1
|
Lisicka W, Earley ZM, Sifakis JJ, Erickson SA, Mattingly JR, Wu-Woods NJ, Krishnamurthy SR, Belkaid Y, Ismagilov RF, Cyster JG, Riesenfeld SJ, Bendelac A, Jabri B. Immunoglobulin A controls intestinal virus colonization to preserve immune homeostasis. Cell Host Microbe 2025; 33:498-511.e10. [PMID: 40154490 DOI: 10.1016/j.chom.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/26/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
Immunoglobulin A (IgA) is the predominant immunoglobulin isotype in mammals, primarily secreted at type I mucosal surfaces. Despite its abundance, the precise role of secretory IgA in the intestinal lumen, where it coats a diverse array of commensal microbiota, has remained elusive. Our study reveals that germinal center IgA responses are essential for preventing chronic colonization of the gut by specific viruses. In the absence of IgA, chronic viral colonization triggers an antigen-driven expansion of CD8αβ+ intraepithelial lymphocytes (IELs). Although these IELs are unable to clear the virus, they contribute to maintaining homeostasis by regulating its load and type I interferon responses. Consequently, IgA deficiency increases susceptibility to colitis in genetically susceptible hosts or following chemical induction but only in the presence of viral pathobionts requiring IgA for their clearance. These findings underscore the potential vulnerability of IgA-deficient individuals to immunopathology when exposed to selective viral pathobionts.
Collapse
Affiliation(s)
- Wioletta Lisicka
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Zachary M Earley
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Joseph J Sifakis
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Steven A Erickson
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Jonathan R Mattingly
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Natalie J Wu-Woods
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Siddharth R Krishnamurthy
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rustem F Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jason G Cyster
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Samantha J Riesenfeld
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Department of Pathology, University of Chicago, Chicago, IL, USA; Paris City University, Imagine Institute, Paris, France.
| |
Collapse
|
2
|
Song KH, Xiang X, Lee SH, Woo JK, Enkhtaivan G, Giraldo CR, Lee YR, Jeong YJ, Pashangzadeh S, Sharifi N, Yang AD, Hoang HD, Cho NH, Lee YS, Park DG, Alain T. The reovirus variant RP116 is oncolytic in immunocompetent models and generates reduced neutralizing antibodies to Type 3 Dearing. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200846. [PMID: 39354956 PMCID: PMC11442186 DOI: 10.1016/j.omton.2024.200846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 10/03/2024]
Abstract
The mammalian reovirus Type 3 Dearing (T3D) is a naturally occurring oncolytic virus. We previously identified a T3D variant isolated from persistently infected cancer cells that has a premature stop codon mutation in the S1 gene, generating a truncated σ1-attachment protein that lacks the globular head. We now report on the molecular characterization of this variant, named RP116, and assess its antitumor potential in human cancer cells and syngeneic mouse models. RP116 replicates efficiently in several cancer cell lines, shows reduced dependency for the JAM-A receptor, significantly decreases tumor growth in syngeneic models when injected either intratumorally or intravenously, and generates long-term cures and immune memory in combination with checkpoint inhibitors. Finally, we demonstrate that RP116 infection in mice leads to reduced production of neutralizing antibodies directed against reovirus T3D, preserving the efficacy of subsequent reovirus treatment. These results establish the value of developing RP116 as an additional oncolytic reovirus platform.
Collapse
Affiliation(s)
- Ki-Hoon Song
- ViroCure, #502, Ace TwinTower 1, 285 Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Xiao Xiang
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - So Hyun Lee
- ViroCure, #502, Ace TwinTower 1, 285 Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Jong Kyu Woo
- ViroCure, #502, Ace TwinTower 1, 285 Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Gansukh Enkhtaivan
- ViroCure, #502, Ace TwinTower 1, 285 Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Carlos Rios Giraldo
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - You-Rim Lee
- ViroCure, #502, Ace TwinTower 1, 285 Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Yeo Jin Jeong
- ViroCure, #502, Ace TwinTower 1, 285 Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Salar Pashangzadeh
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Negar Sharifi
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - An-Dao Yang
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Huy-Dung Hoang
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do 13620, Republic of Korea
| | - Yeon-Sook Lee
- ViroCure, #502, Ace TwinTower 1, 285 Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Dong Guk Park
- ViroCure, #502, Ace TwinTower 1, 285 Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
- Department of Surgery, Dankook University Hospital, Cheonan 31116, Republic of Korea
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
3
|
Zou C, Zhao W, Yin S, Xiang X, Tang J, Jia G, Che L, Liu G, Chen X, Tian G, Cai J, Kang B, Zhao H. Artificial parasin I protein (API) supplementation improves growth performance and intestinal health in weaned piglets challenged with enterotoxigenic Escherichia coli. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:154-165. [PMID: 39263444 PMCID: PMC11388718 DOI: 10.1016/j.aninu.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/15/2024] [Accepted: 04/10/2024] [Indexed: 09/13/2024]
Abstract
Diarrheas are common risks faced by piglets during the weaning period. This study investigated the alleviating effects of artificial parasin I protein (API) on growth performance and intestinal health of weaned pigs upon enterotoxigenic Escherichia coli (ETEC) challenge. Sixty piglets were randomly divided into five groups and fed a basal diet (CON) or basal diet supplemented with API at 0, 750, and 1500 mg/kg or antibiotics for 5 weeks. On d 15 and 25, piglets were challenged with ETEC K88 except for the CON group. Before the ETEC challenge (d 1-14), dietary API supplementation improved growth performance, and 750 mg API increased (P < 0.05) the average daily gain (ADG), decreased (P < 0.05) feed to gain ratio (F/G) and diarrhea index of weaned piglets. ETEC challenge (during d 15-35) reduced growth performance and increased (P < 0.01) the F/G, diarrhea rate, and diarrhea index. This event was accompanied by the numerically increased malondialdehyde (MDA) levels in serum and ileum, the decreased (P < 0.05) zonula-occludens-1 (ZO-1) and interleukin-6 (IL-6) in the ileum, and the increased (P = 0.04) secretory immunoglobulin A (sIgA) protein in the ileum. Artificial parasin I protein supplementation alleviated the negative impact of ETEC. The 750 mg/kg API inclusion elevated (P < 0.05) ADG and decreased (P < 0.05) F/G. Two levels of API decreased (P < 0.01) the diarrhea rate and diarrhea index. Meanwhile, API inclusion decreased (P < 0.01) the crypt depth in the jejunum, elevated (P < 0.05) villus height in the duodenum and villus height to crypt depth ratio in the duodenum and ileum, up-regulated (P < 0.05) ZO-1 gene, and down-regulated (P < 0.05) mucin-2 gene in the jejunum, and 1500 mg/kg API decreased (P < 0.01) sIgA level and down-regulated (P < 0.05) IL-1β gene in the ileum. Furthermore, 750 mg/kg API elevated (P < 0.01) Bifidobacteria population and acetic acid concentrations in the cecal chyme. In conclusion, API supplementation alleviates the negative impact of ETEC on growth performance and intestinal health, thus can be applied as an antibiotic alternative in weaned piglets.
Collapse
Affiliation(s)
- Congzhi Zou
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wanxin Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shenggang Yin
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyu Xiang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiayong Tang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Gambirasi M, Safa A, Vruzhaj I, Giacomin A, Sartor F, Toffoli G. Oral Administration of Cancer Vaccines: Challenges and Future Perspectives. Vaccines (Basel) 2023; 12:26. [PMID: 38250839 PMCID: PMC10821404 DOI: 10.3390/vaccines12010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Cancer vaccines, a burgeoning strategy in cancer treatment, are exploring innovative administration routes to enhance patient and medical staff experiences, as well as immunological outcomes. Among these, oral administration has surfaced as a particularly noteworthy approach, which is attributed to its capacity to ignite both humoral and cellular immune responses at systemic and mucosal tiers, thereby potentially bolstering vaccine efficacy comprehensively and durably. Notwithstanding this, the deployment of vaccines through the oral route in a clinical context is impeded by multifaceted challenges, predominantly stemming from the intricacy of orchestrating effective oral immunogenicity and necessitating strategic navigation through gastrointestinal barriers. Based on the immunogenicity of the gastrointestinal tract, this review critically analyses the challenges and recent advances and provides insights into the future development of oral cancer vaccines.
Collapse
Affiliation(s)
- Marta Gambirasi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Amin Safa
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
- Doctoral School in Pharmacological Sciences, University of Padua, 35131 Padova, Italy
- Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol 98616-15881, Iran
| | - Idris Vruzhaj
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
- Doctoral School in Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Aurora Giacomin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Franca Sartor
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS National Cancer Institute, 33081 Aviano, Italy; (M.G.); (I.V.); (F.S.)
| |
Collapse
|
5
|
He YF, Liu JQ, Hu XD, Li HM, Wu N, Wang J, Jiang ZG. Breastfeeding vs. breast milk transmission during COVID-19 pandemic, which is more important? Front Pediatr 2023; 11:1253333. [PMID: 37744448 PMCID: PMC10511770 DOI: 10.3389/fped.2023.1253333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
The catastrophic coronavirus disease 2019 (COVID-19) pandemic has raised many health questions, and whether breast milk from SARS-CoV-2 infected mothers may be a vector for SARS-CoV-2 transmission has become a hot topic of concern worldwide. Currently, there are extremely limited and conflicting data on the risk of infection in infants through breastfeeding. For this reason, we investigated almost all current clinical studies and systematically analyzed the presence of SARS-CoV-2 and antibodies in the breast milk of mothers infected with SARS-CoV-2, their effects on newborns, and the mechanisms involved. A total of 82 studies were included in this review, of which 66 examined the presence of SARS-CoV-2 in breast milk samples from mothers diagnosed with COVID-19, 29 reported results of antibody detection of SARS-CoV-2 in breast milk, and 13 reported both nucleic acid and antibody test results. Seventeen studies indicated the presence of detectable SARS-CoV-2 nucleic acid in breast milk samples, and only two studies monitored viral activity, both of which reported that infectious viruses could not be cultured from RNA-positive breast milk samples. All 29 studies indicated the presence of at least one of the three antibodies, IgA, IgG and IgM, in breast milk. Five studies indicated the presence of at least one antibody in the serum of breastfed newborns. No COVID-19-related deaths were reported in all 1,346 newborns. Our study suggests that direct breastfeeding does not pose an additional risk of infection to newborns and that breast milk is a beneficial source of anti-SARS-CoV-2 antibodies that provide passive immune protection to infants. In addition, direct breastfeeding would provide maternal benefits. Our review supports the recommendation to encourage direct breastfeeding under appropriate infection control guidelines. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/#myprospero, identifier: 458043.
Collapse
Affiliation(s)
- Yan-fei He
- Health Management Center, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jun-qiang Liu
- Department of Thoracic Surgery, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiao-dong Hu
- Department of Endocrinology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hu-ming Li
- Department of Respiratory Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ni Wu
- Health Management Center, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jie Wang
- Health Management Center, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhi-gang Jiang
- Department of Statistics, Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Harnessing Nasal Immunity with IgA to Prevent Respiratory Infections. IMMUNO 2022. [DOI: 10.3390/immuno2040036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The nasal cavity is a primary checkpoint for the invasion of respiratory pathogens. Numerous pathogens, including SARS-CoV-2, S. pneumoniae, S. aureus, etc., can adhere/colonize nasal lining to trigger an infection. Secretory IgA (sIgA) serves as the first line of immune defense against foreign pathogens. sIgA facilitates clearance of pathogenic microbes by intercepting their access to epithelial receptors and mucus entrapment through immune exclusion. Elevated levels of neutralizing IgA at the mucosal surfaces are associated with a high level of protection following intranasal immunizations. This review summarizes recent advances in intranasal vaccination technology and challenges in maintaining nominal IgA levels at the mucosal surface. Overall, the review emphasizes the significance of IgA-mediated nasal immunity, which holds a tremendous potential to mount protection against respiratory pathogens.
