1
|
Packard JE, Kumar N, Weitzman MD, Dembowski JA. Identifying Protein Interactions with Viral DNA Genomes during Virus Infection. Viruses 2024; 16:845. [PMID: 38932138 PMCID: PMC11209293 DOI: 10.3390/v16060845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Viruses exploit the host cell machinery to enable infection and propagation. This review discusses the complex landscape of DNA virus-host interactions, focusing primarily on herpesviruses and adenoviruses, which replicate in the nucleus of infected cells, and vaccinia virus, which replicates in the cytoplasm. We discuss experimental approaches used to discover and validate interactions of host proteins with viral genomes and how these interactions impact processes that occur during infection, including the host DNA damage response and viral genome replication, repair, and transcription. We highlight the current state of knowledge regarding virus-host protein interactions and also outline emerging areas and future directions for research.
Collapse
Affiliation(s)
- Jessica E. Packard
- Department of Biological Sciences, School of Science and Engineering, Duquesne University, Pittsburgh, PA 15282, USA
| | - Namrata Kumar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew D. Weitzman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jill A. Dembowski
- Department of Biological Sciences, School of Science and Engineering, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
2
|
Kumar R, Chauhan D, Saini G, Kumar R, Kumar S, Sharma D, Sharma M, Kumar Bharti V, Kumar A, Ghosh A. Down-regulation of RdRp complex and activated immune response due to increased arsenic level leads to decreased corona virus replication. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100162. [PMID: 36090585 PMCID: PMC9444337 DOI: 10.1016/j.crmicr.2022.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Corona virus is pandemic and responsible for more than 5.6 million deaths. It was observed that its severity was reported in varied ways in different countries and even in different states of India. This variation was critically evaluated in the area with high contamination of Arsenic (As) to understand the arsenic toxicity and Covid epidemiology and associated health effects in the human population. It was reported that the area with low arsenic contamination has a very high incidence rate of Corona infection in the world. Even in the Indian scenario, high As-contaminated states like West Bengal, Jharkhand and Bihar, the incidence rate is 1.994%, 1.114% and 0.661%, respectively. In contrast, states with the least arsenic contamination have a very high corona incidence rate like 6.308, 17.289 and 4.351, respectively. It was evident that Arsenic inhibits the RdRp complex, which leads to the inhibition of viral genome replication. The PAMP associated pathway was activated by Arsenic and effectively bound with viral spike proteins leading to effective clearance of virus through activation of TNF alpha and IL-1. It finally leads to increased production of IgE, IgG and IGA. Arsenic also enhances inflammatory response against the virus through increased production of cytokine. The high arsenic level also induces apoptosis in viral infected cells through Bax/Bak pathway. It activates cytochrome-c and caspase-3 activity, inducing apoptosis in viral infected cells through PARP activation in the nucleus. These combined findings suggest that high arsenic contamination causes replication inhibition, activates an inflammatory response, increases antibody production, and finally leads to apoptosis through the mitochondrial pathway. People residing in arsenic hit areas are at a very low threat of corona infection.
Collapse
Affiliation(s)
- Ranjit Kumar
- Department of Animal Science, Central University of Himachal Pradesh, Dharamshala, India
- Corresponding author.
| | - Disha Chauhan
- Department of Animal Science, Central University of Himachal Pradesh, Dharamshala, India
| | - Geetika Saini
- Department of Animal Science, Central University of Himachal Pradesh, Dharamshala, India
| | - Rakesh Kumar
- Department of Animal Science, Central University of Himachal Pradesh, Dharamshala, India
| | - Sunil Kumar
- Department of Animal Science, Central University of Himachal Pradesh, Dharamshala, India
| | - Dixit Sharma
- Department of Animal Science, Central University of Himachal Pradesh, Dharamshala, India
| | - Munish Sharma
- Department of Plant Science, Central University of Himachal Pradesh, Dharamshala, India
| | - Vijay Kumar Bharti
- DRDO-Defence Institute of High Altitude Research (DIHAR), UT Ladakh, India
| | - Arun Kumar
- Mahavir Cancer Institute and Research Centre, Patna, India
| | - Ashok Ghosh
- Mahavir Cancer Institute and Research Centre, Patna, India
| |
Collapse
|
3
|
Kumar A, De S, Moharana AK, Nayak TK, Saswat T, Datey A, Mamidi P, Mishra P, Subudhi BB, Chattopadhyay S. Inhibition of herpes simplex virus-1 infection by MBZM-N-IBT: in silico and in vitro studies. Virol J 2021; 18:103. [PMID: 34039377 PMCID: PMC8157732 DOI: 10.1186/s12985-021-01581-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/18/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction The emergence of drug resistance and cross-resistance to existing drugs has warranted the development of new antivirals for Herpes simplex viruses (HSV). Hence, we have designed this study to evaluate the anti-viral activity of 1-[(2-methyl benzimidazole-1-yl) methyl]-2-oxo-indolin-3-ylidene] amino] thiourea (MBZM-N-IBT), against HSV-1. Method Molecular docking was performed to assess the affinity of MBZM-N-IBT for HSV-1 targets. This was validated by plaque assay, estimation of RNA and protein levels as well as time of addition experiments in vitro. Result Molecular docking analysis suggested the inhibitory capacity of MBZM-N-IBT against HSV-1. This was supported by the abrogation of the HSV-1 infectious viral particle formation with the IC50 value of 3.619 µM. Viral mRNA levels were also reduced by 72% and 84% for UL9 and gC respectively. MBZM-N-IBT also reduced the protein synthesis for gC and ICP8 significantly. While mRNA of ICP8 was not significantly affected, its protein synthesis was reduced by 47%. The time of addition experiment revealed the capacity of MBZM-N-IBT to inhibit HSV-1 at early as well as late stages of infection in the Vero cells. Similar effect of MBZM-N-IBT was also noticed in the Raw 264.7 and BHK 21 cells after HSV-1 infection. Supported by the in silico data, this can be attributed to possible interference with multiple HSV targets including the ICP8, ICP27, UL42, UL25, UL15 and gB proteins. Conclusion These results along with the lack of acute oral toxicity and significant anti-inflammatory effects suggest its suitability for further evaluation as a non-nucleoside inhibitor of HSV. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01581-5.
Collapse
Affiliation(s)
- Abhishek Kumar
- Institute of Life Sciences, Autonomous Institute of Dept of Biotechnology (Govt of India), Nalco Square, Bhubaneswar, 751023, India
| | - Saikat De
- Institute of Life Sciences, Autonomous Institute of Dept of Biotechnology (Govt of India), Nalco Square, Bhubaneswar, 751023, India
| | - Alok Kumar Moharana
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed To Be University, Khandagiri Square, Bhubaneswar, 751023, India
| | - Tapas Kumar Nayak
- Institute of Life Sciences, Autonomous Institute of Dept of Biotechnology (Govt of India), Nalco Square, Bhubaneswar, 751023, India
| | - Tanuja Saswat
- Institute of Life Sciences, Autonomous Institute of Dept of Biotechnology (Govt of India), Nalco Square, Bhubaneswar, 751023, India
| | - Ankita Datey
- Institute of Life Sciences, Autonomous Institute of Dept of Biotechnology (Govt of India), Nalco Square, Bhubaneswar, 751023, India
| | - Prabhudutta Mamidi
- Institute of Life Sciences, Autonomous Institute of Dept of Biotechnology (Govt of India), Nalco Square, Bhubaneswar, 751023, India
| | - Priyadarsee Mishra
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed To Be University, Khandagiri Square, Bhubaneswar, 751023, India
| | - Bharat Bhusan Subudhi
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed To Be University, Khandagiri Square, Bhubaneswar, 751023, India.
| | - Soma Chattopadhyay
- Institute of Life Sciences, Autonomous Institute of Dept of Biotechnology (Govt of India), Nalco Square, Bhubaneswar, 751023, India.
| |
Collapse
|
4
|
Replication Compartments of DNA Viruses in the Nucleus: Location, Location, Location. Viruses 2020; 12:v12020151. [PMID: 32013091 PMCID: PMC7077188 DOI: 10.3390/v12020151] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/08/2023] Open
Abstract
DNA viruses that replicate in the nucleus encompass a range of ubiquitous and clinically important viruses, from acute pathogens to persistent tumor viruses. These viruses must co-opt nuclear processes for the benefit of the virus, whilst evading host processes that would otherwise attenuate viral replication. Accordingly, DNA viruses induce the formation of membraneless assemblies termed viral replication compartments (VRCs). These compartments facilitate the spatial organization of viral processes and regulate virus–host interactions. Here, we review advances in our understanding of VRCs. We cover their initiation and formation, their function as the sites of viral processes, and aspects of their composition and organization. In doing so, we highlight ongoing and emerging areas of research highly pertinent to our understanding of nuclear-replicating DNA viruses.
Collapse
|
5
|
PUM1 is a biphasic negative regulator of innate immunity genes by suppressing LGP2. Proc Natl Acad Sci U S A 2017; 114:E6902-E6911. [PMID: 28760986 DOI: 10.1073/pnas.1708713114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PUM1 is an RNA binding protein shown to regulate the stability and function of mRNAs bearing a specific sequence. We report the following: (i) A key function of PUM1 is that of a repressor of key innate immunity genes by repressing the expression of LGP2. Thus, between 12 and 48 hours after transfection of human cells with siPUM1 RNA there was an initial (phase 1) upsurge of transcripts encoding LGP2, CXCL10, IL6, and PKR. This was followed 24 hours later (phase 2) by a significant accumulation of mRNAs encoding RIG-I, SP100, MDA5, IFIT1, PML, STING, and IFNβ. The genes that were not activated encoded HDAC4 and NF-κB1. (ii) Simultaneous depletion of PUM1 and LGP2, CXCL10, or IL6 revealed that up-regulation of phase 1 and phase 2 genes was the consequence of up-regulation of LGP2. (iii) IFNβ produced 48-72 hours after transfection of siPUM1 was effective in up-regulating LGP2 and phase 2 genes and reducing the replication of HSV-1 in untreated cells. (iv) Because only half of genes up-regulated in phase 1 and 2 encode mRNAs containing PUM1 binding sites, the upsurge in gene expression could not be attributed solely to stabilization of mRNAs in the absence of PUM1. (v) Lastly, depletion of PUM2 does not result in up-regulation of phase 1 or phase 2 genes. The results of the studies presented here indicate that PUM1 is a negative regulator of LGP2, a master regulator of innate immunity genes expressed in a cascade fashion.
