptase PCR. The viral loads of MCMV in spleens and salivary glands were also detected. RESULTS We found that spleen NK cells and IL10 in C57BL/6 mice possessed more powerful immunity to MCMV than BALB/c mice. In BALB/c mice, combined effects of the cytotoxicity of NK cells and IFNγ in spleens still ended up with deficient control of infection. CONCLUSION The functional shortage of NK cells and inappropriate expression of IL10 result in the susceptibility to MCMV in BALB/c mice.
Collapse
|
31
|
Bin L, Li X, Richers B, Streib JE, Hu JW, Taylor P, Leung DYM. Ankyrin repeat domain 1 regulates innate immune responses against herpes simplex virus 1: A potential role in eczema herpeticum. J Allergy Clin Immunol 2018; 141:2085-2093.e1. [PMID: 29371118 DOI: 10.1016/j.jaci.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/16/2017] [Accepted: 01/08/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common inflammatory skin disease. A subset of patients with AD are susceptible to disseminated herpes simplex virus (HSV) infection, a complication termed eczema herpeticum (ADEH+). The immune mechanisms causing ADEH+ remain elusive. Using RNA sequencing, we recently found that ankyrin repeat domain 1 (ANKRD1) was significantly induced in human PBMCs upon HSV-1 stimulation, and its induction in patients with ADEH+ was significantly reduced compared with that seen in AD patients without a history of eczema herpeticum (ADEH-). OBJECTIVE We sought to validate ANKRD1 gene expression in nonatopic (NA) subjects, patients with ADEH-, and patients with ADEH+ and to delineate the biological function of ANKRD1 and the signaling pathway or pathways involved. METHODS Purification of human PBMCs, monocytes, B cells, dendritic cells, T cells, and natural killer cells; RNA extraction and quantitative RT-PCR; small interfering RNA technique; co-immunoprecipitation; and Western blot assays were used. RESULTS ANKRD1 expression was significantly reduced in PBMCs from patients with ADEH+ after HSV-1 stimulation compared with PBMCs from patients with ADEH-. We found that the induction of ANKRD1 by HSV-1 and multiple pattern recognition receptor agonists are mediated by inflammatory cytokines. Silencing ANKRD1 gene expression in antigen-presenting cells led to increased viral load and reduced IFNB1 and IL29 production. Using co-immunoprecipitation methods, we demonstrated that ANKRD1 formed protein complexes with interferon regulatory factor (IRF) 3 and IRF7, which are important transcription factors regulating signaling transduction of pattern recognition receptors. Overexpression of ANKRD1 enhanced the IRF3-mediated signaling pathways. CONCLUSION ANKRD1 is involved in IRF3-mediated antiviral innate immune signaling pathways. Its reduced expression in patients with ADEH+ might contribute to the pathogenesis of ADEH+.
Collapse
Affiliation(s)
- Lianghua Bin
- Department of Pediatrics, National Jewish Health, Denver, Colo; First Affiliated Hospital, Biomedical Translational Research Institute, the International Immunology Center and the Key Laboratory of Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, China
| | - Xiaozhao Li
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | - Joanne E Streib
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | - Patricia Taylor
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colo; University of Colorado School of Medicine, Aurora, Colo.
| |
Collapse
|
32
|
Febvre-James M, Lecureur V, Augagneur Y, Mayati A, Fardel O. Repression of interferon β-regulated cytokines by the JAK1/2 inhibitor ruxolitinib in inflammatory human macrophages. Int Immunopharmacol 2017; 54:354-365. [PMID: 29202299 DOI: 10.1016/j.intimp.2017.11.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023]
Abstract
Ruxolitinib is a Janus kinase (JAK) 1/2 inhibitor, currently used in the treatment of myeloproliferative neoplasms. It exerts potent anti-inflammatory activity, but the involved molecular and cellular mechanisms remain poorly understood. In order to gain insights about this point, ruxolitinib effects towards expression of main inflammatory cytokines were studied in human macrophages, which constitute a key-cell type implicated in inflammation. Analysis of mRNA expression of cytokines (n=84) by PCR array indicated that, among those induced by the pro-inflammatory stimulus lipopolysaccharide (LPS) (n=44), 61.4% (n=27) were repressed by 5μM ruxolitinib. The major inflammatory cytokines, interleukin (IL) 6 and tumor necrosis factor α, were notably down-regulated by ruxolitinib at both the mRNA and protein level. Other repressed cytokines included IL27 and the chemokines CCL2, CXCL9, CXCL10 and CXCL11, but not IL1β. The interferon (IFN) β/JAK/signal transducer and activator of transcription (STAT) pathway, well-activated by LPS in human macrophages as demonstrated by increased secretion of IFNβ, STAT1 phosphorylation, and up-regulation of reference IFNβ-responsive genes, was concomitantly blocked by the JAK inhibitor. Most of cytokines targeted by ruxolitinib were shown to be regulated by IFNβ in a JAK-sensitive manner. In addition, counteracting the IFNβ/JAK/STAT cascade using a blocking monoclonal antibody directed against IFNβ receptor resulted in a similar profile of cytokine repression to that observed in response to the JAK inhibitor. Overall, these data provide evidence for ruxolitinib-mediated repression of inflammatory cytokines in human macrophages through inhibition of the LPS/IFNβ/JAK/STAT signalling pathway, which probably contributes to the anti-inflammatory effects of the JAK inhibitor.
