1
|
Yin J, Wang S, Zhang Z, Ge J, Zhang Q, Sun Y, Yin X, Wang X. The rabies virus matrix protein (RABV M) interacts with host histone deacetylase 6 (HDAC6) to activate the MEK/ ERK signaling pathway and enhance viral replication. Vet Microbiol 2025; 305:110537. [PMID: 40300412 DOI: 10.1016/j.vetmic.2025.110537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/01/2025]
Abstract
Rabies virus (RABV) is the causative agent of rabies, posing a severe threat to human and animal health. The matrix (M) protein of RABV plays crucial roles during viral infection. In this study, we identified RABV M protein interacted with host histone deacetylase 6 (HDAC6) through a combination of immunoprecipitation and mass spectrometry analysis. Specifically, the catalytic domains of HDAC6 (amino acids 435-835) was shown to be critical for the interaction between HDAC6 and the RABV M protein. Overexpression of HDAC6 significantly enhanced RABV replication, whereas inhibition of HDAC6 expression or its deacetylase activity had the opposite effect,indicating that HDAC6 is a positive regulator of RABV replication. We further determined that RABV infection actives the MEK/ERK pathway, and inhibition of this pathway with U0126 significantly reduced viral titers. Moreover, HDAC6 positively regulated MEK/ERK pathway activation in a manner independent of its deacetylase activity but dependent on the presence of HDAC6 during virus infection. Finally, we demonstrated that co-expression of RABV M enhanced the role of HDAC6 in facilitating MEK/ERK pathway activation. Collectively, our findings demonstrate that RABV exploits the HDAC6-M interaction to hijack the MEK/ERK signaling axis, which is essential for viral replication. Notably, HDAC6 facilitates MEK/ERK activation in a deacetylase activity-independent manner, revealing a novel mechanism by which viruses manipulate host machinery. These results highlight HDAC6 as a potential therapeutic target for combating rabies.
Collapse
Affiliation(s)
- Juanbin Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shasha Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Zhixiong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China.
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China.
| |
Collapse
|
2
|
Feige L, Zaeck LM, Sehl-Ewert J, Finke S, Bourhy H. Innate Immune Signaling and Role of Glial Cells in Herpes Simplex Virus- and Rabies Virus-Induced Encephalitis. Viruses 2021; 13:2364. [PMID: 34960633 PMCID: PMC8708193 DOI: 10.3390/v13122364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
The environment of the central nervous system (CNS) represents a double-edged sword in the context of viral infections. On the one hand, the infectious route for viral pathogens is restricted via neuroprotective barriers; on the other hand, viruses benefit from the immunologically quiescent neural environment after CNS entry. Both the herpes simplex virus (HSV) and the rabies virus (RABV) bypass the neuroprotective blood-brain barrier (BBB) and successfully enter the CNS parenchyma via nerve endings. Despite the differences in the molecular nature of both viruses, each virus uses retrograde transport along peripheral nerves to reach the human CNS. Once inside the CNS parenchyma, HSV infection results in severe acute inflammation, necrosis, and hemorrhaging, while RABV preserves the intact neuronal network by inhibiting apoptosis and limiting inflammation. During RABV neuroinvasion, surveilling glial cells fail to generate a sufficient type I interferon (IFN) response, enabling RABV to replicate undetected, ultimately leading to its fatal outcome. To date, we do not fully understand the molecular mechanisms underlying the activation or suppression of the host inflammatory responses of surveilling glial cells, which present important pathways shaping viral pathogenesis and clinical outcome in viral encephalitis. Here, we compare the innate immune responses of glial cells in RABV- and HSV-infected CNS, highlighting different viral strategies of neuroprotection or Neuroinflamm. in the context of viral encephalitis.
Collapse
Affiliation(s)
- Lena Feige
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 28 Rue Du Docteur Roux, 75015 Paris, France;
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (S.F.)
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (S.F.)
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 28 Rue Du Docteur Roux, 75015 Paris, France;
| |
Collapse
|
3
|
Embregts CWE, Begeman L, Voesenek CJ, Martina BEE, Koopmans MPG, Kuiken T, GeurtsvanKessel CH. Street RABV Induces the Cholinergic Anti-inflammatory Pathway in Human Monocyte-Derived Macrophages by Binding to nAChr α7. Front Immunol 2021; 12:622516. [PMID: 33679766 PMCID: PMC7933221 DOI: 10.3389/fimmu.2021.622516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Rabies virus (RABV) is able to reach the central nervous system (CNS) without triggering a strong immune response, using multiple mechanisms to evade and suppress the host immune system. After infection via a bite or scratch from a rabid animal, RABV comes into contact with macrophages, which are the first antigen-presenting cells (APCs) that are recruited to the area and play an essential role in the onset of a specific immune response. It is poorly understood how RABV affects macrophages, and if the interaction contributes to the observed immune suppression. This study was undertaken to characterize the interactions between RABV and human monocyte-derived macrophages (MDMs). We showed that street RABV does not replicate in human MDMs. Using a recombinant trimeric RABV glycoprotein (rRABV-tG) we showed binding to the nicotinic acetylcholine receptor alpha 7 (nAChr α7) on MDMs, and confirmed the specificity using the nAChr α7 antagonist alpha-bungarotoxin (α-BTX). We found that this binding induced the cholinergic anti-inflammatory pathway (CAP), characterized by a significant decrease in tumor necrosis factor α (TNF-α) upon LPS challenge. Using confocal microscopy we found that induction of the CAP is associated with significant cytoplasmic retention of nuclear factor κB (NF-κB). Co-cultures of human MDMs exposed to street RABV and autologous T cells further revealed that the observed suppression of MDMs might affect their function as T cell activators as well, as we found a significant decrease in proliferation of CD8+ T cells and an increased production of the anti-inflammatory cytokine IL-10. Lastly, using flow cytometric analysis we observed a significant increase in expression of the M2-c surface marker CD163, hinting that street RABV might be able to affect macrophage polarization. Taken together, these results show that street RABV is capable of inducing an anti-inflammatory state in human macrophages, possibly affecting T cell functioning.
Collapse
Affiliation(s)
| | - Lineke Begeman
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | | | | | | | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | | |
Collapse
|
4
|
Liu SQ, Gao X, Xie Y, Wang Q, Zhu WY. Rabies viruses of different virulence regulates inflammatory responses both in vivo and in vitro via MAPK and NF-κB pathway. Mol Immunol 2020; 125:70-82. [PMID: 32652362 DOI: 10.1016/j.molimm.2020.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/22/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Immune responses and central nervous system dysfunction are two main factors to be considered during rabies virus (RABV) infection. However, the mechanisms by which RABV strains of different virulence regulate with chemokine expression and the signaling pathways responsible for the immune responses in the terminal stage of infection both in vivo and in vitro have not been fully elucidated. In this study, we found low expression levels of proinflammatory chemokines in the mouse brain upon infection with street RABV strains (CXZ17 and HN10) at the late stage of infection. We also examined the difference in inflammatory response upon infection with RABV strains of different virulence in a mouse model. We found that the expression of proinflammatory chemokines increased to a varying degree upon infection with street RABV (CXZ17 and HN10) or laboratory-fixed RABV (CVS-11, aG, and CTN); CXCL10, CCL5, and CCL2 were the most significantly upregulated chemokines in brain tissue and microglial BV-2 cells in response to infection with RABV strains of different virulence. Our data also demonstrate significant activation of the MAPK and NF-κB pathways in mouse brain tissue at the late stage of RABV infection. We also found (i) low phosphorylation signals of MAPK and NF-κB p65 in neuronal cells upon infection with CXZ17 and HN10 in the mouse brain and (ii) strong phosphorylation signals in cerebrovascular endothelial cells and neuronal cells upon CTN or aG infection. Moreover, we quantified the nuclear localization status of MAPK signals and NF-κB p65 upon infection with CVS-11, aG, and CTN in BV-2 cells in vitro. We also found (i) that the activation of the p38, ERK1/2, and NF-κB p65 pathway, which stimulates CXCL10, CCL5, and CCL2 expression upon infection with RABV strains of different virulence (aG, CTN, and CVS-11), is triggered after virus entry into BV-2 cells and (ii) that the expression of CXCL10, CCL5, and CCL2 is required for the activation of NF-κB, p38, and ERK1/2, but not JNK. Overall, our study provides insight into the regulation of inflammatory responses mediated by MAPK and NF-κB in the mouse brain and in microglial cells upon RABV infection of different virulence.
Collapse
Affiliation(s)
- Shu Qing Liu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Xin Gao
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Pathogenic Microbiology Institute, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Yuan Xie
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; College of Global Change and Earth System Science, Beijing Normal University, 100875, Beijing, China
| | - Qian Wang
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wu Yang Zhu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
5
|
Kinome-Wide RNA Interference Screening Identifies Mitogen-Activated Protein Kinases and Phosphatidylinositol Metabolism as Key Factors for Rabies Virus Infection. mSphere 2019; 4:4/3/e00047-19. [PMID: 31118297 PMCID: PMC6531879 DOI: 10.1128/msphere.00047-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rabies virus relies on cellular machinery for its replication while simultaneously evading the host immune response. Despite their importance, little is known about the key host factors required for rabies virus infection. Here, we focused on the human kinome, at the core of many cellular pathways, to unveil a new understanding of the rabies virus infectious cycle and to discover new potential therapeutic targets in a small interfering RNA screening. The mitogen-activated protein kinase pathway and phosphatidylinositol metabolism were identified as prominent factors involved in rabies virus infection, and those findings were further confirmed in human neurons. While bringing a new insight into rabies virus biology, we also provide a new list of host factors involved in rabies virus infection. Throughout the rabies virus (RABV) infectious cycle, host-virus interactions define its capacity to replicate, escape the immune response, and spread. As phosphorylation is a key regulatory mechanism involved in most cellular processes, kinases represent a target of choice to identify host factors required for viral replication. A kinase and phosphatase small interfering RNA (siRNA) high-content screening was performed on a fluorescent protein-recombinant field isolate (Tha RABV). We identified 57 high-confidence key host factors important for RABV replication with a readout set at 18 h postinfection and 73 with a readout set at 36 h postinfection, including 24 common factors at all stages of the infection. Amongst them, gene clusters of the most prominent pathways were determined. Up to 15 mitogen-activated protein kinases (MAPKs) and effectors, including MKK7 (associated with Jun N-terminal protein kinase [JNK] signalization) and DUSP5, as well as 17 phosphatidylinositol (PI)-related proteins, including PIP5K1C and MTM1, were found to be involved in the later stage of RABV infection. The importance of these pathways was further validated, as small molecules Ro 31-8820 and PD 198306 inhibited RABV replication in human neurons. IMPORTANCE Rabies virus relies on cellular machinery for its replication while simultaneously evading the host immune response. Despite their importance, little is known about the key host factors required for rabies virus infection. Here, we focused on the human kinome, at the core of many cellular pathways, to unveil a new understanding of the rabies virus infectious cycle and to discover new potential therapeutic targets in a small interfering RNA screening. The mitogen-activated protein kinase pathway and phosphatidylinositol metabolism were identified as prominent factors involved in rabies virus infection, and those findings were further confirmed in human neurons. While bringing a new insight into rabies virus biology, we also provide a new list of host factors involved in rabies virus infection.
