1
|
Raglin SS, Kent AD. Navigating nitrogen sustainability with microbiome-associated phenotypes. TRENDS IN PLANT SCIENCE 2025; 30:471-483. [PMID: 40074575 DOI: 10.1016/j.tplants.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025]
Abstract
Crop microbiomes promote plant health through various mechanisms, including nutrient provisioning. However, agriculture neglected the importance of these microbiome-associated phenotypes (MAPs) in conventional management approaches originating from the Green Revolution. Green Revolution innovations, such as nitrogen fertilizers and high-yielding germplasm, supported an increase in global crop yields. Yet these advances also led to many environmental issues, including disruptions in microbially mediated nitrogen transformations that have reduced reliance on microbiomes for sustainable nitrogen acquisition. Overcoming the challenges introduced by the Green Revolution requires a shift toward ecologically informed agronomic strategies that incorporate MAPs into breeding and management decisions. Agriculture in the Anthropocene needs to mindfully manage crop microbiomes to decouple agrochemical inputs from profitable yields, minimizing the environmental repercussions of modern agriculture.
Collapse
Affiliation(s)
- Sierra S Raglin
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Center for Advanced Bioenergy and Bioproduct Innovation, Department of Energy, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Angela D Kent
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Center for Advanced Bioenergy and Bioproduct Innovation, Department of Energy, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Li Z, Ke L, Huang C, Peng S, Zhao M, Wu H, Lin F. Effects of Seawater from Different Sea Areas on Abalone Gastrointestinal Microorganisms and Metabolites. Microorganisms 2025; 13:915. [PMID: 40284752 PMCID: PMC12029763 DOI: 10.3390/microorganisms13040915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/27/2025] [Accepted: 03/30/2025] [Indexed: 04/29/2025] Open
Abstract
Significant regional variations in seawater characteristics (temperature, salinity, pH, nutrients) exist across marine environments, yet their impacts on abalone gastrointestinal microbiota and metabolites remain underexplored. This study investigated seawater nutrient and pH interactions on abalone gut ecosystems through comparative analysis of three marine regions (Pingtan (PT), Xiapu (XP), Lianjiang (LJ)). Seawater characteristics revealed distinct patterns: LJ exhibited the lowest total phosphorus (TP: 0.12 mg/L), total nitrogen (TN: 2.8 mg/L), NH3-N (0.05 mg/L) but the highest salinity (32.1‱) and lowest pH (7.82), while PT/XP showed elevated nutrients (TP: 0.24-0.28 mg/L; TN: 4.2-4.5 mg/L). Microbial diversity peaked in LJ samples (Shannon index: 5.8) with dominant genera Psychrilyobacter (12.4%) and Bradyrhizobium (9.1%), contrasting with PT's Mycoplasma-enriched communities (18.7%) and XP's Vibrio-dominant profiles (14.3%). Metabolomic analysis identified 127 differential metabolites (VIP > 1.5, p < 0.05), predominantly lipids (38%) and organic acids (27%), with pathway enrichment in sulfur relay (q = 4.2 × 10-5) and tryptophan metabolism (q = 1.8 × 10-4). Stomach-specific metabolites correlated with fatty acid degradation (e.g., inosine diphosphate, r = -0.82 with vibrionimonas) and glutathione metabolism (methionine vs. mycoplasma, r = -0.79). Critically, pH showed negative correlations with beneficial Psychrilyobacter (oleamide: r = -0.68) and positive associations with pathogenic Vibrio (trigonelline: r = 0.72). Elevated NH3-N (>0.15 mg/L) and TP (>0.25 mg/L) promoted Mycoplasma proliferation (R2 = 0.89) alongside cytotoxic metabolite accumulation. These findings demonstrate that higher pH (>8.0) and nutrient overload disrupt microbial symbiosis, favoring pathogens over beneficial taxa.
Collapse
Affiliation(s)
- Zhaolong Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (C.H.); (S.P.); (M.Z.); (H.W.); (F.L.)
| | - Ling Ke
- The Research Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China;
| | - Chenyu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (C.H.); (S.P.); (M.Z.); (H.W.); (F.L.)
| | - Song Peng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (C.H.); (S.P.); (M.Z.); (H.W.); (F.L.)
| | - Mengshi Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (C.H.); (S.P.); (M.Z.); (H.W.); (F.L.)
| | - Huini Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (C.H.); (S.P.); (M.Z.); (H.W.); (F.L.)
| | - Fengqiang Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (C.H.); (S.P.); (M.Z.); (H.W.); (F.L.)
| |
Collapse
|
3
|
Yang W, Sun J, Guo Q, Wang W, Leng J, Wang L, Song L. LRSAM1 mediated the degradation of intracellular Vibrio through the ubiquitination-autophagy-lysosome pathway in oyster. Cell Commun Signal 2025; 23:110. [PMID: 40001133 PMCID: PMC11863841 DOI: 10.1186/s12964-025-02111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
The leucine rich repeat and sterile alpha motif containing 1 (LRSAM1) as E3 ligase recognizes bacteria and generates a ubiquitin signal to initiate the autophagy process. In the present study, LRSAM1 was identified from the Pacific oyster Crassostrea gigas (designed as CgLRSAM1), which was able to recognize various pathogen-associated molecular patterns and bacteria and directly ubiquitinate Vibrio splendidus. V. splendidus was co-localized with CgLRSAM1 and ubiquitin after invading haemocytes, and the ubiquitinated V. splendidus was then internalized into haemocyte lysosomes by p62-LC3-mediated autophagy. In haemocytes of CgLRSAM1-RNAi oysters, the activation of CgLC3 was enhanced after V. splendidus stimulation. While the co-localization values of V. splendidus with ubiquitin, CgLC3 and lysosomes all decreased significantly after V. splendidus stimulation. These results indicated that CgLRSAM1 functioned as E3 ligase responsible for anti-Vibrio-associated ubiquitination and regulated the degradation of bacteria through the ubiquitination-autophagy-lysosome pathway.
Collapse
Affiliation(s)
- Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China.
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Qiuyan Guo
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Wei Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jinyuan Leng
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China.
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
4
|
Yvin M, Mühle E, Chesneau O, Laguerre H, Brillet B, Fleury Y, Jégou C, Kämpfer P, Lipski A, Criscuolo A, Clermont D, Le Chevalier P. Pseudoalteromonas holothuriae sp. nov. , isolated from the sea cucumber Holothuria forskali. Int J Syst Evol Microbiol 2025; 75. [PMID: 39999156 DOI: 10.1099/ijsem.0.006601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Two motile bacterial strains, designated as cfHf56-1T and SW 252, were isolated from the coelomic fluid of Holothuria forskali and from the surrounding seawater at the animal sampling site, respectively. The sea cucumber was collected in the Glénan archipelago (Brittany, France). Strains cfHf56-1T and SW 252 were Gram-stain-negative, non-spore-forming and rod-shaped bacteria. Colonies made on marine agar plates were brown in color. The pH and temperature ranges for growth were 7-8 and 18-30 °C, respectively, in marine broth. The major fatty acids were 16 : 1 cis9 and 16 : 0. Phylogenetic analyses evidenced that both strains belong to a novel species in the genus Pseudoalteromonas. The strains were closely related to the type strains of Pseudoalteromonas caenipelagi, Pseudoalteromonas byunsanensis and Pseudoalteromonas amylolytica, with 75-78 % ANI and 19-21 % dDDH values. In this context, cfHf56-1T (= CIP 111854T = CECT 30642T) is considered as the type strain of the novel species for which the name Pseudoalteromonas holothuriae sp. nov. is proposed. The genome of the type strain is characterized by a size of 5.1 Mbp and a G+C content of 40.5%.
Collapse
Affiliation(s)
- Marion Yvin
- Université de Brest, Laboratoire de Biotechnologie et Chimie Marines, LBCM, EMR-CNRS 6076, F-29000 Quimper, France
- Université Bretagne Sud, IRDL, UMR CNRS 6027, F-56100 Lorient, France
| | - Estelle Mühle
- Institut Pasteur, Université Paris Cité, Collection de l'Institut Pasteur-CIP, F-75015 Paris, France
| | - Olivier Chesneau
- Institut Pasteur, Université Paris Cité, Collection de l'Institut Pasteur-CIP, F-75015 Paris, France
| | - Hélène Laguerre
- Université de Brest, Laboratoire de Biotechnologie et Chimie Marines, LBCM, EMR-CNRS 6076, F-29000 Quimper, France
| | - Benjamin Brillet
- Université de Brest, Laboratoire de Biotechnologie et Chimie Marines, LBCM, EMR-CNRS 6076, F-29000 Quimper, France
| | - Yannick Fleury
- Université de Brest, Laboratoire de Biotechnologie et Chimie Marines, LBCM, EMR-CNRS 6076, F-29000 Quimper, France
| | - Camille Jégou
- Université de Brest, Laboratoire de Biotechnologie et Chimie Marines, LBCM, EMR-CNRS 6076, F-29000 Quimper, France
| | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig, Universität Giessen, Heinrich-Buff-Ring 26 (IFZ), 35392 Giessen, Germany
| | - André Lipski
- Lebensmittelmikrobiologie und -hygiene, Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany
| | - Alexis Criscuolo
- Institut Pasteur, Université Paris Cité, GIPhy - Genome Informatics and Phylogenetics, Biological Resource Center of Institut Pasteur, F-75015 Paris, France
| | - Dominique Clermont
- Institut Pasteur, Université Paris Cité, Collection de l'Institut Pasteur-CIP, F-75015 Paris, France
| | - Patrick Le Chevalier
- Université de Brest, Laboratoire de Biotechnologie et Chimie Marines, LBCM, EMR-CNRS 6076, F-29000 Quimper, France
| |
Collapse
|
5
|
Schwob G, Cabrol L, Saucède T, Gérard K, Poulin E, Orlando J. Unveiling the co-phylogeny signal between plunderfish Harpagifer spp. and their gut microbiomes across the Southern Ocean. Microbiol Spectr 2024; 12:e0383023. [PMID: 38441978 PMCID: PMC10986581 DOI: 10.1128/spectrum.03830-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Understanding the factors that sculpt fish gut microbiome is challenging, especially in natural populations characterized by high environmental and host genomic complexity. However, closely related hosts are valuable models for deciphering the contribution of host evolutionary history to microbiome assembly, through the underscoring of phylosymbiosis and co-phylogeny patterns. Here, we propose that the recent diversification of several Harpagifer species across the Southern Ocean would allow the detection of robust phylogenetic congruence between the host and its microbiome. We characterized the gut mucosa microbiome of 77 individuals from four field-collected species of the plunderfish Harpagifer (Teleostei, Notothenioidei), distributed across three biogeographic regions of the Southern Ocean. We found that seawater physicochemical properties, host phylogeny, and geography collectively explained 35% of the variation in bacterial community composition in Harpagifer gut mucosa. The core microbiome of Harpagifer spp. gut mucosa was characterized by a low diversity, mostly driven by selective processes, and dominated by a single Aliivibrio Operational Taxonomic Unit (OTU) detected in more than 80% of the individuals. Nearly half of the core microbiome taxa, including Aliivibrio, harbored co-phylogeny signal at microdiversity resolution with host phylogeny, indicating an intimate symbiotic relationship and a shared evolutionary history with Harpagifer. The clear phylosymbiosis and co-phylogeny signals underscore the relevance of the Harpagifer model in understanding the role of fish evolutionary history in shaping the gut microbiome assembly. We propose that the recent diversification of Harpagifer may have led to the diversification of Aliivibrio, exhibiting patterns that mirror the host phylogeny. IMPORTANCE Although challenging to detect in wild populations, phylogenetic congruence between marine fish and its microbiome is critical, as it highlights intimate associations between hosts and ecologically relevant microbial symbionts. Our study leverages a natural system of closely related fish species in the Southern Ocean to unveil new insights into the contribution of host evolutionary trajectory on gut microbiome assembly, an underappreciated driver of the global marine fish holobiont. Notably, we unveiled striking evidence of co-diversification between Harpagifer and its microbiome, demonstrating both phylosymbiosis of gut bacterial communities and co-phylogeny of some specific bacterial symbionts, mirroring the host diversification patterns. Given Harpagifer's significance as a trophic resource in coastal areas and its vulnerability to climatic and anthropic pressures, understanding the potential evolutionary interdependence between the hosts and its microbiome provides valuable microbial candidates for future monitoring, as they may play a pivotal role in host species acclimatization to a rapidly changing environment.