Collapse
|
7
|
Candela F, Quarta E, Buttini F, Ancona A, Bettini R, Sonvico F. Recent Patents on Nasal Vaccines Containing Nanoadjuvants. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:103-121. [PMID: 35450539 PMCID: PMC10184237 DOI: 10.2174/2667387816666220420124648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/21/2022] [Accepted: 02/04/2022] [Indexed: 05/17/2023]
Abstract
Vaccines are one of the greatest medical achievements of modern medicine. The nasal mucosa represents an effective route of vaccination for both mucosal immunity and peripheral, being at the same time an inductive and effector site of immunity. In this paper, the innovative and patented compositions and manufacturing procedures of nanomaterials have been studied using the peerreviewed research literature. Nanomaterials have several properties that make them unique as adjuvant for vaccines. Nanoadjuvants through the influence of antigen availability over time affect the immune response. Namely, the amount of antigen reaching the immune system or its release over prolonged periods of time can be effectively increased by nanoadjuvants. Mucosal vaccines are an interesting alternative for immunization of diseases in which pathogens access the body through these epithelia. Nanometric adjuvants are not only a viable approach to improve the efficacy of nasal vaccines but in most of the cases they represent the core of the intellectual property related to the innovative vaccine.
Collapse
Affiliation(s)
- Francesco Candela
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Eride Quarta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Francesca Buttini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- University Centre for Innovation in Health Products (Biopharmanet-TEC), University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Adolfo Ancona
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ruggero Bettini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- University Centre for Innovation in Health Products (Biopharmanet-TEC), University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Fabio Sonvico
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- University Centre for Innovation in Health Products (Biopharmanet-TEC), University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| |
Collapse
|
8
|
Wang Y, Xia L, Wang G, Lu H, Wang H, Luo S, Zhang T, Gao S, Huang J, Min X. Subcutaneous immunization with the fusion protein ΔA146Ply-SP0148 confers protection against Streptococcus pneumoniae infection. Microb Pathog 2021; 162:105325. [PMID: 34848296 DOI: 10.1016/j.micpath.2021.105325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 12/30/2022]
Abstract
Pneumococcal SP0148 and pneumolysin (Ply) derivatives are important vaccine candidates. SP0148 is a conserved lipoprotein with high immunogenicity produced by Streptococcus pneumoniae. We have previously demonstrated that SP0148 can confer protection against fatal infections caused by S. pneumoniae. ΔA146Ply is a noncytotoxic mutant of Ply that retains the TLR4 agonistic effect and has mucosal and subcutaneous adjuvant activities suggested to induce protective immunity against S. pneumoniae infection. In this study, we constructed the fusion protein ΔA146Ply-SP0148, composed of ΔA146Ply and SP0148, and evaluated the immunoprotective effect of the fusion protein. When mice were subcutaneously immunized with the fusion protein ΔA146Ply-SP0148, high levels of anti-ΔA146Ply and anti-SP0148 IgG antibodies were induced in the serum. Specific antibodies can bind to a variety of different serotypes of S. pneumoniae. Compared with mice immunized with ΔA146Ply and SP0148 alone, mice immunized subcutaneously with the fusion protein ΔA146Ply-SP0148 with Al(OH)3 had a higher survival rate when challenged by a lethal dose of S. pneumoniae, and they also had significantly lower lung bacterial loads and milder lung inflammation. In addition, mice immunized subcutaneously with the fusion protein ΔA146Ply-SP0148 stimulated strong Th1, Th2, and Th17 cell responses. In summary, these results suggest that subcutaneous immunization with the ΔA146Ply-SP0148 fusion protein can protect mice against fatal pneumococcal infection and lung infection. The fusion protein ΔA146ply-SP0148 can be a new pneumococcal vaccine target.
Collapse
Affiliation(s)
- Yao Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lingyin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guangli Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Huifang Lu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hui Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shilu Luo
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Song Gao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jian Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
9
|
van Keulen BJ, Romijn M, Bondt A, Dingess KA, Kontopodi E, van der Straten K, den Boer MA, Burger JA, Poniman M, Bosch BJ, Brouwer PJM, de Groot CJM, Hoek M, Li W, Pajkrt D, Sanders RW, Schoonderwoerd A, Tamara S, Timmermans RAH, Vidarsson G, Stittelaar KJ, Rispens TT, Hettinga KA, van Gils MJ, Heck AJR, van Goudoever JB. Human Milk from Previously COVID-19-Infected Mothers: The Effect of Pasteurization on Specific Antibodies and Neutralization Capacity. Nutrients 2021; 13:1645. [PMID: 34068142 PMCID: PMC8152997 DOI: 10.3390/nu13051645] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/02/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Since the outbreak of coronavirus disease 2019 (COVID-19), many put their hopes in the rapid availability of effective immunizations. Human milk, containing antibodies against syndrome coronavirus 2 (SARS-CoV-2), may serve as means of protection through passive immunization. We aimed to determine the presence and pseudovirus neutralization capacity of SARS-CoV-2 specific IgA in human milk of mothers who recovered from COVID-19, and the effect of pasteurization on these antibodies. METHODS This prospective case control study included lactating mothers, recovered from (suspected) COVID-19 and healthy controls. Human milk and serum samples were collected. To assess the presence of SARS-CoV-2 antibodies we used multiple complementary assays, namely ELISA with the SARS-CoV-2 spike protein (specific for IgA and IgG), receptor binding domain (RBD) and nucleocapsid (N) protein for IgG in serum, and bridging ELISA with the SARS-CoV-2 RBD and N protein for specific Ig (IgG, IgM and IgA in human milk and serum). To assess the effect of pasteurization, human milk was exposed to Holder (HoP) and High Pressure Pasteurization (HPP). RESULTS Human milk contained abundant SARS-CoV-2 antibodies in 83% of the proven cases and in 67% of the suspected cases. Unpasteurized milk with and without these antibodies was found to be capable of neutralizing a pseudovirus of SARS-CoV-2 in (97% and 85% of the samples respectively). After pasteurization, total IgA antibody levels were affected by HoP, while SARS-CoV-2 specific antibody levels were affected by HPP. Pseudovirus neutralizing capacity of the human milk samples was only retained with the HPP approach. No correlation was observed between milk antibody levels and neutralization capacity. CONCLUSIONS Human milk from recovered COVID-19-infected mothers contains SARS-CoV-2 specific antibodies which maintained neutralization capacity after HPP. All together this may represent a safe and effective immunization strategy after HPP.
Collapse
Affiliation(s)
- Britt J. van Keulen
- Department of Pediatrics, Amsterdam UMC, Vrije Universiteit, University of Amsterdam Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands; (B.J.v.K.); (M.R.); (E.K.); (D.P.); (A.S.)
| | - Michelle Romijn
- Department of Pediatrics, Amsterdam UMC, Vrije Universiteit, University of Amsterdam Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands; (B.J.v.K.); (M.R.); (E.K.); (D.P.); (A.S.)
| | - Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands; (A.B.); (K.A.D.); (M.A.d.B.); (M.H.); (S.T.); (A.J.R.H.)
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Kelly A. Dingess
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands; (A.B.); (K.A.D.); (M.A.d.B.); (M.H.); (S.T.); (A.J.R.H.)
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Eva Kontopodi
- Department of Pediatrics, Amsterdam UMC, Vrije Universiteit, University of Amsterdam Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands; (B.J.v.K.); (M.R.); (E.K.); (D.P.); (A.S.)
- Food Quality & Design Group, Wageningen University and Research, 6708 WG Wageningen, The Netherlands;
| | - Karlijn van der Straten
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (K.v.d.S.); (J.A.B.); (M.P.); (P.J.M.B.); (R.W.S.); (M.J.v.G.)
| | - Maurits A. den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands; (A.B.); (K.A.D.); (M.A.d.B.); (M.H.); (S.T.); (A.J.R.H.)
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Judith A. Burger
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (K.v.d.S.); (J.A.B.); (M.P.); (P.J.M.B.); (R.W.S.); (M.J.v.G.)
| | - Meliawati Poniman
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (K.v.d.S.); (J.A.B.); (M.P.); (P.J.M.B.); (R.W.S.); (M.J.v.G.)
| | - Berend J. Bosch
- Division Infectious Diseases & Immunology/Laboratory of Virology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (B.J.B.); (W.L.)
| | - Philip J. M. Brouwer
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (K.v.d.S.); (J.A.B.); (M.P.); (P.J.M.B.); (R.W.S.); (M.J.v.G.)
| | - Christianne J. M. de Groot
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands;
| | - Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands; (A.B.); (K.A.D.); (M.A.d.B.); (M.H.); (S.T.); (A.J.R.H.)
| | - Wentao Li
- Division Infectious Diseases & Immunology/Laboratory of Virology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (B.J.B.); (W.L.)
| | - Dasja Pajkrt
- Department of Pediatrics, Amsterdam UMC, Vrije Universiteit, University of Amsterdam Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands; (B.J.v.K.); (M.R.); (E.K.); (D.P.); (A.S.)
| | - Rogier W. Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (K.v.d.S.); (J.A.B.); (M.P.); (P.J.M.B.); (R.W.S.); (M.J.v.G.)
- Department of Microbiology and Immunolgy, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Anne Schoonderwoerd
- Department of Pediatrics, Amsterdam UMC, Vrije Universiteit, University of Amsterdam Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands; (B.J.v.K.); (M.R.); (E.K.); (D.P.); (A.S.)
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands; (A.B.); (K.A.D.); (M.A.d.B.); (M.H.); (S.T.); (A.J.R.H.)
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Rian A. H. Timmermans
- Wageningen Food & Biobased Research, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands;
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, P.O. Box 9190, 1006 AD Amsterdam, The Netherlands;
| | - Koert J. Stittelaar
- Viroclinics Xplore, Viroclinics Biosciences B.V., Nistelrooise Baan 3, 5374 RE Schaijk, The Netherlands;
| | - Theo T. Rispens
- Department of Immunopathology, Sanquin Research & Landsteiner Laboratory Academic Medical Centre, 1081 HV Amsterdam, The Netherlands;
| | - Kasper A. Hettinga
- Food Quality & Design Group, Wageningen University and Research, 6708 WG Wageningen, The Netherlands;
| | - Marit J. van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (K.v.d.S.); (J.A.B.); (M.P.); (P.J.M.B.); (R.W.S.); (M.J.v.G.)
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands; (A.B.); (K.A.D.); (M.A.d.B.); (M.H.); (S.T.); (A.J.R.H.)
