1
|
Lu M, Yao Y, Liu H, Peng Y, Li X, Gao G, Chen M, Zhang X, Mao L, Yang P, Zhang X, Miao J, Yuan Z, Lan J, Shan C. Single-dose intranasal AdC68-vectored vaccines rapidly protect Syrian hamsters against lethal Nipah virus infection. Mol Ther 2025:S1525-0016(25)00206-0. [PMID: 40143544 DOI: 10.1016/j.ymthe.2025.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/26/2025] [Accepted: 03/21/2025] [Indexed: 03/28/2025] Open
Abstract
Nipah virus (NiV) infection is highly lethal in humans, and the development of vaccines that provide rapid protection is critical for addressing NiV outbreaks. In this study, we demonstrate that a single intranasal immunization with the chimpanzee adenoviral-vectored NiV vaccine, AdC68-F, induced robust and sustained cellular and humoral responses in BALB/c mice, and provided complete protection against challenge with the NiV-Malaysia strain (NiV-M) in Syrian hamsters. Notably, AdC68-F, administered at a dose of 5 × 109 viral particles, offered a complete prophylactic protection window as few as 7 days before exposure to a lethal NiV-M challenge. Furthermore, passive transfer of sera from AdC68-F or AdC68-G immunized animals conferred complete protection against NiV-M infection in naive hamsters. These findings underscore the pivotal role of antigen-specific immunity in controlling NiV infection and highlight the potential of single-dose intranasal AdC68-based NiV vaccines for rapid protection during outbreaks. By providing rapid and effective protection, these vaccines could help reduce human-to-human transmission and aid in curbing NiV outbreaks.
Collapse
Affiliation(s)
- Mingqing Lu
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yanfeng Yao
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hang Liu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yun Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xuejie Li
- University of the Chinese Academy of Sciences, Beijing 100039, China; CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ge Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Miaoyu Chen
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xuekai Zhang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Lingjing Mao
- University of the Chinese Academy of Sciences, Beijing 100039, China; CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peipei Yang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - XiaoYu Zhang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jing Miao
- University of the Chinese Academy of Sciences, Beijing 100039, China; CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiming Yuan
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiaming Lan
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Chao Shan
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Hubei Jiangxia Laboratory, Wuhan 430200, China.
| |
Collapse
|
2
|
Spengler JR, Lo MK, Welch SR, Spiropoulou CF. Henipaviruses: epidemiology, ecology, disease, and the development of vaccines and therapeutics. Clin Microbiol Rev 2025; 38:e0012823. [PMID: 39714175 PMCID: PMC11905374 DOI: 10.1128/cmr.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYHenipaviruses were first identified 30 years ago and have since been associated with over 30 outbreaks of disease in humans. Highly pathogenic henipaviruses include Hendra virus (HeV) and Nipah virus (NiV), classified as biosafety level 4 pathogens. In addition, NiV has been listed as a priority pathogen by the World Health Organization (WHO), the Coalition for Epidemic Preparedness Innovations (CEPI), and the UK Vaccines Research and Development Network (UKVN). Here, we re-examine epidemiological, ecological, clinical, and pathobiological studies of HeV and NiV to provide a comprehensive guide of the current knowledge and application to identify and evaluate countermeasures. We also discuss therapeutic and vaccine development efforts. Furthermore, with case identification, prevention, and treatment in mind, we highlight limitations in research and recognize gaps necessitating additional studies.
Collapse
Affiliation(s)
- Jessica R. Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael K. Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen R. Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Islam M, Ulla SN, Islam S, Ashraf A. Identification of potential therapeutic phytocompounds targeting the G-glycoprotein of Nipah Virus: an in-silico study. J Biomol Struct Dyn 2025:1-18. [PMID: 39876783 DOI: 10.1080/07391102.2025.2458334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/01/2024] [Indexed: 01/31/2025]
Abstract
Public health is seriously threatened by the highly pathogenic zoonotic Nipah virus (NIV). Since no effective medicines or vaccines exist, it is imperative to investigate potential therapeutic molecules against NIV. In this research, we concentrated on the G-glycoprotein of NIV as a potential therapeutic target. From seven medicinal plants renowned for their antiviral efficacy against NIV, we created a chemical library with 80 phytocompounds. The compounds were subjected to molecular docking, drug-likeliness properties, and toxicity analysis (ADMET). Based on good docking scores and ADMET properties, we opted for two compounds-Phyllnirurin (CID: 179963) and Diosgenin (CID: 99474). Post-docking analysis and molecular dynamics simulations validated the interactions and stability of the complexes formed between the protein and ligands. Finally, network pharmacology analysis demonstrates that these compounds interact with a wide range of host proteins. Therefore, these two phytocompounds in terms of lead candidates, have the potential to be key players in developing therapies against the Nipah virus, and future experimental validation is required.
Collapse
Affiliation(s)
- Maksudul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Sk Nazmul Ulla
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Sabrina Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
- Biological Sciences Department, Florida Atlantic University, Boca Raton, FL, USA
| | - Ayesha Ashraf
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
4
|
Chen S, Zhang X, Yao Y, Wang S, Li K, Zhang B, Ye T, Chen L, Wu Y, Li E, Xu B, Zhang P, Chuai X, Ran Y, Gong R, Zhang H, Chiu S. Ferritin nanoparticle-based Nipah virus glycoprotein vaccines elicit potent protective immune responses in mice and hamsters. Virol Sin 2024; 39:909-916. [PMID: 39293542 PMCID: PMC11738763 DOI: 10.1016/j.virs.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Nipah virus (NiV) is a zoonotic paramyxovirus in the genus Henipavirus that is prevalent in Southeast Asia. NiV leads to severe respiratory disease and encephalitis in humans and animals, with a mortality rate of up to 75%. Despite the grave threat to public health and global biosecurity, no medical countermeasures are available for humans. Here, based on self-assembled ferritin nanoparticles (FeNPs), we successfully constructed two candidate FeNP vaccines by loading mammalian cells expressing NiV sG (residues 71-602, FeNP-sG) and Ghead (residues 182-602, FeNP-Ghead) onto E. coli-expressed FeNPs (FeNP-sG and FeNP-Ghead, respectively) through Spycatcher/Spytag technology. Compared with sG and Ghead alone, FeNP-sG and FeNP-Ghead elicited significant NiV specific neutralizing antibody levels and T-cell responses in mice, whereas the immune response in the FeNP-sG immunized group was greater than that in the FeNP-Ghead group. These results further demonstrate that sG possesses greater antigenicity than Ghead and that FeNPs can dramatically enhance immunogenicity. Furthermore, FeNP-sG provided 100% protection against NiV challenge in a hamster model when it was administered twice at a dose of 5 μg/per animal. Our study provides not only a promising candidate vaccine against NiV, but also a theoretical foundation for the design of a NiV immunogen for the development of novel strategies against NiV infection.
Collapse
Affiliation(s)
- Shaohong Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinghai Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Yanfeng Yao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shengdong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangyin Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoyue Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianxi Ye
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei 230027, China
| | - Bichao Xu
- Institutional Center for Shared Technologies and Facilities of Wuhan Institute of Virology, CAS, Center for Instrumental Analysis and Metrology, Wuhan 430062, China
| | - Pei Zhang
- Institutional Center for Shared Technologies and Facilities of Wuhan Institute of Virology, CAS, Center for Instrumental Analysis and Metrology, Wuhan 430062, China
| | - Xia Chuai
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Yong Ran
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China.
| | - Huajun Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei 230027, China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
5
|
Masum MHU, Mahdeen AA, Barua L, Parvin R, Heema HP, Ferdous J. Developing a chimeric multiepitope vaccine against Nipah virus (NiV) through immunoinformatics, molecular docking and dynamic simulation approaches. Microb Pathog 2024; 197:107098. [PMID: 39521154 DOI: 10.1016/j.micpath.2024.107098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/09/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Nipah virus (NiV) is a highly lethal zoonotic pathogen that poses a significant threat to human and animal health. Unfortunately, no effective treatments have been developed for this deadly zoonotic disease. Therefore, we designed a chimeric multiepitope vaccine targeting the Nipah virus (NiV) glycoprotein and fusion protein through immunoinformatic approaches. Therefore, the vaccine was developed by combining promising and potential antigenic MHC-I, MHC-II, and B-cell epitopes obtained from the selected proteins. When combined, the MHC-I and MHC-II epitopes offered 100 % global population coverage. The physicochemical characterization also exhibited favorable properties, including solubility and potential functional stability of the vaccine within the body (GRAVY score of -0.308). Structural analyses unveiled a well-stabilized secondary and tertiary structure with a Ramachandran score of 84.4 % and a Z score of -5.02. Findings from docking experiments with TLR-2 (-1089.3 kJ/mol) and TLR-4 (-1016.7 kJ/mol) showed a strong affinity of the vaccine towards the receptor. Molecular dynamics simulations revealed unique conformational dynamics among the "vaccine-apo," "vaccine-TLR-2," and "vaccine-TLR-4″ complexes. Consequently, the complexes exhibited significant compactness, flexibility, and exposure to solvents. The results of the codon optimization were remarkable, as the vaccine showed a significant amount of expression in the E. coli vector (GC content of 45.36 % and a CAI score of 1.0). The results of immune simulations, however, showed evidence of both adaptive and innate immune responses induced by the vaccine. Therefore, we highly recommend further research on this chimeric multiepitope vaccine to establish its efficacy and safety against the Nipah virus (NiV).
Collapse
Affiliation(s)
- Md Habib Ullah Masum
- Department of Genomics and Bioinformatics, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University (CVASU), Khulshi, 4225, Chattogram, Bangladesh.
| | - Ahmad Abdullah Mahdeen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Logon Barua
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Rehana Parvin
- Genomics Research Group, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Khulshi, 4225, Chattogram, Bangladesh
| | - Homaira Pervin Heema
- Genomics Research Group, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Khulshi, 4225, Chattogram, Bangladesh
| | - Jannatul Ferdous
- Department of Obstetrics and Gynecology, Chittagong Medical College Hospital, Chattogram, 4203, Bangladesh
| |
Collapse
|
6
|
Saha S, Bhattacharya M, Lee SS, Chakraborty C. Recent Advances of Nipah Virus Disease: Pathobiology to Treatment and Vaccine Advancement. J Microbiol 2024; 62:811-828. [PMID: 39292378 DOI: 10.1007/s12275-024-00168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/19/2024]
Abstract
The zoonotic infection of the Nipah virus (NiV) has yet again appeared in 2023 in Kerala state, India. The virus, which has a mortality rate ranging from about 40 to 70%, has already infected India five times, the first being in 2001. The current infection is the sixth virus outbreak in the Indian population. In 1998, the first NiV infection was noted in one village in Malaysia. After that, outbreaks from other South and Southeast Asian countries have been reported periodically. It can spread between humans through contact with body fluids. Therefore, it is unlikely to generate a new pandemic. However, there is a considerable knowledge gap in the different areas of NiV. To date, no approved vaccines or treatments have been available. To fulfil the knowledge gap, the review article provided a detailed overview of the genome and genome-encoded proteins, epidemiology, transmission, pathobiology, immunobiology, diagnosis, prevention and control measures, therapeutics (monoclonal antibodies and drug molecules), and vaccine advancement of the emerging and deadly pathogen. The advanced information will help researchers to develop safe and effective NiV vaccine and treatment regimens worldwide.
Collapse
Affiliation(s)
- Sagnik Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 24252, Republic of Korea.