Collapse
|
6
|
Zhang K, van Drunen Littel-van den Hurk S. Herpesvirus tegument and immediate early proteins are pioneers in the battle between viral infection and nuclear domain 10-related host defense. Virus Res 2017; 238:40-48. [DOI: 10.1016/j.virusres.2017.05.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 01/10/2023]
|
7
|
Xu P, Roizman B. The SP100 component of ND10 enhances accumulation of PML and suppresses replication and the assembly of HSV replication compartments. Proc Natl Acad Sci U S A 2017; 114:E3823-E3829. [PMID: 28439026 PMCID: PMC5441741 DOI: 10.1073/pnas.1703395114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear domain 10 (ND10) bodies are small (0.1-1 μM) nuclear structures containing both constant [e.g., promyelocytic leukemia protein (PML), SP100, death domain-associated protein (Daxx)] and variable proteins, depending on the function of the cells or the stress to which they are exposed. In herpes simplex virus (HSV)-infected cells, ND10 bodies assemble at the sites of DNA entering the nucleus after infection. In sequence, the ND10 bodies become viral replication compartments, and ICP0, a viral E3 ligase, degrades both PML and SP100. The amounts of PML and SP100 and the number of ND10 structures increase in cells exposed to IFN-β. Earlier studies have shown that PML has three key functions. Thus, (i) the interaction of PML with viral components facilitates the initiation of replication compartments, (ii) viral replication is significantly less affected by IFN-β in PML-/- cells than in parental PML+/+ cells, and (iii) viral yields are significantly lower in PML-/- cells exposed to low ratios of virus per cell compared with parental PML+/+ cells. This report focuses on the function of SP100. In contrast to PML-/- cells, SP100-/- cells retain the sensitivity of parental SP100+/+ cells to IFN-β and support replication of the ΔICP0 virus. At low multiplicities of infection, wild-type virus yields are higher in SP100-/- cells than in parental HEp-2 cells. In addition, the number of viral replication compartments is significantly higher in SP100-/- cells than in parental SP100+/+ cells or in PML-/- cells.
Collapse
Affiliation(s)
- Pei Xu
- Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, IL 60637
| | - Bernard Roizman
- Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
8
|
Zarrouk K, Piret J, Boivin G. Herpesvirus DNA polymerases: Structures, functions and inhibitors. Virus Res 2017; 234:177-192. [PMID: 28153606 DOI: 10.1016/j.virusres.2017.01.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/10/2017] [Accepted: 01/22/2017] [Indexed: 11/25/2022]
Abstract
Human herpesviruses are large double-stranded DNA viruses belonging to the Herpesviridae family. These viruses have the ability to establish lifelong latency into the host and to periodically reactivate. Primary infections and reactivations of herpesviruses cause a large spectrum of diseases and may lead to severe complications in immunocompromised patients. The viral DNA polymerase is a key enzyme in the lytic phase of the infection by herpesviruses. This review focuses on the structures and functions of viral DNA polymerases of herpes simplex virus (HSV) and human cytomegalovirus (HCMV). DNA polymerases of HSV (UL30) and HCMV (UL54) belong to B family DNA polymerases with which they share seven regions of homology numbered I to VII as well as a δ-region C which is homologous to DNA polymerases δ. These DNA polymerases are multi-functional enzymes exhibiting polymerase, 3'-5' exonuclease proofreading and ribonuclease H activities. Furthermore, UL30 and UL54 DNA polymerases form a complex with UL42 and UL44 processivity factors, respectively. The mechanisms involved in their polymerisation activity have been elucidated based on structural analyses of the DNA polymerase of bacteriophage RB69 crystallized under different conformations, i.e. the enzyme alone or in complex with DNA and with both DNA and incoming nucleotide. All antiviral agents currently used for the prevention or treatment of HSV and HCMV infections target the viral DNA polymerases. However, long-term administration of these antivirals may lead to the emergence of drug-resistant isolates harboring mutations in genes encoding viral enzymes that phosphorylate drugs (i.e., nucleoside analogues) and/or DNA polymerases.
Collapse
Affiliation(s)
- Karima Zarrouk
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada
| | - Jocelyne Piret
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada.
| |
Collapse
|
9
|
Maroui MA, Callé A, Cohen C, Streichenberger N, Texier P, Takissian J, Rousseau A, Poccardi N, Welsch J, Corpet A, Schaeffer L, Labetoulle M, Lomonte P. Latency Entry of Herpes Simplex Virus 1 Is Determined by the Interaction of Its Genome with the Nuclear Environment. PLoS Pathog 2016; 12:e1005834. [PMID: 27618691 PMCID: PMC5019400 DOI: 10.1371/journal.ppat.1005834] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/30/2016] [Indexed: 01/12/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) establishes latency in trigeminal ganglia (TG) sensory neurons of infected individuals. The commitment of infected neurons toward the viral lytic or latent transcriptional program is likely to depend on both viral and cellular factors, and to differ among individual neurons. In this study, we used a mouse model of HSV-1 infection to investigate the relationship between viral genomes and the nuclear environment in terms of the establishment of latency. During acute infection, viral genomes show two major patterns: replication compartments or multiple spots distributed in the nucleoplasm (namely “multiple-acute”). Viral genomes in the “multiple-acute” pattern are systematically associated with the promyelocytic leukemia (PML) protein in structures designated viral DNA-containing PML nuclear bodies (vDCP-NBs). To investigate the viral and cellular features that favor the acquisition of the latency-associated viral genome patterns, we infected mouse primary TG neurons from wild type (wt) mice or knock-out mice for type 1 interferon (IFN) receptor with wt or a mutant HSV-1, which is unable to replicate due to the synthesis of a non-functional ICP4, the major virus transactivator. We found that the inability of the virus to initiate the lytic program combined to its inability to synthesize a functional ICP0, are the two viral features leading to the formation of vDCP-NBs. The formation of the “multiple-latency” pattern is favored by the type 1 IFN signaling pathway in the context of neurons infected by a virus able to replicate through the expression of a functional ICP4 but unable to express functional VP16 and ICP0. Analyses of TGs harvested from HSV-1 latently infected humans showed that viral genomes and PML occupy similar nuclear areas in infected neurons, eventually forming vDCP-NB-like structures. Overall our study designates PML protein and PML-NBs to be major cellular components involved in the control of HSV-1 latency, probably during the entire life of an individual. Establishment of latency of herpes simplex virus 1 (HSV-1) at the cellular level results from the combination of a series of complex molecular events involving cellular and viral-associated features. HSV-1 establishes latency in trigeminal ganglia (TG) sensory neurons. HSV-1 genomes remain as extrachromosomal DNA; their initial interaction with the nuclear architecture is likely to determine commitment toward the lytic or the latent transcriptional program. Among the major nuclear components that influence the infection process the promyelocytic leukemia (PML) nuclear bodies (NBs) play a major role as nuclear relays of the intrinsic antiviral response. In this study, using infected mice and cultured mouse primary TG neuron models, as well as human TGs, we investigated the interaction between HSV-1 genomes and the nuclear environment in individual neurons. We found that the inability of HSV-1 to initiate a lytic program at the initial stages of infection led to the formation of latency-associated viral DNA-containing PML-NBs (vDCP-NBs), or another pattern if the type 1 interferon pathway was activated prior to infection. vDCP-NB–like structures were also present in neurons of latently infected human TGs, designating PML-NBs as major nuclear components involved in the control of HSV-1 latency for the entire life of an individual.
Collapse
Affiliation(s)
- Mohamed Ali Maroui
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Assembly, Nuclear Domains, Virus, Lyon, France
| | - Aleth Callé
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Assembly, Nuclear Domains, Virus, Lyon, France
| | - Camille Cohen
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Assembly, Nuclear Domains, Virus, Lyon, France
| | - Nathalie Streichenberger
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène (INMG), team Nerve-Muscle Interactions, Lyon, France
- Univ Lyon, Centre Hospitalier Universitaire de Lyon, Hospices Civils de Lyon, Centre de Pathologie et Neuropathologie Est, Bron, France
| | - Pascale Texier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Assembly, Nuclear Domains, Virus, Lyon, France
| | - Julie Takissian
- Institut de Biologie Intégrative de la Cellule (I2BC), Département de Virologie, Gif-sur-Yvette, France
| | - Antoine Rousseau
- Institut de Biologie Intégrative de la Cellule (I2BC), Département de Virologie, Gif-sur-Yvette, France
- Université Paris Sud, Centre Hospitalier Universitaire de Bicêtre, Service d'Ophthalmologie, Le Kremlin-Bicêtre, France
| | - Nolwenn Poccardi
- Institut de Biologie Intégrative de la Cellule (I2BC), Département de Virologie, Gif-sur-Yvette, France
| | - Jérémy Welsch
- Ecole Normale Supérieure de Lyon, CNRS UMR 5308, INSERM U 1111, Centre International de Recherche en Infectiologie (CIRI), team Immunobiologie des infections virales, Lyon, France
| | - Armelle Corpet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Assembly, Nuclear Domains, Virus, Lyon, France
| | - Laurent Schaeffer
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène (INMG), team Nerve-Muscle Interactions, Lyon, France
| | - Marc Labetoulle
- Institut de Biologie Intégrative de la Cellule (I2BC), Département de Virologie, Gif-sur-Yvette, France
- Université Paris Sud, Centre Hospitalier Universitaire de Bicêtre, Service d'Ophthalmologie, Le Kremlin-Bicêtre, France
| | - Patrick Lomonte
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Assembly, Nuclear Domains, Virus, Lyon, France
- * E-mail:
| |
Collapse
|
10
|
Xu P, Mallon S, Roizman B. PML plays both inimical and beneficial roles in HSV-1 replication. Proc Natl Acad Sci U S A 2016; 113:E3022-8. [PMID: 27162364 PMCID: PMC4889406 DOI: 10.1073/pnas.1605513113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
After entry into the nucleus, herpes simplex virus (HSV) DNA is coated with repressive proteins and becomes the site of assembly of nuclear domain 10 (ND10) bodies. These small (0.1-1 μM) nuclear structures contain both constant [e.g., promyelocytic leukemia protein (PML), Sp100, death-domain associated protein (Daxx), and so forth] and variable proteins, depending on the function of the cells or the stress to which they are exposed. The amounts of PML and the number of ND10 structures increase in cells exposed to IFN-β. On initiation of HSV-1 gene expression, ICP0, a viral E3 ligase, degrades both PML and Sp100. The earlier report that IFN-β is significantly more effective in blocking viral replication in murine PML(+/+) cells than in sibling PML(-/-) cells, reproduced here with human cells, suggests that PML acts as an effector of antiviral effects of IFN-β. To define more precisely the function of PML in HSV-1 replication, we constructed a PML(-/-) human cell line. We report that in PML(-/-) cells, Sp100 degradation is delayed, possibly because colocalization and merger of ICP0 with nuclear bodies containing Sp100 and Daxx is ineffective, and that HSV-1 replicates equally well in parental HEp-2 and PML(-/-) cells infected at 5 pfu wild-type virus per cell, but poorly in PML(-/-) cells exposed to 0.1 pfu per cell. Finally, ICP0 accumulation is reduced in PML(-/-) infected at low, but not high, multiplicities of infection. In essence, the very mechanism that serves to degrade an antiviral IFN-β effector is exploited by HSV-1 to establish an efficient replication domain in the nucleus.