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Johannes B. van Goudoever
- Department of Pediatrics, Amsterdam UMC, Vrije Universiteit, University of Amsterdam Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands; (B.J.v.K.); (M.R.); (E.K.); (D.P.); (A.S.)
| |
Collapse
|
10
|
Onabajo OO, Mattapallil JJ. Gut Microbiome Homeostasis and the CD4 T- Follicular Helper Cell IgA Axis in Human Immunodeficiency Virus Infection. Front Immunol 2021; 12:657679. [PMID: 33815419 PMCID: PMC8017181 DOI: 10.3389/fimmu.2021.657679] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) and Simian Immunodeficiency Virus (SIV) are associated with severe perturbations in the gut mucosal environment characterized by massive viral replication and depletion of CD4 T cells leading to dysbiosis, breakdown of the epithelial barrier, microbial translocation, immune activation and disease progression. Multiple mechanisms play a role in maintaining homeostasis in the gut mucosa and protecting the integrity of the epithelial barrier. Among these are the secretory IgA (sIgA) that are produced daily in vast quantities throughout the mucosa and play a pivotal role in preventing commensal microbes from breaching the epithelial barrier. These microbe specific, high affinity IgA are produced by IgA+ plasma cells that are present within the Peyer’s Patches, mesenteric lymph nodes and the isolated lymphoid follicles that are prevalent in the lamina propria of the gastrointestinal tract (GIT). Differentiation, maturation and class switching to IgA producing plasma cells requires help from T follicular helper (Tfh) cells that are present within these lymphoid tissues. HIV replication and CD4 T cell depletion is accompanied by severe dysregulation of Tfh cell responses that compromises the generation of mucosal IgA that in turn alters barrier integrity leading to commensal bacteria readily breaching the epithelial barrier and causing mucosal pathology. Here we review the effect of HIV infection on Tfh cells and mucosal IgA responses in the GIT and the consequences these have for gut dysbiosis and mucosal immunopathogenesis.
Collapse
Affiliation(s)
- Olusegun O Onabajo
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Joseph J Mattapallil
- F. E. Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
11
|
Abstract
Among antibodies, IgA is unique because it has evolved to be secreted onto mucosal surfaces. The structure of IgA and the associated secretory component allow IgA to survive the highly proteolytic environment of mucosal surfaces but also substantially limit IgA's ability to activate effector functions on immune cells. Despite these characteristics, IgA is critical for both preventing enteric infections and shaping the local microbiome. IgA's function is determined by a distinct antigen-binding repertoire, composed of antibodies with a variety of specificities, from permissive polyspecificity to cross-reactivity to exquisite specificity to a single epitope, which act together to regulate intestinal bacteria. Development of the unique function and specificities of IgA is shaped by local cues provided by the gut-associated lymphoid tissue, driven by the constantly changing environment of the intestine and microbiota.
Collapse
Affiliation(s)
- Timothy W Hand
- R.K. Mellon Institute for Pediatric Research, Department of Pediatrics, Division of Infectious Diseases, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania 15224, USA;
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;
| |
Collapse
|
12
|
Lu T, Tao L, Yu H, Zhang H, Wu Y, Wu S, Zhou J. Development of a reverse transcription loop mediated isothermal amplification assay for the detection of Mouse reovirus type 3 in laboratory mice. Sci Rep 2021; 11:3508. [PMID: 33568687 PMCID: PMC7875963 DOI: 10.1038/s41598-021-83034-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/25/2021] [Indexed: 11/29/2022] Open
Abstract
Mouse reovirus type 3 (Reo-3) infection is a viral disease that is harmful for laboratory mice. No rapid and accurate detection methods are currently available for this infection. In this study, we describe a rapid, simple, closed-tube, one step, reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for Reo-3 and compare our assay with indirect enzyme-linked immunosorbent assay (ELISA). Three sets of RT-LAMP primers were designed by sequence analysis of a specific conserved sequence of the Reo-3 S1 gene. Using RS2 primer set, the RT-LAMP assay required 60 min at 65 °C to amplify the S1 gene in one step by using Reo-3 RNA template and had no cross-reactivity with the other related pathogens, such as Sendai virus (SV), pneumonia virus of mice (PVM), mouse hepatitis virus (MHV), Ectromelia virus (Ect), minute virus of mice (MVM), P. pneumotropica, B. bronchiseptica, K. pneumonia and P. aeruginosa. in our LAMP reaction system. The limit of detection (LOD) of our RT-LAMP assay is 4 fg/μL. The established RT-LAMP assay enabled visual detection when fluorescence detection reagents were added, and was demonstrated to be effective and efficient. We tested 30 clinical blood samples and five artificial positive samples from SPF mice, the concordance between the two methods for blood samples was 100% compared with indirect ELISA and RT-PCR. Considering its performance, specificity, sensitivity, and repeatability, the developed RT-LAMP could be a valuable tool to supply a more effective Reo-3 detection method in laboratory animal quality monitoring.
Collapse
Affiliation(s)
- Taofeng Lu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lingyun Tao
- Shanghai Laboratory Animal Research Center, Shanghai, 201203, China
| | - Haibo Yu
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Hui Zhang
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yanjun Wu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Shuguang Wu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jie Zhou
- Shanghai Laboratory Animal Research Center, Shanghai, 201203, China.
| |
Collapse
|
13
|
van Gool MMJ, van Egmond M. IgA and FcαRI: Versatile Players in Homeostasis, Infection, and Autoimmunity. Immunotargets Ther 2021; 9:351-372. [PMID: 33447585 PMCID: PMC7801909 DOI: 10.2147/itt.s266242] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Mucosal surfaces constitute the frontiers of the body and are the biggest barriers of our body for the outside world. Immunoglobulin A (IgA) is the most abundant antibody class present at these sites. It passively contributes to mucosal homeostasis via immune exclusion maintaining a tight balance between tolerating commensals and providing protection against pathogens. Once pathogens have succeeded in invading the epithelial barriers, IgA has an active role in host-pathogen defense by activating myeloid cells through divers receptors, including its Fc receptor, FcαRI (CD89). To evade elimination, several pathogens secrete proteins that interfere with either IgA neutralization or FcαRI-mediated immune responses, emphasizing the importance of IgA-FcαRI interactions in preventing infection. Depending on the IgA form, either anti- or pro-inflammatory responses can be induced. Moreover, the presence of excessive IgA immune complexes can result in continuous FcαRI-mediated activation of myeloid cells, potentially leading to severe tissue damage. On the one hand, enhancing pathogen-specific mucosal and systemic IgA by vaccination may increase protective immunity against infectious diseases. On the other hand, interfering with the IgA-FcαRI axis by monovalent targeting or blocking FcαRI may resolve IgA-induced inflammation and tissue damage. This review describes the multifaceted role of FcαRI as immune regulator between anti- and pro-inflammatory responses of IgA, and addresses potential novel therapeutic strategies that target FcαRI in disease. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/xlijXy5W0xA
Collapse
Affiliation(s)
- Melissa Maria Johanna van Gool
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands.,Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Breedveld A, van Egmond M. IgA and FcαRI: Pathological Roles and Therapeutic Opportunities. Front Immunol 2019; 10:553. [PMID: 30984170 PMCID: PMC6448004 DOI: 10.3389/fimmu.2019.00553] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Immunoglobulin A (IgA) is the most abundant antibody class present at mucosal surfaces. The production of IgA exceeds the production of all other antibodies combined, supporting its prominent role in host-pathogen defense. IgA closely interacts with the intestinal microbiota to enhance its diversity, and IgA has a passive protective role via immune exclusion. Additionally, inhibitory ITAMi signaling via the IgA Fc receptor (FcαRI; CD89) by monomeric IgA may play a role in maintaining homeostatic conditions. By contrast, IgA immune complexes (e.g., opsonized pathogens) potently activate immune cells via cross-linking FcαRI, thereby inducing pro-inflammatory responses resulting in elimination of pathogens. The importance of IgA in removal of pathogens is emphasized by the fact that several pathogens developed mechanisms to break down IgA or evade FcαRI-mediated activation of immune cells. Augmented or aberrant presence of IgA immune complexes can result in excessive neutrophil activation, potentially leading to severe tissue damage in multiple inflammatory, or autoimmune diseases. Influencing IgA or FcαRI-mediated functions therefore provides several therapeutic possibilities. On the one hand (passive) IgA vaccination strategies can be developed for protection against infections. Furthermore, IgA monoclonal antibodies that are directed against tumor antigens may be effective as cancer treatment. On the other hand, induction of ITAMi signaling via FcαRI may reduce allergy or inflammation, whereas blocking FcαRI with monoclonal antibodies, or peptides may resolve IgA-induced tissue damage. In this review both (patho)physiological roles as well as therapeutic possibilities of the IgA-FcαRI axis are addressed.
Collapse
Affiliation(s)
- Annelot Breedveld
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC, Amsterdam, Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC, Amsterdam, Netherlands
- Department of Surgery, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
15
|
Corthésy B, Monnerat J, Lötscher M, Vonarburg C, Schaub A, Bioley G. Oral Passive Immunization With Plasma-Derived Polyreactive Secretory-Like IgA/M Partially Protects Mice Against Experimental Salmonellosis. Front Immunol 2018; 9:2970. [PMID: 30619327 PMCID: PMC6305475 DOI: 10.3389/fimmu.2018.02970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/03/2018] [Indexed: 01/29/2023] Open
Abstract
Secretory immunoglobulins have a critical role in defense of the gastrointestinal tract and are known to act by preventing bacterial acquisition. A stringent murine model of bacterial infection with Salmonella enterica Typhimurium was used to examine protection mediated by oral passive immunization with human plasma-derived polyreactive IgA and IgM antibodies (Abs) reconstituted as secretory-like immunoglobulins (SCIgA/M). This reagent has been shown to trigger Salmonella agglutination and to limit the entry of bacterium into intestinal Peyer's patches via immune exclusion. We now demonstrate that upon administration into ligated intestinal loops, SCIgA/M properly anchors in the mucus and is protected from degradation to a better extent that IgA/M or IgG. Moreover, prophylactic oral administration of SCIgA/M before intragastric infection of mice with a virulent strain of S. enterica Typhimurium allows to protect infected animals, as reflected by reduced colonization of both mucosal and systemic compartments, and conserved integrity of intestinal tissues. In comparison with IgA/M or IgG administration, SCIgA/M provided the highest degree of protection. Moreover, such protective efficacy is also observed after therapeutic oral delivery of SCIgA/M. Either prophylactic or therapeutic treatment with passively delivered SCIgA/M ensured survival of up to 50% of infected mice, while untreated animals all died. Our findings unravel the potential of oral passive immunization with plasma-derived polyreactive SCIgA/M Abs to fight gastrointestinal infections.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory, Division of Immunology and Allergy, Lausanne University Hospital (CHUV), Épalinges, Switzerland
| | - Justine Monnerat
- R&D Laboratory, Division of Immunology and Allergy, Lausanne University Hospital (CHUV), Épalinges, Switzerland
| | | | | | | | - Gilles Bioley
- R&D Laboratory, Division of Immunology and Allergy, Lausanne University Hospital (CHUV), Épalinges, Switzerland
| |
Collapse
|
16
|
Abdel-Latif M, Sakran T, Abdel-Haleem HM, Eissa MF, Al-Sayed SE. Immunoprotective responses against murine sarcocystosis by β - Irradiated sporocysts. Exp Parasitol 2018; 191:73-81. [DOI: 10.1016/j.exppara.2018.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/30/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022]
|
17
|
Berger AK, Yi H, Kearns DB, Mainou BA. Bacteria and bacterial envelope components enhance mammalian reovirus thermostability. PLoS Pathog 2017; 13:e1006768. [PMID: 29211815 PMCID: PMC5734793 DOI: 10.1371/journal.ppat.1006768] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/18/2017] [Accepted: 11/23/2017] [Indexed: 12/24/2022] Open
Abstract
Enteric viruses encounter diverse environments as they migrate through the gastrointestinal tract to infect their hosts. The interaction of eukaryotic viruses with members of the host microbiota can greatly impact various aspects of virus biology, including the efficiency with which viruses can infect their hosts. Mammalian orthoreovirus, a human enteric virus that infects most humans during childhood, is negatively affected by antibiotic treatment prior to infection. However, it is not known how components of the host microbiota affect reovirus infectivity. In this study, we show that reovirus virions directly interact with Gram positive and Gram negative bacteria. Reovirus interaction with bacterial cells conveys enhanced virion thermostability that translates into enhanced attachment and infection of cells following an environmental insult. Enhanced virion thermostability was also conveyed by bacterial envelope components lipopolysaccharide (LPS) and peptidoglycan (PG). Lipoteichoic acid and N-acetylglucosamine-containing polysaccharides enhanced virion stability in a serotype-dependent manner. LPS and PG also enhanced the thermostability of an intermediate reovirus particle (ISVP) that is associated with primary infection in the gut. Although LPS and PG alter reovirus thermostability, these bacterial envelope components did not affect reovirus utilization of its proteinaceous cellular receptor junctional adhesion molecule-A or cell entry kinetics. LPS and PG also did not affect the overall number of reovirus capsid proteins σ1 and σ3, suggesting their effect on virion thermostability is not mediated through altering the overall number of major capsid proteins on the virus. Incubation of reovirus with LPS and PG did not significantly affect the neutralizing efficiency of reovirus-specific antibodies. These data suggest that bacteria enhance reovirus infection of the intestinal tract by enhancing the thermal stability of the reovirus particle at a variety of temperatures through interactions between the viral particle and bacterial envelope components.