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
7
|
Amurri L, Dumont C, Pelissier R, Reynard O, Mathieu C, Spanier J, Pályi B, Déri D, Karkowski L, Gonzalez C, Skerra J, Kis Z, Kalinke U, Horvat B, Iampietro M. Multifaceted activation of STING axis upon Nipah and measles virus-induced syncytia formation. PLoS Pathog 2024; 20:e1012569. [PMID: 39283943 PMCID: PMC11426520 DOI: 10.1371/journal.ppat.1012569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/26/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
Activation of the DNA-sensing STING axis by RNA viruses plays a role in antiviral response through mechanisms that remain poorly understood. Here, we show that the STING pathway regulates Nipah virus (NiV) replication in vivo in mice. Moreover, we demonstrate that following both NiV and measles virus (MeV) infection, IFNγ-inducible protein 16 (IFI16), an alternative DNA sensor in addition to cGAS, induces the activation of STING, leading to the phosphorylation of NF-κB p65 and the production of IFNβ and interleukin 6. Finally, we found that paramyxovirus-induced syncytia formation is responsible for loss of mitochondrial membrane potential and leakage of mitochondrial DNA in the cytoplasm, the latter of which is further detected by both cGAS and IFI16. These results contribute to improve our understanding about NiV and MeV immunopathogenesis and provide potential paths for alternative therapeutic strategies.
Collapse
Affiliation(s)
- Lucia Amurri
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Claire Dumont
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Rodolphe Pelissier
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Olivier Reynard
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection research, Hanover, Germany
| | - Bernadett Pályi
- National Biosafety Laboratory, National Center for Public Health and Pharmacy, Budapest, Hungary
- Semmelweis University, Institute of Medical Microbiology, Budapest, Hungary
| | - Daniel Déri
- National Biosafety Laboratory, National Center for Public Health and Pharmacy, Budapest, Hungary
- Semmelweis University, Institute of Medical Microbiology, Budapest, Hungary
| | - Ludovic Karkowski
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Claudia Gonzalez
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Jennifer Skerra
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection research, Hanover, Germany
| | - Zoltán Kis
- National Biosafety Laboratory, National Center for Public Health and Pharmacy, Budapest, Hungary
- Semmelweis University, Institute of Medical Microbiology, Budapest, Hungary
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Brussels, Belgium
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection research, Hanover, Germany
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Mathieu Iampietro
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
8
|
Zhou D, Cheng R, Yao Y, Zhang G, Li X, Wang B, Wang Y, Yu F, Yang S, Liu H, Gao G, Peng Y, Chen M, Deng Z, Zhao H. An attachment glycoprotein nanoparticle elicits broadly neutralizing antibodies and protects against lethal Nipah virus infection. NPJ Vaccines 2024; 9:158. [PMID: 39217188 PMCID: PMC11365981 DOI: 10.1038/s41541-024-00954-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Nipah virus (NiV) is a zoonotic emergent paramyxovirus that can cause severe encephalitis and respiratory infections in humans, with a high fatality rate ranging from 40% to 75%. Currently, there are no approved human vaccines or antiviral drugs against NiV. Here, we designed a ferritin-based self-assembling nanoparticle displaying the NiV G head domain on the surface (NiV G-ferritin) and assessed immune responses elicited by the soluble NiV G head domain (NiV sG) or NiV G-ferritin. Immunization with NiV G-ferritin or NiV sG conferred complete protection against lethal NiV challenge without detection of viral RNA in Syrian golden hamsters. Compared to NiV sG, NiV G-ferritin induced significantly faster, broader, and higher serum neutralizing responses against three pathogenic henipaviruses (NiV-Malaysia, NiV-Bangladesh, and Hendra virus). Moreover, NiV G-ferritin induced a durable neutralizing immunity in mice as antisera potently inhibited NiV infection even after six months of the third immunization. Additionally, we isolated a panel of 27 NiV G-binding monoclonal antibodies (mAbs) from NiV G-ferritin immunized mice and found that these mAbs targeted four distinct antigenic sites on NiV G head domain with two sites that have not been defined previously. Notably, 25 isolated mAbs have potent neutralizing activity with 50% inhibitory concentrations less than 10 ng/mL against NiV pseudovirus. Collectively, these findings provide new insights into the immunogenicity of NiV G protein and reveal that NiV G-ferritin is a safe and highly effective vaccine candidate against Nipah virus infection.
Collapse
Affiliation(s)
- Dan Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Rao Cheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yanfeng Yao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Gan Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Bingjie Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yong Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Feiyang Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shangyu Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hang Liu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ge Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yun Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Miaoyu Chen
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zengqin Deng
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| | - Haiyan Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Tan FH, Sukri A, Idris N, Ong KC, Schee JP, Tan CT, Tan SH, Wong KT, Wong LP, Tee KK, Chang LY. A systematic review on Nipah virus: global molecular epidemiology and medical countermeasures development. Virus Evol 2024; 10:veae048. [PMID: 39119137 PMCID: PMC11306115 DOI: 10.1093/ve/veae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Nipah virus (NiV) is an emerging pathogen that causes encephalitis and a high mortality rate in infected subjects. This systematic review aimed to comprehensively analyze the global epidemiology and research advancements of NiV to identify the key knowledge gaps in the literature. Articles searched using literature databases, namely PubMed, Scopus, Web of Science, and Science Direct yielded 5,596 articles. After article screening, 97 articles were included in this systematic review, comprising 41 epidemiological studies and 56 research developments on NiV. The majority of the NiV epidemiological studies were conducted in Bangladesh, reflecting the country's significant burden of NiV outbreaks. The initial NiV outbreak was identified in Malaysia in 1998, with subsequent outbreaks reported in Bangladesh, India, and the Philippines. Transmission routes vary by country, primarily through pigs in Malaysia, consumption of date palm juice in Bangladesh, and human-to-human in India. However, the availability of NiV genome sequences remains limited, particularly from Malaysia and India. Mortality rates also vary according to the country, exceeding 70% in Bangladesh, India, and the Philippines, and less than 40% in Malaysia. Understanding these differences in mortality rate among countries is crucial for informing NiV epidemiology and enhancing outbreak prevention and management strategies. In terms of research developments, the majority of studies focused on vaccine development, followed by phylogenetic analysis and antiviral research. While many vaccines and antivirals have demonstrated complete protection in animal models, only two vaccines have progressed to clinical trials. Phylogenetic analyses have revealed distinct clades between NiV Malaysia, NiV Bangladesh, and NiV India, with proposals to classify NiV India as a separate strain from NiV Bangladesh. Taken together, comprehensive OneHealth approaches integrating disease surveillance and research are imperative for future NiV studies. Expanding the dataset of NiV genome sequences, particularly from Malaysia, Bangladesh, and India will be pivotal. These research efforts are essential for advancing our understanding of NiV pathogenicity and for developing robust diagnostic assays, vaccines and therapeutics necessary for effective preparedness and response to future NiV outbreaks.
Collapse
Affiliation(s)
- Foo Hou Tan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Asif Sukri
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Nuryana Idris
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Jie Ping Schee
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Chong Tin Tan
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kum Thong Wong
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Li Ping Wong
- Department of Social Preventive Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| |
Collapse
|
10
|
Kumar A, Misra G, Mohandas S, Yadav PD. Multi-epitope vaccine design using in silico analysis of glycoprotein and nucleocapsid of NIPAH virus. PLoS One 2024; 19:e0300507. [PMID: 38728300 PMCID: PMC11086869 DOI: 10.1371/journal.pone.0300507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/29/2024] [Indexed: 05/12/2024] Open
Abstract
According to the 2018 WHO R&D Blueprint, Nipah virus (NiV) is a priority disease, and the development of a vaccine against NiV is strongly encouraged. According to criteria used to categorize zoonotic diseases, NiV is a stage III disease that can spread to people and cause unpredictable outbreaks. Since 2001, the NiV virus has caused annual outbreaks in Bangladesh, while in India it has caused occasional outbreaks. According to estimates, the mortality rate for infected individuals ranges from 70 to 91%. Using immunoinformatic approaches to anticipate the epitopes of the MHC-I, MHC-II, and B-cells, they were predicted using the NiV glycoprotein and nucleocapsid protein. The selected epitopes were used to develop a multi-epitope vaccine construct connected with linkers and adjuvants in order to improve immune responses to the vaccine construct. The 3D structure of the engineered vaccine was anticipated, optimized, and confirmed using a variety of computer simulation techniques so that its stability could be assessed. According to the immunological simulation tests, it was found that the vaccination elicits a targeted immune response against the NiV. Docking with TLR-3, 7, and 8 revealed that vaccine candidates had high binding affinities and low binding energies. Finally, molecular dynamic analysis confirms the stability of the new vaccine. Codon optimization and in silico cloning showed that the proposed vaccine was expressed to a high degree in Escherichia coli. The study will help in identifying a potential epitope for a vaccine candidate against NiV. The developed multi-epitope vaccine construct has a lot of potential, but they still need to be verified by in vitro & in vivo studies.
Collapse
Affiliation(s)
- Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Gauri Misra
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Sreelekshmy Mohandas
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Microbial Containment Complex, Pashan, Pune, India
| | - Pragya D. Yadav
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Microbial Containment Complex, Pashan, Pune, India
| |
Collapse
|
11
|
Chen L, Sun M, Zhang H, Zhang X, Yao Y, Li M, Li K, Fan P, Zhang H, Qin Y, Zhang Z, Li E, Chen Z, Guan W, Li S, Yu C, Zhang K, Gong R, Chiu S. Potent human neutralizing antibodies against Nipah virus derived from two ancestral antibody heavy chains. Nat Commun 2024; 15:2987. [PMID: 38582870 PMCID: PMC10998907 DOI: 10.1038/s41467-024-47213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/18/2024] [Indexed: 04/08/2024] Open
Abstract
Nipah virus (NiV) is a World Health Organization priority pathogen and there are currently no approved drugs for clinical immunotherapy. Through the use of a naïve human phage-displayed Fab library, two neutralizing antibodies (NiV41 and NiV42) targeting the NiV receptor binding protein (RBP) were identified. Following affinity maturation, antibodies derived from NiV41 display cross-reactivity against both NiV and Hendra virus (HeV), whereas the antibody based on NiV42 is only specific to NiV. Results of immunogenetic analysis reveal a correlation between the maturation of antibodies and their antiviral activity. In vivo testing of NiV41 and its mature form (41-6) show protective efficacy against a lethal NiV challenge in hamsters. Furthermore, a 2.88 Å Cryo-EM structure of the tetrameric RBP and antibody complex demonstrates that 41-6 blocks the receptor binding interface. These findings can be beneficial for the development of antiviral drugs and the design of vaccines with broad spectrum against henipaviruses.
Collapse
Affiliation(s)
- Li Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Sun
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Huajun Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xinghai Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yanfeng Yao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ming Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kangyin Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Fan
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Haiwei Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ye Qin
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Zhen Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wuxiang Guan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shanshan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Changming Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, MOE Key Laboratory for Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China.
| |
Collapse
|
12
|
Byrne PO, Blade EG, Fisher BE, Ambrozak DR, Ramamohan AR, Graham BS, Loomis RJ, McLellan JS. Prefusion stabilization of the Hendra and Langya virus F proteins. J Virol 2024; 98:e0137223. [PMID: 38214525 PMCID: PMC10878279 DOI: 10.1128/jvi.01372-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are pathogenic paramyxoviruses that cause mild-to-severe disease in humans. As members of the Henipavirus genus, NiV and HeV use an attachment (G) glycoprotein and a class I fusion (F) glycoprotein to invade host cells. The F protein rearranges from a metastable prefusion form to an extended postfusion form to facilitate host cell entry. Prefusion NiV F elicits higher neutralizing antibody titers than postfusion NiV F, indicating that stabilization of prefusion F may aid vaccine development. A combination of amino acid substitutions (L104C/I114C, L172F, and S191P) is known to stabilize NiV F in its prefusion conformation, although the extent to which substitutions transfer to other henipavirus F proteins is not known. Here, we perform biophysical and structural studies to investigate the mechanism of prefusion stabilization in F proteins from three henipaviruses: NiV, HeV, and Langya virus (LayV). Three known stabilizing substitutions from NiV F transfer to HeV F and exert similar structural and functional effects. One engineered disulfide bond, located near the fusion peptide, is sufficient to stabilize the prefusion conformations of both HeV F and LayV F. Although LayV F shares low overall sequence identity with NiV F and HeV F, the region around the fusion peptide exhibits high sequence conservation across all henipaviruses. Our findings indicate that substitutions targeting this site of conformational change might be applicable to prefusion stabilization of other henipavirus F proteins and support the use of NiV as a prototypical pathogen for henipavirus vaccine antigen design.IMPORTANCEPathogenic henipaviruses such as Nipah virus (NiV) and Hendra virus (HeV) cause respiratory symptoms, with severe cases resulting in encephalitis, seizures, and coma. The work described here shows that the NiV and HeV fusion (F) proteins share common structural features with the F protein from an emerging henipavirus, Langya virus (LayV). Sequence alignment alone was sufficient to predict which known prefusion-stabilizing amino acid substitutions from NiV F would stabilize the prefusion conformations of HeV F and LayV F. This work also reveals an unexpected oligomeric interface shared by prefusion HeV F and NiV F. Together, these advances lay a foundation for future antigen design targeting henipavirus F proteins. In this way, Nipah virus can serve as a prototypical pathogen for the development of protective vaccines and monoclonal antibodies to prepare for potential henipavirus outbreaks.