Collapse
Affiliation(s)
- Pei Xu
- Marjorie B. Kovler Viral Oncology Labs, The University of Chicago, Chicago IL 60637
| | - Stephen Mallon
- Marjorie B. Kovler Viral Oncology Labs, The University of Chicago, Chicago IL 60637
| | - Bernard Roizman
- Marjorie B. Kovler Viral Oncology Labs, The University of Chicago, Chicago IL 60637
| |
Collapse
|
11
|
Berscheminski J, Wimmer P, Brun J, Ip WH, Groitl P, Horlacher T, Jaffray E, Hay RT, Dobner T, Schreiner S. Sp100 isoform-specific regulation of human adenovirus 5 gene expression. J Virol 2014; 88:6076-92. [PMID: 24623443 PMCID: PMC4093896 DOI: 10.1128/jvi.00469-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/10/2014] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Promyelocytic leukemia nuclear bodies (PML-NBs) are nuclear structures that accumulate intrinsic host factors to restrict viral infections. To ensure viral replication, these must be limited by expression of viral early regulatory proteins that functionally inhibit PML-NB-associated antiviral effects. To benefit from the activating capabilities of Sp100A and simultaneously limit repression by Sp100B, -C, and -HMG, adenoviruses (Ads) employ several features to selectively and individually target these isoforms. Ads induce relocalization of Sp100B, -C, and -HMG from PML-NBs prior to association with viral replication centers. In contrast, Sp100A is kept at the PML tracks that surround the newly formed viral replication centers as designated sites of active transcription. We concluded that the host restriction factors Sp100B, -C, and -HMG are potentially inactivated by active displacement from these sites, whereas Sp100A is retained to amplify Ad gene expression. Ad-dependent loss of Sp100 SUMOylation is another crucial part of the virus repertoire to counteract intrinsic immunity by circumventing Sp100 association with HP1, therefore limiting chromatin condensation. We provide evidence that Ad selectively counteracts antiviral responses and, at the same time, benefits from PML-NB-associated components which support viral gene expression by actively recruiting them to PML track-like structures. Our findings provide insights into novel strategies for manipulating transcriptional regulation to either inactivate or amplify viral gene expression. IMPORTANCE We describe an adenoviral evasion strategy that involves isoform-specific and active manipulation of the PML-associated restriction factor Sp100. Recently, we reported that the adenoviral transactivator E1A targets PML-II to efficiently activate viral transcription. In contrast, the PML-associated proteins Daxx and ATRX are inhibited by early viral factors. We show that this concept is more intricate and significant than originally believed, since adenoviruses apparently take advantage of specific PML-NB-associated proteins and simultaneously inhibit antiviral measures to maintain the viral infectious program. Specifically, we observed Ad-induced relocalization of the Sp100 isoforms B, C, and HMG from PML-NBs juxtaposed with viral replication centers. In contrast, Sp100A is retained at Ad-induced PML tracks that surround the newly formed viral replication centers, acting as designated sites of active transcription. The host restriction factors Sp100B, -C, and -HMG are potentially inactivated by active displacement from these sites, whereas Sp100A is retained to amplify Ad gene expression.
Collapse
Affiliation(s)
- Julia Berscheminski
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Peter Wimmer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Juliane Brun
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Wing Hang Ip
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Peter Groitl
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Tim Horlacher
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ellis Jaffray
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ron T. Hay
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sabrina Schreiner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
12
|
Rivera-Molina YA, Martínez FP, Tang Q. Nuclear domain 10 of the viral aspect. World J Virol 2013; 2:110-122. [PMID: 24255882 PMCID: PMC3832855 DOI: 10.5501/wjv.v2.i3.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 05/31/2013] [Accepted: 07/11/2013] [Indexed: 02/05/2023] Open
Abstract
Nuclear domain 10 (ND10) are spherical bodies distributed throughout the nucleoplasm and measuring around 0.2-1.0 μm. First observed under an electron microscope, they were originally described as dense bodies found in the nucleus. They are known by a number of other names, including Promyelocytic Leukemia bodies (PML bodies), Kremer bodies, and PML oncogenic domains. ND10 are frequently associated with Cajal bodies and cleavage bodies. It has been suggested that they play a role in regulating gene transcription. ND10 were originally characterized using human autoantisera, which recognizes Speckled Protein of 100 kDa, from patients with primary biliary cirrhosis. At the immunohistochemical level, ND10 appear as nuclear punctate structures, with 10 indicating the approximate number of dots per nucleus observed. ND10 do not colocalize with kinetochores, centromeres, sites of mRNA processing, or chromosomes. Resistance of ND10 antigens to nuclease digestion and salt extraction suggest that ND10 are associated with the nuclear matrix. They are often identified by immunofluorescent assay using specific antibodies against PML, Death domain-associated protein, nuclear dot protein (NDP55), and so on. The role of ND10 has long been the subject of investigation, with the specific connection of ND10 and viral infection having been a particular focus for almost 20 years. This review summarizes the relationship of ND10 and viral infection. Some future study directions are also discussed.
Collapse
|
13
|
Guise AJ, Budayeva HG, Diner BA, Cristea IM. Histone deacetylases in herpesvirus replication and virus-stimulated host defense. Viruses 2013; 5:1607-32. [PMID: 23807710 PMCID: PMC3738950 DOI: 10.3390/v5071607] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence highlights a critical role for protein acetylation during herpesvirus infection. As prominent modulators of protein acetylation, histone deacetylases (HDACs) are essential transcriptional and epigenetic regulators. Not surprisingly, viruses have evolved a wide array of mechanisms to subvert HDAC functions. Here, we review the mechanisms underlying HDAC regulation during herpesvirus infection. We next discuss the roles of acetylation in host defense against herpesvirus infection. Finally, we provide a perspective on the contribution of current mass spectrometry-based “omic” technologies to infectious disease research, offering a systems biology view of infection.
Collapse
Affiliation(s)
| | | | | | - Ileana M. Cristea
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-609-258-9417; Fax: +1-609-258-4575
| |
Collapse
|
14
|
Hubackova S, Krejcikova K, Bartek J, Hodny Z. Interleukin 6 signaling regulates promyelocytic leukemia protein gene expression in human normal and cancer cells. J Biol Chem 2012; 287:26702-14. [PMID: 22711534 DOI: 10.1074/jbc.m111.316869] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Tumor suppressor PML is induced under viral and genotoxic stresses by interferons and JAK-STAT signaling. However, the mechanism responsible for its cell type-specific regulation under non-stimulated conditions is poorly understood. To analyze the variation of PML expression, we utilized three human cell types, BJ fibroblasts and HeLa and U2OS cell lines, each with a distinct PML expression pattern. Analysis of JAK-STAT signaling in the three cell lines revealed differences in levels of activated STAT3 but not STAT1 correlating with PML mRNA and protein levels. RNAi-mediated knockdown of STAT3 decreased PML expression; both STAT3 level/activity and PML expression relied on IL6 secreted into culture media. We mapped the IL6-responsive sequence to an ISRE(-595/-628) element of the PML promoter. The PI3K/Akt/NFκB branch of IL6 signaling showed also cell-type dependence, being highest in BJ, intermediate in HeLa, and lowest in U2OS cells and correlated with IL6 secretion. RNAi-mediated knockdown of NEMO (NF-κ-B essential modulator), a key component of NFκB activation, suppressed NFκB targets LMP2 and IRF1 together with STAT3 and PML. Combined knockdown of STAT3 and NEMO did not further promote PML suppression, and it can be bypassed by exogenous IL6, indicating the NF-κB pathway acts upstream of JAK-STAT3 through induction of IL6. Our results indicate that the cell type-specific activity of IL6 signaling pathways governs PML expression under unperturbed growth conditions. As IL6 is induced in response to various viral and genotoxic stresses, this cytokine may regulate autocrine/paracrine induction of PML under these pathophysiological states as part of tissue adaptation to local stress.
Collapse
Affiliation(s)
- Sona Hubackova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | | | | | | |
Collapse
|
15
|
Abstract
Since posttranslational modification (PTM) by the small ubiquitin-related modifiers (SUMOs) was discovered over a decade ago, a huge number of cellular proteins have been found to be reversibly modified, resulting in alteration of differential cellular pathways. Although the molecular consequences of SUMO attachment are difficult to predict, the underlying principle of SUMOylation is altering inter- and/or intramolecular interactions of the modified substrate, changing localization, stability, and/or activity. Unsurprisingly, many different pathogens have evolved to exploit the cellular SUMO modification system due to its functional flexibility and far-reaching functional downstream consequences. Although the extensive knowledge gained so far is impressive, a definitive conclusion about the role of SUMO modification during virus infection in general remains elusive and is still restricted to a few, yet promising concepts. Based on the available data, this review aims, first, to provide a detailed overview of the current state of knowledge and, second, to evaluate the currently known common principles/molecular mechanisms of how human pathogenic microbes, especially viruses and their regulatory proteins, exploit the host cell SUMO modification system.
Collapse
|
16
|
Reichelt M, Wang L, Sommer M, Perrino J, Nour AM, Sen N, Baiker A, Zerboni L, Arvin AM. Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus. PLoS Pathog 2011; 7:e1001266. [PMID: 21304940 PMCID: PMC3033373 DOI: 10.1371/journal.ppat.1001266] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 12/30/2010] [Indexed: 12/24/2022] Open
Abstract
The herpesviruses, like most other DNA viruses, replicate in the host cell nucleus. Subnuclear domains known as promyelocytic leukemia protein nuclear bodies (PML-NBs), or ND10 bodies, have been implicated in restricting early herpesviral gene expression. These viruses have evolved countermeasures to disperse PML-NBs, as shown in cells infected in vitro, but information about the fate of PML-NBs and their functions in herpesvirus infected cells in vivo is limited. Varicella-zoster virus (VZV) is an alphaherpesvirus with tropism for skin, lymphocytes and sensory ganglia, where it establishes latency. Here, we identify large PML-NBs that sequester newly assembled nucleocapsids (NC) in neurons and satellite cells of human dorsal root ganglia (DRG) and skin cells infected with VZV in vivo. Quantitative immuno-electron microscopy revealed that these distinctive nuclear bodies consisted of PML fibers forming spherical cages that enclosed mature and immature VZV NCs. Of six PML isoforms, only PML IV promoted the sequestration of NCs. PML IV significantly inhibited viral infection and interacted with the ORF23 capsid surface protein, which was identified as a target for PML-mediated NC sequestration. The unique PML IV C-terminal domain was required for both capsid entrapment and antiviral activity. Similar large PML-NBs, termed clastosomes, sequester aberrant polyglutamine (polyQ) proteins, such as Huntingtin (Htt), in several neurodegenerative disorders. We found that PML IV cages co-sequester HttQ72 and ORF23 protein in VZV infected cells. Our data show that PML cages contribute to the intrinsic antiviral defense by sensing and entrapping VZV nucleocapsids, thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The efficient sequestration of virion capsids in PML cages appears to be the outcome of a basic cytoprotective function of this distinctive category of PML-NBs in sensing and safely containing nuclear aggregates of aberrant proteins.
