1
|
Eady NA, Holmes C, Schnabel C, Babasyan S, Wagner B. Equine herpesvirus type 1 (EHV-1) replication at the upper respiratory entry site is inhibited by neutralizing EHV-1-specific IgG1 and IgG4/7 mucosal antibodies. J Virol 2024; 98:e0025024. [PMID: 38742875 PMCID: PMC11237562 DOI: 10.1128/jvi.00250-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Equine herpesvirus type 1 (EHV-1) is a contagious respiratory pathogen that infects the mucosa of the upper respiratory tract (URT). Mucosal immune responses at the URT provide the first line of defense against EHV-1 and are crucial for orchestrating immunity. To define host-pathogen interactions, we characterized B-cell responses, antibody isotype functions, and EHV-1 replication of susceptible (non-immune) and clinically protected (immune) horses after experimental EHV-1 infection. Nasal secretion and nasal wash samples were collected and used for the isolation of DNA, RNA, and mucosal antibodies. Shedding of infectious virus, EHV-1 copy numbers, viral RNA expression, and host B-cell activation in the URT were compared based on host immune status. Mucosal EHV-1-specific antibody responses were associated with EHV-1 shedding and viral RNA transcription. Finally, mucosal immunoglobulin G (IgG) and IgA isotypes were purified and tested for neutralizing capabilities. IgG1 and IgG4/7 neutralized EHV-1, while IgG3/5, IgG6, and IgA did not. Immune horses secreted high amounts of mucosal EHV-1-specific IgG4/7 antibodies and quickly upregulated B-cell pathway genes, while EHV-1 was undetected by virus isolation and PCR. RNA transcription analysis reinforced incomplete viral replication in immune horses. In contrast, complete viral replication with high viral copy numbers and shedding of infectious viruses was characteristic for non-immune horses, together with low or absent EHV-1-specific neutralizing antibodies during viral replication. These data confirm that pre-existing mucosal IgG1 and IgG4/7 and rapid B-cell activation upon EHV-1 infection are essential for virus neutralization, regulation of viral replication, and mucosal immunity against EHV-1.IMPORTANCEEquine herpesvirus type 1 (EHV-1) causes respiratory disease, abortion storms, and neurologic outbreaks known as equine herpes myeloencephalopathy (EHM). EHV-1 is transmitted with respiratory secretions by nose-to-nose contact or via fomites. The virus initially infects the epithelium of the upper respiratory tract (URT). Host-pathogen interactions and mucosal immunity at the viral entry site provide the first line of defense against the EHV-1. Robust mucosal immunity can be essential in protecting against EHV-1 and to reduce EHM outbreaks. It has previously been shown that immune horses do not establish cell-associated viremia, the prerequisite for EHM. Here, we demonstrate how mucosal antibodies can prevent the replication of EHV-1 at the epithelium of the URT and, thereby, the progression of the virus to the peripheral blood. The findings improve the mechanistic understanding of mucosal immunity against EHV-1 and can support the development of enhanced diagnostic tools, vaccines against EHM, and the management of EHV-1 outbreaks.
Collapse
Affiliation(s)
- Naya A. Eady
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Camille Holmes
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Christiane Schnabel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Visalli MA, Nale Lovett DJ, Kornfeind EM, Herrington H, Xiao YT, Lee D, Plair P, Wilder SG, Garza BK, Young A, Visalli RJ. Mutagenesis and functional analysis of the varicella-zoster virus portal protein. J Virol 2024; 98:e0060323. [PMID: 38517165 PMCID: PMC11019927 DOI: 10.1128/jvi.00603-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Herpesviruses replicate by cleaving concatemeric dsDNA into single genomic units that are packaged through an oligomeric portal present in preformed procapsids. In contrast to what is known about phage portal proteins, details concerning herpesvirus portal structure and function are not as well understood. A panel of 65 Varicella-Zoster virus (VZV) recombinant portal proteins with five amino acid in-frame insertions were generated by random transposon mutagenesis of the VZV portal gene, ORF54. Subsequently, 65 VZVLUC recombinant viruses (TNs) were generated via recombineering. Insertions were mapped to predicted portal domains (clip, wing, stem, wall, crown, and β-hairpin tunnel-loop) and recombinant viruses were characterized for plaque morphology, replication kinetics, pORF54 expression, and classified based on replication in non-complementing (ARPE19) or complementing (ARPE54C50) cell lines. The N- and C-termini were tolerant to insertion mutagenesis, as were certain clip sub-domains. The majority of mutants mapping to the wing, wall, β-hairpin tunnel loop, and stem domains were lethal. Elimination of the predicted ORF54 start codon revealed that the first 40 amino acids of the N-terminus were not required for viral replication. Stop codon insertions in the C-terminus showed that the last 100 amino acids were not required for viral replication. Lastly, a putative protease cleavage site was identified in the C-terminus of pORF54. Cleavage was likely orchestrated by a viral protease; however, processing was not required for DNA encapsidation and viral replication. The panel of recombinants should prove valuable in future studies to dissect mammalian portal structure and function.IMPORTANCEThough nucleoside analogs and a live-attenuated vaccine are currently available to treat some human herpesvirus family members, alternate methods of combating herpesvirus infection could include blocking viral replication at the DNA encapsidation stage. The approval of Letermovir provided proof of concept regarding the use of encapsidation inhibitors to treat herpesvirus infections in the clinic. We propose that small-molecule compounds could be employed to interrupt portal oligomerization, assembly into the capsid vertex, or affect portal function/dynamics. Targeting portal at any of these steps would result in disruption of viral DNA packaging and a decrease or absence of mature infectious herpesvirus particles. The oligomeric portals of herpesviruses are structurally conserved, and therefore, it may be possible to find a single compound capable of targeting portals from one or more of the herpesvirus subfamilies. Drug candidates from such a series would be effective against viruses resistant to the currently available antivirals.
Collapse
Affiliation(s)
- Melissa A. Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Dakota J. Nale Lovett
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Ellyn M. Kornfeind
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Haley Herrington
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Yi Tian Xiao
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Daniel Lee
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Patience Plair
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - S. Garrett Wilder
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Bret K. Garza
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Ashton Young
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Robert J. Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| |
Collapse
|
3
|
The Contribution of Kaposi's Sarcoma-Associated Herpesvirus ORF7 and Its Zinc-Finger Motif to Viral Genome Cleavage and Capsid Formation. J Virol 2022; 96:e0068422. [PMID: 36073924 PMCID: PMC9517700 DOI: 10.1128/jvi.00684-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic infection, lytic-related proteins are synthesized, viral genomes are replicated as a tandemly repeated form, and subsequently, capsids are assembled. The herpesvirus terminase complex is proposed to package an appropriate genome unit into an immature capsid, by cleavage of terminal repeats (TRs) flanking tandemly linked viral genomes. Although the mechanism of capsid formation in alpha- and betaherpesviruses are well-studied, in KSHV, it remains largely unknown. It has been proposed that KSHV ORF7 is a terminase subunit, and ORF7 harbors a zinc-finger motif, which is conserved among other herpesviral terminases. However, the biological significance of ORF7 is unknown. We previously reported that KSHV ORF17 is essential for the cleavage of inner scaffold proteins in capsid maturation, and ORF17 knockout (KO) induced capsid formation arrest between the procapsid and B-capsid stages. However, it remains unknown if ORF7-mediated viral DNA cleavage occurs before or after ORF17-mediated scaffold collapse. We analyzed the role of ORF7 during capsid formation using ORF7-KO-, ORF7&17-double-KO (DKO)-, and ORF7-zinc-finger motif mutant-KSHVs. We found that ORF7 acted after ORF17 in the capsid formation process, and ORF7-KO-KSHV produced incomplete capsids harboring nonspherical internal structures, which resembled soccer balls. This soccer ball-like capsid was formed after ORF17-mediated B-capsid formation. Moreover, ORF7-KO- and zinc-finger motif KO-KSHV failed to appropriately cleave the TR on replicated genome and had a defect in virion production. Interestingly, ORF17 function was also necessary for TR cleavage. Thus, our data revealed ORF7 contributes to terminase-mediated viral genome cleavage and capsid formation. IMPORTANCE In herpesviral capsid formation, the viral terminase complex cleaves the TR sites on newly synthesized tandemly repeating genomes and inserts an appropriate genomic unit into an immature capsid. Herpes simplex virus 1 (HSV-1) UL28 is a subunit of the terminase complex that cleaves the replicated viral genome. However, the physiological importance of the UL28 homolog, KSHV ORF7, remains poorly understood. Here, using several ORF7-deficient KSHVs, we found that ORF7 acted after ORF17-mediated scaffold collapse in the capsid maturation process. Moreover, ORF7 and its zinc-finger motif were essential for both cleavage of TR sites on the KSHV genome and virus production. ORF7-deficient KSHVs produced incomplete capsids that resembled a soccer ball. To our knowledge, this is the first report showing ORF7-KO-induced soccer ball-like capsids production and ORF7 function in the KSHV capsid assembly process. Our findings provide insights into the role of ORF7 in KSHV capsid formation.
Collapse
|
4
|
Cryo-Electron Tomography of the Herpesvirus Procapsid Reveals Interactions of the Portal with the Scaffold and a Shift on Maturation. mBio 2021; 12:mBio.03575-20. [PMID: 33727359 PMCID: PMC8092310 DOI: 10.1128/mbio.03575-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) infects a majority of humans, causing mostly mild disease but in some cases progressing toward life-threatening encephalitis. Understanding the life cycle of the virus is important to devise countermeasures. Herpes simplex virus 1 (HSV-1) requires seven proteins to package its genome through a vertex in its capsid, one of which is the portal protein, pUL6. The portal protein is also thought to facilitate assembly of the procapsid. While the portal has been visualized in mature capsids, we aimed to elucidate its role in the assembly and maturation of procapsids using cryo-electron tomography (cryoET). We identified the portal vertex in individual procapsids, calculated a subtomogram average, and compared that with the portal vertex in empty mature capsids (A-capsids). The resulting maps show the portal on the interior surface with its narrower end facing outwards, while maintaining close contact with the capsid shell. In the procapsid, the portal is embedded in the underlying scaffold, suggesting that assembly involves a portal-scaffold complex. During maturation, the capsid shell angularizes with a corresponding outward movement of the vertices. We found that in A-capsids, the portal translocates outward further than the adjacent capsomers and strengthens its contacts with the capsid shell. Our methodology also allowed us to determine the number of portal vertices in each capsid, with most having one per capsid, but some none or two, and rarely three. The predominance of a single portal per capsid supports facilitation of the assembly of the procapsid.