Collapse
|
6
|
Inhibition of MALT1 Decreases Neuroinflammation and Pathogenicity of Virulent Rabies Virus in Mice. J Virol 2018; 92:JVI.00720-18. [PMID: 30158289 DOI: 10.1128/jvi.00720-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/05/2018] [Indexed: 12/15/2022] Open
Abstract
Rabies virus is a neurovirulent RNA virus, which causes about 59,000 human deaths each year. Treatment for rabies does not exist due to incomplete understanding of the pathogenesis. MALT1 mediates activation of several immune cell types and is involved in the proliferation and survival of cancer cells. MALT1 acts as a scaffold protein for NF-κB signaling and a cysteine protease that cleaves substrates, leading to the expression of immunoregulatory genes. Here, we examined the impact of genetic or pharmacological MALT1 inhibition in mice on disease development after infection with the virulent rabies virus strain CVS-11. Morbidity and mortality were significantly delayed in Malt1 -/- compared to Malt1 +/+ mice, and this effect was associated with lower viral load, proinflammatory gene expression, and infiltration and activation of immune cells in the brain. Specific deletion of Malt1 in T cells also delayed disease development, while deletion in myeloid cells, neuronal cells, or NK cells had no effect. Disease development was also delayed in mice treated with the MALT1 protease inhibitor mepazine and in knock-in mice expressing a catalytically inactive MALT1 mutant protein, showing an important role of MALT1 proteolytic activity. The described protective effect of MALT1 inhibition against infection with a virulent rabies virus is the precise opposite of the sensitizing effect of MALT1 inhibition that we previously observed in the case of infection with an attenuated rabies virus strain. Together, these data demonstrate that the role of immunoregulatory responses in rabies pathogenicity is dependent on virus virulence and reveal the potential of MALT1 inhibition for therapeutic intervention.IMPORTANCE Rabies virus is a neurotropic RNA virus that causes encephalitis and still poses an enormous challenge to animal and public health. Efforts to establish reliable therapeutic strategies have been unsuccessful and are hampered by gaps in the understanding of virus pathogenicity. MALT1 is an intracellular protease that mediates the activation of several innate and adaptive immune cells in response to multiple receptors, and therapeutic MALT1 targeting is believed to be a valid approach for autoimmunity and MALT1-addicted cancers. Here, we study the impact of MALT1 deficiency on brain inflammation and disease development in response to infection of mice with the highly virulent CVS-11 rabies virus. We demonstrate that pharmacological or genetic MALT1 inhibition decreases neuroinflammation and extends the survival of CVS-11-infected mice, providing new insights in the biology of MALT1 and rabies virus infection.
Collapse
|
7
|
Manjunatha V, Singh KP, Saminathan M, Singh R, Shivasharanappa N, Umeshappa CS, Dhama K, Manjunathareddy GB. Inhibition of MEK-ERK1/2-MAP kinase signalling pathway reduces rabies virus induced pathologies in mouse model. Microb Pathog 2017; 112:38-49. [PMID: 28939254 DOI: 10.1016/j.micpath.2017.09.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/25/2022]
Abstract
The extracellular signal-regulated kinase (ERK) pathway has been shown to regulate pathogenesis of many viral infections, but its role during rabies virus (RV) infection in vivo is not clear. In the present study, we investigated the potential role of MEK-ERK1/2 signalling pathway in the pathogenesis of rabies in mouse model and its regulatory effects on pro-inflammatory cytokines and other mediators of immunity, and kinetics of immune cells. Mice were infected with 25 LD50 of challenge virus standard (CVS) strain of RV by intracerebral (i.c.) inoculation and were treated i.c. with U0126 (specific inhibitor of MEK1/2) at 10 μM/mouse at 0, 2, 4 and 6 days post-infection. Treatment with U0126 resulted in delayed disease development and clinical signs, increased survival time with lesser mortality than untreated mice. The better survival of inhibitor-treated and RV infected mice was positively correlated with reduced viral load and reduced viral spread in the brain as quantified by real-time PCR, direct fluorescent antibody test and immunohistochemistry. CVS-infected/mock-treated mice developed severe histopathological lesions with increased Fluoro-Jade B positive degenerating neurons in brain, which were associated with higher levels of serum nitric oxide, iNOS, TNF-α, and CXCL10 mRNA. Also CVS-infected/U0126-treated mice revealed significant decrease in caspase 3 but increase in Bcl-2 mRNA levels and less TUNEL positive apoptotic cells. CVS-infected/U0126-treated group also showed significant increase in CD4+, CD8+ T lymphocytes and NK cells in blood and spleen possibly due to less apoptosis of these cells. In conclusion, these data suggest that MEK-ERK1/2 signalling pathway play critical role in the pathogenesis of RV infection in vivo and opens up new avenues of therapeutics.
Collapse
Affiliation(s)
- Venkataravanappa Manjunatha
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India; Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - Mani Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | | | | | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | | |
Collapse
|
8
|
Immunological aspects of rabies: a literature review. Arch Virol 2017; 162:3251-3268. [PMID: 28726129 DOI: 10.1007/s00705-017-3484-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/27/2017] [Indexed: 02/08/2023]
Abstract
Rabies is a lethal disease caused by the neurotropic virus rabies virus (RABV), and it remains an important public health problem globally. It is known that the host immune response is important for control of viral infection and promoting viral clearance. In this context, it is well documented that, in addition to RABV neutralizing antibody, interferons and cell-mediated immunity also have an important role in preventing the establishment of disease. On the other hand, RABV suppresses host immunity through different mechanisms, for example, direct inhibition of host gene expression, sequestration of pathogen-associated molecular patterns, or modification of cytokine signalling pathways, which hinder the protective host immune responses to RABV infection. Here, we review the immunological aspects of rabies, highlighting innate and adaptive immunity, as well as the host evasion immune mechanisms used by the virus. Finally, we briefly discuss how this knowledge can direct new research and be harnessed for future therapeutic strategies.
Collapse
|
9
|
Impact of caspase-1/11, -3, -7, or IL-1 β/IL-18 deficiency on rabies virus-induced macrophage cell death and onset of disease. Cell Death Discov 2017; 3:17012. [PMID: 28280602 PMCID: PMC5339016 DOI: 10.1038/cddiscovery.2017.12] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/27/2017] [Indexed: 12/17/2022] Open
Abstract
Rabies virus is a highly neurovirulent RNA virus, which causes about 59000 deaths in humans each year. Previously, we described macrophage cytotoxicity upon infection with rabies virus. Here we examined the type of cell death and the role of specific caspases in cell death and disease development upon infection with two laboratory strains of rabies virus: Challenge Virus Standard strain-11 (CVS-11) is highly neurotropic and lethal for mice, while the attenuated Evelyn–Rotnycki–Abelseth (ERA) strain has a broader cell tropism, is non-lethal and has been used as an oral vaccine for animals. Infection of Mf4/4 macrophages with both strains led to caspase-1 activation and IL-1β and IL-18 production, as well as activation of caspases-3, -7, -8, and -9. Moreover, absence of caspase-3, but not of caspase-1 and -11 or -7, partially inhibited virus-induced cell death of bone marrow-derived macrophages. Intranasal inoculation with CVS-11 of mice deficient for either caspase-1 and -11 or -7 or both IL-1β and IL-18 led to general brain infection and lethal disease similar to wild-type mice. Deficiency of caspase-3, on the other hand, significantly delayed the onset of disease, but did not prevent final lethal outcome. Interestingly, deficiency of caspase-1/11, the key executioner of pyroptosis, aggravated disease severity caused by ERA virus, whereas wild-type mice or mice deficient for either caspase-3, -7, or both IL-1β and IL-18 presented the typical mild symptoms associated with ERA virus. In conclusion, rabies virus infection of macrophages induces caspase-1- and caspase-3-dependent cell death. In vivo caspase-1/11 and caspase-3 differently affect disease development in response to infection with the attenuated ERA strain or the virulent CVS-11 strain, respectively. Inflammatory caspases seem to control attenuated rabies virus infection, while caspase-3 aggravates virulent rabies virus infection.
Collapse
|
10
|
Madhu BP, Singh KP, Saminathan M, Singh R, Shivasharanappa N, Sharma AK, Malik YS, Dhama K, Manjunatha V. Role of nitric oxide in the regulation of immune responses during rabies virus infection in mice. Virusdisease 2016; 27:387-399. [PMID: 28004019 PMCID: PMC5142598 DOI: 10.1007/s13337-016-0343-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/24/2016] [Indexed: 12/25/2022] Open
Abstract
Rabies virus (RABV) stimulates nitric oxide (NO) production, which either triggers T cell differentiation or suppresses T cell function depending on its concentration. Herein, we assessed the potential role of NO in regulation of immune responses during RABV infection in mice model. The experimental animals were divided into four groups and 100LD50 of challenge virus standard (CVS) strain of RABV was inoculated intracerebrally on day 0 and subsequently aminoguanidine (AG; inducible nitric oxide synthase inhibitor) was injected intraperitoneally twice a day, up to 6 days. The samples were collected at 2, 4, 6, 8, 9, 10 and 12 days post infection (DPI). The immune cells including CD4+, CD8+ T lymphocytes and natural killer (NK) cells were estimated from peripheral blood mononuclear cells (PBMCs) and splenocytes. Serum total NO concentration, histopathology, immunohistochemistry, direct fluorescent antibody technique and TUNEL assay was performed. Infection with CVS resulted in significant early increase in CD4+, CD8+ and NK cells in blood and spleen until 2 DPI. From 4 DPI onwards significant reduction was noticed in these parameters which coincided with increased NO on 4 DPI, rising to maximum on 8 DPI, until their death on 10 DPI. Conversely, the CVS-AG treated group showed lower levels of NO and increased number of CD4+, CD8+ and NK cells. Increased number of cells in blood and spleen coincided with increased survival time, delayed development of clinical signs, reduced viral load and less apoptotic cells. NO played important role in regulation of immune responses during RABV infection. The findings of present study confirmed the role of NO and/or iNOS using iNOS inhibitor (aminoguanidine) in immune response during RABV infection, which would further help in understanding the virus immunopathogenesis with adoption of newer antiviral strategies to counter the progression of disease.
Collapse
Affiliation(s)
- B. P. Madhu
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh India
| | - K. P. Singh
- Pathology Laboratory, Centre for Animal Disease Research and Diagnosis (CADRAD), ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh India
| | - M. Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh India
| | - R. Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh India
| | - N. Shivasharanappa
- Animal Science Section, ICAR-Central Coastal Agricultural Research Institute, Ela, Goa India
| | - A. K. Sharma
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh India
| | - Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh India
| | - K. Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh India
| | - V. Manjunatha
- Wild Animal Disease Diagnostic Laboratory, Institute of Animal Health and Veterinary Biologicals, Bannerghatta Biological Park, Bannerghatta, Bengaluru, Karnataka India
| |
Collapse
|
11
|
Azimzadeh Jamalkandi S, Mozhgani SH, Gholami Pourbadie H, Mirzaie M, Noorbakhsh F, Vaziri B, Gholami A, Ansari-Pour N, Jafari M. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways. Front Microbiol 2016; 7:1688. [PMID: 27872612 PMCID: PMC5098112 DOI: 10.3389/fmicb.2016.01688] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022] Open
Abstract
The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein–protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets.
