1
|
Kim HY, Jang HJ, Muthamil S, Shin UC, Lyu JH, Kim SW, Go Y, Park SH, Lee HG, Park JH. Novel insights into regulators and functional modulators of adipogenesis. Biomed Pharmacother 2024; 177:117073. [PMID: 38981239 DOI: 10.1016/j.biopha.2024.117073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024] Open
Abstract
Adipogenesis is a process that differentiates new adipocytes from precursor cells and is tightly regulated by several factors, including many transcription factors and various post-translational modifications. Recently, new roles of adipogenesis have been suggested in various diseases. However, the molecular mechanisms and functional modulation of these adipogenic genes remain poorly understood. This review summarizes the regulatory factors and modulators of adipogenesis and discusses future research directions to identify novel mechanisms regulating adipogenesis and the effects of adipogenic regulators in pathological conditions. The master adipogenic transcriptional factors PPARγ and C/EBPα were identified along with other crucial regulatory factors such as SREBP, Kroxs, STAT5, Wnt, FOXO1, SWI/SNF, KLFs, and PARPs. These transcriptional factors regulate adipogenesis through specific mechanisms, depending on the adipogenic stage. However, further studies related to the in vivo role of newly discovered adipogenic regulators and their function in various diseases are needed to develop new potent therapeutic strategies for metabolic diseases and cancer.
Collapse
Affiliation(s)
- Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; New Drug Development Center, Osong Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea.
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.
| | - Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Seon-Wook Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea.
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34141, Republic of Korea.
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; University of Science & Technology (UST), KIOM campus, Korean Convergence Medicine Major, Daejeon 34054, Republic of Korea.
| |
Collapse
|
2
|
TRPP2 ion channels: The roles in various subcellular locations. Biochimie 2022; 201:116-127. [PMID: 35760123 DOI: 10.1016/j.biochi.2022.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
Abstract
TRPP2 (PC2, PKD2 or Polycytin-2), encoded by PKD2 gene, belongs to the nonselective cation channel TRP family. Recently, the three-dimensional structure of TRPP2 was constructed. TRPP2 mainly functions in three subcellular compartments: endoplasmic reticulum, plasma membrane and primary cilia. TRPP2 can act as a calcium-activated intracellular calcium release channel on the endoplasmic reticulum. TRPP2 also interacts with other Ca2+ release channels to regulate calcium release, like IP3R and RyR2. TRPP2 acts as an ion channel regulated by epidermal growth factor through activation of downstream factors in the plasma membrane. TRPP2 binding to TRPC1 in the plasma membrane or endoplasmic reticulum is associated with mechanosensitivity. In cilium, TRPP2 was found to combine with PKD1 and TRPV4 to form a complex related to mechanosensitivity. Because TRPP2 is involved in regulating intracellular ion concentration, TRPP2 mutations often lead to autosomal dominant polycystic kidney disease, which may also be associated with cardiovascular disease. In this paper, we review the molecular structure of TRPP2, the subcellular localization of TRPP2, the related functions and mechanisms of TRPP2 at different sites, and the diseases related to TRPP2.
Collapse
|
3
|
Abou Azar F, Lim GE. Metabolic Contributions of Wnt Signaling: More Than Controlling Flight. Front Cell Dev Biol 2021; 9:709823. [PMID: 34568323 PMCID: PMC8458764 DOI: 10.3389/fcell.2021.709823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
The canonical Wnt signaling pathway is ubiquitous throughout the body and influences a diverse array of physiological processes. Following the initial discovery of the Wnt signaling pathway during wing development in Drosophila melanogaster, it is now widely appreciated that active Wnt signaling in mammals is necessary for the development and growth of various tissues involved in whole-body metabolism, such as brain, liver, pancreas, muscle, and adipose. Moreover, elegant gain- and loss-of-function studies have dissected the tissue-specific roles of various downstream effector molecules in the regulation of energy homeostasis. This review attempts to highlight and summarize the contributions of the Wnt signaling pathway and its downstream effectors on whole-body metabolism and their influence on the development of metabolic diseases, such as diabetes and obesity. A better understanding of the Wnt signaling pathway in these tissues may aid in guiding the development of future therapeutics to treat metabolic diseases.
Collapse
Affiliation(s)
- Frederic Abou Azar
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
4
|
Epting D, Senaratne LDS, Ott E, Holmgren A, Sumathipala D, Larsen SM, Wallmeier J, Bracht D, Frikstad KM, Crowley S, Sikiric A, Barøy T, Käsmann‐Kellner B, Decker E, Decker C, Bachmann N, Patzke S, Phelps IG, Katsanis N, Giles R, Schmidts M, Zucknick M, Lienkamp SS, Omran H, Davis EE, Doherty D, Strømme P, Frengen E, Bergmann C, Misceo D. Loss of CBY1 results in a ciliopathy characterized by features of Joubert syndrome. Hum Mutat 2020; 41:2179-2194. [PMID: 33131181 PMCID: PMC7756669 DOI: 10.1002/humu.24127] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/31/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
Ciliopathies are clinically and genetically heterogeneous diseases. We studied three patients from two independent families presenting with features of Joubert syndrome: abnormal breathing pattern during infancy, developmental delay/intellectual disability, cerebellar ataxia, molar tooth sign on magnetic resonance imaging scans, and polydactyly. We identified biallelic loss-of-function (LOF) variants in CBY1, segregating with the clinical features of Joubert syndrome in the families. CBY1 localizes to the distal end of the mother centriole, contributing to the formation and function of cilia. In accordance with the clinical and mutational findings in the affected individuals, we demonstrated that depletion of Cby1 in zebrafish causes ciliopathy-related phenotypes. Levels of CBY1 transcript were found reduced in the patients compared with controls, suggesting degradation of the mutated transcript through nonsense-mediated messenger RNA decay. Accordingly, we could detect CBY1 protein in fibroblasts from controls, but not from patients by immunofluorescence. Furthermore, we observed reduced ability to ciliate, increased ciliary length, and reduced levels of the ciliary proteins AHI1 and ARL13B in patient fibroblasts. Our data show that CBY1 LOF-variants cause a ciliopathy with features of Joubert syndrome.
Collapse
Affiliation(s)
- Daniel Epting
- Department of Medicine IV, Faculty of MedicineMedical Center‐University of FreiburgFreiburgGermany
| | | | - Elisabeth Ott
- Department of Medicine IV, Faculty of MedicineMedical Center‐University of FreiburgFreiburgGermany
| | - Asbjørn Holmgren
- Department of Medical GeneticsOslo University Hospital, University of OsloOsloNorway
| | - Dulika Sumathipala
- Department of Medical GeneticsOslo University Hospital, University of OsloOsloNorway
| | - Selma M. Larsen
- Division of Pediatric and Adolescent MedicineOslo University Hospital, University of OsloOsloNorway
| | - Julia Wallmeier
- Klinik für Kinder‐ und JugendmedizinUniversitätsklinikum MünsterMünsterGermany
| | - Diana Bracht
- Klinik für Kinder‐ und JugendmedizinUniversitätsklinikum MünsterMünsterGermany
| | - Kari‐Anne M. Frikstad
- Department of Radiation Biology, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer ResearchOslo University Hospitals–Norwegian Radium HospitalOsloNorway
| | - Suzanne Crowley
- Division of Pediatric and Adolescent MedicineOslo University Hospital, University of OsloOsloNorway
| | - Alma Sikiric
- Department of NeurohabilitationOslo University HospitalOsloNorway
| | - Tuva Barøy
- Department of Medical GeneticsOslo University Hospital, University of OsloOsloNorway
| | - Barbara Käsmann‐Kellner
- Section of Pediatric Ophthalmology and Low Vision, Department of OphthalmologyUniversity of SaarlandHomburgGermany
| | - Eva Decker
- Medizinische Genetik MainzLimbach GeneticsMainzGermany
| | | | | | - Sebastian Patzke
- Department of Radiation Biology, Division of Cancer Medicine, Surgery and Transplantation, Institute for Cancer ResearchOslo University Hospitals–Norwegian Radium HospitalOsloNorway
| | - Ian G. Phelps
- Department of Pediatrics, Seattle Children's Research InstituteUniversity of WashingtonSeattleWashingtonUSA
| | - Nicholas Katsanis
- Center for Human Disease ModelingDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Rachel Giles
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Miriam Schmidts
- International Radboud Institute for Molecular Life SciencesRadboud University NijmegenNijmegenThe Netherlands
| | - Manuela Zucknick
- Oslo Centre for Biostatistics and Epidemiology, Institute for Basic Medical SciencesUniversity of OsloOsloNorway
| | | | - Heymut Omran
- Klinik für Kinder‐ und JugendmedizinUniversitätsklinikum MünsterMünsterGermany
| | - Erica E. Davis
- Center for Human Disease ModelingDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Dan Doherty
- Department of Pediatrics, Seattle Children's Research InstituteUniversity of WashingtonSeattleWashingtonUSA
| | - Petter Strømme
- Division of Pediatric and Adolescent MedicineOslo University Hospital, University of OsloOsloNorway
| | - Eirik Frengen
- Department of Medical GeneticsOslo University Hospital, University of OsloOsloNorway
| | - Carsten Bergmann
- Department of Medicine IV, Faculty of MedicineMedical Center‐University of FreiburgFreiburgGermany
- Medizinische Genetik MainzLimbach GeneticsMainzGermany
| | - Doriana Misceo
- Department of Medical GeneticsOslo University Hospital, University of OsloOsloNorway
| |
Collapse
|
5
|