Collapse
Affiliation(s)
- Angela K. Berger
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Hong Yi
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia, United States of America
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Bernardo A. Mainou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| |
Collapse
|
18
|
Kim GL, Seon SH, Rhee DK. Pneumonia and Streptococcus pneumoniae vaccine. Arch Pharm Res 2017; 40:885-893. [PMID: 28735461 PMCID: PMC7090487 DOI: 10.1007/s12272-017-0933-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022]
Abstract
Pneumonia is an inflammatory disease of the lung, responsible for high morbidity and mortality worldwide. It is caused by bacteria, viruses, fungi, or other microorganisms. Streptococcus pneumoniae, a gram-positive bacterium with over 90 serotypes, is the most common causative agent. Moreover, comorbid factors including heart failure, renal disease, and pulmonary disease could increase the risk of pneumococcal pneumonia. Since the advent of the pneumococcal vaccine in the 1980s, the incidence of pneumonia has decreased significantly. However, current vaccines confer only limited protection against serotypes included in the vaccine. Thus, to overcome this limitation, new types of pneumococcal vaccines have been sought and under clinical trials. In this review, we discuss pneumonia and summarize the various types of pneumococcal vaccines in progress.
Collapse
Affiliation(s)
- Gyu-Lee Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Seung-Han Seon
- School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, South Korea.
| |
Collapse
|
19
|
Teige LH, Lund M, Haatveit HM, Røsæg MV, Wessel Ø, Dahle MK, Storset AK. A bead based multiplex immunoassay detects Piscine orthoreovirus specific antibodies in Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2017; 63:491-499. [PMID: 28254501 DOI: 10.1016/j.fsi.2017.02.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/16/2017] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
Future growth in aquaculture relies strongly on the control of diseases and pathogens. Vaccination has been a successful strategy for obtaining control of bacterial diseases in fish, but for viral diseases, vaccine development has been more challenging. Effective long-term protection against viral infections is not yet fully understood for fish, and in addition, optimal tools to monitor adaptive immunity are limited. Assays that can detect specific antibodies produced in response to viral infection in fish are still in their early development. Multiplex bead based assays have many advantages over traditional assays, since they are more sensitive and allow detection of multiple antigen-specific antibodies simultaneously in very small amounts of plasma or serum. In the present study, a bead based assay have been developed for detection of plasma IgM directed against Piscine orthoreovirus (PRV), the virus associated with the disease Heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon. Using recombinant PRV proteins coated on beads, antibodies targeting the structural outer capsid protein μ1 and the non-structural protein μNS were detected. Results from a PRV cohabitation challenge trial indicated that the antibody production was initiated approximately two weeks after the peak phase of PRV infection, coinciding with typical HSMI pathology. Thereafter, the antibody production increased while the epicardial inflammation became less prominent. In conclusion, the novel assay can detect PRV-specific antibodies that may play a role in viral defence. The bead-based immunoassay represents a valuable tool for studies on HSMI and possibly other diseases in aquaculture.
Collapse
Affiliation(s)
- Lena Hammerlund Teige
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, N-0454 Oslo, Norway
| | - Morten Lund
- Norwegian Veterinary Institute, N-0454 Oslo, Norway
| | - Hanne M Haatveit
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, N-0454 Oslo, Norway
| | - Magnus Vikan Røsæg
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, N-0454 Oslo, Norway; SalMar ASA, N-7266 Kverva, Norway
| | - Øystein Wessel
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, N-0454 Oslo, Norway
| | - Maria K Dahle
- Norwegian Veterinary Institute, N-0454 Oslo, Norway.
| | - Anne K Storset
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, N-0454 Oslo, Norway
| |
Collapse
|
20
|
Structural Insights into Reovirus σ1 Interactions with Two Neutralizing Antibodies. J Virol 2017; 91:JVI.01621-16. [PMID: 27928010 DOI: 10.1128/jvi.01621-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/29/2016] [Indexed: 01/09/2023] Open
Abstract
Reovirus attachment protein σ1 engages glycan receptors and junctional adhesion molecule-A (JAM-A) and is thought to undergo a conformational change during the proteolytic disassembly of virions to infectious subvirion particles (ISVPs) that accompanies cell entry. The σ1 protein is also the primary target of neutralizing antibodies. Here, we present a structural and functional characterization of two neutralizing antibodies that target σ1 of serotype 1 (T1) and serotype 3 (T3) reoviruses. The crystal structures revealed that each antibody engages its cognate σ1 protein within the head domain via epitopes distinct from the JAM-A-binding site. Surface plasmon resonance and cell-binding assays indicated that both antibodies likely interfere with JAM-A engagement by steric hindrance. To define the interplay between the carbohydrate receptor and antibody binding, we conducted hemagglutination inhibition assays using virions and ISVPs. The glycan-binding site of T1 σ1 is located in the head domain and is partly occluded by the bound Fab in the crystal structure. The T1-specific antibody inhibited hemagglutination by virions and ISVPs, probably via direct interference with glycan engagement. In contrast to T1 σ1, the carbohydrate-binding site of T3 σ1 is located in the tail domain, distal to the antibody epitope. The T3-specific antibody inhibited hemagglutination by T3 virions but not ISVPs, indicating that the antibody- and glycan-binding sites in σ1 are in closer spatial proximity on virions than on ISVPs. Our results provide direct evidence for a structural rearrangement of σ1 during virion-to-ISVP conversion and contribute new information about the mechanisms of antibody-mediated neutralization of reovirus. IMPORTANCE Virus attachment proteins mediate binding to host cell receptors, serve critical functions in cell and tissue tropism, and are often targeted by the neutralizing antibody response. The structural investigation of antibody-antigen complexes can provide valuable information for understanding the molecular basis of virus neutralization. Studies with enveloped viruses, such as HIV and influenza virus, have helped to define sites of vulnerability and guide vaccination strategies. By comparison, less is known about antibody binding to nonenveloped viruses. Here, we structurally investigated two neutralizing antibodies that bind the attachment protein σ1 of reovirus. Furthermore, we characterized the neutralization efficiency, the binding affinity for σ1, and the effect of the antibodies on reovirus receptor engagement. Our analysis defines reovirus interactions with two neutralizing antibodies, allows us to propose a mechanism by which they block virus infection, and provides evidence for a conformational change in the σ1 protein during viral cell entry.
Collapse
|
21
|
Abstract
Nasal delivery offers many benefits over traditional approaches to vaccine administration. These include ease of administration without needles that reduces issues associated with needlestick injuries and disposal. Additionally, this route offers easy access to a key part of the immune system that can stimulate other mucosal sites throughout the body. Increased acceptance of nasal vaccine products in both adults and children has led to a burgeoning pipeline of nasal delivery technology. Key challenges and opportunities for the future will include translating in vivo data to clinical outcomes. Particular focus should be brought to designing delivery strategies that take into account the broad range of diseases, populations and healthcare delivery settings that stand to benefit from this unique mucosal route.
Collapse
Affiliation(s)
- Helmy Yusuf
- a School of Pharmacy, Queen's University of Belfast , Belfast , Antrim , UK
| | - Vicky Kett
- b School of Pharmacy, Queen's University of Belfast , Belfast , Antrim , UK
| |
Collapse
|
22
|
Carlier FM, Sibille Y, Pilette C. The epithelial barrier and immunoglobulin A system in allergy. Clin Exp Allergy 2016; 46:1372-1388. [PMID: 27684559 DOI: 10.1111/cea.12830] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Airway and intestinal epithelial layers represent first-line physical barriers, playing a key role in mucosal immunity. Barrier dysfunction, characterized by alterations such as disruption of cell-cell apical junctions and aberrant epithelial responses, probably constitutes early and key events for chronic immune responses to environmental antigens in the skin and in the gut. For instance, barrier dysfunction drives Th2 responses in atopic disorders or eosinophilic esophagitis. Such epithelial impairment is also a salient feature of allergic asthma and growing evidence indicates that barrier alterations probably play a driving role in this disease. IgA has been identified as the most abundant immunoglobulin in mucosa, where it acts as an active barrier through immune exclusion of inhaled or ingested antigens or pathogens. Historically, it has been thought to represent the serum factor underlying reaginic activity before IgE was discovered. Despite several studies about regulation and major functions of IgA at mucosal surfaces, its role in allergy remains largely unclear. This review aims at summarizing findings about epithelial functions and IgA biology that are relevant to allergy, and to integrate the emerging concepts and the recent developments in mucosal immunology, and how these could translate to clinical observations in allergy.