Collapse
|
5
|
Yang Y, Yang P, Wang N, Chen Z, Su D, Zhou ZH, Rao Z, Wang X. Architecture of the herpesvirus genome-packaging complex and implications for DNA translocation. Protein Cell 2020; 11:339-351. [PMID: 32328903 PMCID: PMC7196598 DOI: 10.1007/s13238-020-00710-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/12/2020] [Indexed: 02/05/2023] Open
Abstract
Genome packaging is a fundamental process in a viral life cycle and a prime target of antiviral drugs. Herpesviruses use an ATP-driven packaging motor/terminase complex to translocate and cleave concatemeric dsDNA into procapsids but its molecular architecture and mechanism are unknown. We report atomic structures of a herpesvirus hexameric terminase complex in both the apo and ADP•BeF3-bound states. Each subunit of the hexameric ring comprises three components-the ATPase/terminase pUL15 and two regulator/fixer proteins, pUL28 and pUL33-unlike bacteriophage terminases. Distal to the nuclease domains, six ATPase domains form a central channel with conserved basic-patches conducive to DNA binding and trans-acting arginine fingers are essential to ATP hydrolysis and sequential DNA translocation. Rearrangement of the nuclease domains mediated by regulatory domains converts DNA translocation mode to cleavage mode. Our structures favor a sequential revolution model for DNA translocation and suggest mechanisms for concerted domain rearrangements leading to DNA cleavage.
Collapse
Affiliation(s)
- Yunxiang Yang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Pan Yang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nan Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhonghao Chen
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dan Su
- State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zihe Rao
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, 300353, China.
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
6
|
Molecular anatomy of the subcellular localization and nuclear import mechanism of herpes simplex virus 1 UL6. Aging (Albany NY) 2020; 12:5751-5763. [PMID: 32235005 PMCID: PMC7185102 DOI: 10.18632/aging.102965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/08/2020] [Indexed: 12/24/2022]
Abstract
As an indispensable structure protein, the herpes simplex virus 1 (HSV-1) UL6 has been described to exert numerous roles in viral proliferation. However, its exact subcellular localization and subcellular transport mechanism is not well known. In the present study, by utilizing confocal fluorescent microscopy, UL6 was shown to mainly locate in the nucleus in enhanced yellow fluorescent protein or Flag tag fused expression plasmid-transfected cells or HSV-1-infected cells, whereas its predicted nuclear localization signal was nonfunctional. In addition, by exploiting dominant negative mutant and inhibitor of different nuclear import receptors, as well as co-immunoprecipitation and RNA interference assays, UL6 was established to interact with importin α1, importin α7 and transportin-1 to mediate its nuclear translocation under the help of Ran-mediated GTP hydrolysis. Accordingly, these results will advance the knowledge of UL6-mediated biological significances in HSV-1 infection cycle.
Collapse
|
7
|
Cuervo A, Fàbrega-Ferrer M, Machón C, Conesa JJ, Fernández FJ, Pérez-Luque R, Pérez-Ruiz M, Pous J, Vega MC, Carrascosa JL, Coll M. Structures of T7 bacteriophage portal and tail suggest a viral DNA retention and ejection mechanism. Nat Commun 2019; 10:3746. [PMID: 31431626 PMCID: PMC6702177 DOI: 10.1038/s41467-019-11705-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022] Open
Abstract
Double-stranded DNA bacteriophages package their genome at high pressure inside a procapsid through the portal, an oligomeric ring protein located at a unique capsid vertex. Once the DNA has been packaged, the tail components assemble on the portal to render the mature infective virion. The tail tightly seals the ejection conduit until infection, when its interaction with the host membrane triggers the opening of the channel and the viral genome is delivered to the host cell. Using high-resolution cryo-electron microscopy and X-ray crystallography, here we describe various structures of the T7 bacteriophage portal and fiber-less tail complex, which suggest a possible mechanism for DNA retention and ejection: a portal closed conformation temporarily retains the genome before the tail is assembled, whereas an open portal is found in the tail. Moreover, a fold including a seven-bladed β-propeller domain is described for the nozzle tail protein.
Collapse
Affiliation(s)
- Ana Cuervo
- Centro Nacional de Biotecnología, (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Montserrat Fàbrega-Ferrer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Cristina Machón
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - José Javier Conesa
- Centro Nacional de Biotecnología, (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Francisco J Fernández
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- Abvance Biotech srl, Ave. Reina Victoria 32, 28003, Madrid, Spain
| | - Rosa Pérez-Luque
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Mar Pérez-Ruiz
- Centro Nacional de Biotecnología, (CNB-CSIC), Darwin 3, 28049, Madrid, Spain
| | - Joan Pous
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - M Cristina Vega
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - José L Carrascosa
- Centro Nacional de Biotecnología, (CNB-CSIC), Darwin 3, 28049, Madrid, Spain.
| | - Miquel Coll
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Baldiri Reixac 10, 08028, Barcelona, Spain.
| |
Collapse
|
8
|
Yang L, Yang Q, Wang M, Jia R, Chen S, Zhu D, Liu M, Wu Y, Zhao X, Zhang S, Liu Y, Yu Y, Zhang L, Chen X, Cheng A. Terminase Large Subunit Provides a New Drug Target for Herpesvirus Treatment. Viruses 2019; 11:v11030219. [PMID: 30841485 PMCID: PMC6466031 DOI: 10.3390/v11030219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/23/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
Herpesvirus infection is an orderly, regulated process. Among these viruses, the encapsidation of viral DNA is a noteworthy link; the entire process requires a powered motor that binds to viral DNA and carries it into the preformed capsid. Studies have shown that this power motor is a complex composed of a large subunit, a small subunit, and a third subunit, which are collectively known as terminase. The terminase large subunit is highly conserved in herpesvirus. It mainly includes two domains: the C-terminal nuclease domain, which cuts the viral concatemeric DNA into a monomeric genome, and the N-terminal ATPase domain, which hydrolyzes ATP to provide energy for the genome cutting and transfer activities. Because this process is not present in eukaryotic cells, it provides a reliable theoretical basis for the development of safe and effective anti-herpesvirus drugs. This article reviews the genetic characteristics, protein structure, and function of the herpesvirus terminase large subunit, as well as the antiviral drugs that target the terminase large subunit. We hope to provide a theoretical basis for the prevention and treatment of herpesvirus.
Collapse
Affiliation(s)
- Linlin Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Xiaoyue Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China.
| |
Collapse
|
9
|
Visalli RJ, Schwartz AM, Patel S, Visalli MA. Identification of the Epstein Barr Virus portal. Virology 2019; 529:152-159. [PMID: 30710799 DOI: 10.1016/j.virol.2019.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
Little is known about Epstein Barr Virus (EBV) proteins that participate in viral DNA cleavage and packaging. Genes encoding potential terminase subunit and portal protein homologs include BGRF1/BDRF1, BALF3, BFRF1A and BBRF1 respectively. EBV mutants with deletions in one or more of these genes were impaired for DNA packaging (Pavlova et al., 2013). In the current study, BBRF1 oligomers were purified from recombinant baculovirus infected insect cell extracts. Transmission electron microscopy revealed that purified EBV portals retained features typically found in other portals including a central channel with clip, stem and wing/crown domains. Although compounds have been identified that target DNA encapsidation in human cytomegalovirus, herpes simplex viruses and varicella-zoster virus, the identification of new EBV targets has lagged significantly. Characterization of the EBV portal will direct studies aimed at developing potential small molecular inhibitors of the EBV encapsidation process.
Collapse
Affiliation(s)
- Robert J Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Adam M Schwartz
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
| | - Shivam Patel
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
| | - Melissa A Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
| |
Collapse
|
10
|
Miller JT, Zhao H, Masaoka T, Varnado B, Cornejo Castro EM, Marshall VA, Kouhestani K, Lynn AY, Aron KE, Xia A, Beutler JA, Hirsch DR, Tang L, Whitby D, Murelli RP, Le Grice SFJ. Sensitivity of the C-Terminal Nuclease Domain of Kaposi's Sarcoma-Associated Herpesvirus ORF29 to Two Classes of Active-Site Ligands. Antimicrob Agents Chemother 2018; 62:e00233-18. [PMID: 30061278 PMCID: PMC6153795 DOI: 10.1128/aac.00233-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/19/2018] [Indexed: 01/03/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of Kaposi's sarcoma, belongs to the Herpesviridae family, whose members employ a multicomponent terminase to resolve nonparametric viral DNA into genome-length units prior to their packaging. Homology modeling of the ORF29 C-terminal nuclease domain (pORF29C) and bacteriophage Sf6 gp2 have suggested an active site clustered with four acidic residues, D476, E550, D661, and D662, that collectively sequester the catalytic divalent metal (Mn2+) and also provided important insight into a potential inhibitor binding mode. Using this model, we have expressed, purified, and characterized the wild-type pORF29C and variants with substitutions at the proposed active-site residues. Differential scanning calorimetry demonstrated divalent metal-induced stabilization of wild-type (WT) and D661A pORF29C, consistent with which these two enzymes exhibited Mn2+-dependent nuclease activity, although the latter mutant was significantly impaired. Thermal stability of WT and D661A pORF29C was also enhanced by binding of an α-hydroxytropolone (α-HT) inhibitor shown to replace divalent metal at the active site. For the remaining mutants, thermal stability was unaffected by divalent metal or α-HT binding, supporting their role in catalysis. pORF29C nuclease activity was also inhibited by two classes of small molecules reported to inhibit HIV RNase H and integrase, both of which belong to the superfamily of nucleotidyltransferases. Finally, α-HT inhibition of KSHV replication suggests ORF29 nuclease function as an antiviral target that could be combined with latency-activating compounds as a shock-and-kill antiviral strategy.