Collapse
Affiliation(s)
- Mike Reichelt
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The nucleus is unique amongst cellular organelles in that it contains a myriad of discrete suborganelles. These nuclear bodies are morphologically and molecularly distinct entities, and they host specific nuclear processes. Although the mode of biogenesis appears to differ widely between individual nuclear bodies, several common design principles are emerging, particularly, the ability of nuclear bodies to form de novo, a role of RNA as a structural element and self-organization as a mode of formation. The controlled biogenesis of nuclear bodies is essential for faithful maintenance of nuclear architecture during the cell cycle and is an important part of cellular responses to intra- and extracellular events.
Collapse
Affiliation(s)
- Miroslav Dundr
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, North Chicago, Ilinois 60064, USA.
| | | |
Collapse
|
18
|
Xing J, Wang S, Li Y, Guo H, Zhao L, Pan W, Lin F, Zhu H, Wang L, Li M, Wang L, Zheng C. Characterization of the subcellular localization of herpes simplex virus type 1 proteins in living cells. Med Microbiol Immunol 2010; 200:61-8. [PMID: 20949280 DOI: 10.1007/s00430-010-0175-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Indexed: 12/16/2022]
Abstract
In this study, we presented the construction of a library of expression clones for the herpes simplex virus type 1 (HSV-1) proteome and subcellular localization map of HSV-1 proteins in living cells using yellow fluorescent protein (YFP) fusion proteins. As a result, 21 proteins showed cytoplasmic or subcytoplasmic localization, 16 proteins showed nuclear or subnuclear localization, and others were present both in the nucleus and cytoplasm. Interestingly, most capsid proteins showed enriched or exclusive localization in the nucleus, and most of the envelope proteins showed cytoplasmic localization, suggesting that subcellular localization of the proteins correlated with their functions during virus replication. These results present a subcellular localization map of HSV-1 proteins in living cells, which provide useful information to further characterize the functions of these proteins.
Collapse
Affiliation(s)
- Junji Xing
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Molin Y, Frisk P, Hjelm E, Blomberg J, Friman G, Ilbäck NG. Arsenic trioxide influences viral replication in target organs of coxsackievirus B3-infected mice. Microbes Infect 2010; 12:1027-34. [PMID: 20638482 DOI: 10.1016/j.micinf.2010.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/23/2010] [Accepted: 07/06/2010] [Indexed: 10/19/2022]
Abstract
New antiviral agents are urgently needed. Based on in vitro studies, arsenic trioxide (As₂O₃) seems to affect viral replication, although this has been studied only marginally in vivo. In this study the replication of coxsackievirus B3 (CVB3) was studied in Balb/c mice administered 1 mg As₂O₃/kg bw once daily during 7 days of infection and in Vero cells exposed for 3 or 5 days to 0.4, 2 or 4 μM As₂O₃. Viral RNA was measured by reverse transcription PCR (RT-PCR) (in vitro and in vivo) and arsenic concentration was measured by inductively coupled plasma-mass spectrometry (ICP-MS) (in vivo). In vivo, As₂O₃ decreased viral RNA in the brain on days 3 (by 81%; p < 0.05) and 7 (by 97%; p < 0.01) and in the pancreas on day 7 (by 75%; p < 0.05), two of the target organs of this infection. The results were confirmed in vitro, where As₂O₃ dose-dependently reduced viral RNA, with the effect being more pronounced in the surrounding culture medium than inside the infected cells, indicating an impaired virion release. Thus, As₂O₃ reduced CVB3 replication both in vitro and in vivo, indicating that As₂O₃ is a viable option in the pursuit of new therapeutic agents against viral infections.
Collapse
Affiliation(s)
- Ylva Molin
- Infectious Diseases, Department of Medical Sciences, Uppsala University Hospital, S-751 85 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
20
|
Xu Z, Chan HY, Lam WL, Lam KH, Lam LSM, Ng TB, Au SWN. SUMO proteases: redox regulation and biological consequences. Antioxid Redox Signal 2009; 11:1453-84. [PMID: 19186998 DOI: 10.1089/ars.2008.2182] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Small-ubiquitin modifier (SUMO) has emerged as a novel modification system that governs the activities of a wide spectrum of protein substrates. SUMO-specific proteases (SENP) are of particular interest, as they are responsible for both the maturation of SUMO precursors and for their deconjugation. The interruption of SENPs has been implicated in embryonic defects and carcinoma cells, indicating that a proper balance of SUMO conjugation and deconjugation is crucial. Recent advances in molecular and cellular biology have highlighted the distinct subcellular localization, and endopeptidase and isopeptidase activities of SENPs, suggesting that they are nonredundant. A better understanding of the molecular basis of SUMO recognition and hydrolytic cleavage has been obtained from the crystal structures of SENP-substrate complexes. While a number of proteomic studies have shown an upregulation of sumoylation, attention is now increasingly being directed towards the regulatory mechanism of sumoylation, in particular the oxidative effect. Findings on the oxidation-induced intermolecular disulfide of E1-E2 ligases and SENP1/2 have improved our understanding of the mechanism by which modification is switched up or down. More intriguingly, a growing body of evidence suggests that sumoylation cross-talks with other modifications, and that the upstream and downstream signaling pathway is co-regulated by more than one modifier.
Collapse
Affiliation(s)
- Zheng Xu
- Centre for Protein Science and Crystallography, Department of Biochemistry and Molecular Biotechnology Program, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
21
|
Molin Y, Frisk P, Ilbäck NG. Viral RNA kinetics is associated with changes in trace elements in target organs of Coxsackie virus B3 infection. Microbes Infect 2009; 11:493-9. [PMID: 19233309 DOI: 10.1016/j.micinf.2009.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 01/22/2009] [Accepted: 02/06/2009] [Indexed: 10/21/2022]
Abstract
Trace elements are pivotal for the host defense, as well as potentially important for viral replication and virulence. Studies of sequential changes in viral replication in target organs of infection are sparse and a possible association with changes in specific trace elements is unknown. In this study Balb/c mice were infected with Coxsackie virus B3 (CVB3). Results indicated that sequential changes in viral replication (RT-PCR) were related to changes in trace element (arsenic, copper, iron, selenium and zinc) concentrations (as determined by ICP-MS) on days 3, 5 and 7 of the infection in serum, heart, lung, liver, pancreas, kidney, spleen, intestine and brain. After an initial viral peak on day 3, viral load drastically decreased in all organs, i.e. by >99% (serum), 97% (lung), 98% (liver), 60% (pancreas), 95% (kidney) and 93% (spleen), except in the heart, intestine and brain in which viral load increased after day 3. Selenium decreased in all organs except the heart while arsenic decreased in all organs except the kidney, spleen and brain. Moreover, selenium was negatively correlated to viral load in serum, liver, pancreas and intestine. To conclude, these findings give evidence that trace elements are directly involved in the replication of CVB3.
Collapse
Affiliation(s)
- Ylva Molin
- Infectious Diseases, Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden.
| | | | | |
Collapse
|
22
|
Expression of herpes simplex virus type 1 DNA polymerase by recombinant vaccinia virus. Virus Genes 2009; 38:232-42. [PMID: 19194793 DOI: 10.1007/s11262-009-0330-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
Abstract
We have studied expression of the catalytic subunit of a phosphonoacetic acid-resistant (PAA(r)) DNA polymerase (Pol) of herpes simplex virus type 1 (HSV-1) strain ANG by recombinant vaccinia virus (VV) engineered with the dominant Ecogpt selection system. In agreement with the vector construction recombinant Pol expression was regulated like a VV late function. De novo-synthesis of the 136-kDa Pol polypeptide was detectable as early as 6 h postinfection, peaked between 10 and 12 h, and correlated with specific polymerase activity. Compared with HSV-1 lytic infection, the recombinant Pol protein exhibited a reduced stability with a half-life of 7 h. Whereas the Pol-associated exonuclease activities, determined from lysates of recombinant VV- and HSV-1-infected cells, were almost identical, the polymerizing activity of recombinant Pol ceased after 10 min of incubation, in correlation with the fact that Pol depends on its cofactor for optimal chain elongation. Kinetics of cellular localization, tracked by a monospecific Pol antibody, revealed that the catalytic subunit initially assembled to a few dot-like nuclear sites, reminiscent of HSV-1 DNA replication compartments. Later during infection, the localization of recombinant Pol matched with that found in lytically HSV-1-infected cells. This study demonstrates that nuclear transport and localization of the Pol subunit is independent of herpesviral functions, and neither requires the presence of herpesviral DNA sequences. Recombinant VV provides a promising alternative to explore protein interactions of the herpesviral replication machinery in their authentic cellular environment.
Collapse
|
23
|
The replication cycle of varicella-zoster virus: analysis of the kinetics of viral protein expression, genome synthesis, and virion assembly at the single-cell level. J Virol 2009; 83:3904-18. [PMID: 19193797 DOI: 10.1128/jvi.02137-08] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Varicella-zoster virus (VZV) is a human alphaherpesvirus that is highly cell associated in cell culture. Because cell-free virus yields are too low to permit the synchronous infections needed for time-resolved analyses, information is lacking about the sequence of events during the VZV replication cycle. To address this challenge, we differentially labeled VZV-infected inoculum cells (input) and uninfected (output) cells with fluorescent cell dyes or endocytosed nanogold particles and evaluated newly infected cells by confocal immunofluorescence or electron microscopy (EM) at the single-cell level at defined intervals. We demonstrated the spatiotemporal expression of six major VZV proteins, ORF61, IE62, IE63, ORF29, ORF23, and gE, representing all putative kinetic classes, for the first time. Newly synthesized ORF61, as well as IE62, the major VZV transactivator, appeared within 1 h, and they were targeted to different subnuclear compartments. The formation of VZV DNA replication compartments started between 4 and 6 h, involved recruitment of ORF29 to putative IE62 prereplication sites, and resulted in large globular nuclear compartments where newly synthesized viral DNA accumulated. Although considered a late protein, gE accumulated in the Golgi compartment at as early as 4 h. ORF23 capsid protein was present at 9 h. The assembly of viral nucleocapsids and mature enveloped VZ virions was detected by 9 to 12 h by time-resolved EM. Although syncytium formation is a hallmark of VZV infection, infection of neighboring cells did not require cell-cell fusion; its occurrence from 9 h is likely to amplify VZV replication. Our results define the productive cycle of VZV infection in a single cell as occurring in 9 to 12 h.