Collapse
Affiliation(s)
- Guillaume Schwob
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Department of Ecological Sciences, Faculty of Sciences, University of Chile, Santiago, Chile
- Institute of Ecology and Biodiversity, Santiago, Chile
| | - Léa Cabrol
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Institute of Ecology and Biodiversity, Santiago, Chile
- Aix Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France, Marseille, France
| | - Thomas Saucède
- UMR 6282 Biogeosciences, University Bourgogne Franche-Comté, CNRS, EPHE, Dijon, France
| | - Karin Gérard
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Laboratory of Antarctic and Subantarctic Marine Ecosystems, Faculty of Sciences, University of Magallanes, Punta Arenas, Chile
- Cape Horn International Center, Puerto Williams, Chile
| | - Elie Poulin
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Department of Ecological Sciences, Faculty of Sciences, University of Chile, Santiago, Chile
- Institute of Ecology and Biodiversity, Santiago, Chile
| | - Julieta Orlando
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Department of Ecological Sciences, Faculty of Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
6
|
McFall-Ngai M. Symbiosis takes a front and center role in biology. PLoS Biol 2024; 22:e3002571. [PMID: 38578728 PMCID: PMC10997088 DOI: 10.1371/journal.pbio.3002571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
All animals and plants likely require interactions with microbes, often in strong, persistent symbiotic associations. While the recognition of this phenomenon has been slow in coming, it will impact most, if not all, subdisciplines of biology.
Collapse
Affiliation(s)
- Margaret McFall-Ngai
- Biosphere Sciences and Engineering, Carnegie Institution for Science, and Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
7
|
Cardinale M, Schnell S. Is the plant microbiome transmitted from pollen to seeds? Front Microbiol 2024; 15:1343795. [PMID: 38414764 PMCID: PMC10897013 DOI: 10.3389/fmicb.2024.1343795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Affiliation(s)
- Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
8
|
Hotopp AM, Olsen BJ, Ishaq SL, Frey SD, Kovach AI, Kinnison MT, Gigliotti FN, Roeder MR, Cammen KM. Plumage microorganism communities of tidal marsh sparrows. iScience 2024; 27:108668. [PMID: 38230264 PMCID: PMC10790016 DOI: 10.1016/j.isci.2023.108668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024] Open
Abstract
Microorganism communities can shape host phenotype evolution but are often comprised of thousands of taxa with varied impact on hosts. Identification of taxa influencing host evolution relies on first describing microorganism communities and acquisition routes. Keratinolytic (keratin-degrading) microorganisms are hypothesized to be abundant in saltmarsh sediments and to contribute to plumage evolution in saltmarsh-adapted sparrows. Metabarcoding was used to describe plumage bacterial (16S rRNA) and fungal (ITS) communities in three sparrow species endemic to North America's Atlantic coast saltmarshes. Results describe limited within-species variability and moderate host species-level patterns in microorganism diversity and community composition. A small percentage of overall microorganism diversity was comprised of potentially keratinolytic microorganisms, warranting further functional studies. Distinctions between plumage and saltmarsh sediment bacteria, but not fungal, communities were detected, suggesting multiple bacterial acquisition routes and/or vertebrate host specialization. This research lays groundwork for future testing of causal links between microorganisms and avian host evolution.
Collapse
Affiliation(s)
- Alice M. Hotopp
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Brian J. Olsen
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
- Maine Center for Genetics in the Environment, University of Maine, Orono, ME 04469, USA
| | - Suzanne L. Ishaq
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Serita D. Frey
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA
| | - Adrienne I. Kovach
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA
| | - Michael T. Kinnison
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
- Maine Center for Genetics in the Environment, University of Maine, Orono, ME 04469, USA
| | - Franco N. Gigliotti
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | - Kristina M. Cammen
- School of Marine Sciences, University of Maine, Orono, ME 04469, USA
- Maine Center for Genetics in the Environment, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
9
|
Díez-Vives C, Riesgo A. High compositional and functional similarity in the microbiome of deep-sea sponges. THE ISME JOURNAL 2024; 18:wrad030. [PMID: 38365260 PMCID: PMC10837836 DOI: 10.1093/ismejo/wrad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 02/18/2024]
Abstract
Sponges largely depend on their symbiotic microbes for their nutrition, health, and survival. This is especially true in high microbial abundance (HMA) sponges, where filtration is usually deprecated in favor of a larger association with prokaryotic symbionts. Sponge-microbiome association is substantially less understood for deep-sea sponges than for shallow water species. This is most unfortunate, since HMA sponges can form massive sponge grounds in the deep sea, where they dominate the ecosystems, driving their biogeochemical cycles. Here, we assess the microbial transcriptional profile of three different deep-sea HMA sponges in four locations of the Cantabrian Sea and compared them to shallow water HMA and LMA (low microbial abundance) sponge species. Our results reveal that the sponge microbiome has converged in a fundamental metabolic role for deep-sea sponges, independent of taxonomic relationships or geographic location, which is shared in broad terms with shallow HMA species. We also observed a large number of redundant microbial members performing the same functions, likely providing stability to the sponge inner ecosystem. A comparison between the community composition of our deep-sea sponges and another 39 species of HMA sponges from deep-sea and shallow habitats, belonging to the same taxonomic orders, suggested strong homogeneity in microbial composition (i.e. weak species-specificity) in deep sea species, which contrasts with that observed in shallow water counterparts. This convergence in microbiome composition and functionality underscores the adaptation to an extremely restrictive environment with the aim of exploiting the available resources.
Collapse
Affiliation(s)
- Cristina Díez-Vives
- Department of Systems Biology, Centro Nacional de Biotecnología, c/ Darwin, 3, 28049 Madrid, Spain
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
| | - Ana Riesgo
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), c/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
10
|
Dapa T, Xavier KB. Effect of diet on the evolution of gut commensal bacteria. Gut Microbes 2024; 16:2369337. [PMID: 38904092 PMCID: PMC11195494 DOI: 10.1080/19490976.2024.2369337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
The gut microbiota, comprising trillions of diverse microorganisms inhabiting the intestines of animals, forms a complex and indispensable ecosystem with profound implications for the host's well-being. Its functions include contributing to developing the host's immune response, aiding in nutrient digestion, synthesizing essential compounds, acting as a barrier against pathogen invasion, and influencing the development or regression of various pathologies. The dietary habits of the host directly impact this intricate community of gut microbes. Diet influences the composition and function of the gut microbiota through alterations in gene expression, enzymatic activity, and metabolome. While the impact of diet on gut ecology is well-established, the investigation into the relationship between dietary consumption and microbial genotypic diversity has been limited. This review provides an overview of the relationship between diet and gut microbiota, emphasizing the impact of host nutrition on both short- and long-term evolution in the mammalian gut. It is evident that the evolution of the gut microbiota occurs even on short timescales through the acquisition of novel mutations, within the gut bacteria of individual hosts. Consequently, we discuss the importance of considering alterations in bacterial genomic diversity when analyzing microbiota-dependent effects on host physiology. Future investigations into the various microbiota-related traits shall greatly benefit from a deeper understanding of commensal bacterial evolutionary adaptation.
Collapse
Affiliation(s)
- Tanja Dapa
- Andalusian Center for Developmental Biology (CABD), Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
11
|
Trapella G, Cinti N, Parma L, De Marco A, Dell'Acqua AN, Turroni S, Rampelli S, Scicchitano D, Iuffrida L, Bonaldo A, Franzellitti S, Candela M, Palladino G. Microbiome variation at the clam-sediment interface may explain changes in local productivity of Chamelea gallina in the North Adriatic sea. BMC Microbiol 2023; 23:402. [PMID: 38114947 PMCID: PMC10729368 DOI: 10.1186/s12866-023-03146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND The clam Chamelea gallina is an ecologically and economically important marine species in the Northwestern Adriatic Sea, which currently suffers from occasional, and still unexplained, widespread mortality events. In order to provide some glimpses in this direction, this study explores the connections between microbiome variations at the clam-sediment interface and the nutritional status of clams collected at four Italian production sites along the Emilia Romagna coast, with different mortality incidence, higher in the Northern sites and lower in the Southern sites. RESULTS According to our findings, each production site showed a peculiar microbiome arrangement at the clam-sediment interface, with features that clearly differentiate the Northern and Southern sites, with the latter also being associated with a better nutritional status of the animal. Interestingly, the C. gallina digestive gland microbiome from the Southern sites was enriched in some health-promoting microbiome components, capable of supplying the host with essential nutrients and defensive molecules. Furthermore, in experiments conducted under controlled conditions in aquaria, we provided preliminary evidence of the prebiotic action of sediments from the Southern sites, allowing to boost the acquisition of previously identified health-promoting components of the digestive gland microbiome by clams from the Northern sites. CONCLUSIONS Taken together, our findings may help define innovative microbiome-based management strategies for the preservation of the productivity of C. gallina clams in the Adriatic Sea, through the identification and maintenance of a probiotic niche at the animal-sediment interface.
Collapse
Affiliation(s)
- Giulia Trapella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, 40126, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Bioaffiliationersity, Resources and Biotechnologies, Fano, 61032, Italy
| | - Nicolò Cinti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, 40126, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Bioaffiliationersity, Resources and Biotechnologies, Fano, 61032, Italy
| | - Luca Parma
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia (Bologna), 40064, Italy
| | - Antonina De Marco
- Fano Marine Center, The Inter-Institute Center for Research on Marine Bioaffiliationersity, Resources and Biotechnologies, Fano, 61032, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia (Bologna), 40064, Italy
| | - Andrea Nicolò Dell'Acqua
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, 40126, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Bioaffiliationersity, Resources and Biotechnologies, Fano, 61032, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, 40126, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, 40126, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Bioaffiliationersity, Resources and Biotechnologies, Fano, 61032, Italy
| | - Daniel Scicchitano
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, 40126, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Bioaffiliationersity, Resources and Biotechnologies, Fano, 61032, Italy
| | - Letizia Iuffrida
- Fano Marine Center, The Inter-Institute Center for Research on Marine Bioaffiliationersity, Resources and Biotechnologies, Fano, 61032, Italy
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, 48123, Italy
| | - Alessio Bonaldo
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia (Bologna), 40064, Italy
| | - Silvia Franzellitti
- Fano Marine Center, The Inter-Institute Center for Research on Marine Bioaffiliationersity, Resources and Biotechnologies, Fano, 61032, Italy
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, 48123, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, 40126, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Bioaffiliationersity, Resources and Biotechnologies, Fano, 61032, Italy
| | - Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, 40126, Italy.
- Fano Marine Center, The Inter-Institute Center for Research on Marine Bioaffiliationersity, Resources and Biotechnologies, Fano, 61032, Italy.
| |
Collapse
|
12
|
Bacci G, Meriggi N, Cheng CLY, Ng KH, Iannucci A, Mengoni A, Cavalieri D, Cannicci S, Fratini S. Species-specific gill's microbiome of eight crab species with different breathing adaptations. Sci Rep 2023; 13:21033. [PMID: 38030652 PMCID: PMC10687215 DOI: 10.1038/s41598-023-48308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
Transitions to physically different environments, such as the water-to-land transition, proved to be the main drivers of relevant evolutionary events. Brachyuran crabs evolved remarkable morphological, behavioral, and physiological adaptations to terrestrial life. Terrestrial species evolved new respiratory structures devoted to replace or support the gills, a multifunctional organ devoted to gas exchanges, ion-regulation and nitrogen excretion. It was hypothesized that microorganisms associated with respiratory apparatus could have facilitated the processes of osmoregulation, respiration, and elimination of metabolites along this evolutionary transition. To test if crab species with different breathing adaptations may host similar microbial communities on their gills, we performed a comparative targeted-metagenomic analysis, selecting two marine and six terrestrial crabs belonging to different families and characterised by different breathing adaptations. We analysed anterior and posterior gills separately according to their different and specific roles. Regardless of their terrestrial or marine adaptations, microbial assemblages were strongly species-specific indicating a non-random association between the host and its microbiome. Significant differences were found in only two terrestrial species when considering posterior vs. anterior gills, without any association with species-specific respiratory adaptations. Our results suggest that all the selected species are strongly adapted to the ecological niche and specific micro-habitat they colonise.