Collapse
Affiliation(s)
- Jennifer T Miller
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland, USA
| | - Haiyan Zhao
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Takashi Masaoka
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland, USA
| | - Brittany Varnado
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York, USA
| | - Elena M Cornejo Castro
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Vickie A Marshall
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Kaivon Kouhestani
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland, USA
| | - Anna Y Lynn
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Keith E Aron
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Anqi Xia
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - John A Beutler
- Molecular Targets Program, National Cancer Institute, Frederick, Maryland, USA
| | - Danielle R Hirsch
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Molecular Targets Program, National Cancer Institute, Frederick, Maryland, USA
| | - Liang Tang
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Ph.D. Program in Chemistry, The Graduate Center of The City University of New York, New York, New York, USA
| | - Stuart F J Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
11
|
McElwee M, Vijayakrishnan S, Rixon F, Bhella D. Structure of the herpes simplex virus portal-vertex. PLoS Biol 2018; 16:e2006191. [PMID: 29924793 PMCID: PMC6028144 DOI: 10.1371/journal.pbio.2006191] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/02/2018] [Accepted: 06/06/2018] [Indexed: 12/04/2022] Open
Abstract
Herpesviruses include many important human pathogens such as herpes simplex virus, cytomegalovirus, varicella-zoster virus, and the oncogenic Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus. Herpes virions contain a large icosahedral capsid that has a portal at a unique 5-fold vertex, similar to that seen in the tailed bacteriophages. The portal is a molecular motor through which the viral genome enters the capsid during virion morphogenesis. The genome also exits the capsid through the portal-vertex when it is injected through the nuclear pore into the nucleus of a new host cell to initiate infection. Structural investigations of the herpesvirus portal-vertex have proven challenging, owing to the small size of the tail-like portal-vertex-associated tegument (PVAT) and the presence of the tegument layer that lays between the nucleocapsid and the viral envelope, obscuring the view of the portal-vertex. Here, we show the structure of the herpes simplex virus portal-vertex at subnanometer resolution, solved by electron cryomicroscopy (cryoEM) and single-particle 3D reconstruction. This led to a number of new discoveries, including the presence of two previously unknown portal-associated structures that occupy the sites normally taken by the penton and the Ta triplex. Our data revealed that the PVAT is composed of 10 copies of the C-terminal domain of pUL25, which are uniquely arranged as two tiers of star-shaped density. Our 3D reconstruction of the portal-vertex also shows that one end of the viral genome extends outside the portal in the manner described for some bacteriophages but not previously seen in any eukaryote viruses. Finally, we show that the viral genome is consistently packed in a highly ordered left-handed spool to form concentric shells of DNA. Our data provide new insights into the structure of a molecular machine critical to the biology of an important class of human pathogens.
Collapse
Affiliation(s)
- Marion McElwee
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Swetha Vijayakrishnan
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Frazer Rixon
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - David Bhella
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
12
|
Kornfeind EM, Visalli RJ. Human herpesvirus portal proteins: Structure, function, and antiviral prospects. Rev Med Virol 2018; 28:e1972. [PMID: 29573302 DOI: 10.1002/rmv.1972] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 01/28/2023]
Abstract
Herpesviruses (Herpesvirales) and tailed bacteriophages (Caudovirales) package their dsDNA genomes through an evolutionarily conserved mechanism. Much is known about the biochemistry and structural biology of phage portal proteins and the DNA encapsidation (viral genome cleavage and packaging) process. Although not at the same level of detail, studies on HSV-1, CMV, VZV, and HHV-8 have revealed important information on the function and structure of herpesvirus portal proteins. During dsDNA phage and herpesviral genome replication, concatamers of viral dsDNA are cleaved into single length units by a virus-encoded terminase and packaged into preformed procapsids through a channel located at a single capsid vertex (portal). Oligomeric portals are formed by the interaction of identical portal protein monomers. Comparing portal protein primary aa sequences between phage and herpesviruses reveals little to no sequence similarity. In contrast, the secondary and tertiary structures of known portals are remarkable. In all cases, function is highly conserved in that portals are essential for DNA packaging and also play a role in releasing viral genomic DNA during infection. Preclinical studies have described small molecules that target the HSV-1 and VZV portals and prevent viral replication by inhibiting encapsidation. This review summarizes what is known concerning the structure and function of herpesvirus portal proteins primarily based on their conserved bacteriophage counterparts and the potential to develop novel portal-specific DNA encapsidation inhibitors.
Collapse
Affiliation(s)
- Ellyn M Kornfeind
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Robert J Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| |
Collapse
|
13
|
Milbradt J, Sonntag E, Wagner S, Strojan H, Wangen C, Lenac Rovis T, Lisnic B, Jonjic S, Sticht H, Britt WJ, Schlötzer-Schrehardt U, Marschall M. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97. Viruses 2018; 10:v10010035. [PMID: 29342872 PMCID: PMC5795448 DOI: 10.3390/v10010035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 02/07/2023] Open
Abstract
The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.
Collapse
Affiliation(s)
- Jens Milbradt
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Eric Sonntag
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Hanife Strojan
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Tihana Lenac Rovis
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia.
| | - Berislav Lisnic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia.
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia.
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - William J Britt
- Departments of Pediatrics and Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| |
Collapse
|
14
|
Zühlsdorf M, Hinrichs W. Assemblins as maturational proteases in herpesviruses. J Gen Virol 2017; 98:1969-1984. [PMID: 28758622 DOI: 10.1099/jgv.0.000872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During assembly of herpesvirus capsids, a protein scaffold self-assembles to ring-like structures forming the scaffold of the spherical procapsids. Proteolytic activity of the herpesvirus maturational protease causes structural changes that result in angularization of the capsids. In those mature icosahedral capsids, the packaging of viral DNA into the capsids can take place. The strictly regulated protease is called assemblin. It is inactive in its monomeric state and activated by dimerization. The structures of the dimeric forms of several assemblins from all herpesvirus subfamilies have been elucidated in the last two decades. They revealed a unique serine-protease fold with a catalytic triad consisting of a serine and two histidines. Inhibitors that disturb dimerization by binding to the dimerization area were found recently. Additionally, the structure of the monomeric form of assemblin from pseudorabies virus and some monomer-like structures of Kaposi's sarcoma-associated herpesvirus assemblin were solved. These findings are the proof-of-principle for the development of new anti-herpesvirus drugs. Therefore, the most important information on this fascinating and unique class of proteases is summarized here.
Collapse
Affiliation(s)
- Martin Zühlsdorf
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489 Greifswald, Germany
| | - Winfried Hinrichs
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489 Greifswald, Germany
| |
Collapse
|
15
|
Herpesvirus Capsid Assembly and DNA Packaging. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:119-142. [PMID: 28528442 DOI: 10.1007/978-3-319-53168-7_6] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Herpes simplex virus type I (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. During productive lytic infection, over 80 viral proteins are expressed in a highly regulated manner, resulting in the replication of viral genomes and assembly of progeny virions. The virion of all herpesviruses consists of an external membrane envelope, a proteinaceous layer called the tegument, and an icosahedral capsid containing the double-stranded linear DNA genome. The capsid shell of HSV-1 is built from four structural proteins: a major capsid protein, VP5, which forms the capsomers (hexons and pentons), the triplex consisting of VP19C and VP23 found between the capsomers, and VP26 which binds to VP5 on hexons but not pentons. In addition, the dodecameric pUL6 portal complex occupies 1 of the 12 capsid vertices, and the capsid vertex specific component (CVSC), a heterotrimer complex of pUL17, pUL25, and pUL36, binds specifically to the triplexes adjacent to each penton. The capsid is assembled in the nucleus where the viral genome is packaged into newly assembled closed capsid shells. Cleavage and packaging of replicated, concatemeric viral DNA requires the seven viral proteins encoded by the UL6, UL15, UL17, UL25, UL28, UL32, and UL33 genes. Considerable advances have been made in understanding the structure of the herpesvirus capsid and the function of several of the DNA packaging proteins by applying biochemical, genetic, and structural techniques. This review is a summary of recent advances with respect to the structure of the HSV-1 virion capsid and what is known about the function of the seven packaging proteins and their interactions with each other and with the capsid shell.
Collapse
|
16
|
Pi F, Zhao Z, Chelikani V, Yoder K, Kvaratskhelia M, Guo P. Development of Potent Antiviral Drugs Inspired by Viral Hexameric DNA-Packaging Motors with Revolving Mechanism. J Virol 2016; 90:8036-46. [PMID: 27356896 PMCID: PMC5008075 DOI: 10.1128/jvi.00508-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular parasitic nature of viruses and the emergence of antiviral drug resistance necessitate the development of new potent antiviral drugs. Recently, a method for developing potent inhibitory drugs by targeting biological machines with high stoichiometry and a sequential-action mechanism was described. Inspired by this finding, we reviewed the development of antiviral drugs targeting viral DNA-packaging motors. Inhibiting multisubunit targets with sequential actions resembles breaking one bulb in a series of Christmas lights, which turns off the entire string. Indeed, studies on viral DNA packaging might lead to the development of new antiviral drugs. Recent elucidation of the mechanism of the viral double-stranded DNA (dsDNA)-packaging motor with sequential one-way revolving motion will promote the development of potent antiviral drugs with high specificity and efficiency. Traditionally, biomotors have been classified into two categories: linear and rotation motors. Recently discovered was a third type of biomotor, including the viral DNA-packaging motor, beside the bacterial DNA translocases, that uses a revolving mechanism without rotation. By analogy, rotation resembles the Earth's rotation on its own axis, while revolving resembles the Earth's revolving around the Sun (see animations at http://rnanano.osu.edu/movie.html). Herein, we review the structures of viral dsDNA-packaging motors, the stoichiometries of motor components, and the motion mechanisms of the motors. All viral dsDNA-packaging motors, including those of dsDNA/dsRNA bacteriophages, adenoviruses, poxviruses, herpesviruses, mimiviruses, megaviruses, pandoraviruses, and pithoviruses, contain a high-stoichiometry machine composed of multiple components that work cooperatively and sequentially. Thus, it is an ideal target for potent drug development based on the power function of the stoichiometries of target complexes that work sequentially.