Collapse
|
24
|
McNally BA, Trgovcich J, Maul GG, Liu Y, Zheng P. A role for cytoplasmic PML in cellular resistance to viral infection. PLoS One 2008; 3:e2277. [PMID: 18509536 PMCID: PMC2386554 DOI: 10.1371/journal.pone.0002277] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/05/2008] [Indexed: 11/23/2022] Open
Abstract
PML gene was discovered as a fusion partner with retinoic acid receptor (RAR) α in the t(15:17) chromosomal translocation associated with acute promyelocytic leukemia (APL). Nuclear PML protein has been implicated in cell growth, tumor suppression, apoptosis, transcriptional regulation, chromatin remodeling, DNA repair, and anti-viral defense. The localization pattern of promyelocytic leukemia (PML) protein is drastically altered during viral infection. This alteration is traditionally viewed as a viral strategy to promote viral replication. Although multiple PML splice variants exist, we demonstrate that the ratio of a subset of cytoplasmic PML isoforms lacking exons 5 & 6 is enriched in cells exposed to herpes simplex virus-1 (HSV-1). In particular, we demonstrate that a PML isoform lacking exons 5 & 6, called PML Ib, mediates the intrinsic cellular defense against HSV-1 via the cytoplasmic sequestration of the infected cell protein (ICP) 0 of HSV-1. The results herein highlight the importance of cytoplasmic PML and call for an alternative, although not necessarily exclusive, interpretation regarding the redistribution of PML that is seen in virally infected cells.
Collapse
Affiliation(s)
- Beth A. McNally
- Division of Cancer Immunology, Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, United States of America
- Department of Surgery, Comprehensive Cancer Center, Program of Molecular Mechanism of Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joanne Trgovcich
- Division of Cancer Immunology, Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Gerd G. Maul
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Yang Liu
- Division of Cancer Immunology, Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, United States of America
- Department of Surgery, Comprehensive Cancer Center, Program of Molecular Mechanism of Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pan Zheng
- Division of Cancer Immunology, Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, United States of America
- Department of Surgery, Comprehensive Cancer Center, Program of Molecular Mechanism of Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
25
|
Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 2008; 82:7325-35. [PMID: 18480450 DOI: 10.1128/jvi.00723-08] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The adenovirus (Ad) E4 ORF3 protein is both necessary and sufficient to reorganize a nuclear subdomain, the PML nuclear body (PML-NB), from punctate structures into elongated nuclear tracks. PML-NB disruption is recapitulated by a variety of DNA viruses that encode proteins responsible for compromising PML-NB integrity through different mechanisms. PML-NB disruption has been correlated with the antagonism of both innate and intrinsic immune responses. The E4 ORF3 protein is required for adenoviral DNA replication in the interferon (IFN)-induced antiviral state. This may reflect the fact that PML itself, in addition to several other PML-NB proteins, is encoded by an interferon-stimulated gene. Here, we demonstrate that reorganization of the PML-NB by E4 ORF3 antagonizes an innate antiviral response mediated by both PML and Daxx. Reduction of either of these proteins is sufficient to restore the replicative capacity of virus with the E4 ORF3 protein deleted in the IFN-induced antiviral state. Further, we provide evidence that both the HSV1 ICP0 and HCMV IE1 proteins, which disrupt PML-NBs by mechanistically distinct strategies, behave in a manner functionally analogous to E4 ORF3 with respect to antagonizing the IFN-induced antiviral state. In addition, we assert that this innate antiviral strategy mediated by PML and Daxx does not involve transcriptional repression. While early gene transcription is modestly diminished in the absence of E4 ORF3 protein expression, this reduction does not affect early protein function. We propose that, in addition to its ability to repress gene expression, the PML-NB participates in additional innate immune activities.
Collapse
|
26
|
Oligomerization of ICP4 and rearrangement of heat shock proteins may be important for herpes simplex virus type 1 prereplicative site formation. J Virol 2008; 82:6324-36. [PMID: 18434395 DOI: 10.1128/jvi.00455-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) DNA replication occurs in replication compartments that form in the nucleus by an ordered process involving a series of protein scaffold intermediates. Following entry of viral genomes into the nucleus, nucleoprotein complexes containing ICP4 can be detected at a position adjacent to nuclear domain 10 (ND10)-like bodies. ND10s are then disrupted by the viral E3 ubiquitin ligase ICP0. We have previously reported that after the dissociation of ND10-like bodies, ICP8 could be observed in a diffuse staining pattern; however, using more sensitive staining methods, we now report that in addition to diffuse staining, ICP8 can be detected in tiny foci adjacent to ICP4 foci. ICP8 microfoci contain UL9 and components of the helicase-primase complex. HSV infection also results in the reorganization of the heat shock cognate protein 70 (Hsc70) and the 20S proteasome into virus-induced chaperone-enriched (VICE) domains. In this report we show that VICE domains are distinct but adjacent to the ICP4 nucleoprotein complexes and the ICP8 microfoci. In cells infected with an ICP4 mutant virus encoding a mutant protein that cannot oligomerize on DNA, ICP8 microfoci are not detected; however, VICE domains could still be formed. These results suggest that oligomerization of ICP4 on viral DNA may be essential for the formation of ICP8 microfoci but not for the reorganization of host cell chaperones into VICE domains.
Collapse
|
27
|
Netherton C, Moffat K, Brooks E, Wileman T. A guide to viral inclusions, membrane rearrangements, factories, and viroplasm produced during virus replication. Adv Virus Res 2007; 70:101-82. [PMID: 17765705 PMCID: PMC7112299 DOI: 10.1016/s0065-3527(07)70004-0] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Virus replication can cause extensive rearrangement of host cell cytoskeletal and membrane compartments leading to the “cytopathic effect” that has been the hallmark of virus infection in tissue culture for many years. Recent studies are beginning to redefine these signs of viral infection in terms of specific effects of viruses on cellular processes. In this chapter, these concepts have been illustrated by describing the replication sites produced by many different viruses. In many cases, the cellular rearrangements caused during virus infection lead to the construction of sophisticated platforms in the cell that concentrate replicase proteins, virus genomes, and host proteins required for replication, and thereby increase the efficiency of replication. Interestingly, these same structures, called virus factories, virus inclusions, or virosomes, can recruit host components that are associated with cellular defences against infection and cell stress. It is possible that cellular defence pathways can be subverted by viruses to generate sites of replication. The recruitment of cellular membranes and cytoskeleton to generate virus replication sites can also benefit viruses in other ways. Disruption of cellular membranes can, for example, slow the transport of immunomodulatory proteins to the surface of infected cells and protect against innate and acquired immune responses, and rearrangements to cytoskeleton can facilitate virus release.
Collapse
Affiliation(s)
- Christopher Netherton
- Vaccinology Group, Pirbright Laboratories, Institute for Animal Health, Surrey, United Kingdom
| | | | | | | |
Collapse
|
28
|
Abstract
During recent years there have been several incidents in which symptoms of disease have been linked to consumption of food contaminated by chemical substances (e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD). Furthermore, outbreaks of infections in food-producing animals have attracted major attention regarding the safety of consumers, e.g., Bovine Spongiform Encephalitis (BSE) and influenza in chicken. As shown for several xenobiotics in an increasing number of experimental studies, even low-dose xenobiotic exposure may impair immune function over time, as well as microorganism virulence, resulting in more severe infectious diseases and associated complications. Moreover, during ongoing infection, xenobiotic uptake and distribution are often changed resulting in increased toxic insult to the host. The interactions among infectious agents, nutrients, and xenobiotics have thus become a developing concern and new avenue of research in food toxicology as well as in food-borne diseases. From a health perspective, in the risk assessment of xenobiotics in our food and environment, synergistic effects among microorganisms, nutrients, and xenobiotics will have to be considered. Otherwise, such effects may gradually change the disease panorama in society.
Collapse
|
29
|
Silverstein PS, Li R, Murdock C, Waldbieser GC. Poly I:C inhibits the expression of channel catfish virus immediate-early gene ORF 1 at early times after infection. FISH & SHELLFISH IMMUNOLOGY 2007; 23:479-84. [PMID: 17303437 DOI: 10.1016/j.fsi.2006.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 12/04/2006] [Accepted: 12/08/2006] [Indexed: 05/14/2023]
Abstract
Channel catfish virus (CCV) is a herpesvirus that infects channel catfish fry and fingerlings. Previous research has demonstrated that Type I interferons inhibit the expression of immediate-early (IE) genes of some mammalian herpesviruses. However, CCV is distantly related to the mammalian herpesviruses and Type I interferons from higher vertebrates exhibit only 20% similarity to fish interferons. In this work we demonstrate that treatment of channel catfish ovary (CCO) cells, a fibroblast-like cell line, with poly I:C, a known inducer of Type I interferons, results in inhibition of expression of the CCV IE gene ORF 1. Thus, although the genes involved have diverged, the mechanism appears to be conserved. If this paradigm holds true for other CCV IE-Type I interferon interactions, it could have important implications for the impact of CCV on the host immune system.
Collapse
Affiliation(s)
- Peter S Silverstein
- USDA, Agricultural Research Service, Catfish Genetics Research Unit, Stoneville, MS 38776, USA.
| | | | | | | |
Collapse
|
30
|
Chen Y, Livingston CM, Carrington-Lawrence SD, Bai P, Weller SK. A mutation in the human herpes simplex virus type 1 UL52 zinc finger motif results in defective primase activity but can recruit viral polymerase and support viral replication efficiently. J Virol 2007; 81:8742-51. [PMID: 17553899 PMCID: PMC1951384 DOI: 10.1128/jvi.00174-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) encodes a heterotrimeric helicase/primase complex consisting of UL5, UL8, and UL52. UL5 contains conserved helicase motifs, while UL52 contains conserved primase motifs, including a zinc finger motif. Although HSV-1 and HSV-2 UL52s contain a leucine residue at position 986, most other herpesvirus primase homologues contain a phenylalanine at this position. We constructed an HSV-1 UL52 L986F mutation and found that it can complement a UL52 null virus more efficiently than the wild type (WT). We thus predicted that the UL5/8/52 complex containing the L986F mutation might possess increased primase activity; however, it exhibited only 25% of the WT level of primase activity. Interestingly, the mutant complex displayed elevated levels of DNA binding and single-stranded DNA-dependent ATPase and helicase activities. This result confirms a complex interdependence between the helicase and primase subunits. We previously showed that primase-defective mutants failed to recruit the polymerase catalytic subunit UL30 to prereplicative sites, suggesting that an active primase, or primer synthesis, is required for polymerase recruitment. Although L986F exhibits decreased primase activity, it can support efficient replication and recruit UL30 efficiently to replication compartments, indicating that a partially active primase is capable of recruiting polymerase. Extraction with detergents prior to fixation can extract nucleosolic proteins but not proteins bound to chromatin or the nuclear matrix. We showed that UL30 was extracted from replication compartments while UL42 remained bound, suggesting that UL30 may be tethered to the replication fork by protein-protein interactions.