Collapse
Affiliation(s)
- Marie Febvre-James
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Valérie Lecureur
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Yu Augagneur
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Abdullah Mayati
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Olivier Fardel
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Biologie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France.
| |
Collapse
|
33
|
Chhabra P, Ranjan P, Cromeans T, Sambhara S, Vinjé J. Critical role of RIG-I and MDA5 in early and late stages of Tulane virus infection. J Gen Virol 2017; 98:1016-1026. [PMID: 28530548 DOI: 10.1099/jgv.0.000769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human noroviruses are a major cause of acute gastroenteritis worldwide, but the lack of a robust cell culture system or small animal model have hampered a better understanding of innate immunity against these viruses. Tulane virus (TV) is the prototype virus of a tentative new genus, Recovirus, in the family Caliciviridae. Its epidemiology and biological properties most closely resemble human norovirus. The host innate immune response to RNA virus infection primarily involves pathogen-sensing toll-like receptors (TLRs) TLR3 and TLR7 and retinoic acid-inducible gene I-like receptor RIG-I and melanoma differentiation associated gene 5 (MDA5). In this study, by using siRNA knockdown, we report that TV infection in LLC-MK2 cells results in an early [3 h post infection (h p.i.), P<0.05] RIG-I-dependent and type I interferon-mediated antiviral response, whereas an MDA5-mediated antiviral effect was observed at later (12 h p.i.; P<0.05) stages of TV replication. Induction of RIG-I and MDA5 was critical for inhibition of TV replication. Furthermore, pre-activation of the RIG-I/MDA5 pathway prevented TV replication (>900-fold decrease; P<0.05), suggesting that RIG-I and MDA5 ligands could be used to develop novel preventive and therapeutic measures against norovirus.
Collapse
Affiliation(s)
- Preeti Chhabra
- Gastroenteritis and Respiratory Viruses Laboratory Branch, Division of Viral Diseases, National Center for Immunizations and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Priya Ranjan
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunizations and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | | | - Suryaprakash Sambhara
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunizations and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Jan Vinjé
- Gastroenteritis and Respiratory Viruses Laboratory Branch, Division of Viral Diseases, National Center for Immunizations and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| |
Collapse
|
34
|
Tian T, Jin MQ, Dubin K, King SL, Hoetzenecker W, Murphy GF, Chen CA, Kupper TS, Fuhlbrigge RC. IL-1R Type 1-Deficient Mice Demonstrate an Impaired Host Immune Response against Cutaneous Vaccinia Virus Infection. THE JOURNAL OF IMMUNOLOGY 2017; 198:4341-4351. [PMID: 28468973 DOI: 10.4049/jimmunol.1500106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/05/2017] [Indexed: 01/08/2023]
Abstract
The IL-1 superfamily of cytokines and receptors has been studied extensively. However, the specific roles of IL-1 elements in host immunity to cutaneous viral infection remain elusive. In this study, we applied vaccinia virus (VACV) by scarification to IL-1R1 knockout mice (IL-1R1-/-) and found that these mice developed markedly larger lesions with higher viral genome copies in skin than did wild-type mice. The phenotype of infected IL-1R1-/- mice was similar to eczema vaccinatum, a severe side effect of VACV vaccination that may develop in humans with atopic dermatitis. Interestingly, the impaired cutaneous response of IL-1R1-/- mice did not reflect a systemic immune deficiency, because immunized IL-1R1-/- mice survived subsequent lethal VACV intranasal challenge, or defects of T cell activation or T cell homing to the site of inoculation. Histologic evaluation revealed that VACV infection and replication after scarification were limited to the epidermal layer of wild-type mice, whereas lack of IL-1R1 permitted extension of VACV infection into dermal layers of the skin. We explored the etiology of this discrepancy and determined that IL-1R1-/- mice contained significantly more macrophages and monocyte-derived dendritic cells in the dermis after VACV scarification. These cells were vulnerable to VACV infection and may augment the transmission of virus to adjacent skin, thus leading to larger skin lesions and satellite lesions in IL-1R1-/- mice. These results suggest new therapeutic strategies for treatment of eczema vaccinatum and inform assessment of risks in patients receiving IL-1 blocking Abs for treatment of chronic inflammatory disorders.
