1
|
Boppana SB, Britt WJ. Recent Approaches and Strategies in the Generation of Anti-human Cytomegalovirus Vaccines. Methods Mol Biol 2021; 2244:403-463. [PMID: 33555597 DOI: 10.1007/978-1-0716-1111-1_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human cytomegalovirus is the largest human herpesvirus and shares many core features of other herpesviruses such as tightly regulated gene expression during genome replication and latency as well as the establishment of lifelong persistence following infection. In contrast to stereotypic clinical syndromes associated with alpha-herpesvirus infections, almost all primary HCMV infections are asymptomatic and acquired early in life in most populations in the world. Although asymptomatic in most individuals, HCMV is a major cause of disease in hosts with deficits in adaptive and innate immunity such as infants who are infected in utero and allograft recipients following transplantation. Congenital HCMV is a commonly acquired infection in the developing fetus that can result in a number of neurodevelopmental abnormalities. Similarly, HCMV is a major cause of disease in allograft recipients in the immediate and late posttransplant period and is thought to be a major contributor to chronic allograft rejection. Even though HCMV induces robust innate and adaptive immune responses, it also encodes a vast array of immune evasion functions that are thought aid in its persistence. Immune correlates of protective immunity that prevent or modify intrauterine HCMV infection remain incompletely defined but are thought to consist primarily of adaptive responses in the pregnant mother, thus making congenital HCMV a potentially vaccine modifiable disease. Similarly, HCMV infection in allograft recipients is often more severe in recipients without preexisting adaptive immunity to HCMV. Thus, there has been a considerable effort to modify HCMV specific immunity in transplant recipient either through active immunization or passive transfer of adaptive effector functions. Although efforts to develop an efficacious vaccine and/or passive immunotherapy to limit HCMV disease have been underway for nearly six decades, most have met with limited success at best. In contrast to previous efforts, current HCMV vaccine development has relied on observations of unique properties of HCMV in hopes of reproducing immune responses that at a minimum will be similar to that following natural infection. However, more recent findings have suggested that immunity following naturally acquired HCMV infection may have limited protective activity and almost certainly, is not sterilizing. Such observations suggest that either the induction of natural immunity must be specifically tailored to generate protective activity or alternatively, that providing targeted passive immunity to susceptible populations could be prove to be more efficacious.
Collapse
Affiliation(s)
- Suresh B Boppana
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA.,Departments of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Britt
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA. .,Departments of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA. .,Departments of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Human cytomegalovirus glycoprotein B variants affect viral entry, cell fusion, and genome stability. Proc Natl Acad Sci U S A 2019; 116:18021-18030. [PMID: 31427511 DOI: 10.1073/pnas.1907447116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human cytomegalovirus (HCMV), like many other DNA viruses, can cause genome instability and activate a DNA damage response (DDR). Activation of ataxia-telangiectasia mutated (ATM), a kinase activated by DNA breaks, is a hallmark of the HCMV-induced DDR. Here we investigated the activation of caspase-2, an initiator caspase activated in response to DNA damage and supernumerary centrosomes. Of 7 HCMV strains tested, only strain AD169 activated caspase-2 in infected fibroblasts. Treatment with an ATM inhibitor or inactivation of PIDD or RAIDD inhibited caspase-2 activation, indicating that caspase-2 was activated by the PIDDosome. A set of chimeric HCMV strains was used to identify the genetic basis of this phenotype. Surprisingly, we found a single nucleotide polymorphism within the AD169 UL55 ORF, resulting in a D275Y amino acid exchange within glycoprotein B (gB), to be responsible for caspase-2 activation. As gB is an envelope glycoprotein required for fusion with host cell membranes, we tested whether gB(275Y) altered viral entry into fibroblasts. While entry of AD169 expressing gB(275D) proceeded slowly and could be blocked by a macropinocytosis inhibitor, entry of wild-type AD169 expressing gB(275Y) proceeded more rapidly, presumably by envelope fusion with the plasma membrane. Moreover, gB(275Y) caused the formation of syncytia with numerous centrosomes, suggesting that cell fusion triggered caspase-2 activation. These results suggest that gB variants with increased fusogenicity accelerate viral entry, cause cell fusion, and thereby compromise genome stability. They further suggest the ATM-PIDDosome-caspase-2 signaling axis alerts the cell of potentially dangerous cell fusion.
Collapse
|
3
|
Copy-Paste Mutagenesis: A Method for Large-Scale Alteration of Viral Genomes. Int J Mol Sci 2019; 20:ijms20040913. [PMID: 30791544 PMCID: PMC6413233 DOI: 10.3390/ijms20040913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/19/2022] Open
Abstract
The cloning of the large DNA genomes of herpesviruses, poxviruses, and baculoviruses as bacterial artificial chromosomes (BAC) in Escherichia coli has opened a new era in viral genetics. Several methods of lambda Red-mediated genome engineering (recombineering) in E. coli have been described, which are now commonly used to generate recombinant viral genomes. These methods are very efficient at introducing deletions, small insertions, and point mutations. Here we present Copy-Paste mutagenesis, an efficient and versatile strategy for scarless large-scale alteration of viral genomes. It combines gap repair and en passant mutagenesis procedures and relies on positive selection in all crucial steps. We demonstrate that this method can be used to generate chimeric strains of human cytomegalovirus (HCMV), the largest human DNA virus. Large (~15 kbp) genome fragments of HCMV strain TB40/E were tagged with an excisable marker and cloned (copied) in a low-copy plasmid vector by gap repair recombination. The cloned fragment was then excised and inserted (pasted) into the HCMV AD169 genome with subsequent scarless removal of the marker by en passant mutagenesis. We have done four consecutive rounds of this procedure, thereby generating an AD169-TB40/E chimera containing 60 kbp of the donor strain TB40/E. This procedure is highly useful for identifying gene variants responsible for phenotypic differences between viral strains. It can also be used for repair of incomplete viral genomes, and for modification of any BAC-cloned sequence. The method should also be applicable for large-scale alterations of bacterial genomes.
Collapse
|
4
|
Chaudhry MZ, Kasmapour B, Plaza-Sirvent C, Bajagic M, Casalegno Garduño R, Borkner L, Lenac Roviš T, Scrima A, Jonjic S, Schmitz I, Cicin-Sain L. UL36 Rescues Apoptosis Inhibition and In vivo Replication of a Chimeric MCMV Lacking the M36 Gene. Front Cell Infect Microbiol 2017; 7:312. [PMID: 28770171 PMCID: PMC5509765 DOI: 10.3389/fcimb.2017.00312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Abstract
Apoptosis is an important defense mechanism mounted by the immune system to control virus replication. Hence, cytomegaloviruses (CMV) evolved and acquired numerous anti-apoptotic genes. The product of the human CMV (HCMV) UL36 gene, pUL36 (also known as vICA), binds to pro-caspase-8, thus inhibiting death-receptor apoptosis and enabling viral replication in differentiated THP-1 cells. In vivo studies of the function of HCMV genes are severely limited due to the strict host specificity of cytomegaloviruses, but CMV orthologues that co-evolved with other species allow the experimental study of CMV biology in vivo. The mouse CMV (MCMV) homolog of the UL36 gene is called M36, and its protein product (pM36) is a functional homolog of vICA that binds to murine caspase-8 and inhibits its activation. M36-deficient MCMV is severely growth impaired in macrophages and in vivo. Here we show that pUL36 binds to the murine pro-caspase-8, and that UL36 expression inhibits death-receptor apoptosis in murine cells and can replace M36 to allow MCMV growth in vitro and in vivo. We generated a chimeric MCMV expressing the UL36 ORF sequence instead of the M36 one. The newly generated MCMVUL36 inhibited apoptosis in macrophage lines RAW 264.7, J774A.1, and IC-21 and its growth was rescued to wild type levels. Similarly, growth was rescued in vivo in the liver and spleen, but only partially in the salivary glands of BALB/c and C57BL/6 mice. In conclusion, we determined that an immune-evasive HCMV gene is conserved enough to functionally replace its MCMV counterpart and thus allow its study in an in vivo setting. As UL36 and M36 proteins engage the same molecular host target, our newly developed model can facilitate studies of anti-viral compounds targeting pUL36 in vivo.
Collapse
Affiliation(s)
- M Zeeshan Chaudhry
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection ResearchBraunschweig, Germany.,German Center for Infection ResearchBraunschweig, Germany
| | - Bahram Kasmapour
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection ResearchBraunschweig, Germany
| | - Carlos Plaza-Sirvent
- Research Group Systems-Oriented Immunology and Inflammation Research, Helmholtz Centre for Infection ResearchBraunschweig, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke UniversityMagdeburg, Germany
| | - Milica Bajagic
- Young Investigator Group Structural Biology of Autophagy, Helmholtz Centre for Infection ResearchBraunschweig, Germany
| | - Rosaely Casalegno Garduño
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection ResearchBraunschweig, Germany
| | - Lisa Borkner
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection ResearchBraunschweig, Germany
| | - Tihana Lenac Roviš
- Faculty of Medicine, Center for Proteomics, University of RijekaRijeka, Croatia
| | - Andrea Scrima
- Young Investigator Group Structural Biology of Autophagy, Helmholtz Centre for Infection ResearchBraunschweig, Germany
| | - Stipan Jonjic
- Faculty of Medicine, Center for Proteomics, University of RijekaRijeka, Croatia.,Department for Histology and Embryology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Ingo Schmitz
- Research Group Systems-Oriented Immunology and Inflammation Research, Helmholtz Centre for Infection ResearchBraunschweig, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke UniversityMagdeburg, Germany
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection ResearchBraunschweig, Germany.,German Center for Infection ResearchBraunschweig, Germany.,Institute for Virology, Medical School HannoverHannover, Germany
| |
Collapse
|
5
|
Inactivation of the Human Cytomegalovirus US20 Gene Hampers Productive Viral Replication in Endothelial Cells. J Virol 2015; 89:11092-106. [PMID: 26311874 DOI: 10.1128/jvi.01141-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/21/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED The human cytomegalovirus (HCMV) US12 gene family includes a group of 10 contiguous genes (US12 to US21) encoding predicted seven-transmembrane-domain (7TMD) proteins that are nonessential for replication within cultured fibroblasts. Nevertheless, inactivation of some US12 family members affects virus replication in other cell types; e.g., deletion of US16 or US18 abrogates virus growth in endothelial and epithelial cells or in human gingival tissue, respectively, suggesting a role for some US12 proteins in HCMV cell tropism. Here, we provide evidence that another member, US20, impacts the ability of a clinical strain of HCMV to replicate in endothelial cells. Through the use of recombinant HCMV encoding tagged versions of the US20 protein, we investigated the expression pattern, localization, and topology of the US20-encoded protein (pUS20). We show that pUS20 is expressed as a partially glycosylated 7TMD protein which accumulates late in infection in endoplasmic reticulum-derived peripheral structures localized outside the cytoplasmic virus assembly compartment (cVAC). US20-deficient mutants generated in the TR clinical strain of HCMV exhibited major growth defects in different types of endothelial cells, whereas they replicated normally in fibroblasts and epithelial cells. While the attachment and entry phases in endothelial cells were not significantly affected by the absence of US20 protein, US20-null viruses failed to replicate viral DNA and express representative E and L mRNAs and proteins. Taken together, these results indicate that US20 sustains the HCMV replication cycle at a stage subsequent to entry but prior to E gene expression and viral DNA synthesis in endothelial cells. IMPORTANCE Human cytomegalovirus (HCMV) is a major pathogen in newborns and immunocompromised individuals. A hallmark of HCMV pathogenesis is its ability to productively replicate in an exceptionally broad range of target cells, including endothelial cells, which represent a key target for viral dissemination and replication in the host, and to contribute to both viral persistence and associated inflammation and vascular diseases. Replication in endothelial cells depends on the activities of a set of viral proteins that regulate different stages of the HCMV replication cycle in an endothelial cell type-specific manner and thereby act as determinants of viral tropism. Here, we report the requirement of a HCMV protein as a postentry tropism factor in endothelial cells. The identification and characterization of HCMV endotheliotropism-regulating proteins will advance our understanding of the molecular mechanisms of HCMV-related pathogenesis and help lead to the design of new antiviral strategies able to exploit these functions.