Collapse
Affiliation(s)
- Fengmei Pi
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Zhengyi Zhao
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Venkata Chelikani
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Kristine Yoder
- Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mamuka Kvaratskhelia
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Peixuan Guo
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
17
|
Sankhala RS, Lokareddy RK, Cingolani G. Divergent Evolution of Nuclear Localization Signal Sequences in Herpesvirus Terminase Subunits. J Biol Chem 2016; 291:11420-33. [PMID: 27033706 DOI: 10.1074/jbc.m116.724393] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 11/06/2022] Open
Abstract
The tripartite terminase complex of herpesviruses assembles in the cytoplasm of infected cells and exploits the host nuclear import machinery to gain access to the nucleus, where capsid assembly and genome-packaging occur. Here we analyzed the structure and conservation of nuclear localization signal (NLS) sequences previously identified in herpes simplex virus 1 (HSV-1) large terminase and human cytomegalovirus (HCMV) small terminase. We found a monopartite NLS at the N terminus of large terminase, flanking the ATPase domain, that is conserved only in α-herpesviruses. In contrast, small terminase exposes a classical NLS at the far C terminus of its helical structure that is conserved only in two genera of the β-subfamily and absent in α- and γ-herpesviruses. In addition, we predicted a classical NLS in the third terminase subunit that is partially conserved among herpesviruses. Bioinformatic analysis revealed that both location and potency of NLSs in terminase subunits evolved more rapidly than the rest of the amino acid sequence despite the selective pressure to keep terminase gene products active and localized in the nucleus. We propose that swapping NLSs among terminase subunits is a regulatory mechanism that allows different herpesviruses to regulate the kinetics of terminase nuclear import, reflecting a mechanism of virus:host adaptation.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Ravi K Lokareddy
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Gino Cingolani
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and Institute of Biomembranes and Bioenergetics, National Research Council, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
18
|
Intermolecular Complementation between Two Varicella-Zoster Virus pORF30 Terminase Domains Essential for DNA Encapsidation. J Virol 2015. [PMID: 26202238 DOI: 10.1128/jvi.01313-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED The herpesviral terminase complex is part of the intricate machinery that delivers a single viral genome into empty preformed capsids (encapsidation). The varicella-zoster virus (VZV) terminase components (pORF25, pORF30, and pORF45/42) have not been studied as extensively as those of herpes simplex virus 1 and human cytomegalovirus (HCMV). In this study, VZV bacterial artificial chromosomes (BACs) were generated with small (Δ30S), medium (Δ30M), and large (Δ30L) ORF30 internal deletions. In addition, we isolated recombinant viruses with specific alanine substitutions in the putative zinc finger motif (30-ZF3A) or in a conserved region (region IX) with predicted structural similarity to the human topoisomerase I core subdomains I and II (30-IXAla, 30-620A, and 30-622A). Recombinant viruses replicated in an ORF30-complementing cell line (ARPE30) but failed to replicate in noncomplementing ARPE19 and MeWo cells. Transmission electron microscopy of 30-IXAla-, 30-620A-, and 30-622A-infected ARPE19 cells revealed only empty VZV capsids. Southern analysis showed that cells infected with parental VZV (VZVLUC) or a repaired virus (30R) contained DNA termini, whereas cells infected with Δ30L, 30-IXAla, 30-620A, or 30-622A contained little or no processed viral DNA. These results demonstrated that pORF30, specifically amino acids 619 to 624 (region IX), was required for DNA encapsidation. A luciferase-based assay was employed to assess potential intermolecular complementation between the zinc finger domain and conserved region IX. Complementation between 30-ZF3A and 30-IXAla provided evidence that distinct pORF30 domains can function independently. The results suggest that pORF30 may exist as a multimer or participate in higher-order assemblies during viral DNA encapsidation. IMPORTANCE Antivirals with novel mechanisms of action are sought as additional therapeutic options to treat human herpesvirus infections. Proteins involved in the viral DNA encapsidation process have become promising antiviral targets. For example, letermovir is a small-molecule drug targeting HCMV terminase that is currently in phase III clinical trials. It is important to define the structural and functional characteristics of proteins that make up viral terminase complexes to identify or design additional terminase-specific compounds. The VZV ORF30 mutants described in this study represent the first VZV terminase mutants reported to date. Targeted mutations confirmed the importance of a conserved zinc finger domain found in all herpesvirus ORF30 terminase homologs but also identified a novel, highly conserved region (region IX) essential for terminase function. Homology modeling suggested that the structure of region IX is present in all human herpesviruses and thus represents a potential structurally conserved antiviral target.
Collapse
|
19
|
Rowles DL, Tsai YC, Greco TM, Lin AE, Li M, Yeh J, Cristea IM. DNA methyltransferase DNMT3A associates with viral proteins and impacts HSV-1 infection. Proteomics 2015; 15:1968-82. [PMID: 25758154 DOI: 10.1002/pmic.201500035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/17/2015] [Accepted: 03/07/2015] [Indexed: 01/21/2023]
Abstract
Viral infections can alter the cellular epigenetic landscape, through modulation of either DNA methylation profiles or chromatin remodeling enzymes and histone modifications. These changes can act to promote viral replication or host defense. Herpes simplex virus type 1 (HSV-1) is a prominent human pathogen, which relies on interactions with host factors for efficient replication and spread. Nevertheless, the knowledge regarding its modulation of epigenetic factors remains limited. Here, we used fluorescently-labeled viruses in conjunction with immunoaffinity purification and MS to study virus-virus and virus-host protein interactions during HSV-1 infection in primary human fibroblasts. We identified interactions among viral capsid and tegument proteins, detecting phosphorylation of the capsid protein VP26 at sites within its UL37-binding domain, and an acetylation within the major capsid protein VP5. Interestingly, we found a nuclear association between viral capsid proteins and the de novo DNA methyltransferase DNA (cytosine-5)-methyltransferase 3A (DNMT3A), which we confirmed by reciprocal isolations and microscopy. We show that drug-induced inhibition of DNA methyltransferase activity, as well as siRNA- and shRNA-mediated DNMT3A knockdowns trigger reductions in virus titers. Altogether, our results highlight a functional association of viral proteins with the mammalian DNA methyltransferase machinery, pointing to DNMT3A as a host factor required for effective HSV-1 infection.
Collapse
Affiliation(s)
- Daniell L Rowles
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yuan-Chin Tsai
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Todd M Greco
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Aaron E Lin
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Minghao Li
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Justin Yeh
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ileana M Cristea
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
20
|
The putative herpes simplex virus 1 chaperone protein UL32 modulates disulfide bond formation during infection. J Virol 2014; 89:443-53. [PMID: 25320327 DOI: 10.1128/jvi.01913-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED During DNA encapsidation, herpes simplex virus 1 (HSV-1) procapsids are converted to DNA-containing capsids by a process involving activation of the viral protease, expulsion of the scaffold proteins, and the uptake of viral DNA. Encapsidation requires six minor capsid proteins (UL6, UL15, UL17, UL25, UL28, and UL33) and one viral protein, UL32, not found to be associated with capsids. Although functions have been assigned to each of the minor capsid proteins, the role of UL32 in encapsidation has remained a mystery. Using an HSV-1 variant containing a functional hemagglutinin-tagged UL32, we demonstrated that UL32 was synthesized with true late kinetics and that it exhibited a previously unrecognized localization pattern. At 6 to 9 h postinfection (hpi), UL32 accumulated in viral replication compartments in the nucleus of the host cell, while at 24 hpi, it was additionally found in the cytoplasm. A newly generated UL32-null mutant was used to confirm that although B capsids containing wild-type levels of capsid proteins were synthesized, these procapsids were unable to initiate the encapsidation process. Furthermore, we showed that UL32 is redox sensitive and identified two highly conserved oxidoreductase-like C-X-X-C motifs that are essential for protein function. In addition, the disulfide bond profiles of the viral proteins UL6, UL25, and VP19C and the viral protease, VP24, were altered in the absence of UL32, suggesting that UL32 may act to modulate disulfide bond formation during procapsid assembly and maturation. IMPORTANCE Although functions have been assigned to six of the seven required packaging proteins of HSV, the role of UL32 in encapsidation has remained a mystery. UL32 is a cysteine-rich viral protein that contains C-X-X-C motifs reminiscent of those in proteins that participate in the regulation of disulfide bond formation. We have previously demonstrated that disulfide bonds are required for the formation and stability of the viral capsids and are also important for the formation and stability of the UL6 portal ring. In this report, we demonstrate that the disulfide bond profiles of the viral proteins UL6, UL25, and VP19C and the viral protease, VP24, are altered in cells infected with a newly isolated UL32-null mutant virus, suggesting that UL32 acts as a chaperone capable of modulating disulfide bond formation. Furthermore, these results suggest that proper regulation of disulfide bonds is essential for initiating encapsidation.
Collapse
|
21
|
New Herpes Simplex Virus Replication Targets. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Baines JD. Herpes simplex virus capsid assembly and DNA packaging: a present and future antiviral drug target. Trends Microbiol 2011; 19:606-13. [DOI: 10.1016/j.tim.2011.09.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/30/2011] [Accepted: 09/13/2011] [Indexed: 10/16/2022]
|
23
|
Vizoso Pinto MG, Pothineni VR, Haase R, Woidy M, Lotz-Havla AS, Gersting SW, Muntau AC, Haas J, Sommer M, Arvin AM, Baiker A. Varicella zoster virus ORF25 gene product: an essential hub protein linking encapsidation proteins and the nuclear egress complex. J Proteome Res 2011; 10:5374-82. [PMID: 21988664 DOI: 10.1021/pr200628s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Varicella zoster virus (VZV) ORF25 is a 156 amino acid protein belonging to the approximately 40 core proteins that are conserved throughout the Herpesviridae. By analogy to its functional orthologue UL33 in Herpes simplex virus 1 (HSV-1), ORF25 is thought to be a component of the terminase complex. To investigate how cleavage and encapsidation of viral DNA links to the nuclear egress of mature capsids in VZV, we tested 10 VZV proteins that are predicted to be involved in either of the two processes for protein interactions against each other using three independent protein-protein interaction (PPI) detection systems: the yeast-two-hybrid (Y2H) system, a luminescence based MBP pull-down interaction screening assay (LuMPIS), and a bioluminescence resonance energy transfer (BRET) assay. A set of 20 interactions was consistently detected by at least 2 methods and resulted in a dense interaction network between proteins associated in encapsidation and nuclear egress. The results indicate that the terminase complex in VZV consists of ORF25, ORF30, and ORF45/42 and support a model in which both processes are closely linked to each other. Consistent with its role as a central hub for protein interactions, ORF25 is shown to be essential for VZV replication.