Collapse
Affiliation(s)
- Tian Tian
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115;
| | | | - Krista Dubin
- Weill Cornell Medical College, New York, NY 10065
| | - Sandra L King
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Wolfram Hoetzenecker
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - George F Murphy
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | - Thomas S Kupper
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
35
|
Ding Y, Ao J, Huang X, Chen X. Identification of Two Subgroups of Type I IFNs in Perciforme Fish Large Yellow Croaker Larimichthys crocea Provides Novel Insights into Function and Regulation of Fish Type I IFNs. Front Immunol 2016; 7:343. [PMID: 27656183 PMCID: PMC5013148 DOI: 10.3389/fimmu.2016.00343] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022] Open
Abstract
Like mammals, fish possess an interferon regulatory factor (IRF) 3/IRF7-dependent type I IFN responses, but the exact mechanism by which IRF3/IRF7 regulate the type I IFNs remains largely unknown. In this study, we identified two type I IFNs in the Perciforme fish large yellow croaker Larimichthys crocea, one of which belongs to the fish IFNd subgroup and the other is assigned to a novel subgroup of group I IFNs in fish, tentatively termed IFNh. The two IFN genes are constitutively expressed in all examined tissues, but with varied expression levels. Both IFN genes can be rapidly induced in head kidney and spleen tissues by polyinosinic-polycytidylic acid. The recombinant IFNh was shown to be more potent to trigger a rapid induction of the antiviral genes MxA and protein kinase R than the IFNd, suggesting that they may play distinct roles in regulating early antiviral immunity. Strikingly, IFNd, but not IFNh, could induce the gene expression of itself and IFNh through a positive feedback loop mediated by the IFNd-dependent activation of IRF3 and IRF7. Furthermore, our data demonstrate that the induction of IFNd can be enhanced by the dimeric formation of IRF3 and IRF7, while the IFNh expression mainly involves IRF3. Taken together, our findings demonstrate that the IFN responses are diverse in fish and are likely to be regulated by distinct mechanisms.
Collapse
Affiliation(s)
- Yang Ding
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
36
|
Liu D, Mao H, Gu M, Xu X, Sun Z, Lin G, Wang H, Xie D, Hou Q, Wang X, Mi Y, Liu X, Hu C. The transcription regulation analysis of Ctenopharyngodon idellus PKR and PKZ genes. Gene 2016; 576:512-9. [DOI: 10.1016/j.gene.2015.10.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/06/2015] [Accepted: 10/30/2015] [Indexed: 01/20/2023]
|
37
|
Interferon Beta: From Molecular Level to Therapeutic Effects. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:343-72. [DOI: 10.1016/bs.ircmb.2016.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
β-Catenin Upregulates the Constitutive and Virus-Induced Transcriptional Capacity of the Interferon Beta Promoter through T-Cell Factor Binding Sites. Mol Cell Biol 2015; 36:13-29. [PMID: 26459757 DOI: 10.1128/mcb.00641-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/02/2015] [Indexed: 12/12/2022] Open
Abstract
Rapid upregulation of interferon beta (IFN-β) expression following virus infection is essential to set up an efficient innate antiviral response. Biological roles related to the antiviral and immune response have also been associated with the constitutive production of IFN-β in naive cells. However, the mechanisms capable of modulating constitutive IFN-β expression in the absence of infection remain largely unknown. In this work, we demonstrate that inhibition of the kinase glycogen synthase kinase 3 (GSK-3) leads to the upregulation of the constitutive level of IFN-β expression in noninfected cells, provided that GSK-3 inhibition is correlated with the binding of β-catenin to the IFN-β promoter. Under these conditions, IFN-β expression occurred through the T-cell factor (TCF) binding sites present on the IFN-β promoter independently of interferon regulatory factor 3 (IRF3). Enhancement of the constitutive level of IFN-β per se was able to confer an efficient antiviral state to naive cells and acted in synergy with virus infection to stimulate virus-induced IFN-β expression. Further emphasizing the role of β-catenin in the innate antiviral response, we show here that highly pathogenic Rift Valley fever virus (RVFV) targets the Wnt/β-catenin pathway and the formation of active TCF/β-catenin complexes at the transcriptional and protein level in RVFV-infected cells and mice.