Collapse
Affiliation(s)
- Giovanni Bacci
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Christine L Y Cheng
- The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ka Hei Ng
- The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China
| | - Alessio Iannucci
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Stefano Cannicci
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy.
- The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China.
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy.
| | - Sara Fratini
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
13
|
Akter S, Wos-Oxley ML, Catalano SR, Hassan MM, Li X, Qin JG, Oxley AP. Host Species and Environment Shape the Gut Microbiota of Cohabiting Marine Bivalves. MICROBIAL ECOLOGY 2023; 86:1755-1772. [PMID: 36811710 PMCID: PMC10497454 DOI: 10.1007/s00248-023-02192-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Pacific oysters (Crassostrea gigas) and Mediterranean mussels (Mytilus galloprovincialis) are commercially important marine bivalves that frequently coexist and have overlapping feeding ecologies. Like other invertebrates, their gut microbiota is thought to play an important role in supporting their health and nutrition. Yet, little is known regarding the role of the host and environment in driving these communities. Here, bacterial assemblages were surveyed from seawater and gut aspirates of farmed C. gigas and co-occurring wild M. galloprovincialis in summer and winter using Illumina 16S rRNA gene sequencing. Unlike seawater, which was dominated by Pseudomonadata, bivalve samples largely consisted of Mycoplasmatota (Mollicutes) and accounted for >50% of the total OTU abundance. Despite large numbers of common (core) bacterial taxa, bivalve-specific species (OTUs) were also evident and predominantly associated with Mycoplasmataceae (notably Mycoplasma). An increase in diversity (though with varied taxonomic evenness) was observed in winter for both bivalves and was associated with changes in the abundance of core and bivalve-specific taxa, including several representing host-associated and environmental (free-living or particle-diet associated) organisms. Our findings highlight the contribution of the environment and the host in defining the composition of the gut microbiota in cohabiting, intergeneric bivalve populations.
Collapse
Affiliation(s)
- Shirin Akter
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | | | - Sarah R Catalano
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia
| | - Md Mahbubul Hassan
- Aquaculture Research and Development, Department of Primary Industries and Regional Development, Hillarys, WA, Australia
| | - Xiaoxu Li
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Andrew Pa Oxley
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
14
|
Pinnow N, Chibani CM, Güllert S, Weiland-Bräuer N. Microbial community changes correlate with impaired host fitness of Aurelia aurita after environmental challenge. Anim Microbiome 2023; 5:45. [PMID: 37735458 PMCID: PMC10515101 DOI: 10.1186/s42523-023-00266-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
Climate change globally endangers certain marine species, but at the same time, such changes may promote species that can tolerate and adapt to varying environmental conditions. Such acclimatization can be accompanied or possibly even be enabled by a host's microbiome; however, few studies have so far directly addressed this process. Here we show that acute, individual rises in seawater temperature and salinity to sub-lethal levels diminished host fitness of the benthic Aurelia aurita polyp, demonstrated by up to 34% reduced survival rate, shrinking of the animals, and almost halted asexual reproduction. Changes in the fitness of the polyps to environmental stressors coincided with microbiome changes, mainly within the phyla Proteobacteria and Bacteroidota. The absence of bacteria amplified these effects, pointing to the benefit of a balanced microbiota to cope with a changing environment. In a future ocean scenario, mimicked by a combined but milder rise of temperature and salinity, the fitness of polyps was severely less impaired, together with condition-specific changes in the microbiome composition. Our results show that the effects on host fitness correlate with the strength of environmental stress, while salt-conveyed thermotolerance might be involved. Further, a specific, balanced microbiome of A. aurita polyps supports the host's acclimatization. Microbiomes may provide a means for acclimatization, and microbiome flexibility can be a fundamental strategy for marine animals to adapt to future ocean scenarios and maintain biodiversity and ecosystem functioning.
Collapse
Affiliation(s)
- Nicole Pinnow
- General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Cynthia M Chibani
- General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Simon Güllert
- General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
- Current address: Sysmex Inostics GmbH, Falkenried 88, 20251, Hamburg, Germany
| | - Nancy Weiland-Bräuer
- General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| |
Collapse
|
15
|
Stuij T, Cleary DFR, Polónia ARM, Putchakarn S, Pires ACC, Gomes NCM, de Voogd NJ. Exploring Prokaryotic Communities in the Guts and Mucus of Nudibranchs, and Their Similarity to Sediment and Seawater Microbiomes. Curr Microbiol 2023; 80:294. [PMID: 37481620 PMCID: PMC10363043 DOI: 10.1007/s00284-023-03397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/01/2023] [Indexed: 07/24/2023]
Abstract
In the present study, we compared mucus and gut-associated prokaryotic communities from seven nudibranch species with sediment and seawater from Thai coral reefs using high-throughput 16S rRNA gene sequencing. The nudibranch species were identified as Doriprismatica atromarginata (family Chromodorididae), Jorunna funebris (family Discodorididae), Phyllidiella nigra, Phyllidiella pustulosa, Phyllidia carlsonhoffi, Phyllidia elegans, and Phyllidia picta (all family Phyllidiidae). The most abundant bacterial phyla in the dataset were Proteobacteria, Tenericutes, Chloroflexi, Thaumarchaeota, and Cyanobacteria. Mucus and gut-associated communities differed from one another and from sediment and seawater communities. Host phylogeny was, furthermore, a significant predictor of differences in mucus and gut-associated prokaryotic community composition. With respect to higher taxon abundance, the order Rhizobiales (Proteobacteria) was more abundant in Phyllidia species (mucus and gut), whereas the order Mycoplasmatales (Tenericutes) was more abundant in D. atromarginata and J. funebris. Mucus samples were, furthermore, associated with greater abundances of certain phyla including Chloroflexi, Poribacteria, and Gemmatimonadetes, taxa considered to be indicators for high microbial abundance (HMA) sponge species. Overall, our results indicated that nudibranch microbiomes consisted of a number of abundant prokaryotic members with high sequence similarities to organisms previously detected in sponges.
Collapse
Affiliation(s)
- Tamara Stuij
- Department of Biology, CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Daniel F R Cleary
- Department of Biology, CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana R M Polónia
- Department of Biology, CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sumaitt Putchakarn
- Institute of Marine Science, Burapha University, Chon Buri, 20131, Thailand
| | - Ana C C Pires
- Department of Biology, CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Newton C M Gomes
- Department of Biology, CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands.
- Environmental Biology Department, Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands.
| |
Collapse
|
16
|
Strano F, Micaroni V, Thomas T, Woods L, Davy SK, Bell JJ. Marine heatwave conditions drive carryover effects in a temperate sponge microbiome and developmental performance. Proc Biol Sci 2023; 290:20222539. [PMID: 37282536 PMCID: PMC10244974 DOI: 10.1098/rspb.2022.2539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Marine heatwaves are increasingly subjecting organisms to unprecedented stressful conditions, but the biological consequences of these events are still poorly understood. Here we experimentally tested the presence of carryover effects of heatwave conditions on the larval microbiome, settlers growth rate and metamorphosis duration of the temperate sponge Crella incrustans. The microbial community of adult sponges changed significantly after ten days at 21°C. There was a relative decrease in symbiotic bacteria, and an increase in stress-associated bacteria. Sponge larvae derived from control sponges were mainly characterised by a few bacterial taxa also abundant in adults, confirming the occurrence of vertical transmission. The microbial community of sponge larvae derived from heatwave-exposed sponges showed significant increase in the endosymbiotic bacteria Rubritalea marina. Settlers derived from heatwave-exposed sponges had a greater growth rate under prolonged heatwave conditions (20 days at 21°C) compared to settlers derived from control sponges exposed to the same conditions. Moreover, settler metamorphosis was significantly delayed at 21°C. These results show, for the first time, the occurrence of heatwave-induced carryover effects across life-stages in sponges and highlight the potential role of selective vertical transmission of microbes in sponge resilience to extreme thermal events.
Collapse
Affiliation(s)
- Francesca Strano
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Valerio Micaroni
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Torsten Thomas
- Centre for Marine Science and Innovation, University of New South Wales, Sydney 2052, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney 2052, Australia
| | - Lisa Woods
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - James J. Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
17
|
Monti M, Giorgi A, Kemp DW, Olson JB. Spatial, temporal and network analyses provide insights into the dynamics of the bacterial communities associated with two species of Caribbean octocorals and indicate possible key taxa. Symbiosis 2023; 90:1-14. [PMID: 37360551 PMCID: PMC10238251 DOI: 10.1007/s13199-023-00923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/12/2023] [Indexed: 06/28/2023]
Abstract
Despite the current decline of scleractinian coral populations, octocorals are thriving on reefs in the Caribbean Sea and western North Atlantic Ocean. These cnidarians are holobiont entities, interacting with a diverse array of microorganisms. Few studies have investigated the spatial and temporal stability of the bacterial communities associated with octocoral species and information regarding the co-occurrence and potential interactions between specific members of these bacterial communities remain sparse. To address this knowledge gap, this study investigated the stability of the bacterial assemblages associated with two common Caribbean octocoral species, Eunicea flexuosa and Antillogorgia americana, across time and geographical locations and performed network analyses to investigate potential bacterial interactions. Results demonstrated that general inferences regarding the spatial and temporal stability of octocoral-associated bacterial communities should not be made, as host-specific characteristics may influence these factors. In addition, network analyses revealed differences in the complexity of the interactions between bacteria among the octocoral species analyzed, while highlighting the presence of genera known to produce bioactive secondary metabolites in both octocorals that may play fundamental roles in structuring the octocoral-associated bacteriome. Supplementary Information The online version contains supplementary material available at 10.1007/s13199-023-00923-x.
Collapse
Affiliation(s)
- M. Monti
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA
| | - A. Giorgi
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA
| | - D. W. Kemp
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - J. B. Olson
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA
| |
Collapse
|
18
|
Ma Y, He J, Sieber M, von Frieling J, Bruchhaus I, Baines JF, Bickmeyer U, Roeder T. The microbiome of the marine flatworm Macrostomum lignano provides fitness advantages and exhibits circadian rhythmicity. Commun Biol 2023; 6:289. [PMID: 36934156 PMCID: PMC10024726 DOI: 10.1038/s42003-023-04671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
The close association between animals and their associated microbiota is usually beneficial for both partners. Here, we used a simple marine model invertebrate, the flatworm Macrostomum lignano, to characterize the host-microbiota interaction in detail. This analysis revealed that the different developmental stages each harbor a specific microbiota. Studies with gnotobiotic animals clarified the physiological significance of the microbiota. While no fitness benefits were mediated by the microbiota when food was freely available, animals with microbiota showed significantly increased fitness with a reduced food supply. The microbiota of M. lignano shows circadian rhythmicity, affecting both the total bacterial load and the behavior of specific taxa. Moreover, the presence of the worm influences the composition of the bacterial consortia in the environment. In summary, the Macrostomum-microbiota system described here can serve as a general model for host-microbe interactions in marine invertebrates.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany
| | - Jinru He
- Kiel University, Zoological Institute, Cell and Developmental Biology, Kiel, Germany
| | - Michael Sieber
- Max-Planck Institute for Evolutionary Biology, Dept. Evolutionary Theory, Plön, Germany
| | - Jakob von Frieling
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany
| | - Iris Bruchhaus
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - John F Baines
- Kiel University, Medical Faculty, Institute for Experimental Medicine, Kiel, Germany
- Max-Planck Institute for Evolutionary Biology, Group Evolutionary Medicine, Plön, Germany
| | - Ulf Bickmeyer
- Alfred-Wegener-Institute, Biosciences, Ecological Chemistry, Bremerhaven, Germany
| | - Thomas Roeder
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany.