Collapse
|
24
|
Reconstitution of the Kaposi's sarcoma-associated herpesvirus nuclear egress complex and formation of nuclear membrane vesicles by coexpression of ORF67 and ORF69 gene products. J Virol 2011; 86:594-8. [PMID: 22013050 DOI: 10.1128/jvi.05988-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus nuclear egress complex is composed of two proteins, ORF67 and ORF69. In this study, we have recapitulated the KSHV complex by coexpression of these two proteins in insect cells using expression from recombinant baculoviruses. The proteins form a complex at the nuclear membrane as judged by live-cell analysis of protein fusions tagged with green fluorescent protein (GFP) and mCherry. Ultrastructural analysis of infected cells showed that ORF67 expression results in reduplication of the nuclear membrane. When the two proteins are expressed together, numerous virion-size nuclear membrane-derived vesicles were evident at the nuclear margins.
Collapse
|
25
|
Liashkovich I, Hafezi W, Kühn JM, Oberleithner H, Shahin V. Nuclear delivery mechanism of herpes simplex virus type 1 genome. J Mol Recognit 2011; 24:414-21. [PMID: 21504018 DOI: 10.1002/jmr.1120] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is a widespread human pathogen infecting more than 80% of the population worldwide. Its replication involves an essential, poorly understood multistep process, referred to as uncoating. Uncoating steps are as follows: (1) The incoming capsid pinpoints the nuclear pore complex (NPC). (2) It opens up at the NPC and releases the highly pressurized viral genome. (3) The viral genome translocates through the NPC. In the present review, we highlight recent advances in this field and propose mechanisms underlying the individual steps of uncoating. We presume that the incoming HSV-1 capsid pinpoints the NPC by hydrophobic interactions and opens up upon binding to NPC proteins. Genome translocation is initially pressure-driven.
Collapse
Affiliation(s)
- Ivan Liashkovich
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48147 Münster, Germany
| | | | | | | | | |
Collapse
|
26
|
A physical link between the pseudorabies virus capsid and the nuclear egress complex. J Virol 2011; 85:11675-84. [PMID: 21880751 DOI: 10.1128/jvi.05614-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Following their assembly, herpesvirus capsids exit the nucleus by budding at the inner nuclear membrane. Two highly conserved viral proteins are required for this process, pUL31 and pUL34. In this report, we demonstrate that the pUL31 component of the pseudorabies virus nuclear egress complex is a conditional capsid-binding protein that is unmasked in the absence of pUL34. The interaction between pUL31 and capsids was confirmed through fluorescence microscopy and Western blot analysis of purified intranuclear capsids. Three viral proteins were tested for their abilities to mediate the pUL31-capsid interaction: the minor capsid protein pUL25, the portal protein pUL6, and the terminase subunit pUL33. Despite the requirement for each protein in nuclear egress, none of these viral proteins were required for the pUL31-capsid interaction. These findings provide the first formal evidence that a herpesvirus nuclear egress complex interacts with capsids and have implications for how DNA-containing capsids are selectively targeted for nuclear egress.
Collapse
|
27
|
A mutation in UL15 of herpes simplex virus 1 that reduces packaging of cleaved genomes. J Virol 2011; 85:11972-80. [PMID: 21880766 DOI: 10.1128/jvi.00857-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus genomic DNA is cleaved from concatemers that accumulate in infected cell nuclei. Genomic DNA is inserted into preassembled capsids through a unique portal vertex. Extensive analyses of viral mutants have indicated that intact capsids, the portal vertex, and all components of a tripartite terminase enzyme are required to both cleave and package viral DNA, suggesting that DNA cleavage and packaging are inextricably linked. Because the processes have not been functionally separable, it has been difficult to parse the roles of individual proteins in the DNA cleavage/packaging reaction. In the present study, a virus bearing the deletion of codons 400 to 420 of U(L)15, encoding a terminase component, was analyzed. This virus, designated vJB27, failed to replicate on noncomplementing cells but cleaved concatemeric DNA to ca. 35 to 98% of wild-type levels. No DNA cleavage was detected in cells infected with a U(L)15-null virus or a virus lacking U(L)15 codons 383 to 385, comprising a motif proposed to couple ATP hydrolysis to DNA translocation. The amount of vJB27 DNA protected from DNase I digestion was reduced compared to the wild-type virus by 6.5- to 200-fold, depending on the DNA fragment analyzed, thus indicating a profound defect in DNA packaging. Capsids containing viral DNA were not detected in vJB27-infected cells, as determined by electron microscopy. These data suggest that pU(L)15 plays an essential role in DNA translocation into the capsid and indicate that this function is separable from its role in DNA cleavage.
Collapse
|
28
|
Disulfide bond formation in the herpes simplex virus 1 UL6 protein is required for portal ring formation and genome encapsidation. J Virol 2011; 85:8616-24. [PMID: 21593161 DOI: 10.1128/jvi.00123-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The herpes simplex virus 1 (HSV-1) UL6 portal protein forms a 12-subunit ring structure at a unique capsid vertex which functions as a conduit for the encapsidation of the viral genome. We have demonstrated previously that the leucine zipper region of UL6 is important for intersubunit interactions and stable ring formation (J. K. Nellissery, R. Szczepaniak, C. Lamberti, and S. K. Weller, J. Virol. 81:8868-8877, 2007). We now demonstrate that intersubunit disulfide bonds exist between monomeric subunits and contribute to portal ring formation and/or stability. Intersubunit disulfide bonds were detected in purified portal rings by SDS-PAGE under nonreducing conditions. Furthermore, the treatment of purified portal rings with dithiothreitol (DTT) resulted in the disruption of the rings, suggesting that disulfide bonds confer stability to this complex structure. The UL6 protein contains nine cysteines that were individually mutated to alanine. Two of these mutants, C166A and C254A, failed to complement a UL6 null mutant in a transient complementation assay. Furthermore, viral mutants bearing the C166A and C254A mutations failed to produce infectious progeny and were unable to cleave or package viral DNA. In cells infected with C166A or C254A, B capsids were produced which contained UL6 at reduced levels compared to those seen in wild-type capsids. In addition, C166A and C254A mutant proteins expressed in insect cells infected with recombinant baculovirus failed to form ring structures. Cysteines at positions 166 and 254 thus appear to be required for intersubunit disulfide bond formation. Taken together, these results indicate that disulfide bond formation is required for portal ring formation and/or stability and for the production of procapsids that are capable of encapsidation.
Collapse
|
29
|
Xing J, Wang S, Li Y, Guo H, Zhao L, Pan W, Lin F, Zhu H, Wang L, Li M, Wang L, Zheng C. Characterization of the subcellular localization of herpes simplex virus type 1 proteins in living cells. Med Microbiol Immunol 2010; 200:61-8. [PMID: 20949280 DOI: 10.1007/s00430-010-0175-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Indexed: 12/16/2022]
Abstract
In this study, we presented the construction of a library of expression clones for the herpes simplex virus type 1 (HSV-1) proteome and subcellular localization map of HSV-1 proteins in living cells using yellow fluorescent protein (YFP) fusion proteins. As a result, 21 proteins showed cytoplasmic or subcytoplasmic localization, 16 proteins showed nuclear or subnuclear localization, and others were present both in the nucleus and cytoplasm. Interestingly, most capsid proteins showed enriched or exclusive localization in the nucleus, and most of the envelope proteins showed cytoplasmic localization, suggesting that subcellular localization of the proteins correlated with their functions during virus replication. These results present a subcellular localization map of HSV-1 proteins in living cells, which provide useful information to further characterize the functions of these proteins.
Collapse
Affiliation(s)
- Junji Xing
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mutational analysis of the herpes simplex virus type 1 DNA packaging protein UL33. J Virol 2009; 83:8938-45. [PMID: 19553324 DOI: 10.1128/jvi.01048-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The UL33 protein of herpes simplex virus type 1 (HSV-1) is thought to be a component of the terminase complex that mediates the cleavage and packaging of viral DNA. In this study we describe the generation and characterization of a series of 15 UL33 mutants containing insertions of five amino acids located randomly throughout the 130-residue protein. Of these mutants, seven were unable to complement the growth of the UL33-null virus dlUL33 in transient assays and also failed to support the cleavage and packaging of replicated amplicon DNA into capsids. The insertions in these mutants were clustered between residues 51 and 74 and between 104 and 116, within the most highly conserved regions of the protein. The ability of the mutants to interact with the UL28 component of the terminase was assessed in immunoprecipitation and immunofluorescence assays. All four mutants with insertions between amino acids 51 and 74 were impaired in this interaction, whereas two of the three mutants in the second region (with insertions at positions 111 and 116) were not affected. These data indicate that the ability of UL33 to interact with UL28 is probably necessary, but not sufficient, to support viral growth and DNA packaging.
Collapse
|
31
|
The putative leucine zipper of the UL6-encoded portal protein of herpes simplex virus 1 is necessary for interaction with pUL15 and pUL28 and their association with capsids. J Virol 2009; 83:4557-64. [PMID: 19224991 DOI: 10.1128/jvi.00026-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) type 1 capsids contain a single portal vertex that is composed of 12 copies of the U(L)6 gene product (pU(L)6), which forms a pore through which DNA is inserted during packaging. This unique vertex is also believed to comprise the site with which a molecular motor, termed the terminase, associates during the DNA packaging reaction. In HSV, the terminase likely comprises the U(L)15, U(L)28, and U(L)33 proteins (pU(L)15, pU(L)28, and pU(L)33, respectively). The current study was undertaken to identify portal domains required for interaction with the terminase. Both the amino and carboxyl termini, as well as amino acids 422 to 443 of pU(L)6 forming a putative leucine zipper motif, were critical for coimmunoprecipitation with pU(L)15 in the absence of other viral proteins. Amino acids 422 to 443 were also necessary for interaction with pU(L)28 in the absence of other viral proteins. By using an engineered recombinant virus, it was further determined that although amino acids 422 to 443 were dispensable for interaction with scaffold protein and incorporation of portal protein into capsids, they were necessary for coimmunoprecipitation of pU(L)6 and pU(L)15 from infected cell lysates, association of optimal levels of pU(L)15, pU(L)28, and pU(L)33 with capsids, and DNA cleavage and packaging. These data identify a portal protein domain critical for terminase association with the capsid and suggest that both the pU(L)15- and pU(L)28-bearing terminase subunits mediate docking of the terminase with the portal vertex.