Collapse
|
39
|
Sionov E, Mayer-Barber KD, Chang YC, Kauffman KD, Eckhaus MA, Salazar AM, Barber DL, Kwon-Chung KJ. Type I IFN Induction via Poly-ICLC Protects Mice against Cryptococcosis. PLoS Pathog 2015; 11:e1005040. [PMID: 26252005 PMCID: PMC4529209 DOI: 10.1371/journal.ppat.1005040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/22/2015] [Indexed: 01/10/2023] Open
Abstract
Cryptococcus neoformans is the most common cause of fungal meningoencephalitis in AIDS patients. Depletion of CD4 cells, such as occurs during advanced AIDS, is known to be a critical risk factor for developing cryptococcosis. However, the role of HIV-induced innate inflammation in susceptibility to cryptococcosis has not been evaluated. Thus, we sought to determine the role of Type I IFN induction in host defense against cryptococci by treatment of C. neoformans (H99) infected mice with poly-ICLC (pICLC), a dsRNA virus mimic. Unexpectedly, pICLC treatment greatly extended survival of infected mice and reduced fungal burdens in the brain. Protection from cryptococcosis by pICLC-induced Type I IFN was mediated by MDA5 rather than TLR3. PICLC treatment induced a large, rapid and sustained influx of neutrophils and Ly6Chigh monocytes into the lung while suppressing the development of eosinophilia. The pICLC-mediated protection against H99 was CD4 T cell dependent and analysis of CD4 T cell polyfunctionality showed a reduction in IL-5 producing CD4 T cells, marginal increases in Th1 cells and dramatic increases in RORγt+ Th17 cells in pICLC treated mice. Moreover, the protective effect of pICLC against H99 was diminished in IFNγ KO mice and by IL-17A neutralization with blocking mAbs. Furthermore, pICLC treatment also significantly extended survival of C. gattii infected mice with reduced fungal loads in the lungs. These data demonstrate that induction of type I IFN dramatically improves host resistance against the etiologic agents of cryptococcosis by beneficial alterations in both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Edward Sionov
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Katrin D Mayer-Barber
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Yun C Chang
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Keith D Kauffman
- T-Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Michael A Eckhaus
- Division of Veterinary Resources, Office of Research Services, Office of the Director, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | | | - Daniel L Barber
- T-Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Kyung J Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| |
Collapse
|
40
|
Khorooshi R, Mørch MT, Holm TH, Berg CT, Dieu RT, Dræby D, Issazadeh-Navikas S, Weiss S, Lienenklaus S, Owens T. Induction of endogenous Type I interferon within the central nervous system plays a protective role in experimental autoimmune encephalomyelitis. Acta Neuropathol 2015; 130:107-18. [PMID: 25869642 PMCID: PMC4469095 DOI: 10.1007/s00401-015-1418-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/21/2015] [Accepted: 03/21/2015] [Indexed: 01/17/2023]
Abstract
The Type I interferons (IFN), beta (IFN-β) and the alpha family (IFN-α), act through a common receptor and have anti-inflammatory effects. IFN-β is used to treat multiple sclerosis (MS) and is effective against experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Mice with EAE show elevated levels of Type I IFNs in the central nervous system (CNS), suggesting a role for endogenous Type I IFN during inflammation. However, the therapeutic benefit of Type I IFN produced in the CNS remains to be established. The aim of this study was to examine whether experimentally induced CNS-endogenous Type I IFN influences EAE. Using IFN-β reporter mice, we showed that direct administration of polyinosinic–polycytidylic acid (poly I:C), a potent inducer of IFN-β, into the cerebrospinal fluid induced increased leukocyte numbers and transient upregulation of IFN-β in CD45/CD11b-positive cells located in the meninges and choroid plexus, as well as enhanced IFN-β expression by parenchymal microglial cells. Intrathecal injection of poly I:C to mice showing first symptoms of EAE substantially increased the normal disease-associated expression of IFN-α, IFN-β, interferon regulatory factor-7 and IL-10 in CNS, and disease worsening was prevented for as long as IFN-α/β was expressed. In contrast, there was no therapeutic effect on EAE in poly I:C-treated IFN receptor-deficient mice. IFN-dependent microglial and astrocyte response included production of the chemokine CXCL10. These results show that Type I IFN induced within the CNS can play a protective role in EAE and highlight the role of endogenous type I IFN in mediating neuroprotection.
Collapse
MESH Headings
- Animals
- Astrocytes/drug effects
- Astrocytes/immunology
- Astrocytes/pathology
- Brain/drug effects
- Brain/immunology
- Brain/pathology
- Chemokine CXCL10/metabolism
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Interferon-alpha/genetics
- Interferon-alpha/metabolism
- Interferon-beta/genetics
- Interferon-beta/metabolism
- Leukocytes/drug effects
- Leukocytes/pathology
- Leukocytes/physiology
- Meninges/drug effects
- Meninges/immunology
- Meninges/pathology
- Mice, Inbred C57BL
- Mice, Transgenic
- Microglia/drug effects
- Microglia/pathology
- Microglia/physiology
- Neuroprotective Agents/pharmacology
- Poly I-C/pharmacology
- Random Allocation
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- Spinal Cord/drug effects
- Spinal Cord/immunology
- Spinal Cord/pathology
Collapse
Affiliation(s)
- Reza Khorooshi
- />Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 25, 5000 Odense C, Denmark
| | - Marlene Thorsen Mørch
- />Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 25, 5000 Odense C, Denmark
| | - Thomas Hellesøe Holm
- />Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 25, 5000 Odense C, Denmark
- />Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Carsten Tue Berg
- />Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 25, 5000 Odense C, Denmark
| | - Ruthe Truong Dieu
- />Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 25, 5000 Odense C, Denmark
| | - Dina Dræby
- />Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 25, 5000 Odense C, Denmark
| | | | - Siegfried Weiss
- />Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Lienenklaus
- />Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Trevor Owens
- />Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 25, 5000 Odense C, Denmark
| |
Collapse
|
41
|
Sheehan KCF, Lazear HM, Diamond MS, Schreiber RD. Selective Blockade of Interferon-α and -β Reveals Their Non-Redundant Functions in a Mouse Model of West Nile Virus Infection. PLoS One 2015; 10:e0128636. [PMID: 26010249 PMCID: PMC4444312 DOI: 10.1371/journal.pone.0128636] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/30/2015] [Indexed: 01/12/2023] Open
Abstract
Although type I interferons (IFNs) were first described almost 60 years ago, the ability to monitor and modulate the functional activities of the individual IFN subtypes that comprise this family has been hindered by a lack of reagents. The major type I IFNs, IFN-β and the multiple subtypes of IFN-α, are expressed widely and induce their effects on cells by interacting with a shared heterodimeric receptor (IFNAR). In the mouse, the physiologic actions of IFN-α and IFN-β have been defined using polyclonal anti-type I IFN sera, by targeting IFNAR using monoclonal antibodies or knockout mice, or using Ifnb-/- mice. However, the corresponding analysis of IFN-α has been difficult because of its polygenic nature. Herein, we describe two monoclonal antibodies (mAbs) that differentially neutralize murine IFN-β or multiple subtypes of murine IFN-α. Using these mAbs, we distinguish specific contributions of IFN-β versus IFN-α in restricting viral pathogenesis and identify IFN-α as the key mediator of the antiviral response in mice infected with West Nile virus. This study thus suggests the utility of these new reagents in dissecting the antiviral and immunomodulatory roles of IFN-β versus IFN-α in murine models of infection, immunity, and autoimmunity.