Collapse
Affiliation(s)
| | - Sayed-Hamidreza Mozhgani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences Tehran, Iran
| | | | - Mehdi Mirzaie
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences Tehran, Iran
| | - Behrouz Vaziri
- Protein Chemistry and Proteomics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran Tehran, Iran
| | - Alireza Gholami
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran Tehran, Iran
| | - Naser Ansari-Pour
- Faculty of New Sciences and Technology, University of TehranTehran, Iran; Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College LondonLondon, UK
| | - Mohieddin Jafari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran Tehran, Iran
| |
Collapse
|
12
|
Scott TP, Nel LH. Subversion of the Immune Response by Rabies Virus. Viruses 2016; 8:v8080231. [PMID: 27548204 PMCID: PMC4997593 DOI: 10.3390/v8080231] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/24/2022] Open
Abstract
Rabies has affected mankind for several centuries and is one of the oldest known zoonoses. It is peculiar how little is known regarding the means by which rabies virus (RABV) evades the immune response and kills its host. This review investigates the complex interplay between RABV and the immune system, including the various means by which RABV evades, or advantageously utilizes, the host immune response in order to ensure successful replication and spread to another host. Different factors that influence immune responses—including age, sex, cerebral lateralization and temperature—are discussed, with specific reference to RABV and the effects on host morbidity and mortality. We also investigate the role of apoptosis and discuss whether it is a detrimental or beneficial mechanism of the host’s response to infection. The various RABV proteins and their roles in immune evasion are examined in depth with reference to important domains and the downstream effects of these interactions. Lastly, an overview of the means by which RABV evades important immune responses is provided. The research discussed in this review will be important in determining the roles of the immune response during RABV infections as well as to highlight important therapeutic target regions and potential strategies for rabies treatment.
Collapse
Affiliation(s)
- Terence P Scott
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa.
| | - Louis H Nel
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
13
|
Appolinário CM, Allendorf SD, Peres MG, Ribeiro BD, Fonseca CR, Vicente AF, Antunes JMADP, Megid J. Profile of Cytokines and Chemokines Triggered by Wild-Type Strains of Rabies Virus in Mice. Am J Trop Med Hyg 2015; 94:378-83. [PMID: 26711511 DOI: 10.4269/ajtmh.15-0361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/02/2015] [Indexed: 12/25/2022] Open
Abstract
Rabies is a lethal infectious disease that causes 55,000 human deaths per year and is transmitted by various mammalian species, such as dogs and bats. The host immune response is essential for avoiding viral progression and promoting viral clearance. Cytokines and chemokines are crucial in the development of an immediate antiviral response; the rabies virus (RABV) attempts to evade this immune response. The virus's capacity for evasion is correlated with its pathogenicity and the host's inflammatory response, with highly pathogenic strains being the most efficient at hijacking the host's defense mechanisms and thereby decreasing inflammation. The purpose of this study was to evaluate the expression of a set of cytokine and chemokine genes that are related to the immune response in the brains of mice inoculated intramuscularly or intracerebrally with two wild-type strains of RABV, one from dog and the other from vampire bat. The results demonstrated that the gene expression profile is intrinsic to the specific rabies variant. The prompt production of cytokines and chemokines seems to be more important than their levels of expression for surviving a rabies infection.
Collapse
Affiliation(s)
- Camila Michele Appolinário
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Susan Dora Allendorf
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Marina Gea Peres
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Bruna Devidé Ribeiro
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Clóvis R Fonseca
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Acácia Ferreira Vicente
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - João Marcelo A de Paula Antunes
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Jane Megid
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| |
Collapse
|
14
|
Madhu BP, Singh KP, Saminathan M, Singh R, Tiwari AK, Manjunatha V, Harish C, Manjunathareddy GB. Correlation of inducible nitric oxide synthase (iNOS) inhibition with TNF-α, caspase-1, FasL and TLR-3 in pathogenesis of rabies in mouse model. Virus Genes 2015; 52:61-70. [PMID: 26690069 DOI: 10.1007/s11262-015-1265-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022]
Abstract
The role of inflammatory cytokines such as interleukin-1α/β (IL-1α/β), IL-6, IL-10, tumour necrosis factor-alpha (TNF-α), interferons, nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in pathogenesis of rabies is being actively pursued. Presently, levels of certain immune molecules in pathogenesis of rabies in mice have been investigated. CVS strain of rabies infection resulted in early increase in iNOS, TNF-α, caspase-1, Fas ligand (FasL) and toll-like receptor-3 (TLR-3) mRNA levels in brain, and nitric oxide levels in serum. The severity of clinical signs and microscopic lesions largely correlated with NO levels. Aminoguanidine (AG; iNOS inhibitor) decreased NO production with delay in development of clinical signs and increase in survival time. Prolonged survival time correlated with reduced viral load evident by real-time PCR, reduced fluorescent signals of rabies antigen in brain and reduced immunohistochemistry signals in neuronal cytoplasm. These parameters suggested that nitric oxide did influence the rabies virus replication. Inhibition of iNOS by AG administration led to decreased expression of TNF-α, caspase-1, FasL and TLR-3 mRNA levels suggesting that increase in NO levels in rabies virus infection possibly contributed to development of disease through inflammation, apoptosis and immune-evasive mechanisms.
Collapse
Affiliation(s)
- B P Madhu
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - K P Singh
- Pathology Laboratory, Centre for Animal Disease Research and Diagnosis (CADRAD), ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - M Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - R Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - A K Tiwari
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - V Manjunatha
- Wild Animal Disease Diagnostic Laboratory, Institute of Animal Health and Veterinary Biologicals, Bannerghatta Biological Park, Bannerghatta, Bengaluru, Karnataka, India
| | - C Harish
- Department of Pre-Clinical Research, Anthem Biosciences Pvt Ltd, Bommasandra, Bengaluru, Karnataka, India
| | - G B Manjunathareddy
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| |
Collapse
|
15
|
Johnson N, Cunningham AF. Interplay between rabies virus and the mammalian immune system. World J Clin Infect Dis 2015; 5:67-76. [DOI: 10.5495/wjcid.v5.i4.67] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/23/2015] [Accepted: 11/17/2015] [Indexed: 02/06/2023] Open
Abstract
Rabies is a disease caused following infection of the brain by the rabies virus (RABV). The principle mechanism of transmission is through a bite wound. The virus infects peripheral nerves and moves to the central nervous system (CNS). There appears to be little involvement of other organ systems and little detectable immune stimulation prior to infection of the CNS. This failure of the mammalian immune system to respond to rabies virus infection leads, in the overwhelming majority of cases, to death of the host. To some extent, this failure is likely due to the exclusive replication of RABV in neurons and the limited ability to generate, sufficiently rapidly, an anti-viral antibody response in situ. This is reflected in the ability of post-exposure vaccination, when given early after infection, to prevent disease. The lack of immune stimulation during RABV infection preceding neural invasion is the Achilles heel of the immune response. Whilst many viruses infect the brain, causing encephalitis and neuronal deficit, none are as consistently fatal to the host as RABV. This is in part due to prior replication of many viruses in peripheral, non-neural tissue by other viruses that allows timely activation of the immune response before the host is overwhelmed. Our current understanding of the correlates of protection for rabies suggests that it is the action of neutralising antibodies that prevent infection and control spread of RABV. Furthermore, it tells us that the induction of immunity can protect and understanding how and why this happens is critical to controlling infection. However, the paradigm of antibody development suggests that antigen presentation overwhelmingly occurs in lymphoid tissue (germinal and non-germinal centres) and these are external to the CNS. In addition, the blood-brain-barrier may provide a block to the delivery of immune effectors (antibodies/plasma B-cells) entering where they are needed. Alternatively, there may be insufficient antigen exposure after natural infection to mount an effective response or the virus actively suppresses immune function. To improve our ability to treat this fatal infection it is imperative to understand how immunity to RABV develops and functions so that parameters of protection are better defined.
Collapse
|
16
|
Human Bone Marrow-Derived Mesenchymal Stromal Cells Differentially Inhibit Cytokine Production by Peripheral Blood Monocytes Subpopulations and Myeloid Dendritic Cells. Stem Cells Int 2015; 2015:819084. [PMID: 26060498 PMCID: PMC4427776 DOI: 10.1155/2015/819084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/05/2015] [Indexed: 12/17/2022] Open
Abstract
The immunosuppressive properties of mesenchymal stromal/stem cells (MSC) rendered them an attractive therapeutic approach for immune disorders and an increasing body of evidence demonstrated their clinical value. However, the influence of MSC on the function of specific immune cell populations, namely, monocyte subpopulations, is not well elucidated. Here, we investigated the influence of human bone marrow MSC on the cytokine and chemokine expression by peripheral blood classical, intermediate and nonclassical monocytes, and myeloid dendritic cells (mDC), stimulated with lipopolysaccharide plus interferon (IFN)γ. We found that MSC effectively inhibit tumor necrosis factor- (TNF-) α and macrophage inflammatory protein- (MIP-) 1β protein expression in monocytes and mDC, without suppressing CCR7 and CD83 protein expression. Interestingly, mDC exhibited the highest degree of inhibition, for both TNF-α and MIP-1β, whereas the reduction of TNF-α expression was less marked for nonclassical monocytes. Similarly, MSC decreased mRNA levels of interleukin- (IL-) 1β and IL-6 in classical monocytes, CCL3, CCL5, CXCL9, and CXCL10 in classical and nonclassical monocytes, and IL-1β and CXCL10 in mDC. MSC do not impair the expression of maturation markers in monocytes and mDC under our experimental conditions; nevertheless, they hamper the proinflammatory function of monocytes and mDC, which may impede the development of inflammatory immune responses.
Collapse
|
17
|
Kindrachuk J, Ork B, Hart BJ, Mazur S, Holbrook MR, Frieman MB, Traynor D, Johnson RF, Dyall J, Kuhn JH, Olinger GG, Hensley LE, Jahrling PB. Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrob Agents Chemother 2015; 59:1088-99. [PMID: 25487801 PMCID: PMC4335870 DOI: 10.1128/aac.03659-14] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/29/2014] [Indexed: 02/07/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus, and infections with this virus can result in acute respiratory syndrome with renal failure. Globally, MERS-CoV has been responsible for 877 laboratory-confirmed infections, including 317 deaths, since September 2012. As there is a paucity of information regarding the molecular pathogenesis associated with this virus or the identities of novel antiviral drug targets, we performed temporal kinome analysis on human hepatocytes infected with the Erasmus isolate of MERS-CoV with peptide kinome arrays. bioinformatics analysis of our kinome data, including pathway overrepresentation analysis (ORA) and functional network analysis, suggested that extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI3K)/serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signaling responses were specifically modulated in response to MERS-CoV infection in vitro throughout the course of infection. The overrepresentation of specific intermediates within these pathways determined by pathway and functional network analysis of our kinome data correlated with similar patterns of phosphorylation determined through Western blot array analysis. In addition, analysis of the effects of specific kinase inhibitors on MERS-CoV infection in tissue culture models confirmed these cellular response observations. Further, we have demonstrated that a subset of licensed kinase inhibitors targeting the ERK/MAPK and PI3K/AKT/mTOR pathways significantly inhibited MERS-CoV replication in vitro whether they were added before or after viral infection. Taken together, our data suggest that ERK/MAPK and PI3K/AKT/mTOR signaling responses play important roles in MERS-CoV infection and may represent novel drug targets for therapeutic intervention strategies.