Collapse
|
32
|
Characterization of pseudorabies virus (PrV) cleavage-encapsidation proteins and functional complementation of PrV pUL32 by the homologous protein of herpes simplex virus type 1. J Virol 2009; 83:3930-43. [PMID: 19193798 DOI: 10.1128/jvi.02636-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cleavage and encapsidation of newly replicated herpes simplex virus type 1 (HSV-1) DNA requires several essential viral gene products that are conserved in sequence within the Herpesviridae. However, conservation of function has not been analyzed in greater detail. For functional characterization of the UL6, UL15, UL28, UL32, and UL33 gene products of pseudorabies virus (PrV), the respective deletion mutants were generated by mutagenesis of the virus genome cloned as a bacterial artificial chromosome (BAC) in Escherichia coli and propagated in transgenic rabbit kidney cells lines expressing the deleted genes. Neither of the PrV mutants was able to produce plaques or infectious progeny in noncomplementing cells. DNA analyses revealed that the viral genomes were replicated but not cleaved into monomers. By electron microscopy, only scaffold-containing immature but not DNA-containing mature capsids were detected in the nuclei of noncomplementing cells infected with either of the mutants. Remarkably, primary envelopment of empty capsids at the nuclear membrane occasionally occurred, and enveloped tegument-containing light particles were formed in the cytoplasm and released into the extracellular space. Immunofluorescence analyses with monospecific antisera of cells transfected with the respective expression plasmids indicated that pUL6, pUL15, and pUL32 were able to enter the nucleus. In contrast, pUL28 and pUL33 were predominantly found in the cytoplasm. Only pUL6 could be unequivocally identified and localized in PrV-infected cells and in purified virions, whereas the low abundance or immunogenicity of the other proteins hampered similar studies. Yeast two-hybrid analyses revealed physical interactions between the PrV pUL15, pUL28, and pUL33 proteins, indicating that, as in HSV-1, a tripartite protein complex might catalyze cleavage and encapsidation of viral DNA. Whereas the pUL6 protein is supposed to form the portal for DNA entry into the capsid, the precise role of the UL32 gene product during this process remains to be elucidated. Interestingly, the defect of UL32-negative PrV could be completely corrected in trans by the homologous protein of HSV-1, demonstrating similar functions. However, trans-complementation of UL32-negative HSV-1 by the PrV protein was not observed.
Collapse
|
33
|
Abstract
Transport and protection of the nuclear-replicating double-stranded DNA genome of herpesviruses is accomplished by the virion and its substructures. Studies of the composition, organization, and formation of these particles have provided insight into the molecular mechanisms of virus assembly, leads for antiviral strategies, and information about cellular processes that are required for, resemble, or antagonize virus replication. This chapter updates earlier reviews on the structure and formation human cytomegalovirus (HCMV) virions (Gibson 1996, 2006; Eickmann et al. 2006), and complements several other reviews on herpesvirus structure and replication presented in this volume (see the chapters by E. Murphy and T. Shenk, Z. Ruzsics and U. Koszinowski, R. Kalejta, and G.S. Pari) and elsewhere (Rixon 1993; Steven and Spear 1997; Brown et al. 2002; Varnum et al. 2004; Liu and Zhou 2007).
Collapse
|
34
|
Higgs MR, Preston VG, Stow ND. The UL15 protein of herpes simplex virus type 1 is necessary for the localization of the UL28 and UL33 proteins to viral DNA replication centres. J Gen Virol 2008; 89:1709-1715. [PMID: 18559942 PMCID: PMC2885020 DOI: 10.1099/vir.0.2008/000448-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The UL15, UL28 and UL33 proteins of herpes simplex virus type 1 (HSV-1) are thought to comprise a terminase complex responsible for cleavage and packaging of the viral genome into pre-assembled capsids. Immunofluorescence studies confirmed that shortly after infection with wild-type HSV-1 these three proteins localize to viral DNA replication compartments within the nucleus, identified by the presence of the single-stranded DNA-binding protein, ICP8. In cells infected with either UL28- or UL33-null mutants, the other two terminase proteins also co-localized with ICP8. In contrast, neither UL28 nor UL33 was detectable in replication compartments following infection with a UL15-null mutant, although Western blot analysis showed they were present in normal amounts in the infected cells. Provision of UL15 in a complementing cell line restored the ability of all three proteins to localize to replication compartments. These data indicate that UL15 plays a key role in localizing the terminase complex to DNA replication compartments, and that it can interact independently with UL28 and UL33.
Collapse
Affiliation(s)
- Martin R Higgs
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | - Valerie G Preston
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | - Nigel D Stow
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| |
Collapse
|
35
|
Abstract
While capsid proteins are assembled around single-stranded genomic DNA or RNA in rod-shaped viruses, the lengthy double-stranded genome of other viruses is packaged forcefully within a preformed protein shell. This entropically unfavourable DNA or RNA packaging is accomplished by an ATP-driven viral nanomotor, which is mainly composed of two components, the oligomerized channel and the packaging enzymes. This intriguing DNA or RNA packaging process has provoked interest among virologists, bacteriologists, biochemists, biophysicists, chemists, structural biologists and computational scientists alike, especially those interested in nanotechnology, nanomedicine, AAA+ family proteins, energy conversion, cell membrane transport, DNA or RNA replication and antiviral therapy. This review mainly focuses on the motors of double-stranded DNA viruses, but double-stranded RNA viral motors are also discussed due to interesting similarities. The novel and ingenious configuration of these nanomotors has inspired the development of biomimetics for nanodevices. Advances in structural and functional studies have increased our understanding of the molecular basis of biological movement to the point where we can begin thinking about possible applications of the viral DNA packaging motor in nanotechnology and medical applications.
Collapse
Affiliation(s)
- Peixuan Guo
- Department of Comparative Pathobiology and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
36
|
Yang K, Poon APW, Roizman B, Baines JD. Temperature-sensitive mutations in the putative herpes simplex virus type 1 terminase subunits pUL15 and pUL33 preclude viral DNA cleavage/packaging and interaction with pUL28 at the nonpermissive temperature. J Virol 2007; 82:487-94. [PMID: 17913813 PMCID: PMC2224384 DOI: 10.1128/jvi.01875-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Terminases comprise essential components of molecular motors required to package viral DNA into capsids in a variety of DNA virus systems. Previous studies indicated that the herpes simplex virus type 1 U(L)15 protein (pU(L)15) interacts with the pU(L)28 moiety of a pU(L)28-pU(L)33 complex to form the likely viral terminase. In the current study, a novel temperature-sensitive mutant virus was shown to contain a mutation in U(L)33 codon 61 predicted to change threonine to proline. At the nonpermissive temperature, this virus, designated ts8-22, replicated viral DNA and produced capsids that became enveloped at the inner nuclear membrane but failed to form plaques or to cleave or package viral DNA. Incubation at the nonpermissive temperature also precluded coimmunoprecipitation of U(L)33 protein with its normal interaction partners encoded by U(L)28 and U(L)15 in ts8-22-infected cells and with pU(L)28 in transient-expression assays. Moreover, a temperature-sensitive mutation in U(L)15 precluded coimmunoprecipitation of pU(L)15 with the U(L)28 and U(L)33 proteins at the nonpermissive temperature. We conclude that interactions between putative terminase components are tightly linked to successful viral DNA cleavage and packaging.
Collapse
Affiliation(s)
- Kui Yang
- C5132 Veterinary Education Center, Department of Microbiology and Immunology, New York State College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
37
|
Visalli RJ, Nicolosi DM, Irven KL, Goshorn B, Khan T, Visalli MA. The Varicella-zoster virus DNA encapsidation genes: Identification and characterization of the putative terminase subunits. Virus Res 2007; 129:200-11. [PMID: 17868947 PMCID: PMC2669082 DOI: 10.1016/j.virusres.2007.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 07/24/2007] [Accepted: 07/24/2007] [Indexed: 11/23/2022]
Abstract
The putative DNA encapsidation genes encoded by open reading frames (ORFs) 25, 26, 30, 34, 43, 45/42 and 54 were cloned from Varicella-zoster virus (VZV) strain Ellen. Sequencing revealed that the Ellen ORFs were highly conserved at the amino acid level when compared to those of 19 previously published VZV isolates. Additionally, RT-PCR provided the first evidence that ORF45/42 was expressed as a spliced transcript in VZV-infected cells. All seven ORFs were expressed in vitro and full length products were identified using a C-terminal V5 epitope tag. The in vitro products of the putative VZV terminase subunits encoded by ORFs 30 and 45/42 proved useful in protein-protein interaction assays. Previous studies have reported the formation of a heterodimeric terminase complex involved in DNA encapsidation for both herpes simplex virus-type 1 (HSV-1) and human cytomegalovirus (HCMV). Here we report that the C-terminal portion of exon II of ORF45/42 (ORF42-C269) interacted in GST-pull down experiments with in vitro synthesized ORF30 and ORF45/42. The interactions were maintained in the presence of anionic detergents and in buffers of increasing ionic strength. Cells transiently transfected with epitope tagged ORF45/42 or ORF30 showed primarily cytoplasmic staining. In contrast, an antiserum directed to the N-terminal portion of ORF45 showed nearly exclusive nuclear localization of the ORF45/42 gene product in infected cells. An ORF30 specific antiserum detected an 87 kDa protein in both the cytoplasmic and nuclear fractions of VZV infected cells. The results were consistent with the localization and function of herpesviral terminase subunits. This is the first study aimed at the identification and characterization of the VZV DNA encapsidation gene products.
Collapse
Affiliation(s)
- Robert J Visalli
- Department of Biology, Indiana University Purdue University Fort Wayne, 2101 E. Coliseum Blvd., Fort Wayne, IN 46805-1499, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Nellissery JK, Szczepaniak R, Lamberti C, Weller SK. A putative leucine zipper within the herpes simplex virus type 1 UL6 protein is required for portal ring formation. J Virol 2007; 81:8868-77. [PMID: 17581990 PMCID: PMC1951442 DOI: 10.1128/jvi.00739-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus type 1 UL6 protein forms a 12-subunit ring structure at a unique capsid vertex which functions as a conduit for encapsidation of the viral genome. To characterize UL6 protein domains that are involved in intersubunit interactions and interactions with other capsid proteins, we engineered a set of deletion mutants spanning the entire gene. Three deletion constructs, D-5 (Delta 198-295), D-6 (Delta 322-416), and D-LZ (Delta 409-473, in which a putative leucine zipper was removed), were introduced into the viral genome. All three mutant viruses produced only B capsids, indicating a defect in encapsidation. Western blot analysis showed that the UL6 protein was present in the capsids isolated from two mutants, D-6 and D-LZ. The protein encoded by D-5, on the other hand, was not associated with capsids and was instead localized in the cytoplasm of the infected cells, indicating that this deletion affected the nuclear transport of the portal protein. The UL6 protein from the KOS strain (wild type) and the D-6 mutant were purified from insect cells infected with recombinant baculoviruses and shown to form ring structures as assessed by sucrose gradient centrifugation and electron microscopy. In contrast, the D-LZ mutant protein formed aggregates that sedimented throughout the sucrose gradient as a heterogeneous mixture and did not yield stable ring structures. A mutant (L429E L436E) in which two of the heptad leucines of the putative zipper were replaced with glutamate residues also failed to form stable rings. Our results suggest that the integrity of the leucine zipper region is important for oligomer interactions and stable ring formation, which in turn are required for genome encapsidation.