Collapse
Affiliation(s)
- F M Carlier
- Institut de Recherche Expérimentale et Clinique, Pôle Pneumologie, ORL et dermatologie, Brussels, Belgium. .,Department of Internal Medicine, Division of Pneumology, Cliniques Universitaires Saint-Luc, Brussels, Belgium. .,Department of Internal Medicine, Division of Pneumology, Centre Hospitalier Universitaire Dinant-Godinne UCL Namur, Yvoir, Belgium.
| | - Y Sibille
- Institut de Recherche Expérimentale et Clinique, Pôle Pneumologie, ORL et dermatologie, Brussels, Belgium.,Department of Internal Medicine, Division of Pneumology, Centre Hospitalier Universitaire Dinant-Godinne UCL Namur, Yvoir, Belgium
| | - C Pilette
- Institut de Recherche Expérimentale et Clinique, Pôle Pneumologie, ORL et dermatologie, Brussels, Belgium.,Department of Internal Medicine, Division of Pneumology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.,Walloon Excellence in Lifesciences and Biotechnology, Wavre, Belgium
| |
Collapse
|
23
|
Engineering Recombinant Reoviruses To Display gp41 Membrane-Proximal External-Region Epitopes from HIV-1. mSphere 2016; 1:mSphere00086-16. [PMID: 27303748 PMCID: PMC4888892 DOI: 10.1128/msphere.00086-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/25/2016] [Indexed: 12/30/2022] Open
Abstract
Vaccines to protect against HIV-1, the causative agent of AIDS, are not approved for use. Antibodies that neutralize genetically diverse strains of HIV-1 bind to discrete regions of the envelope glycoproteins, including the gp41 MPER. We engineered recombinant reoviruses that displayed MPER epitopes in attachment protein σ1 (REO-MPER vectors). The REO-MPER vectors replicated with wild-type efficiency, were genetically stable, and retained native antigenicity. However, we did not detect HIV-1-specific immune responses following inoculation of the REO-MPER vectors into small animals. This work provides proof of principle for engineering reovirus to express antigenic epitopes and illustrates the difficulty in eliciting MPER-specific immune responses. The gp41 membrane-proximal external region (MPER) is a target for broadly neutralizing antibody responses against human immunodeficiency virus type 1 (HIV-1). However, replication-defective virus vaccines currently under evaluation in clinical trials do not efficiently elicit MPER-specific antibodies. Structural modeling suggests that the MPER forms an α-helical coiled coil that is required for function and immunogenicity. To maintain the native MPER conformation, we used reverse genetics to engineer replication-competent reovirus vectors that displayed MPER sequences in the α-helical coiled-coil tail domain of viral attachment protein σ1. Sequences in reovirus strain type 1 Lang (T1L) σ1 were exchanged with sequences encoding HIV-1 strain Ba-L MPER epitope 2F5 or the entire MPER. Individual 2F5 or MPER substitutions were introduced at virion-proximal or virion-distal sites in the σ1 tail. Recombinant reoviruses containing heterologous HIV-1 sequences were viable and produced progeny yields comparable to those with wild-type virus. HIV-1 sequences were retained following 10 serial passages in cell culture, indicating that the substitutions were genetically stable. Recombinant viruses engineered to display the 2F5 epitope or full-length MPER in σ1 were recognized by purified 2F5 antibody. Inoculation of mice with 2F5-containing vectors or rabbits with 2F5- or MPER-containing vectors elicited anti-reovirus antibodies, but HIV-1-specific antibodies were not detected. Together, these findings indicate that heterologous sequences that form α-helices can functionally replace native sequences in the α-helical tail domain of reovirus attachment protein σ1. However, although these vectors retain native antigenicity, they were not immunogenic, illustrating the difficulty of experimentally inducing immune responses to this essential region of HIV-1. IMPORTANCE Vaccines to protect against HIV-1, the causative agent of AIDS, are not approved for use. Antibodies that neutralize genetically diverse strains of HIV-1 bind to discrete regions of the envelope glycoproteins, including the gp41 MPER. We engineered recombinant reoviruses that displayed MPER epitopes in attachment protein σ1 (REO-MPER vectors). The REO-MPER vectors replicated with wild-type efficiency, were genetically stable, and retained native antigenicity. However, we did not detect HIV-1-specific immune responses following inoculation of the REO-MPER vectors into small animals. This work provides proof of principle for engineering reovirus to express antigenic epitopes and illustrates the difficulty in eliciting MPER-specific immune responses.
Collapse
|
24
|
Pabst O, Cerovic V, Hornef M. Secretory IgA in the Coordination of Establishment and Maintenance of the Microbiota. Trends Immunol 2016; 37:287-296. [PMID: 27066758 DOI: 10.1016/j.it.2016.03.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 02/06/2023]
Abstract
Starting at birth, the intestinal microbiota changes dramatically from a highly individual collection of microorganisms, dominated by comparably few species, to a mature, competitive, and diverse microbial community. Microbial colonization triggers and accompanies the maturation of the mucosal immune system and ultimately results in a mutually beneficial host-microbe interrelation in the healthy host. Here, we discuss the role of secretory immunoglobulin A (SIgA) during the establishment of the infant microbiota and life-long host-microbial homeostasis. We critically review the published literature on how SIgA affects the enteric microbiota and highlight the accessibility of the infant microbiota to therapeutic intervention.
Collapse
Affiliation(s)
- Oliver Pabst
- Institute of Molecular Medicine, RWTH University, 52074 Aachen, Germany.
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH University, 52074 Aachen, Germany
| | - Mathias Hornef
- Institute of Medical Microbiology, RWTH University, 52074 Aachen, Germany
| |
Collapse
|
25
|
Wang HL, Wen LM, Pei YJ, Wang F, Yin LT, Bai JZ, Guo R, Wang CF, Yin GR. Recombinant Toxoplasma gondii phosphoglycerate mutase 2 confers protective immunity against toxoplasmosis in BALB/c mice. ACTA ACUST UNITED AC 2016; 23:12. [PMID: 26984115 PMCID: PMC4794628 DOI: 10.1051/parasite/2016012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/05/2016] [Indexed: 11/21/2022]
Abstract
Toxoplasmosis is one of the most widespread zoonoses worldwide. It has a high incidence and can result in severe disease in humans and livestock. Effective vaccines are needed to limit and prevent infection with Toxoplasma gondii. In this study, we evaluated the immuno-protective efficacy of a recombinant Toxoplasma gondii phosphoglycerate mutase 2 (rTgPGAM 2) against T. gondii infection in BALB/c mice. We report that the mice nasally immunised with rTgPGAM 2 displayed significantly higher levels of special IgG antibodies against rTgPGAM 2 (including IgG1, IgG2a and IgAs) and cytokines (including IFN-γ, IL-2 and IL-4) in their blood sera and supernatant of cultured spleen cells compared to those of control animals. In addition, an increased number of spleen lymphocytes and enhanced lymphocyte proliferative responses were observed in the rTgPGAM 2-immunised mice. After chronic infection and lethal challenge with the highly virulent T. gondii RH strain by oral gavage, the survival time of the rTgPGAM 2-immunised mice was longer (P < 0.01) and the survival rate (70%) was higher compared with the control mice (P < 0.01). The reduction rate of brain and liver tachyzoites in rTgPGAM 2-vaccinated mice reached approximately 57% and 69% compared with those of the control mice (P < 0.01). These results suggest that rTgPGAM 2 can generate protective immunity against T. gondii infection in BALB/c mice and may be a promising antigen in the further development of an effective vaccine against T. gondii infection.
Collapse
Affiliation(s)
- Hai-Long Wang
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Li-Min Wen
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yan-Jiang Pei
- Department of General Surgery, Xi'an Red Cross Hospital, Xi'an, Shanxi 710000, PR China
| | - Fen Wang
- Department of Infection Control, The Central Hospital of Enshi Prefecture, Enshi, Hubei 445000, PR China
| | - Li-Tian Yin
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Ji-Zhong Bai
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92-019, Auckland 1142, New Zealand
| | - Rui Guo
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Chun-Fang Wang
- Laboratory Animal Center, Shanxi Medical University; Shanxi Key Laboratory of Laboratory Animals and Animal Models of Human Diseases, Taiyuan, Shanxi 030001, PR China
| | - Guo-Rong Yin
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| |
Collapse
|
26
|
Inic-Kanada A, Stojanovic M, Schlacher S, Stein E, Belij-Rammerstorfer S, Marinkovic E, Lukic I, Montanaro J, Schuerer N, Bintner N, Kovacevic-Jovanovic V, Krnjaja O, Mayr UB, Lubitz W, Barisani-Asenbauer T. Delivery of a Chlamydial Adhesin N-PmpC Subunit Vaccine to the Ocular Mucosa Using Particulate Carriers. PLoS One 2015; 10:e0144380. [PMID: 26656797 PMCID: PMC4684359 DOI: 10.1371/journal.pone.0144380] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/17/2015] [Indexed: 11/18/2022] Open
Abstract
Trachoma, caused by the intracellular bacterium Chlamydia trachomatis (Ct), remains the world's leading preventable infectious cause of blindness. Recent attempts to develop effective vaccines rely on modified chlamydial antigen delivery platforms. As the mechanisms engaged in the pathology of the disease are not fully understood, designing a subunit vaccine specific to chlamydial antigens could improve safety for human use. We propose the delivery of chlamydia-specific antigens to the ocular mucosa using particulate carriers, bacterial ghosts (BGs). We therefore characterized humoral and cellular immune responses after conjunctival and subcutaneous immunization with a N-terminal portion (amino acid 1-893) of the chlamydial polymorphic membrane protein C (PmpC) of Ct serovar B, expressed in probiotic Escherichia coli Nissle 1917 bacterial ghosts (EcN BGs) in BALB/c mice. Three immunizations were performed at two-week intervals, and the immune responses were evaluated two weeks after the final immunization in mice. In a guinea pig model of ocular infection animals were immunized in the same manner as the mice, and protection against challenge was assessed two weeks after the last immunization. N-PmpC was successfully expressed within BGs and delivery to the ocular mucosa was well tolerated without signs of inflammation. N-PmpC-specific mucosal IgA levels in tears yielded significantly increased levels in the group immunized via the conjunctiva compared with the subcutaneously immunized mice. Immunization with N-PmpC EcN BGs via both immunization routes prompted the establishment of an N-PmpC-specific IFNγ immune response. Immunization via the conjunctiva resulted in a decrease in intensity of the transitional inflammatory reaction in conjunctiva of challenged guinea pigs compared with subcutaneously and non-immunized animals. The delivery of the chlamydial subunit vaccine to the ocular mucosa using a particulate carrier, such as BGs, induced both humoral and cellular immune responses. Further investigations are needed to improve the immunization scheme and dosage.
Collapse
Affiliation(s)
- Aleksandra Inic-Kanada
- OCUVAC–Center of Ocular Inflammation and Infection, Laura Bassi Centers of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marijana Stojanovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera–TORLAK, Belgrade, Serbia
| | - Simone Schlacher
- OCUVAC–Center of Ocular Inflammation and Infection, Laura Bassi Centers of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Stein
- OCUVAC–Center of Ocular Inflammation and Infection, Laura Bassi Centers of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sandra Belij-Rammerstorfer
- OCUVAC–Center of Ocular Inflammation and Infection, Laura Bassi Centers of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Emilija Marinkovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera–TORLAK, Belgrade, Serbia
| | - Ivana Lukic
- Department of Research and Development, Institute of Virology, Vaccines and Sera–TORLAK, Belgrade, Serbia
| | - Jacqueline Montanaro
- OCUVAC–Center of Ocular Inflammation and Infection, Laura Bassi Centers of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nadine Schuerer
- OCUVAC–Center of Ocular Inflammation and Infection, Laura Bassi Centers of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nora Bintner
- OCUVAC–Center of Ocular Inflammation and Infection, Laura Bassi Centers of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Vesna Kovacevic-Jovanovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera–TORLAK, Belgrade, Serbia
| | - Ognjen Krnjaja
- Department of Research and Development, Institute of Virology, Vaccines and Sera–TORLAK, Belgrade, Serbia
| | | | | | - Talin Barisani-Asenbauer
- OCUVAC–Center of Ocular Inflammation and Infection, Laura Bassi Centers of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
27
|
|
28
|
Wang HL, Zhang TE, Yin LT, Pang M, Guan L, Liu HL, Zhang JH, Meng XL, Bai JZ, Zheng GP, Yin GR. Partial protective effect of intranasal immunization with recombinant Toxoplasma gondii rhoptry protein 17 against toxoplasmosis in mice. PLoS One 2014; 9:e108377. [PMID: 25255141 PMCID: PMC4177930 DOI: 10.1371/journal.pone.0108377] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/21/2014] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that infects a variety of mammals, including humans. An effective vaccine for this parasite is therefore needed. In this study, RH strain T. gondii rhoptry protein 17 was expressed in bacteria as a fusion with glutathione S-transferase (GST) and the recombinant proteins (rTgROP17) were purified via GST-affinity chromatography. BALB/c mice were nasally immunised with rTgROP17, and induction of immune responses and protection against chronic and lethal T. gondii infections were investigated. The results revealed that mice immunised with rTgROP17 produced high levels of specific anti-rTgROP17 IgGs and a mixed IgG1/IgG2a response of IgG2a predominance. The systemic immune response was associated with increased production of Th1 (IFN-γand IL-2) and Th2 (IL-4) cytokines, and enhanced lymphoproliferation (stimulation index, SI) in the mice immunised with rTgROP17. Strong mucosal immune responses with increased secretion of TgROP17-specific secretory IgA (SIgA) in nasal, vaginal and intestinal washes were also observed in these mice. The vaccinated mice displayed apparent protection against chronic RH strain infection as evidenced by their lower liver and brain parasite burdens (59.17% and 49.08%, respectively) than those of the controls. The vaccinated mice also exhibited significant protection against lethal infection of the virulent RH strain (survival increased by 50%) compared to the controls. Our data demonstrate that rTgROP17 can trigger strong systemic and mucosal immune responses against T. gondii and that ROP17 is a promising candidate vaccine for toxoplasmosis.