Collapse
Affiliation(s)
- Jason Kindrachuk
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Britini Ork
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Brit J Hart
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Steven Mazur
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Michael R Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Dawn Traynor
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Julie Dyall
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Jens H Kuhn
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Gene G Olinger
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Lisa E Hensley
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Peter B Jahrling
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
18
|
Chai Q, She R, Huang Y, Fu ZF. Expression of neuronal CXCL10 induced by rabies virus infection initiates infiltration of inflammatory cells, production of chemokines and cytokines, and enhancement of blood-brain barrier permeability. J Virol 2015; 89:870-6. [PMID: 25339777 PMCID: PMC4301165 DOI: 10.1128/jvi.02154-14] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/14/2014] [Indexed: 12/25/2022] Open
Abstract
It has been shown that enhancement of blood-brain barrier (BBB) permeability is modulated by the expression of chemokines/cytokines and reduction of tight junction (TJ) proteins in the brains of mice infected with rabies virus (RABV). Since CXCL10 was found to be the most highly expressed chemokine, its temporal and spatial expression were determined in the present study. The expression of the chemokine CXCL10 was initially detected in neurons as early as 3 days postinfection (p.i.) in the brains of RABV-infected mice, after which it was detected in microglia (6 days p.i.) and astrocytes (9 days p.i.). Neutralization of CXCL10 by treatment with anti-CXCL10 antibodies reduced gamma interferon (IFN-γ) production and Th17 cell infiltration, as well as restoring TJ protein expression and BBB integrity. Together, these data suggest that it is the neuronal CXCL10 that initiates the cascade that leads to the activation of microglia/astrocytes, infiltration of inflammatory cells, expression of chemokines/cytokines, reduction of TJ protein expression, and enhancement of the BBB permeability.
Collapse
Affiliation(s)
- Qingqing Chai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ruiping She
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ying Huang
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
19
|
Lymph node but not intradermal injection site macrophages are critical for germinal center formation and antibody responses to rabies vaccination. J Virol 2014. [PMID: 25540370 DOI: 10.1128/jvi.3409-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Replication-deficient rabies virus (RABV)-based vaccines induce rapid and potent antibody responses via T cell-independent and T cell-dependent mechanisms. To further investigate early events in vaccine-induced antibody responses against RABV infections, we studied the role of macrophages as mediators of RABV-based vaccine immunogenicity. In this report, we show that a recombinant matrix gene-deleted RABV-based vaccine (rRABV-ΔM) infects and activates primary murine macrophages in vitro. Immunization of mice with live RABV-based vaccines results in accumulation of macrophages at the site of immunization, which suggests that macrophages in tissues support the development of effective anti-RABV B cell responses. However, we show that draining lymph node macrophages, but not macrophages at the site of immunization, are essential for the generation of germinal center B cells, follicular T helper cells, and RABV-specific antibodies. Our findings have implications for the design of new RABV-based vaccines for which early immunological events are important for the protection against RABV in postexposure settings. IMPORTANCE More than two-thirds of the world's population live in regions where rabies is endemic. Postexposure prophylaxis is the primary means of treating humans. Identifying immunological principles that guide the development of rapid and potent antibody responses against rabies infections will greatly increase our ability to produce more-effective rabies vaccines. Here we report that macrophages in the draining lymph node, but not in the tissue at the site of immunization are important for vaccine-induced antibody responses to rabies. Information gleaned from this study may help guide the development of a single-dose vaccine against rabies infections.
Collapse
|
20
|
Lymph node but not intradermal injection site macrophages are critical for germinal center formation and antibody responses to rabies vaccination. J Virol 2014; 89:2842-8. [PMID: 25540370 DOI: 10.1128/jvi.03409-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Replication-deficient rabies virus (RABV)-based vaccines induce rapid and potent antibody responses via T cell-independent and T cell-dependent mechanisms. To further investigate early events in vaccine-induced antibody responses against RABV infections, we studied the role of macrophages as mediators of RABV-based vaccine immunogenicity. In this report, we show that a recombinant matrix gene-deleted RABV-based vaccine (rRABV-ΔM) infects and activates primary murine macrophages in vitro. Immunization of mice with live RABV-based vaccines results in accumulation of macrophages at the site of immunization, which suggests that macrophages in tissues support the development of effective anti-RABV B cell responses. However, we show that draining lymph node macrophages, but not macrophages at the site of immunization, are essential for the generation of germinal center B cells, follicular T helper cells, and RABV-specific antibodies. Our findings have implications for the design of new RABV-based vaccines for which early immunological events are important for the protection against RABV in postexposure settings. IMPORTANCE More than two-thirds of the world's population live in regions where rabies is endemic. Postexposure prophylaxis is the primary means of treating humans. Identifying immunological principles that guide the development of rapid and potent antibody responses against rabies infections will greatly increase our ability to produce more-effective rabies vaccines. Here we report that macrophages in the draining lymph node, but not in the tissue at the site of immunization are important for vaccine-induced antibody responses to rabies. Information gleaned from this study may help guide the development of a single-dose vaccine against rabies infections.
Collapse
|
21
|
FC-98 regulates TLR9-mediated of CXCL-10 expression in dendritic cells via MAPK and STAT1 signaling pathway. BIOMED RESEARCH INTERNATIONAL 2014; 2014:926130. [PMID: 24696007 PMCID: PMC3947834 DOI: 10.1155/2014/926130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/17/2013] [Accepted: 12/31/2013] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DCs), as the most potent professional antigen presenting cells, play a crucial role in both innate and adaptive immune systems. Genomic bacterial DNA mimicked by unmethylated CpG motifs is discovered to possess immunostimulatory effects. CpG-DNA recognized by Toll-like receptor 9 (TLR9) on DCs arouses many immune diseases (such as cancer, viral infection, and autoimmune disorders). In this study we investigated the effects of FC-98 on CpG-induced bone marrow-derived DCs (BMDCs). The results showed that FC-98 significantly inhibited the CpG-induced BMDCs maturation and function by suppressing the expression of surface markers (CD40, CD80, CD86, and MHCII). Moreover, FC-98 downregulated the expression of C-X-C motif chemokine 10 (CXCL-10) both at the mRNA and protein level after CpG induction. Meanwhile, FC-98 markedly affected the migration of BMDCs to T cells without affecting their endocytosis capacity. Furthermore, FC-98 was confirmed to decrease CXCL-10 expression by inhibiting CpG-induced activation of MAPKs (ERK, JNK, and p38) and STAT1 signaling. Overall, these results suggested that FC-98 was a potential molecule in the treatment of CXCL-10-mediated immune diseases.
Collapse
|
22
|
Senba K, Matsumoto T, Yamada K, Shiota S, Iha H, Date Y, Ohtsubo M, Nishizono A. Passive carriage of rabies virus by dendritic cells. SPRINGERPLUS 2013; 2:419. [PMID: 24024103 PMCID: PMC3765594 DOI: 10.1186/2193-1801-2-419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/23/2013] [Indexed: 12/25/2022]
Abstract
The rabies virus (RABV) is highly neurotropic and it uses evasive strategies to successfully evade the host immune system. Because rabies is often fatal, understanding the basic processes of the virus-host interactions, particularly in the initial events of infection, is critical for the design of new therapeutic approaches to target RABV. Here, we examined the possible role of dendritic cells (DCs) in the transmission of RABV to neural cells at peripheral site of exposure. Viral replication only occurred at a low level in the DC cell line, JAWS II, after its infection with either pathogenic RABV (CVS strain) or low-pathogenic RABV (ERA strain), and no progeny viruses were produced in the culture supernatants. However, both viral genomic RNAs were retained in the long term after infection and maintained their infectivity. The biggest difference between CVS and ERA was in their ability to induce type I interferons. Although the ERA-infected JAWS II cells exhibited cytopathic effect and were apparently killed by normal spleen cells in vitro, the CVS-infected JAWS II cells showed milder cytopathic effect and less lysis when cocultured with spleen cells. Strongly increased expression of major histocompatibility complex classes I, costimulatory molecules (CD80 and CD86), type I interferons and Toll- like receptor 3, and was observed only in the ERA-inoculated JAWS II cells and not in those inoculated with CVS. During the silencing of the cellular immune response in the DCs, the pathogenic CVS strain cryptically maintained an infectious viral genome and was capable of transmitting infectious RABV to permissive neural cells. These findings demonstrate that DCs may play a role in the passive carriage of RABV during natural rabies infections.
Collapse
Affiliation(s)
- Kazuyo Senba
- Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita, 879-5593 Japan ; Faculty of Food Science and Nutrition, Beppu University, Beppu, Oita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wild-type rabies virus phosphoprotein is associated with viral sensitivity to type I interferon treatment. Arch Virol 2013; 158:2297-305. [DOI: 10.1007/s00705-013-1743-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 04/19/2013] [Indexed: 12/19/2022]
|
24
|
Hicks DJ, Núñez A, Banyard AC, Williams A, Ortiz-Pelaez A, Fooks AR, Johnson N. Differential chemokine responses in the murine brain following lyssavirus infection. J Comp Pathol 2013; 149:446-62. [PMID: 23746482 DOI: 10.1016/j.jcpa.2013.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 02/20/2013] [Accepted: 04/06/2013] [Indexed: 12/17/2022]
Abstract
The hallmark of lyssavirus infection is lethal encephalomyelitis. Previous studies have reported distinct lyssavirus isolate-related differences in severity of cellular recruitment into the encephalon in a murine model of infection following peripheral inoculation with rabies virus (RABV) and European bat lyssavirus (EBLV)-1 and -2. In order to understand the role of chemokines in this process, comparative studies of the chemokine pattern, distribution and production in response to infection with these lyssaviruses were undertaken. Expression of CCL2, CCL5 and CXCL10 was observed throughout the murine brain with a distinct caudal bias in distribution, similar to both inflammatory changes and virus antigen distribution. CCL2 immunolabelling was localized to neuronal and astroglial populations. CCL5 immunolabelling was only detected in the astroglia, while CXCL10 labelling, although present in the astroglia, was more prominent in neurons. Isolate-dependent differences in the amount of chemokine immunolabelling in specific brain regions and chemokine production by neurons in vitro were observed, with a greater expression of CCL5 in vivo and CXCL10 production in vitro after EBLV infection. Additionally, strong positive associations between chemokine immunolabelling and perivascular cuffing and, to a lesser extent, virus antigen score were also observed. These differences in chemokine expression may explain the variation in severity of encephalitic changes observed in animals infected with different lyssavirus isolates.