Collapse
|
6
|
Recent approaches and strategies in the generation of antihuman cytomegalovirus vaccines. Methods Mol Biol 2014; 1119:311-48. [PMID: 24639230 DOI: 10.1007/978-1-62703-788-4_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development of prophylactic and to lesser extent therapeutic vaccines for the prevention of disease associated with human cytomegalovirus (HCMV) infections has received considerable attention from biomedical researchers and pharmaceutical companies over the previous 15 years, even though attempts to produce such vaccines have been described in the literature for over 40 years. Studies of the natural history of congenital HCMV infection and infection in allograft recipients have suggested that prophylaxis of disease associated with HCMV infection could be possible, particularly in hosts at risk for more severe disease secondary to the lack of preexisting immunity. Provided a substantial understanding of immune response to HCMV together with several animal models that faithfully recapitulate aspects of human infection and immunity, investigators seem well positioned to design and test candidate vaccines. Yet more recent studies of the role of a maternal immunity in the natural history of congenital HCMV infection, including the recognition that reinfection of previously immune women by genetically distinct strains of HCMV occur in populations with a high seroprevalence, have raised several questions about the nature of protective immunity in maternal populations. This finding coupled with observations that have documented a significant incidence of damaging congenital infections in offspring of women with immunity to HCMV prior to conception has suggested that vaccine development based on conventional paradigms of adaptive immunity to viral infections may be of limited value in the prevention of damaging congenital HCMV infections. Perhaps a more achievable goal will be prophylactic vaccines to modify HCMV associated disease in allograft transplant recipients. Although recent descriptions of the results from vaccine trials have been heralded as evidence of an emerging success in the quest for a HCMV vaccine, careful analyses of these studies have also revealed that major hurdles remain to be addressed by current strategies.
Collapse
|
7
|
Structural biology of the Bcl-2 family and its mimicry by viral proteins. Cell Death Dis 2013; 4:e909. [PMID: 24201808 PMCID: PMC3847314 DOI: 10.1038/cddis.2013.436] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/09/2013] [Accepted: 10/02/2013] [Indexed: 12/16/2022]
Abstract
Intrinsic apoptosis in mammals is regulated by protein–protein interactions among the B-cell lymphoma-2 (Bcl-2) family. The sequences, structures and binding specificity between pro-survival Bcl-2 proteins and their pro-apoptotic Bcl-2 homology 3 motif only (BH3-only) protein antagonists are now well understood. In contrast, our understanding of the mode of action of Bax and Bak, the two necessary proteins for apoptosis is incomplete. Bax and Bak are isostructural with pro-survival Bcl-2 proteins and also interact with BH3-only proteins, albeit weakly. Two sites have been identified; the in-groove interaction analogous to the pro-survival BH3-only interaction and a site on the opposite molecular face. Interaction of Bax or Bak with activator BH3-only proteins and mitochondrial membranes triggers a series of ill-defined conformational changes initiating their oligomerization and mitochondrial outer membrane permeabilization. Many actions of the mammalian pro-survival Bcl-2 family are mimicked by viruses. By expressing proteins mimicking mammalian pro-survival Bcl-2 family proteins, viruses neutralize death-inducing members of the Bcl-2 family and evade host cell apoptosis during replication. Remarkably, structural elements are preserved in viral Bcl-2 proteins even though there is in many cases little discernible sequence conservation with their mammalian counterparts. Some viral Bcl-2 proteins are dimeric, but they have distinct structures to those observed for mammalian Bcl-2 proteins. Furthermore, viral Bcl-2 proteins modulate innate immune responses regulated by NF-κB through an interface separate from the canonical BH3-binding groove. Our increasing structural understanding of the viral Bcl-2 proteins is leading to new insights in the cellular Bcl-2 network by exploring potential alternate functional modes in the cellular context. We compare the cellular and viral Bcl-2 proteins and discuss how alterations in their structure, sequence and binding specificity lead to differences in behavior, and together with the intrinsic structural plasticity in the Bcl-2 fold enable exquisite control over critical cellular signaling pathways.
Collapse
|
8
|
Stahl S, Burkhart JM, Hinte F, Tirosh B, Mohr H, Zahedi RP, Sickmann A, Ruzsics Z, Budt M, Brune W. Cytomegalovirus downregulates IRE1 to repress the unfolded protein response. PLoS Pathog 2013; 9:e1003544. [PMID: 23950715 PMCID: PMC3738497 DOI: 10.1371/journal.ppat.1003544] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/21/2013] [Indexed: 02/07/2023] Open
Abstract
During viral infection, a massive demand for viral glycoproteins can overwhelm the capacity of the protein folding and quality control machinery, leading to an accumulation of unfolded proteins in the endoplasmic reticulum (ER). To restore ER homeostasis, cells initiate the unfolded protein response (UPR) by activating three ER-to-nucleus signaling pathways, of which the inositol-requiring enzyme 1 (IRE1)-dependent pathway is the most conserved. To reduce ER stress, the UPR decreases protein synthesis, increases degradation of unfolded proteins, and upregulates chaperone expression to enhance protein folding. Cytomegaloviruses, as other viral pathogens, modulate the UPR to their own advantage. However, the molecular mechanisms and the viral proteins responsible for UPR modulation remained to be identified. In this study, we investigated the modulation of IRE1 signaling by murine cytomegalovirus (MCMV) and found that IRE1-mediated mRNA splicing and expression of the X-box binding protein 1 (XBP1) is repressed in infected cells. By affinity purification, we identified the viral M50 protein as an IRE1-interacting protein. M50 expression in transfected or MCMV-infected cells induced a substantial downregulation of IRE1 protein levels. The N-terminal conserved region of M50 was found to be required for interaction with and downregulation of IRE1. Moreover, UL50, the human cytomegalovirus (HCMV) homolog of M50, affected IRE1 in the same way. Thus we concluded that IRE1 downregulation represents a previously undescribed viral strategy to curb the UPR. Viruses abuse the cell's protein synthesis and folding machinery to produce large amounts of viral proteins. This enforced synthesis overloads the cell's capacity and leads to an accumulation of unfolded proteins in the endoplasmic reticulum (ER) resulting in ER stress, which can compromise cell viability. To restore ER homeostasis, cells initiate the unfolded protein response (UPR) to reduce protein synthesis, increase degradation of unfolded proteins, and upregulate chaperone expression for enhanced protein folding. The most conserved branch of the UPR is the signaling pathway activated by the ER stress sensor IRE1. It upregulates ER-associated degradation (ERAD), thereby antagonizing ER stress. Some of the counter-regulatory mechanisms of the UPR are detrimental for viral replication and are, therefore, moderated by viruses. In this study we identified the first viral IRE1 inhibitor: The murine cytomegalovirus M50 protein, which interacts with IRE1 and induces its degradation. By this means, M50 inhibits IRE1 signaling and prevents ERAD upregulation. Interestingly, the M50 homolog in human cytomegalovirus, UL50, also downregulated IRE1 revealing a previously unknown mechanism of viral host cell manipulation.