Collapse
Affiliation(s)
- Hai-Long Wang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Tie-E Zhang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Li-Tian Yin
- Department of Physiology, Key Laboratory of Cellular Physiology Co-constructed by Province and Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Min Pang
- Department of Respiratory, the First Affiliated Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Li Guan
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hong-Li Liu
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jian-Hong Zhang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xiao-Li Meng
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Ji-Zhong Bai
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Guo-Ping Zheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Guo-Rong Yin
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
29
|
Xie Z, Ji Z, Zhang Z, Gong T, Sun X. Adenoviral vectors coated with cationic PEG derivatives for intravaginal vaccination against HIV-1. Biomaterials 2014; 35:7896-908. [PMID: 24929620 DOI: 10.1016/j.biomaterials.2014.05.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/20/2014] [Indexed: 01/24/2023]
Abstract
Mucus layer coating the vaginal epithelium represents a barrier for intravaginally delivered recombined adenoviral (rAd) vectors, but it could be overcome by proper polyethylene glycol (PEG) modification. Here we synthesized two cationic PEG derivatives, amino-(EO)n/(AGE)m-Cyss (APCs). The polymers contained neutral linear PEG (2-5 kDa) to provide a hydrophilic surface and amine pendants to provide positive charge for coating negatively charged rAd by physical adsorption. Given proper molecular composition, the polymer (5k-APC) could coat rAd without causing aggregation, facilitating its mucus penetrating ability and enhancing gene expression both in vitro and in vivo. With HIVgag as the model antigen, the polymer-rAd complexes were administered intravaginally to elicit both systemic and mucosal immune responses. 5k-APC-rAd immunization elicited robust HIVgag-specific cellular responses and also induced higher antigen-specific serum IgG. More importantly, mice immunized with 5k-APC-rAd showed higher level of IgA in vaginal lavage fluid. These findings suggest that 5k-APC-rAd is a promising system for intravaginal immunization against infectious diseases such as HIV within the vaginal tract.
Collapse
Affiliation(s)
- Zhaolu Xie
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, PR China
| | - Zhonghua Ji
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, PR China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, PR China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, PR China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
30
|
Abnormal apical-to-basal transport of dietary ovalbumin by secretory IgA stimulates a mucosal Th1 response. Mucosal Immunol 2014; 7:315-24. [PMID: 23839063 DOI: 10.1038/mi.2013.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 06/06/2013] [Indexed: 02/04/2023]
Abstract
In celiac disease, enhanced permeability to gliadin peptides can result from their apico-basal transport by secretory immunoglobulin A1 (SIgA1) binding to the CD71 receptor ectopically expressed at the gut epithelial surface. Herein, we have established a mouse model in which there is apico-basal transport of the model antigen ovalbumin (OVA) by specific SIgA1 and have analyzed local T-cell activation. Transgenic DO11.10 mice were grafted with a hybridoma-secreting OVA-specific humanized IgA1, which could bind mouse CD71 and which were released in the intestinal lumen as SIgA. CD71 expression was induced at the gut apical surface by treating the mice with tyrphostin A8. Following gavage of the mice with OVA, OVA-specific CD4⁺ T cells isolated from the mesenteric lymph nodes displayed higher expression of the activation marker CD69 and produced more interferon gamma in mice bearing the hybridoma-secreting OVA-specific IgA1, than in ungrafted mice or in mice grafted with an irrelevant hybridoma. These results indicate that the protective role of SIgA1 might be jeopardized in human pathological conditions associated with ectopic expression of CD71 at the gut surface.
Collapse
|
31
|
Vishwakarma V, Pati NB, Ray S, Das S, Suar M. TTSS2-deficient hha mutant of Salmonella Typhimurium exhibits significant systemic attenuation in immunocompromised hosts. Virulence 2014; 5:311-20. [PMID: 24401482 DOI: 10.4161/viru.27605] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) infections are emerging as leading problem worldwide and the variations in host immune status append to the concern of NTS. Salmonella enterica serovar Typhimurium is one of the causative agents of NTS infections and has been extensively studied. The inactivation of Salmonella pathogenicity island 2 (SPI2) encoded type-III secretion system 2 (TTSS2) has been reported rendering the strain incapable for systemic dissemination to host sites and has also been proposed as live-attenuated vaccine. However, infections from TTSS2-deficient Salmonella have also been reported. In this study, mutant strain MT15 was developed by inactivation of the hemolysin expression modulating protein (hha) in TTSS2-deficient S. Typhimurium background. The MT15 strain showed significant level of attenuation in immune-deprived murine colitis model when tested in iNos(-/-), IL10(-/-), and CD40L(-/-) mice groups in C57BL/6 background. Further, the mutation in hha does not implicate any defect in bacterial colonization to the host gut. The long-term infection of developed mutant strain conferred protective immune responses to suitably immunized streptomycin pre-treated C57BL/6 mice. The immunization enhanced the CD4(+) and CD8(+) cell types involved in bacterial clearance. The serum IgG and luminal secretory IgA (sIgA) was also found to be elevated after the due course of infection. Additionally, the immunized C57BL/6 mice were protected from the subsequent lethal infection of Salmonella Typhimurium. Collectively, these findings implicate the involvement of hemolysin expression modulating protein (Hha) in establishment of bacterial infection. In light of the observed attenuation of the developed mutant strain, this study proposes the possible significance of SPI2-deficient hha mutant as an alternative live-attenuated vaccine strain for use against lethal Salmonella infections.
Collapse
Affiliation(s)
| | | | - Shilpa Ray
- School of Biotechnology; KIIT University; Bhubaneswar, India
| | - Susmita Das
- School of Biotechnology; KIIT University; Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology; KIIT University; Bhubaneswar, India
| |
Collapse
|
32
|
Yin LT, Hao HX, Wang HL, Zhang JH, Meng XL, Yin GR. Intranasal immunisation with recombinant Toxoplasma gondii actin partly protects mice against toxoplasmosis. PLoS One 2013; 8:e82765. [PMID: 24386114 PMCID: PMC3873923 DOI: 10.1371/journal.pone.0082765] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 10/27/2013] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous protozoan intracellular parasite, the causative agent of toxoplasmosis, and a worldwide zoonosis for which an effective vaccine is needed. Actin is a highly conserved microfilament protein that plays an important role in the invasion of host cells by T. gondii. This study investigated the immune responses elicited by BALB/c mice after nasal immunisation with a recombinant T. gondii actin (rTgACT) and the subsequent protection against chronic and lethal T. gondii infections. We evaluated the systemic response by proliferation, cytokine and antibody measurements, and we assessed the mucosal response by examining the levels of TgACT-specific secretory IgA (SIgA) in nasal, vaginal and intestinal washes. Parasite load was assessed in the liver and brain, and the survival of mice challenged with a virulent strain was determined. The results showed that the mice immunised with rTgACT developed high levels of specific anti-rTgACT IgG titres and a mixed IgG1/IgG2a response with a predominance of IgG2a. The systemic immune response was associated with increased production of Th1 (IFN-γ and IL-2), Th2 (IL-4) and Treg (IL-10) cytokines, indicating that not only Th1-type response was induced, but also Th2- and Treg-types responses were induced, and the splenocyte stimulation index (SI) was increased in the mice immunised with rTgACT. Nasal immunisation with rTgACT led to strong mucosal immune responses, as seen by the increased secretion of SIgA in nasal, vaginal and intestinal washes. The vaccinated mice displayed significant protection against lethal infection with the virulent RH strain (survival increased by 50%), while the mice chronically infected with RH exhibited lower liver and brain parasite loads (60.05% and 49.75%, respectively) than the controls. Our data demonstrate, for the first time, that actin triggers a strong systemic and mucosal response against T. gondii. Therefore, actin may be a promising vaccine candidate against toxoplasmosis.
Collapse
Affiliation(s)
- Li-Tian Yin
- Department of physiology, Key Laboratory of Cellular Physiology Co-constructed by Province and Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hai-Xia Hao
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
- General Hospital of the Datong Coal Mine Co. Ltd., Datong, Shanxi, PR China
| | - Hai-Long Wang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jian-Hong Zhang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xiao-Li Meng
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Guo-Rong Yin
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
33
|
Wang ZH, Cao XH, Du XG, Feng HB, Zeng XY. Mucosal and systemic immunity in mice after intranasal immunization with recombinant Lactococcus lactis expressing ORF6 of PRRSV. Cell Immunol 2013; 287:69-73. [PMID: 24423464 DOI: 10.1016/j.cellimm.2013.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 11/03/2013] [Accepted: 12/05/2013] [Indexed: 11/18/2022]
Abstract
The purpose of the study was to construct mucosal vaccine of a recombinant Lactococcus lactis expressing PRRSV ORF6 gene and evaluate mucosal and systemic immune response against PRRSV in mice after intranasal immunization. The result show that the vaccine can stimulate mice to produce specific IgG in serum and remarkable special s-IgA in lung lavage fluid, at the same time, the contents of cytokines IL-2 and IFN-γ of the experimental group were significant higher than those of the control group (P < 0.01), however, the contents of cytokines IL-4 was not different to the all groups. In summary, the constructed mucosal vaccine can significantly induce mucosal immune, humoral immunity and cellular immunity involved Th1 type cytokines, which will lay a theoretical foundation on immune mechanism and new efficient vaccines for PRRSV.