Collapse
Affiliation(s)
- D J Hicks
- Pathology Unit, Department of Specialist Scientific Support, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhang G, Wang H, Mahmood F, Fu ZF. Rabies virus glycoprotein is an important determinant for the induction of innate immune responses and the pathogenic mechanisms. Vet Microbiol 2013; 162:601-613. [PMID: 23265241 PMCID: PMC3568536 DOI: 10.1016/j.vetmic.2012.11.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/20/2012] [Accepted: 11/22/2012] [Indexed: 12/24/2022]
Abstract
Our previous studies have suggested that street and fixed rabies viruses (RABVs) induce diseases in the mouse model via different mechanisms. In the present study, attempts were made to determine if it is the glycoprotein (G) that is responsible for the observed differences in the pathogenic mechanisms. To this end, an infectious clone from fixed virus B2c was established and used as a backbone for exchange of the G from street viruses. The rate of viral replication, expression of viral proteins, and the induction of innate immune responses were compared in cells or in mice infected with each of the viruses. Furthermore, the infiltration of inflammatory cells into the CNS and the enhancement of blood-brain barrier (BBB) permeability were also compared. It was found that fixed viruses induced stronger innate immune responses (expression of chemokines, infiltration of inflammatory cells, and enhancement of BBB permeability) than street RABV or recombinant viruses expressing the G from street RABVs. Fixed viruses induce disease via an immune-mediated pathogenic mechanism while street viruses or recombinant viruses expressing the G from street RABVs induce diseases via a mechanism other than immune-mediated pathogenesis. Therefore, RABV G is an important determinant for the induction of innate immune responses and consequently the pathogenic mechanisms.
Collapse
Affiliation(s)
- Guoqing Zhang
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Hualei Wang
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Fazal Mahmood
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Zhen F Fu
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; State-Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
26
|
Liao PH, Hsu YH, Yang HH, Wang MH, Chen LK. Involvement of extraneural tissues and upregulation of inducible nitric oxide synthase after experimental infection with rabies virus in BALB/c mice and LEW/SsN rats. Pathol Int 2013; 62:619-27. [PMID: 22924848 DOI: 10.1111/j.1440-1827.2012.02846.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rabies virus can cause fatal encephalomyelitis, but the involvement of extraneural organs has not been well characterized. In this study, we investigated the histopathological changes and the distribution of viral antigens in extraneural organs after pathogenic rabies virus infection in mouse and rat models. In histopathological examination, classical viral encephalitis and rabies-specific Negri body were observed in the brain. In addition to the central nervous system (CNS), inflammatory responses were found in other organs, such as the heart, kidney, liver, and lung. Similarly, immunohistochemical staining and reverse transcription-polymerase chain reaction revealed the presence of rabies virus in the CNS and extraneural tissues. Moreover, macrophages, especially in the lung and heart, were involved in the infection. Transcriptional analyses of the expression of inducible nitric oxide synthase (iNOS) demonstrated that rabies virus potentiated the gene expression of iNOS in the brain, lung, and heart. The immunoreactive iNOS-positive macrophages were detected adjacent to the infection. These results suggest that macrophages are involved in the extraneural infection and the expression of iNOS in macrophages contributes to the formation of tissue inflammation. Our study indicates the involvement of extraneural organs following rabies virus infection, which may aggravate the progression of this deadly disease.
Collapse
Affiliation(s)
- Pi-Hung Liao
- Institute of Medical Sciences, Department of Pathology, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | |
Collapse
|
27
|
Nazé F, Suin V, Lamoral S, Francart A, Brochier B, Roels S, Mast J, Kalai M, Van Gucht S. Infectivity of rabies virus-exposed macrophages. Microbes Infect 2012; 15:115-25. [PMID: 23159243 DOI: 10.1016/j.micinf.2012.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 11/17/2022]
Abstract
Rabies virus distributes widely in infected mice, including lymphoid tissues and spleen macrophages. The infection characteristics in murine macrophages and the infectivity of virus-exposed macrophages were examined upon inoculation in mice. In vitro, Mf4/4 spleen macrophages supported mild virus production (10(4)-fold less than neuroblastoma), with formation of typical virions. Bone marrow-derived macrophages (BMM) were most efficient to capture virus, but new virus production was not detected. Virus-induced cell death was significantly stronger in BMM, which might have eliminated BMM with productive infection. Still, viral RNA remained detectable in the remaining BMM for at least 4 weeks. Injection of in vitro-infected Mf4/4 in the nose or brain proved efficient to propagate infection in mice, even when cells were pre-incubated with neutralizing antibodies. Surprisingly, injection of ex-vivo-infected BMM in the brain also led to lethal infection in 8 out of 12 mice. Injection of infected Mf4/4 in the muscle mostly favoured a protective antibody response. Despite that macrophages are less fit to support virus production, they can still act as a source of infectious virus upon transfer in mice. This may be relevant for screening donor organs/cells, for which RT-PCR should be preferred over the traditional antigen or virus isolation assays.
Collapse
Affiliation(s)
- Florence Nazé
- National Reference Laboratory of Rabies, Viral Diseases, Communicable and Infectious Diseases, Scientific Institute of Public Health, Engeland St. 642, B-1180 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Chemokines are a family of structurally related proteins that are expressed by almost all types of nucleated cells and mediate leukocyte activation and/or chemotactic activities. The role of chemokines in rabies pathogenesis and protection has only recently been investigated. Expression of chemokines is induced by infection with laboratory-adapted, but not street, rabies viruses (RABVs), and it has been hypothesized that expression of chemokines is one of the mechanisms by which RABV is attenuated. To further define the role of chemokines in rabies pathogenesis and protection, chemokine genes such as MIP-1α, RANTES, IP-10, and macrophage-derived chemokine (MDC) have been cloned into RABV genome. It has been found that recombinant RABVs expressing RANTES or IP-10 induce high and persistent expression of these chemokines, resulting in massive infiltration of inflammatory cells into the central nervous system (CNS) and development of diseases and death in the mouse model. However, recombinant RABVs expressing MIP-1α, MDC, as well as GM-CSF further attenuate RABV by inducing a transient expression of chemokines, infiltration of inflammatory cells, enhancement of blood-brain barrier (BBB) permeability. Yet, these recombinant RABVs show increased adaptive immune responses by recruiting/activating dendritic cells, T and B cells in the periphery as well as in the CNS. Further, direct administration of these recombinant RABVs into the CNS can prevent mice from developing rabies days after infection with street RABV. All these studies together suggest that chemokines are both protective and pathogenic in RABV infections. Those with protective roles could be exploited for development of future RABV vaccines or therapeutic agents.
Collapse
Affiliation(s)
- Xuefeng Niu
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | | | | |
Collapse
|
29
|
Abstract
Chemokines are a family of structurally related proteins that are expressed by almost all types of nucleated cells and mediate leukocyte activation and/or chemotactic activities. The role of chemokines in rabies pathogenesis and protection has only recently been investigated. Expression of chemokines is induced by infection with laboratory-adapted, but not street, rabies viruses (RABVs), and it has been hypothesized that expression of chemokines is one of the mechanisms by which RABV is attenuated. To further define the role of chemokines in rabies pathogenesis and protection, chemokine genes such as MIP-1α, RANTES, IP-10, and macrophage-derived chemokine (MDC) have been cloned into RABV genome. It has been found that recombinant RABVs expressing RANTES or IP-10 induce high and persistent expression of these chemokines, resulting in massive infiltration of inflammatory cells into the central nervous system (CNS) and development of diseases and death in the mouse model. However, recombinant RABVs expressing MIP-1α, MDC, as well as GM-CSF further attenuate RABV by inducing a transient expression of chemokines, infiltration of inflammatory cells, enhancement of blood-brain barrier (BBB) permeability. Yet, these recombinant RABVs show increased adaptive immune responses by recruiting/activating dendritic cells, T and B cells in the periphery as well as in the CNS. Further, direct administration of these recombinant RABVs into the CNS can prevent mice from developing rabies days after infection with street RABV. All these studies together suggest that chemokines are both protective and pathogenic in RABV infections. Those with protective roles could be exploited for development of future RABV vaccines or therapeutic agents.
Collapse
Affiliation(s)
- Xuefeng Niu
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | | | | |
Collapse
|
30
|
Liu M, Guo S, Hibbert JM, Jain V, Singh N, Wilson NO, Stiles JK. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev 2011; 22:121-30. [PMID: 21802343 PMCID: PMC3203691 DOI: 10.1016/j.cytogfr.2011.06.001] [Citation(s) in RCA: 372] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
C-X-C motif chemokine 10 (CXCL10) also known as interferon γ-induced protein 10 kDa (IP-10) or small-inducible cytokine B10 is a cytokine belonging to the CXC chemokine family. CXCL10 binds CXCR3 receptor to induce chemotaxis, apoptosis, cell growth and angiostasis. Alterations in CXCL10 expression levels have been associated with inflammatory diseases including infectious diseases, immune dysfunction and tumor development. CXCL10 is also recognized as a biomarker that predicts severity of various diseases. A review of the emerging role of CXCL10 in pathogenesis of infectious diseases revealed diverse roles of CXCL10 in disease initiation and progression. The potential utilization of CXCL10 as a therapeutic target for infectious diseases is discussed.
Collapse
Affiliation(s)
- Mingli Liu
- Department of Microbiology Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Shanchun Guo
- Department of Microbiology Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Jacqueline M. Hibbert
- Department of Microbiology Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Vidhan Jain
- National Institute of Malaria Research (ICMR), Jabalpur, India
| | - Neeru Singh
- National Institute of Malaria Research (ICMR), Jabalpur, India
| | - Nana O. Wilson
- Department of Microbiology Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Jonathan K. Stiles
- Department of Microbiology Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
31
|
Liu M, Guo S, Stiles JK. The emerging role of CXCL10 in cancer (Review). Oncol Lett 2011; 2:583-589. [PMID: 22848232 DOI: 10.3892/ol.2011.300] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/20/2011] [Indexed: 12/15/2022] Open
Abstract
The chemokine interferon-γ inducible protein 10 kDa (CXCL10) is a member of the CXC chemokine family which binds to the CXCR3 receptor to exert its biological effects. CXCL10 is involved in chemotaxis, induction of apoptosis, regulation of cell growth and mediation of angiostatic effects. CXCL10 is associated with a variety of human diseases including infectious diseases, chronic inflammation, immune dysfuntion, tumor development, metastasis and dissemination. More importantly, CXCL10 has been identified as a major biological marker mediating disease severity and may be utilized as a prognostic indicator for various diseases. In this review, we focus on current research elucidating the emerging role of CXCL10 in the pathogenesis of cancer. Understanding the role of CXCL10 in disease initiation and progression may provide the basis for developing CXCL10 as a potential biomarker and therapeutic target for related human malignancies.