Collapse
Affiliation(s)
- Yan Chen
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
31
|
Ullman AJ, Reich NC, Hearing P. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 2007; 81:4744-52. [PMID: 17301128 PMCID: PMC1900183 DOI: 10.1128/jvi.02385-06] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 02/08/2007] [Indexed: 11/20/2022] Open
Abstract
The PML oncogenic domain (POD/ND10/PML body) is a common target of DNA viruses, which replicate their genomes in proximity to this nuclear structure. The adenovirus early protein E4 ORF3 is both necessary and sufficient to rearrange PODs from punctate bodies into track-like structures. Although multiple hypotheses exist, the precise reason for this activity has not yet been elucidated. PML, the protein responsible for nucleating PODs, is an interferon (IFN)-stimulated gene, implicating the participation of this nuclear body in an innate antiviral response. Here, we demonstrate that E4 ORF3 is critical to the replicative success of adenovirus during the IFN-induced antiviral state. When cells are pretreated with either IFN-alpha or IFN-gamma, a mutant virus that does not express E4 ORF3 is severely compromised for replication. This result suggests the functional significance of ORF3 track formation is the inhibition of a POD-mediated, antiviral mechanism. Replication of the E4 ORF3 mutant virus can be rescued following the introduction of E4 ORF3 from evolutionarily divergent adenoviruses, suggesting a conserved function for E4 ORF3 inhibition of the IFN-induced antiviral state. Furthermore, E4 ORF3 inhibition of an IFN-induced response is unrelated to the inhibition of adenovirus replication by the Mre11-Rad50-Nbs1 DNA repair complex. We propose that the evolutionarily conserved function of the adenovirus E4 ORF3 protein is the inhibition of a host interferon response to viral infection via disruption of the PML oncogenic domain.
Collapse
Affiliation(s)
- Amanda J Ullman
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
32
|
Frazia SL, Amici C, Santoro MG. Antiviral Activity of Proteasome Inhibitors in Herpes Simplex Virus-1 Infection: Role of Nuclear Factor-κB. Antivir Ther 2006. [DOI: 10.1177/135965350601100805] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Herpes simplex virus type 1 (HSV-1) is a potent inducer of nuclear factor-κB (NF-κB), a cellular transcription factor with a crucial role in promoting inflammation and controlling cell proliferation and survival. Objectives On the basis of the recent demonstration that HSV-1-induced NF-κB is actively recruited to κB-binding sites in the HSV-1 infected-cell protein 0 (ICP0) promoter enhancing viral transcription and replication, we investigated the effect of proteasome inhibitors MG132, MG115 and epoxomicin, which block NF-κB function by preventing the degradation of the inhibitory proteins IκBα, on HSV-1-induced NF-κB activation and viral replication. Methods Antiviral activity of proteasome inhibitors was analysed in HSV-1-infected HEp2 cells by determining infective virus titres by CPE50%, viral RNA synthesis by RT-PCR, and viral protein synthesis by immunoblot analysis or immunofluorescence. ICP0 transcription was studied in transient transfection experiments using the ICP0 promoter-luciferase IE1-Luc construct. IκBα degradation and NF-κB activity were determined by immunoblot analysis and EMSA, respectively. Results Proteasome inhibitors were found to prevent HSV-1-induced NF-κB activation in the early phase of infection. Block of virus-induced NF-κB activation resulted in inhibiting HSV-1 ICP0 gene expression, in decreasing the level of immediate-early and late viral proteins, and ultimately in greatly suppressing viral replication. The antiviral effect was lost if treatment was started after NF-κB activation, and appeared to be independent of the HSV-1-induced activation of the JNK pathway. Conclusions Proteasome inhibitors possess NF-κB-dependent antiherpetic activity. The results described further identify the IKK/NF-κB pathway as a suitable target for novel antiherpetic drugs.
Collapse
Affiliation(s)
- Simone La Frazia
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Carla Amici
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
33
|
Stallings CL, Duigou GJ, Gershon AA, Gershon MD, Silverstein SJ. The cellular localization pattern of Varicella-Zoster virus ORF29p is influenced by proteasome-mediated degradation. J Virol 2006; 80:1497-512. [PMID: 16415026 PMCID: PMC1346923 DOI: 10.1128/jvi.80.3.1497-1512.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Varicella-zoster virus (VZV) open reading frame 29 (ORF29) encodes a single-stranded DNA binding protein. During lytic infection, ORF29p is localized primarily to infected-cell nuclei, whereas during latency it appears in the cytoplasm of infected neurons. Following reactivation, ORF29p accumulates in the nucleus. In this report, we analyze the cellular localization patterns of ORF29p during VZV infection and during autonomous expression. Our results demonstrate that ORF29p is excluded from the nucleus in a cell-type-specific manner and that its cellular localization pattern may be altered by subsequent expression of VZV ORF61p or herpes simplex virus type 1 ICP0. In these cases, ORF61p and ICP0 induce nuclear accumulation of ORF29p in cell lines where it normally remains cytoplasmic. One cellular system utilized by ICP0 to influence protein abundance is the proteasome degradation pathway. Inhibition of the 26S proteasome, but not heat shock treatment, resulted in accumulation of ORF29p in the nucleus, similar to the effect of ICP0 expression. Immunofluorescence microscopy and pulse-chase experiments reveal that stabilization of ORF29p correlates with its nuclear accumulation and is dependent on a functional nuclear localization signal. ORF29p nuclear translocation in cultured enteric neurons and cells derived from an astrocytoma is reversible, as the protein's distribution and stability revert to the previous states when the proteasomal activity is restored. Thus, stabilization of ORF29p leads to its nuclear accumulation. Although proteasome inhibition induces ORF29p nuclear accumulation, this is not sufficient to reactivate latent VZV or target the immediate-early protein ORF62p to the nucleus in cultured guinea pig enteric neurons.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Line
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Enteric Nervous System/metabolism
- Enteric Nervous System/virology
- Exons
- Guinea Pigs
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/metabolism
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/metabolism
- Herpesvirus 3, Human/pathogenicity
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Leupeptins/pharmacology
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutation
- Open Reading Frames
- Protease Inhibitors/pharmacology
- Proteasome Endopeptidase Complex/metabolism
- Proteasome Inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Subcellular Fractions/metabolism
- Subcellular Fractions/virology
- Tissue Culture Techniques
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Christina L Stallings
- Integrated Program in Cellular, Molecular and Biophysical Studies, and Department of Microbiology, Columbia University College of Physicians and Surgeons, 701 W. 168th Street, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
34
|
Aguilar JS, Devi-Rao GV, Rice MK, Sunabe J, Ghazal P, Wagner EK. Quantitative comparison of the HSV-1 and HSV-2 transcriptomes using DNA microarray analysis. Virology 2006; 348:233-41. [PMID: 16448680 DOI: 10.1016/j.virol.2005.12.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 11/30/2005] [Accepted: 12/19/2005] [Indexed: 10/25/2022]
Abstract
The genomes of human herpes virus type-1 and type-2 share a high degree of sequence identity; yet, they exhibit important differences in pathology in their natural human host as well as in animal host and cell cultures. Here, we report the comparative analysis of the time and relative abundance profiles of the transcription of each virus type (their transcriptomes) using parallel infections and microarray analysis using HSV-1 probes which hybridize with high efficiency to orthologous HSV-2 transcripts. We have confirmed that orthologous transcripts belong to the same kinetic class; however, the temporal pattern of accumulation of 4 transcripts (U(L)4, U(L)29, U(L)30, and U(L)31) differs in infections between the two virus types. Interestingly, the protein products of these transcripts are all involved in nuclear organization and viral DNA localization. We discuss the relevance of these findings and whether they may have potential roles in the pathological differences of HSV-1 and HSV-2.
Collapse
Affiliation(s)
- J S Aguilar
- Department of Molecular Biology and Biochemistry and Center for Virus Research, University of California, Irvine, Irvine, CA 92697, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Benyamin G, Lindh U, Frisk P, Friman G, Ilbäck NG. Arsenic is decreased in target organs during viral infection in mice. J Trace Elem Med Biol 2006; 20:121-6. [PMID: 16785052 DOI: 10.1016/j.jtemb.2005.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 12/08/2005] [Indexed: 10/25/2022]
Abstract
Arsenic (As), a potentially toxic trace element, has been shown to influence viral replication and resistance to microbial infection. However, the impact of infection on the normal As status in target organs involved in the disease process has not been studied to date. In the present study, As was measured through inductively coupled plasma mass spectrometry in the plasma, liver, spleen, kidney, heart, pancreas and brain at days 1 and 3 of coxsackievirus B3 infection in female Balb/c mice. The severity of the infection was assessed from clinical signs of disease. The infection changed plasma As in a biphasic pattern with a small increase (n.s.) at day 1 that turned into a decreasing trend (13%, p<0.05) by day 3. In the liver, spleen, heart, pancreas and kidney As was unchanged at day 1 but, at day 3, it had decreased by 71% (p<0.01), 64% (p<0.01), 55% (p<0.01), 63% (p<0.01) and 73% (p<0.01), respectively. In the brain, As went unchanged. The pathophysiological interpretation of these findings requires further research.
Collapse
Affiliation(s)
- Gad Benyamin
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University Hospital, S-751 85 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
36
|
Decman V, Freeman ML, Kinchington PR, Hendricks RL. Immune control of HSV-1 latency. Viral Immunol 2005; 18:466-73. [PMID: 16212525 DOI: 10.1089/vim.2005.18.466] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A hallmark of the herpes family of viruses is their ability to cause recurrent disease. Upon primary infection, Herpes Simplex virus (HSV) establishes a latent infection in sensory neurons that persists for the life of the individual. Reactivation of these latent viral genomes with virion formation is the source of virus for most HSV recurrent disease. This review details recent exciting findings supporting a role for the host immune system, particularly CD8+ T cells in maintaining HSV-1 in a latent state.
Collapse
Affiliation(s)
- Vilma Decman
- Department of Ophthalmology, Graduate Programs in Immunology, University of Pittsburgh School of Medicine, 203 Lothrop Street, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
37
|
Stallings CL, Silverstein S. Dissection of a novel nuclear localization signal in open reading frame 29 of varicella-zoster virus. J Virol 2005; 79:13070-81. [PMID: 16189009 PMCID: PMC1235848 DOI: 10.1128/jvi.79.20.13070-13081.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Open reading frame 29 (ORF29) of varicella-zoster virus (VZV) encodes a 120-kDa single-stranded DNA binding protein (ORF29p) that is not packaged in the virion and is expressed during latency. During lytic infection, ORF29p is localized primarily to infected cell nuclei. In contrast, ORF29p is found exclusively in the cytoplasm in neurons of the dorsal root ganglia obtained at autopsy from seropositive latently infected patients. ORF29p accumulates in the nuclei of neurons in dorsal root ganglia obtained at autopsy from patients with active zoster. The localization of this protein is, therefore, tightly correlated with the proposed VZV lytic/latent switch. In this report, we have investigated the nuclear import mechanism of ORF29p. We identified a novel nuclear targeting domain bounded by amino acids 9 to 154 of ORF29p that functions independent of other VZV-encoded factors. In vitro import assays in digitonin-permeabilized HeLa cells reveal that ORF29p is transported into the nucleus by a Ran-, karyopherin alpha- and beta-dependent mechanism. These data are further supported by the demonstration that a glutathione S-transferase-karyopherin alpha fusion interacts with ORF29p, but not with a protein containing a point mutation in its nuclear localization signal (NLS). Therefore, the region of ORF29p responsible for its nuclear targeting is also involved in the association with karyopherin alpha. As a result of this interaction, this noncanonical NLS appears to hijack the classical cellular nuclear import machinery. Elucidation of the mechanisms governing ORF29p nuclear targeting could shed light on the VZV reactivation process.