Collapse
Affiliation(s)
- Kathleen C. F. Sheehan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Helen M. Lazear
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert D. Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
42
|
Sasaki R, Kanda T, Nakamoto S, Haga Y, Nakamura M, Yasui S, Jiang X, Wu S, Arai M, Yokosuka O. Natural interferon-beta treatment for patients with chronic hepatitis C in Japan. World J Hepatol 2015; 7:1125-1132. [PMID: 26052401 PMCID: PMC4450189 DOI: 10.4254/wjh.v7.i8.1125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 01/15/2015] [Accepted: 01/30/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection can cause liver cirrhosis and hepatocellular carcinoma (HCC). Several studies have demonstrated that the eradication of HCV reduces the occurrence of HCC. In Japan, as many people live to an advanced age, HCV-infected patients are also getting older, and the age at HCC diagnosis has also increased. Although older HCV-infected patients have a risk of developing HCC, the treatment response to peginterferon-alpha plus ribavirin therapy is relatively poor in these patients because of drop-out or discontinuation of this treatment due to adverse events. It is established that the mechanism of action between interferon-alpha and interferon-beta is slightly different. Short-term natural interferon-beta monotherapy is effective for patients with acute hepatitis C and patients infected with HCV genotype 2 and low viral loads. Natural interferon-beta plus ribavirin for 48 wk or for 24 wk are also effective for some patients with HCV genotype 1 or HCV genotype 2. Natural interferon-beta plus ribavirin has been used for certain "difficult-to-treat" HCV-infected patients. In the era of direct-acting anti-virals, natural interferon-beta plus ribavirin may be one of the therapeutic options for special groups of HCV-infected patients. In the near future, signal transduction pathways of interferon-beta will inform further directions.
Collapse
Affiliation(s)
- Reina Sasaki
- Reina Sasaki, Tatsuo Kanda, Shingo Nakamoto, Yuki Haga, Masato Nakamura, Shin Yasui, Xia Jiang, Shuang Wu, Makoto Arai, Osamu Yokosuka, Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Tatsuo Kanda
- Reina Sasaki, Tatsuo Kanda, Shingo Nakamoto, Yuki Haga, Masato Nakamura, Shin Yasui, Xia Jiang, Shuang Wu, Makoto Arai, Osamu Yokosuka, Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Shingo Nakamoto
- Reina Sasaki, Tatsuo Kanda, Shingo Nakamoto, Yuki Haga, Masato Nakamura, Shin Yasui, Xia Jiang, Shuang Wu, Makoto Arai, Osamu Yokosuka, Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Yuki Haga
- Reina Sasaki, Tatsuo Kanda, Shingo Nakamoto, Yuki Haga, Masato Nakamura, Shin Yasui, Xia Jiang, Shuang Wu, Makoto Arai, Osamu Yokosuka, Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Masato Nakamura
- Reina Sasaki, Tatsuo Kanda, Shingo Nakamoto, Yuki Haga, Masato Nakamura, Shin Yasui, Xia Jiang, Shuang Wu, Makoto Arai, Osamu Yokosuka, Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Shin Yasui
- Reina Sasaki, Tatsuo Kanda, Shingo Nakamoto, Yuki Haga, Masato Nakamura, Shin Yasui, Xia Jiang, Shuang Wu, Makoto Arai, Osamu Yokosuka, Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Xia Jiang
- Reina Sasaki, Tatsuo Kanda, Shingo Nakamoto, Yuki Haga, Masato Nakamura, Shin Yasui, Xia Jiang, Shuang Wu, Makoto Arai, Osamu Yokosuka, Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Shuang Wu
- Reina Sasaki, Tatsuo Kanda, Shingo Nakamoto, Yuki Haga, Masato Nakamura, Shin Yasui, Xia Jiang, Shuang Wu, Makoto Arai, Osamu Yokosuka, Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Makoto Arai
- Reina Sasaki, Tatsuo Kanda, Shingo Nakamoto, Yuki Haga, Masato Nakamura, Shin Yasui, Xia Jiang, Shuang Wu, Makoto Arai, Osamu Yokosuka, Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Osamu Yokosuka
- Reina Sasaki, Tatsuo Kanda, Shingo Nakamoto, Yuki Haga, Masato Nakamura, Shin Yasui, Xia Jiang, Shuang Wu, Makoto Arai, Osamu Yokosuka, Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| |
Collapse
|
43
|
Sheikh F, Dickensheets H, Gamero AM, Vogel SN, Donnelly RP. An essential role for IFN-β in the induction of IFN-stimulated gene expression by LPS in macrophages. J Leukoc Biol 2014; 96:591-600. [PMID: 25024400 PMCID: PMC4163629 DOI: 10.1189/jlb.2a0414-191r] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