Collapse
Affiliation(s)
- Sebastian Stahl
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
| | - Julia M. Burkhart
- Department of Bioanalytics, ISAS – Leibniz Institute for Analytical Sciences, Dortmund, Germany
| | - Florian Hinte
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Boaz Tirosh
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Hermine Mohr
- Max von Pettenkofer Institute, Ludwig-Maximilians-Universität München, Munich, Germany
| | - René P. Zahedi
- Department of Bioanalytics, ISAS – Leibniz Institute for Analytical Sciences, Dortmund, Germany
| | - Albert Sickmann
- Department of Bioanalytics, ISAS – Leibniz Institute for Analytical Sciences, Dortmund, Germany
- Medical Proteome Center (MPC), Ruhr-Universität, Bochum, Germany
| | - Zsolt Ruzsics
- Max von Pettenkofer Institute, Ludwig-Maximilians-Universität München, Munich, Germany
- DZIF German Center for Infection Research, Munich, Germany
| | - Matthias Budt
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
| | - Wolfram Brune
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
- DZIF German Center for Infection Research, Hamburg, Germany
- * E-mail:
| |
Collapse
|
9
|
Fleming P, Kvansakul M, Voigt V, Kile BT, Kluck RM, Huang DCS, Degli-Esposti MA, Andoniou CE. MCMV-mediated inhibition of the pro-apoptotic Bak protein is required for optimal in vivo replication. PLoS Pathog 2013; 9:e1003192. [PMID: 23468630 PMCID: PMC3585157 DOI: 10.1371/journal.ppat.1003192] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/28/2012] [Indexed: 01/29/2023] Open
Abstract
Successful replication and transmission of large DNA viruses such as the cytomegaloviruses (CMV) family of viruses depends on the ability to interfere with multiple aspects of the host immune response. Apoptosis functions as a host innate defence mechanism against viral infection, and the capacity to interfere with this process is essential for the replication of many viruses. The Bcl-2 family of proteins are the principle regulators of apoptosis, with two pro-apoptotic members, Bax and Bak, essential for apoptosis to proceed. The m38.5 protein encoded by murine CMV (MCMV) has been identified as Bax-specific inhibitor of apoptosis. Recently, m41.1, a protein product encoded by the m41 open reading frame (ORF) of MCMV, has been shown to inhibit Bak activity in vitro. Here we show that m41.1 is critical for optimal MCMV replication in vivo. Growth of a m41.1 mutant was attenuated in multiple organs, a defect that was not apparent in Bak−/− mice. Thus, m41.1 promotes MCMV replication by inhibiting Bak-dependent apoptosis during in vivo infection. The results show that Bax and Bak mediate non-redundant functions during MCMV infection and that the virus produces distinct inhibitors for each protein to counter the activity of these proteins. The cytomegaloviruses (CMV) are a family of viruses that establish a latent infection that lasts for the life of the host, with the virus able to reactivate when the host is immunosuppressed. We have used murine CMV (MCMV) as a model to understand how CMV interferes with the anti-viral immune response. Apoptosis, or programmed cell death, is one of the defence mechanisms used by multicellular organisms to impair viral infection. In order for viral replication to proceed, many viruses have evolved mechanisms to prevent the apoptosis of infected host cells. Under most circumstances the activation of Bax, or the closely related protein Bak, is required for apoptosis to proceed. The m41.1 protein was recently identified as a candidate Bak inhibitor during in vitro infection. We have generated a mutant virus which is unable to produce the m41.1 protein and found that growth of this virus was attenuated in wild-type mice. Importantly, growth of the mutant virus was equivalent to that of the wild-type virus in mice lacking the Bak protein. These studies establish that m41.1 is an inhibitor of Bak and that the capacity to prevent apoptosis triggered by Bak is required for efficient replication of MCMV in vivo.
Collapse
Affiliation(s)
- Peter Fleming
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Marc Kvansakul
- Department of Biochemistry, La Trobe University, Melbourne, Victoria, Australia
| | - Valentina Voigt
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Benjamin T. Kile
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ruth M. Kluck
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - David C. S. Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Mariapia A. Degli-Esposti
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Christopher E. Andoniou
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
- * E-mail:
| |
Collapse
|
10
|
Crosby LN, McCormick AL, Mocarski ES. Gene products of the embedded m41/m41.1 locus of murine cytomegalovirus differentially influence replication and pathogenesis. Virology 2013; 436:274-83. [PMID: 23295021 DOI: 10.1016/j.virol.2012.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 09/30/2012] [Accepted: 12/02/2012] [Indexed: 01/08/2023]
Abstract
Cytomegaloviruses utilize overlapping and embedded reading frames as a way to efficiently package and express all genes necessary to carry out a complex lifecycle. Murine cytomegalovirus encodes a mitochondrial-localized inhibitor of Bak oligomerization (vIBO) from m41.1, a reading frame that is embedded within the m41 gene. The m41.1-encoded mitochondrial protein and m41-encoded Golgi-localized protein have both been implicated in cell death suppression; however, their contribution to viral infection within the host has not been investigated. Here, we report that mitochondrial-localized m41.1 (vIBO) is required for optimal viral replication in macrophages and has a modest impact on dissemination in infected mice. In contrast, Golgi-localized m41 protein is dispensable during acute infection and dissemination as well as for latency. All together, these data indicate that the primary evolutionary focus of this locus is to maintain mitochondrial function through inhibition of Bak-mediated death pathways in support of viral pathogenesis.
Collapse
Affiliation(s)
- Lynsey N Crosby
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
11
|
Abstract
As intracellular parasites, viruses rely on many host cell functions to ensure their replication. The early induction of programmed cell death (PCD) in infected cells constitutes an effective antiviral host mechanism to restrict viral spread within an organism. As a countermeasure, viruses have evolved numerous strategies to interfere with the induction or execution of PCD. Slowly replicating viruses such as the cytomegaloviruses (CMVs) are particularly dependent on sustained cell viability. To preserve viability, the CMVs encode several viral cell death inhibitors that target different key regulators of the extrinsic and intrinsic apoptosis pathways. The best-characterized CMV-encoded inhibitors are the viral inhibitor of caspase-8-induced apoptosis (vICA), viral mitochondrial inhibitor of apoptosis (vMIA), and viral inhibitor of Bak oligomerization (vIBO). Moreover, a viral inhibitor of RIP-mediated signaling (vIRS) that blocks programmed necrosis has been identified in the genome of murine CMV (MCMV), indicating that this cell death mode is a particularly important part of the antiviral host response. This review provides an overview of the known cell death suppressors encoded by CMVs and their mechanisms of action.
Collapse
|
12
|
Handke W, Krause E, Brune W. Live or let die: manipulation of cellular suicide programs by murine cytomegalovirus. Med Microbiol Immunol 2012; 201:475-86. [PMID: 22965170 DOI: 10.1007/s00430-012-0264-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 11/30/2022]
Abstract
Cytomegaloviruses (CMVs) are large double-stranded DNA viruses that replicate slowly and cause life-long persisting infections in their hosts. To achieve this, the CMVs had to evolve numerous countermeasures against innate and adaptive immune responses. Induction of programmed cell death is one important host defense mechanism against intracellular pathogens such as viruses. For a multicellular organism, it is advantageous to let infected cells die in order to thwart viral replication and dissemination. For a virus, by contrast, it is better to inhibit cell death and keep infected cells alive until the viral replication cycle has been completed. As a matter of fact, the CMVs encode a number of proteins devoted to interfering with different forms of programmed cell death: apoptosis and necroptosis. In this review, we summarize the known functions of the four best characterized cell death inhibitors of murine cytomegalovirus (MCMV), which are encoded by open reading frames, M36, m38.5, m41.1, and M45. The viral proteins interact with key molecules within different cell death pathways, namely caspase-8, Bax, Bak, and RIP1/RIP3. In addition, we discuss which events during MCMV infection might trigger apoptosis or necrosis and how MCMV's countermeasures compare to those of other herpesviruses. Since both, MCMV and its natural host, are amenable to genetic manipulation, the mouse model for CMV infection provides a particularly suitable system to study mechanisms of cell death induction and inhibition.
Collapse
Affiliation(s)
- Wiebke Handke
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistr. 52, 20251 Hamburg, Germany
| | | | | |
Collapse
|
13
|
The US16 gene of human cytomegalovirus is required for efficient viral infection of endothelial and epithelial cells. J Virol 2012; 86:6875-88. [PMID: 22496217 DOI: 10.1128/jvi.06310-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The human cytomegalovirus (HCMV) US12 gene family comprises a set of 10 contiguous genes (US12 to US21), each encoding a predicted seven-transmembrane protein and whose specific functions have yet to be ascertained. While inactivation of individual US12 family members in laboratory strains of HCMV has not been found to affect viral replication in fibroblasts, inactivation of US16 was reported to increase replication in microvascular endothelial cells. Here, we investigate the properties of US16 further by ascertaining the expression pattern of its product. A recombinant HCMV encoding a tagged version of the US16 protein expressed a 33-kDa polypeptide that accumulated with late kinetics in the cytoplasmic virion assembly compartment. To elucidate the function(s) of pUS16, we generated US16-deficient mutants in the TR clinical strain of HCMV. According to previous studies, inactivation of US16 had no effect on viral replication in fibroblasts. In contrast, the US16-deficient viruses exhibited a major growth defect in both microvascular endothelial cells and retinal pigment epithelial cells. The expression of representative IE, E, and L viral proteins was impaired in endothelial cells infected with a US16 mutant virus, suggesting a defect in the replication cycle that occurs prior to IE gene expression. This defect must be due to an inefficient entry and/or postentry event, since pp65 and viral DNA did not move to the nucleus in US16 mutant-infected cells. Taken together, these data indicate that the US16 gene encodes a novel virus tropism factor that regulates, in a cell-specific manner, a pre-immediate-early phase of the HCMV replication cycle.
Collapse
|
14
|
Fliss PM, Jowers TP, Brinkmann MM, Holstermann B, Mack C, Dickinson P, Hohenberg H, Ghazal P, Brune W. Viral mediated redirection of NEMO/IKKγ to autophagosomes curtails the inflammatory cascade. PLoS Pathog 2012; 8:e1002517. [PMID: 22319449 PMCID: PMC3271075 DOI: 10.1371/journal.ppat.1002517] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/16/2011] [Indexed: 01/06/2023] Open
Abstract
The early host response to viral infections involves transient activation of pattern recognition receptors leading to an induction of inflammatory cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα). Subsequent activation of cytokine receptors in an autocrine and paracrine manner results in an inflammatory cascade. The precise mechanisms by which viruses avert an inflammatory cascade are incompletely understood. Nuclear factor (NF)-κB is a central regulator of the inflammatory signaling cascade that is controlled by inhibitor of NF-κB (IκB) proteins and the IκB kinase (IKK) complex. In this study we show that murine cytomegalovirus inhibits the inflammatory cascade by blocking Toll-like receptor (TLR) and IL-1 receptor-dependent NF-κB activation. Inhibition occurs through an interaction of the viral M45 protein with the NF-κB essential modulator (NEMO), the regulatory subunit of the IKK complex. M45 induces proteasome-independent degradation of NEMO by targeting NEMO to autophagosomes for subsequent degradation in lysosomes. We propose that the selective and irreversible degradation of a central regulatory protein by autophagy represents a new viral strategy to dampen the inflammatory response. Upon viral infection cells immediately induce an innate immune response which involves the production of inflammatory cytokines. These cytokines activate specific receptors on infected and surrounding cells leading to local signal amplification as well as signal broadcasting beyond the original site of infection. Inflammatory cytokine production depends on transcription factor NF-κB, whose activity is controlled by a kinase complex that includes the NF-κB essential modulator (NEMO). In order to replicate and spread in their hosts, viruses have evolved numerous strategies to counteract innate immune defenses. In this study we identify a highly effective viral strategy to blunt the host inflammatory response: The murine cytomegalovirus M45 protein binds to NEMO and redirects it to autophagosomes, vesicular structures that deliver cytoplasmic constituents to lysosomes for degradation and recycling. By this means, the virus installs a sustained block to all classical NF-κB activation pathways, which include signaling cascades originating from pattern recognition receptors and inflammatory cytokine receptors. Redirection of an essential component of the host cell defense machinery to the autophagic degradation pathway is a previously unrecognized viral immune evasion strategy whose principle is likely shared by other pathogens.