Collapse
Affiliation(s)
- Christina L Stallings
- Integrated Program in Cellular, Molecular and Biophysical Studies and the Department of Microbiology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
38
|
Fu L, Gao YS, Tousson A, Shah A, Chen TLL, Vertel BM, Sztul E. Nuclear aggresomes form by fusion of PML-associated aggregates. Mol Biol Cell 2005; 16:4905-17. [PMID: 16055507 PMCID: PMC1237092 DOI: 10.1091/mbc.e05-01-0019] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 07/08/2005] [Accepted: 07/18/2005] [Indexed: 12/28/2022] Open
Abstract
Nuclear aggregates formed by proteins containing expanded poly-glutamine (poly-Q) tracts have been linked to the pathogenesis of poly-Q neurodegenerative diseases. Here, we show that a protein (GFP170*) lacking poly-Q tracts forms nuclear aggregates that share characteristics of poly-Q aggregates. GFP170* aggregates recruit cellular chaperones and proteasomes, and alter the organization of nuclear domains containing the promyelocytic leukemia (PML) protein. These results suggest that the formation of nuclear aggregates and their effects on nuclear architecture are not specific to poly-Q proteins. Using GFP170* as a model substrate, we explored the mechanistic details of nuclear aggregate formation. Fluorescence recovery after photobleaching and fluorescence loss in photobleaching analyses show that GFP170* molecules exchange rapidly between aggregates and a soluble pool of GFP170*, indicating that the aggregates are dynamic accumulations of GFP170*. The formation of cytoplasmic and nuclear GFP170* aggregates is microtubule-dependent. We show that within the nucleus, GFP170* initially deposits in small aggregates at or adjacent to PML bodies. Time-lapse imaging of live cells shows that small aggregates move toward each other and fuse to form larger aggregates. The coalescence of the aggregates is accompanied by spatial rearrangements of the PML bodies. Significantly, we find that the larger nuclear aggregates have complex internal substructures that reposition extensively during fusion of the aggregates. These studies suggest that nuclear aggregates may be viewed as dynamic multidomain inclusions that continuously remodel their components.
Collapse
Affiliation(s)
- Lianwu Fu
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Ching RW, Dellaire G, Eskiw CH, Bazett-Jones DP. PML bodies: a meeting place for genomic loci? J Cell Sci 2005; 118:847-54. [PMID: 15731002 DOI: 10.1242/jcs.01700] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Promyelocytic leukemia (PML) bodies have been implicated in a variety of cellular processes, such as cell-cycle regulation, apoptosis, proteolysis, tumor suppression, DNA repair and transcription. Despite this, the function of PML bodies is still unknown. Direct and indirect evidence supports the hypothesis that PML bodies interact with specific genes or genomic loci. This includes the finding that the stability of PML bodies is affected by cell stress and changes in chromatin structure. PML bodies also facilitate the transcription and replication of double-stranded DNA viral genomes. Moreover, PML bodies associate with specific regions of high transcriptional activity in the cellular genome. We propose that PML bodies functionally interact with chromatin and are important for the regulation of gene expression.
Collapse
Affiliation(s)
- Reagan W Ching
- Programme in Cell Biology, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | | | | | | |
Collapse
|
40
|
Ghazal P, Visser AE, Gustems M, García R, Borst EM, Sullivan K, Messerle M, Angulo A. Elimination of ie1 significantly attenuates murine cytomegalovirus virulence but does not alter replicative capacity in cell culture. J Virol 2005; 79:7182-94. [PMID: 15890957 PMCID: PMC1112098 DOI: 10.1128/jvi.79.11.7182-7194.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 01/24/2005] [Indexed: 11/20/2022] Open
Abstract
The major immediate-early (MIE) genes of cytomegaloviruses (CMV) are broadly thought to be decisive regulators of lytic replication and reactivation from latency. To directly assess the role of the MIE protein IE1 during the infection of murine CMV (MCMV), we constructed an MCMV with exon 4 of the ie1 gene deleted. We found that, independent of the multiplicity of infection, the resulting recombinant virus, MCMVdie1, which fails to express the IE1 protein, was fully competent for early gene expression and replicated in different cultured cell types with identical kinetics to those of parental or revertant virus. Immunofluorescence microscopy studies revealed that MCMVdie1 was greatly impaired in its capacity to disrupt promyelocytic leukemia bodies in NIH 3T3 cells early after infection, a process that has been proposed to increase viral transcription efficiency. We examined MCMVdie1 in the murine model using both immunocompetent BALB/c and severe combined immunodeficient (SCID) mice. When MCMVdie1 was inoculated into these two types of mice, significantly lower viral titers were detected in infected organs than in those of the wild-type virus-infected animals. Moreover, the ie1-deficient MCMV exhibited a markedly reduced virulence. While all animals infected with 5 x 10(4) PFU of parental virus died by 30 days postinfection, SCID mice infected with a similar dose of MCMVdie1 did not succumb before 60 days postinfection. The in vivo defective growth phenotype of MCMVdie1 was abrogated upon rescue of ie1. These results demonstrate the significance of the ie1 gene for promoting an acute MCMV infection and virulence yet indicate that MCMV is able to grow in vivo, although impaired, in the absence of the ie1 gene.
Collapse
Affiliation(s)
- Peter Ghazal
- Scottish Centre for Genomic Technology and Informatics, University of Edinburgh, Medical School, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Khanna KM, Lepisto AJ, Decman V, Hendricks RL. Immune control of herpes simplex virus during latency. Curr Opin Immunol 2005; 16:463-9. [PMID: 15245740 DOI: 10.1016/j.coi.2004.05.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) persists within the host in the presence of concomitant immunity by establishing a latent infection within sensory neurons. HSV-1 latency is widely viewed as a neuron-enforced quiescent state of the virus, in which a lack of viral protein synthesis prevents recognition of the infected neuron by the host immune system. On the basis of recent findings, however, we propose a more dynamic view of HSV-1 latency characterized by persistent or intermittent low-level viral gene expression in some latently infected neurons. We further propose that HSV-1-specific memory/effector CD8(+) T lymphocytes that are retained in the ganglion in close apposition to the neurons prevent full reactivation and virion formation through IFN-gamma production and an additional undefined mechanism(s).
Collapse
Affiliation(s)
- Kamal M Khanna
- Graduate Program in Immunology, Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213-2588, USA
| | | | | | | |
Collapse
|
42
|
Everett RD, Zafiropoulos A. Visualization by live-cell microscopy of disruption of ND10 during herpes simplex virus type 1 infection. J Virol 2004; 78:11411-5. [PMID: 15452264 PMCID: PMC521835 DOI: 10.1128/jvi.78.20.11411-11415.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2004] [Accepted: 06/01/2004] [Indexed: 11/20/2022] Open
Abstract
ND10 structures are disrupted during herpes simplex virus type 1 (HSV-1) infection by viral regulatory protein ICP0. The significance of this effect remains controversial, partly because of a report that high-level expression of the major ND10 promyelocytic leukemia (PML) protein precludes ND10 disruption yet does not inhibit HSV-1 infection. Here we demonstrate dramatic reorganization of ND10 during HSV-1 infection by live-cell microscopy, even in the presence of overexpressed PML.
Collapse
Affiliation(s)
- Roger D Everett
- MRC Virology Unit, Church Street, University of Glasgow, Glasgow G11 5JR, Scotland, United Kingdom.
| | | |
Collapse
|
43
|
Wilkinson DE, Weller SK. Recruitment of cellular recombination and repair proteins to sites of herpes simplex virus type 1 DNA replication is dependent on the composition of viral proteins within prereplicative sites and correlates with the induction of the DNA damage response. J Virol 2004; 78:4783-96. [PMID: 15078960 PMCID: PMC387708 DOI: 10.1128/jvi.78.9.4783-4796.2004] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 01/05/2004] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) DNA replication is associated with nuclear domains called ND10, which contain host recombination proteins such as RPA, RAD51, and NBS1 and participate in the cell's response to DNA damage. The stages of HSV-1 infection have been described previously. Infected cells at stage IIIa are observed after the initial disruption of ND10 and display nuclear foci, or prereplicative sites, containing the viral single-stranded-DNA-binding protein (UL29), the origin-binding protein (UL9), and the heterotrimeric helicase-primase. At stage IIIb, the viral polymerase, its processivity factor, and the ND10, protein PML, are also recruited to these sites. In this work, RPA, RAD51, and NBS1 were observed predominantly in stage IIIb but not stage IIIa prereplicative sites, suggesting that the efficient recruitment of these recombination proteins is dependent on the presence of the viral polymerase and other replication proteins within these sites. On the other hand, Ku86 was not found in any of the precursors to replication compartments, suggesting that it is excluded from the early stages of HSV-1 replication. Western blot analysis showed that RPA and NBS1 were (hyper)phosphorylated during infection, indicating that infection induces the host response to DNA damage. Finally, RPA, RAD51, and NBS1 were found to be associated with UL29 foci observed in transfected cells expressing UL29 and the helicase-primase heterotrimer and containing intact ND10. The ability to recruit recombination and repair proteins to various subassemblies of viral replication proteins thus appears to depend on several factors, including the presence of the viral polymerase and/or UL9 within prereplicative sites and the integrity of ND10.
Collapse
Affiliation(s)
- Dianna E Wilkinson
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | |
Collapse
|
44
|
Everett RD, Sourvinos G, Leiper C, Clements JB, Orr A. Formation of nuclear foci of the herpes simplex virus type 1 regulatory protein ICP4 at early times of infection: localization, dynamics, recruitment of ICP27, and evidence for the de novo induction of ND10-like complexes. J Virol 2004; 78:1903-17. [PMID: 14747555 PMCID: PMC369473 DOI: 10.1128/jvi.78.4.1903-1917.2004] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 11/01/2003] [Indexed: 01/13/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) has an intricate association with cellular nuclear structures known as ND10 or promyelocytic leukemia protein (PML) nuclear bodies. Parental viral genomes initially become juxtaposed to ND10, and then viral replication compartments develop from the ND10-associated genomes. Viral immediate-early (IE) regulatory protein ICP0 colocalizes with ND10 and then induces the degradation of critical ND10 component protein PML and therefore the release and dispersal of other ND10 proteins. The IE transcriptional regulatory protein ICP4 also forms foci at early times of infection, many of which are juxtaposed to ND10 and later develop into replication compartments, indicating that at least some of the initial ICP4 foci contain parental viral genomes. Here we report that the ICP4 foci also contain ICP27 and that their formation occurs extremely rapidly at locations just inside the nuclear envelope. By examining developing plaques or thinly seeded cells infected at high multiplicity, we found evidence to suggest that at least some of the ND10-viral nucleoprotein complex association could be attributed to de novo formation of ND10-like structures in response to incoming viral genomes. The ICP4 complexes associated efficiently with ND10 in cells infected with an ICP0-null mutant virus at high but not at low multiplicity, and the degree of association was reduced by the proteasome inhibitor MG132. Therefore, the interaction between viral nucleoprotein complexes and ND10 is in part due to a dynamic response by the cell. This response is modulated by functional ICP0, and cells that are productively or nonproductively infected in the absence of functional ICP0 can be distinguished by the relative locations of ICP4 foci and ND10 proteins.