- German Center for Lung Research (DZL), Airway Research Center North, Kiel, Germany.
| |
Collapse
|
19
|
Ramalho MO, Moreau CS. Untangling the complex interactions between turtle ants and their microbial partners. Anim Microbiome 2023; 5:1. [PMID: 36597141 PMCID: PMC9809061 DOI: 10.1186/s42523-022-00223-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND To understand the patterns of biodiversity it is important to consider symbiotic interactions as they can shape animal evolution. In several ant genera symbiotic interactions with microbial communities have been shown to have profound impacts for the host. For example, we know that for Camponotini the gut community can upgrade the host's diet and is shaped by development and colony interactions. However, what is true for one ant group may not be true for another. For the microbial communities that have been examined across ants we see variation in the diversity, host factors that structure these communities, and the function these microbes provide for the host. In the herbivorous turtle ants (Cephalotes) their stable symbiotic interactions with gut bacteria have persisted for 50 million years with the gut bacteria synthesizing essential amino acids that are used by the host. Although we know the function for some of these turtle ant-associated bacteria there are still many open questions. RESULTS In the present study we examined microbial community diversity (16S rRNA and 18S rRNA amplicons) of more than 75 species of turtle ants across different geographic locations and in the context of the host's phylogenetic history. Our results show (1) that belonging to a certain species and biogeographic regions are relevant to structuring the microbial community of turtle ants; (2) both bacterial and eukaryotic communities demonstrated correlations and cooccurrence within the ant host; (3) within the core bacterial community, Burkholderiaceae bacterial lineage were the only group that showed strong patterns of codiversification with the host, which is remarkable since the core bacterial community is stable and persistent. CONCLUSIONS We concluded that for the turtle ants there is a diverse and evolutionarily stable core bacterial community, which leads to interesting questions about what microbial or host factors influence when these partner histories become evolutionarily intertwined.
Collapse
Affiliation(s)
- Manuela O. Ramalho
- grid.268132.c0000 0001 0701 2416Department of Biology, West Chester University, 750 South Church Street, West Chester, PA 19383 USA
| | - Corrie S. Moreau
- grid.5386.8000000041936877XDepartment of Entomology, Cornell University, Ithaca, NY 14853 USA ,grid.5386.8000000041936877XDepartment of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
20
|
Sánchez-Suárez J, Díaz L, Coy-Barrera E, Villamil L. Specialized Metabolism of Gordonia Genus: An Integrated Survey on Chemodiversity Combined with a Comparative Genomics-Based Analysis. BIOTECH 2022; 11:53. [PMID: 36412754 PMCID: PMC9680422 DOI: 10.3390/biotech11040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Members of the phylum Actinomycetota (formerly Actinobacteria) have historically been the most prolific providers of small bioactive molecules. Although the genus Streptomyces is the best-known member for this issue, other genera, such as Gordonia, have shown interesting potential in their specialized metabolism. Thus, we combined herein the result of a comprehensive literature survey on metabolites derived from Gordonia strains with a comparative genomic analysis to examine the potential of the specialized metabolism of the genus Gordonia. Thirty Gordonia-derived compounds of different classes were gathered (i.e., alkaloids, amides, phenylpropanoids, and terpenoids), exhibiting antimicrobial and cytotoxic activities, and several were also isolated from Streptomyces (e.g., actinomycin, nocardamin, diolmycin A1). With the genome data, we estimated an open pan-genome of 57,901 genes, most of them being part of the cloud genome. Regarding the BGCs content, 531 clusters were found, including Terpenes, RiPP-like, and NRPS clusters as the most frequent clusters. Our findings demonstrated that Gordonia is a poorly studied genus in terms of its specialized metabolism production and potential applications. Nevertheless, given their BGCs content, Gordonia spp. are a valuable biological resource that could expand the chemical spectrum of the phylum Actinomycetota, involving novel BGCs for inspiring innovative outlines for synthetic biology and further use in biotechnological initiatives. Therefore, further studies and more efforts should be made to explore different environments and evaluate other bioactivities.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- Doctoral Program in Biosciences, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
| | - Luis Díaz
- Doctoral Program in Biosciences, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Luisa Villamil
- Doctoral Program in Biosciences, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
| |
Collapse
|
21
|
Díez-Vives C, Koutsouveli V, Conejero M, Riesgo A. Global patterns in symbiont selection and transmission strategies in sponges. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1015592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sponges host dense and diverse communities of microbes (known as the microbiome) beneficial for the host nutrition and defense. Symbionts in turn receive shelter and metabolites from the sponge host, making their relationship beneficial for both partners. Given that sponge-microbes associations are fundamental for the survival of both, especially the sponge, such relationship is maintained through their life and even passed on to the future generations. In many organisms, the microbiome has profound effects on the development of the host, but the influence of the microbiome on the reproductive and developmental pathways of the sponges are less understood. In sponges, microbes are passed on to oocytes, sperm, embryos, and larvae (known as vertical transmission), using a variety of methods that include direct uptake from the mesohyl through phagocytosis by oocytes to indirect transmission to the oocyte by nurse cells. Such microbes can remain in the reproductive elements untouched, for transfer to offspring, or can be digested to make the yolky nutrient reserves of oocytes and larvae. When and how those decisions are made are fundamentally unanswered questions in sponge reproduction. Here we review the diversity of vertical transmission modes existent in the entire phylum Porifera through detailed imaging using electron microscopy, available metabarcoding data from reproductive elements, and macroevolutionary patterns associated to phylogenetic constraints. Additionally, we examine the fidelity of this vertical transmission and possible reasons for the observed variability in some developmental stages. Our current understanding in marine sponges, however, is that the adult microbial community is established by a combination of both vertical and horizontal (acquisition from the surrounding environment in each new generation) transmission processes, although the extent in which each mode shapes the adult microbiome still remains to be determined. We also assessed the fundamental role of filtration, the cellular structures for acquiring external microbes, and the role of the host immune system, that ultimately shapes the stable communities of prokaryotes observed in adult sponges.
Collapse
|
22
|
Johnston EC, Cunning R, Burgess SC. Cophylogeny and specificity between cryptic coral species (Pocillopora spp.) at Mo'orea and their symbionts (Symbiodiniaceae). Mol Ecol 2022; 31:5368-5385. [PMID: 35960256 PMCID: PMC9805206 DOI: 10.1111/mec.16654] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 01/09/2023]
Abstract
The congruence between phylogenies of tightly associated groups of organisms (cophylogeny) reflects evolutionary links between ecologically important interactions. However, despite being a classic example of an obligate symbiosis, tests of cophylogeny between scleractinian corals and their photosynthetic algal symbionts have been hampered in the past because both corals and algae contain genetically unresolved and morphologically cryptic species. Here, we studied co-occurring, cryptic Pocillopora species from Mo'orea, French Polynesia, that differ in their relative abundance across depth. We constructed new phylogenies of the host Pocillopora (using complete mitochondrial genomes, genomic loci, and thousands of single nucleotide polymorphisms) and their Symbiodiniaceae symbionts (using ITS2 and psbAncr markers) and tested for cophylogeny. The analysis supported the presence of five Pocillopora species on the fore reef at Mo'orea that mostly hosted either Cladocopium latusorum or C. pacificum. Only Pocillopora species hosting C. latusorum also hosted taxa from Symbiodinium and Durusdinium. In general, the Cladocopium phylogeny mirrored the Pocillopora phylogeny. Within Cladocopium species, lineages also differed in their associations with Pocillopora haplotypes, except those showing evidence of nuclear introgression, and with depth in the two most common Pocillopora species. We also found evidence for a new Pocillopora species (haplotype 10), that has so far only been sampled from French Polynesia, that warrants formal identification. The linked phylogenies of these Pocillopora and Cladocopium species and lineages suggest that symbiont speciation is driven by niche diversification in the host, but there is still evidence for symbiont flexibility in some cases.
Collapse
Affiliation(s)
- Erika C. Johnston
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Ross Cunning
- Daniel P. Haerther Center for Conservation and ResearchJohn G. Shedd AquariumChicagoIllinoisUSA
| | - Scott C. Burgess
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
23
|
Gong X, Chen TW, Zhang L, Pižl V, Tajovský K, Devetter M. Gut microbiome reflect adaptation of earthworms to cave and surface environments. Anim Microbiome 2022; 4:47. [PMID: 35932082 PMCID: PMC9356433 DOI: 10.1186/s42523-022-00200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Background Caves are special natural laboratories for most biota and the cave communities are unique. Establishing population in cave is accompanied with modifications in adaptability for most animals. To date, little is known about the survival mechanisms of soil animals in cave environments, albeit they play vital roles in most terrestrial ecosystems. Here, we investigated whether and how gut microbes would contribute to the adaptation of earthworms by comparing the gut microbiome of two earthworm species from the surface and caves. Results Two dominant earthworm species inhabited caves, i.e., Allolobophora chlorotica and Aporrectodea rosea. Compared with the counterparts on the surface, A. rosea significantly decreased population in the cave, while A. chlorotica didn’t change. Microbial taxonomic and phylogenetic diversities between the earthworm gut and soil environment were asynchronic with functional diversity, with functional gene diversity been always higher in earthworm gut than in soil, but species richness and phylogenetic diversity lower. In addition, earthworm gut microbiome were characterized by higher rrn operon numbers and lower network complexity than soil microbiota. Conclusions Different fitness of the two earthworm species in cave is likely to coincide with gut microbiota, suggesting interactions between host and gut microbiome are essential for soil animals in adapting to new environments. The functional gene diversity provided by gut microbiome is more important than taxonomic or phylogenetic diversity in regulating host adaptability. A stable and high-efficient gut microbiome, including microbiota and metabolism genes, encoded potential functions required by the animal hosts during the processes of adapting to and establishing in the cave environments. Our study also demonstrates how the applications of microbial functional traits analysis may advance our understanding of animal-microbe interactions that may aid animals to survive in extreme ecosystems. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00200-0.
Collapse
|
24
|
Abdelrahman SM, Dosoky NS, Hanora AM, Lopanik NB. Metabolomic Profiling and Molecular Networking of Nudibranch-Associated Streptomyces sp. SCSIO 001680. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144542. [PMID: 35889415 PMCID: PMC9321954 DOI: 10.3390/molecules27144542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022]
Abstract
Antibiotic-resistant bacteria are the primary source of one of the growing public health problems that requires global attention, indicating an urgent need for new antibiotics. Marine ecosystems are characterized by high biodiversity and are considered one of the essential sources of bioactive chemical compounds. Bacterial associates of marine invertebrates are commonly a source of active medicinal and natural products and are important sources for drug discovery. Hence, marine invertebrate-associated microbiomes are a fruitful resource for excavating novel genes and bioactive compounds. In a previous study, we isolated Streptomyces sp. SCSIO 001680, coded as strain 63, from the Red Sea nudibranch Chromodoris quadricolor, which exhibited antimicrobial and antitumor activity. In addition, this isolate harbors several natural product biosynthetic gene clusters, suggesting it has the potential to produce bioactive natural products. The present study aimed to investigate the metabolic profile of the isolated Streptomyces sp. SCSIO 001680 (strain 63) and to predict their potential role in the host’s survival. The crude metabolic extracts of strain 63 cultivated in two different media were characterized by ultra-high-performance liquid chromatography and high-resolution mass spectrometry. The metabolomics approach provided us with characteristic chemical fingerprints of the cellular processes and the relative abundance of specific compounds. The Global Products Social Molecular Networking database was used to identify the metabolites. While 434 metabolites were detected in the extracts, only a few compounds were identified based on the standards and the public spectral libraries, including desferrioxamines, marineosin A, and bisucaberin, halichoblelide, alternarin A, pachastrelloside A, streptodepsipeptide P1 1B, didemnaketal F, and alexandrolide. This finding suggests that this strain harbors several novel compounds. In addition, the metabolism of the microbiome of marine invertebrates remains poorly represented. Thus, our data constitute a valuable complement to the study of metabolism in the host microbiome.
Collapse
Affiliation(s)
- Samar M. Abdelrahman
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Department of Botany and Microbiology, Faculty of Science, Suez University, Suez 43518, Egypt
- Correspondence: ; Tel.: +20-103-015-1594
| | | | - Amro M. Hanora
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Nicole B. Lopanik
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- American Cancer Society, Atlanta, GA 30303, USA
| |
Collapse
|
25
|
Sharp C, Foster KR. Host control and the evolution of cooperation in host microbiomes. Nat Commun 2022; 13:3567. [PMID: 35732630 PMCID: PMC9218092 DOI: 10.1038/s41467-022-30971-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Humans, and many other species, are host to diverse symbionts. It is often suggested that the mutual benefits of host-microbe relationships can alone explain cooperative evolution. Here, we evaluate this hypothesis with evolutionary modelling. Our model predicts that mutual benefits are insufficient to drive cooperation in systems like the human microbiome, because of competition between symbionts. However, cooperation can emerge if hosts can exert control over symbionts, so long as there are constraints that limit symbiont counter evolution. We test our model with genomic data of two bacterial traits monitored by animal immune systems. In both cases, bacteria have evolved as predicted under host control, tending to lose flagella and maintain butyrate production when host-associated. Moreover, an analysis of bacteria that retain flagella supports the evolution of host control, via toll-like receptor 5, which limits symbiont counter evolution. Our work puts host control mechanisms, including the immune system, at the centre of microbiome evolution.