Collapse
Affiliation(s)
- Zhen-hua Wang
- Department of Animal and Veterinary Science, Chengdu Vocational College of Agricultural Science and Technology, WenJiang, Sichuan 611130, PR China
| | - Xiao-han Cao
- Isotope Research Laboratory, College of Life and Basic Sciences, Sichuan Agricultural University, Xin Kang Road 46, Ya'an, Sichuan 625014, PR China
| | - Xiao-gang Du
- Isotope Research Laboratory, College of Life and Basic Sciences, Sichuan Agricultural University, Xin Kang Road 46, Ya'an, Sichuan 625014, PR China
| | - Hai-bo Feng
- Department of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Xian-yin Zeng
- Isotope Research Laboratory, College of Life and Basic Sciences, Sichuan Agricultural University, Xin Kang Road 46, Ya'an, Sichuan 625014, PR China.
| |
Collapse
|
34
|
Blutt SE, Conner ME. The gastrointestinal frontier: IgA and viruses. Front Immunol 2013; 4:402. [PMID: 24348474 PMCID: PMC3842584 DOI: 10.3389/fimmu.2013.00402] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/08/2013] [Indexed: 11/16/2022] Open
Abstract
Viral gastroenteritis is one of the leading causes of diseases that kill ~2.2 million people worldwide each year. IgA is one of the major immune effector products present in the gastrointestinal tract yet its importance in protection against gastrointestinal viral infections has been difficult to prove. In part this has been due to a lack of small and large animal models in which pathogenesis of and immunity to gastrointestinal viral infections is similar to that in humans. Much of what we have learned about the role of IgA in the intestinal immune response has been obtained from experimental animal models of rotavirus infection. Rotavirus-specific intestinal IgA appears to be one of the principle effectors of long term protection against rotavirus infection. Thus, there has been a focus on understanding the immunological pathways through which this virus-specific IgA is induced during infection. In addition, the experimental animal models of rotavirus infection provide excellent systems in which new areas of research on viral-specific intestinal IgA including the long term maintenance of viral-specific IgA.
Collapse
Affiliation(s)
- Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine , Houston, TX , USA
| | - Margaret E Conner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine , Houston, TX , USA
| |
Collapse
|
35
|
Liu Y, Rhoads J. Communication between B-Cells and Microbiota for the Maintenance of Intestinal Homeostasis. Antibodies (Basel) 2013; 2:535-553. [DOI: 10.3390/antib2040535] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The human intestine is populated with an extremely dense and diverse bacterial community. Commensal bacteria act as an important antigenic stimulus producing the maturation of gut-associated lymphoid tissue (GALT). The production of immunoglobulin (Ig) A by B-cells in the GALT is one of the immune responses following intestinal colonization of bacteria. The switch of B-cells from IgM to IgA-producing cells in the Peyer’s patches and neighboring lamina propria proceeds by T-cell-dependent and T-cell-independent mechanisms. Several grams of secretory IgA (SIgA) are released into the intestine each day. SIgA serves as a first-line of defense in protecting the intestinal epithelium from enteric toxins and pathogenic microorganisms. SIgA has a capacity to directly quench bacterial virulence factors, influence the composition of the intestinal microbiota, and promote the transportation of antigens across the intestinal epithelium to GALT and down-regulate proinflammatory responses associated with the uptake of highly pathogenic bacteria and potentially allergenic antigens. This review summarizes the reciprocal interactions between intestinal B cells and bacteria, specifically, the formation of IgA in the gut, the role of intestinal IgA in the regulation of bacterial communities and the maintenance of intestinal homeostasis, and the effects of probiotics on IgA levels in the gastrointestinal tract.
Collapse
Affiliation(s)
- Yuying Liu
- Division of Gastroenterology and Pediatric Research Center, Department of Pediatrics, The University of Texas Health Science Center at Houston Medical School, 6431 Fannin Street, MSB 3.141, Houston, TX 77030, USA
| | - Jon Rhoads
- Division of Gastroenterology and Pediatric Research Center, Department of Pediatrics, The University of Texas Health Science Center at Houston Medical School, 6431 Fannin Street, MSB 3.137, Houston, TX 77030, USA
| |
Collapse
|
36
|
Shin MK, Yoo HS. Animal vaccines based on orally presented yeast recombinants. Vaccine 2013; 31:4287-92. [DOI: 10.1016/j.vaccine.2013.07.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/08/2013] [Accepted: 07/13/2013] [Indexed: 11/29/2022]
|
37
|
Corthésy B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front Immunol 2013; 4:185. [PMID: 23874333 PMCID: PMC3709412 DOI: 10.3389/fimmu.2013.00185] [Citation(s) in RCA: 394] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/24/2013] [Indexed: 01/06/2023] Open
Abstract
Secretory IgA (SIgA) plays an important role in the protection and homeostatic regulation of intestinal, respiratory, and urogenital mucosal epithelia separating the outside environment from the inside of the body. This primary function of SIgA is referred to as immune exclusion, a process that limits the access of numerous microorganisms and mucosal antigens to these thin and vulnerable mucosal barriers. SIgA has been shown to be involved in avoiding opportunistic pathogens to enter and disseminate in the systemic compartment, as well as tightly controlling the necessary symbiotic relationship existing between commensals and the host. Clearance by peristalsis appears thus as one of the numerous mechanisms whereby SIgA fulfills its function at mucosal surfaces. Sampling of antigen-SIgA complexes by microfold (M) cells, intimate contact occurring with Peyer’s patch dendritic cells (DC), down-regulation of inflammatory processes, modulation of epithelial, and DC responsiveness are some of the recently identified processes to which the contribution of SIgA has been underscored. This review aims at presenting, with emphasis at the biochemical level, how the molecular complexity of SIgA can serve these multiple and non-redundant modes of action.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory, Department of Immunology and Allergy, University State Hospital Lausanne (CHUV) , Lausanne , Switzerland
| |
Collapse
|
38
|
des Rieux A, Pourcelle V, Cani PD, Marchand-Brynaert J, Préat V. Targeted nanoparticles with novel non-peptidic ligands for oral delivery. Adv Drug Deliv Rev 2013; 65:833-44. [PMID: 23454185 DOI: 10.1016/j.addr.2013.01.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/12/2013] [Accepted: 01/30/2013] [Indexed: 12/31/2022]
Abstract
Orally administered targeted nanoparticles have a large number of potential biomedical applications and display several putative advantages for oral drug delivery, such as the protection of fragile drugs or modification of drug pharmacokinetics. These advantages notwithstanding, oral drug delivery by nanoparticles remains challenging. The optimization of particle size and surface properties and targeting by ligand grafting have been shown to enhance nanoparticle transport across the intestinal epithelium. Here, different grafting strategies for non-peptidic ligands, e.g., peptidomimetics, lectin mimetics, sugars and vitamins, that are stable in the gastrointestinal tract are discussed. We demonstrate that the grafting of these non-peptidic ligands allows nanoparticles to be targeted to M cells, enterocytes, immune cells or L cells. We show that these grafted nanoparticles could be promising vehicles for oral vaccination by targeting M cells or for the delivery of therapeutic proteins. We suggest that targeting L cells could be useful for the treatment of type 2 diabetes or obesity.
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The intestinal epithelium is a dynamic barrier protecting the body from the multitudes of luminal micro-organisms present in the gut. However, this barrier is not impermeable and mechanisms exist that allow small amounts of antigen to traverse the epithelium in controlled manner to maintain tolerance and to mount immune responses. This review will summarize our current understanding of how luminal antigens traverse the small intestine epithelium without disrupting the epithelial barrier and how these antigen delivery pathways might influence the resulting immune responses. RECENT FINDINGS Recent findings have revealed four pathways for transepithelial antigen delivery in the absence of barrier disruption. We propose that during homeostasis, antigen introduced through microfold cells induces immunoglobulin A responses, antigen delivered by goblet cell-associated antigen passages contributes to peripheral tolerance, and antigen delivered by paracellular leak initiates immune responses in the mesenteric lymph node. In contrast, dendritic cell transepithelial dendrites may play an important role in host protection during pathogen infection, but do not appear to play a role in antigen capture by lamina propria dendritic cells in the steady state. SUMMARY These observations indicate that the route by which antigen crosses the epithelium directs the outcome of the subsequent immune response.
Collapse
|
40
|
Vishwakarma V, Pati NB, Chandel HS, Sahoo SS, Saha B, Suar M. Evaluation of Salmonella enterica serovar Typhimurium TTSS-2 deficient fur mutant as safe live-attenuated vaccine candidate for immunocompromised mice. PLoS One 2012; 7:e52043. [PMID: 23284865 PMCID: PMC3524104 DOI: 10.1371/journal.pone.0052043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/08/2012] [Indexed: 01/14/2023] Open
Abstract
Salmonella enterica serovar Typhimurium has been extensively exploited as live attenuated vaccines (LAV) which generally confers better protection than killed or subunit vaccines. However, many LAV are limited by their inherent ability to access systemic organs in many of the vaccinated hosts, especially those which are immunocompromised. We evaluated the efficacy of a live-attenuated SPI2-deficient (ΔssaV) S. Typhimurium vaccine candidate (MT13) that additionally devoids the ferric uptake regulator (fur). We used specific pathogen free (SPF) streptomycin-pretreated mouse colitis model that included healthy C57BL/6 and immunocompromised iNos−/−, IL10−/− and CD40L−/− in the background of C57BL/6 mice to assess the efficacy of developed vaccine candidate. In our study, the S. Typhimurium MT13 strain was established as a safe vaccine candidate to be administered in immunocompromised mice as it was found to be systemically attenuated without conferring significant pathological signs and growth defect within the host. In bacterial challenge experiment, the MT13-vaccinated C57BL/6 mice were protected from subsequent wild-type S. Typhimurium infection by inducing proficient mucosal immunity. The MT13 strain elicited efficient O-antigen specific mucosal secretory IgA associated protective response which was comparable with its parental ssaV mutant. Vaccination with MT13 also showed proficient T-cell activation in host mice; which has direct relation with pathogen clearance from host tissues. Collectively, these data implicate the possible application of SPI-2 deficient fur mutant (MT13) as a novel live attenuated vaccine strain with adept immunogenicity and improved safety, even in immunocompromised hosts. Further, this vaccine candidate can be employed to express heterologous antigens targeted against several other diseases, especially related to enterocolitic pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Bhaskar Saha
- National Centre for Cell Sciences, Ganeshkhind, Pune, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
- * E-mail:
| |
Collapse
|
41
|
Wu Y, Wu S, Hou L, Wei W, Zhou M, Su Z, Wu J, Chen W, Ma G. Novel thermal-sensitive hydrogel enhances both humoral and cell-mediated immune responses by intranasal vaccine delivery. Eur J Pharm Biopharm 2012; 81:486-97. [PMID: 22507968 DOI: 10.1016/j.ejpb.2012.03.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 03/25/2012] [Accepted: 03/31/2012] [Indexed: 11/25/2022]
Abstract
A novel thermal sensitive hydrogel was formulated with N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC) and α, β-glycerophosphate (α, β-GP). A serial of hydrogels containing different amount of GP and HTCC with diverse quarternize degree (QD, 41%, 59%, 79.5%, and 99%) were prepared and characterized by rheological method. The hydrogel was subsequently evaluated for intranasal vaccine delivery with adenovirus based Zaire Ebola virus glycoprotein antigen (Ad-GPZ). Results showed that moderate quarternized HTCC (60% and 79.5%) hydrogel/antigen formulations induced highest IgG, IgG1, and IgG2a antibody titers in serum, as well as mucosal IgA responses in lung wash, which may attributed to the prolonged antigen residence time due to the thermal-sensitivity of this hydrogel. Furthermore, CD8(+) splenocytes for IFN-γ positive cell assay and the release profile of Th1/Th2 type cytokines (IFN-γ, IL-2, IL-10, and IL-4) showed that hydrogel/Ad-GPZ generated an overwhelmingly enhanced Th1 biased cellular immune response. In addition, this hydrogel displayed low toxicity to nasal tissue and epithelial cells even by frequently intranasal dosing of hydrogel. All these results strongly supported this hydrogel as a safe and effective delivery system for nasal immunization.