Collapse
Affiliation(s)
- Patricia M. Fliss
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
| | - Tali Pechenick Jowers
- Division of Pathway Medicine, Centre for Infectious Diseases, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | | | - Barbara Holstermann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Claudia Mack
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
| | - Paul Dickinson
- Division of Pathway Medicine, Centre for Infectious Diseases, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Heinrich Hohenberg
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Peter Ghazal
- Division of Pathway Medicine, Centre for Infectious Diseases, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Wolfram Brune
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
- * E-mail:
| |
Collapse
|
15
|
The human cytomegalovirus protein TRS1 inhibits autophagy via its interaction with Beclin 1. J Virol 2011; 86:2571-84. [PMID: 22205736 DOI: 10.1128/jvi.05746-11] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human cytomegalovirus modulates macroautophagy in two opposite directions. First, HCMV stimulates autophagy during the early stages of infection, as evident by an increase in the number of autophagosomes and a rise in the autophagic flux. This stimulation occurs independently of de novo viral protein synthesis since UV-inactivated HCMV recapitulates the stimulatory effect on macroautophagy. At later time points of infection, HCMV blocks autophagy (M. Chaumorcel, S. Souquere, G. Pierron, P. Codogno, and A. Esclatine, Autophagy 4:1-8, 2008) by a mechanism that requires de novo viral protein expression. Exploration of the mechanisms used by HCMV to block autophagy unveiled a robust increase of the cellular form of Bcl-2 expression. Although this protein has an anti-autophagy effect via its interaction with Beclin 1, it is not responsible for the inhibition induced by HCMV, probably because of its phosphorylation by c-Jun N-terminal kinase. Here we showed that the HCMV TRS1 protein blocks autophagosome biogenesis and that a TRS1 deletion mutant is defective in autophagy inhibition. TRS1 has previously been shown to neutralize the PKR antiviral effector molecule. Although phosphorylation of eIF2α by PKR has been described as a stimulatory signal to induce autophagy, the PKR-binding domain of TRS1 is dispensable to its inhibitory effect. Our results show that TRS1 interacts with Beclin 1 to inhibit autophagy. We mapped the interaction with Beclin 1 to the N-terminal region of TRS1, and we demonstrated that the Beclin 1-binding domain of TRS1 is essential to inhibit autophagy.
Collapse
|
16
|
Umashankar M, Petrucelli A, Cicchini L, Caposio P, Kreklywich CN, Rak M, Bughio F, Goldman DC, Hamlin KL, Nelson JA, Fleming WH, Streblow DN, Goodrum F. A novel human cytomegalovirus locus modulates cell type-specific outcomes of infection. PLoS Pathog 2011; 7:e1002444. [PMID: 22241980 PMCID: PMC3248471 DOI: 10.1371/journal.ppat.1002444] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 11/03/2011] [Indexed: 11/25/2022] Open
Abstract
Clinical strains of HCMV encode 20 putative ORFs within a region of the genome termed ULb' that are postulated to encode functions related to persistence or immune evasion. We have previously identified ULb'-encoded pUL138 as necessary, but not sufficient, for HCMV latency in CD34+ hematopoietic progenitor cells (HPCs) infected in vitro. pUL138 is encoded on polycistronic transcripts that also encode 3 additional proteins, pUL133, pUL135, and pUL136, collectively comprising the UL133-UL138 locus. This work represents the first characterization of these proteins and identifies a role for this locus in infection. Similar to pUL138, pUL133, pUL135, and pUL136 are integral membrane proteins that partially co-localized with pUL138 in the Golgi during productive infection in fibroblasts. As expected of ULb' sequences, the UL133-UL138 locus was dispensable for replication in cultured fibroblasts. In CD34+ HPCs, this locus suppressed viral replication in HPCs, an activity attributable to both pUL133 and pUL138. Strikingly, the UL133-UL138 locus was required for efficient replication in endothelial cells. The association of this locus with three context-dependent phenotypes suggests an exciting role for the UL133-UL138 locus in modulating the outcome of viral infection in different contexts of infection. Differential profiles of protein expression from the UL133-UL138 locus correlated with the cell-type dependent phenotypes associated with this locus. We extended our in vitro findings to analyze viral replication and dissemination in a NOD-scid IL2Rγ(c) (null)-humanized mouse model. The UL133-UL138(NULL) virus exhibited an increased capacity for replication and/or dissemination following stem cell mobilization relative to the wild-type virus, suggesting an important role in viral persistence and spread in the host. As pUL133, pUL135, pUL136, and pUL138 are conserved in virus strains infecting higher order primates, but not lower order mammals, the functions encoded likely represent host-specific viral adaptations.
Collapse
Affiliation(s)
| | - Alex Petrucelli
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, United States of America
| | - Louis Cicchini
- BIO5 Institute, The University of Arizona, Tucson, Arizona, United States of America
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael Rak
- BIO5 Institute, The University of Arizona, Tucson, Arizona, United States of America
| | - Farah Bughio
- BIO5 Institute, The University of Arizona, Tucson, Arizona, United States of America
| | - Devorah C. Goldman
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Department of Pediatrics, and Center for Hematologic Malignancies Knight Cancer Institute, Oregon Health and Sciences University, Portland, Oregon, United States of America
| | - Kimberly L. Hamlin
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Department of Pediatrics, and Center for Hematologic Malignancies Knight Cancer Institute, Oregon Health and Sciences University, Portland, Oregon, United States of America
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - William H. Fleming
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Department of Pediatrics, and Center for Hematologic Malignancies Knight Cancer Institute, Oregon Health and Sciences University, Portland, Oregon, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Felicia Goodrum
- BIO5 Institute, The University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
17
|
Yatim N, Albert M. Dying to Replicate: The Orchestration of the Viral Life Cycle, Cell Death Pathways, and Immunity. Immunity 2011; 35:478-90. [DOI: 10.1016/j.immuni.2011.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/20/2011] [Accepted: 10/14/2011] [Indexed: 12/11/2022]
|
18
|
Inhibition of programmed cell death by cytomegaloviruses. Virus Res 2010; 157:144-50. [PMID: 20969904 DOI: 10.1016/j.virusres.2010.10.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 10/07/2010] [Accepted: 10/11/2010] [Indexed: 12/24/2022]
Abstract
The elimination of infected cells by programmed cell death (PCD) is one of the most ancestral defense mechanisms against infectious agents. This mechanism should be most effective against intracellular parasites, such as viruses, which depend on the host cell for their replication. However, even large and slowly replicating viruses like the cytomegaloviruses (CMVs) can prevail and persist in face of cellular suicide programs and other innate defense mechanisms. During evolution, these viruses have developed an impressive set of countermeasures against premature demise of the host cell. In the last decade, several genes encoding suppressors of apoptosis and necrosis have been identified in the genomes of human and murine CMV (HCMV and MCMV). Curiously, most of the gene products are not homologous to cellular antiapoptotic proteins, suggesting that the CMVs did not capture the genes from the host cell genome. This review summarizes our current understanding of how the CMVs suppress PCD and which signaling pathways they target.
Collapse
|
19
|
Mutations in the M112/M113-coding region facilitate murine cytomegalovirus replication in human cells. J Virol 2010; 84:7994-8006. [PMID: 20519391 DOI: 10.1128/jvi.02624-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytomegaloviruses, representatives of the Betaherpesvirinae, cause opportunistic infections in immunocompromised hosts. They infect various cells and tissues in their natural host but are highly species specific. For instance, human cytomegalovirus (HCMV) does not replicate in mouse cells, and human cells are not permissive for murine cytomegalovirus (MCMV) infection. However, the underlying molecular mechanisms are so far poorly understood. In the present study we isolated and characterized a spontaneously occurring MCMV mutant that has gained the capacity to replicate rapidly and to high titers in human cells. Compared to the parental wild-type (wt) virus, this mutant formed larger nuclear replication compartments and replicated viral DNA more efficiently. It also disrupted promyelocytic leukemia (PML) protein nuclear domains with greater efficiency but caused less apoptosis than did wt MCMV. Sequence analysis of the mutant virus genome revealed mutations in the M112/M113-coding region. This region is homologous to the HCMV UL112-113 region and encodes the viral early 1 (E1) proteins, which are known to play an important role in viral DNA replication. By introducing the M112/M113 mutations into wt MCMV, we demonstrated that they are sufficient to facilitate MCMV replication in human cells and are, at least in part, responsible for the efficient replication capability of the spontaneously adapted virus. However, additional mutations probably contribute as well. These results reveal a previously unrecognized role of the viral E1 proteins in regulating viral replication in different cells and provide new insights into the mechanisms of the species specificity of cytomegaloviruses.
Collapse
|
20
|
Andoniou CE. Suicide watch: how cytomegalovirus interferes with the cell-death pathways of infected cells. ACTA ACUST UNITED AC 2010; 76:1-8. [PMID: 20403148 DOI: 10.1111/j.1399-0039.2010.01494.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cytomegaloviruses (CMVs) are a family of species-specific viruses that have evolved sophisticated methods to interfere with the host's ability to generate innate and adaptive immune responses. In addition, CMVs must guard against another host defence mechanism, namely the induction of apoptosis that results in the elimination of infected cells. The importance of inhibiting cell death to the evolutionary survival of CMVs is underlined by the fact that these viruses encode an array of molecules devoted to interfering with host apoptotic pathways. CMVs have also been recognised for their ability to inhibit non-apoptotic forms of cells death. Recent publications have provided important insights into how some of these CMV-encoded molecules mediate their pro-survival effects, and this review will compare the mechanisms used by various members of the CMV family to prevent the premature death of the host cell. The capacity for some of the virally encoded cell-death inhibitors to mediate effects unrelated to the suppression of cell death will also be discussed.