Bagchi DP, Nishii A, Li Z, DelProposto JB, Corsa CA, Mori H, Hardij J, Learman BS, Lumeng CN, MacDougald OA. Wnt/β-catenin signaling regulates adipose tissue lipogenesis and adipocyte-specific loss is rigorously defended by neighboring stromal-vascular cells. Mol Metab 2020; 42:101078. [PMID: 32919095 PMCID: PMC7554252 DOI: 10.1016/j.molmet.2020.101078] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/14/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Canonical Wnt/β-catenin signaling is a well-studied endogenous regulator of mesenchymal cell fate determination, promoting osteoblastogenesis and inhibiting adipogenesis. However, emerging genetic evidence in humans links a number of Wnt pathway members to body fat distribution, obesity, and metabolic dysfunction, suggesting that this pathway also functions in adipocytes. Recent studies in mice have uncovered compelling evidence that the Wnt signaling pathway plays important roles in adipocyte metabolism, particularly under obesogenic conditions. However, complexities in Wnt signaling and differences in experimental models and approaches have thus far limited our understanding of its specific roles in this context. METHODS To investigate roles of the canonical Wnt pathway in the regulation of adipocyte metabolism, we generated adipocyte-specific β-catenin (β-cat) knockout mouse and cultured cell models. We used RNA sequencing, ChIP sequencing, and molecular approaches to assess expression of Wnt targets and lipogenic genes. We then used functional assays to evaluate effects of β-catenin deficiency on adipocyte metabolism, including lipid and carbohydrate handling. In mice maintained on normal chow and high-fat diets, we assessed the cellular and functional consequences of adipocyte-specific β-catenin deletion on adipose tissues and systemic metabolism. RESULTS We report that in adipocytes, the canonical Wnt/β-catenin pathway regulates de novo lipogenesis (DNL) and fatty acid monounsaturation. Further, β-catenin mediates effects of Wnt signaling on lipid metabolism in part by transcriptional regulation of Mlxipl and Srebf1. Intriguingly, adipocyte-specific loss of β-catenin is sensed and defended by CD45-/CD31- stromal cells to maintain tissue-wide Wnt signaling homeostasis in chow-fed mice. With long-term high-fat diet, this compensatory mechanism is overridden, revealing that β-catenin deletion promotes resistance to diet-induced obesity and adipocyte hypertrophy and subsequent protection from metabolic dysfunction. CONCLUSIONS Taken together, our studies demonstrate that Wnt signaling in adipocytes is required for lipogenic gene expression, de novo lipogenesis, and lipid desaturation. In addition, adipose tissues rigorously defend Wnt signaling homeostasis under standard nutritional conditions, such that stromal-vascular cells sense and compensate for adipocyte-specific loss. These findings underscore the critical importance of this pathway in adipocyte lipid metabolism and adipose tissue function.
Collapse
Affiliation(s)
- Devika P Bagchi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Akira Nishii
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ziru Li
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Jennifer B DelProposto
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Callie A Corsa
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Hiroyuki Mori
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Julie Hardij
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Brian S Learman
- Department of Microbiology and Immunology, University of Buffalo, Buffalo, NY, USA.
| | - Carey N Lumeng
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Bagchi DP, Li Z, Corsa CA, Hardij J, Mori H, Learman BS, Lewis KT, Schill RL, Romanelli SM, MacDougald OA. Wntless regulates lipogenic gene expression in adipocytes and protects against diet-induced metabolic dysfunction. Mol Metab 2020; 39:100992. [PMID: 32325263 PMCID: PMC7264081 DOI: 10.1016/j.molmet.2020.100992] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Obesity is a key risk factor for many secondary chronic illnesses, including type 2 diabetes and cardiovascular disease. Canonical Wnt/β-catenin signaling is established as an important endogenous inhibitor of adipogenesis. This pathway is operative in mature adipocytes; however, its roles in this context remain unclear due to complexities of Wnt signaling and differences in experimental models. In this study, we used novel cultured cell and mouse models to investigate functional roles of Wnts secreted from adipocytes. METHODS We generated adipocyte-specific Wntless (Wls) knockout mice and cultured cell models to investigate molecular and metabolic consequences of disrupting Wnt secretion from mature adipocytes. To characterize Wls-deficient cultured adipocytes, we evaluated the expression of Wnt target and lipogenic genes and the downstream functional effects on carbohydrate and lipid metabolism. We also investigated the impact of adipocyte-specific Wls deletion on adipose tissues and global glucose metabolism in mice fed normal chow or high-fat diets. RESULTS Many aspects of the Wnt signaling apparatus are expressed and operative in mature adipocytes, including the Wnt chaperone Wntless. Deletion of Wntless in cultured adipocytes results in the inhibition of de novo lipogenesis and lipid monounsaturation, likely through repression of Srebf1 (SREBP1c) and Mlxipl (ChREBP) and impaired cleavage of immature SREBP1c into its active form. Adipocyte-specific Wls knockout mice (Wls-/-) have lipogenic gene expression in adipose tissues and isolated adipocytes similar to that of controls when fed a normal chow diet. However, closer investigation reveals that a subset of Wnts and downstream signaling targets are upregulated within stromal-vascular cells of Wls-/- mice, suggesting that adipose tissues defend loss of Wnt secretion from adipocytes. Interestingly, this compensation is lost with long-term high-fat diet challenges. Thus, after six months of a high-fat diet, Wls-/- mice are characterized by decreased adipocyte lipogenic gene expression, reduced visceral adiposity, and improved glucose homeostasis. CONCLUSIONS Taken together, these studies demonstrate that adipocyte-derived Wnts regulate de novo lipogenesis and lipid desaturation and coordinate the expression of lipogenic genes in adipose tissues. In addition, we report that Wnt signaling within adipose tissues is defended, such that a loss of Wnt secretion from adipocytes is sensed and compensated for by neighboring stromal-vascular cells. With chronic overnutrition, this compensatory mechanism is lost, revealing that Wls-/- mice are resistant to diet-induced obesity, adipocyte hypertrophy, and metabolic dysfunction.
Collapse
Affiliation(s)
- Devika P Bagchi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ziru Li
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Callie A Corsa
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Julie Hardij
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Hiroyuki Mori
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Brian S Learman
- Department of Microbiology and Immunology, University of Buffalo, Buffalo, NY, USA.
| | - Kenneth T Lewis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Rebecca L Schill
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Steven M Romanelli
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Ahmad B, Serpell CJ, Fong IL, Wong EH. Molecular Mechanisms of Adipogenesis: The Anti-adipogenic Role of AMP-Activated Protein Kinase. Front Mol Biosci 2020; 7:76. [PMID: 32457917 PMCID: PMC7226927 DOI: 10.3389/fmolb.2020.00076] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity is now a widespread disorder, and its prevalence has become a critical concern worldwide, due to its association with common co-morbidities like cancer, cardiovascular diseases and diabetes. Adipose tissue is an endocrine organ and therefore plays a critical role in the survival of an individual, but its dysfunction or excess is directly linked to obesity. The journey from multipotent mesenchymal stem cells to the formation of mature adipocytes is a well-orchestrated program which requires the expression of several genes, their transcriptional factors, and signaling intermediates from numerous pathways. Understanding all the intricacies of adipogenesis is vital if we are to counter the current epidemic of obesity because the limited understanding of these intricacies is the main barrier to the development of potent therapeutic strategies against obesity. In particular, AMP-Activated Protein Kinase (AMPK) plays a crucial role in regulating adipogenesis – it is arguably the central cellular energy regulation protein of the body. Since AMPK promotes the development of brown adipose tissue over that of white adipose tissue, special attention has been given to its role in adipose tissue development in recent years. In this review, we describe the molecular mechanisms involved in adipogenesis, the role of signaling pathways and the substantial role of activated AMPK in the inhibition of adiposity, concluding with observations which will support the development of novel chemotherapies against obesity epidemics.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | | | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
8
|
Yao W, Wei X, Guo H, Cheng D, Li H, Sun L, Wang S, Guo D, Yang Y, Si J. Tributyltin reduces bone mineral density by reprograming bone marrow mesenchymal stem cells in rat. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 73:103271. [PMID: 31627035 DOI: 10.1016/j.etap.2019.103271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Tributyltin (TBT), a proven endocrine disrupter, was widely used in industry and agriculture. Previous research showed that TBT could alter the balance between osteogenesis and adipogenesis, which may have significant consequences for bone health. Herein, we exposed male rats to TBT chloride (TBTCl) to evaluate the deleterious effects of TBT on bone. Exposure to 50 μg kg-1 TBT resulted in a significant decrease in bone mineral density (BMD) at the femur diaphysis region in the rat. A dose-dependent increase in lipid accumulation and adipocyte number was observed in the bone marrow (BM) of the femur. Meanwhile, TBTCl treatment significantly enhanced the expression of PPARγ and attenuated the expression of Runx2 and β-catenin in BM. In addition, serum ALP activity of TBT-exposed rats also showed a dose-dependent decrease. These results suggest that TBT could reduce BMD via inhibition of the Wnt/β-catenin pathway and skew the adipo-osteogenic balance in the BM of rats.