TLR agonists such as LPS and poly(I:C) induce expression of type I IFNs, such as IFN-α and -β, by macrophages. To examine the role of IFN-β in the induction of ISGs by LPS, we compared the ability of LPS to induce ISGF3 activity and ISG expression in bone marrow-derived macrophages from WT and Ifnb1(-/-) mice. We found that LPS treatment activated ISGF3 and induced expression of ISGs such as Oas1, Mx1, Ddx58 (RIG-I), and Ifih1 (MDA5) in WT macrophages, but not in macrophages derived from Ifnb1(-/-) mice or Ifnar1(-/-) mice. The inability of LPS to induce activation of ISGF3 and ISG expression in Ifnb1(-/-) macrophages correlated with the failure of LPS to induce activation of STAT1 and -2 in these cells. Consistent with these findings, LPS treatment also failed to induce ISG expression in bone marrow-derived macrophages from Stat2 KO mice. Although activation of ISGF3 and induction of ISG expression by LPS was abrogated in Ifnb1(-/-) and Ifnar1(-/-) macrophages, activation of NF-κB and induction of NF-κB-responsive genes, such as Tnf (TNF-α) and Il1b (IL-1β), were not affected by deletion of either the IFN-β or IFN-αR1 genes. These findings demonstrate that induction of ISGF3 activity and ISG expression by LPS is critically dependent on intermediate production of IFN-β and autocrine signaling through type I IFN receptors.
Collapse
Affiliation(s)
- Faruk Sheikh
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, USA
| | - Harold Dickensheets
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, USA
| | - Ana M Gamero
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA, USA; and
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Raymond P Donnelly
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, USA;
| |
Collapse
|
44
|
Murine gammaherpesvirus 68 encoding open reading frame 11 targets TANK binding kinase 1 to negatively regulate the host type I interferon response. J Virol 2014; 88:6832-46. [PMID: 24696485 DOI: 10.1128/jvi.03460-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Upon viral infection, type I interferons, such as alpha and beta interferon (IFN-α and IFN-β, respectively), are rapidly induced and activate multiple antiviral genes, thereby serving as the first line of host defense. Many DNA and RNA viruses counteract the host interferon system by modulating the production of IFNs. In this study, we report that murine gammaherpesvirus 68 (MHV-68), a double-stranded DNA virus, encodes open reading frame 11 (ORF11), a novel immune modulator, to block IFN-β production. ORF11-deficient recombinant viruses induced more IFN-β production in fibroblast and macrophage cells than the MHV-68 wild type or a marker rescue virus. MHV-68 ORF11 decreased IFN-β promoter activation by various factors, the signaling of which converges on TBK1-IRF3 activation. MHV-68 ORF11 directly interacted with both overexpressed and endogenous TBK1 but not with IRF3. Physical interactions between ORF11 and endogenous TBK1 were further confirmed during virus replication in fibroblasts using a recombinant virus expressing FLAG-ORF11. ORF11 efficiently reduced interaction between TBK1 and IRF3 and subsequently inhibited activation of IRF3, thereby negatively regulating IFN-β production. Our domain-mapping study showed that the central domain of ORF11 was responsible for both TBK1 binding and inhibition of IFN-β induction, while the kinase domain of TBK1 was sufficient for ORF11 binding. Taken together, these results suggest a mechanism underlying inhibition of IFN-β production by a gammaherpesvirus and highlight the importance of TBK1 in DNA virus replication. IMPORTANCE Gammaherpesviruses are important human pathogens, as they are associated with various kinds of tumors. Upon virus infection, the type I interferon pathway is activated by a series of signaling molecules and stimulates antiviral gene expression. To subvert such interferon antiviral responses, viruses are equipped with multiple factors that can inhibit its critical steps. In this study, we took an unbiased genomic approach using a mutant library of murine gammaherpesvirus 68 to screen a novel viral immune modulator that negatively regulates the type I interferon pathway and identified ORF11 as a strong candidate. ORF11-deficient virus infection produced more interferon than the wild type in both fibroblasts and macrophages. During virus replication, ORF11 directly bound to TBK1, a key regulatory protein in the interferon pathway, and inhibited TBK1-mediated interferon production. Our results highlight a crucial role of TBK1 in controlling DNA virus infection and a viral strategy to curtail host surveillance.