Collapse
Affiliation(s)
- Patrick O. Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Elizabeth G. Blade
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Brian E. Fisher
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David R. Ambrozak
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ajit R. Ramamohan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | | | - Rebecca J. Loomis
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
13
|
Mishra G, Prajapat V, Nayak D. Advancements in Nipah virus treatment: Analysis of current progress in vaccines, antivirals, and therapeutics. Immunology 2024; 171:155-169. [PMID: 37712243 DOI: 10.1111/imm.13695] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Nipah virus (NiV) causes severe encephalitis in humans. Three NiV strains NiV-Malaysia (NiVM ), NiV Bangladesh (NiVB ), and NiV India (NiVI reported in 2019) have been circulating in South-Asian nations. Sporadic outbreak observed in South-East Asian countries but human to human transmission raises the concern about its pandemic potential. The presence of the viral genome in reservoir bats has further confirmed that NiV has spread to the African and Australian continents. NiV research activities have gained momentum to achieve specific preparedness goals to meet any future emergency-as a result, several potential vaccine candidates have been developed and tested in a variety of animal models. Some of these candidate vaccines have entered further clinical trials. Research activities related to the discovery of therapeutic monoclonal antibodies (mAbs) have resulted in the identification of a handful of candidates capable of neutralizing the virion. However, progress in discovering potential antiviral drugs has been limited. Thus, considering NiV's pandemic potential, it is crucial to fast-track ongoing projects related to vaccine clinical trials, anti-NiV therapeutics. Here, we discuss the current progress in NiV-vaccine research and therapeutic options, including mAbs and antiviral medications.
Collapse
Affiliation(s)
- Gayatree Mishra
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vishal Prajapat
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Debasis Nayak
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
14
|
Watanabe S, Yoshikawa T, Kaku Y, Kurosu T, Fukushi S, Sugimoto S, Nishisaka Y, Fuji H, Marsh G, Maeda K, Ebihara H, Morikawa S, Shimojima M, Saijo M. Construction of a recombinant vaccine expressing Nipah virus glycoprotein using the replicative and highly attenuated vaccinia virus strain LC16m8. PLoS Negl Trop Dis 2023; 17:e0011851. [PMID: 38100536 PMCID: PMC10756534 DOI: 10.1371/journal.pntd.0011851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/29/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Nipah virus (NiV) is a highly pathogenic zoonotic virus that causes severe encephalitis and respiratory diseases and has a high mortality rate in humans (>40%). Epidemiological studies on various fruit bat species, which are natural reservoirs of the virus, have shown that NiV is widely distributed throughout Southeast Asia. Therefore, there is an urgent need to develop effective NiV vaccines. In this study, we generated recombinant vaccinia viruses expressing the NiV glycoprotein (G) or fusion (F) protein using the LC16m8 strain, and examined their antigenicity and ability to induce immunity. Neutralizing antibodies against NiV were successfully induced in hamsters inoculated with LC16m8 expressing NiV G or F, and the antibody titers were higher than those induced by other vaccinia virus vectors previously reported to prevent lethal NiV infection. These findings indicate that the LC16m8-based vaccine format has superior features as a proliferative vaccine compared with other poxvirus-based vaccines. Moreover, the data collected over the course of antibody elevation during three rounds of vaccination in hamsters provide an important basis for the clinical use of vaccinia virus-based vaccines against NiV disease. Trial Registration: NCT05398796.
Collapse
Affiliation(s)
- Shumpei Watanabe
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yoshihiro Kaku
- Division of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Satoko Sugimoto
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yuki Nishisaka
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Hikaru Fuji
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Glenn Marsh
- Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC, Australia
| | - Ken Maeda
- Division of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Shigeru Morikawa
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
- Public Health Office, Health and Welfare Bureau, Sapporo Municipal Government, Sapporo, Hokkaido, Japan
| |
Collapse
|
15
|
Li Z, Zhu Y, Yan F, Jin H, Wang Q, Zhao Y, Feng N, Wang T, Li N, Yang S, Xia X, Cong Y. Inactivated Recombinant Rabies Virus Displaying the Nipah Virus Envelope Glycoproteins Induces Systemic Immune Responses in Mice. Vaccines (Basel) 2023; 11:1758. [PMID: 38140162 PMCID: PMC10747385 DOI: 10.3390/vaccines11121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023] Open
Abstract
Nipah virus (NiV) causes severe, lethal encephalitis in humans and pigs. However, there is no licensed vaccine available to prevent NiV infection. In this study, we used the reverse genetic system based on the attenuated rabies virus strain SRV9 to construct two recombinant viruses, rSRV9-NiV-F and rSRV9-NiV-G, which displayed the NiV envelope glycoproteins F and G, respectively. Following three immunizations in BALB/c mice, the inactivated rSRV9-NiV-F and rSRV9-NiV-G alone or in combination, mixed with the adjuvants ISA 201 VG and poly (I:C), were able to induce the antigen-specific cellular and Th1-biased humoral immune responses. The specific antibodies against rSRV9-NiV-F and rSRV9-NiV-G had reactivity with two constructed bacterial-like particles displaying the F and G antigens of NiV. These data demonstrate that rSRV9-NiV-F or rSRV9-NiV-G has the potential to be developed into a promising vaccine candidate against NiV infection.
Collapse
Affiliation(s)
- Zhengrong Li
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130122, China
| | - Yanting Zhu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130122, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Hongli Jin
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130122, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Qi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Nan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Songtao Yang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130122, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Xianzhu Xia
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130122, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yanlong Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130122, China
| |
Collapse
|
16
|
Lu M, Yao Y, Zhang X, Liu H, Gao G, Peng Y, Chen M, Zhao J, Zhang X, Yin C, Guo W, Yang P, Hu X, Rao J, Li E, Chen T, Chiu S, Wong G, Yuan Z, Lan J, Shan C. Both chimpanzee adenovirus-vectored and DNA vaccines induced long-term immunity against Nipah virus infection. NPJ Vaccines 2023; 8:170. [PMID: 37925490 PMCID: PMC10625554 DOI: 10.1038/s41541-023-00762-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023] Open
Abstract
Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that poses a severe threat to humans due to its high morbidity and the lack of viable countermeasures. Vaccines are the most crucial defense against NiV infections. Here, a recombinant chimpanzee adenovirus-based vaccine (AdC68-G) and a DNA vaccine (DNA-G) were developed by expressing the codon-optimized full-length glycoprotein (G) of NiV. Strong and sustained neutralizing antibody production, accompanied by an effective T-cell response, was induced in BALB/c mice by intranasal or intramuscular administration of one or two doses of AdC68-G, as well as by priming with DNA-G and boosting with intramuscularly administered AdC68-G. Importantly, the neutralizing antibody titers were maintained for up to 68 weeks in the mice that received intramuscularly administered AdC68-G and the prime DNA-G/boost AdC68-G regimen, without a significant decline. Additionally, Syrian golden hamsters immunized with AdC68-G and DNA-G via homologous or heterologous prime/boost immunization were completely protected against a lethal NiV virus challenge, without any apparent weight loss, clinical signs, or pathological tissue damage. There was a significant reduction in but not a complete absence of the viral load and number of infectious particles in the lungs and spleen tissue following NiV challenge. These findings suggest that the AdC68-G and DNA-G vaccines against NiV infection are promising candidates for further development.
Collapse
Affiliation(s)
- Mingqing Lu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Yanfeng Yao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Xuekai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Hang Liu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ge Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yun Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Miaoyu Chen
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiaxuan Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - XiaoYu Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Chunhong Yin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Weiwei Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Peipei Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Juhong Rao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Tong Chen
- University of the Chinese Academy of Sciences, Beijing, 100039, China
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Gary Wong
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhiming Yuan
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Jiaming Lan
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
17
|
Pigeaud DD, Geisbert TW, Woolsey C. Animal Models for Henipavirus Research. Viruses 2023; 15:1980. [PMID: 37896758 PMCID: PMC10610982 DOI: 10.3390/v15101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are zoonotic paramyxoviruses in the genus Henipavirus (HNV) that emerged nearly thirty years ago. Outbreaks of HeV and NiV have led to severe respiratory disease and encephalitis in humans and animals characterized by a high mortality rate. Despite the grave threat HNVs pose to public health and global biosecurity, no approved medical countermeasures for human use currently exist against HeV or NiV. To develop candidate vaccines and therapeutics and advance the field's understanding of HNV pathogenesis, animal models of HeV and NiV have been instrumental and remain indispensable. Various species, including rodents, ferrets, and nonhuman primates (NHPs), have been employed for HNV investigations. Among these, NHPs have demonstrated the closest resemblance to human HNV disease, although other animal models replicate some key disease features. Here, we provide a comprehensive review of the currently available animal models (mice, hamsters, guinea pigs, ferrets, cats, dogs, nonhuman primates, horses, and swine) to support HNV research. We also discuss the strengths and limitations of each model for conducting pathogenesis and transmission studies on HeV and NiV and for the evaluation of medical countermeasures.
Collapse
Affiliation(s)
- Declan D. Pigeaud
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
18
|
Srivastava S, Kolbe M. Novel "GaEl Antigenic Patches" Identified by a "Reverse Epitomics" Approach to Design Multipatch Vaccines against NIPAH Infection, a Silent Threat to Global Human Health. ACS OMEGA 2023; 8:31698-31713. [PMID: 37692250 PMCID: PMC10483669 DOI: 10.1021/acsomega.3c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023]
Abstract
Nipah virus (NiV) is a zoonotic virus that causes lethal encephalitis and respiratory disease with the symptom of endothelial cell-cell fusion. Several NiV outbreaks have been reported since 1999 with nearly annual occurrences in Bangladesh. The outbreaks had high mortality rates ranging from 40 to 90%. No specific vaccine has yet been reported against NiV. Recently, several vaccine candidates and different designs of vaccines composed of epitopes against NiV were proposed. Most of the vaccines target single protein or protein complex subunits of the pathogen. The multiepitope vaccines proposed also cover a largely limited number of epitopes, and hence, their efficiency is still uncertain. To address the urgent need for a specific and effective vaccine against NiV infection, in the present study, we have utilized the "reverse epitomics" approach ("overlapping-epitope-clusters-to-patches" method) to identify "antigenic patches" (Ag-Patches) and utilize them as immunogenic composition for multipatch vaccine (MPV) design. The designed MPVs were analyzed for immunologically crucial parameters, physiochemical properties, and interaction with Toll-like receptor 3 ectodomain. In total, 30 CTL (cytotoxic T lymphocyte) and 27 HTL (helper T lymphocyte) antigenic patches were identified from the entire NiV proteome based on the clusters of overlapping epitopes. These identified Ag-Patches cover a total of discrete 362 CTL and 414 HTL epitopes from the entire proteome of NiV. The antigenic patches were utilized as immunogenic composition for the design of two CTL and two HTL multipatch vaccines. The 57 antigenic patches utilized here cover 776 overlapping epitopes targeting 52 different HLA class I and II alleles, providing a global ethnically distributed human population coverage of 99.71%. Such large number of epitope coverage resulting in large human population coverage cannot be reached with single-protein/subunit or multiepitope based vaccines. The reported antigenic patches also provide potential immunogenic composition for early detection diagnostic kits for NiV infection. Further, all the MPVs and Toll-like receptor ectodomain complexes show a stable nature of molecular interaction with numerous hydrogen bonds, salt bridges, and nonbounded contact formation and acceptable root mean square deviation and fluctuation. The cDNA analysis shows a favorable large-scale expression of the MPV constructs in a human cell line. By utilizing the novel "reverse epitomics" approach, highly immunogenic novel "GaEl antigenic patches" (GaEl Ag-Patches), a synonym term for "antigenic patches", were identified and utilized as immunogenic composition to design four MPVs against NiV. We conclude that the novel multipatch vaccines are potential candidates to combat NiV, with greater effectiveness, high specificity, and large human population coverage worldwide.