Collapse
Affiliation(s)
- Wenhuan Yao
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xinglong Wei
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Environmental Health, School of Public Health, Shandong University, Jinan, China
| | - Hao Guo
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Environmental Health, School of Public Health, Shandong University, Jinan, China
| | - Dong Cheng
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Hui Li
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Limin Sun
- Orthopedics Department, Shandong Provincial Third Hospital, Jinan, China
| | - Shu'e Wang
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Environmental Health, School of Public Health, Shandong University, Jinan, China
| | - Dongmei Guo
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Environmental Health, School of Public Health, Shandong University, Jinan, China
| | - Yanli Yang
- Department of Environmental Health, School of Public Health, Shandong University, Jinan, China
| | - Jiliang Si
- Institute of Preventive Medicine, Shandong University, Jinan, China; Department of Environmental Health, School of Public Health, Shandong University, Jinan, China.
| |
Collapse
|
9
|
Tang J, Zhou H, Sahay K, Xu W, Yang J, Zhang W, Chen W. Obesity-associated family with sequence similarity 13, member A (FAM13A) is dispensable for adipose development and insulin sensitivity. Int J Obes (Lond) 2018; 43:1269-1280. [PMID: 30301961 PMCID: PMC6456441 DOI: 10.1038/s41366-018-0222-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/22/2018] [Accepted: 09/02/2018] [Indexed: 11/28/2022]
Abstract
Background Obesity and its associated morbidities represent the major and most rapidly expanding world-wide health epidemic. Recent genome-wide association studies (GWAS) reveal that single nucleotide polymorphism (SNP) variant in the Family with Sequence Similarity 13, Member A (FAM13A) gene is strongly associated with waist–hip ratio (WHR) with adjustment for body mass index (BMI) (WHRadjBMI). However, the function of FAM13A in adipose development and obesity remains largely uncharacterized. Methods The expression of FAM13A in adipose tissue depots were investigated using lean, genetic obese and high fat diet-induced obese (DIO) animal models and during adipocyte differentiation. Stromal vascular cells (SVCs) or 3T3-L1 cells with gain and loss of function of FAM13A were used to determine the involvement of FAM13A in regulating adipocyte differentiation. Adipose development and metabolic homeostasis in Fam13a−/− mice were characterized under normal chow and high fat diet feeding. Results Murine FAM13A expression was nutritionally regulated and dramatically reduced in epididymal and subcutaneous fat in genetic and diet-induced obesity. Its expression was enriched in mature adipocytes and significantly upregulated during murine and human adipogenesis potentially through a peroxisome proliferator-activated receptor-gamma (PPARγ)-dependent mechanism. However, Fam13a−/− mice only exhibited a tendency of higher adiposity and were not protected from DIO and insulin resistance. While Fam13a−/− SVCs maintained normal adipogenesis, overexpression of FAM13A in 3T3-L1 preadipocytes downregulated β-catenin signaling and rendered preadipocytes more susceptible to apoptosis. Moreover, FAM13A overexpression largely blocked adipogenesis induced by a standard hormone cocktail, but adipogenesis can be partially rescued by the addition of PPARγ agonist pioglitazone at an early stage of differentiation. Conclusions Our results suggest that FAM13A is dispensable for adipose development and insulin sensitivity. Yet the expression of FAM13A needs to be tightly controlled in adipose precursor cells for their proper survival and downstream adipogenesis. These data provide novel insights into the link between FAM13A and obesity.
Collapse
Affiliation(s)
- Jiazhen Tang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.,Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hongyi Zhou
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Khushboo Sahay
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Wenqiong Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.,Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
10
|
Ruan L, Sun J, Zhou C, Shi H, Lei K. Cloning, identification and function analysis of a Chibby homolog from Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2018; 78:114-120. [PMID: 29689303 DOI: 10.1016/j.fsi.2018.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Chibby, a vital inhibitor molecule of Wnt/β-catenin signaling pathway, participates in development and stem cell differentiation through the regulation of β-catenin. Our previous studies have demonstrated that Litopenaeus vannamei β-catenin (Lv-β-catenin) was involved in WSSV infection and could inhibit virus replication by modulating the host immune system. In the study, a Chibby homolog from L. vannamei (designed as Lv-Chibby) was isolated and its role in WSSV infection was investigated. Sequence analysis suggested that Lv-Chibby was a novel homolog of Chibby family. It could transcript in all examined tissues, including hemocyte, gill, intestine, hepatopancreas, muscle and heart. Real-time quantitative PCR demonstrated that Lv-Chibby could take part in WSSV infection and be down-regulated by WSSV. Further studies confirmed that Lv-Chibby was able to interact with Lv-β-catenin. Moreover, the relationship of Lv-β-catenin, Lv-Chibby and WSSV069 was investigated. It was shown that Lv-Chibby enhanced the interaction between Lv-β-catenin and WSSV069. Interestingly, WSSV069 promoted the interaction between Lv-β-catenin and Lv-Chibby under high concentration, while low concentration of WSSV069 inhibited their interaction. A subsequent immunofluorescence assay revealed that WSSV069 appeared to reduce the nuclear entry of Lv-β-catenin. In sum, these results implied that Wnt/β-catenin signal pathway plays an important role in the defense against virus, and Chibby could be modulated by WSSV to regulate the signal pathway.
Collapse
Affiliation(s)
- Lingwei Ruan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, PR China.
| | - Jiazhen Sun
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, PR China; School of Life Science, University of Science and Technology of China, Hefei 230000, PR China
| | - Congzhao Zhou
- School of Life Science, University of Science and Technology of China, Hefei 230000, PR China
| | - Hong Shi
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, PR China
| | - Kaiyu Lei
- BGI Clinical Laboratories (Shenzhen) Co., Ltd, Shenzhen 518083, PR China
| |
Collapse
|
11
|
Cai CF, Liu LM, Shangguan HJ, Liu CS, Luo XY, Li YM. Anti-oncogenic activity of Chibby in the development of human nasopharyngeal carcinoma. Oncol Lett 2018; 15:5849-5858. [PMID: 29552214 DOI: 10.3892/ol.2018.8009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 12/11/2017] [Indexed: 01/16/2023] Open
Abstract
The Wnt/β-catenin pathway serves important roles in cancer development. The expression and function of Chibby (Cby), as a direct antagonist of β-catenin, in nasopharyngeal carcinoma (NPC) has not been fully investigated. The present study revealed that the mRNA and protein expression of Cby was significantly lower in NPC tissue than in the adjacent normal tissue. Low expression of Cby was significantly associated with the tumor and the clinical staging. Furthermore, Cby overexpression inhibited the proliferation of human NPC SUNE1 cells and induced cell cycle arrest. In addition, Cby overexpression also significantly enhanced the susceptibility of SUNE1 cells to apoptosis. These results indicated that Cby might serve as an anti-oncogenic gene in the development of NPC and could represent a potential therapeutic target for the human NPC therapy.
Collapse
Affiliation(s)
- Cheng-Fu Cai
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Li-Man Liu
- Institute of Stem Cell and Regeneration Medicine, Institutions of Biomedical Science, Fudan University, Shanghai 200031, P.R. China
| | - Han-Jing Shangguan
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Cun-Shan Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Xian-Yang Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yi-Meng Li
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| |
Collapse
|
12
|
Siller SS, Sharma H, Li S, Yang J, Zhang Y, Holtzman MJ, Winuthayanon W, Colognato H, Holdener BC, Li FQ, Takemaru KI. Conditional knockout mice for the distal appendage protein CEP164 reveal its essential roles in airway multiciliated cell differentiation. PLoS Genet 2017; 13:e1007128. [PMID: 29244804 PMCID: PMC5747467 DOI: 10.1371/journal.pgen.1007128] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/29/2017] [Accepted: 11/26/2017] [Indexed: 11/18/2022] Open
Abstract
Multiciliated cells of the airways, brain ventricles, and female reproductive tract provide the motive force for mucociliary clearance, cerebrospinal fluid circulation, and ovum transport. Despite their clear importance to human biology and health, the molecular mechanisms underlying multiciliated cell differentiation are poorly understood. Prior studies implicate the distal appendage/transition fiber protein CEP164 as a central regulator of primary ciliogenesis; however, its role in multiciliogenesis remains unknown. In this study, we have generated a novel conditional mouse model that lacks CEP164 in multiciliated tissues and the testis. These mice show a profound loss of airway, ependymal, and oviduct multicilia and develop hydrocephalus and male infertility. Using primary cultures of tracheal multiciliated cells as a model system, we found that CEP164 is critical for multiciliogenesis, at least in part, via its regulation of small vesicle recruitment, ciliary vesicle formation, and basal body docking. In addition, CEP164 is necessary for the proper recruitment of another distal appendage/transition fiber protein Chibby1 (Cby1) and its binding partners FAM92A and FAM92B to the ciliary base in multiciliated cells. In contrast to primary ciliogenesis, CEP164 is dispensable for the recruitment of intraflagellar transport (IFT) components to multicilia. Finally, we provide evidence that CEP164 differentially controls the ciliary targeting of membrane-associated proteins, including the small GTPases Rab8, Rab11, and Arl13b, in multiciliated cells. Altogether, our studies unravel unique requirements for CEP164 in primary versus multiciliogenesis and suggest that CEP164 modulates the selective transport of membrane vesicles and their cargoes into the ciliary compartment in multiciliated cells. Furthermore, our mouse model provides a useful tool to gain physiological insight into diseases associated with defective multicilia.