Collapse
Affiliation(s)
- Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
32
|
Zhao L, Toriumi H, Wang H, Kuang Y, Guo X, Morimoto K, Fu ZF. Expression of MIP-1alpha (CCL3) by a recombinant rabies virus enhances its immunogenicity by inducing innate immunity and recruiting dendritic cells and B cells. J Virol 2010; 84:9642-8. [PMID: 20592092 PMCID: PMC2937656 DOI: 10.1128/jvi.00326-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 06/24/2010] [Indexed: 12/20/2022] Open
Abstract
Previously, we showed that overexpression of MIP-1alpha in mouse brain further decreased rabies virus (RABV) pathogenicity (L. Zhao, H. Toriumi, Y. Kuang, H. Chen, and Z. F. Fu, J. Virol., 83:11808-11818, 2009). In the present study, the immunogenicity of recombinant RABV expressing MIP-1alpha (rHEP-MIP1alpha) was determined. It was found that intramuscular immunization of BALB/c mice with rHEP-MIP1alpha resulted in a higher level of expression of MIP-1alpha at the site of inoculation, increased recruitment of dendritic cells (DCs) and mature B cells into the draining lymph nodes and the peripheral blood, and higher virus-neutralizing antibody titers than immunization with the parent rHEP and recombinant RABVs expressing RANTES (CCL5) or IP-10 (CXCL10). Our data thus demonstrate that expression of MIP-1alpha not only reduces viral pathogenicity but also enhances immunogenicity by recruiting DCs and B cells to the site of immunization, the lymph nodes, and the blood.
Collapse
Affiliation(s)
- Ling Zhao
- Departments of Pathology, Infectious Diseases, University of Georgia, Athens, GA 30602, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China, Yasuda Women's University, Hiroshima 731-0153, Japan
| | - Harufusa Toriumi
- Departments of Pathology, Infectious Diseases, University of Georgia, Athens, GA 30602, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China, Yasuda Women's University, Hiroshima 731-0153, Japan
| | - Hualei Wang
- Departments of Pathology, Infectious Diseases, University of Georgia, Athens, GA 30602, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China, Yasuda Women's University, Hiroshima 731-0153, Japan
| | - Yi Kuang
- Departments of Pathology, Infectious Diseases, University of Georgia, Athens, GA 30602, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China, Yasuda Women's University, Hiroshima 731-0153, Japan
| | - Xiaofeng Guo
- Departments of Pathology, Infectious Diseases, University of Georgia, Athens, GA 30602, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China, Yasuda Women's University, Hiroshima 731-0153, Japan
| | - Kinjiro Morimoto
- Departments of Pathology, Infectious Diseases, University of Georgia, Athens, GA 30602, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China, Yasuda Women's University, Hiroshima 731-0153, Japan
| | - Zhen F. Fu
- Departments of Pathology, Infectious Diseases, University of Georgia, Athens, GA 30602, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China, Yasuda Women's University, Hiroshima 731-0153, Japan
| |
Collapse
|
33
|
Nakamichi K, Kitani H, Takayama-Ito M, Morimoto K, Kurane I, Saijo M. Celastrol suppresses morphological and transcriptional responses in microglial cells upon stimulation with double-stranded RNA. Int J Neurosci 2010; 120:252-7. [PMID: 20374071 DOI: 10.3109/00207451003615763] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Despite the pivotal role of microglia in the immune system of the brain, a growing body of evidence suggests that excessive microglial activation provokes neuronal and glial damage, leading to neurodegenerative and neuroinflammatory disorders. Celastrol, a triterpene, is a potent anti-inflammatory and antioxidant compound derived from perennial creeping plants belonging to the Celastraceae family. In the current study, we have analyzed the effect of celastrol on morphological and transcriptional responses in microglial MG6 cells upon stimulation with double-stranded RNA, a strong activator of innate immune cells. In the presence of celastrol, morphological changes were inhibited in double-stranded RNA-stimulated microglia. It was also found that the treatment of microglia with celastrol led to a significant decrease in the double-stranded RNA-induced expression of proinflammatory cytokines and chemokines. These data demonstrate that celastrol inhibits morphological and transcriptional responses during microglial activation.
Collapse
Affiliation(s)
- Kazuo Nakamichi
- Laboratory of Neurovirology, Department of Virology 1, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
The immune response to rabies virus infection and vaccination. Vaccine 2010; 28:3896-901. [DOI: 10.1016/j.vaccine.2010.03.039] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/10/2010] [Accepted: 03/21/2010] [Indexed: 12/25/2022]
|
35
|
Gottstein B, Wittwer M, Schild M, Merli M, Leib SL, Müller N, Müller J, Jaggi R. Hepatic gene expression profile in mice perorally infected with Echinococcus multilocularis eggs. PLoS One 2010; 5:e9779. [PMID: 20368974 PMCID: PMC2848562 DOI: 10.1371/journal.pone.0009779] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 02/26/2010] [Indexed: 12/17/2022] Open
Abstract
Background Alveolar echinococcosis (AE) is a severe chronic hepatic parasitic disease currently emerging in central and eastern Europe. Untreated AE presents a high mortality (>90%) due to a severe hepatic destruction as a result of parasitic metacestode proliferation which behaves like a malignant tumor. Despite this severe course and outcome of disease, the genetic program that regulates the host response leading to organ damage as a consequence of hepatic alveolar echinococcosis is largely unknown. Methodology/Principal Findings We used a mouse model of AE to assess gene expression profiles in the liver after establishment of a chronic disease status as a result of a primary peroral infection with eggs of the fox tapeworm Echinococcus multilocularis. Among 38 genes differentially regulated (false discovery rate adjusted p≤0.05), 35 genes were assigned to the functional gene ontology group <immune response>, while 3 associated with the functional group <intermediary metabolism>. Upregulated genes associated with <immune response> could be clustered into functional subgroups including <macrophages>, <APCs>, <lymphocytes, chemokines and regulation>, <B-cells> and <eosinophils>. Two downregulated genes related to <lymphocytes, chemokines and regulation> and <intermediary metabolism>, respectively. The <immune response> genes either associated with an <immunosupression> or an <immunostimulation> pathway. From the overexpressed genes, 18 genes were subsequently processed with a Custom Array microfluidic card system in order to assess respective expression status at the mRNA level relative to 5 reference genes (Gapdh, Est1, Rlp3, Mdh-1, Rpl37) selected upon a constitutive and stable expression level. The results generated by the two independent tools used for the assessment of gene expression, i.e., microarray and microfluidic card system, exhibited a high level of congruency (Spearman correlation rho = 0.81, p = 7.87e-5) and thus validated the applied methods. Conclusions/Significance Based on this set of biomarkers, new diagnostic targets have been made available to predict disease status and progression. These biomarkers may also offer new targets for immuno-therapeutic intervention.
Collapse
Affiliation(s)
- Bruno Gottstein
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhao L, Toriumi H, Kuang Y, Chen H, Fu ZF. The roles of chemokines in rabies virus infection: overexpression may not always be beneficial. J Virol 2009; 83:11808-18. [PMID: 19740983 PMCID: PMC2772667 DOI: 10.1128/jvi.01346-09] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/31/2009] [Indexed: 12/24/2022] Open
Abstract
It was found previously that induction of innate immunity, particularly chemokines, is an important mechanism of rabies virus (RABV) attenuation. To evaluate the effect of overexpression of chemokines on RABV infection, chemokines macrophage inflammatory protein 1alpha (MIP-1alpha), RANTES, and IP-10 were individually cloned into the genome of attenuated RABV strain HEP-Flury. These recombinant RABVs were characterized in vitro for growth properties and expression of chemokines. It was found that all the recombinant viruses grew as well as the parent virus, and each of the viruses expressed the intended chemokine in a dose-dependent manner. When these viruses were evaluated for pathogenicity in the mouse model, it was found that overexpression of MIP-1alpha further decreased RABV pathogenicity by inducing a transient innate immune response. In contrast, overexpression of RANTES or IP-10 increased RABV pathogenicity by causing neurological diseases, which is due to persistent and high-level expression of chemokines, excessive infiltration and accumulation of inflammatory cells in the central nervous system, and severe enhancement of blood-brain barrier permeability. These studies indicate that overexpression of chemokines, although important in controlling virus infection, may not always be beneficial to the host.
Collapse
Affiliation(s)
- Ling Zhao
- Departments of Pathology, Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, State-Key Laboratory of Agricultural Microbiology, Department of Preventive Veterinary, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Harufusa Toriumi
- Departments of Pathology, Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, State-Key Laboratory of Agricultural Microbiology, Department of Preventive Veterinary, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Kuang
- Departments of Pathology, Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, State-Key Laboratory of Agricultural Microbiology, Department of Preventive Veterinary, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- Departments of Pathology, Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, State-Key Laboratory of Agricultural Microbiology, Department of Preventive Veterinary, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen F. Fu
- Departments of Pathology, Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, State-Key Laboratory of Agricultural Microbiology, Department of Preventive Veterinary, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
37
|
Kuang Y, Lackay SN, Zhao L, Fu ZF. Role of chemokines in the enhancement of BBB permeability and inflammatory infiltration after rabies virus infection. Virus Res 2009; 144:18-26. [PMID: 19720239 PMCID: PMC2760941 DOI: 10.1016/j.virusres.2009.03.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/23/2009] [Accepted: 03/25/2009] [Indexed: 02/08/2023]
Abstract
Induction of innate immunity, particularly through the induction of interferon and chemokines, by rabies virus (RABV) infection has been reported to be inversely correlated with pathogenicity. To further investigate the association between the expression of chemokines and RABV infection, laboratory-attenuated RABV (B2C) and wild-type (wt) RABV (DRV) were administered to Balb/c mice intramuscularly. Chemokine expression, inflammatory cell infiltration, and blood-brain barrier (BBB) permeability were evaluated at various time points after infection. At day 3 post-infection (p.i.) there was very little inflammation in the central nervous system (CNS) and BBB permeability did not change in mice infected with either virus when compared with mock-infected mice. At 6 day p.i., infection with B2C induced the expression of inflammatory chemokines and infiltration of inflammatory cells into the CNS, while these changes were minimal in DRV-infected mice. Furthermore, infection with B2C significantly enhanced BBB permeability comparing to infection with DRV. Among the upregulated chemokines, the expression of IP-10 was best correlated with infiltration of inflammatory cells into the CNS and enhancement of BBB permeability. These data indicate that laboratory-attenuated RABV induces expression of chemokines and infiltration of inflammatory cells into the CNS. Upregulation of chemokines by B2C may have triggered the change in BBB permeability, which helps infiltration of inflammatory cells into the CNS, and thus attenuation of RABV.