Collapse
Affiliation(s)
- Sukrit Srivastava
- Infection
Biology Group, Indian Foundation for Fundamental
Research Trust, Raebareli, Uttar Pradesh 229316, India
- Department
for Structural Infection Biology, Centre
for Structural Systems Biology (CSSB) & Helmholtz-Centre for Infection
Research, Notkestraße 85, 22607 Hamburg, Germany
| | - Michael Kolbe
- Department
for Structural Infection Biology, Centre
for Structural Systems Biology (CSSB) & Helmholtz-Centre for Infection
Research, Notkestraße 85, 22607 Hamburg, Germany
- Faculty
of Mathematics, Informatics and Natural Sciences, University of Hamburg, Rothenbaumchaussee 19, 20148 Hamburg, Germany
| |
Collapse
|
19
|
Orosco FL. Advancing the frontiers: Revolutionary control and prevention paradigms against Nipah virus. Open Vet J 2023; 13:1056-1070. [PMID: 37842102 PMCID: PMC10576574 DOI: 10.5455/ovj.2023.v13.i9.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023] Open
Abstract
Nipah Virus (NiV) is a highly virulent pathogen that poses a significant threat to human and animal populations. This review provides a comprehensive overview of the latest control and prevention strategies against NiV, focusing on vaccine development, antiviral drug discovery, early diagnosis, surveillance, and high-level biosecurity measures. Advancements in vaccine research, including live-attenuated vaccines, virus-like particles, and mRNA-based vaccines, hold promise for preventing NiV infections. In addition, antiviral drugs, such as remdesivir, ribavirin, and favipiravir, have the potential to inhibit NiV replication. Early diagnosis through molecular and serological assays, immunohistochemistry, and real-time reverse transcription polymerase chain reaction plays a crucial role in timely detection. Surveillance efforts encompassing cluster-based and case-based systems enhance outbreak identification and provide valuable insights into transmission dynamics. Furthermore, the implementation of high-level biosecurity measures in agriculture, livestock practices, and healthcare settings is essential to minimize transmission risks. Collaboration among researchers, public health agencies, and policymakers is pivotal in refining and implementing these strategies to effectively control and prevent NiV outbreaks and safeguard public health on a global scale.
Collapse
Affiliation(s)
- Fredmoore L. Orosco
- Virology and Vaccine Institute of the Philippines Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig City, Philippines
- S&T Fellows Program, Department of Science and Technology, Taguig City, Philippines
| |
Collapse
|
20
|
Huang X, Li Y, Li R, Wang S, Yang L, Wang S, Yin Y, Zai X, Zhang J, Xu J. Nipah virus attachment glycoprotein ectodomain delivered by type 5 adenovirus vector elicits broad immune response against NiV and HeV. Front Cell Infect Microbiol 2023; 13:1180344. [PMID: 37577376 PMCID: PMC10413271 DOI: 10.3389/fcimb.2023.1180344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are newly emerging dangerous zoonotic pathogens of the Henipavirus genus of the Paramyxoviridae family. NiV and HeV (HNVs) which are transmitted by bats cause acute respiratory disease and fatal encephalitis in humans. To date, as there is a lack of antiviral drugs or effective antiviral therapies, the development of vaccines against those two viruses is of primary importance, and the immunogen design is crucial to the success of vaccines. In this study, the full-length protein (G), the ectodomain (Ge) and the head domain (Gs) of NiV attachment glycoprotein were delivered by the replication-defective type 5 adenovirus vector (Ad5) respectively, and the recombinant Ad5-NiV vaccine candidates (Ad5-NiVG, Ad5-NiVGe and Ad5-NiVGs) were constructed and their immunogenicity were evaluated in mice. The results showed that all the vaccine candidates stimulated specific humoral and cellular immune responses efficiently and rapidly against both NiV and HeV, and the Ad5-NiVGe elicited the strongest immune responses after a single-dose immunization. Furthermore, the potent conserved T-cell epitope DTLYFPAVGFL shared by NiV and HeV was identified in the study, which may provide valid information on the mechanism of HNVs-specific cellular immunity. In summary, this study demonstrates that the Ad5-NiVGe could be a potent vaccine candidate against HNVs by inducing robust humoral and cellular immune responses.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yaohui Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ruihua Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Shaoyan Wang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Lu Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuyi Wang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaodong Zai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
21
|
Findlay-Wilson S, Flett L, Salguero FJ, Ruedas-Torres I, Fotheringham S, Easterbrook L, Graham V, Dowall S. Establishment of a Nipah Virus Disease Model in Hamsters, including a Comparison of Intranasal and Intraperitoneal Routes of Challenge. Pathogens 2023; 12:976. [PMID: 37623936 PMCID: PMC10458503 DOI: 10.3390/pathogens12080976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Nipah virus (NiV) is an emerging pathogen that can cause severe respiratory illness and encephalitis in humans. The main reservoir is fruit bats, distributed across a large geographical area that includes Australia, Southeast Asia, and Africa. Incursion into humans is widely reported through exposure of infected pigs, ingestion of contaminated food, or through contact with an infected person. With no approved treatments or vaccines, NiV poses a threat to human public health and has epidemic potential. To aid with the assessment of emerging interventions being developed, an expansion of preclinical testing capability is required. Given variations in the model parameters observed in different sites during establishment, optimisation of challenge routes and doses is required. Upon evaluating the hamster model, an intranasal route of challenge was compared with intraperitoneal delivery, demonstrating a more rapid dissemination to wider tissues in the latter. A dose effect was observed between those causing respiratory illness and those resulting in neurological disease. The data demonstrate the successful establishment of the hamster model of NiV disease for subsequent use in the evaluation of vaccines and antivirals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stuart Dowall
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (S.F.-W.); (L.F.); (F.J.S.); (I.R.-T.); (S.F.); (L.E.); (V.G.)
| |
Collapse
|
22
|
Medina-Magües ES, Lopera-Madrid J, Lo MK, Spiropoulou CF, Montgomery JM, Medina-Magües LG, Salas-Quinchucua C, Jiménez-Mora AP, Osorio JE. Immunogenicity of poxvirus-based vaccines against Nipah virus. Sci Rep 2023; 13:11384. [PMID: 37452062 PMCID: PMC10349127 DOI: 10.1038/s41598-023-38010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Nipah virus (NiV), an emerging zoonotic pathogen in Southeast Asia, is transmitted from Pteropus species of fruit bats to a wide range of species, including humans, pigs, horses, dogs, and cats. NiV has killed millions of animals and caused highly fatal human outbreaks since no vaccine is commercially available. This study characterized the immunogenicity and safety of poxvirus-based Nipah vaccines that can be used in humans and species responsible for NiV transmission. Mice were vaccinated with modified vaccinia Ankara (MVA) and raccoon pox (RCN) viral vectors expressing the NiV fusion (F) and glycoprotein (G) proteins subcutaneously (SC) and intranasally (IN). Importantly, both vaccines did not induce significant weight loss or clinical signs of disease while generating high circulating neutralizing antibodies and lung-specific IgG and IgA responses. The MVA vaccine saw high phenotypic expression of effector and tissue resident memory CD8ɑ+ T cells in lungs and splenocytes along with the expression of central memory CD8ɑ+ T cells in lungs. The RCN vaccine generated effector memory (SC) and tissue resident (IN) CD8ɑ+ T cells in splenocytes and tissue resident (IN) CD8ɑ+ T cells in lung cells. These findings support MVA-FG and RCN-FG viral vectors as promising vaccine candidates to protect humans, domestic animals, and wildlife from fatal disease outcomes and to reduce the global threat of NiV.
Collapse
Affiliation(s)
- Emily S Medina-Magües
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
| | - Jaime Lopera-Madrid
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Michael K Lo
- Center for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Lex G Medina-Magües
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Cristhian Salas-Quinchucua
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Angela P Jiménez-Mora
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Jorge E Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
23
|
Wang S, Liang B, Wang W, Li L, Feng N, Zhao Y, Wang T, Yan F, Yang S, Xia X. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases. Signal Transduct Target Ther 2023; 8:149. [PMID: 37029123 PMCID: PMC10081433 DOI: 10.1038/s41392-023-01408-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
Human diseases, particularly infectious diseases and cancers, pose unprecedented challenges to public health security and the global economy. The development and distribution of novel prophylactic and therapeutic vaccines are the prioritized countermeasures of human disease. Among all vaccine platforms, viral vector vaccines offer distinguished advantages and represent prominent choices for pathogens that have hampered control efforts based on conventional vaccine approaches. Currently, viral vector vaccines remain one of the best strategies for induction of robust humoral and cellular immunity against human diseases. Numerous viruses of different families and origins, including vesicular stomatitis virus, rabies virus, parainfluenza virus, measles virus, Newcastle disease virus, influenza virus, adenovirus and poxvirus, are deemed to be prominent viral vectors that differ in structural characteristics, design strategy, antigen presentation capability, immunogenicity and protective efficacy. This review summarized the overall profile of the design strategies, progress in advance and steps taken to address barriers to the deployment of these viral vector vaccines, simultaneously highlighting their potential for mucosal delivery, therapeutic application in cancer as well as other key aspects concerning the rational application of these viral vector vaccines. Appropriate and accurate technological advances in viral vector vaccines would consolidate their position as a leading approach to accelerate breakthroughs in novel vaccines and facilitate a rapid response to public health emergencies.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Liang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ling Li
- China National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
24
|
Srivastava S, Verma S, Kamthania M, Saxena AK, Pandey KC, Pande V, Kolbe M. Exploring the structural basis to develop efficient multi-epitope vaccines displaying interaction with HLA and TAP and TLR3 molecules to prevent NIPAH infection, a global threat to human health. PLoS One 2023; 18:e0282580. [PMID: 36920996 PMCID: PMC10016716 DOI: 10.1371/journal.pone.0282580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Nipah virus (NiV) is an emerging zoonotic virus that caused several serious outbreaks in the south asian region with high mortality rates ranging from 40 to 90% since 2001. NiV infection causes lethal encephalitis and respiratory disease with the symptom of endothelial cell-cell fusion. No specific and effective vaccine has yet been reported against NiV. To address the urgent need for a specific and effective vaccine against NiV infection, in the present study, we have designed two Multi-Epitope Vaccines (MEVs) composed of 33 Cytotoxic T lymphocyte (CTL) epitopes and 38 Helper T lymphocyte (HTL) epitopes. Out of those CTL and HTL combined 71 epitopes, 61 novel epitopes targeting nine different NiV proteins were not used before for vaccine design. Codon optimization for the cDNA of both the designed MEVs might ensure high expression potential in the human cell line as stable proteins. Both MEVs carry potential B cell linear epitope overlapping regions, B cell discontinuous epitopes as well as IFN-γ inducing epitopes. Additional criteria such as sequence consensus amongst CTL, HTL and B Cell epitopes was implemented for the design of final constructs constituting MEVs. Hence, the designed MEVs carry the potential to elicit cell-mediated as well as humoral immune response. Selected overlapping CTL and HTL epitopes were validated for their stable molecular interactions with HLA class I and II alleles and in case of CTL epitopes with human Transporter Associated with antigen Processing (TAP) cavity. The structure based epitope cross validation for interaction with TAP cavity was used as another criteria choosing final epitopes for NiV MEVs. Finally, human Beta-defensin 2 and Beta-defensin 3 were used as adjuvants to enhance the immune response of both the MEVs. Molecular dynamics simulation studies of MEVs-TLR3 ectodomain (Human Toll-Like Receptor 3) complex indicated the stable molecular interaction. We conclude that the MEVs designed and in silico validated here could be highly potential vaccine candidates to combat NiV infections, with great effectiveness, high specificity and large human population coverage worldwide.