Collapse
Affiliation(s)
- Saul S. Siller
- Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, New York, United States of America
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Himanshu Sharma
- Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, New York, United States of America
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Shuai Li
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - June Yang
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Yong Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael J. Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wipawee Winuthayanon
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Holly Colognato
- Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, New York, United States of America
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Bernadette C. Holdener
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Feng-Qian Li
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Ken-Ichi Takemaru
- Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, New York, United States of America
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
13
|
Chan CY, Yu P, Chang FT, Chen ZH, Lee MF, Huang CY. Transcription factor HMG box-containing protein 1 (HBP1) modulates mitotic clonal expansion (MCE) during adipocyte differentiation. J Cell Physiol 2017; 233:4205-4215. [PMID: 29030964 DOI: 10.1002/jcp.26237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 10/05/2017] [Indexed: 11/10/2022]
Abstract
Transcription factor HMG box-containing protein 1 (HBP1) has been found to be up-regulated in rat adipose tissue and differentiated preadipocyte; however, how HBP1 is involved in adipocyte formation remains unclear. In the present study, we demonstrated that under a standard differentiation protocol HBP1 expression fluctuates with down-regulation in the mitotic clonal expansion (MCE) stage followed by up-regulation in the terminal differentiation stage in both 3T3-L1 and MEF cell models. Also, HBP1 knockdown accelerated cell cycle progression in the MCE stage, but it impaired final adipogenesis. To gain further insight into the role of HBP1 in the MCE stage, we found that the HBP1 expression pattern is reciprocal to that of C/EBPβ, and ectopic expression of HBP1suppresses C/EBPβ expression. These data indicate that HBP1 functions as a negative regulator of MCE. In contrast, when HBP1 expression was gradually elevated along with a concomitant induction of C/EBPα at the end of the MCE, HBP1 knockdown leads to a significant reduction of C/EBPα expression, suggesting that HBP1-mediated C/EBPα expression may be needed for the termination of the cell cycle at the end of MCE for terminal differentiation. All told, our findings show that HBP1 is a key transcription factor in the already complicated regulatory cascade during adipocyte differentiation.
Collapse
Affiliation(s)
- Chien-Yi Chan
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ping Yu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Feng-Tzu Chang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Zih-Hua Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ming-Fen Lee
- Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Chun-Yin Huang
- Department of Nutrition, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
14
|
Singh A, Sen E. Reciprocal role of SIRT6 and Hexokinase 2 in the regulation of autophagy driven monocyte differentiation. Exp Cell Res 2017; 360:365-374. [PMID: 28935467 DOI: 10.1016/j.yexcr.2017.09.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/16/2022]
Abstract
Emerging evidences suggest the impact of autophagy on differentiation but the underlying molecular links between metabolic restructuring and autophagy during monocyte differentiation remain elusive. An increase in PPARγ, HK2 and SIRT6 expression was observed upon PMA induced monocyte differentiation. While PPARγ positively regulated HK2 and SIRT6 expression, the latter served as a negative regulator of HK2. Changes in expression of these metabolic modelers were accompanied by decreased glucose uptake and increase in Chibby, a potent antagonist of β-catenin/Wnt pathway. Knockdown of Chibby abrogated PMA induced differentiation. While inhibition of HK2 either by Lonidamine or siRNA further elevated PMA induced Chibby, mitochondrial ROS, TIGAR and LC3II levels; siRNA mediated knock-down of SIRT6 exhibited contradictory effects as compared to HK2. Notably, inhibition of autophagy increased HK2, diminished Chibby level and CD33 expression. In addition, PMA induced expression of cytoskeletal architectural proteins, CXCR4, phagocytosis, acquisition of macrophage phenotypes and release of pro-inflammatory mediators was found to be HK2 dependent. Collectively, our findings highlight the previously unknown reciprocal influence of SIRT6 and HK2 in regulating autophagy driven monocyte differentiation.
Collapse
Affiliation(s)
- Ankita Singh
- National Brain Research Centre, Manesar, Haryana 122051, India
| | - Ellora Sen
- National Brain Research Centre, Manesar, Haryana 122051, India.
| |
Collapse
|
15
|
Formononetin, an isoflavone, activates AMP-activated protein kinase/β-catenin signalling to inhibit adipogenesis and rescues C57BL/6 mice from high-fat diet-induced obesity and bone loss. Br J Nutr 2017; 117:645-661. [PMID: 28367764 DOI: 10.1017/s0007114517000149] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Balance between adipocyte and osteoblast differentiation is the key link of disease progression in obesity and osteoporosis. We have previously reported that formononetin (FNT), an isoflavone extracted from Butea monosperma, stimulates osteoblast formation and protects against postmenopausal bone loss. The inverse relationship between osteoblasts and adipocytes prompted us to analyse the effect of FNT on adipogenesis and in vivo bone loss, triggered by high-fat diet (HFD)-induced obesity. The anti-obesity effect and mechanism of action of FNT was determined in 3T3-L1 cells and HFD-induced obese male mice. Our findings show that FNT suppresses the adipogenic differentiation of 3T3-L1 fibroblasts, through down-regulation of key adipogenic markers such as PPARγ, CCAAT/enhancer-binding protein alpha (C/EBPα) and sterol regulatory element-binding protein (SREBP) and inhibits intracellular TAG accumulation. Increased intracellular reactive oxygen species levels and AMP-activated protein kinase (AMPK) activation accompanied by stabilisation of β-catenin were attributed to the anti-adipogenic action of FNT. In vivo, 12 weeks of FNT treatment inhibited the development of obesity in mice by attenuating HFD-induced body weight gain and visceral fat accumulation. The anti-obesity effect of FNT results from increased energy expenditure. FNT also protects against HFD-induced dyslipidaemia and rescues deterioration of trabecular bone volume by increasing bone formation and decreasing bone resorbtion caused by HFD. FNT's rescuing action against obesity-induced osteoporosis commenced at the level of progenitors, as bone marrow progenitor cells, obtained from the HFD mice group supplemented with FNT, showed increased osteogenic and decreased adipogenic potentials. Our findings suggest that FNT inhibits adipogenesis through AMPK/β-catenin signal transduction pathways and protects against HFD-induced obesity and bone loss.
Collapse
|
16
|
Sun C, Yuan H, Wang L, Wei X, Williams L, Krebsbach PH, Guan JL, Liu F. FAK Promotes Osteoblast Progenitor Cell Proliferation and Differentiation by Enhancing Wnt Signaling. J Bone Miner Res 2016; 31:2227-2238. [PMID: 27391080 PMCID: PMC5642940 DOI: 10.1002/jbmr.2908] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/03/2023]
Abstract
Decreased bone formation is often associated with increased bone marrow adiposity. The molecular mechanisms that are accountable for the negative correlation between bone mass and bone marrow adiposity are incompletely understood. Focal adhesion kinase (FAK) has critical functions in proliferation and differentiation of many cell types; however, its roles in osteoblast lineage cells are largely unknown. We show herein that mice lacking FAK in Osterix-expressing cells exhibited decreased osteoblast number and low bone mass as well as increased bone marrow adiposity. The decreased bone mass in FAK-deficient mice was accounted for by decreased proliferation, compromised osteogenic differentiation, and increased adipogenic differentiation of bone marrow Osterix-expressing cells resulting from downregulation of Wnt/β-catenin signaling due to the reduced expression of canonical Wnt ligands. In contrast, FAK loss in calvarial preosteoblasts had no adverse effect on their proliferation and osteogenic differentiation and these cells had intact Wnt/β-catenin signaling. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chunhui Sun
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Hebao Yuan
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Li Wang
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Xiaoxi Wei
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Orthodontics, Jilin University School and Hospital of Stomatology, Changchun, Jilin, China
| | - Linford Williams
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Paul H Krebsbach
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fei Liu
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Jang H, Kim M, Lee S, Kim J, Woo DC, Kim KW, Song K, Lee I. Adipose tissue hyperplasia with enhanced adipocyte-derived stem cell activity in Tc1(C8orf4)-deleted mice. Sci Rep 2016; 6:35884. [PMID: 27775060 PMCID: PMC5075883 DOI: 10.1038/srep35884] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/05/2016] [Indexed: 11/09/2022] Open
Abstract
Adipose tissue hyperplasia with increased number of adipocytes is implicated in a protective rather than deleterious effect on obesity-associated metabolic disorder. It is poorly understood how the adipose tissue cellularity is regulated. Tc1 is a gene of vertebrates that regulates diverse downstream genes. Young Tc1-deleted mice fed on standard chow diet show expanded adipose tissue with smaller adipocytes in size compared to wild type controls, representing adipose tissue hyperplasia. Tc1-/- mice show enhanced glucose tolerance and reduced serum lipids. Adipocyte-derived stem cells (ADSCs) from Tc1-/- mice show enhanced proliferative and adipogenic capacity compared to wild type controls, suggesting that the adipose hyperplasia is regulated at the stem cell level. PPARγ and CEBPα are up-regulated robustly in Tc1-/- ADSCs upon induction for adipogenesis. Wisp2 and Dlk1, inhibitors of adipogenesis, are down-regulated in Tc1-/- ADSCs compared to controls. Tc1-transfected NIH3T3 cells show higher β-catenin reporter signals than vector transfected controls, suggesting a role of canonical Wnt signaling in the Tc1-dependent adipose regulation. Our data support that Tc1 is a novel regulator for adipose stem cells. Adipose tissue hyperplasia may be implicated in the metabolic regulation of Tc1-/- mice.