Collapse
Affiliation(s)
- C E Andoniou
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Australia.
| |
Collapse
|
21
|
Cam M, Handke W, Picard-Maureau M, Brune W. Cytomegaloviruses inhibit Bak- and Bax-mediated apoptosis with two separate viral proteins. Cell Death Differ 2009; 17:655-65. [PMID: 19816509 DOI: 10.1038/cdd.2009.147] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Apoptosis of infected cells can limit virus replication and serves as an innate defense mechanism against viral infections. Consequently, viruses delay apoptosis by expressing antiapoptotic proteins, many of which structurally resemble the cellular antiapoptotic protein Bcl-2. Like Bcl-2, the viral analogs inhibit apoptosis by preventing activation and/or oligomerization of the proapoptotic mitochondrial proteins Bax and Bak. Here we show that cytomegaloviruses (CMVs) have adopted a different strategy. They encode two separate mitochondrial proteins that lack obvious sequence similarities to Bcl-2-family proteins and specifically counteract either Bax or Bak. We identified a small mitochondrion-localized protein encoded by the murine CMV open reading frame (ORF) m41.1, which functions as a viral inhibitor of Bak oligomerization (vIBO). It blocks Bak-mediated cytochrome c release and Bak-dependent induction of apoptosis. It protects cells from cell death-inducing stimuli together with the previously identified Bax-specific inhibitor viral mitochondria-localized inhibitor of apoptosis (vMIA) (encoded by ORF m38.5). Similar vIBO proteins are encoded by CMVs of rats, and possibly by other CMVs as well. These results suggest a non-redundant function of Bax and Bak during viral infection, and a benefit for CMVs derived from the ability to inhibit Bak and Bax separately with two viral proteins.
Collapse
Affiliation(s)
- M Cam
- Division of Viral Infections, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | | | | | | |
Collapse
|
22
|
Marshall EE, Bierle CJ, Brune W, Geballe AP. Essential role for either TRS1 or IRS1 in human cytomegalovirus replication. J Virol 2009; 83:4112-20. [PMID: 19211736 PMCID: PMC2668495 DOI: 10.1128/jvi.02489-08] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 02/03/2009] [Indexed: 11/20/2022] Open
Abstract
Viral infections often produce double-stranded RNA (dsRNA), which in turn triggers potent antiviral responses, including the global repression of protein synthesis mediated by protein kinase R (PKR) and 2'-5' oligoadenylate synthetase (OAS). As a consequence, many viruses have evolved genes, such as those encoding dsRNA-binding proteins, which counteract these pathways. Human cytomegalovirus (HCMV) encodes two related proteins, pTRS1 and pIRS1, which bind dsRNA and can prevent activation of the PKR and OAS pathways. HCMV mutants lacking either IRS1 or TRS1 replicate at least moderately well in cell culture. However, as we demonstrate in the present study, an HCMV mutant lacking both IRS1 and TRS1 (HCMV[DeltaI/DeltaT]) has a severe replication defect. Infection with HCMV[DeltaI/DeltaT] results in a profound inhibition of overall and viral protein synthesis, as well as increased phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha). The vaccinia virus E3L gene can substitute for IRS1 or TRS1, enabling HCMV replication. Despite the accumulation of dsRNA in HCMV-infected cells, the OAS pathway remains inactive, even in HCMV[DeltaI/DeltaT]-infected cells. These results suggest that PKR-mediated phosphorylation of eIF2alpha is the dominant dsRNA-activated pathway responsible for inhibition of protein synthesis and HCMV replication in the absence of both IRS1 and TRS1 and that the requirement for evasion of the PKR pathway likely explains the necessity for IRS1 or TRS1 for productive infection.
Collapse
Affiliation(s)
- Emily E Marshall
- Departments of Microbiology, University of Washington, Seattle, Washington 98115, USA
| | | | | | | |
Collapse
|
23
|
Characterization of a novel Golgi apparatus-localized latency determinant encoded by human cytomegalovirus. J Virol 2009; 83:5615-29. [PMID: 19297488 DOI: 10.1128/jvi.01989-08] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) exists indefinitely in infected individuals by a yet poorly characterized latent infection in hematopoietic cells. We previously demonstrated a requirement for the putative UL138 open reading frame (ORF) in promoting a latent infection in CD34(+) hematopoietic progenitor cells (HPCs) infected in vitro. In our present study, we have identified two coterminal transcripts of 2.7 and 3.6 kb and a 21-kilodalton (kDa) protein (pUL138) that are derived from the UL138 locus with early-late gene kinetics during productive infection. The UL138 transcripts and protein are detected in both fibroblasts and HPCs. A recombinant virus, FIX-UL138(STOP), that synthesizes the UL138 transcripts but not the protein exhibited a partial loss-of-latency phenotype in HPCs, similar to the phenotype observed for the UL138-null recombinant virus. This finding suggests that the UL138 protein is required for latency, but it does not exclude the possibility that the UL138 transcripts or other ORFs also contribute to latency. The mechanisms by which pUL138 contributes to latency remain unknown. While the 86- and 72-kDa immediate-early proteins were not detected in HPCs infected with HCMV in vitro, pUL138 did not function directly to suppress expression from the major immediate-early promoter in reporter assays. Interestingly, pUL138 localizes to the Golgi apparatus in infected cells but is not incorporated into virus particles. The localization of pUL138 to the Golgi apparatus suggests that pUL138 contributes to HCMV latency by a novel mechanism. pUL138 is the first HCMV protein demonstrated to promote an infection with the hallmarks of latency in CD34(+) HPCs.
Collapse
|
24
|
Neuropathogenesis of congenital cytomegalovirus infection: disease mechanisms and prospects for intervention. Clin Microbiol Rev 2009; 22:99-126, Table of Contents. [PMID: 19136436 DOI: 10.1128/cmr.00023-08] [Citation(s) in RCA: 342] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Congenital cytomegalovirus (CMV) infection is the leading infectious cause of mental retardation and hearing loss in the developed world. In recent years, there has been an improved understanding of the epidemiology, pathogenesis, and long-term disabilities associated with CMV infection. In this review, current concepts regarding the pathogenesis of neurological injury caused by CMV infections acquired by the developing fetus are summarized. The pathogenesis of CMV-induced disabilities is considered in the context of the epidemiology of CMV infection in pregnant women and newborn infants, and the clinical manifestations of brain injury are reviewed. The prospects for intervention, including antiviral therapies and vaccines, are summarized. Priorities for future research are suggested to improve the understanding of this common and disabling illness of infancy.
Collapse
|
25
|
Specific inhibition of the PKR-mediated antiviral response by the murine cytomegalovirus proteins m142 and m143. J Virol 2008; 83:1260-70. [PMID: 19019949 DOI: 10.1128/jvi.01558-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Double-stranded RNA (dsRNA) produced during viral infection activates several cellular antiviral responses. Among the best characterized is the shutoff of protein synthesis mediated by the dsRNA-dependent protein kinase (PKR) and the oligoadenylate synthetase (OAS)/RNase L system. As viral replication depends on protein synthesis, many viruses have evolved mechanisms for counteracting the PKR and OAS/RNase L pathways. The murine cytomegalovirus (MCMV) proteins m142 and m143 have been characterized as dsRNA binding proteins that inhibit PKR activation, phosphorylation of the translation initiation factor eIF2alpha, and a subsequent protein synthesis shutoff. In the present study we analyzed the contribution of the PKR- and the OAS-dependent pathways to the control of MCMV replication in the absence or presence of m142 and m143. We show that the induction of eIF2alpha phosphorylation during infection with an m142- and m143-deficient MCMV is specifically mediated by PKR, not by the related eIF2alpha kinases PERK or GCN2. PKR antagonists of vaccinia virus (E3L) or herpes simplex virus (gamma34.5) rescued the replication defect of an MCMV strain with deletions of both m142 and m143. Moreover, m142 and m143 bound to each other and interacted with PKR. By contrast, an activation of the OAS/RNase L pathway by MCMV was not detected in the presence or absence of m142 and m143, suggesting that these viral proteins have little or no influence on this pathway. Consistently, an m142- and m143-deficient MCMV strain replicated to high titers in fibroblasts lacking PKR but did not replicate in cells lacking RNase L. Hence, the PKR-mediated antiviral response is responsible for the essentiality of m142 and m143.
Collapse
|
26
|
Abstract
Caspase-dependent apoptosis has an important role in controlling viruses, and as a result, viruses often encode proteins that target this pathway. Caspase-dependent apoptosis can be activated from within the infected cell as an intrinsic response to replication-associated stresses or through death-inducing signals produced extrinsically by immune cells. Cytomegaloviruses (CMVs) encode a mitochondria-localized inhibitor of apoptosis, vMIA, and a viral inhibitor of caspase activation, vICA, the functional homologs of Bcl-2 related and c-FLIP proteins, respectively. Evidence from viral mutants deleting either vMIA or vICA suggests that each is necessary and sufficient to promote survival of infected cells undergoing caspase-dependent apoptosis. Additional proteins, including pUL38, IE1(491a), and IE2(579aa), can prevent apoptosis induced by various stimuli, while viruses with deletions of UL38, M45, or m41 undergo apoptosis. The viral RNA, beta2.7, binds mitochondrial respiratory complex I, maintains ATP production late in infection, and prevents death induced by a mitochondrial poison. Thus, CMV alters cell intrinsic defenses employing apoptosis, and multiple viral gene products together control death-inducing stimuli to promote survival.
Collapse
Affiliation(s)
- A L McCormick
- Department of Microbiology & Immunology, Emory Vaccine Center, Emory University Atlanta, GA 30322, USA.
| |
Collapse
|
27
|
Arnoult D, Skaletskaya A, Estaquier J, Dufour C, Goldmacher VS. The murine cytomegalovirus cell death suppressor m38.5 binds Bax and blocks Bax-mediated mitochondrial outer membrane permeabilization. Apoptosis 2008; 13:1100-10. [DOI: 10.1007/s10495-008-0245-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Jurak I, Schumacher U, Simic H, Voigt S, Brune W. Murine cytomegalovirus m38.5 protein inhibits Bax-mediated cell death. J Virol 2008; 82:4812-22. [PMID: 18321965 PMCID: PMC2346748 DOI: 10.1128/jvi.02570-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 02/27/2008] [Indexed: 11/20/2022] Open
Abstract
Many viruses encode proteins that inhibit the induction of programmed cell death at the mitochondrial checkpoint. Murine cytomegalovirus (MCMV) encodes the m38.5 protein, which localizes to mitochondria and protects human HeLa cells and fibroblasts from apoptosis triggered by proteasome inhibitors but not from Fas-induced apoptosis. However, the ability of this protein to suppress the apoptosis of murine cells and its role during MCMV infection have not been investigated previously. Here we show that m38.5 is expressed at early time points during MCMV infection. Cells infected with MCMVs lacking m38.5 showed increased sensitivity to cell death induced by staurosporine, MG132, or the viral infection itself compared to the sensitivity of cells infected with wild-type MCMV. This defect was eliminated when an m38.5 or Bcl-X(L) gene was inserted into the genome of a deletion mutant. Using fibroblasts deficient in the proapoptotic Bcl-2 family proteins Bak and/or Bax, we further demonstrated that m38.5 protected from Bax- but not Bak-mediated apoptosis and interacted with Bax in infected cells. These results consolidate the role of m38.5 as a viral mitochondrion-localized inhibitor of apoptosis and its functional similarity to the human cytomegalovirus UL37x1 gene product. Although the m38.5 gene is not homologous to the UL37x1 gene at the sequence level, m38.5 is conserved among rodent cytomegaloviruses. Moreover, the fact that MCMV-infected cells are protected from both Bak- and Bax-mediated cell death suggests that MCMV possesses an additional, as-yet-unidentified mechanism to block Bak-mediated apoptosis.