Collapse
Affiliation(s)
- Youbin Wu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mantis NJ, Rol N, Corthésy B. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 2011; 4:603-11. [PMID: 21975936 PMCID: PMC3774538 DOI: 10.1038/mi.2011.41] [Citation(s) in RCA: 866] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Secretory IgA (SIgA) serves as the first line of defense in protecting the intestinal epithelium from enteric toxins and pathogenic microorganisms. Through a process known as immune exclusion, SIgA promotes the clearance of antigens and pathogenic microorganisms from the intestinal lumen by blocking their access to epithelial receptors, entrapping them in mucus, and facilitating their removal by peristaltic and mucociliary activities. In addition, SIgA functions in mucosal immunity and intestinal homeostasis through mechanisms that have only recently been revealed. In just the past several years, SIgA has been identified as having the capacity to directly quench bacterial virulence factors, influence composition of the intestinal microbiota by Fab-dependent and Fab-independent mechanisms, promote retro-transport of antigens across the intestinal epithelium to dendritic cell subsets in gut-associated lymphoid tissue, and, finally, to downregulate proinflammatory responses normally associated with the uptake of highly pathogenic bacteria and potentially allergenic antigens. This review summarizes the intrinsic biological activities now associated with SIgA and their relationships with immunity and intestinal homeostasis.
Collapse
Affiliation(s)
- Nicholas J. Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208,Biomedical Sciences Program, University at Albany School of Public Health, Albany, NY 12201,To whom correspondence should be addressed: and
| | | | - Blaise Corthésy
- R&D Laboratory of the Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland,To whom correspondence should be addressed: and
| |
Collapse
|
43
|
Abstract
Understanding the mechanisms underlying the induction of immunity in the gastrointestinal mucosa following oral immunization and the cross-talk between mucosal and systemic immunity should expedite the development of vaccines to diminish the global burden caused by enteric pathogens. Identifying an immunological correlate of protection in the course of field trials of efficacy, animal models (when available), or human challenge studies is also invaluable. In industrialized country populations, live attenuated vaccines (e.g. polio, typhoid, and rotavirus) mimic natural infection and generate robust protective immune responses. In contrast, a major challenge is to understand and overcome the barriers responsible for the diminished immunogenicity and efficacy of the same enteric vaccines in underprivileged populations in developing countries. Success in developing vaccines against some enteric pathogens has heretofore been elusive (e.g. Shigella). Different types of oral vaccines can selectively or inclusively elicit mucosal secretory immunoglobulin A and serum immunoglobulin G antibodies and a variety of cell-mediated immune responses. Areas of research that require acceleration include interaction between the gut innate immune system and the stimulation of adaptive immunity, development of safe yet effective mucosal adjuvants, better understanding of homing to the mucosa of immunologically relevant cells, and elicitation of mucosal immunologic memory. This review dissects the immune responses elicited in humans by enteric vaccines.
Collapse
Affiliation(s)
- Marcela F Pasetti
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore St., Room 480, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
44
|
Torrieri-Dramard L, Lambrecht B, Ferreira HL, Van den Berg T, Klatzmann D, Bellier B. Intranasal DNA vaccination induces potent mucosal and systemic immune responses and cross-protective immunity against influenza viruses. Mol Ther 2010; 19:602-11. [PMID: 20959813 DOI: 10.1038/mt.2010.222] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The induction of potent virus-specific immune responses at mucosal surfaces where virus transmission occurs is a major challenge for vaccination strategies. In the case of influenza vaccination, this has been achieved only by intranasal delivery of live-attenuated vaccines that otherwise pose safety problems. Here, we demonstrate that potent mucosal and systemic immune responses, both cellular and humoral, are induced by intranasal immunization using formulated DNA. We show that formulation with the DNA carrier polyethylenimine (PEI) improved by a 1,000-fold the efficiency of gene transfer in the respiratory track following intranasal administration of luciferase-coding DNA. Using PEI formulation, intranasal vaccination with DNA-encoding hemagglutinin (HA) from influenza A H5N1 or (H1N1)2009 viruses induced high levels of HA-specific immunoglobulin A (IgA) antibodies that were detected in bronchoalveolar lavages (BALs) and the serum. No mucosal responses could be detected after parenteral or intranasal immunization with naked-DNA. Furthermore, intranasal DNA vaccination with HA from a given H5N1 virus elicited full protection against the parental strain and partial cross-protection against a distinct highly pathogenic H5N1 strain that could be improved by adding neuraminidase (NA) DNA plasmids. Our observations warrant further investigation of intranasal DNA as an effective vaccination route.
Collapse
|
45
|
Mantis NJ, Forbes SJ. Secretory IgA: arresting microbial pathogens at epithelial borders. Immunol Invest 2010; 39:383-406. [PMID: 20450284 DOI: 10.3109/08820131003622635] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Secretory IgA (SIgA) is the predominant class of antibody found in intestinal secretions. Although SIgA's role in protecting the intestinal epithelium from the enteric pathogens and toxins has long been recognized, surprisingly little is known about the molecular mechanisms by which this is achieved. The present review summarizes the current understanding of how SIgA functions to prevent microbial pathogens and toxins from gaining access to the intestinal epithelium. We also discuss recent work from our laboratory examining the interaction of a particular protective monoclonal IgA with Salmonella and propose, based on this work, that SIgA has a previously unrecognized capacity to directly interfere with microbial virulence at mucosal surfaces.
Collapse
Affiliation(s)
- Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, University at Albany School of Public Health, Albany, New York 12208, USA.
| | | |
Collapse
|
46
|
Corthésy B. Role of secretory immunoglobulin A and secretory component in the protection of mucosal surfaces. Future Microbiol 2010; 5:817-29. [PMID: 20441552 DOI: 10.2217/fmb.10.39] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The contribution of secretory immunoglobulin A (SIgA) antibodies in the defense of mucosal epithelia plays an important role in preventing pathogen adhesion to host cells, therefore blocking dissemination and further infection. This mechanism, referred to as immune exclusion, represents the dominant mode of action of the antibody. However, SIgA antibodies combine multiple facets, which together confer properties extending from intracellular and serosal neutralization of antigens, activation of non-inflammatory pathways and homeostatic control of the endogenous microbiota. The sum of these features suggests that future opportunities for translational application from research-based knowledge to clinics include the mucosal delivery of bioactive antibodies capable of preserving immunoreactivity in the lung, gastrointestinal tract, the genito-urinary tract for the treatment of infections. This article covers topics dealing with the structure of SIgA, the dissection of its mode of action in epithelia lining different mucosal surfaces and its potential in immunotherapy against infectious pathogens.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory of the Department of Immunology & Allergy, University State Hospital (CHUV), Rue du Bugnon 46, 1011 Lausanne, Switzerland.
| |
Collapse
|
47
|
Borges O, Lebre F, Bento D, Borchard G, Junginger HE. Mucosal vaccines: recent progress in understanding the natural barriers. Pharm Res 2010; 27:211-23. [PMID: 19953309 DOI: 10.1007/s11095-009-0011-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 11/12/2009] [Indexed: 10/24/2022]
Abstract
It has long been known that protection against pathogens invading the organism via mucosal surfaces correlates better with the presence of specific antibodies in local secretions than with serum antibodies. The most effective way to induce mucosal immunity is to administer antigens directly to the mucosal surface. The development of vaccines for mucosal application requires antigen delivery systems and immunopotentiators that efficiently facilitate the presentation of the antigen to the mucosal immune system. This review provides an overview of the events within mucosal tissues that lead to protective mucosal immune responses. The understanding of those biological mechanisms, together with knowledge of the technology of vaccines and adjuvants, provides guidance on important technical aspects of mucosal vaccine design. Not being exhaustive, this review also provides information related to modern adjuvants, including polymeric delivery systems and immunopotentiators.
Collapse
Affiliation(s)
- Olga Borges
- Centre for Neuroscience and Cell Biology & Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| | | | | | | | | |
Collapse
|
48
|
A foreign protein incorporated on the Tip of T3 pili in Lactococcus lactis elicits systemic and mucosal immunity. Infect Immun 2009; 78:1294-303. [PMID: 20028807 DOI: 10.1128/iai.01037-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of Lactococcus lactis to deliver a chosen antigen to the mucosal surface has been shown to elicit an immune response in mice and is a possible method of vaccination in humans. The recent discovery on Gram-positive bacteria of pili that are covalently attached to the bacterial surface and the elucidation of the residues linking the major and minor subunits of such pili suggests that the presentation of an antigen on the tip of pili external to the surface of L. lactis might constitute a successful vaccine strategy. As a proof of principle, we have fused a foreign protein (the Escherichia coli maltose-binding protein) to the C-terminal region of the native tip protein (Cpa) of the T3 pilus derived from Streptococcus pyogenes and expressed this fusion protein (MBP*) in L. lactis. We find that MBP* is incorporated into pili in this foreign host, as shown by Western blot analyses of cell wall proteins and by immunogold electron microscopy. Furthermore, since the MBP* on these pili retains its native biological activity, it appears to retain its native structure. Mucosal immunization of mice with this L. lactis strain expressing pilus-linked MBP* results in production of both a systemic and a mucosal response (IgG and IgA antibodies) against the MBP antigen. We suggest that this type of mucosal vaccine delivery system, which we term UPTOP (for unhindered presentation on tips of pili), may provide an inexpensive and stable alternative to current mechanisms of immunization for many serious human pathogens.
Collapse
|
49
|
A monoclonal immunoglobulin G antibody directed against an immunodominant linear epitope on the ricin A chain confers systemic and mucosal immunity to ricin. Infect Immun 2009; 78:552-61. [PMID: 19858297 DOI: 10.1128/iai.00796-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Due to the potential use of ricin and other fast-acting toxins as agents of bioterrorism, there is an urgent need for the development of safe and effective antitoxin vaccines. A candidate ricin subunit vaccine (RiVax) consisting of a recombinant attenuated enzymatic A chain (RTA) has been shown to elicit protective antitoxin antibodies in mice and rabbits and is currently being tested in phase I human clinical trials. However, evaluation of the efficacy of this vaccine for humans is difficult for a number of reasons, including the fact that the key neutralizing B-cell epitopes on RTA have not been fully defined. Castelletti and colleagues (Clin. Exp. Immunol. 136:365-372, 2004) recently identified a linear epitope on RTA, spanning residues L161 to I175, as a primary target of serum antibodies derived from humans who had been treated with ricin immunotoxin. While affinity-purified polyclonal IgG antibodies against this region of RTA were capable of neutralizing ricin in vitro, their capacity to confer protection against ricin challenge in vivo was not determined. In this report, we describe the production and characterization of GD12, a murine monoclonal IgG1 antibody specifically directed against residues 163 to 174 (TLARSFIICIQM) of RTA. GD12 bound ricin holotoxin with high affinity (K(D) [dissociation constant], 2.9 x 10(-9) M) and neutralized it with a 50% inhibitory concentration of approximately 0.25 microg/ml, as determined by a Vero cell-based cytotoxicity assay. Passive administration of GD12 was sufficient to protect BALB/c mice against intraperitoneal and intragastric ricin challenges. These data are important in terms of vaccine development, since they firmly establish that preexisting serum antibodies directed against residues 161 to 175 on RTA are sufficient to confer both systemic and mucosal immunity to ricin. The potential of GD12 to serve as a therapeutic following ricin challenge was not explored in this study.
Collapse
|
50
|
Kinetic analysis of antibody responses to Blastocystis hominis in sera and intestinal secretions of orally infected mice. Parasitol Res 2009; 105:1303-10. [DOI: 10.1007/s00436-009-1556-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 06/26/2009] [Indexed: 10/20/2022]
|