Collapse
|
45
|
Gavala ML, Liu YP, Lenertz LY, Zeng L, Blanchette JB, Guadarrama AG, Denlinger LC, Bertics PJ, Smith JA. Nucleotide receptor P2RX7 stimulation enhances LPS-induced interferon-β production in murine macrophages. J Leukoc Biol 2013; 94:759-68. [PMID: 23911869 PMCID: PMC3774844 DOI: 10.1189/jlb.0712351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 05/22/2013] [Accepted: 06/27/2013] [Indexed: 12/22/2022] Open
Abstract
Stimulation of P2RX(7) with extracellular ATP potentiates numerous LPS-induced proinflammatory events, including cytokine induction in macrophages, but the molecular mechanisms underlying this process are not well defined. Although P2RX(7) ligation has been proposed to activate several transcription factors, many of the LPS-induced mediators affected by P2RX(7) activation are not induced by P2RX(7) agonists alone, suggesting a complementary role for P2RX(7) in transcriptional regulation. Type I IFN production, whose expression is tightly controlled by multiple transcription factors that form an enhanceosome, is critical for resistance against LPS-containing bacteria. The effect of purinergic receptor signaling on LPS-dependent type I IFN is unknown and would be of great relevance to a diverse array of inflammatory conditions. The present study demonstrates that stimulation of macrophages with P2RX(7) agonists substantially enhances LPS-induced IFN-β expression, and this enhancement is ablated in macrophages that do not express functional P2RX(7) or when the MAPK MEK1/2 pathways are inhibited. Potentiation of LPS-induced IFN-β expression following P2RX(7) stimulation is likely transcriptionally regulated, as this enhancement is observed at the IFN-β promoter level. Furthermore, P2RX(7) stimulation is able to increase the phosphorylation and subsequent IFN-β promoter occupancy of IRF-3, a transcription factor that is critical for IFN-β transcription by TLR agonists. This newly discovered role for P2RX(7) in IFN regulation may have implications in antimicrobial defense, which has been linked to P2RX(7) activation in other studies.
Collapse
Affiliation(s)
- M L Gavala
- 2.University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., CSC H4/472, Madison, WI 53792-9988, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Structural basis of a unique interferon-β signaling axis mediated via the receptor IFNAR1. Nat Immunol 2013; 14:901-7. [DOI: 10.1038/ni.2667] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/19/2013] [Indexed: 12/22/2022]
|
47
|
Nayak D, Johnson KR, Heydari S, Roth TL, Zinselmeyer BH, McGavern DB. Type I interferon programs innate myeloid dynamics and gene expression in the virally infected nervous system. PLoS Pathog 2013; 9:e1003395. [PMID: 23737750 PMCID: PMC3667771 DOI: 10.1371/journal.ppat.1003395] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/17/2013] [Indexed: 11/18/2022] Open
Abstract
Viral infections of central nervous system (CNS) often trigger inflammatory responses that give rise to a wide range of pathological outcomes. The CNS is equipped with an elaborate network of innate immune sentinels (e.g. microglia, macrophages, dendritic cells) that routinely serve as first responders to these infections. The mechanisms that underlie the dynamic programming of these cells following CNS viral infection remain undefined. To gain insights into this programming, we utilized a combination of genomic and two-photon imaging approaches to study a pure innate immune response to a noncytopathic virus (lymphocytic choriomeningitis virus) as it established persistence in the brain. This enabled us to evaluate how global gene expression patterns were translated into myeloid cell dynamics following infection. Two-photon imaging studies revealed that innate myeloid cells mounted a vigorous early response to viral infection characterized by enhanced vascular patrolling and a complete morphological transformation. Interestingly, innate immune activity subsided over time and returned to a quasi-normal state as the virus established widespread persistence in the brain. At the genomic level, early myeloid cell dynamics were associated with massive changes in CNS gene expression, most of which declined over time and were linked to type I interferon signaling (IFN-I). Surprisingly, in the absence of IFN-I signaling, almost no differential gene expression was observed in the nervous system despite increased viral loads. In addition, two-photon imaging studies revealed that IFN-I receptor deficient myeloid cells were unresponsive to viral infection and remained in a naïve state. These data demonstrate that IFN-I engages non-redundant programming responsible for nearly all innate immune activity in the brain following a noncytopathic viral infection. This Achilles' heel could explain why so many neurotropic viruses have acquired strategies to suppress IFN-I. The central nervous system is equipped with innate immune cells that serve as first responders to sterile injuries and infections. The mechanisms that program the movement and morphological transformations of these cells following infection remain undefined. Here, we utilized a combination of genomic and in vivo imaging approaches to define pathways that program the motion of innate immune cells responding to a noncytopathic virus as it established persistence in the brain. In vivo imaging studies performed in the living brain revealed that innate myeloid cells mounted a vigorous early response that returned to a “naïve” state during persistence. This was associated at the genomic level with robust changes in gene expression that were mostly quenched over time. Analysis of the gene expression pattern revealed a prominent type I interferon (IFN-I) signature only at the early stage of infection. Surprisingly, in the absence of type I interferon (IFN-I) signaling, almost no genes were differentially expressed in the virally infected nervous system and all innate myeloid cells were unresponsive. These data indicate IFN-I programs all innate myeloid activity in the nervous system following a noncytopathic viral infection. This non-redundant anti-viral program represents an Achilles' heel that can be exploited by neurotropic viruses.