Collapse
Affiliation(s)
- Connor Sharp
- Department of Zoology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
26
|
Nwachukwu BC, Babalola OO. Metagenomics: A Tool for Exploring Key Microbiome With the Potentials for Improving Sustainable Agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.886987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microorganisms are immense in nature and exist in every imaginable ecological niche, performing a wide range of metabolic processes. Unfortunately, using traditional microbiological methods, most microorganisms remain unculturable. The emergence of metagenomics has resolved the challenge of capturing the entire microbial community in an environmental sample by enabling the analysis of whole genomes without requiring culturing. Metagenomics as a non-culture approach encompasses a greater amount of genetic information than traditional approaches. The plant root-associated microbial community is essential for plant growth and development, hence the interactions between microorganisms, soil, and plants is essential to understand and improve crop yields in rural and urban agriculture. Although some of these microorganisms are currently unculturable in the laboratory, metagenomic techniques may nevertheless be used to identify the microorganisms and their functional traits. A detailed understanding of these organisms and their interactions should facilitate an improvement of plant growth and sustainable crop production in soil and soilless agriculture. Therefore, the objective of this review is to provide insights into metagenomic techniques to study plant root-associated microbiota and microbial ecology. In addition, the different DNA-based techniques and their role in elaborating plant microbiomes are discussed. As an understanding of these microorganisms and their biotechnological potentials are unlocked through metagenomics, they can be used to develop new, useful and unique bio-fertilizers and bio-pesticides that are not harmful to the environment.
Collapse
|
27
|
Carrier TJ, Maldonado M, Schmittmann L, Pita L, Bosch TCG, Hentschel U. Symbiont transmission in marine sponges: reproduction, development, and metamorphosis. BMC Biol 2022; 20:100. [PMID: 35524305 PMCID: PMC9077847 DOI: 10.1186/s12915-022-01291-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Marine sponges (phylum Porifera) form symbioses with diverse microbial communities that can be transmitted between generations through their developmental stages. Here, we integrate embryology and microbiology to review how symbiotic microorganisms are transmitted in this early-diverging lineage. We describe that vertical transmission is widespread but not universal, that microbes are vertically transmitted during a select developmental window, and that properties of the developmental microbiome depends on whether a species is a high or low microbial abundance sponge. Reproduction, development, and symbiosis are thus deeply rooted, but why these partnerships form remains the central and elusive tenet of these developmental symbioses.
Collapse
Affiliation(s)
- Tyler J Carrier
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany.
- Zoological Institute, University of Kiel, Kiel, Germany.
| | - Manuel Maldonado
- Department of Marine Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Girona, Spain
| | | | - Lucía Pita
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | | | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Zoological Institute, University of Kiel, Kiel, Germany
| |
Collapse
|
28
|
Quintanilla E, Rodrigues CF, Henriques I, Hilário A. Microbial Associations of Abyssal Gorgonians and Anemones (>4,000 m Depth) at the Clarion-Clipperton Fracture Zone. Front Microbiol 2022; 13:828469. [PMID: 35432234 PMCID: PMC9006452 DOI: 10.3389/fmicb.2022.828469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/18/2022] [Indexed: 01/04/2023] Open
Abstract
Deep coral-dominated communities play paramount roles in benthic environments by increasing their complexity and biodiversity. Coral-associated microbes are crucial to maintain fitness and homeostasis at the holobiont level. However, deep-sea coral biology and their associated microbiomes remain largely understudied, and less from remote and abyssal environments such as those in the Clarion-Clipperton Fracture Zone (CCZ) in the tropical Northeast (NE) Pacific Ocean. Here, we study microbial-associated communities of abyssal gorgonian corals and anemones (>4,000 m depth) in the CCZ; an area harboring the largest known global reserve of polymetallic nodules that are commercially interesting for the deep-sea nodule mining. Coral samples (n = 25) belonged to Isididae and Primnoidae families, while anemones (n = 4) to Actinostolidae family. Significant differences in bacterial community compositions were obtained between these three families, despite sharing similar habitats. Anemones harbored bacterial microbiomes composed mainly of Hyphomicrobiaceae, Parvibaculales, and Pelagibius members. Core microbiomes of corals were mainly dominated by different Spongiibacteraceae and Terasakiellaceae bacterial members, depending on corals' taxonomy. Moreover, the predicted functional profiling suggests that deep-sea corals harbor bacterial communities that allow obtaining additional energy due to the scarce availability of nutrients. This study presents the first report of microbiomes associated with abyssal gorgonians and anemones and will serve as baseline data and crucial insights to evaluate and provide guidance on the impacts of deep-sea mining on these key abyssal communities.
Collapse
Affiliation(s)
- Elena Quintanilla
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Clara F. Rodrigues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Isabel Henriques
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Ana Hilário
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
29
|
Li J, Wei X, Huang D, Xiao J. The Phylosymbiosis Pattern Between the Fig Wasps of the Same Genus and Their Associated Microbiota. Front Microbiol 2022; 12:800190. [PMID: 35237241 PMCID: PMC8882959 DOI: 10.3389/fmicb.2021.800190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial communities can be critical for many metazoans, which can lead to the observation of phylosymbiosis with phylogenetically related species sharing similar microbial communities. Most of the previous studies on phylosymbiosis were conducted across the host families or genera. However, it is unclear whether the phylosymbiosis signal is still prevalent at lower taxonomic levels. In this study, 54 individuals from six species of the fig wasp genus Ceratosolen (Hymenoptera: Agaonidae) collected from nine natural populations and their associated microbiota were investigated. The fig wasp species were morphologically identified and further determined by mitochondrial CO1 gene fragments and nuclear ITS2 sequences, and the V4 region of 16S rRNA gene was sequenced to analyze the bacterial communities. The results suggest a significant positive correlation between host genetic characteristics and microbial diversity characteristics, indicating the phylosymbiosis signal between the phylogeny of insect hosts and the associated microbiota in the lower classification level within a genus. Moreover, we found that the endosymbiotic Wolbachia carried by fig wasps led to a decrease in bacterial diversity of host-associated microbial communities. This study contributes to our understanding of the role of host phylogeny, as well as the role of endosymbionts in shaping the host-associated microbial community.
Collapse
|
30
|
Li S, Young T, Archer S, Lee K, Sharma S, Alfaro AC. Mapping the Green-Lipped Mussel (Perna canaliculus) Microbiome: A Multi-Tissue Analysis of Bacterial and Fungal Diversity. Curr Microbiol 2022; 79:76. [PMID: 35091849 PMCID: PMC8799583 DOI: 10.1007/s00284-021-02758-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/28/2021] [Indexed: 11/03/2022]
Abstract
Poor health and mortality events of the commercially important and endemic New Zealand green-lipped mussel (Perna canaliculus) pose a threat to its industry. Despite the known importance of microbiomes to animal health and environmental resilience, the host-associated microbiome is unexplored in this species. We conducted the first baseline characterization of bacteria and fungi within key host tissues (gills, haemolymph, digestive gland, and stomach) using high-throughput amplicon sequencing of 16S rRNA gene and ITS1 region for bacteria and fungi, respectively. Tissue types displayed distinctive bacterial profiles, consistent among individuals, that were dominated by phyla which reflect (1) a fluid exchange between the circulatory system (gills and haemolymph) and surrounding aqueous environment and (2) a highly diverse digestive system (digestive gland and stomach) microbiota. Gammaproteobacteria and Campylobacterota were mostly identified in the gill tissue and haemolymph, and were also found in high abundance in seawater. Digestive gland and stomach tissues were dominated by common gut bacterial phyla, such as Firmicutes, Cyanobacteria, Proteobacteria, and Bacteroidota, which reflects the selectivity of the digestive system and food-based influences. Other major notable taxa included the family Spirochaetaceae, and genera Endozoicomonas, Psychrilyobacter, Moritella and Poseidonibacter, which were highly variable among tissue types and samples. More than 50% of fungal amplicon sequence variants (ASVs) were unclassified beyond the phylum level, which reflects the lack of studies with marine fungi. However, the majority of those identified were assigned to the phylum Ascomycota. The findings from this work provide the first insight into healthy tissue microbiomes of P. canaliculus and is of central importance to understanding the effect of environmental changes on farmed mussels at the microbial level.
Collapse
Affiliation(s)
- Siming Li
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand
- The Centre for Biomedical and Chemical Sciences, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand
| | - Stephen Archer
- Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand
| | - Kevin Lee
- Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand
| | - Shaneel Sharma
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand.
| |
Collapse
|
31
|
Rosenberg E, Zilber-Rosenberg I. Reconstitution and Transmission of Gut Microbiomes and Their Genes between Generations. Microorganisms 2021; 10:microorganisms10010070. [PMID: 35056519 PMCID: PMC8780831 DOI: 10.3390/microorganisms10010070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Microbiomes are transmitted between generations by a variety of different vertical and/or horizontal modes, including vegetative reproduction (vertical), via female germ cells (vertical), coprophagy and regurgitation (vertical and horizontal), physical contact starting at birth (vertical and horizontal), breast-feeding (vertical), and via the environment (horizontal). Analyses of vertical transmission can result in false negatives (failure to detect rare microbes) and false positives (strain variants). In humans, offspring receive most of their initial gut microbiota vertically from mothers during birth, via breast-feeding and close contact. Horizontal transmission is common in marine organisms and involves selectivity in determining which environmental microbes can colonize the organism's microbiome. The following arguments are put forth concerning accurate microbial transmission: First, the transmission may be of functions, not necessarily of species; second, horizontal transmission may be as accurate as vertical transmission; third, detection techniques may fail to detect rare microbes; lastly, microbiomes develop and reach maturity with their hosts. In spite of the great variation in means of transmission discussed in this paper, microbiomes and their functions are transferred from one generation of holobionts to the next with fidelity. This provides a strong basis for each holobiont to be considered a unique biological entity and a level of selection in evolution, largely maintaining the uniqueness of the entity and conserving the species from one generation to the next.
Collapse
|
32
|
Panpetch W, Visitchanakun P, Saisorn W, Sawatpanich A, Chatthanathon P, Somboonna N, Tumwasorn S, Leelahavanichkul A. Lactobacillus rhamnosus attenuates Thai chili extracts induced gut inflammation and dysbiosis despite capsaicin bactericidal effect against the probiotics, a possible toxicity of high dose capsaicin. PLoS One 2021; 16:e0261189. [PMID: 34941893 PMCID: PMC8699716 DOI: 10.1371/journal.pone.0261189] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
Because of a possible impact of capsaicin in the high concentrations on enterocyte injury (cytotoxicity) and bactericidal activity on probiotics, Lactobacillus rhamnosus L34 (L34) and Lactobacillus rhamnosus GG (LGG), the probiotics derived from Thai and Caucasian population, respectively, were tested in the chili-extract administered C57BL/6 mice and in vitro experiments. In comparison with placebo, 2 weeks administration of the extract from Thai chili in mice caused loose feces and induced intestinal permeability defect as indicated by FITC-dextran assay and the reduction in tight junction molecules (occludin and zona occludens-1) using fluorescent staining and gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the chili extracts also induced the translocation of gut pathogen molecules; lipopolysaccharide (LPS) and (1→3)-β-d-glucan (BG) and fecal dysbiosis (microbiome analysis), including reduced Firmicutes, increased Bacteroides, and enhanced total Gram-negative bacteria in feces. Both L34 and LGG attenuated gut barrier defect (FITC-dextran, the fluorescent staining and gene expression of tight junction molecules) but not improved fecal consistency. Additionally, high concentrations of capsaicin (0.02-2 mM) damage enterocytes (Caco-2 and HT-29) as indicated by cell viability test, supernatant cytokine (IL-8), transepithelial electrical resistance (TEER) and transepithelial FITC-dextran (4.4 kDa) but were attenuated by Lactobacillus condition media (LCM) from both probiotic-strains. The 24 h incubation with 2 mM capsaicin (but not the lower concentrations) reduced the abundance of LGG (but not L34) implying a higher capsaicin tolerance of L34. However, Lactobacillus rhamnosus fecal abundance, using qRT-PCR, of L34 or LGG after 3, 7, and 20 days of the administration in the Thai healthy volunteers demonstrated the similarity between both strains. In conclusion, high dose chili extracts impaired gut permeability and induced gut dysbiosis but were attenuated by probiotics. Despite a better capsaicin tolerance of L34 compared with LGG in vitro, L34 abundance in feces was not different to LGG in the healthy volunteers. More studies on probiotics with a higher intake of chili in human are interesting.