Collapse
Affiliation(s)
- Hayoung Jang
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Minsung Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soyoung Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jungtae Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong-Cheol Woo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Inchul Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Siller SS, Burke MC, Li FQ, Takemaru KI. Chibby functions to preserve normal ciliary morphology through the regulation of intraflagellar transport in airway ciliated cells. Cell Cycle 2016; 14:3163-72. [PMID: 26266958 DOI: 10.1080/15384101.2015.1080396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Airway cilia provide the coordinated motive force for mucociliary transport, which prevents the accumulation of mucus, debris, pollutants, and bacteria in our respiratory tracts. As airway cilia are constantly exposed to the environment and, hence, are an integral component of the pathogenesis of several congenital and chronic pulmonary disorders, it is necessary to understand the molecular mechanisms that control ciliated cell differentiation and ciliogenesis. We have previously reported that loss of the basal body protein Chibby (Cby) results in chronic upper airway infection in mice due to a significant reduction in the number of airway cilia. In the present work, we demonstrate that Cby is required for normal ciliary structure and proper distribution of proteins involved in the bidirectional intraflagellar transport (IFT) system, which consists of 2 distinct sub-complexes, IFT-A and IFT-B, and is essential for ciliary biogenesis and maintenance. In fully differentiated ciliated cells, abnormal paddle-like cilia with dilated ciliary tips are observed in Cby-/- airways and primary cultures of mouse tracheal epithelial cells (MTECs). In addition, IFT88, an IFT-B sub-complex protein, robustly accumulates within the dilated tips of both multicilia in Cby-/- MTECs and primary cilia in Cby-/- mouse embryonic fibroblasts (MEFs). Furthermore, we show that only IFT-B components, including IFT20 and IFT57, but not IFT-A and Bardet-Biedl syndrome (BBS) proteins, amass with IFT88 in these distended tips in Cby-/- ciliated cells. Taken together, our findings suggest that Cby plays a role in the proper distribution of IFT particles to preserve normal ciliary morphology in airway ciliated cells.
Collapse
Affiliation(s)
- Saul S Siller
- a Medical Scientist Training Program; Stony Brook University; Stony Brook , NY USA.,b Graduate Program in Molecular and Cellular Pharmacology; Stony Brook University; Stony Brook , NY USA.,c Department of Pharmacological Sciences ; Stony Brook University; Stony Brook , NY USA
| | - Michael C Burke
- a Medical Scientist Training Program; Stony Brook University; Stony Brook , NY USA.,d Graduate Program in Genetics; Stony Brook University; Stony Brook , NY USA
| | - Feng-Qian Li
- b Graduate Program in Molecular and Cellular Pharmacology; Stony Brook University; Stony Brook , NY USA.,c Department of Pharmacological Sciences ; Stony Brook University; Stony Brook , NY USA
| | - Ken-Ichi Takemaru
- a Medical Scientist Training Program; Stony Brook University; Stony Brook , NY USA.,b Graduate Program in Molecular and Cellular Pharmacology; Stony Brook University; Stony Brook , NY USA.,c Department of Pharmacological Sciences ; Stony Brook University; Stony Brook , NY USA.,d Graduate Program in Genetics; Stony Brook University; Stony Brook , NY USA
| |
Collapse
|
19
|
Van Camp JK, Zegers D, Verhulst SL, Van Hoorenbeeck K, Massa G, Verrijken A, Desager KN, Van Gaal LF, Van Hul W, Beckers S. No important role for genetic variation in the Chibby gene in monogenic and complex obesity. Mol Biol Rep 2013; 40:4491-8. [DOI: 10.1007/s11033-013-2541-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
|
20
|
Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH, Cui J, Li R, Zhang W, Kong Y, Zhang J, Shui W, Lamplot J, Rogers MR, Zhao C, Wang N, Rajan P, Tomal J, Statz J, Wu N, Luu HH, Haydon RC, He TC. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskelet Dis 2013; 5:13-31. [PMID: 23514963 DOI: 10.1177/1759720x12466608] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Wnt signaling pathway plays an important role not only in embryonic development but also in the maintenance and differentiation of the stem cells in adulthood. In particular, Wnt signaling has been shown as an important regulatory pathway in the osteogenic differentiation of mesenchymal stem cells. Induction of the Wnt signaling pathway promotes bone formation while inactivation of the pathway leads to osteopenic states. Our current understanding of Wnt signaling in osteogenesis elucidates the molecular mechanisms of classic osteogenic pathologies. Activating and inactivating aberrations of the canonical Wnt signaling pathway in osteogenesis results in sclerosteosis and osteoporosis respectively. Recent studies have sought to target the Wnt signaling pathway to treat osteogenic disorders. Potential therapeutic approaches attempt to stimulate the Wnt signaling pathway by upregulating the intracellular mediators of the Wnt signaling cascade and inhibiting the endogenous antagonists of the pathway. Antibodies against endogenous antagonists, such as sclerostin and dickkopf-1, have demonstrated promising results in promoting bone formation and fracture healing. Lithium, an inhibitor of glycogen synthase kinase 3β, has also been reported to stimulate osteogenesis by stabilizing β catenin. Although manipulating the Wnt signaling pathway has abundant therapeutic potential, it requires cautious approach due to risks of tumorigenesis. The present review discusses the role of the Wnt signaling pathway in osteogenesis and examines its targeted therapeutic potential.
Collapse
Affiliation(s)
- Jeong Hwan Kim
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, University of Chicago Medical Center, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Beier EE, Maher JR, Sheu TJ, Cory-Slechta DA, Berger AJ, Zuscik MJ, Puzas JE. Heavy metal lead exposure, osteoporotic-like phenotype in an animal model, and depression of Wnt signaling. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:97-104. [PMID: 23086611 PMCID: PMC3552813 DOI: 10.1289/ehp.1205374] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 10/19/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND Exposure to lead (Pb) from environmental and industrial sources remains an overlooked serious public health risk. Elucidating the effect of Pb on bone cell function is therefore critical for understanding its risk associated with diseases of low bone mass. OBJECTIVES We tested the hypothesis that Pb negatively affects bone mass. We also assessed the underlying mechanisms of Pb on bone signaling pathways. METHODS We used a model of low-level Pb exposure in a rodent beginning before conception and continuing over 18 months. We characterized the effect of Pb on bone quality using dual-energy X-ray absorptiometry (DXA), micro-computed tomography, Raman spectroscopy, and histology. We assessed the effect of Pb on bone and adipocyte formation by mineral deposition, lipid droplet formation, and Western blot and RNA analysis. RESULTS Pb-exposed animals had decreased bone mass that resulted in bones that were more susceptible to fracture. Pb decreased osteoblastic cell number leading to a depression of bone formation. Accompanying this, Pb exposure elevated sclerostin protein levels in the skeleton, and correspondingly reduced levels of β-catenin and Runx2 in stromal precursor cells. Pb also increased skeletal expression of peroxisome proliferator-activated receptor-γ (PPAR-γ). These results indicate a shift in mesenchymal differentiation wherein Pb promoted enhanced adipogenesis and decreased osteoblastogenesis. Substantial differences in bone marrow composition were observed, highlighted by an increase in adipocytes. CONCLUSIONS The disruption Pb has on bone mass and bone homeostasis is principally explained by inhibition of the Wnt/β-catenin pathway, which may provide a molecular basis for novel therapeutic strategies to combat Pb-induced bone pathologies.