Collapse
Affiliation(s)
- Igor Jurak
- Division of Viral Infections, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | | | | | | | | |
Collapse
|
29
|
Upton JW, Kaiser WJ, Mocarski ES. Cytomegalovirus M45 cell death suppression requires receptor-interacting protein (RIP) homotypic interaction motif (RHIM)-dependent interaction with RIP1. J Biol Chem 2008; 283:16966-70. [PMID: 18442983 DOI: 10.1074/jbc.c800051200] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Herpesviruses such as cytomegaloviruses encode functions that modulate the innate response in diverse ways to counteract host sensing and delay host clearance during infection. The murine cytomegalovirus M45 protein interacts with receptor-interacting protein (RIP) 1 and RIP3 via a RIP homotypic interaction motif. Cell death suppression by M45 requires RIP homotypic interaction motif-dependent interaction with RIP1. This interaction also underlies the cell tropism role of M45 in preventing premature death of endothelial cells during murine cytomegalovirus infection. Thus, M45 is a viral inhibitor of RIP activation that provides a direct cell type-dependent replication benefit to the virus while modulating other biological processes signaling via the RIP1 adaptor such as activation of Toll-like receptor (TLR)3 as well as other mediators of cell death.
Collapse
Affiliation(s)
- Jason W Upton
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
30
|
Inhibition of proinflammatory and innate immune signaling pathways by a cytomegalovirus RIP1-interacting protein. Proc Natl Acad Sci U S A 2008; 105:3094-9. [PMID: 18287053 DOI: 10.1073/pnas.0800168105] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
TNFalpha is an important cytokine in antimicrobial immunity and inflammation. The receptor-interacting protein RIP1 is an essential component of the TNF receptor 1 signaling pathway that mediates the activation of NF-kappaB, MAPKs, and programmed cell death. It also transduces signals derived from Toll-like receptors and intracellular sensors of DNA damage and double-stranded RNA. Here, we show that the murine CMV M45 protein binds to RIP1 and inhibits TNFalpha-induced activation of NF-kappaB, p38 MAPK, and caspase-independent cell death. M45 also inhibited NF-kappaB activation upon stimulation of Toll-like receptor 3 and ubiquitination of RIP1, which is required for NF-kappaB activation. Hence, M45 functions as a viral inhibitor of RIP1-mediated signaling. The results presented here reveal a mechanism of viral immune subversion and demonstrate how a viral protein can simultaneously block proinflammatory and innate immune signaling pathways by interacting with a central mediator molecule.
Collapse
|
31
|
Dominant-negative FADD rescues the in vivo fitness of a cytomegalovirus lacking an antiapoptotic viral gene. J Virol 2007; 82:2056-64. [PMID: 18094168 DOI: 10.1128/jvi.01803-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genes that inhibit apoptosis have been described for many DNA viruses. Herpesviruses often contain even more than one gene to control cell death. Apoptosis inhibition by viral genes is postulated to contribute to viral fitness, although a formal proof is pending. To address this question, we studied the mouse cytomegalovirus (MCMV) protein M36, which binds to caspase-8 and blocks death receptor-induced apoptosis. The growth of MCMV recombinants lacking M36 (DeltaM36) was attenuated in vitro and in vivo. In vitro, caspase inhibition by zVAD-fmk blocked apoptosis in DeltaM36-infected macrophages and rescued the growth of the mutant. In vivo, DeltaM36 infection foci in liver tissue contained significantly more apoptotic hepatocytes and Kupffer cells than did revertant virus foci, and apoptosis occurred during the early phase of virus replication prior to virion assembly. To further delineate the mode of M36 function, we replaced the M36 gene with a dominant-negative FADD (FADD(DN)) in an MCMV recombinant. FADD(DN) was expressed in cells infected with the recombinant and blocked the death-receptor pathway, replacing the antiapoptotic function of M36. Most importantly, FADD(DN) rescued DeltaM36 virus replication, both in vitro and in vivo. These findings have identified the biological role of M36 and define apoptosis inhibition as a key determinant of viral fitness.
Collapse
|
32
|
Ran R, Pan R, Lu A, Xu H, Davis RR, Sharp FR. A novel 165-kDa Golgin protein induced by brain ischemia and phosphorylated by Akt protects against apoptosis. Mol Cell Neurosci 2007; 36:392-407. [PMID: 17888676 DOI: 10.1016/j.mcn.2007.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 07/18/2007] [Accepted: 07/30/2007] [Indexed: 01/02/2023] Open
Abstract
A cDNA encoding a novel protein was cloned from ischemic rat brain and found to be homologous to testis Mea-2 Golgi-associated protein (Golga3). The sequence predicted a 165-kDa protein, and in vitro translated protein exhibited a molecular mass of 165-170 kDa. Because brain ischemia induced the mRNA, and the protein localized to the Golgi apparatus, this protein was designated Ischemia-Inducible Golgin Protein 165 (IIGP165). In HeLa cells, serum and glucose deprivation-induced caspase-dependent cleavage of the IIGP165 protein, after which the IIGP165 fragments translocated to the nucleus. The C-terminus of IIGP165, which contains a LXXLL motif, appears to function as a transcriptional co-regulator. Akt co-localizes with IIGP165 protein in the Golgi in vivo, and phosphorylates IIGP165 on serine residues 345 and 134. Though transfection of IIGP165 cDNA alone does not protect HeLa cells from serum deprivation or Brefeldin-A-triggered cell death, co-transfection of both Akt and IIGP165 cDNA or combined IIGP165-transfection with PDGF treatment significantly protects HeLa cells better than either treatment alone. These data show that Akt phosphorylation of IIGP165 protects against apoptotic cell death, and add to evidence that the Golgi apparatus also plays a role in regulating apoptosis.
Collapse
Affiliation(s)
- Ruiqiong Ran
- M.I.N.D. Institute and Department of Neurology, University of California at Davis Medical Center, University of California at Davis, Sacramento, CA 95817, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Sharon-Friling R, Goodhouse J, Colberg-Poley AM, Shenk T. Human cytomegalovirus pUL37x1 induces the release of endoplasmic reticulum calcium stores. Proc Natl Acad Sci U S A 2006; 103:19117-22. [PMID: 17135350 PMCID: PMC1748185 DOI: 10.1073/pnas.0609353103] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The human CMV UL37x1-encoded protein, also known as the viral mitochondria-localized inhibitor of apoptosis, traffics to the endoplasmic reticulum and mitochondria of infected cells. It induces the fragmentation of mitochondria and blocks apoptosis. We demonstrate that UL37x1 protein mobilizes Ca(2+) from the endoplasmic reticulum into the cytosol. This release is accompanied by cell rounding, cell swelling, and reorganization of the actin cytoskeleton, and these morphological changes can be substantially blocked by a Ca(2+) chelating agent. The UL37x1-mediated release of Ca(2+) from the endoplasmic reticulum likely has multiple consequences, including induction of the unfolded protein response, modulation of mitochondrial function, induction of mitochondrial fission, and protection against apoptotic stimuli.
Collapse
Affiliation(s)
- Ronit Sharon-Friling
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014; and
| | - Joseph Goodhouse
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014; and
| | - Anamaris M. Colberg-Poley
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010
| | - Thomas Shenk
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Valchanova RS, Picard-Maureau M, Budt M, Brune W. Murine cytomegalovirus m142 and m143 are both required to block protein kinase R-mediated shutdown of protein synthesis. J Virol 2006; 80:10181-90. [PMID: 17005695 PMCID: PMC1617306 DOI: 10.1128/jvi.00908-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 07/21/2006] [Indexed: 11/20/2022] Open
Abstract
Cytomegaloviruses carry the US22 family of genes, which have common sequence motifs but diverse functions. Only two of the 12 US22 family genes of murine cytomegalovirus (MCMV) are essential for virus replication, but their functions have remained unknown. In the present study, we deleted the essential US22 family genes, m142 and m143, from the MCMV genome and propagated the mutant viruses on complementing cells. The m142 and the m143 deletion mutants were both unable to replicate in noncomplementing cells at low and high multiplicities of infection. In cells infected with the deletion mutants, viral immediate-early and early proteins were expressed, but viral DNA replication and synthesis of the late-gene product glycoprotein B were inhibited, even though mRNAs of late genes were present. Global protein synthesis was impaired in these cells, which correlated with phosphorylation of the double-stranded RNA-dependent protein kinase R (PKR) and its target protein, the eukaryotic translation initiation factor 2alpha, suggesting that m142 and m143 are necessary to block the PKR-mediated shutdown of protein synthesis. Replication of the m142 and m143 knockout mutants was partially restored by expression of the human cytomegalovirus TRS1 gene, a known double-stranded-RNA-binding protein that inhibits PKR activation. These results indicate that m142 and m143 are both required for inhibition of the PKR-mediated host antiviral response.