Collapse
Affiliation(s)
- Roger D Everett
- MRC Virology Unit, Institute of Virology, Glasgow G11 5JR, Scotland, United Kingdom.
| | | | | | | | | |
Collapse
|
45
|
Arcangeletti MC, De Conto F, Ferraglia F, Pinardi F, Gatti R, Orlandini G, Calderaro A, Motta F, Medici MC, Martinelli M, Valcavi P, Razin SV, Chezzi C, Dettori G. Human cytomegalovirus proteins PP65 and IEP72 are targeted to distinct compartments in nuclei and nuclear matrices of infected human embryo fibroblasts. J Cell Biochem 2003; 90:1056-67. [PMID: 14624464 DOI: 10.1002/jcb.10655] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cellular distribution of the human cytomegalovirus (HCMV)-specific UL83 phosphoprotein (pp65) and UL123 immediate-early protein (IEp72) in lytically infected human embryo fibroblasts was studied by means of indirect immunofluorescence and confocal microscopy. Both proteins were found to have a nuclear localization, but they were concentrated in different compartments within the nuclei. The pp65 was located predominantly in the nucleoli; this was already evident with the parental viral protein, which was targeted to the above nuclear compartment very soon after infection. The nucleolar localization of pp65 was also observed at later stages of the HCMV infectious cycle. After chromatin extraction (in the so-called in situ nuclear matrices), a significant portion of the pp65 remained associated with nucleoli within the first hour after infection, then gradually redistributed in a perinucleolar area, as well as throughout the nucleus, with a granular pattern. A quite different distribution was observed for IEp72 at very early stages after infection of human embryo fibroblasts with HCMV; indeed, this viral protein was found in bright foci, clearly observable in both non-extracted nuclei and in nuclear matrices. At later stages of infection, IEp72 became almost homogeneously distributed within the whole nucleus, while the foci increased in size and were more evenly spread; in several infected cells some of them lay within nucleoli. This peculiar nuclear distribution of IEp72 was preserved in nuclear matrices as well. The entire set of data is discussed in terms of the necessity of integration for HCMV-specific products into the pre-existing nuclear architecture, with the possibility of subsequent adaptation of nuclear compartments to fit the needs of the HCMV replicative cycle.
Collapse
Affiliation(s)
- M C Arcangeletti
- Microbiology Section, Department of Pathology and Laboratory Medicine, University of Parma, Parma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Severini A, Sevenhuysen C, Garbutt M, Tipples GA. Structure of replicating intermediates of human herpesvirus type 6. Virology 2003; 314:443-50. [PMID: 14517096 DOI: 10.1016/s0042-6822(03)00451-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have studied the structure of the replicative intermediates of human herpesvirus 6 (HHV-6) using pulsed-field gel electrophoresis, partial digestion, two-dimensional gel electrophoresis, and sedimentation centrifugation. The results show that DNA replication of HHV-6 produces head-to-tail concatemeric intermediates as well as approximately equal amounts of circular monomers or oligomers. Unlike the situation in herpes simplex virus, the intermediates of human herpesvirus 6 replication are not highly branched, suggesting a difference in the mechanism of replication or a lower frequency of homologous recombination in human herpesvirus 6 compared to herpes simplex virus.
Collapse
MESH Headings
- Cell Line
- Centrifugation, Density Gradient
- DNA Replication
- DNA, Viral/biosynthesis
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Electrophoresis, Gel, Pulsed-Field
- Electrophoresis, Gel, Two-Dimensional
- Herpesvirus 6, Human/genetics
- Herpesvirus 6, Human/metabolism
- Herpesvirus 6, Human/physiology
- Humans
Collapse
Affiliation(s)
- Alberto Severini
- National Microbiology Laboratory, Health Canada, Winnipeg, Monitoba, Canada.
| | | | | | | |
Collapse
|
47
|
Becker KA, Florin L, Sapp C, Sapp M. Dissection of human papillomavirus type 33 L2 domains involved in nuclear domains (ND) 10 homing and reorganization. Virology 2003; 314:161-7. [PMID: 14517069 DOI: 10.1016/s0042-6822(03)00447-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have recently shown that the minor capsid protein L2 of human papillomavirus type 33 (HPV33) recruits the transcriptional repressor Daxx into nuclear domains (ND) 10 and causes the loss of the transcriptional activator Sp100 from these subnuclear structures. In order to dissect L2 domains involved in nuclear translocation, ND10 homing, loss of Sp100, and recruitment of Daxx, a detailed deletion mutagenesis of L2 was performed. Using immunofluorescence and green fluorescent protein fusions, we have identified two nuclear localization signals (NLS) in the central and C-terminal part of L2, respectively, homologous to previously identified NLS in HPV6B L2 (Sun et al., 1995). We mapped the ND10 localization domain to within a 30 amino acid peptide in the C-terminal half of L2. L2-induced attraction of Daxx into ND10, coimmunoprecipitation of L2 and Daxx, as well as induction of the loss of Sp100 from ND10 require an intact ND10 localization domain. This domain contains conserved PXXP motives characteristic of some protein/protein interacting domains. Our data also suggest that the Daxx/L2 interaction may be the driving force for L2 accumulation in ND10.
Collapse
Affiliation(s)
- Katrin A Becker
- Institute of Medical Microbiology and Hygiene, University of Mainz, 55101 Mainz, Germany
| | | | | | | |
Collapse
|
48
|
Tang Q, Li L, Ishov AM, Revol V, Epstein AL, Maul GG. Determination of minimum herpes simplex virus type 1 components necessary to localize transcriptionally active DNA to ND10. J Virol 2003; 77:5821-8. [PMID: 12719575 PMCID: PMC154000 DOI: 10.1128/jvi.77.10.5821-5828.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Accepted: 02/13/2003] [Indexed: 12/12/2022] Open
Abstract
DNA viruses such as herpes simplex virus type 1 (HSV-1) appear to start their replicative processes at specific nuclear domains known as ND10. In analyses to determine the minimum viral components needed for transcript accumulation at ND10, we find that a specific viral DNA sequence, OriS, and the viral immediate-early proteins ICP4 and ICP27 are sufficient for a reporter gene placed in cis to the OriS sequence to transcribe at ND10. A chromatin immunoprecipitation assay demonstrated expected critical intermediates in retaining the minimal genome at ND10 for the HSV-1 replication origin through direct or indirect binding to the host protein Daxx. Coimmunoprecipitation assays with antibodies to Daxx and ICP4, ICP27, and ICP8 showed that the respective proteins interact, possibly forming a complex. A potential complex between the origin, early viral DNA-binding protein ICP8 and Daxx did not result in transcription at ND10. Thus, the deposition of transcriptionally active HSV-1 genomes at ND10 is most likely a consequence of retention at ND10 through the interaction of viral genome-bound ICP4 and ICP27 with Daxx. Such a complex might be more likely immobilized at the outside of ND10 by the PML-interacting Daxx than at other nuclear sites.
Collapse
Affiliation(s)
- Qiyi Tang
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
49
|
Carrington-Lawrence SD, Weller SK. Recruitment of polymerase to herpes simplex virus type 1 replication foci in cells expressing mutant primase (UL52) proteins. J Virol 2003; 77:4237-47. [PMID: 12634381 PMCID: PMC150627 DOI: 10.1128/jvi.77.7.4237-4247.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2002] [Accepted: 12/19/2002] [Indexed: 11/20/2022] Open
Abstract
The ordered assembly of the herpes simplex virus (HSV) type 1 replication apparatus leading to replication compartments likely involves the initial assembly of five viral replication proteins, ICP8, UL9, and the heterotrimeric helicase-primase complex (UL5-UL8-UL52), into replication foci. The polymerase and polymerase accessory protein are subsequently recruited to these foci. Four stages of viral infection (stages I to IV) have been described previously (J. Burkham, D. M. Coen, and S. K. Weller, J. Virol. 72:10100-10107, 1998). Of these, stage III foci are equivalent to the previously described promyelocytic leukemia protein (PML)-associated prereplicative sites and contain all seven replication proteins. We constructed a series of mutations in the putative primase subunit, UL52, of the helicase-primase and have analyzed the mutant proteins for their abilities to form intermediates leading to the formation of replication compartments. The results shown in this paper are consistent with the model that the five proteins, ICP8, UL5, UL8, UL9, and UL52, form a scaffold and that formation of this scaffold does not rely on enzymatic functions of the helicase and primase. Furthermore, we demonstrate that recruitment of polymerase to this scaffold requires the presence of an active primase subunit. These results suggest that polymerase recruitment to replication foci requires primer synthesis. Furthermore, they support the existence of two types of stage III intermediates in the formation of replication compartments: stage IIIa foci, which form the scaffold, and stage IIIb foci, which contain, in addition, HSV polymerase, the polymerase accessory subunit, and cellular factors such as PML.
Collapse
|
50
|
Eskiw CH, Bazett-Jones DP. The promyelocytic leukemia nuclear body: sites of activity? Biochem Cell Biol 2003; 80:301-10. [PMID: 12123283 DOI: 10.1139/o02-079] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The promyelocytic leukemia (PML) nuclear body is one of many subnuclear domains in the eukaryotic cell nucleus. It has received much attention in the past few years because it accumulates the promyelocytic leukemia protein called PML. This protein is implicated in many nuclear events and is found as a fusion with the retinoic acid receptor RARalpha in leukemic cells. The importance of PML bodies in cell differentiation and growth is implicated in acute promyelocitic leukemia cells, which do not contain PML bodies. Treatment of patients with drugs that reverse the disease phenotype also causes PML bodies to reform. In this review, we discuss the structure, composition, and dynamics that may provide insights into the function of PML bodies. We also discuss the repsonse of PML bodies to cellular stresses, such as virus infection and heat shock. We interpret the changes that occur as evidence for a role of these structures in gene transcription. We also examine the role of the posttranslational modification. SUMO-1 addition, in directing proteins to this nuclear body. Characterization of the mobility of PML body associated proteins further supports a role in specific nuclear events, rather than the bodies resulting from random accumulations of proteins.
Collapse
Affiliation(s)
- Christopher H Eskiw
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|