Collapse
Affiliation(s)
- Eric E Beier
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Enjolras C, Thomas J, Chhin B, Cortier E, Duteyrat JL, Soulavie F, Kernan MJ, Laurençon A, Durand B. Drosophila chibby is required for basal body formation and ciliogenesis but not for Wg signaling. ACTA ACUST UNITED AC 2012; 197:313-25. [PMID: 22508513 PMCID: PMC3328381 DOI: 10.1083/jcb.201109148] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In contrast to vertebrate CBY, which functions in WNT signaling, Drosophila CBY is essential for normal basal body structure and function but dispensable for Wg signaling. Centriole-to–basal body conversion, a complex process essential for ciliogenesis, involves the progressive addition of specific proteins to centrioles. CHIBBY (CBY) is a coiled-coil domain protein first described as interacting with β-catenin and involved in Wg-Int (WNT) signaling. We found that, in Drosophila melanogaster, CBY was exclusively expressed in cells that require functional basal bodies, i.e., sensory neurons and male germ cells. CBY was associated with the basal body transition zone (TZ) in these two cell types. Inactivation of cby led to defects in sensory transduction and in spermatogenesis. Loss of CBY resulted in altered ciliary trafficking into neuronal cilia, irregular deposition of proteins on spermatocyte basal bodies, and, consequently, distorted axonemal assembly. Importantly, cby1/1 flies did not show Wingless signaling defects. Hence, CBY is essential for normal basal body structure and function in Drosophila, potentially through effects on the TZ. The function of CBY in WNT signaling in vertebrates has either been acquired during vertebrate evolution or lost in Drosophila.
Collapse
Affiliation(s)
- Camille Enjolras
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR 5534, Université Claude Bernard Lyon 1, Villeurbanne, Lyon F69622, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fischer V, Brown-Grant DA, Li FQ. Chibby suppresses growth of human SW480 colon adenocarcinoma cells through inhibition of β-catenin signaling. J Mol Signal 2012; 7:6. [PMID: 22651859 PMCID: PMC3463480 DOI: 10.1186/1750-2187-7-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/31/2012] [Indexed: 12/22/2022] Open
Abstract
The canonical Wnt signaling pathway is crucial for embryonic development and adult tissue homeostasis. Activating mutations in the Wnt pathway are frequently associated with the pathogenesis of various types of cancer, particularly colon cancer. Upon Wnt stimulation, β-catenin plays a central role as a coactivator through direct interaction with Tcf/Lef transcription factors to stimulate target gene expression. We have previously shown that the evolutionarily conserved protein Chibby (Cby) physically binds to β-catenin to repress β-catenin-dependent gene activation by 1) competing with Tcf/Lef factors for binding to β-catenin and 2) facilitating nuclear export of β-catenin via interaction with 14-3-3 proteins. In this study, we employed human colon adenocarcinoma SW480 cells with high levels of endogenous β-catenin to address a potential tumor suppressor role of Cby. In SW480 stable cells expressing wild-type Cby (CbyWT), but not 14-3-3-binding- defective Cby mutant CbyS20A, a significant fraction of endogenous β-catenin was detected in the cytoplasm. Consistent with this, CbyWT-expressing cells showed low levels of β-catenin signaling activity, leading to reduced growth. Our results suggest that Cby, in collaboration with 14-3-3 proteins, can counteract oncogenic β-catenin signaling in colon cancer cells.
Collapse
Affiliation(s)
- Victoria Fischer
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, BST 7-186, Nicolls Rd, Stony Brook, NY, 11794-8651, USA.
| | | | | |
Collapse
|
24
|
Chung SS, Lee JS, Kim M, Ahn BY, Jung HS, Lee HM, Kim JW, Park KS. Regulation of Wnt/β-catenin signaling by CCAAT/enhancer binding protein β during adipogenesis. Obesity (Silver Spring) 2012; 20:482-7. [PMID: 21760632 DOI: 10.1038/oby.2011.212] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activation of the Wnt/β-catenin signaling pathway inhibits adipogenesis, while disruption of Wnt signaling leads to spontaneous adipogenesis. CCAAT/enhancer binding protein β (C/EBPβ) is rapidly induced in early stages of adipogenesis and is responsible for transcriptional induction of two major adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ) and C/EBPα. In this study, we examined whether C/EBPβ is involved in the suppression of Wnt/β-catenin signaling during adipogenesis. Knockdown of C/EBPβ expression not only inhibited adipogenesis but also maintained active Wnt/β-catenin signaling, after addition of adipogenic inducers. In contrast, overexpression of C/EBPβ substantially inhibited Wnt signaling. Interestingly, our data showed that C/EBPβ is involved in the expression of Wnt10b, a major Wnt ligand in preadipocytes, even though C/EBPβ is not an essential factor to regulate Wnt10b expression during adipogenesis, and that C/EBPβ inhibits Wnt10b promoter activity by directly binding to specific regions of the promoter. These results suggest a dual function of C/EBPβ: stimulating expression of adipogenic genes and inhibiting Wnt signaling.
Collapse
Affiliation(s)
- Sung Soo Chung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ma X, Ding W, Wang J, Wu G, Zhang H, Yin J, Zhou L, Li D. LOC66273 isoform 2, a novel protein highly expressed in white adipose tissue, induces adipogenesis in 3T3-L1 cells. J Nutr 2012; 142:448-55. [PMID: 22279136 DOI: 10.3945/jn.111.152108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Obesity results in part from altered adipocyte metabolism and enhanced adipogenesis. However, the factors that influence insulin-independent differentiation of preadipocytes in response to excess intake of dietary energy remain poorly understood. Based on our recent finding that LOC66273 isoform 2 (LI2), a gene that encodes a novel Mth938 domain-containing protein, is highly expressed in white adipose tissues, we hypothesized that LI2 plays an important role in adipogenesis. Plasmid pcDNA3.1-LI2 was electroporated into 3T3-L1 preadipocytes to overexpress the LI2 protein. Synthetic siRNA was transfected into 3T3-L1 cells to knockdown endogenous LI2. Using constitutively active and potent siRNA against LI2, we determined cell morphology, cell viability, and adipocytic factors in 3T3-L1 preadipocytes. Our results indicated that LI2 was sufficient to drive preadipocyte differentiation via modulating the phosphorylation level and transcriptional activity of CREB, coincident with expression of several adipogenic regulators and mature adipocyte markers, without insulin treatment. In addition, overexpression of the LI2 protein inhibited preadipocyte growth, whereas knockdown of the LI2 protein resulted in preadipocyte apoptosis via caspase-3 activation during adipogenesis. These results indicated that LI2 might function to switch preadipocytes from proliferation to differentiation and to maintain the viability of preadipocytes during adipogenesis by regulating the caspase-3 pathway. Our findings highlight the importance of LI2 in the formation of new adipocytes, thus helping understand the mechanisms responsible for insulin-independent adipogenesis in mammals.
Collapse
Affiliation(s)
- Xi Ma
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cyge B, Fischer V, Takemaru KI, Li FQ. Generation and characterization of monoclonal antibodies against human Chibby protein. Hybridoma (Larchmt) 2011; 30:163-8. [PMID: 21529289 DOI: 10.1089/hyb.2010.0098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chibby (Cby) was originally identified as an antagonist of the Wnt/β-catenin signaling pathway. It physically interacts with the key co-activator β-catenin and inhibits β-catenin-mediated transcriptional activation. More recently, we demonstrated that Cby protein localizes to the base of motile cilia and is required for ciliogenesis in the respiratory epithelium of mice. To gain further insight into the physiological function of Cby, we developed mouse monoclonal antibodies (MAbs) against human Cby protein and characterized two Cby MAbs, designated 8-2 and 27-11, in depth. Western blot analysis revealed that 8-2 reacts with both human and mouse Cby proteins, whereas 27-11 is specific to human Cby. The epitopes of 8-2 and 27-11 were narrowed down to the middle portion (aa 49-63) and N-terminal region (aa 1-31) of the protein, respectively. We also determined their isotypes and found that 8-2 and 27-11 belong to IgG2a and IgG1 with κ light chains, respectively. Both MAbs can be employed for immunoprecipitation assays. Moreover, 8-2 detects endogenous Cby protein on Western blots, and marks the ciliary base of motile cilia in the murine lung and trachea as shown by immunofluorescence staining. These Cby MAbs therefore hold promise as useful tools for the investigation of Wnt signaling and ciliogenesis.
Collapse
Affiliation(s)
- Benjamin Cyge
- Graduate Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, SUNY at Stony Brook, Stony Brook, New York, USA
| | | | | | | |
Collapse
|
27
|
XU HONGTAO, LI QINGCHANG, DAI SHUNDONG, XIE XUEMEI, LIU DI, WANG ENHUA. The expression patterns and correlations of chibby, β-catenin, and DNA methyltransferase-1 and their clinicopathological significance in lung cancers. APMIS 2011; 119:750-8. [PMID: 21995627 DOI: 10.1111/j.1600-0463.2011.02799.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Filipovich A, Gehrke I, Poll-Wolbeck SJ, Kreuzer KA. Physiological inhibitors of Wnt signaling. Eur J Haematol 2011; 86:453-65. [PMID: 21342268 DOI: 10.1111/j.1600-0609.2011.01592.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wnt signaling is crucial for cell proliferation and differentiation. It represents a complex network with mechanisms of self-regulation through positive and negative feedback. Recent increasing interest in this signaling pathway has led to the discovery of many new proteins that down-regulate Wnt activity. Here, we provide a short description of the most important and best-studied inhibitors, group them according to the target molecule within the Wnt cascade, and discuss their clinical potential. Although most of the inhibitors discussed here may also interact with proteins from other signaling pathways, we focus only on their ability to modulate Wnt signaling.