Collapse
Affiliation(s)
- Sukrit Srivastava
- Infection Biology Group, Indian Foundation for Fundamental Research Trust, RaeBareli, India
- Department for Structural Infection Biology, Centre for Structural Systems Biology (CSSB) & Helmholtz-Centre for Infection Research, Hamburg, Germany
| | - Sonia Verma
- Protein Biochemistry & Engineering Lab, Parasite-Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Mohit Kamthania
- Infection Biology Group, Indian Foundation for Fundamental Research Trust, RaeBareli, India
| | - Ajay Kumar Saxena
- Molecular Medicine Lab., School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Kailash C. Pandey
- Protein Biochemistry & Engineering Lab, Parasite-Host Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Veena Pande
- Kumaun University, Bheemtal, Nainital, Uttarakhand, India
| | - Michael Kolbe
- Department for Structural Infection Biology, Centre for Structural Systems Biology (CSSB) & Helmholtz-Centre for Infection Research, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| |
Collapse
|
25
|
Woolsey C, Borisevich V, Fears AC, Agans KN, Deer DJ, Prasad AN, O’Toole R, Foster SL, Dobias NS, Geisbert JB, Fenton KA, Cross RW, Geisbert TW. Recombinant vesicular stomatitis virus-vectored vaccine induces long-lasting immunity against Nipah virus disease. J Clin Invest 2023; 133:e164946. [PMID: 36445779 PMCID: PMC9888376 DOI: 10.1172/jci164946] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
The emergence of the novel henipavirus, Langya virus, received global attention after the virus sickened over three dozen people in China. There is heightened concern that henipaviruses, as respiratory pathogens, could spark another pandemic, most notably the deadly Nipah virus (NiV). NiV causes near-annual outbreaks in Bangladesh and India and induces a highly fatal respiratory disease and encephalitis in humans. No licensed countermeasures against this pathogen exist. An ideal NiV vaccine would confer both fast-acting and long-lived protection. Recently, we reported the generation of a recombinant vesicular stomatitis virus-based (rVSV-based) vaccine expressing the NiV glycoprotein (rVSV-ΔG-NiVBG) that protected 100% of nonhuman primates from NiV-associated lethality within a week. Here, to evaluate the durability of rVSV-ΔG-NiVBG, we vaccinated African green monkeys (AGMs) one year before challenge with an uniformly lethal dose of NiV. The rVSV-ΔG-NiVBG vaccine induced stable and robust humoral responses, whereas cellular responses were modest. All immunized AGMs (whether receiving a single dose or prime-boosted) survived with no detectable clinical signs or NiV replication. Transcriptomic analyses indicated that adaptive immune signatures correlated with vaccine-mediated protection. While vaccines for certain respiratory infections (e.g., COVID-19) have yet to provide durable protection, our results suggest that rVSV-ΔG-NiVBG elicits long-lasting immunity.
Collapse
Affiliation(s)
- Courtney Woolsey
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alyssa C. Fears
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Krystle N. Agans
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Daniel J. Deer
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Abhishek N. Prasad
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rachel O’Toole
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Stephanie L. Foster
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Natalie S. Dobias
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Joan B. Geisbert
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Karla A. Fenton
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robert W. Cross
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
26
|
Satterfield BA, Mire CE, Geisbert TW. Overview of Experimental Vaccines and Antiviral Therapeutics for Henipavirus Infection. Methods Mol Biol 2023; 2682:1-22. [PMID: 37610570 DOI: 10.1007/978-1-0716-3283-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are highly pathogenic paramyxoviruses, which have emerged in recent decades and cause sporadic outbreaks of respiratory and encephalitic disease in Australia and Southeast Asia, respectively. Over two billion people currently live in regions potentially at risk due to the wide range of the Pteropus fruit bat reservoir, yet there are no approved vaccines or therapeutics to protect against or treat henipavirus disease. In recent years, significant progress has been made toward developing various experimental vaccine platforms and therapeutics. Here, we describe these advances for both human and livestock vaccine candidates and discuss the numerous preclinical studies and the few that have progressed to human phase 1 clinical trial and the one approved veterinary vaccine.
Collapse
Affiliation(s)
| | - Chad E Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- National Bio- and Agro-defense Facility, Agricultural Research Services, United States Department of Agriculture, Manhattan, NY, USA.
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
27
|
Escudero-Pérez B, Lawrence P, Castillo-Olivares J. Immune correlates of protection for SARS-CoV-2, Ebola and Nipah virus infection. Front Immunol 2023; 14:1156758. [PMID: 37153606 PMCID: PMC10158532 DOI: 10.3389/fimmu.2023.1156758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Correlates of protection (CoP) are biological parameters that predict a certain level of protection against an infectious disease. Well-established correlates of protection facilitate the development and licensing of vaccines by assessing protective efficacy without the need to expose clinical trial participants to the infectious agent against which the vaccine aims to protect. Despite the fact that viruses have many features in common, correlates of protection can vary considerably amongst the same virus family and even amongst a same virus depending on the infection phase that is under consideration. Moreover, the complex interplay between the various immune cell populations that interact during infection and the high degree of genetic variation of certain pathogens, renders the identification of immune correlates of protection difficult. Some emerging and re-emerging viruses of high consequence for public health such as SARS-CoV-2, Nipah virus (NiV) and Ebola virus (EBOV) are especially challenging with regards to the identification of CoP since these pathogens have been shown to dysregulate the immune response during infection. Whereas, virus neutralising antibodies and polyfunctional T-cell responses have been shown to correlate with certain levels of protection against SARS-CoV-2, EBOV and NiV, other effector mechanisms of immunity play important roles in shaping the immune response against these pathogens, which in turn might serve as alternative correlates of protection. This review describes the different components of the adaptive and innate immune system that are activated during SARS-CoV-2, EBOV and NiV infections and that may contribute to protection and virus clearance. Overall, we highlight the immune signatures that are associated with protection against these pathogens in humans and could be used as CoP.
Collapse
Affiliation(s)
- Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, Braunschweig, Germany
- *Correspondence: Beatriz Escudero-Pérez, ; Javier Castillo-Olivares,
| | - Philip Lawrence
- CONFLUENCE: Sciences et Humanités (EA 1598), Université Catholique de Lyon (UCLy), Lyon, France
| | - Javier Castillo-Olivares
- Laboratory of Viral Zoonotics, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Beatriz Escudero-Pérez, ; Javier Castillo-Olivares,
| |
Collapse
|
28
|
Bruno L, Nappo MA, Ferrari L, Di Lecce R, Guarnieri C, Cantoni AM, Corradi A. Nipah Virus Disease: Epidemiological, Clinical, Diagnostic and Legislative Aspects of This Unpredictable Emerging Zoonosis. Animals (Basel) 2022; 13:ani13010159. [PMID: 36611767 PMCID: PMC9817766 DOI: 10.3390/ani13010159] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nipah virus (NiV) infection is a viral disease caused by a Henipavirus, belonging to the Paramyxoviridae family, responsible for a zoonosis. The course of the disease can be very serious and lead to death. NiV natural hosts are fruit bats (also known as megabats) belonging to the Pteropodidae family, especially those of the Pteropus genus. Natural infection in domestic animals has been described in farming pigs, horses, domestic and feral dogs and cats. Natural NiV transmission is possible intra-species (pig-to-pig, human-to-human) and inter-species (flying bat-to-human, pig-to-human, horse-to-human). The infection can be spread by humans or animals in different ways. It is peculiar how the viral transmission modes among different hosts also change depending on the geographical area for different reasons, including different breeding methods, eating habits and the recently identified genetic traits/molecular features of main virus proteins related to virulence. Outbreaks have been described in Malaysia, Singapore, Bangladesh, India and the Philippines with, in some cases, severe respiratory and neurological disease and high mortality in both humans and pigs. Diagnosis can be made using different methods including serological, molecular, virological and immunohistochemical methods. The cornerstones for control of the disease are biosecurity (via the correct management of reservoir and intermediate/amplifying hosts) and potential vaccines which are still under development. However, the evaluation of the potential influence of climate and anthropogenic changes on the NiV reservoir bats and their habitat as well as on disease spread and inter-specific infections is of great importance. Bats, as natural reservoirs of the virus, are responsible for the viral spread and, therefore, for the outbreaks of the disease in humans and animals. Due to the worldwide distribution of bats, potential new reports and spillovers are not to be dismissed in the future.
Collapse
Affiliation(s)
- Luigi Bruno
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, 80053 Castellammare di Stabia, Italy
- Correspondence: (L.B.); (L.F.)
| | - Maria Anna Nappo
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, 80053 Castellammare di Stabia, Italy
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
- Correspondence: (L.B.); (L.F.)
| | - Rosanna Di Lecce
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Chiara Guarnieri
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Anna Maria Cantoni
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Attilio Corradi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| |
Collapse
|
29
|
Gazal S, Sharma N, Gazal S, Tikoo M, Shikha D, Badroo GA, Rashid M, Lee SJ. Nipah and Hendra Viruses: Deadly Zoonotic Paramyxoviruses with the Potential to Cause the Next Pandemic. Pathogens 2022; 11:pathogens11121419. [PMID: 36558753 PMCID: PMC9784551 DOI: 10.3390/pathogens11121419] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Nipah and Hendra viruses are deadly zoonotic paramyxoviruses with a case fatality rate of upto 75%. The viruses belong to the genus henipavirus in the family Paramyxoviridae, a family of negative-sense single-stranded RNA viruses. The natural reservoirs of NiV and HeV are bats (flying foxes) in which the virus infection is asymptomatic. The intermediate hosts for NiV and HeV are swine and equine, respectively. In humans, NiV infections result in severe and often fatal respiratory and neurological manifestations. The Nipah virus was first identified in Malaysia and Singapore following an outbreak of encephalitis in pig farmers and subsequent outbreaks have been reported in Bangladesh and India almost every year. Due to its extreme pathogenicity, pandemic potential, and lack of established antiviral therapeutics and vaccines, research on henipaviruses is highly warranted so as to develop antivirals or vaccines that could aid in the prevention and control of future outbreaks.
Collapse
Affiliation(s)
- Sabahat Gazal
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
- Correspondence: (N.S.); (S.-J.L.)
| | - Sundus Gazal
- Division of Veterinary Microbiology, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Science University, Ludhiana 141004, Punjab, India
| | - Mehak Tikoo
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
| | - Deep Shikha
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
| | - Gulzar Ahmed Badroo
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
| | - Mohd Rashid
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
| | - Sung-Jin Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Correspondence: (N.S.); (S.-J.L.)
| |
Collapse
|
30
|
Gao Z, Li T, Han J, Feng S, Li L, Jiang Y, Xu Z, Hao P, Chen J, Hao J, Xu P, Tian M, Jin N, Huang W, Li C. Assessment of the immunogenicity and protection of a Nipah virus soluble G vaccine candidate in mice and pigs. Front Microbiol 2022; 13:1031523. [PMID: 36274696 PMCID: PMC9583134 DOI: 10.3389/fmicb.2022.1031523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Nipah virus (NiV) is a newly emerged extremely dangerous zoonotic pathogen highly fatal to humans. Currently, no approved vaccine is available against NiV. This study employed a mammalian eukaryotic system to express NiV soluble G glycoprotein (NiV-sG), using CpG oligodeoxynucleotides (CpG)/Aluminum salt (Alum) as adjuvants to obtain a recombinant subunit vaccine candidate. We also evaluated the immunogenicity and efficacy of the protein in mice and pigs. The results showed that humoral and cellular immune responses were induced in all the vaccination groups in two animal models. The levels of specific and neutralizing antibodies and the proliferation levels of T helper(Th) cells were significantly higher than those in the control group. The protective efficacy of the subunit vaccines evaluated in the pseudovirus in vivo infection mouse model strongly suggested that this vaccine could provide protective immunity against NiV. A neoadjuvant (HTa) based on liposomes and cholera toxin combined with CpG/Alum was exploited and evaluated in mice. The neoadjuvant group showed a more protective efficacy than the CpG/Alum group. The aforementioned results indicated that the subunit vaccine could be used as a promising candidate vaccine for preventing Nipah virus infection.