Collapse
Affiliation(s)
- Yi Kuang
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
38
|
Zaheer RS, Koetzler R, Holden NS, Wiehler S, Proud D. Selective transcriptional down-regulation of human rhinovirus-induced production of CXCL10 from airway epithelial cells via the MEK1 pathway. THE JOURNAL OF IMMUNOLOGY 2009; 182:4854-64. [PMID: 19342664 DOI: 10.4049/jimmunol.0802401] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Human rhinovirus (HRV) infections can trigger exacerbations of lower airway diseases. Infection of airway epithelial cells induces production of a number of proinflammatory chemokines that may exacerbate airway inflammation, including CXCL10, a chemoattractant for type 1 lymphocytes and NK cells. Primary human bronchial epithelial cells and the BEAS-2B human bronchial epithelial cell line were used to examine the role of MAPK pathways in HRV-16-induced production of CXCL10. Surprisingly, PD98059 and U0126, two inhibitors of the MEK1/2-ERK MAPK pathway, significantly enhanced HRV-16-induced CXCL10 mRNA and protein. This enhancement was not seen with IFN-beta-induced production of CXCL10. Studies using small interfering RNA revealed that knockdown of MEK1, but not MEK2, was associated with enhanced HRV-induced CXCL10 production. Promoter construct studies revealed that PD98059 and U0126 enhanced HRV-16-induced transcriptional activation of CXCL10. HRV-16-induced promoter activation was regulated by two NF-kappaB binding sites, kappaB1 and kappaB2, and by an IFN-stimulated response element. Inhibitors of the MEK1/2-ERK pathway did not alter HRV-16-induced activation of tandem repeat kappaB1 or kappaB2 constructs, nor did they alter HRV-16-induced nuclear translocation/binding of NF-kappaB to either kappaB1 or kappaB2 recognition sequences. Furthermore, PD98059 and U0126 did not alter phosphorylation or degradation of IkappaBalpha. In contrast, inhibitors of the MEK1/2-ERK pathway, and small interfering RNA knockdown of MEK1, enhanced nuclear translocation/binding of IFN regulatory factor (IRF)-1 to the IFN-stimulated response element recognition sequence in HRV-16 infected cells. We conclude that activation of MEK1 selectively down-regulates HRV-16-induced expression of CXCL10 via modulation of IRF-1 interactions with the gene promoter in human airway epithelial cells.
Collapse
Affiliation(s)
- Raza S Zaheer
- Airway Inflammation Group, Institute of Infection, Immunity and Inflammation, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
39
|
Gholami A, Kassis R, Real E, Delmas O, Guadagnini S, Larrous F, Obach D, Prevost MC, Jacob Y, Bourhy H. Mitochondrial dysfunction in lyssavirus-induced apoptosis. J Virol 2008; 82:4774-84. [PMID: 18321977 PMCID: PMC2346764 DOI: 10.1128/jvi.02651-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 02/22/2008] [Indexed: 12/25/2022] Open
Abstract
Lyssaviruses are highly neurotropic viruses associated with neuronal apoptosis. Previous observations have indicated that the matrix proteins (M) of some lyssaviruses induce strong neuronal apoptosis. However, the molecular mechanism(s) involved in this phenomenon is still unknown. We show that for Mokola virus (MOK), a lyssavirus of low pathogenicity, the M (M-MOK) targets mitochondria, disrupts the mitochondrial morphology, and induces apoptosis. Our analysis of truncated M-MOK mutants suggests that the information required for efficient mitochondrial targeting and dysfunction, as well as caspase-9 activation and apoptosis, is held between residues 46 and 110 of M-MOK. We used a yeast two-hybrid approach, a coimmunoprecipitation assay, and confocal microscopy to demonstrate that M-MOK physically associates with the subunit I of the cytochrome c (cyt-c) oxidase (CcO) of the mitochondrial respiratory chain; this is in contrast to the M of the highly pathogenic Thailand lyssavirus (M-THA). M-MOK expression induces a significant decrease in CcO activity, which is not the case with M-THA. M-MOK mutations (K77R and N81E) resulting in a similar sequence to M-THA at positions 77 and 81 annul cyt-c release and apoptosis and restore CcO activity. As expected, the reverse mutations, R77K and E81N, introduced in M-THA induce a phenotype similar to that due to M-MOK. These features indicate a novel mechanism for energy depletion during lyssavirus-induced apoptosis.
Collapse
Affiliation(s)
- Alireza Gholami
- Unité Postulante de Recherche et d'Expertise Dynamique des Lyssavirus et Adaptation à l'Hôte, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jones KL, Muellegger RR, Means TK, Lee M, Glickstein LJ, Damle N, Sikand VK, Luster AD, Steere AC. Higher mRNA levels of chemokines and cytokines associated with macrophage activation in erythema migrans skin lesions in patients from the United States than in patients from Austria with Lyme borreliosis. Clin Infect Dis 2008; 46:85-92. [PMID: 18171218 DOI: 10.1086/524022] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Erythema migrans (EM) is caused primarily by Borrelia afzelii in Europe and solely by Borrelia burgdorferi in the United States. B. burgdorferi infection in the United States has previously been associated with faster expansion of EM lesions and with more associated symptoms, compared with B. afzelii infection in Europe. However, reasons for these differences are not yet known. METHODS We determined the Borrelia species infecting 67 US or Austrian patients with EM. The clinical pictures and chemokine and cytokine mRNA levels in lesional skin were then compared in the 19 B. burgdorferi-infected US patients and the 37 B. afzelii-infected Austrian patients, the 2 largest groups. RESULTS The 19 B. burgdorferi-infected US patients had faster-expanding EM lesions and a median of 4 associated signs and symptoms, whereas the 37 B. afzelii-infected Austrian patients had slower-expanding lesions and usually did not experience associated symptoms. Compared with the EM lesions of B. afzelii-infected Austrian patients, those of B. burgdorferi-infected US patients had significantly higher mRNA levels of chemokines associated with activation of macrophages, including chemoattractants for neutrophils (CXCL1), macrophages (CCL3 and CCL4), and T helper 1 cells (CXCL9, CXCL10, and CXCL11). In addition, compared with the EM lesions of Austrian patients, the EM lesions of US patients tended to have higher mRNA levels of the macrophage-associated proinflammatory cytokines interleukin 1beta and tumor necrosis factor alpha, and they had significantly higher mRNA expression of the antiinflammatory cytokines interleukin 10 and transforming growth factor beta. CONCLUSIONS The EM lesions of B. burgdorferi-infected US patients expanded faster, were associated with more symptoms, and had higher mRNA levels of macrophage-associated chemokines and cytokines than did the EM lesions of B. afzelii-infected Austrian patients.
Collapse
Affiliation(s)
- Kathryn L Jones
- Division of Rheumatology, Allergy, and Immunology, Center for Immunology and Inflammatory Diseases, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Various technological developments have revitalized the approaches employed to study the disease of rabies. In particular, reverse genetics has facilitated the generation of novel viruses used to improve our understanding of the fundamental aspects of rabies virus (RABV) biology and pathogenicity and yielded novel constructs potentially useful as vaccines against rabies and other diseases. Other techniques such as high throughput methods to examine the impact of rabies virus infection on host cell gene expression and two hybrid systems to explore detailed protein-protein interactions also contribute substantially to our understanding of virus-host interactions. This review summarizes much of the increased knowledge about rabies that has resulted from such studies but acknowledges that this is still insufficient to allow rational attempts at curing those who present with clinical disease.
Collapse
Affiliation(s)
- Susan A Nadin-Davis
- Centre of Expertise for Rabies, Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | | |
Collapse
|
42
|
Role of arginine metabolism in immunity and immunopathology. Immunobiology 2007; 212:795-812. [PMID: 18086380 DOI: 10.1016/j.imbio.2007.09.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 09/28/2007] [Indexed: 12/22/2022]
Abstract
A heterogeneous set of cells that are commonly grouped as "myeloid cells", interacts in a complex landscape of physiological and pathological situations. In this review we attempt to trace a profile of the "myeloid connection" through different normal and pathological states, by analyzing common metabolic pathways of the amino acid l-arginine. Myeloid cells exert various, often divergent, actions on the immune response through mechanisms that exploit mediators of this peculiar metabolic pathway, ranging from l-arginine itself to its downstream metabolites, like nitric oxide and polyamines. Various pathological situations, including neoplastic and autoimmune diseases, as well as injury repair and infections are discussed here, showing how l-arginine metabolism is able to play a dual role, both as an active protector and a possible threat to the organism.
Collapse
|
43
|
Granja AG, Sabina P, Salas ML, Fresno M, Revilla Y. Regulation of inducible nitric oxide synthase expression by viral A238L-mediated inhibition of p65/RelA acetylation and p300 transactivation. J Virol 2006; 80:10487-96. [PMID: 17041221 PMCID: PMC1641776 DOI: 10.1128/jvi.00862-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Uncontrolled generation of nitric oxide (NO) by inducible nitric-oxide synthase (iNOS) can cause damage to host cells and inflammation, two undesirable events for virus spreading. African swine fever virus (ASFV) infection regulates iNOS-induced gene expression through the synthesis of the A238L virus protein. We here explored the role of A238L, an NF-kappaB and NFAT inhibitor, in the regulation of iNOS transcription in macrophages. NO production and iNOS mRNA and protein levels as well as iNOS promoter activity after lipopolysaccharide (LPS)-gamma interferon (IFN-gamma) treatment were down-regulated both during ASFV infection and in Raw 264.7 cells stably expressing the viral protein. Overexpression of p300, but not of a histone acetyltransferase (HAT) defective mutant, reverted the A238L-mediated inhibition of both basal and LPS-IFN-gamma-induced iNOS promoter activity. Following stimulation with LPS-IFN-gamma, p65 and p300 interaction was abolished in Raw-A238L cells. Expression of A238L also inhibited p65/relA and p300 binding to the distal NF-kappaB sequence of the iNOS promoter together with p65 acetylation. Finally, A238L abrogated p300 transactivation mediated by a GAL4-p300 construction. These results provide evidence for an unique viral mechanism involved in transcriptional regulation of iNOS gene expression.
Collapse
Affiliation(s)
- Aitor G Granja
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | | | | | | |
Collapse
|
44
|
Nakamichi K, Saiki M, Kitani H, Kuboyama Y, Morimoto K, Takayama-Ito M, Kurane I. Suppressive effect of simvastatin on interferon-beta-induced expression of CC chemokine ligand 5 in microglia. Neurosci Lett 2006; 407:205-10. [PMID: 16978784 DOI: 10.1016/j.neulet.2006.08.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 08/17/2006] [Accepted: 08/20/2006] [Indexed: 11/15/2022]
Abstract
Despite the pivotal role of microglia in immune system of the brain, a growing body of evidence suggests that the excessive microglial activation provokes neuronal and glial damages, leading to neurodegenerative and neuroinflammatory disorders. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, have recently received much attention for their suppressive effects on inflammation in the central nervous system. In the current study, we have examined the statin-mediated inhibition of microglial function, especially that of chemokine production. Stimulation of microglial cells with interferon-beta (IFN-beta) resulted in the expression of CC chemokine ligand 5 (CCL5), a major chemoattractant of inflammatory cells. Microglial CCL5 response was synergistically potentiated by costimulation with IFN-beta and tumor necrosis factor-alpha (TNF-alpha). The simvastatin treatment significantly diminished the microglial CCL5 expression induced by IFN-beta alone or by IFN-beta/TNF-alpha combination. In the presence of simvastatin, the IFN-beta-induced activation of Janus kinase (Jak)-signal transducer and activator of transcription (STAT) pathway was attenuated, although this compound had little or no effect on the TNF-alpha-evoked activation of nuclear factor kappaB and c-Jun N-terminal kinase pathways. In addition, chemical inhibitor of Jak-STAT signaling significantly diminished the IFN-beta-induced expression of CCL5 in microglia. Taken together, these results suggest that simvastatin suppresses the IFN-beta-induced expression of CCL5 via down-regulation of Jak-STAT signaling pathway.