Collapse
Affiliation(s)
- Ralitsa S Valchanova
- Robert Koch-Institut, Fachgebiet Virale Infektionen, Nordufer 20, 13353 Berlin, Germany
| | | | | | | |
Collapse
|
35
|
Erlach KC, Böhm V, Seckert CK, Reddehase MJ, Podlech J. Lymphoma cell apoptosis in the liver induced by distant murine cytomegalovirus infection. J Virol 2006; 80:4801-19. [PMID: 16641273 PMCID: PMC1472044 DOI: 10.1128/jvi.80.10.4801-4819.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cytomegalovirus (CMV) poses a threat to the therapy of hematopoietic malignancies by hematopoietic stem cell transplantation, but efficient reconstitution of antiviral immunity prevents CMV organ disease. Tumor relapse originating from a minimal residual leukemia poses another threat. Although a combination of risk factors was supposed to enhance the incidence and severity of transplantation-associated disease, a murine model of a liver-adapted B-cell lymphoma has previously shown a survival benefit and tumor growth inhibition by nonlethal subcutaneous infection with murine CMV. Here we have investigated the underlying antitumoral mechanism. Virus replication proved to be required, since inactivated virions or the highly attenuated enhancerless mutant mCMV-DeltaMIEenh did not impact the lymphoma in the liver. Surprisingly, the dissemination-deficient mutant mCMV-DeltaM36 inhibited tumor growth, even though this virus fails to infect the liver. On the other hand, various strains of herpes simplex viruses consistently failed to control the lymphoma, even though they infect the liver. A quantitative analysis of the tumor growth kinetics identified a transient tumor remission by apoptosis as the antitumoral effector mechanism. Tumor cell colonies with cells surviving the CMV-induced "apoptotic crisis" lead to tumor relapse even in the presence of full-blown tissue infection. Serial transfer of surviving tumor cells did not indicate a selection of apoptosis-resistant genetic variants. NK cell activity of CD49b-expressing cells failed to control the lymphoma upon adoptive transfer. We propose the existence of an innate antitumoral mechanism that is triggered by CMV infection and involves an apoptotic signal effective at a distant site of tumor growth.
Collapse
Affiliation(s)
- Katja C Erlach
- Institute for Virology, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | | | |
Collapse
|
36
|
Jurak I, Brune W. Induction of apoptosis limits cytomegalovirus cross-species infection. EMBO J 2006; 25:2634-42. [PMID: 16688216 PMCID: PMC1478185 DOI: 10.1038/sj.emboj.7601133] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 04/18/2006] [Indexed: 11/08/2022] Open
Abstract
Cross-species infections are responsible for the majority of emerging and re-emerging viral diseases. However, little is known about the mechanisms that restrict viruses to a certain host species, and the factors viruses need to cross the species barrier and replicate in a different host. Cytomegaloviruses (CMVs) are representatives of the beta-herpesviruses that are highly species specific. They replicate only in cells of their own or a closely related species. In this study, the molecular mechanism underlying the cytomegalovirus species specificity was investigated. We show that infection of human cells with the murine cytomegalovirus (MCMV) triggers the intrinsic apoptosis pathway involving caspase-9 activation. MCMV can break the species barrier and replicate in human cells if apoptosis is blocked by Bcl-2 or a functionally analogous protein. A single gene of the human cytomegalovirus encoding a mitochondrial inhibitor of apoptosis is sufficient to allow MCMV replication in human cells. Moreover, the same principle facilitates replication of the rat cytomegalovirus in human cells. Thus, induction of apoptosis serves as an innate immune defense to inhibit cross-species infections of rodent CMVs.
Collapse
Affiliation(s)
- Igor Jurak
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
| | - Wolfram Brune
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
37
|
Zhang Z, Evers DL, McCarville JF, Dantonel JC, Huong SM, Huang ES. Evidence that the human cytomegalovirus IE2-86 protein binds mdm2 and facilitates mdm2 degradation. J Virol 2006; 80:3833-43. [PMID: 16571800 PMCID: PMC1440454 DOI: 10.1128/jvi.80.8.3833-3843.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Levels of the p53 tumor suppressor protein are increased in human cytomegalovirus (HCMV)-infected cells and may be important for HCMV pathogenesis. In normal cells p53 levels are kept low due to an autoregulatory feedback loop where p53 activates the transcription of mdm2 and mdm2 binds and ubiquitinates p53, targeting p53 for proteasomal degradation. Here we report that, in contrast to uninfected cells, mdm2 was undetectable upon treatment of infected fibroblasts with the proteasome inhibitor MG132. Cellular depletion of mdm2 was reproducible in p53-null cells transfected with the HCMV IE2-86 protein, but not with IE172, independently of the endogenous mdm2 promoter. IE2-86 also prevented the emergence of presumably ubiquitinated species of p53. The regions of IE2-86 important for mdm2 depletion were those containing the sequences corresponding to the putative zinc finger and C-terminal acidic motifs. mdm2 and IE2-86 coimmunoprecipitated in transfected and infected cell lysates and in a cell-free system. IE2-86 blocked mdm2's p53-independent transactivation of the cyclin A promoter in transient-transfection experiments. Pulse-chase experiments revealed that IE2-86 but not IE1-72 or several loss-of-function IE2-86 mutants increased the half-life of p53 and reduced the half-life of mdm2. Short interfering RNA-mediated depletion of IE2-86 restored the ability of HCMV-infected cells to accumulate mdm2 in response to proteasome inhibition. Taken together, the data suggest that specific interactions between IE2-86 and mdm2 cause proteasome-independent degradation of mdm2 and that this may be important for the accumulation of p53 in HCMV-infected cells.
Collapse
Affiliation(s)
- Zhigang Zhang
- CB #7295, Lineberger Comprehensive Cancer Center, Rm. 32-026, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | | | |
Collapse
|
38
|
Gonatas NK, Stieber A, Gonatas JO. Fragmentation of the Golgi apparatus in neurodegenerative diseases and cell death. J Neurol Sci 2006; 246:21-30. [PMID: 16545397 DOI: 10.1016/j.jns.2006.01.019] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 12/08/2005] [Accepted: 01/23/2006] [Indexed: 10/24/2022]
Abstract
Fragmentation of the neuronal Golgi apparatus (GA) was reported in amyotrophic lateral sclerosis (ALS), corticobasal degeneration, Alzheimer's and Creutzfeldt-Jacob disease, and in spinocerebelar ataxia type 2 (SCA2). In transgenic mice expressing the G93A mutant of Cu/Zn superoxide dismutase (SOD1) of familial ALS (fALS), fragmentation of the GA of spinal cord motor neurons and aggregation of mutant protein were detected months before the onset of paralysis. Moreover, cells that expressed the G93A and G85R mutants of SOD1 showed fragmentation of the GA and decreased viability without apoptosis. We summarize here mechanisms involved in Golgi fragmentation implicating: (a) the dysregulation by mutant SOD1of the microtubule-destabilizing protein Stathmin, (b) the disruption by mutant SOD1of the neuronal cytoplasmic dynein, (c) the coprecipitation of mutant SOD1 with Hsp25 and Hsp27, (d) the reduction of detyrosinated microtubules by aggregated tau which resulted in non-apoptotic cell death and (e) the disruption by mutant growth hormone of the trafficking from the rough endoplasmic reticulum to the GA. The data indicate that neuronal Golgi fragmentation is an early and probably irreversible lesion in neurodegeneration, caused by a variety of mechanisms. Golgi fragmentation is not secondary to apoptosis but it may "trigger" apoptosis.
Collapse
Affiliation(s)
- Nicholas K Gonatas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, 609 Stellar Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104-6100, USA.
| | | | | |
Collapse
|
39
|
Andoniou CE, Degli-Esposti MA. Insights into the mechanisms of CMV‐mediated interference with cellular apoptosis. Immunol Cell Biol 2006; 84:99-106. [PMID: 16405657 DOI: 10.1111/j.1440-1711.2005.01412.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis has the potential to function as a defence mechanism during viral infection. Identification of CMV mutants that cause the apoptotic death of infected cells confirmed that viral infection activates apoptotic pathways and that this process is counteracted by CMV to ensure efficient viral replication. The recent identification of CMV-encoded proteins that suppress cell death has greatly enhanced our understanding of the mechanisms used by this family of viruses to prevent apoptosis. CMV do not encode homologues of known death-suppressing proteins, suggesting that the CMV family has evolved novel, more sophisticated strategies for the inhibition of apoptosis. The identification and characterization of the human CMV (HCMV)-encoded antiapoptotic proteins UL36 (viral inhibitor of caspase-8 activation [vICA]) and UL37 (viral mitochondria-localized inhibitor of apoptosis [vMIA]) have confirmed that CMV target unique apoptotic control points. For example, vMIA inhibits apoptosis by binding Bax and sequestering it at the mitochondrial membrane as an inactive oligomer. This knowledge not only provides a more complete understanding of the CMV replication process but also allows the identification of previously unrecognized apoptotic checkpoints. Because HCMV is an important cause of birth defects and an increasingly important opportunistic pathogen, a firm grasp of the mechanisms by which it affects cellular apoptosis may provide avenues for the design of improved therapeutic strategies. Here, we review the recent progress made in understanding the role of CMV-encoded proteins in the inhibition of apoptosis.
Collapse
Affiliation(s)
- Christopher E Andoniou
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | | |
Collapse
|
40
|
McCormick AL, Meiering CD, Smith GB, Mocarski ES. Mitochondrial cell death suppressors carried by human and murine cytomegalovirus confer resistance to proteasome inhibitor-induced apoptosis. J Virol 2005; 79:12205-17. [PMID: 16160147 PMCID: PMC1211555 DOI: 10.1128/jvi.79.19.12205-12217.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus carries a mitochondria-localized inhibitor of apoptosis (vMIA) that is conserved in primate cytomegaloviruses. We find that inactivating mutations within UL37x1, which encodes vMIA, do not substantially affect replication in TownevarATCC (Towne-BAC), a virus that carries a functional copy of the betaherpesvirus-conserved viral inhibitor of caspase 8 activation, the UL36 gene product. In Towne-BAC infection, vMIA reduces susceptibility of infected cells to intrinsic death induced by proteasome inhibition. vMIA is sufficient to confer resistance to proteasome inhibition when expressed independent of viral infection. Murine cytomegalovirus m38.5, whose position in the viral genome is analogous to UL37x1, exhibits mitochondrial association and functions in much the same manner as vMIA in inhibiting intrinsic cell death. This work suggests a common role for vMIA in rodent and primate cytomegaloviruses, modulating the threshold of virus-infected cells to intrinsic cell death.