Collapse
Affiliation(s)
- Zihan Gao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tao Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Jicheng Han
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Sheng Feng
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuhang Jiang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhiqiang Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jing Chen
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jiayi Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peng Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Mingyao Tian
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Ningyi Jin,
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
- Weijin Huang,
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
- Chang Li,
| |
Collapse
|
31
|
Uwishema O, Wellington J, Berjaoui C, Muoka KO, Onyeaka CVP, Onyeaka H. A short communication of Nipah virus outbreak in India: An urgent rising concern. Ann Med Surg (Lond) 2022; 82:104599. [PMID: 36268453 PMCID: PMC9577510 DOI: 10.1016/j.amsu.2022.104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 11/25/2022] Open
|
32
|
The pathogenesis of Nipah virus: A review. Microb Pathog 2022; 170:105693. [DOI: 10.1016/j.micpath.2022.105693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022]
|
33
|
Rahman MM, Puspo JA, Adib AA, Hossain ME, Alam MM, Sultana S, Islam A, Klena JD, Montgomery JM, Satter SM, Shirin T, Rahman MZ. An Immunoinformatics Prediction of Novel Multi-Epitope Vaccines Candidate Against Surface Antigens of Nipah Virus. Int J Pept Res Ther 2022; 28:123. [PMID: 35761851 PMCID: PMC9219388 DOI: 10.1007/s10989-022-10431-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
Nipah virus (NiV) is an emerging zoonotic virus causing outbreaks of encephalitis and respiratory illnesses in humans, with high mortality. NiV is considered endemic in Bangladesh and Southeast Asia. There are no licensed vaccines against NiV. This study aimed at predicting a dual-antigen multi-epitope subunit chimeric vaccine against surface-glycoproteins G and F of NiV. Targeted proteins were subjected to immunoinformatics analyses to predict antigenic B-cell and T-cell epitopes. The proposed vaccine designs were implemented based on the conservancy, population coverage, molecular docking, immune simulations, codon adaptation, secondary mRNA structure, and in-silico cloning. Total 40 T and B-cell epitopes were found to be conserved, antigenic (vaxijen-value > 0.4), non-toxic, non-allergenic, and human non-homologous. Of 12 hypothetical vaccines, two (NiV_BGD_V1 and NiV_BGD_V2) were strongly immunogenic, non-allergenic, and structurally stable. The proposed vaccine candidates show a negative Z-score (- 6.32 and - 6.67) and 83.6% and 89.3% of most rama-favored regions. The molecular docking confirmed the highest affinity of NiV_BGD_V1 and NiV_BGD_V2 with TLR-4 (ΔG = - 30.7) and TLR8 (ΔG = - 20.6), respectively. The vaccine constructs demonstrated increased levels of immunoglobulins and cytokines in humans and could be expressed properly using an adenoviral-based pAdTrack-CMV expression vector. However, more experimental investigations and clinical trials are needed to validate its efficacy and safety. Supplementary Information The online version contains supplementary material available at 10.1007/s10989-022-10431-z.
Collapse
Affiliation(s)
- Md. Mahfuzur Rahman
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| | - Joynob Akter Puspo
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| | - Ahmed Ahsan Adib
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| | - Mohammad Enayet Hossain
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| | - Mohammad Mamun Alam
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| | - Sharmin Sultana
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka 1212 Bangladesh
| | | | - John D. Klena
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333 USA
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333 USA
| | - Syed M. Satter
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka 1212 Bangladesh
| | - Mohammed Ziaur Rahman
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| |
Collapse
|
34
|
Liew YJM, Ibrahim PAS, Ong HM, Chong CN, Tan CT, Schee JP, Gómez Román R, Cherian NG, Wong WF, Chang LY. The Immunobiology of Nipah Virus. Microorganisms 2022; 10:microorganisms10061162. [PMID: 35744680 PMCID: PMC9228579 DOI: 10.3390/microorganisms10061162] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/23/2022] Open
Abstract
Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that emerged in Malaysia in 1998. It is a human pathogen capable of causing severe respiratory infection and encephalitis. The natural reservoir of NiV, Pteropus fruit bats, remains a continuous virus source for future outbreaks, although infection in the bats is largely asymptomatic. NiV provokes serious disease in various mammalian species. In the recent human NiV outbreaks in Bangladesh and India, both bats-to-human and human-to-human transmissions have been observed. NiV has been demonstrated to interfere with the innate immune response via interferon type I signaling, promoting viral dissemination and preventing antiviral response. Studies of humoral immunity in infected NiV patients and animal models have shown that NiV-specific antibodies were produced upon infection and were protective. Studies on cellular immunity response to NiV infection in human and animal models also found that the adaptive immune response, specifically CD4+ and CD8+ T cells, was stimulated upon NiV infection. The experimental vaccines and therapeutic strategies developed have provided insights into the immunological requirements for the development of successful medical countermeasures against NiV. This review summarizes the current understanding of NiV pathogenesis and innate and adaptive immune responses induced upon infection.
Collapse
Affiliation(s)
- Yvonne Jing Mei Liew
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
- Deputy Vice Chancellor’s Office (Research & Innovation), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Puteri Ainaa S. Ibrahim
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Hui Ming Ong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Chee Ning Chong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Chong Tin Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.T.T.); (J.P.S.)
| | - Jie Ping Schee
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.T.T.); (J.P.S.)
| | - Raúl Gómez Román
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovation (CEPI), Askekroken 11, 0277 Oslo, Norway; (R.G.R.); (N.G.C.)
| | - Neil George Cherian
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovation (CEPI), Askekroken 11, 0277 Oslo, Norway; (R.G.R.); (N.G.C.)
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
- Correspondence:
| |
Collapse
|
35
|
Lawrence P, Escudero-Pérez B. Henipavirus Immune Evasion and Pathogenesis Mechanisms: Lessons Learnt from Natural Infection and Animal Models. Viruses 2022; 14:v14050936. [PMID: 35632678 PMCID: PMC9146692 DOI: 10.3390/v14050936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Nipah henipavirus (NiV) and Hendra henipavirus (HeV) are zoonotic emerging paramyxoviruses causing severe disease outbreaks in humans and livestock, mostly in Australia, India, Malaysia, Singapore and Bangladesh. Both are bat-borne viruses and in humans, their mortality rates can reach 60% in the case of HeV and 92% for NiV, thus being two of the deadliest viruses known for humans. Several factors, including a large cellular tropism and a wide zoonotic potential, con-tribute to their high pathogenicity. This review provides an overview of HeV and NiV pathogenicity mechanisms and provides a summary of their interactions with the immune systems of their different host species, including their natural hosts bats, spillover-hosts pigs, horses, and humans, as well as in experimental animal models. A better understanding of the interactions between henipaviruses and their hosts could facilitate the development of new therapeutic strategies and vaccine measures against these re-emerging viruses.
Collapse
Affiliation(s)
- Philip Lawrence
- Science and Humanities Confluence Research Centre (EA 1598), Catholic University of Lyon (UCLy), 69002 Lyon, France
- Correspondence: (P.L.); (B.E.-P.)
| | - Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, 38124 Braunschweig, Germany
- Correspondence: (P.L.); (B.E.-P.)
| |
Collapse
|
36
|
A recombinant VSV-vectored vaccine rapidly protects nonhuman primates against lethal Nipah virus disease. Proc Natl Acad Sci U S A 2022; 119:e2200065119. [PMID: 35286211 PMCID: PMC8944267 DOI: 10.1073/pnas.2200065119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Concern has increased about the pandemic potential of Nipah virus (NiV). Similar to SARS-CoV-2, NiV is an RNA virus that is transmitted by respiratory droplets. There are currently no NiV vaccines licensed for human use. While several preventive vaccines have shown promise in protecting animals against lethal NiV disease, most studies have assessed protection 1 mo after vaccination. However, in order to contain and control outbreaks, vaccines that can rapidly confer protection in days rather than months are needed. Here, we show that a recombinant vesicular stomatitis virus vector expressing the NiV glycoprotein can completely protect monkeys vaccinated 7 d prior to NiV exposure and 67% of animals vaccinated 3 d before NiV challenge. Nipah virus (NiV) is an emerging highly lethal zoonotic disease that, like SARS-CoV-2, can be transmitted via respiratory droplets. Single-injection vaccines that rapidly control NiV outbreaks are needed. To assess the ability of a vaccine to induce fast-acting protection, we immunized African green monkeys with a recombinant vesicular stomatitis virus (VSV) expressing the Bangladesh strain glycoprotein (NiVBG) of NiV (rVSV-ΔG-NiVBG). Monkeys were challenged 3 or 7 d later with a lethal dose of NiVB. All monkeys vaccinated with rVSV-ΔG-NiVBG 7 d prior to NiVB exposure were protected from lethal disease, while 67% of animals vaccinated 3 d before NiVB challenge survived. Vaccine protection correlated with natural killer cell and cytotoxic T cell transcriptional signatures, whereas lethality was linked to sustained interferon signaling. NiV G-specific antibodies in vaccinated survivors corroborated additional transcriptomic findings, supporting activation of humoral immunity. This study demonstrates that rVSV-based vaccines may have utility in rapidly protecting humans against NiV infection.
Collapse
|
37
|
Gómez Román R, Tornieporth N, Cherian NG, Shurtleff AC, L'Azou Jackson M, Yeskey D, Hacker A, Mungai E, Le TT. Medical countermeasures against henipaviruses: a review and public health perspective. THE LANCET. INFECTIOUS DISEASES 2021; 22:e13-e27. [PMID: 34735799 PMCID: PMC8694750 DOI: 10.1016/s1473-3099(21)00400-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022]
Abstract
Henipaviruses, including Nipah virus, are regarded as pathogens of notable epidemic potential because of their high pathogenicity and the paucity of specific medical countermeasures to control infections in humans. We review the evidence of medical countermeasures against henipaviruses and project their cost in a post-COVID-19 era. Given the sporadic and unpredictable nature of henipavirus outbreaks, innovative strategies will be needed to circumvent the infeasibility of traditional phase 3 clinical trial regulatory pathways. Stronger partnerships with scientific institutions and regulatory authorities in low-income and middle-income countries can inform coordination of appropriate investments and development of strategies and normative guidelines for the deployment and equitable use of multiple medical countermeasures. Accessible measures should include global, regional, and endemic in-country stockpiles of reasonably priced small molecules, monoclonal antibodies, and vaccines as part of a combined collection of products that could help to control henipavirus outbreaks and prevent future pandemics.
Collapse
Affiliation(s)
- Raúl Gómez Román
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Nadia Tornieporth
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway; University of Applied Sciences & Arts, Hanover, Germany
| | | | - Amy C Shurtleff
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | | | - Debra Yeskey
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Adam Hacker
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Eric Mungai
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Tung Thanh Le
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway.
| |
Collapse
|
38
|
Doyle MP, Kose N, Borisevich V, Binshtein E, Amaya M, Nagel M, Annand EJ, Armstrong E, Bombardi R, Dong J, Schey KL, Broder CC, Zeitlin L, Kuang EA, Bornholdt ZA, West BR, Geisbert TW, Cross RW, Crowe JE. Cooperativity mediated by rationally selected combinations of human monoclonal antibodies targeting the henipavirus receptor binding protein. Cell Rep 2021; 36:109628. [PMID: 34469726 PMCID: PMC8527959 DOI: 10.1016/j.celrep.2021.109628] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/25/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022] Open
Abstract
Hendra virus and Nipah virus (NiV), members of the Henipavirus (HNV) genus, are zoonotic paramyxoviruses known to cause severe disease across six mammalian orders, including humans. We isolated a panel of human monoclonal antibodies (mAbs) from the B cells of an individual with prior exposure to equine Hendra virus (HeV) vaccine, targeting distinct antigenic sites. The most potent class of cross-reactive antibodies achieves neutralization by blocking viral attachment to the host cell receptors ephrin-B2 and ephrin-B3, with a second class being enhanced by receptor binding. mAbs from both classes display synergistic activity in vitro. In a stringent hamster model of NiV Bangladesh (NiVB) infection, antibodies from both classes reduce morbidity and mortality and achieve synergistic protection in combination. These candidate mAbs might be suitable for use in a cocktail therapeutic approach to achieve synergistic potency and reduce the risk of virus escape. Doyle et al. describe two human monoclonal antibodies that target the henipavirus receptor-binding protein, HENV-103 and HENV-117, that display highly potent activity in vitro and enhanced therapeutic efficacy in vivo when delivered as a cocktail.