Collapse
Affiliation(s)
- Wimonrat Panpetch
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Translational Research in Inflammation and Immunology Research Unit (TRIRU), Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Translational Research in Inflammation and Immunology Research Unit (TRIRU), Chulalongkorn University, Bangkok, Thailand
| | - Wilasinee Saisorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Translational Research in Inflammation and Immunology Research Unit (TRIRU), Chulalongkorn University, Bangkok, Thailand
| | - Ajcharaporn Sawatpanich
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piraya Chatthanathon
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
| | - Somying Tumwasorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail: (AL); (ST)
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Translational Research in Inflammation and Immunology Research Unit (TRIRU), Chulalongkorn University, Bangkok, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail: (AL); (ST)
| |
Collapse
|
33
|
Voser TM, Campbell MD, Carroll AR. How different are marine microbial natural products compared to their terrestrial counterparts? Nat Prod Rep 2021; 39:7-19. [PMID: 34651634 DOI: 10.1039/d1np00051a] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 1877 to 2020A key challenge in natural products research is the selection of biodiversity to yield novel chemistry. Recently, marine microorganisms have become a preferred source. But how novel are marine microorganism natural products compared to those reported from terrestrial microbes? Cluster analysis of chemical fingerprints and molecular scaffold analysis of 55 817 compounds reported from marine and terrestrial microorganisms, and marine macro-organisms showed that 76.7% of the compounds isolated from marine microorganisms are closely related to compounds isolated from terrestrial microorganisms. Only 14.3% of marine microorganism natural products are unique when marine macro-organism natural products are also considered. Studies targeting marine specific and understudied microbial phyla result in a higher likelihood of finding marine specific compounds, whereas the depth and geographic location of microorganism collection have little influence. We recommend marine targeted strain isolation, incorporating early use of genomic sequencing to guide strain selection, innovation in culture media and cultivation techniques and the application of cheminformatics tools to focus on unique natural product diversity, rather than the dereplication of known compounds.
Collapse
Affiliation(s)
- Tanja M Voser
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.
| | - Max D Campbell
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Australian Rivers Institute-Coasts and Estuaries, Griffith University, Nathan, Australia.
| | - Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.
| |
Collapse
|
34
|
Ben-Dor Cohen E, Ilan M, Yarden O. The Culturable Mycobiome of Mesophotic Agelas oroides: Constituents and Changes Following Sponge Transplantation to Shallow Water. J Fungi (Basel) 2021; 7:jof7070567. [PMID: 34356947 PMCID: PMC8307482 DOI: 10.3390/jof7070567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Marine sponges harbor a diverse array of microorganisms and the composition of the microbial community has been suggested to be linked to holo-biont health. Most of the attention concerning sponge mycobiomes has been given to sponges present in shallow depths. Here, we describe the presence of 146 culturable mycobiome taxa isolated from mesophotic niche (100 m depth)-inhabiting samples of Agelas oroides, in the Mediterranean Sea. We identify some potential in vitro interactions between several A. oroides-associated fungi and show that sponge meso-hyl extract, but not its predominantly collagen-rich part, is sufficient to support hyphal growth. We demonstrate that changes in the diversity of culturable mycobiome constituents occur following sponge transplantation from its original mesophotic habitat to shallow (10 m) waters, where historically (60 years ago) this species was found. We conclude that among the 30 fungal genera identified as associated with A. oroides, Aspergillus, Penicillium and Trichoderma constitute the core mycobiome of A. oroides, and that they persist even when the sponge is transplanted to a suboptimal environment, indicative of the presence of constant, as well as dynamic, components of the sponge mycobiome. Other genera seemed more depth-related and appeared or disappeared upon host's transfer from 100 to 10 m.
Collapse
Affiliation(s)
- Eyal Ben-Dor Cohen
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.B.-D.C.); (M.I.)
- Department of Plant Pathology and Microbiology, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Micha Ilan
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.B.-D.C.); (M.I.)
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
- Correspondence:
| |
Collapse
|
35
|
Chekidhenkuzhiyil J, Anas A, Thomas P, Tharakan B, Nair S. Characterization of archaeal symbionts of sponges from the coral reef ecosystems of the Gulf of Mannar, Southeast coast of India. Saudi J Biol Sci 2021; 28:3783-3788. [PMID: 34220232 PMCID: PMC8241630 DOI: 10.1016/j.sjbs.2021.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/10/2021] [Accepted: 03/21/2021] [Indexed: 10/26/2022] Open
Abstract
Sponges accommodate a diverse group of microorganisms with varied metabolic capabilities. The bacterial associates of sponges are widely studied while our understanding of archaeal counterparts is scanty. In the present study, we report the archaeal associates of two sponges, Pseudoceratina purpurea (NCBI barcode: KX454492) and Cinachyra sp. (NCBI barcode: KX454495), found in the coral reef ecosystems of Gulf of Mannar, India. Archaea in the water column was predominated by members of class Halobacteria of Phylum Euryarchaeota (97%) followed by a minor fraction (3%) of Nitrosopumilus sp. of phylum Thaumarchaeota. Interestingly, Thaumarchaeota was identified as the sole archaeal population associated with the two sponges studied, among which Nitrosopumilus sp. occuppied 80 and 100% of the sequences in the clone library of P. purpurea and Cinachyra sp. respectively. Other archaea found in the P. purpurea were Nitrososphaera (10%) and unclassified ones (10%). The study identified Nitrosopumilus sp. as a unique symbiotic archaeon of sponges, P. purpurea and Cinachyra sp. The existence of host driven factors in selecting specific associates from a diverse group of archaea in the environment may need further investigations.
Collapse
Affiliation(s)
| | - Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre, Cochin, Kerala 682 018, India
| | - P.A. Thomas
- Panachammoottil, Gandhipuram, Thiruvananthapuram, Kerala 695017, India
| | - Balu Tharakan
- CSIR-National Institute of Oceanography, Regional Centre, Cochin, Kerala 682 018, India
| | - Shanta Nair
- CSIR-National Institute of Oceanography, Regional Centre, Cochin, Kerala 682 018, India
| |
Collapse
|
36
|
Li M, Wang K, Jia C, Liu T, Yang S, Ou H, Zhao J. Bacteroidetes bacteria, important players in the marine sponge larval development process. iScience 2021; 24:102662. [PMID: 34169238 PMCID: PMC8209267 DOI: 10.1016/j.isci.2021.102662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/10/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteroidetes bacteria are frequently found in association with sponges, but their roles in host development are poorly understood. In this study, thirteen bacterial species (12 genera) isolated from the sponge Tedania sp. revealed a common ability to significantly promote sponge larval settlement at rates 30.00-53.33% higher than controls (p < 0.05). Three effective strategies were adapted: (i) two strains formed biofilms enhancing the settlement rate to 56.67-63.33% within three days. (ii) Five strains secreted hydrosoluble molecules improving larval settlement, reaching 59.17%. (iii) Six species produced extracellular vesicles (EVs) that significantly improved settlement by up to 86.67% (p < 0.05). The EV fluorescence demonstrated that they migrated inside the sponge larvae from the planktonic to metamorphosis stage. Generally, marine sponges specifically enrich Bacteroidetes bacteria because of the important player in host development, establishing the basis for reciprocal adaptive co-evolution between the microbial community and animals, even including higher organisms.
Collapse
Affiliation(s)
- Mingyu Li
- College of Ocean and Earth Sciences of Xiamen University, Xiamen 361005, China
| | - Kai Wang
- College of Ocean and Earth Sciences of Xiamen University, Xiamen 361005, China
| | - Chenzheng Jia
- College of Ocean and Earth Sciences of Xiamen University, Xiamen 361005, China
| | - Tan Liu
- College of Ocean and Earth Sciences of Xiamen University, Xiamen 361005, China
| | - Shuo Yang
- College of Ocean and Earth Sciences of Xiamen University, Xiamen 361005, China
| | - Huilong Ou
- College of Ocean and Earth Sciences of Xiamen University, Xiamen 361005, China
| | - Jing Zhao
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiangan District, Zhoulongquan Building, Xiamen 361005, China
- College of Ocean and Earth Sciences of Xiamen University, Xiamen 361005, China
| |
Collapse
|
37
|
O'Brien PA, Andreakis N, Tan S, Miller DJ, Webster NS, Zhang G, Bourne DG. Testing cophylogeny between coral reef invertebrates and their bacterial and archaeal symbionts. Mol Ecol 2021; 30:3768-3782. [PMID: 34060182 DOI: 10.1111/mec.16006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
Marine invertebrates harbour a complex suite of bacterial and archaeal symbionts, a subset of which are probably linked to host health and homeostasis. Within a complex microbiome it can be difficult to tease apart beneficial or parasitic symbionts from nonessential commensal or transient microorganisms; however, one approach is to detect strong cophylogenetic patterns between microbial lineages and their respective hosts. We employed the Procrustean approach to cophylogeny (PACo) on 16S rRNA gene derived microbial community profiles paired with COI, 18S rRNA and ITS1 host phylogenies. Second, we undertook a network analysis to identify groups of microbes that were co-occurring within our host species. Across 12 coral, 10 octocoral and five sponge species, each host group and their core microbiota (50% prevalence within host species replicates) had a significant fit to the cophylogenetic model. Independent assessment of each microbial genus and family found that bacteria and archaea affiliated to Endozoicomonadaceae, Spirochaetaceae and Nitrosopumilaceae have the strongest cophylogenetic signals. Further, local Moran's I measure of spatial autocorrelation identified 14 ASVs, including Endozoicomonadaceae and Spirochaetaceae, whose distributions were significantly clustered by host phylogeny. Four co-occurring subnetworks were identified, each of which was dominant in a different host group. Endozoicomonadaceae and Spirochaetaceae ASVs were abundant among the subnetworks, particularly one subnetwork that was exclusively comprised of these two bacterial families and dominated the octocoral microbiota. Our results disentangle key microbial interactions that occur within complex microbiomes and reveal long-standing, essential microbial symbioses in coral reef invertebrates.
Collapse
Affiliation(s)
- Paul A O'Brien
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia.,AIMS@JCU, Townsville, Qld, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
| | - Nikos Andreakis
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia
| | - Shangjin Tan
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Qld, Australia.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Qld, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, Qld, Australia.,AIMS@JCU, Townsville, Qld, Australia.,Australian Centre for Ecogenomics, University of Queensland, Brisbane, Qld, Australia
| | - Guojie Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia.,AIMS@JCU, Townsville, Qld, Australia
| |
Collapse
|
38
|
Eco-evolutionary interaction between microbiome presence and rapid biofilm evolution determines plant host fitness. Nat Ecol Evol 2021; 5:670-676. [PMID: 33707690 DOI: 10.1038/s41559-021-01406-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
Microbiomes are important to the survival and reproduction of their hosts. Although ecological and evolutionary processes can happen simultaneously in microbiomes, little is known about how microbiome eco-evolutionary dynamics determine host fitness. Here we show, using experimental evolution, that fitness of the aquatic plant Lemna minor is modified by interactions between the microbiome and the evolution of one member, Pseudomonas fluorescens. Microbiome presence promotes P. fluorescens' rapid evolution to form biofilm, which reciprocally alters the microbiome's species composition. These eco-evolutionary dynamics modify the host's multigenerational fitness. The microbiome and non-evolving P. fluorescens together promote host fitness, whereas the microbiome with P. fluorescens that evolves biofilm reduces the beneficial impact on host fitness. Additional experiments suggest that the microbial effect on host fitness may occur through changes in microbiome production of auxin, a plant growth hormone. Our study, therefore, experimentally demonstrates the importance of the eco-evolutionary dynamics in microbiomes for host-microbiome interactions.