Collapse
|
29
|
Lee SH, Kim B, Oh MJ, Yoon J, Kim HY, Lee KJ, Lee JD, Choi KY. Persicaria hydropiper (L.) spach and its flavonoid components, isoquercitrin and isorhamnetin, activate the Wnt/β-catenin pathway and inhibit adipocyte differentiation of 3T3-L1 cells. Phytother Res 2011; 25:1629-35. [PMID: 21413092 DOI: 10.1002/ptr.3469] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 12/26/2022]
Abstract
Obesity, which is related to metabolic syndrome and is associated with liver disease, represents an epidemic problem demanding effective therapeutic strategies. Evidence shows that the Wnt/β-catenin pathway is closely associated with obesity and that small molecules regulating the Wnt/β-catenin pathway can potentially control adipogenesis related to obesity. Eleven plant extracts activating the Wnt/β-catenin pathway were screened by using HEK 293-TOP cells retaining the Wnt/β-catenin signaling reporter gene. An extract of Persicaria hydropiper (L.) Spach was found to activate Wnt/β-catenin signaling. P. hydropiper is grown worldwide in temperate climates and is found widely in Southeast Asia. The P. hydropiper extract inhibited the differentiation of adipocyte 3T3-L1 cells. Isoquercitrin and isorhamnetin, constituents of P. hydropiper, also activated Wnt/β-catenin signaling and suppressed the differentiation of 3T3-L1 cells. These results indicate that isoquercitrin in P. hydropiper suppresses the adipogenesis of 3T3-L1 cells via the inhibition of Wnt/β-catenin signaling. P. hydropiper and isoquercitrin may therefore be potential therapeutic agents for obesity and its associated disorders.
Collapse
Affiliation(s)
- Soung-Hoon Lee
- Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Tsurutani Y, Fujimoto M, Takemoto M, Irisuna H, Koshizaka M, Onishi S, Ishikawa T, Mezawa M, He P, Honjo S, Maezawa Y, Saito Y, Yokote K. The roles of transforming growth factor-β and Smad3 signaling in adipocyte differentiation and obesity. Biochem Biophys Res Commun 2011; 407:68-73. [PMID: 21356196 DOI: 10.1016/j.bbrc.2011.02.106] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 02/21/2011] [Indexed: 02/07/2023]
Abstract
We aimed at elucidating the roles of transforming growth factor (TGF)-β and Smad3 signaling in adipocyte differentiation (adipogenesis) and in the pathogenesis of obesity. TGF-β/Smad3 signaling in white adipose tissue (WAT) was determined in genetically obese (ob/ob) mice. The effect of TGF-β on adipogenesis was evaluated in mouse embryonic fibroblasts (MEF) isolated both from WT controls and Smad3 KO mice by Oil red-O staining and gene expression analysis. Phenotypic analyses of high-fat diet (HFD)-induced obesity in Smad3 KO mice compared to WT controls were performed. TGF-β/Smad3 signaling was elevated in WAT from ob/ob mice compared to the controls. TGF-β significantly inhibited adipogenesis in MEF, but the inhibitory effects of TGF-β on adipogenesis were partially abolished in MEF from Smad3 KO mice. TGF-β inhibited adipogenesis independent from the Wnt and β-catenin pathway. Smad3 KO mice were protected against HFD-induced insulin resistance. The size of adipocytes from Smad3 KO mice on the HFD was significantly smaller compared to the controls. In conclusion, the TGF-β/Smad3 signaling pathway plays key roles not only in adipogenesis but also in development of insulin resistance.
Collapse
Affiliation(s)
- Yuya Tsurutani
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hoffmeister H, Babinger K, Gürster S, Cedzich A, Meese C, Schadendorf K, Osten L, de Vries U, Rascle A, Witzgall R. Polycystin-2 takes different routes to the somatic and ciliary plasma membrane. ACTA ACUST UNITED AC 2011; 192:631-45. [PMID: 21321097 PMCID: PMC3044124 DOI: 10.1083/jcb.201007050] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Polycystin-2 goes through the Golgi apparatus when going to the plasma membrane, but bypasses it en route to the ciliary membrane. Polycystin-2 (also called TRPP2), an integral membrane protein mutated in patients with cystic kidney disease, is located in the primary cilium where it is thought to transmit mechanical stimuli into the cell interior. After studying a series of polycystin-2 deletion mutants we identified two amino acids in loop 4 that were essential for the trafficking of polycystin-2 to the somatic (nonciliary) plasma membrane. However, polycystin-2 mutant proteins in which these two residues were replaced by alanine were still sorted into the cilium, thus indicating that the trafficking routes to the somatic and ciliary plasma membrane compartments are distinct. We also observed that the introduction of dominant-negative Sar1 mutant proteins and treatment of cells with brefeldin A prevented the transport into the ciliary plasma membrane compartment, whereas metabolic labeling experiments, light microscopical imaging, and high-resolution electron microscopy revealed that full-length polycystin-2 did not traverse the Golgi apparatus on its way to the cilium. These data argue that the transport of polycystin-2 to the ciliary and to the somatic plasma membrane compartments originates in a COPII-dependent fashion at the endoplasmic reticulum, that polycystin-2 reaches the cis side of the Golgi apparatus in either case, but that the trafficking to the somatic plasma membrane goes through the Golgi apparatus whereas transport vesicles to the cilium leave the Golgi apparatus at the cis compartment. Such an interpretation is supported by the finding that mycophenolic acid treatment resulted in the colocalization of polycystin-2 with GM130, a marker of the cis-Golgi apparatus. Remarkably, we also observed that wild-type Smoothened, an integral membrane protein involved in hedgehog signaling that under resting conditions resides in the somatic plasma membrane, passed through the Golgi apparatus, but the M2 mutant of Smoothened, which is constitutively located in the ciliary but not in the somatic plasma membrane, does not. Finally, a dominant-negative form of Rab8a, a BBSome-associated monomeric GTPase, prevented the delivery of polycystin-2 to the primary cilium whereas a dominant-negative form of Rab23 showed no inhibitory effect, which is consistent with the view that the ciliary trafficking of polycystin-2 is regulated by the BBSome.
Collapse
Affiliation(s)
- Helen Hoffmeister
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mokhtarzada S, Yu C, Brickenden A, Choy WY. Structural characterization of partially disordered human Chibby: insights into its function in the Wnt-signaling pathway. Biochemistry 2011; 50:715-26. [PMID: 21182262 PMCID: PMC3031990 DOI: 10.1021/bi101236z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
The Wnt/β-catenin signaling pathway is critical to embryonic development as well as adult tissue regeneration. Dysregulation of this pathway can lead to a variety of human diseases, in particular cancers. Chibby (Cby), a small and highly conserved protein, plays an antagonistic role in Wnt signaling by inhibiting the binding of β-catenin to Tcf/Lef family proteins, a protein interaction that is essential for the transcriptional activation of Wnt target genes. Cby is also involved in regulating intracellular distribution of β-catenin. Phosphorylated Cby forms a ternary complex with 14-3-3 protein and β-catenin, facilitating the export of β-catenin from the nucleus. On the other hand, the antagonistic function of Cby is inhibited upon binding to thyroid cancer-1 (TC-1). To dissect the structure−function relationship of Cby, we have used NMR spectroscopy, ESI-MS, CD, and DLS to extensively characterize the structure of human Cby. Our results show that the 126-residue Cby is partially disordered under nondenaturing conditions. While the N-terminal portion of the protein is predominantly unstructured in solution, the C-terminal half of Cby adopts a coiled-coil structure through self-association. Initial data for the binding studies of Cby to 14-3-3ζ (one of the isoforms in the 14-3-3 family) and TC-1 via these two distinct structural modules have also been obtained. It is noteworthy that in a recent large-scale analysis of the intrinsically disordered proteome of mouse, a substantial number of disordered proteins are predicted to have coiled-coil motif presence in their sequences. The combination of these two molecular recognition features could facilitate disordered Cby in assembling protein complexes via different modes of interaction.