Collapse
Affiliation(s)
- Michael P Doyle
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Viktoriya Borisevich
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Elad Binshtein
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Moushimi Amaya
- Department of Microbiology & Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Marcus Nagel
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Edward J Annand
- Sydney School of Veterinary Science and Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia; Black Mountain Laboratories & Australian Centre for Disease Preparedness, Health and Biosecurity, CSIRO, Canberra & Geelong, Australia
| | - Erica Armstrong
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robin Bombardi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jinhui Dong
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Christopher C Broder
- Department of Microbiology & Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | - Erin A Kuang
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | | | | | - Thomas W Geisbert
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert W Cross
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
39
|
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are bat-borne zoonotic para-myxoviruses identified in the mid- to late 1990s in outbreaks of severe disease in livestock and people in Australia and Malaysia, respectively. HeV repeatedly re-emerges in Australia while NiV continues to cause outbreaks in South Asia (Bangladesh and India), and these viruses have remained transboundary threats. In people and several mammalian species, HeV and NiV infections present as a severe systemic and often fatal neurologic and/or respiratory disease. NiV stands out as a potential pandemic threat because of its associated high case-fatality rates and capacity for human-to-human transmission. The development of effective vaccines, suitable for people and livestock, against HeV and NiV has been a research focus. Here, we review the progress made in NiV and HeV vaccine development, with an emphasis on those approaches that have been tested in established animal challenge models of NiV and HeV infection and disease.
Collapse
Affiliation(s)
- Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA;
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA;
| |
Collapse
|
40
|
Pasha F, Alatawi A, Amir M, Faridi U. Development of Molecular Diagnosis by PCR for the Detection of Infection and Gene Expression for Nipah Virus (NiV). Pak J Biol Sci 2021; 23:1086-1095. [PMID: 32700860 DOI: 10.3923/pjbs.2020.1086.1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE The epidemiology of Nipah virus (NiV) was shortly seen in many Asian countries like Malaysia, Bangladesh and India most recently. Nipah virus also synonym as bat born virus is transmitted primarily by fruit bats. The 2 different strains transmitted are Hendra (highly pathogenic) and Cedar (non-pathogenic). The present study was attempt to develop recombinant protein based reagents for molecular diagnosis of Nipah. MATERIALS AND METHODS The different primer sets were developed using bioinformatics software DNASTAR. The E. coli cells were used for recombinant protein expression. RESULTS The NiV 'G' region primers were designed and amplified for 1 kb fragment and cloned. The NiV 'G' fragments were sub-cloned in pET-28(+) B and pGEX-5x-1. Recombinant protein thus obtained in soluble form in both the cases was essayed using western blot. The result showed the protein expression yield was more in pET-28(+) B with low stability and vice versa for pGEX-5x-1. CONCLUSION The antibodies raised from the protein can be used as diagnostic reagent for detection of NiV. Thus, a new diagnostic technique can be industrialized.
Collapse
|
41
|
Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum. Nat Immunol 2020; 22:25-31. [PMID: 33154590 DOI: 10.1038/s41590-020-00826-9] [Citation(s) in RCA: 364] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022]
Abstract
Clinical manifestations of COVID-19 caused by the new coronavirus SARS-CoV-2 are associated with age1,2. Adults develop respiratory symptoms, which can progress to acute respiratory distress syndrome (ARDS) in the most severe form, while children are largely spared from respiratory illness but can develop a life-threatening multisystem inflammatory syndrome (MIS-C)3-5. Here, we show distinct antibody responses in children and adults after SARS-CoV-2 infection. Adult COVID-19 cohorts had anti-spike (S) IgG, IgM and IgA antibodies, as well as anti-nucleocapsid (N) IgG antibody, while children with and without MIS-C had reduced breadth of anti-SARS-CoV-2-specific antibodies, predominantly generating IgG antibodies specific for the S protein but not the N protein. Moreover, children with and without MIS-C had reduced neutralizing activity as compared to both adult COVID-19 cohorts, indicating a reduced protective serological response. These results suggest a distinct infection course and immune response in children independent of whether they develop MIS-C, with implications for developing age-targeted strategies for testing and protecting the population.
Collapse
|
42
|
Tit-Oon P, Tharakaraman K, Artpradit C, Godavarthi A, Sungkeeree P, Sasisekharan V, Kerdwong J, Miller NL, Mahajan B, Khongmanee A, Ruchirawat M, Sasisekharan R, Fuangthong M. Prediction of the binding interface between monoclonal antibody m102.4 and Nipah attachment glycoprotein using structure-guided alanine scanning and computational docking. Sci Rep 2020; 10:18256. [PMID: 33106487 PMCID: PMC7588459 DOI: 10.1038/s41598-020-75056-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/21/2020] [Indexed: 11/08/2022] Open
Abstract
Nipah Virus (NiV) has been designated as a priority disease with an urgent need for therapeutic development by World Health Organization. The monoclonal antibody m102.4 binds to the immunodominant NiV receptor-binding glycoprotein (GP), and potently neutralizes NiV, indicating its potential as a therapeutic agent. Although the co-crystal structure of m102.3, an m102.4 derivative, in complex with the GP of the related Hendra Virus (HeV) has been solved, the structural interaction between m102.4 and NiV is uncharacterized. Herein, we used structure-guided alanine-scanning mutagenesis to map the functional epitope and paratope residues that govern the antigen-antibody interaction. Our results revealed that the binding of m102.4 is mediated predominantly by two residues in the HCDR3 region, which is unusually small for an antibody-antigen interaction. We performed computational docking to generate a structural model of m102.4-NiV interaction. Our model indicates that m102.4 targets the common hydrophobic central cavity and a hydrophilic rim on the GP, as observed for the m102.3-HeV co-crystal, albeit with Fv orientation differences. In summary, our study provides insight into the m102.4-NiV interaction, demonstrating that structure-guided alanine-scanning and computational modeling can serve as the starting point for additional antibody reengineering (e.g. affinity maturation) to generate potential therapeutic candidates.
Collapse
Affiliation(s)
- Phanthakarn Tit-Oon
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Kannan Tharakaraman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Abhinav Godavarthi
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Yale University, New Haven, CT, 06520, USA
| | - Pareenart Sungkeeree
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Varun Sasisekharan
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Jarunee Kerdwong
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Nathaniel Loren Miller
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Bhuvna Mahajan
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Amnart Khongmanee
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Mathuros Ruchirawat
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Ram Sasisekharan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Mayuree Fuangthong
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
| |
Collapse
|
43
|
Weisberg SP, Connors T, Zhu Y, Baldwin M, Lin WH, Wontakal S, Szabo PA, Wells SB, Dogra P, Gray JI, Idzikowski E, Bovier F, Davis-Porada J, Matsumoto R, Li Poon MM, Chait MP, Mathieu C, Horvat B, Decimo D, Bitan ZC, La Carpia F, Ferrara SA, Mace E, Milner J, Moscona A, Hod EA, Porotto M, Farber DL. Antibody responses to SARS-CoV2 are distinct in children with MIS-C compared to adults with COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32699861 DOI: 10.1101/2020.07.12.20151068] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Clinical manifestations of COVID-19 caused by the novel coronavirus SARS-CoV-2 are associated with age. While children are largely spared from severe respiratory disease, they can present with a SARS-CoV-2-associated multisystem inflammatory syndrome (MIS-C) similar to Kawasaki's disease. Here, we show distinct antibody (Ab) responses in children with MIS-C compared to adults with severe COVID-19 causing acute respiratory distress syndrome (ARDS), and those who recovered from mild disease. There was a reduced breadth and specificity of anti-SARS-CoV-2-specific antibodies in MIS-C patients compared to the COVID patient groups; MIS-C predominantly generated IgG Abs specific for the Spike (S) protein but not for the nucleocapsid (N) protein, while both COVID-19 cohorts had anti-S IgG, IgM and IgA Abs, as well as anti-N IgG Abs. Moreover, MIS-C patients had reduced neutralizing activity compared to COVID-19 cohorts, indicating a reduced protective serological response. These results suggest a distinct infection course and immune response in children and adults who develop severe disease, with implications for optimizing treatments based on symptom and age.
Collapse
|
44
|
Loomis RJ, Stewart-Jones GBE, Tsybovsky Y, Caringal RT, Morabito KM, McLellan JS, Chamberlain AL, Nugent ST, Hutchinson GB, Kueltzo LA, Mascola JR, Graham BS. Structure-Based Design of Nipah Virus Vaccines: A Generalizable Approach to Paramyxovirus Immunogen Development. Front Immunol 2020; 11:842. [PMID: 32595632 PMCID: PMC7300195 DOI: 10.3389/fimmu.2020.00842] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Licensed vaccines or therapeutics are rarely available for pathogens with epidemic or pandemic potential. Developing interventions for specific pathogens and defining generalizable approaches for related pathogens is a global priority and inherent to the UN Sustainable Development Goals. Nipah virus (NiV) poses a significant epidemic threat, and zoonotic transmission from bats-to-humans with high fatality rates occurs almost annually. Human-to-human transmission of NiV has been documented in recent outbreaks leading public health officials and government agencies to declare an urgent need for effective vaccines and therapeutics. Here, we evaluate NiV vaccine antigen design options including the fusion glycoprotein (F) and the major attachment glycoprotein (G). A stabilized prefusion F (pre-F), multimeric G constructs, and chimeric proteins containing both pre-F and G were developed as protein subunit candidate vaccines. The proteins were evaluated for antigenicity and structural integrity using kinetic binding assays, electron microscopy, and other biophysical properties. Immunogenicity of the vaccine antigens was evaluated in mice. The stabilized pre-F trimer and hexameric G immunogens both induced serum neutralizing activity in mice, while the post-F trimer immunogen did not elicit neutralizing activity. The pre-F trimer covalently linked to three G monomers (pre-F/G) induced potent neutralizing antibody activity, elicited responses to the greatest diversity of antigenic sites, and is the lead candidate for clinical development. The specific stabilizing mutations and immunogen designs utilized for NiV were successfully applied to other henipaviruses, supporting the concept of identifying generalizable solutions for prototype pathogens as an approach to pandemic preparedness.
Collapse
Affiliation(s)
- Rebecca J. Loomis
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Guillaume B. E. Stewart-Jones
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Ria T. Caringal
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kaitlyn M. Morabito
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Amy L. Chamberlain
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sean T. Nugent
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Geoffrey B. Hutchinson
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lisa A. Kueltzo
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John R. Mascola
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Barney S. Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
45
|
Pedrera M, Macchi F, McLean RK, Franceschi V, Thakur N, Russo L, Medfai L, Todd S, Tchilian EZ, Audonnet JC, Chappell K, Isaacs A, Watterson D, Young PR, Marsh GA, Bailey D, Graham SP, Donofrio G. Bovine Herpesvirus-4-Vectored Delivery of Nipah Virus Glycoproteins Enhances T Cell Immunogenicity in Pigs. Vaccines (Basel) 2020; 8:vaccines8010115. [PMID: 32131403 PMCID: PMC7157636 DOI: 10.3390/vaccines8010115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Nipah virus (NiV) is an emergent pathogen capable of causing acute respiratory illness and fatal encephalitis in pigs and humans. A high fatality rate and broad host tropism makes NiV a serious public and animal health concern. There is therefore an urgent need for a NiV vaccines to protect animals and humans. In this study we investigated the immunogenicity of bovine herpesvirus (BoHV-4) vectors expressing either NiV attachment (G) or fusion (F) glycoproteins, BoHV-4-A-CMV-NiV-GΔTK or BoHV-4-A-CMV-NiV-FΔTK, respectively in pigs. The vaccines were benchmarked against a canarypox (ALVAC) vector expressing NiV G, previously demonstrated to induce protective immunity in pigs. Both BoHV-4 vectors induced robust antigen-specific antibody responses. BoHV-4-A-CMV-NiV-GΔTK stimulated NiV-neutralizing antibody titers comparable to ALVAC NiV G and greater than those induced by BoHV-4-A-CMV-NiV-FΔTK. In contrast, only BoHV-4-A-CMV-NiV-FΔTK immunized pigs had antibodies capable of significantly neutralizing NiV G and F-mediated cell fusion. All three vectored vaccines evoked antigen-specific CD4 and CD8 T cell responses, which were particularly strong in BoHV-4-A-CMV-NiV-GΔTK immunized pigs and to a lesser extent BoHV-4-A-CMV-NiV-FΔTK. These findings emphasize the potential of BoHV-4 vectors for inducing antibody and cell-mediated immunity in pigs and provide a solid basis for the further evaluation of these vectored NiV vaccine candidates.