Collapse
|
39
|
Strickland BA, Patel MC, Shilts MH, Boone HH, Kamali A, Zhang W, Stylos D, Boukhvalova MS, Rosas-Salazar C, Yooseph S, Rajagopala SV, Blanco JCG, Das SR. Microbial community structure and composition is associated with host species and sex in Sigmodon cotton rats. Anim Microbiome 2021; 3:29. [PMID: 33863395 PMCID: PMC8051552 DOI: 10.1186/s42523-021-00090-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/20/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The cotton rat (genus Sigmodon) is an essential small animal model for the study of human infectious disease and viral therapeutic development. However, the impact of the host microbiome on infection outcomes has not been explored in this model, partly due to the lack of a comprehensive characterization of microbial communities across different cotton rat species. Understanding the dynamics of their microbiome could significantly help to better understand its role when modeling viral infections in this animal model. RESULTS We examined the bacterial communities of the gut and three external sites (skin, ear, and nose) of two inbred species of cotton rats commonly used in research (S. hispidus and S. fulviventer) by using 16S rRNA gene sequencing, constituting the first comprehensive characterization of the cotton rat microbiome. We showed that S. fulviventer maintained higher alpha diversity and richness than S. hispidus at external sites (skin, ear, nose), but there were no differentially abundant genera. However, S. fulviventer and S. hispidus had distinct fecal microbiomes composed of several significantly differentially abundant genera. Whole metagenomic shotgun sequencing of fecal samples identified species-level differences between S. hispidus and S. fulviventer, as well as different metabolic pathway functions as a result of differential host microbiome contributions. Furthermore, the microbiome composition of the external sites showed significant sex-based differences while fecal communities were not largely different. CONCLUSIONS Our study shows that host genetic background potentially exerts homeostatic pressures, resulting in distinct microbiomes for two different inbred cotton rat species. Because of the numerous studies that have uncovered strong relationships between host microbiome, viral infection outcomes, and immune responses, our findings represent a strong contribution for understanding the impact of different microbial communities on viral pathogenesis. Furthermore, we provide novel cotton rat microbiome data as a springboard to uncover the full therapeutic potential of the microbiome against viral infections.
Collapse
Affiliation(s)
- Britton A Strickland
- Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mira C Patel
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
- Present Address: Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Meghan H Shilts
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Helen H Boone
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arash Kamali
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zhang
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | - Daniel Stylos
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | - Marina S Boukhvalova
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA
| | | | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA
| | | | - Jorge C G Blanco
- Sigmovir Biosystems Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD, 20850, USA.
| | - Suman R Das
- Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Division of Infectious Diseases, Vanderbilt University Medical Center, 1211 21st Avenue South, S2108 Medical Center North, Nashville, TN, 37232, USA.
| |
Collapse
|
40
|
Oyserman BO, Cordovez V, Flores SS, Leite MFA, Nijveen H, Medema MH, Raaijmakers JM. Extracting the GEMs: Genotype, Environment, and Microbiome Interactions Shaping Host Phenotypes. Front Microbiol 2021; 11:574053. [PMID: 33584558 PMCID: PMC7874016 DOI: 10.3389/fmicb.2020.574053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
One of the fundamental tenets of biology is that the phenotype of an organism (Y) is determined by its genotype (G), the environment (E), and their interaction (GE). Quantitative phenotypes can then be modeled as Y = G + E + GE + e, where e is the biological variance. This simple and tractable model has long served as the basis for studies investigating the heritability of traits and decomposing the variability in fitness. The importance and contribution of microbe interactions to a given host phenotype is largely unclear, nor how this relates to the traditional GE model. Here we address this fundamental question and propose an expansion of the original model, referred to as GEM, which explicitly incorporates the contribution of the microbiome (M) to the host phenotype, while maintaining the simplicity and tractability of the original GE model. We show that by keeping host, environment, and microbiome as separate but interacting variables, the GEM model can capture the nuanced ecological interactions between these variables. Finally, we demonstrate with an in vitro experiment how the GEM model can be used to statistically disentangle the relative contributions of each component on specific host phenotypes.
Collapse
Affiliation(s)
- Ben O. Oyserman
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
- Bioinformatics Group, Wageningen University & Research, Wageningen, Netherlands
| | - Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
- Institute of Biology, Leiden University, Leiden, Netherlands
| | | | - Marcio F. A. Leite
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
| | - Harm Nijveen
- Bioinformatics Group, Wageningen University & Research, Wageningen, Netherlands
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University & Research, Wageningen, Netherlands
| | - Jos M. Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
- Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
41
|
van der Windt N, van der Ent E, Ambo-Rappe R, de Voogd NJ. Presence and Genetic Identity of Symbiodiniaceae in the Bioeroding Sponge Genera Cliona and Spheciospongia (Clionaidae) in the Spermonde Archipelago (SW Sulawesi), Indonesia. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.595452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Members of the family Symbiodiniaceae form symbiotic relationships with several metazoan groups on coral reefs, most notably scleractinian corals. However, despite their importance to the health of coral reefs, their relationship with other host organisms such as bioeroding sponges (Clionaidae) is still relatively understudied. In this study we investigate the presence and identity of Symbiodiniaceae in Clionaidae species in Indonesia and evaluate findings related to the evolution and ecology of the host-symbiont relationship. Clionaidae were collected throughout the Spermonde Archipelago in Indonesia. Morphological and molecular techniques were used to identify the sponge host (28S ribosomal DNA) and their Symbiodiniaceae symbionts (ITS2). Seven Clionaidae species were found, of which four species contained Symbiodiniaceae. Cliona aff. orientalis, Cliona thomasi and Spheciospongia maeandrina were host to Cladocopium, while Spheciospongia digitata contained Durusdinium and Freudenthalidium. In the remaining species: Cliona sp., Cliona utricularis and Spheciospongia trincomaliensis no evidence of the presence of Symbiodiniaceae was found. Our results provide the first record of Symbiodiniaceae in the sponge genus Spheciospongia. Additionally, we provide the first findings of Freudenthalidium and first molecular evidence of Durusdinium in bioeroding sponges. Our results indicate coevolution between Spheciospongia digitata, Spheciospongia maeandrina and their symbionts. We discuss that the diversity of Symbiodiniaceae within bioeroding sponges is likely far greater than currently reported in literature. Considering the threat bioeroding sponges can pose to the health of coral reefs, it is crucial to understand Symbiodiniaceae diversity within Clionaidae and their effect on the functioning of Clionaidae species. We propose that the identity of the symbiont species is mostly related to the host species, but we did observe a potential case of environmental adaptation related to environmental stressors.
Collapse
|
42
|
Li LL, Amara R, Souissi S, Dehaut A, Duflos G, Monchy S. Impacts of microplastics exposure on mussel (Mytilus edulis) gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141018. [PMID: 32758734 DOI: 10.1016/j.scitotenv.2020.141018] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/23/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs), plastics with particles smaller than 5 mm, have been found almost in every corner of the world, especially in the ocean. Due to the small size, MPs can be ingested by animals and enter the marine trophic chain. MPs can affect animal health by physically causing damage to the digestive tract, leaking plastic chemical components, and carrying environmental pollutants and pathogens into animals. In this study, impacts of MPs ingestion on gut microbiota were investigated. Filter feeding mussels were exposed to "virgin" and "weathered" MPs at relatively realistic concentration 0.2 mg L-1 ("low") and exaggerated concentration 20 mg L-1 ("high") for 6 weeks. Influence in mussel gut microbiota was investigated with 16S rRNA gene high-throughput sequencing. As compared with non-exposed mussels, alteration of gut microbiota was observed after mussels were exposed to MPs for 1 week, 3 weeks, 6 weeks, and even after 8-day post-exposure depuration. Potential human pathogens were found among operational taxonomic units (OTUs) with increased abundance induced by MP-exposure. Faecal pellets containing microorganisms from altered gut microbiota and MPs might further influence microbiota of surrounding environment. Our results have demonstrated impacts of MP-exposure on mussel gut microbiota and suggested possible consequent effects on food quality, food safety, and the well-being of marine food web in the ecosystem for future studies.
Collapse
Affiliation(s)
- Luen-Luen Li
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F 62930 Wimereux, France; ANSES, Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, 62200 Boulogne-sur-mer, France
| | - Rachid Amara
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F 62930 Wimereux, France
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France
| | - Alexandre Dehaut
- ANSES, Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, 62200 Boulogne-sur-mer, France
| | - Guillaume Duflos
- ANSES, Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, 62200 Boulogne-sur-mer, France
| | - Sébastien Monchy
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F 62930 Wimereux, France.
| |
Collapse
|
43
|
Díez‐Vives C, Taboada S, Leiva C, Busch K, Hentschel U, Riesgo A. On the way to specificity - Microbiome reflects sponge genetic cluster primarily in highly structured populations. Mol Ecol 2020; 29:4412-4427. [PMID: 32931063 PMCID: PMC7756592 DOI: 10.1111/mec.15635] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Most animals, including sponges (Porifera), have species-specific microbiomes. Which genetic or environmental factors play major roles structuring the microbial community at the intraspecific level in sponges is, however, largely unknown. In this study, we tested whether geographic location or genetic structure of conspecific sponges influences their microbial assembly. For that, we used three sponge species with different rates of gene flow, and collected samples along their entire distribution range (two from the Mediterranean and one from the Southern Ocean) yielding a total of 393 samples. These three sponge species have been previously analysed by microsatellites or single nucleotide polymorphisms, and here we investigate their microbiomes by amplicon sequencing of the microbial 16S rRNA gene. The sponge Petrosia ficiformis, with highly isolated populations (low gene flow), showed a stronger influence of the host genetic distance on the microbial composition than the spatial distance. Host-specificity was therefore detected at the genotypic level, with individuals belonging to the same host genetic cluster harbouring more similar microbiomes than distant ones. On the contrary, the microbiome of Ircinia fasciculata and Dendrilla antarctica - both with weak population structure (high gene flow) - seemed influenced by location rather than by host genetic distance. Our results suggest that in sponge species with high population structure, the host genetic cluster influence the microbial community more than the geographic location.
Collapse
Affiliation(s)
| | - Sergi Taboada
- Departamento de Ciencias de la VidaEU‐US Marine Biodiversity GroupUniversidad de AlcaláAlcalá de HenaresSpain
- Departamento de Biología (Zoología)Universidad Autónoma de MadridFacultad de CienciasMadridSpain
| | - Carlos Leiva
- Department of Life SciencesThe Natural History MuseumLondonUK
- Department of Genetics, Microbiology and StatisticsFaculty of BiologyUniversity of BarcelonaBarcelonaSpain
| | - Kathrin Busch
- GEOMAR Helmholtz Centre for Ocean Research KielResearch Unit Marine SymbiosesKielGermany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research KielResearch Unit Marine SymbiosesKielGermany
| | - Ana Riesgo
- Department of Life SciencesThe Natural History MuseumLondonUK
- Department of Biodiversity and Evolutionary BiologyMuseo Nacional de Ciencias Naturales de Madrid (CSIC)MadridSpain
| |
Collapse
|
44
|
Astudillo-García C, Bell JJ, Montoya JM, Moitinho-Silva L, Thomas T, Webster NS, Taylor MW. Assessing the strength and sensitivity of the core microbiota approach on a highly diverse sponge reef. Environ Microbiol 2020; 22:3985-3999. [PMID: 32827171 DOI: 10.1111/1462-2920.15185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/01/2020] [Indexed: 11/30/2022]
Abstract
Marine sponge reefs usually comprise a complex array of taxonomically different sponge species, many of these hosting highly diverse microbial communities. The number of microbial species known to occupy a given sponge ranges from tens to thousands, bringing numerous challenges to their analysis. One way to deal with such complexity is to use a core microbiota approach, in which only prevalent and abundant microbes are considered. Here we aimed to test the strength and sensitivity of the core microbiota approach by applying different core definitions to 20 host sponge species. Application of increasingly stringent relative abundance and/or percentage occurrence thresholds to qualify as part of the core microbiota decreased the number of 'core' OTUs and phyla and, consequently, changed both alpha- and beta-diversity patterns. Moreover, microbial co-occurrence patterns explored using correlation networks were also affected by the core microbiota definition. The application of stricter thresholds resulted in smaller and less compartmentalized networks, with different keystone species. These results highlight that the application of different core definitions to phylogenetically disparate host species can result in the drawing of markedly different conclusions. Consequently, we recommend to assess the effects of different core community definitions on the specific system of study before considering its application.