Collapse
Affiliation(s)
- Kazuo Nakamichi
- Laboratory of Neurovirology, Department of Virology 1, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Brzózka K, Finke S, Conzelmann KK. Inhibition of interferon signaling by rabies virus phosphoprotein P: activation-dependent binding of STAT1 and STAT2. J Virol 2006; 80:2675-83. [PMID: 16501077 PMCID: PMC1395475 DOI: 10.1128/jvi.80.6.2675-2683.2006] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rabies virus (RV) phosphoprotein P is an interferon (IFN) antagonist counteracting transcriptional activation of type I IFN (K. Brzózka, S. Finke, and K. K. Conzelmann, J. Virol 79:7673-7681, 2005). We here show that RV P in addition is responsible for preventing IFN-alpha/beta- and IFN-gamma-stimulated JAK-STAT signaling in RV-infected cells by the retention of activated STATs in the cytoplasm. Expression of IFN-stimulated response element- and gamma-activated sequence-controlled genes was severely impaired in cells infected with RV SAD L16 or in cells expressing RV P protein from transfected plasmids. In contrast, a recombinant RV expressing small amounts of P had lost the ability to interfere with JAK-STAT signaling. IFN-mediated tyrosine phosphorylation of STAT1 and STAT2 was not impaired in RV P-expressing cells; rather, a defect in STAT recycling was suggested by distinct accumulation of tyrosine-phosphorylated STATs in cell extracts. In the presence of P, activated STAT1 and STAT2 were unable to accumulate in the nucleus. Notably, STAT1 and STAT2 were coprecipitated with RV P only from extracts of cells previously stimulated with IFN-alpha or IFN-gamma, whereas in nonstimulated cells no association of P with STATs was observed. This conditional, IFN activation-dependent binding of tyrosine-phosphorylated STATs by RV P is unique for a viral IFN antagonist. The 10 C-terminal residues of P are required for counteracting JAK-STAT signaling but not for inhibition of transcriptional activation of IFN-beta, thus demonstrating two independent functions of RV P in counteracting the host's IFN response.
Collapse
Affiliation(s)
- Krzysztof Brzózka
- Max von Pettenkofer Institute and Gene Center, Feodor Lynen Str. 25, D-81377 Munich, Germany
| | | | | |
Collapse
|
46
|
Nakamichi K, Saiki M, Sawada M, Yamamuro Y, Morimoto K, Kurane I. Double-stranded RNA stimulates chemokine expression in microglia through vacuolar pH-dependent activation of intracellular signaling pathways. J Neurochem 2005; 95:273-83. [PMID: 16181431 DOI: 10.1111/j.1471-4159.2005.03354.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During neurotropic virus infection, microglia act as a source of chemokines, thereby regulating the recruitment of peripheral leukocytes and the multicellular immune response within the CNS. Herein, we present a comprehensive study on the chemokine production by microglia in response to double-stranded RNA (dsRNA), a conserved molecular pattern of virus infection. Transcriptional analyses of chemokine genes revealed that dsRNA strongly induces the expression of CXC chemokine ligand 10 (CXCL10) and CC chemokine ligand 5 (CCL5) in microglia. We also observed that the dsRNA stimulation triggered the activation of signaling pathways mediated by nuclear factor kappaB (NF-kappaB) and mitogen-activated protein kinases (MAPK), including extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38, and c-Jun N-terminal kinase (JNK). The microglial CXCL10 response to dsRNA was induced via NF-kappaB, p38, and JNK pathways, whereas the dsRNA-induced CCL5 production was dependent on JNK, but not on the other signal-transducing molecules tested. In addition, the acidic environment of intracellular vesicles was required for the activation of cellular signaling in response to dsRNA. Taken together, these results suggest that the recognition of dsRNA structure selectively induces the CXCL10 and CCL5 responses in microglia through vacuolar pH-dependent activation of NF-kappaB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. J Virol 2005. [PMID: 16160183 DOI: 10.1128/jvi.19.12554-12565.2005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rabies virus (RV) induces encephalomyelitis in humans and animals. However, the pathogenic mechanism of rabies is not fully understood. To investigate the host responses to RV infection, we examined and compared the pathology, particularly the inflammatory responses, and the gene expression profiles in the brains of mice infected with wild-type (wt) virus silver-haired bat RV (SHBRV) or laboratory-adapted virus B2C, using a mouse genomic array (Affymetrix). Extensive inflammatory responses were observed in animals infected with the attenuated RV, but little or no inflammatory responses were found in mice infected with wt RV. Furthermore, attenuated RV induced the expression of the genes involved in the innate immune and antiviral responses, especially those related to the alpha/beta interferon (IFN-alpha/beta) signaling pathways and inflammatory chemokines. For the IFN-alpha/beta signaling pathways, many of the interferon regulatory genes, such as the signal transduction activation transducers and interferon regulatory factors, as well as the effector genes, for example, 2'-5'-oligoadenylate synthetase and myxovirus proteins, are highly induced in mice infected with attenuated RV. However, many of these genes were not up-regulated in mice infected with wt SHBRV. The data obtained by microarray analysis were confirmed by real-time PCR. Together, these data suggest that attenuated RV activates, while pathogenic RV evades, the host innate immune and antiviral responses.
Collapse
|
48
|
Wang ZW, Sarmento L, Wang Y, Li XQ, Dhingra V, Tseggai T, Jiang B, Fu ZF. Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. J Virol 2005; 79:12554-65. [PMID: 16160183 PMCID: PMC1211539 DOI: 10.1128/jvi.79.19.12554-12565.2005] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rabies virus (RV) induces encephalomyelitis in humans and animals. However, the pathogenic mechanism of rabies is not fully understood. To investigate the host responses to RV infection, we examined and compared the pathology, particularly the inflammatory responses, and the gene expression profiles in the brains of mice infected with wild-type (wt) virus silver-haired bat RV (SHBRV) or laboratory-adapted virus B2C, using a mouse genomic array (Affymetrix). Extensive inflammatory responses were observed in animals infected with the attenuated RV, but little or no inflammatory responses were found in mice infected with wt RV. Furthermore, attenuated RV induced the expression of the genes involved in the innate immune and antiviral responses, especially those related to the alpha/beta interferon (IFN-alpha/beta) signaling pathways and inflammatory chemokines. For the IFN-alpha/beta signaling pathways, many of the interferon regulatory genes, such as the signal transduction activation transducers and interferon regulatory factors, as well as the effector genes, for example, 2'-5'-oligoadenylate synthetase and myxovirus proteins, are highly induced in mice infected with attenuated RV. However, many of these genes were not up-regulated in mice infected with wt SHBRV. The data obtained by microarray analysis were confirmed by real-time PCR. Together, these data suggest that attenuated RV activates, while pathogenic RV evades, the host innate immune and antiviral responses.
Collapse
Affiliation(s)
- Zhi W Wang
- Department of Pathology, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Nakamichi K, Saiki M, Sawada M, Takayama-Ito M, Yamamuro Y, Morimoto K, Kurane I. Rabies virus-induced activation of mitogen-activated protein kinase and NF-kappaB signaling pathways regulates expression of CXC and CC chemokine ligands in microglia. J Virol 2005; 79:11801-12. [PMID: 16140757 PMCID: PMC1212600 DOI: 10.1128/jvi.79.18.11801-11812.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Following virus infection of the central nervous system, microglia, the ontogenetic and functional equivalents of macrophages in somatic tissues, act as sources of chemokines, thereby recruiting peripheral leukocytes into the brain parenchyma. In the present study, we have systemically examined the growth characteristics of rabies virus (RV) in microglia and the activation of cellular signaling pathways leading to chemokine expression upon RV infection. In RV-inoculated microglia, the synthesis of the viral genome and the production of virus progenies were significantly impaired, while the expression of viral proteins was observed. Transcriptional analyses of the expression profiles of chemokine genes revealed that RV infection, but not exposure to inactivated virions, strongly induces the expression of CXC chemokine ligand 10 (CXCL10) and CC chemokine ligand 5 (CCL5) in microglia. RV infection triggered the activation of signaling pathways mediated by mitogen-activated protein kinases, including p38, extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-Jun N-terminal kinase, and nuclear factor kappaB (NF-kappaB). RV-induced expression of CXCL10 and CCL5 was achieved by the activation of p38 and NF-kappaB pathways. In contrast, the activation of ERK1/2 was found to down-regulate CCL5 expression in RV-infected microglia, despite the fact that it was involved in partial induction of CXCL10 expression. Furthermore, NF-kappaB signaling upon RV infection was augmented via a p38-mediated mechanism. Taken together, these results indicate that the strong induction of CXCL10 and CCL5 expression in microglia is precisely regulated by the activation of multiple signaling pathways through the recognition of RV infection.
Collapse
Affiliation(s)
- Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Ciavarra RP, Taylor L, Greene AR, Yousefieh N, Horeth D, van Rooijen N, Steel C, Gregory B, Birkenbach M, Sekellick M. Impact of macrophage and dendritic cell subset elimination on antiviral immunity, viral clearance and production of type 1 interferon. Virology 2005; 342:177-89. [PMID: 16143360 DOI: 10.1016/j.virol.2005.07.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 05/11/2005] [Accepted: 07/14/2005] [Indexed: 11/20/2022]
Abstract
We report herein that vesicular stomatitis virus (VSV) induced a concurrent primary Th1 (T helper 1) and Th2 cytokine response detectable ex vivo. Liposome-encapsulated clodronate-mediated elimination of CD8- marginal dendritic cells (DCs) and splenic macrophages (m Phi), but not CD8+ interdigitating DCs, prior to infection resulted in a markedly diminished chemokine and Th1 (IL-2, interferon-gamma) cytokine response, although the Th2 response (IL-4) remained relatively intact. Repopulation with marginal DCs and marginal metallophilic macrophages (MMM) restored Th1 cytokine profiles but did not restore chemokine responsiveness or reduce VSV-induced morbidity/mortality. Chemokine competency returned approximately 4 weeks post-depletion, which correlated temporally with repopulation of the spleen with marginal zone macrophages (MZM) and red pulp macrophages (RPM). Unexpectedly, virus-induced morbidity persisted for over 1 month post-depletion and was associated with virus dissemination and distinctive histological lesions in the liver. Depletion of interferon-producing plasmacytoid dendritic cells did not account for virus-induced morbidity because serum levels of type I interferon were not diminished in Cl2MBP-liposome-treated mice. Thus, distinct m Phi subsets are critical for chemokine production and viral clearance, and, in their absence, VSV disseminates even in the presence of high titers of interferon.
Collapse
Affiliation(s)
- Richard P Ciavarra
- Department of Microbiology and Molecular and Cell Biology, Eastern Virginia Medical School, 700 Olney Road, Norfolk, VA 23501, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|