Collapse
Affiliation(s)
- Miriam Pedrera
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
| | - Francesca Macchi
- Department of Medical-Veterinary Science, University of Parma, 43126 Parma, Italy; (F.M.); (V.F.); (L.R.)
| | - Rebecca K. McLean
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
| | - Valentina Franceschi
- Department of Medical-Veterinary Science, University of Parma, 43126 Parma, Italy; (F.M.); (V.F.); (L.R.)
| | - Nazia Thakur
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
| | - Luca Russo
- Department of Medical-Veterinary Science, University of Parma, 43126 Parma, Italy; (F.M.); (V.F.); (L.R.)
| | - Lobna Medfai
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
- UnivLyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Shawn Todd
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria 3219, Australia; (S.T.); (G.A.M.)
| | - Elma Z. Tchilian
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
| | - Jean-Christophe Audonnet
- Boehringer Ingelheim Animal Health, Bâtiment 700 R&D, 813 Cours du 3ème Millénaire, 69800 Saint Priest, France;
| | - Keith Chappell
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072, Australia; (K.C.); (A.I.); (D.W.); (P.R.Y.)
| | - Ariel Isaacs
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072, Australia; (K.C.); (A.I.); (D.W.); (P.R.Y.)
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072, Australia; (K.C.); (A.I.); (D.W.); (P.R.Y.)
| | - Paul R. Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072, Australia; (K.C.); (A.I.); (D.W.); (P.R.Y.)
| | - Glenn A. Marsh
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria 3219, Australia; (S.T.); (G.A.M.)
| | - Dalan Bailey
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
| | - Simon P. Graham
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK; (M.P.); (R.K.M.); (N.T.); (L.M.); (E.Z.T.); (D.B.)
- Correspondence: (S.P.G.); (G.D.)
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, 43126 Parma, Italy; (F.M.); (V.F.); (L.R.)
- Correspondence: (S.P.G.); (G.D.)
| |
Collapse
|
46
|
Duplantier AJ, Shurtleff AC, Miller C, Chiang CY, Panchal RG, Sunay M. Combating biothreat pathogens: ongoing efforts for countermeasure development and unique challenges. DRUG DISCOVERY TARGETING DRUG-RESISTANT BACTERIA 2020. [PMCID: PMC7258707 DOI: 10.1016/b978-0-12-818480-6.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Research to discover and develop antibacterial and antiviral drugs with potent activity against pathogens of biothreat concern presents unique methodological and process-driven challenges. Herein, we review laboratory approaches for finding new antibodies, antibiotics, and antiviral molecules for pathogens of biothreat concern. Using high-throughput screening techniques, molecules that directly inhibit a pathogen’s entry, replication, or growth can be identified. Alternatively, molecules that target host proteins can be interesting targets for development when countering biothreat pathogens, due to the modulation of the host immune response or targeting proteins that interfere with the pathways required by the pathogen for replication. Monoclonal and cocktail antibody therapies approved by the Food and Drug Administration for countering anthrax and under development for treatment of Ebola virus infection are discussed. A comprehensive tabular review of current in vitro, in vivo, pharmacokinetic and efficacy datasets has been presented for biothreat pathogens of greatest concern. Finally, clinical trials and animal rule or traditional drug approval pathways are also reviewed. Opinions; interpretations; conclusions; and recommendations are those of the authors and are not necessarily endorsed by the US Army.
Collapse
|
47
|
A Soluble Version of Nipah Virus Glycoprotein G Delivered by Vaccinia Virus MVA Activates Specific CD8 and CD4 T Cells in Mice. Viruses 2019; 12:v12010026. [PMID: 31878180 PMCID: PMC7019319 DOI: 10.3390/v12010026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Nipah virus (NiV) is an emerging zoonotic virus that is transmitted by bats to humans and to pigs, causing severe respiratory disease and often fatal encephalitis. Antibodies directed against the NiV-glycoprotein (G) protein are known to play a major role in clearing NiV infection and in providing vaccine-induced protective immunity. More recently, T cells have been also shown to be involved in recovery from NiV infection. So far, relatively little is known about the role of T cell responses and the antigenic targets of NiV-G that are recognized by CD8 T cells. In this study, NiV-G protein served as the target immunogen to activate NiV-specific cellular immune responses. Modified Vaccinia virus Ankara (MVA), a safety-tested strain of vaccinia virus for preclinical and clinical vaccine research, was used for the generation of MVA–NiV-G candidate vaccines expressing different versions of recombinant NiV-G. Overlapping peptides covering the entire NiV-G protein were used to identify major histocompatibility complex class I/II-restricted T cell responses in type I interferon receptor-deficient (IFNAR−/−) mice after vaccination with the MVA–NiV-G candidate vaccines. We have identified an H2-b-restricted nonamer peptide epitope with CD8 T cell antigenicity and a H2-b 15mer with CD4 T cell antigenicity in the NiV-G protein. The identification of this epitope and the availability of the MVA–NiV-G candidate vaccines will help to evaluate NiV-G-specific immune responses and the potential immune correlates of vaccine-mediated protection in the appropriate murine models of NiV-G infection. Of note, a soluble version of NiV-G was advantageous in activating NiV-G-specific cellular immune responses using these peptides.
Collapse
|
48
|
Shuai L, Ge J, Wen Z, Wang J, Wang X, Bu Z. Immune responses in mice and pigs after oral vaccination with rabies virus vectored Nipah disease vaccines. Vet Microbiol 2019; 241:108549. [PMID: 31928698 DOI: 10.1016/j.vetmic.2019.108549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Nipah virus (NiV) is a re-emerging zoonotic pathogen that causes high mortality in humans and pigs. Oral immunization in free-roaming animals is one of the most practical approaches to prevent NiV pandemics. We previously generated a recombinant rabies viruses (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, rERAG333E, which contains a mutation from arginine to glutamic acid at residue 333 of glycoprotein (G333E) and serves as an oral vaccine for dog rabies. In this study, we generated two recombinant RABVs, rERAG333E/NiVG and rERAG333E/NiVF, expressing the NiV Malaysian strain attachment glycoprotein (NiV-G) or fusion glycoprotein (NiV-F) gene based on the rERAG333E vector platform. Both rERAG333E/NiVG and rERAG333E/NiVF displayed growth properties similar to those of rERAG333E and caused marked syncytia formation after co-infection in BSR cell culture. Adult and suckling mice intracerebrally inoculated with the recombinant RABVs showed NiV-G and NiV-F expression did not increase the virulence of rERAG333E. Oral vaccination with rERAG333E/NiVG either singularly or combined with rERAG333E/NiVF induced significant NiV neutralizing antibody against NiV and RABV, and IgG to NiV-G or NiV-F in mice and pigs. rERAG333E/NiVG and rERAG333E/NiVF thus appeared to be suitable candidates for further oral vaccines for potential animal targets in endemic areas of NiV disease and rabies.
Collapse
Affiliation(s)
- Lei Shuai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jinying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhiyuan Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jinliang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xijun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
49
|
Singh RK, Dhama K, Chakraborty S, Tiwari R, Natesan S, Khandia R, Munjal A, Vora KS, Latheef SK, Karthik K, Singh Malik Y, Singh R, Chaicumpa W, Mourya DT. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - a comprehensive review. Vet Q 2019; 39:26-55. [PMID: 31006350 PMCID: PMC6830995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 10/20/2023] Open
Abstract
Nipah (Nee-pa) viral disease is a zoonotic infection caused by Nipah virus (NiV), a paramyxovirus belonging to the genus Henipavirus of the family Paramyxoviridae. It is a biosafety level-4 pathogen, which is transmitted by specific types of fruit bats, mainly Pteropus spp. which are natural reservoir host. The disease was reported for the first time from the Kampung Sungai Nipah village of Malaysia in 1998. Human-to-human transmission also occurs. Outbreaks have been reported also from other countries in South and Southeast Asia. Phylogenetic analysis affirmed the circulation of two major clades of NiV as based on currently available complete N and G gene sequences. NiV isolates from Malaysia and Cambodia clustered together in NiV-MY clade, whereas isolates from Bangladesh and India clusterered within NiV-BD clade. NiV isolates from Thailand harboured mixed population of sequences. In humans, the virus is responsible for causing rapidly progressing severe illness which might be characterized by severe respiratory illness and/or deadly encephalitis. In pigs below six months of age, respiratory illness along with nervous symptoms may develop. Different types of enzyme-linked immunosorbent assays along with molecular methods based on polymerase chain reaction have been developed for diagnostic purposes. Due to the expensive nature of the antibody drugs, identification of broad-spectrum antivirals is essential along with focusing on small interfering RNAs (siRNAs). High pathogenicity of NiV in humans, and lack of vaccines or therapeutics to counter this disease have attracted attention of researchers worldwide for developing effective NiV vaccine and treatment regimens.
Collapse
Affiliation(s)
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, West Tripura, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Senthilkumar Natesan
- Biomac Life Sciences Pvt Ltd., Indian Institute of Public Health Gandhinagar, Gujarat, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Kranti Suresh Vora
- Wheels India Niswarth (WIN) Foundation, Maternal and Child Health (MCH), University of Canberra, Gujarat, India
| | - Shyma K. Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Devendra T. Mourya
- National Institute of Virology, Ministry of Health and Family Welfare, Govt of India, Pune, India
| |
Collapse
|
50
|
A structural basis for antibody-mediated neutralization of Nipah virus reveals a site of vulnerability at the fusion glycoprotein apex. Proc Natl Acad Sci U S A 2019; 116:25057-25067. [PMID: 31767754 PMCID: PMC6911215 DOI: 10.1073/pnas.1912503116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes frequent outbreaks of severe neurologic and respiratory disease in humans with high case fatality rates. The 2 glycoproteins displayed on the surface of the virus, NiV-G and NiV-F, mediate host-cell attachment and membrane fusion, respectively, and are targets of the host antibody response. Here, we provide a molecular basis for neutralization of NiV through antibody-mediated targeting of NiV-F. Structural characterization of a neutralizing antibody (nAb) in complex with trimeric prefusion NiV-F reveals an epitope at the membrane-distal domain III (DIII) of the molecule, a region that undergoes substantial refolding during host-cell entry. The epitope of this monoclonal antibody (mAb66) is primarily protein-specific and we observe that glycosylation at the periphery of the interface likely does not inhibit mAb66 binding to NiV-F. Further characterization reveals that a Hendra virus-F-specific nAb (mAb36) and many antibodies in an antihenipavirus-F polyclonal antibody mixture (pAb835) also target this region of the molecule. Integrated with previously reported paramyxovirus F-nAb structures, these data support a model whereby the membrane-distal region of the F protein is targeted by the antibody-mediated immune response across henipaviruses. Notably, our domain-specific sequence analysis reveals no evidence of selective pressure at this region of the molecule, suggestive that functional constraints prevent immune-driven sequence variation. Combined, our data reveal the membrane-distal region of NiV-F as a site of vulnerability on the NiV surface.
Collapse
|