Collapse
Affiliation(s)
- Carmen Astudillo-García
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jose M Montoya
- Ecological Networks and Global Change Group, Theoretical and Experimental Ecology Station, CNRS-University Paul Sabatier, Moulis, France
| | - Lucas Moitinho-Silva
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Torsten Thomas
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, Australia.,Australian Centre for Ecogenomics, University of Queensland, Brisbane, Qld, Australia
| | - Michael W Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
45
|
O'Brien PA, Tan S, Yang C, Frade PR, Andreakis N, Smith HA, Miller DJ, Webster NS, Zhang G, Bourne DG. Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. THE ISME JOURNAL 2020; 14:2211-2222. [PMID: 32444811 PMCID: PMC7608455 DOI: 10.1038/s41396-020-0671-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 01/01/2023]
Abstract
Microbiome assemblages of plants and animals often show a degree of correlation with host phylogeny; an eco-evolutionary pattern known as phylosymbiosis. Using 16S rRNA gene sequencing to profile the microbiome, paired with COI, 18S rRNA and ITS1 host phylogenies, phylosymbiosis was investigated in four groups of coral reef invertebrates (scleractinian corals, octocorals, sponges and ascidians). We tested three commonly used metrics to evaluate the extent of phylosymbiosis: (a) intraspecific versus interspecific microbiome variation, (b) topological comparisons between host phylogeny and hierarchical clustering (dendrogram) of host-associated microbial communities, and (c) correlation of host phylogenetic distance with microbial community dissimilarity. In all instances, intraspecific variation in microbiome composition was significantly lower than interspecific variation. Similarly, topological congruency between host phylogeny and the associated microbial dendrogram was more significant than would be expected by chance across all groups, except when using unweighted UniFrac distance (compared with weighted UniFrac and Bray-Curtis dissimilarity). Interestingly, all but the ascidians showed a significant positive correlation between host phylogenetic distance and associated microbial dissimilarity. Our findings provide new perspectives on the diverse nature of marine phylosymbioses and the complex roles of the microbiome in the evolution of marine invertebrates.
Collapse
Affiliation(s)
- Paul A O'Brien
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| | - Shangjin Tan
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Chentao Yang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Pedro R Frade
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Nikos Andreakis
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Hillary A Smith
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - David J Miller
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| | - Guojie Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China.
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia.
- Australian Institute of Marine Science, Townsville, QLD, Australia.
- AIMS@JCU, Townsville, QLD, Australia.
| |
Collapse
|
46
|
Berg G, Rybakova D, Fischer D, Cernava T, Vergès MCC, Charles T, Chen X, Cocolin L, Eversole K, Corral GH, Kazou M, Kinkel L, Lange L, Lima N, Loy A, Macklin JA, Maguin E, Mauchline T, McClure R, Mitter B, Ryan M, Sarand I, Smidt H, Schelkle B, Roume H, Kiran GS, Selvin J, Souza RSCD, van Overbeek L, Singh BK, Wagner M, Walsh A, Sessitsch A, Schloter M. Microbiome definition re-visited: old concepts and new challenges. MICROBIOME 2020; 8:103. [PMID: 32605663 PMCID: PMC7329523 DOI: 10.1186/s40168-020-00875-0] [Citation(s) in RCA: 928] [Impact Index Per Article: 185.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/22/2020] [Indexed: 05/03/2023]
Abstract
The field of microbiome research has evolved rapidly over the past few decades and has become a topic of great scientific and public interest. As a result of this rapid growth in interest covering different fields, we are lacking a clear commonly agreed definition of the term "microbiome." Moreover, a consensus on best practices in microbiome research is missing. Recently, a panel of international experts discussed the current gaps in the frame of the European-funded MicrobiomeSupport project. The meeting brought together about 40 leaders from diverse microbiome areas, while more than a hundred experts from all over the world took part in an online survey accompanying the workshop. This article excerpts the outcomes of the workshop and the corresponding online survey embedded in a short historical introduction and future outlook. We propose a definition of microbiome based on the compact, clear, and comprehensive description of the term provided by Whipps et al. in 1988, amended with a set of novel recommendations considering the latest technological developments and research findings. We clearly separate the terms microbiome and microbiota and provide a comprehensive discussion considering the composition of microbiota, the heterogeneity and dynamics of microbiomes in time and space, the stability and resilience of microbial networks, the definition of core microbiomes, and functionally relevant keystone species as well as co-evolutionary principles of microbe-host and inter-species interactions within the microbiome. These broad definitions together with the suggested unifying concepts will help to improve standardization of microbiome studies in the future, and could be the starting point for an integrated assessment of data resulting in a more rapid transfer of knowledge from basic science into practice. Furthermore, microbiome standards are important for solving new challenges associated with anthropogenic-driven changes in the field of planetary health, for which the understanding of microbiomes might play a key role. Video Abstract.
Collapse
Affiliation(s)
- Gabriele Berg
- Environmental Biotechnology, Graz University of Technology, Graz, Austria.
| | - Daria Rybakova
- Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Tomislav Cernava
- Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Trevor Charles
- Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Metagenom Bio, 550 Parkside Drive, Unit A9, Waterloo, ON, N2L 5 V4, Canada
| | - Xiaoyulong Chen
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Luca Cocolin
- European Food Information Council, Brussels, Belgium
| | - Kellye Eversole
- International Alliance for Phytobiomes Research, Summit, Lee, MO, 's, USA
| | | | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Linda Kinkel
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Lene Lange
- BioEconomy, Research, & Advisory, Valby, Denmark
| | - Nelson Lima
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Alexander Loy
- Department of Microbial Ecology and Ecosystem Science, University of Vienna, Vienna, Austria
| | | | - Emmanuelle Maguin
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Tim Mauchline
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, UK
| | - Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Birgit Mitter
- Bioresources Unit, AIT Austrian Institute of Technology, Tulln, Austria
| | | | - Inga Sarand
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | | | | | - G Seghal Kiran
- Dept of Food Science and Technology, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - Rafael Soares Correa de Souza
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Leo van Overbeek
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Michael Wagner
- Department of Microbial Ecology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Aaron Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Angela Sessitsch
- Bioresources Unit, AIT Austrian Institute of Technology, Tulln, Austria
| | | |
Collapse
|
47
|
Leitão AL, Costa MC, Gabriel AF, Enguita FJ. Interspecies Communication in Holobionts by Non-Coding RNA Exchange. Int J Mol Sci 2020; 21:ijms21072333. [PMID: 32230931 PMCID: PMC7177868 DOI: 10.3390/ijms21072333] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
Complex organisms are associations of different cells that coexist and collaborate creating a living consortium, the holobiont. The relationships between the holobiont members are essential for proper homeostasis of the organisms, and they are founded on the establishment of complex inter-connections between all the cells. Non-coding RNAs are regulatory molecules that can also act as communication signals between cells, being involved in either homeostasis or dysbiosis of the holobionts. Eukaryotic and prokaryotic cells can transmit signals via non-coding RNAs while using specific extracellular conveyors that travel to the target cell and can be translated into a regulatory response by dedicated molecular machinery. Within holobionts, non-coding RNA regulatory signaling is involved in symbiotic and pathogenic relationships among the cells. This review analyzes current knowledge regarding the role of non-coding RNAs in cell-to-cell communication, with a special focus on the signaling between cells in multi-organism consortia.
Collapse
Affiliation(s)
- Ana Lúcia Leitão
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal;
- MEtRICs, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Marina C. Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
| | - André F. Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
- Correspondence: ; Tel.: +351-217999480
| |
Collapse
|
48
|
Huot C, Clerissi C, Gourbal B, Galinier R, Duval D, Toulza E. Schistosomiasis Vector Snails and Their Microbiota Display a Phylosymbiosis Pattern. Front Microbiol 2020; 10:3092. [PMID: 32082267 PMCID: PMC7006369 DOI: 10.3389/fmicb.2019.03092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/20/2019] [Indexed: 01/05/2023] Open
Abstract
Planorbidae snails are the intermediate host for the trematode parasite of the Schistosoma genus, which is responsible for schistosomiasis, a disease that affects both humans and cattle. The microbiota for Schistosoma has already been described as having an effect on host/parasite interactions, specifically through immunological interactions. Here, we sought to characterize the microbiota composition of seven Planorbidae species and strains. Individual snail microbiota was determined using 16S ribosomal DNA amplicon sequencing. The bacterial composition was highly specific to the host strain with limited interindividual variation. In addition, it displayed complete congruence with host phylogeny, revealing a phylosymbiosis pattern. These results were confirmed in a common garden, suggesting that the host highly constrains microbial composition. This study presents the first comparison of bacterial communities between several intermediate snail hosts of Schistosoma parasites, paving the way for further studies on the understanding of this tripartite interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Eve Toulza
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
49
|
Abstract
The significance of symbioses between eukaryotic hosts and microbes extends from the organismal to the ecosystem level and underpins the health of Earth’s most threatened marine ecosystems. Despite rapid growth in research on host-associated microbes, from individual microbial symbionts to host-associated consortia of significantly relevant taxa, little is known about their interactions with the vast majority of marine host species. We outline research priorities to strengthen our current knowledge of host–microbiome interactions and how they shape marine ecosystems. We argue that such advances in research will help predict responses of species, communities, and ecosystems to stressors driven by human activity and inform future management strategies. The significance of symbioses between eukaryotic hosts and microbes extends from the organismal to the ecosystem level and underpins the health of Earth’s most threatened marine ecosystems. This Perspective article outlines research priorities to strengthen our current knowledge of host-microbiome interactions, to help predict responses to anthropogenic stressors and to inform future management strategies.
Collapse
|
50
|
Quigley KM, Alvarez Roa C, Torda G, Bourne DG, Willis BL. Co-dynamics of Symbiodiniaceae and bacterial populations during the first year of symbiosis with Acropora tenuis juveniles. Microbiologyopen 2019; 9:e959. [PMID: 31670480 PMCID: PMC7002099 DOI: 10.1002/mbo3.959] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 02/04/2023] Open
Abstract
Interactions between corals and their associated microbial communities (Symbiodiniaceae and prokaryotes) are key to understanding corals' potential for and rate of acclimatory and adaptive responses. However, the establishment of microalgal and bacterial communities is poorly understood during coral ontogeny in the wild. We examined the establishment and co-occurrence between multiple microbial communities using 16S rRNA (bacterial) and ITS2 rDNA (Symbiodiniaceae) gene amplicon sequencing in juveniles of the common coral, Acropora tenuis, across the first year of development. Symbiodiniaceae communities in juveniles were dominated by Durusdinium trenchii and glynnii (D1 and D1a), with lower abundances of Cladocopium (C1, C1d, C50, and Cspc). Bacterial communities were more diverse and dominated by taxa within Proteobacteria, Cyanobacteria, and Planctomycetes. Both communities were characterized by significant changes in relative abundance and diversity of taxa throughout the year. D1, D1a, and C1 were significantly correlated with multiple bacterial taxa, including Alpha-, Deltra-, and Gammaproteobacteria, Planctomycetacia, Oxyphotobacteria, Phycisphaerae, and Rhizobiales. Specifically, D1a tended to associate with Oxyphotobacteria and D1 with Alphaproteobacteria, although these associations may represent correlational and not causal relationships. Bioenergetic modeling combined with physiological measurements of coral juveniles (surface area and Symbiodiniaceae cell densities) identified key periods of carbon limitation and nitrogen assimilation, potentially coinciding with shifts in microbial community composition. These results demonstrate that Symbiodiniaceae and bacterial communities are dynamic throughout the first year of ontology and may vary in tandem, with important fitness effects on host juveniles.
Collapse
Affiliation(s)
- Kate M Quigley
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia.,AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, QLD, Australia.,Australian Institute of Marine Science, Townsville, QLD, Australia
| | | | - Greg Torda
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - David G Bourne
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia.,AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, QLD, Australia.,Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Bette L Willis
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia.,AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, QLD, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| |
Collapse
|