Collapse
Affiliation(s)
- Debasis Nayak
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
48
|
Sancho-Shimizu V, Perez de Diego R, Jouanguy E, Zhang SY, Casanova JL. Inborn errors of anti-viral interferon immunity in humans. Curr Opin Virol 2012; 1:487-96. [PMID: 22347990 DOI: 10.1016/j.coviro.2011.10.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The three types of interferon (IFNs) are essential for immunity against at least some viruses in the mouse model of experimental infections, type I IFNs displaying the broadest and strongest anti-viral activity. Consistently, human genetic studies have shown that type II IFN is largely redundant for immunity against viruses in the course of natural infections. The precise contributions of human type I and III IFNs remain undefined. However, various inborn errors of anti-viral IFN immunity have been described, which can result in either broad or narrow immunological and viral phenotypes. The broad disorders impair the response to (STAT1, TYK2) or the production of at least type I and type III IFNs following multiple stimuli (NEMO), resulting in multiple viral infections at various sites, including herpes simplex encephalitis (HSE). The narrow disorders impair exclusively (TLR3) or mostly (UNC-93B, TRIF, TRAF3) the TLR3-dependent induction of type I and III IFNs, leading to HSE in apparently otherwise healthy individuals. These recent discoveries highlight the importance of human type I and III IFNs in protective immunity against viruses, including the TLR3-IFN pathway in protection against HSE.
Collapse
Affiliation(s)
- Vanessa Sancho-Shimizu
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, U980, Necker Medical School, Paris 75015, France
| | | | | | | | | |
Collapse
|
49
|
Zhang YB, Gui JF. Molecular regulation of interferon antiviral response in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:193-202. [PMID: 22721905 DOI: 10.1016/j.dci.2012.06.003] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/08/2012] [Accepted: 06/08/2012] [Indexed: 05/07/2023]
Abstract
Interferon (IFN) response is the first line of host defense against virus infection. The recent years have witnessed tremendous progress in understanding of fish IFN antiviral response. Varied number of IFN genes has been identified in different fish species but obviously, they do not show a one-to-one orthologous relationship with mammalian IFN homologs. These genes are divided into two groups with different abilities to induce downstream gene expression through binding to different receptor complexes. Consistently, some fish IFN-stimulated genes such as Mx and PKR have been confirmed for their antiviral effects. In this review, we focus on how fish cells respond to IFNs and how fish IFNs are triggered through TLR pathway and RLR pathway. We highlight the roles of IRF3 and IRF7 in activation of fish IFN response. In addition, the unique mechanisms underlying IRF3/7-dependent fish IFN response and auto-regulation of fish IFN gene expression are discussed.
Collapse
Affiliation(s)
- Yi-Bing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | | |
Collapse
|
50
|
Polumuri SK, Jayakar GG, Shirey KA, Roberts ZJ, Perkins DJ, Pitha PM, Vogel SN. Transcriptional regulation of murine IL-33 by TLR and non-TLR agonists. THE JOURNAL OF IMMUNOLOGY 2012; 189:50-60. [PMID: 22634618 DOI: 10.4049/jimmunol.1003554] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IL-33, a member of the IL-1 family of cytokines, is produced by many cell types, including macrophages, yet its regulation is largely unknown. Treatment of primary murine macrophages with a panel of TLR (e.g., TLR2, TLR3, TLR4, and TLR9) agonists and non-TLR (e.g., MDA5, RIG-I) agonists revealed a pattern of gene and protein expression consistent with a role for IFN regulatory factor-3 (IRF-3) in the expression of IL-33. Accordingly, induction of IL-33 mRNA was attenuated in IRF-3(-/-) macrophages and TBK-1(-/-) mouse embryonic fibroblasts. Despite the fact that all IL-33 agonists were IRF-3 dependent, LPS-induced IL-33 mRNA was fully inducible in IFN-β(-/-) macrophages, indicating that IL-33 is not dependent on IFN-β as an intermediate. Epinephrine and Bordetella pertussis adenylate cyclase toxin (ACT), cAMP-activating agents, activate CREB and greatly synergize with LPS to induce IL-33 mRNA in macrophages. Both LPS-induced and ACT/LPS-enhanced expression of IL-33 mRNA was partially, but significantly, inhibited by the protein kinase A inhibitor H-89 but not by tyrosine kinase or protein kinase C inhibitors. Two IL-33 mRNA species derived from two alternative promoters encode full-length IL-33; however, the shorter "A" species is preferentially induced by all IL-33-inducing agonists except Newcastle disease virus, a RIG-I agonist that induced expression of both "A" and "B" transcripts. Together, these studies greatly extend what is currently known about the regulation of IL-33 induction in macrophages stimulated by bacterial and viral agonists that engage distinct innate immune signaling pathways.
Collapse
Affiliation(s)
- Swamy Kumar Polumuri
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|