Collapse
Affiliation(s)
- Jacob K Nellissery
- University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
39
|
Yang K, Homa F, Baines JD. Putative terminase subunits of herpes simplex virus 1 form a complex in the cytoplasm and interact with portal protein in the nucleus. J Virol 2007; 81:6419-33. [PMID: 17392365 PMCID: PMC1900116 DOI: 10.1128/jvi.00047-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) terminase is an essential component of the molecular motor that translocates DNA through the portal vertex in the capsid during DNA packaging. The HSV terminase is believed to consist of the UL15, UL28, and UL33 gene products (pUL15, pUL28, and pUL33, respectively), whereas the HSV type 1 portal vertex is encoded by UL6. Immunoprecipitation reactions revealed that pUL15, pUL28, and pUL33 interact in cytoplasmic and nuclear lysates. Deletion of a canonical nuclear localization signal (NLS) from pUL15 generated a dominant-negative protein that, when expressed in an engineered cell line, decreased the replication of wild-type virus up to 80-fold. When engineered into the genome of recombinant HSV, this mutation did not interfere with the coimmunoprecipitation of pUL15, pUL28, and pUL33 from cytoplasmic lysates of infected cells but prevented viral replication, most nuclear import of both pUL15 and pUL28, and coimmunoprecipitation of pUL15, pUL28, and pUL33 from nuclear lysates. When the pUL15/pUL28 interaction was reduced in infected cells by the truncation of the C terminus of pUL28, pUL28 remained in the cytoplasm. Whether putative terminase components localized in the nucleus or cytoplasm, pUL6 localized in infected cell nuclei, as viewed by indirect immunofluorescence. The finding that the portal and terminase do eventually interact was supported by the observation that pUL6 coimmunoprecipitated strongly with pUL15 and weakly with pUL28 from extracts of infected cells in 1.0 M NaCl. These data are consistent with the hypothesis that the pUL15/pUL28/pUL33 complex forms in the cytoplasm and that an NLS in pUL15 is used to import the complex into the nucleus where at least pUL15 and pUL28 interact with the portal to mediate DNA packaging.
Collapse
Affiliation(s)
- Kui Yang
- Department of Microbiology and Immunology, Cornell University, New York School of Veterinary Medicine, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
40
|
Deng B, O'Connor CM, Kedes DH, Zhou ZH. Direct visualization of the putative portal in the Kaposi's sarcoma-associated herpesvirus capsid by cryoelectron tomography. J Virol 2007; 81:3640-4. [PMID: 17215290 PMCID: PMC1866054 DOI: 10.1128/jvi.02254-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic and biochemical studies have suggested the existence of a bacteriophage-like, DNA-packaging/ejecting portal complex in herpesviruses capsids, but its arrangement remained unknown. Here, we report the first visualization of a unique vertex in the Kaposi's sarcoma-associated herpesvirus (KSHV) capsid by cryoelectron tomography, thus providing direct structural evidence for the existence of a portal complex in a gammaherpesvirus. This putative KSHV portal is an internally localized, umbilicated structure and lacks all of the external machineries characteristic of portals in DNA bacteriophages.
Collapse
Affiliation(s)
- Binbin Deng
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, 6431 Fannin St., MSB 2.280, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
41
|
Jacobson JG, Yang K, Baines JD, Homa FL. Linker insertion mutations in the herpes simplex virus type 1 UL28 gene: effects on UL28 interaction with UL15 and UL33 and identification of a second-site mutation in the UL15 gene that suppresses a lethal UL28 mutation. J Virol 2006; 80:12312-23. [PMID: 17035316 PMCID: PMC1676265 DOI: 10.1128/jvi.01766-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The UL28 protein of herpes simplex virus type 1 (HSV-1) is one of seven viral proteins required for the cleavage and packaging of viral DNA. Previous results indicated that UL28 interacts with UL15 and UL33 to form a protein complex (terminase) that is presumed to cleave concatemeric DNA into genome lengths. In order to define the functional domains of UL28 that are important for DNA cleavage/packaging, we constructed a series of HSV-1 mutants with linker insertion and nonsense mutations in UL28. Insertions that blocked DNA cleavage and packaging were found to be located in two regions of UL28: the first between amino acids 200 to 400 and the second between amino acids 600 to 740. Insertions located in the N terminus or in a region located between amino acids 400 and 600 did not affect virus replication. Insertions in the carboxyl terminus of the UL28 protein were found to interfere with the interaction of UL28 with UL33. In contrast, all of the UL28 insertion mutants were found to interact with UL15 but the interaction was reduced with mutants that failed to react with UL33. Together, these observations were consistent with previous conclusions that UL15 and UL33 interact directly with UL28 but interact only indirectly with each other. Revertant viruses that formed plaques on Vero cells were detected for one of the lethal UL28 insertion mutants. DNA sequence analysis, in combination with genetic complementation assays, demonstrated that a second-site mutation in the UL15 gene restored the ability of the revertant to cleave and package viral DNA. The isolation of an intergenic suppressor mutant provides direct genetic evidence of an association between the UL28 and UL15 proteins and demonstrates that this association is essential for DNA cleavage and packaging.
Collapse
Affiliation(s)
- Jennie G Jacobson
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, W1256 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
42
|
Thoma C, Borst E, Messerle M, Rieger M, Hwang JS, Bogner E. Identification of the interaction domain of the small terminase subunit pUL89 with the large subunit pUL56 of human cytomegalovirus. Biochemistry 2006; 45:8855-63. [PMID: 16846228 DOI: 10.1021/bi0600796] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The small terminase subunit pUL89 of human cytomegalovirus (HCMV) is thought to be required for cleavage of viral DNA into unit-length genomes in the cleavage/packaging process. Immunoprecipitations with a UL89-specific antibody demonstrated that pUL89 occurs predominantly as a monomer of approximate M(r) 75.000 together with a dimer of approximate 150.000. This was confirmed by gel permeation chromatography. In view of its putative function, pUL89 needs to be transported into the nucleus. By use of laser scanning confocal microscopy, pUL89 was found to be predominantly localized throughout the nucleus and in particular in viral replication centers of infected cells. By immunofluorescence, we demonstrated that both terminase subunits co-localized in viral replication centers. Furthermore, analysis with pUL89 GST-fusion protein mutants showed that amino acids 580-600 may represent the interaction domain with pUL56. To verify this result, a recombinant HCMV genome was constructed in which the UL89 open reading frame was disrupted. By transfection of the deletion BACmid alone, we showed that it has a lethal phenotype. Cotransfection assays demonstrated that, in contrast to pUL89 wild-type, a plasmid construct encoding a pUL89 variant without aa 580-590 as well as one encoding a variant without aa 590-600 could not complement the HCMV-pUL89 null genome, thus, suggesting that the 20 aa sequence GRDKALAVEQFISRFNSGYIK is sufficient for the interaction with pUL56 and in conclusion required for DNA packaging.
Collapse
Affiliation(s)
- Corina Thoma
- Institute of Clinical and Molecular Virology, Schlossgarten 4, 91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Wills E, Scholtes L, Baines JD. Herpes simplex virus 1 DNA packaging proteins encoded by UL6, UL15, UL17, UL28, and UL33 are located on the external surface of the viral capsid. J Virol 2006; 80:10894-9. [PMID: 16920825 PMCID: PMC1641750 DOI: 10.1128/jvi.01364-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies to localize the herpes simplex virus 1 portal protein encoded by UL6, the putative terminase components encoded by UL15, UL 28, and UL33, the minor capsid proteins encoded by UL17, and the major scaffold protein ICP35 were conducted. ICP35 in B capsids was more resistant to trypsin digestion of intact capsids than pUL6, pUL15, pUL17, pUL28, or pUL33. ICP35 required sectioning of otherwise intact embedded capsids for immunoreactivity, whereas embedding and/or sectioning decreased the immunoreactivities of pUL6, pUL17, pUL28, and pUL33. Epitopes of pUL15 were recognized roughly equally well in both sectioned and unsectioned capsids. These data indicate that pUL6, pUL17, pUL28, pUL33, and at least some portion of pUL15 are located at the external surface of the capsid.
Collapse
Affiliation(s)
- Elizabeth Wills
- Department of Microbiology and Immunology, Cornell University, C5132 Veterinary Education Center, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
44
|
Yang K, Baines JD. The putative terminase subunit of herpes simplex virus 1 encoded by UL28 is necessary and sufficient to mediate interaction between pUL15 and pUL33. J Virol 2006; 80:5733-9. [PMID: 16731912 PMCID: PMC1472570 DOI: 10.1128/jvi.00125-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral terminases play essential roles as components of molecular motors that package viral DNA into capsids. Previous results indicated that the putative terminase subunits of herpes simplex virus 1 (HSV-1) encoded by U(L)15 and U(L)28 (designated pU(L)15 and pU(L)28, respectively) coimmunoprecipitate with the U(L)33 protein from lysates of infected cells. All three proteins are among six required for HSV-1 DNA packaging but dispensable for assembly of immature capsids. The current results show that in both infected- and uninfected-cell lysates, pU(L)28 coimmunoprecipitates with either pU(L)33 or pU(L)15, whereas pU(L)15 and pU(L)33 do not coimmunoprecipitate unless pU(L)28 is present. The U(L)28 protein was sufficient to stabilize pU(L)33 from proteasomal degradation in an engineered cell line and was necessary to stabilize pU(L)33 in infected cells, whereas pU(L)15 had no such effects. The presence of pU(L)33 was dispensable for the pU(L)15/pU(L)28 interaction in lysates of both infected and uninfected cells but augmented the tendency for pU(L)15 and pU(L)28 to coimmunoprecipitate. These data suggest that pU(L)28 and pU(L)33 interact directly and that pU(L)15 interacts directly with pU(L)28 but only indirectly with pU(L)33. It is logical to propose that the indirect interaction of pU(L)15 and pU(L)33 is mediated through the interaction of both proteins with pU(L)28. The data also suggest that one function of pU(L)33 is to optimize the pU(L)15/pU(L)28 interaction.