Collapse
Affiliation(s)
- A Louise McCormick
- Department of Microbiology & Immunology, Fairchild Science Building, Stanford University School of Medicine, Stanford, CA 95304-5124, USA
| | | | | | | |
Collapse
|
41
|
Cinatl J, Scholz M, Doerr HW. Role of tumor cell immune escape mechanisms in cytomegalovirus-mediated oncomodulation. Med Res Rev 2005; 25:167-85. [PMID: 15389728 DOI: 10.1002/med.20018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It has been known for a long time that cytomegalovirus (CMV) has evolved mechanisms that allow the escape from the host immune surveillance. In the past, many efforts have been done to elucidate the molecular mechanisms underlying this virus-mediated immune escape and thus virus persistence. However, it is unknown, whether CMV may also impair immune responses directed against tumor cells. This might have severe consequences on tumor progression and may explain the growing evidence for CMV-mediated oncomodulation. This review summarizes recent work on CMV-mediated immune escape mechanisms of tumor cells and oncomodulation and proposes novel aspects that may be important for understanding the CMV-associated tumor progression.
Collapse
Affiliation(s)
- Jindrich Cinatl
- Interdisziplinäres Labor für Tumor- und Virusforschung, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
42
|
Abstract
Cytomegaloviruses (CMVs), a subset of betaherpesviruses, employ multiple strategies to suppress apoptosis in infected cells and thus to delay their death. Human cytomegalovirus (HCMV) encodes at least two proteins that directly interfere with the apoptotic signaling pathways, viral inhibitor of caspase-8-induced apoptosis vICA (pUL36), and mitochondria-localized inhibitor of apoptosis vMIA (pUL37 x 1). vICA associates with pro-caspase-8 and appears to block its recruitment to the death-inducing signaling complex (DISC), a step preceding caspase-8 activation. vMIA binds and sequesters Bax at mitochondria, and interferes with BH3-only-death-factor/Bax-complex-mediated permeabilization of mitochondria. vMIA does not seem to either interact with Bak, a close structural and functional homologue of Bax, or to suppress Bak-mediated permeabilization of mitochondria and Bak-mediated apoptosis. All sequenced betaherpesviruses, including CMVs, encode close homologues of vICA, and those vICA homologues that have been tested, were found to be functional cell death suppressors. Overt sequence homologues of vMIA were found only in the genomes of primate CMVs, but recent observations made with murine CMV (MCMV) indicate that non-primate CMVs may also encode a cell death suppressor functionally resembling vMIA. The exact physiological roles and relative contributions of vMIA and vICA in suppressing death of CMV-infected cells in vivo have not been elucidated. There is strong evidence that the cell death suppressing function of vMIA is indispensable, and that vICA is dispensable for replication of HCMV. In addition to suppressed caspase-8 activation and sequestered Bax, CMV-infected cells display several other phenomena, less well characterized, that may diminish, directly or indirectly the extent of cell death.
Collapse
Affiliation(s)
- V S Goldmacher
- ImmunoGen, Inc., 128 Sidney St., Cambridge, MA 02139, USA.
| |
Collapse
|
43
|
Reboredo M, Greaves RF, Hahn G. Human cytomegalovirus proteins encoded by UL37 exon 1 protect infected fibroblasts against virus-induced apoptosis and are required for efficient virus replication. J Gen Virol 2004; 85:3555-3567. [PMID: 15557228 DOI: 10.1099/vir.0.80379-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) strain AD169 mutants carrying transposon insertions or large deletions in UL37 exon 1 (UL37x1) were recovered from modified bacterial artificial chromosomes by reconstitution in human fibroblasts expressing the adenovirus anti-apoptotic protein E1B19K. UL37x1 mutant growth was severely compromised in normal fibroblasts, with minimal release of infectious progeny. Growth in E1B19K-expressing cells was restored, but did not reach wild-type levels. Normal fibroblasts infected by UL37x1 mutants underwent apoptosis spontaneously between 48 and 96 h after infection. Apoptosis was inhibited by treatment of cells with the broad-spectrum caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethylketone, resulting in substantially increased release of virus. Inhibition of viral DNA replication by phosphonoformate or ganciclovir also inhibited apoptosis, implying that death was triggered by late viral functions or by replication and packaging of the viral genome. Immunofluorescent staining showed that although viral proteins accumulated normally during delayed-early phase and viral DNA replication compartments formed, viral late proteins were detected only rarely, suggesting that spontaneous apoptosis occurs early in late phase. These results demonstrate that anti-apoptotic proteins encoded by HCMV UL37x1 [pUL37x1 (vMIA), gpUL37 and gpUL37(M)] prevent apoptosis that would otherwise be initiated by the replication programme of the virus and are required for efficient and sustainable virus replication.
Collapse
Affiliation(s)
- Mercedes Reboredo
- Department of Virology, Division of Investigative Science, Imperial College Faculty of Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Richard F Greaves
- Department of Virology, Division of Investigative Science, Imperial College Faculty of Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Gabriele Hahn
- Max von Pettenkofer Institut, Abteilung für Virologie, LMU-München, Germany
| |
Collapse
|
44
|
Loewendorf A, Krüger C, Borst EM, Wagner M, Just U, Messerle M. Identification of a mouse cytomegalovirus gene selectively targeting CD86 expression on antigen-presenting cells. J Virol 2004; 78:13062-71. [PMID: 15542658 PMCID: PMC524971 DOI: 10.1128/jvi.78.23.13062-13071.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Accepted: 07/22/2004] [Indexed: 02/03/2023] Open
Abstract
We and others have shown that infection of dendritic cells with murine cytomegalovirus (MCMV) leads to severe functional impairment of these antigen-presenting cells (D. M. Andrews, C. E. Andoniou, F. Granucci, P. Ricciardi-Castagnoli, and M. A. Degli-Esposti, Nat. Immunol. 2:1077-1084, 2001; S. Mathys, T. Schroeder, J. Ellwart, U. H. Koszinowski, M. Messerle, and U. Just, J. Infect. Dis. 187:988-999, 2003). Phenotypically, reduced surface expression of costimulatory molecules and major histocompatibility complex molecules was detected. In order to identify the molecular basis for the observed effects, we generated MCMV mutants with large deletions of nonessential genes. The study was facilitated by the finding that a monocyte-macrophage cell line displayed similar phenotypic alterations after MCMV infection. By analyzing the expression of cell surface molecules on infected cells, we identified a mutant virus which is no longer able to downmodulate the expression of the costimulatory molecule CD86. Additional mutants with smaller deletions allowed us to pin down the responsible gene to a certain genomic region. RNA analysis led to the identification of the spliced gene m147.5, encoding a protein with 145 amino acids. Experiments with an m147.5 mutant revealed that the protein affects CD86 expression only, suggesting that additional MCMV genes are responsible for downmodulation of the other surface molecules. Identification of viral gene products interfering with functionally important proteins of antigen-presenting cells will provide the basis to dissect the complex interaction of CMV with these important cells and to evaluate the biological importance of these viral genes in vivo.
Collapse
Affiliation(s)
- Andrea Loewendorf
- Virus-Cell Interaction Group, Medical Faculty, Martin Luther University of Halle-Wittenberg, Heinrich-Damerow-Str. 1, 06120 Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
45
|
Wang D, Bresnahan W, Shenk T. Human cytomegalovirus encodes a highly specific RANTES decoy receptor. Proc Natl Acad Sci U S A 2004; 101:16642-7. [PMID: 15536129 PMCID: PMC534536 DOI: 10.1073/pnas.0407233101] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The human cytomegalovirus pUL21.5 protein is a small, secreted glycoprotein whose mRNA is packaged into virions. We demonstrate that pUL21.5 protein is a soluble CC chemokine receptor that functions as a decoy to modulate the host immune response to infection. In contrast to other viral chemokine-binding proteins, which interact promiscuously with multiple chemokines, pUL21.5 selectively binds RANTES (regulated upon activation, normal T cell expressed and secreted) with high affinity. By binding RANTES, pUL21.5 blocks RANTES interaction with its cellular receptors. We propose that human cytomegalovirus directs the synthesis of a secreted, virus-coded protein that modulates the host antiviral response even before the newly infecting viral genome becomes transcriptionally active.
Collapse
Affiliation(s)
- Dai Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
46
|
Evers DL, Wang X, Huang ES. Cellular stress and signal transduction responses to human cytomegalovirus infection. Microbes Infect 2004; 6:1084-93. [PMID: 15380778 DOI: 10.1016/j.micinf.2004.05.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human cytomegalovirus (HCMV) receptor-ligand interactions and viral entry excite cellular responses such as receptor tyrosine kinase and mitogen-activated protein kinase signaling, cytoskeletal rearrangement, and the induction of transcription factors, prostaglandins, and cytokines. Bi-phasic stimulation of these pathways, excepting interferon, facilitates productive viral infection and likely contributes to viral pathogenesis.
Collapse
Affiliation(s)
- David L Evers
- Lineberger Comprehensive Cancer Center, CB No. 7295, Room 32-026, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | |
Collapse
|
47
|
Lembo D, Donalisio M, Hofer A, Cornaglia M, Brune W, Koszinowski U, Thelander L, Landolfo S. The ribonucleotide reductase R1 homolog of murine cytomegalovirus is not a functional enzyme subunit but is required for pathogenesis. J Virol 2004; 78:4278-88. [PMID: 15047841 PMCID: PMC374293 DOI: 10.1128/jvi.78.8.4278-4288.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribonucleotide reductase (RNR) is the key enzyme in the biosynthesis of deoxyribonucleotides. Alpha- and gammaherpesviruses express a functional enzyme, since they code for both the R1 and the R2 subunits. By contrast, betaherpesviruses contain an open reading frame (ORF) with homology to R1, but an ORF for R2 is absent, suggesting that they do not express a functional RNR. The M45 protein of murine cytomegalovirus (MCMV) exhibits the sequence features of a class Ia RNR R1 subunit but lacks certain amino acid residues believed to be critical for enzymatic function. It starts to be expressed independently upon the onset of viral DNA synthesis at 12 h after infection and accumulates at later times in the cytoplasm of the infected cells. Moreover, it is associated with the virion particle. To investigate direct involvement of the virally encoded R1 subunit in ribonucleotide reduction, recombinant M45 was tested in enzyme activity assays together with cellular R1 and R2. The results indicate that M45 neither is a functional equivalent of an R1 subunit nor affects the activity or the allosteric control of the mouse enzyme. To replicate in quiescent cells, MCMV induces the expression and activity of the cellular RNR. Mutant viruses in which the M45 gene has been inactivated are avirulent in immunodeficient SCID mice and fail to replicate in their target organs. These results suggest that M45 has evolved a new function that is indispensable for virus replication and pathogenesis in vivo.
Collapse
Affiliation(s)
- David Lembo
- Department of Public Health and Microbiology, University of Turin, Turin, Italy.
| | | | | | | | | | | | | | | |
Collapse
|