Collapse
Affiliation(s)
- Kui Yang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | | |
Collapse
|
45
|
Kolokotronis A, Doumas S. Herpes simplex virus infection, with particular reference to the progression and complications of primary herpetic gingivostomatitis. Clin Microbiol Infect 2006; 12:202-11. [PMID: 16451405 DOI: 10.1111/j.1469-0691.2005.01336.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Primary herpetic gingivostomatitis (PHGS) represents the clinically apparent pattern of primary herpes simplex virus (HSV) infection, since the vast majority of other primary infections are symptomless. PHGS is caused predominantly by HSV-1 and affects mainly children. Prodromal symptoms, such as fever, anorexia, irritability, malaise and headache, may occur in advance of disease. The disease presents as numerous pin-head vesicles, which rupture rapidly to form painful irregular ulcerations covered by yellow-grey membranes. Sub-mandibular lymphadenitis, halitosis and refusal to drink are usual concomitant findings. Following resolution of the lesions, the virus travels through the nerve endings to the nerve cells serving the affected area, whereupon it enters a latent state. When the host becomes stressed, the virus replicates and migrates in skin, mucosae and, in rare instances, the central nervous system. A range of morbidities, or even mortality, may then occur, i.e., recurrent HSV infections, which are directly or indirectly associated with PHGS. These pathological entities range from the innocuous herpes labialis to life-threatening meningoencephalitis.
Collapse
Affiliation(s)
- A Kolokotronis
- Dental School, Aristotle University of Thessaloniki, Oral Medicine/Pathology, Thessaloniki, Greece.
| | | |
Collapse
|
46
|
Bowman BR, Welschhans RL, Jayaram H, Stow ND, Preston VG, Quiocho FA. Structural characterization of the UL25 DNA-packaging protein from herpes simplex virus type 1. J Virol 2006; 80:2309-17. [PMID: 16474137 PMCID: PMC1395411 DOI: 10.1128/jvi.80.5.2309-2317.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses replicate their double stranded DNA genomes as high-molecular-weight concatemers which are subsequently cleaved into unit-length genomes by a complex mechanism that is tightly coupled to DNA insertion into a preformed capsid structure, the procapsid. The herpes simplex virus type 1 UL25 protein is incorporated into the capsid during DNA packaging, and previous studies of a null mutant have demonstrated that its function is essential at the late stages of the head-filling process, either to allow packaging to proceed to completion or for retention of the viral genome within the capsid. We have expressed and purified an N-terminally truncated form of the 580-residue UL25 protein and have determined the crystallographic structure of the region corresponding to amino acids 134 to 580 at 2.1-Angstroms resolution. This structure, the first for any herpesvirus protein involved in processing and packaging of viral DNA, reveals a novel fold, a distinctive electrostatic distribution, and a unique "flexible" architecture in which numerous flexible loops emanate from a stable core. Evolutionary trace analysis of UL25 and its homologues in other herpesviruses was used to locate potentially important amino acids on the surface of the protein, leading to the identification of four putative docking regions for protein partners.
Collapse
Affiliation(s)
- Brian R Bowman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
47
|
Thurlow JK, Murphy M, Stow ND, Preston VG. Herpes simplex virus type 1 DNA-packaging protein UL17 is required for efficient binding of UL25 to capsids. J Virol 2006; 80:2118-26. [PMID: 16474120 PMCID: PMC1395399 DOI: 10.1128/jvi.80.5.2118-2126.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 packages its DNA genome into a precursor capsid, referred to as the procapsid. Of the three capsid-associated DNA-packaging proteins, UL17, UL25, and UL6, only UL17 and UL6 appear to be components of the procapsid, with UL25 being added subsequently. To determine whether the association of UL17 or UL25 with capsids was dependent on the other two packaging proteins, B capsids, which lack viral DNA but retain the cleaved internal scaffold, were purified from nonpermissive cells infected with UL17, UL25, or UL6 null mutants and compared with wild-type (wt) B capsids. In the absence of UL17, the levels of UL25 in the mutant capsids were much lower than those in wt B capsids. These results suggest that UL17 is required for efficient incorporation of UL25 into B capsids. B capsids lacking UL25 contained about twofold-less UL17 than wt capsids, raising the possibilities that UL25 is important for stabilizing UL17 in capsids and that the two proteins interact in the capsid. The distribution of UL17 and UL25 on B capsids was examined using immunogold labeling. Both proteins appeared to bind to multiple sites on the capsid. The properties of the UL17 and UL25 proteins are consistent with the idea that the two proteins are important in stabilizing capsid-DNA structures rather than having a direct role in DNA packaging.
Collapse
|
48
|
Dittmer A, Drach JC, Townsend LB, Fischer A, Bogner E. Interaction of the putative human cytomegalovirus portal protein pUL104 with the large terminase subunit pUL56 and its inhibition by benzimidazole-D-ribonucleosides. J Virol 2006; 79:14660-7. [PMID: 16282466 PMCID: PMC1287559 DOI: 10.1128/jvi.79.23.14660-14667.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus DNA replication leads to unit length genomes that are translocated into preformed procapsids through a unique portal vertex. The translocation is performed by the terminase that cleaves the DNA and powers the insertion by its ATPase activity. Recently, we demonstrated that the putative human cytomegalovirus (HCMV) portal protein, pUL104, also forms high-molecular-weight complexes. Analyses now have been performed to determine the intracellular localization and identification of interaction partners of pUL104. In infected cells, HCMV pUL104 was found to be predominantly localized throughout the nucleus as well as in cytoplasmic clusters at late times of infection. The latter localization was abolished by phosphonoacetic acid, an inhibitor of viral DNA replication. Immunofluorescence revealed that pUL104 colocalized with pUL56, the large subunit of the HCMV terminase. Specific association of in vitro translated pUL104 with the carboxy-terminal half of GST-UL56C was detected. By using coimmunoprecipitations a direct interaction with pUL56 was confirmed. In addition, this interaction was no longer detected when the benzimidazole-D-nucleosides BDCRB or Cl4RB were added, thus indicating that these HCMV inhibitors block the insertion of the DNA into the capsid by preventing a necessary interaction of pUL56 with the portal. Electron microscopy revealed that in the presence of Cl4RB DNA is not packaged into capsids and these capsids failed to egress from the nucleus. Furthermore, pulsed-field gel electrophoresis showed that DNA concatemers synthesized in the presence of the compound failed to be processed.
Collapse
Affiliation(s)
- Alexandra Dittmer
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
49
|
Pomeranz LE, Reynolds AE, Hengartner CJ. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 2005; 69:462-500. [PMID: 16148307 PMCID: PMC1197806 DOI: 10.1128/mmbr.69.3.462-500.2005] [Citation(s) in RCA: 599] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pseudorabies virus (PRV) is a herpesvirus of swine, a member of the Alphaherpesvirinae subfamily, and the etiological agent of Aujeszky's disease. This review describes the contributions of PRV research to herpesvirus biology, neurobiology, and viral pathogenesis by focusing on (i) the molecular biology of PRV, (ii) model systems to study PRV pathogenesis and neurovirulence, (iii) PRV transsynaptic tracing of neuronal circuits, and (iv) veterinary aspects of pseudorabies disease. The structure of the enveloped infectious particle, the content of the viral DNA genome, and a step-by-step overview of the viral replication cycle are presented. PRV infection is initiated by binding to cellular receptors to allow penetration into the cell. After reaching the nucleus, the viral genome directs a regulated gene expression cascade that culminates with viral DNA replication and production of new virion constituents. Finally, progeny virions self-assemble and exit the host cells. Animal models and neuronal culture systems developed for the study of PRV pathogenesis and neurovirulence are discussed. PRV serves asa self-perpetuating transsynaptic tracer of neuronal circuitry, and we detail the original studies of PRV circuitry mapping, the biology underlying this application, and the development of the next generation of tracer viruses. The basic veterinary aspects of pseudorabies management and disease in swine are discussed. PRV infection progresses from acute infection of the respiratory epithelium to latent infection in the peripheral nervous system. Sporadic reactivation from latency can transmit PRV to new hosts. The successful management of PRV disease has relied on vaccination, prevention, and testing.
Collapse
Affiliation(s)
- Lisa E Pomeranz
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA.
| | | | | |
Collapse
|
50
|
Zhang W, Arcos R. Interaction of the adenovirus major core protein precursor, pVII, with the viral DNA packaging machinery. Virology 2005; 334:194-202. [PMID: 15780869 DOI: 10.1016/j.virol.2005.01.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 12/20/2004] [Accepted: 01/28/2005] [Indexed: 10/25/2022]
Abstract
Adenovirus is one of the well-studied double-stranded DNA viruses. However, the mechanisms of its DNA packaging and virion assembly are still not fully understood. One of the unique features of adenovirus is that the unpackaged viral DNA is associated with core protein pVII. Packaging of viral DNA bound with proteins has not been reported from other viruses. To characterize how viral DNA bound with protein pVII is packaged, we performed experiments to see if protein pVII interacts with the known DNA packaging proteins or the packaging sequence. Our results demonstrated that protein pVII interacted with the viral IVa2 and L1 52/55 kDa proteins, which are the known viral DNA packaging proteins. Furthermore, our protein-DNA binding experiments demonstrated that the IVa2 protein mediates the specific interaction with the packaging sequence, whereas protein pVII and the L1 52/55 kDa protein bind to DNA non-specifically. Although the non-specific binding of protein pVII and the L1 52/55 kDa protein do not appear to affect the specific binding of the IVa2 protein to the packaging sequence, and the specific binding of the IVa2 protein does not appear to block the bindings of protein pVII and the L1 52/55 kDa protein to the packaging sequence, the possibility of a cooperative binding among the IVa2 protein, the L1 52/55 kDa protein and protein pVII on the packaging sequence needs to be further determined. In summary, the results indicate that the assembly of the DNA packaging initiation complex may be mediated by the specific interaction of the IVa2 protein with the packaging sequence and other viral proteins, such as protein pVII and the L1 52/55 kDa protein.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | | |
Collapse
|