Collapse
Affiliation(s)
- Sulayman Mokhtarzada
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | |
Collapse
|
33
|
Abstract
Mechanical loading is of pivotal importance in the maintenance of skeletal homeostasis, but the players involved in the transduction of mechanical stimuli to promote bone maintenance have long remained elusive. Osteocytes, the most abundant cells in bone, possess mechanosensing appendices stretching through a system of bone canaliculi. Mechanical stimulation plays an important role in osteocyte survival and hence in the preservation of bone mechanical properties, through the maintenance of bone hydratation. Osteocytes can also control the osteoblastic differentiation of mesenchymal precursors in response to mechanical loading by modulating WNT signaling pathways, essential regulators of cell fate and commitment, through the protein sclerostin. Mutations of Sost, the sclerostin-encoding gene, have dramatic effects on the skeleton, indicating that osteocytes may act as master regulators of bone formation and localized bone remodeling. Moreover, the development of sclerostin inhibitors is opening new possibilities for bone regeneration in orthopedics and the dental field.
Collapse
|
34
|
Vandepoele K, Staes K, Andries V, van Roy F. Chibby interacts with NBPF1 and clusterin, two candidate tumor suppressors linked to neuroblastoma. Exp Cell Res 2010; 316:1225-33. [PMID: 20096688 DOI: 10.1016/j.yexcr.2010.01.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 11/24/2022]
Abstract
The NBPF genes are members of a gene family that underwent a remarkable increase in their copy number during recent primate evolution. The NBPF proteins contain 5 to 40 copies of a domain known as the NBPF repeat or DUF1220. Very little is known about the function of these domains or about the NBPF proteins. We performed a yeast two-hybrid screening with the aminoterminal domain of NBPF11 and found that Chibby, a documented repressor of Wnt signaling, interacts with multiple NBPF proteins. More specifically, a coiled-coil region in the NBPF proteins interacts with the coiled-coil domain in the carboxyterminal region of Chibby. Nonetheless, this interaction did not influence the repressor function of Chibby in a TOPFLASH reporter assay. Using Chibby as bait in a new yeast two-hybrid screening, we identified clusterin as a binding protein. Chibby and clusterin were co-immunoprecipitated with NBPF1, suggesting the formation of a tri-molecular complex. Although we have not pinpointed the role of these mutual interactions, the possible formation of a macromolecular complex of three candidate tumor suppressor proteins, including the enigmatic NBPF1, points at important functional implications.
Collapse
Affiliation(s)
- Karl Vandepoele
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium.
| | | | | | | |
Collapse
|
35
|
Li FQ, Mofunanya A, Fischer V, Hall J, Takemaru KI. Nuclear-cytoplasmic shuttling of Chibby controls beta-catenin signaling. Mol Biol Cell 2010. [PMID: 19940019 DOI: 10.1091/mbc.e09−05−0437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
In the canonical Wnt pathway, beta-catenin acts as a key coactivator that stimulates target gene expression through interaction with Tcf/Lef transcription factors. Its nuclear accumulation is the hallmark of active Wnt signaling and is frequently associated with cancers. Chibby (Cby) is an evolutionarily conserved molecule that represses beta-catenin-dependent gene activation. Although Cby, in conjunction with 14-3-3 chaperones, controls beta-catenin distribution, its molecular nature remains largely unclear. Here, we provide compelling evidence that Cby harbors bona fide nuclear localization signal (NLS) and nuclear export signal (NES) motifs, and constitutively shuttles between the nucleus and cytoplasm. Efficient nuclear export of Cby requires a cooperative action of the intrinsic NES, 14-3-3, and the CRM1 nuclear export receptor. Notably, 14-3-3 docking provokes Cby binding to CRM1 while inhibiting its interaction with the nuclear import receptor importin-alpha, thereby promoting cytoplasmic compartmentalization of Cby at steady state. Importantly, the NLS- and NES-dependent shuttling of Cby modulates the dynamic intracellular localization of beta-catenin. In support of our model, short hairpin RNA-mediated knockdown of endogenous Cby results in nuclear accumulation of beta-catenin. Taken together, these findings unravel the molecular basis through which a combinatorial action of Cby and 14-3-3 proteins controls the dynamic nuclear-cytoplasmic trafficking of beta-catenin.
Collapse
Affiliation(s)
- Feng-Qian Li
- Department of Pharmacological Sciences, SUNY at Stony Brook, Stony Brook, NY 11794, USA.
| | | | | | | | | |
Collapse
|
36
|
Li FQ, Mofunanya A, Fischer V, Hall J, Takemaru KI. Nuclear-cytoplasmic shuttling of Chibby controls beta-catenin signaling. Mol Biol Cell 2009; 21:311-22. [PMID: 19940019 PMCID: PMC2808236 DOI: 10.1091/mbc.e09-05-0437] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chibby (Cby) acts with 14-3-3 to regulate β-catenin localization in the canonical Wnt pathway. We show that Cby harbors functional NLS and NES motifs, and shuttles between the nucleus and cytoplasm. Cby distribution at steady state is controlled by an intricate cooperation between 14-3-3, CRM1 and importin-α, which impacts on β-catenin signaling. In the canonical Wnt pathway, β-catenin acts as a key coactivator that stimulates target gene expression through interaction with Tcf/Lef transcription factors. Its nuclear accumulation is the hallmark of active Wnt signaling and is frequently associated with cancers. Chibby (Cby) is an evolutionarily conserved molecule that represses β-catenin–dependent gene activation. Although Cby, in conjunction with 14-3-3 chaperones, controls β-catenin distribution, its molecular nature remains largely unclear. Here, we provide compelling evidence that Cby harbors bona fide nuclear localization signal (NLS) and nuclear export signal (NES) motifs, and constitutively shuttles between the nucleus and cytoplasm. Efficient nuclear export of Cby requires a cooperative action of the intrinsic NES, 14-3-3, and the CRM1 nuclear export receptor. Notably, 14-3-3 docking provokes Cby binding to CRM1 while inhibiting its interaction with the nuclear import receptor importin-α, thereby promoting cytoplasmic compartmentalization of Cby at steady state. Importantly, the NLS- and NES-dependent shuttling of Cby modulates the dynamic intracellular localization of β-catenin. In support of our model, short hairpin RNA–mediated knockdown of endogenous Cby results in nuclear accumulation of β-catenin. Taken together, these findings unravel the molecular basis through which a combinatorial action of Cby and 14-3-3 proteins controls the dynamic nuclear-cytoplasmic trafficking of β-catenin.
Collapse
Affiliation(s)
- Feng-Qian Li
- Department of Pharmacological Sciences, SUNY at Stony Brook, Stony Brook, NY 11794, USA.
| | | | | | | | | |
Collapse
|
37
|
Glondu-Lassis M, Dromard M, Chavey C, Puech C, Fajas L, Hendriks W, Freiss G. Downregulation of protein tyrosine phosphatase PTP-BL represses adipogenesis. Int J Biochem Cell Biol 2009; 41:2173-80. [PMID: 19782949 DOI: 10.1016/j.biocel.2009.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 03/27/2009] [Accepted: 04/01/2009] [Indexed: 12/01/2022]
|
38
|
Rashid S, Pilecka I, Torun A, Olchowik M, Bielinska B, Miaczynska M. Endosomal adaptor proteins APPL1 and APPL2 are novel activators of beta-catenin/TCF-mediated transcription. J Biol Chem 2009; 284:18115-28. [PMID: 19433865 PMCID: PMC2709337 DOI: 10.1074/jbc.m109.007237] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 05/06/2009] [Indexed: 12/22/2022] Open
Abstract
Canonical Wnt signaling regulates many aspects of cellular physiology and tissue homeostasis during development and in adult organisms. In molecular terms, stimulation by Wnt ligands leads to the stabilization of beta-catenin, its translocation to the nucleus, and stimulation of TCF (T-cell factor)-dependent transcription of target genes. This process is controlled at various stages by a number of regulatory proteins, including transcriptional activators and repressors. Here we demonstrate that the endosomal proteins APPL1 and APPL2 are novel activators of beta-catenin/TCF-mediated transcription. APPL proteins are multifunctional adaptors and effectors of the small GTPase Rab5, which localize to a subpopulation of early endosomes but are also capable of nucleocytoplasmic shuttling. Overexpression of APPL1 or APPL2 protein stimulates the activity of beta-catenin/TCF-dependent reporter construct, whereas silencing of APPL1 reduces it. Both APPL proteins interact directly with Reptin, a transcriptional repressor binding to beta-catenin and HDAC1 (histone deacetylase 1), and this interaction was mapped to the pleckstrin homology domain of APPL1. Moreover, APPL proteins are present in an endogenous complex containing Reptin, beta-catenin, HDAC1, and HDAC2. Overexpression of either APPL protein relieves Reptin-dependent transcriptional repression and correlates with the reduced amounts of HDACs and beta-catenin associated with Reptin as well as with the lower levels of Reptin and HDAC1 on the promoters of beta-catenin target genes. We propose that APPL proteins exert their stimulatory effects on beta-catenin/TCF-dependent transcription by decreasing the activity of a Reptin-containing repressive complex.
Collapse
Affiliation(s)
- Sajid Rashid
- From the Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Iwona Pilecka
- From the Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Anna Torun
- From the Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Marta Olchowik
- From the Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Beata Bielinska
- From the Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Marta Miaczynska
- From the Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
39
|
Monteiro MC, Wdziekonski B, Villageois P, Vernochet C, Iehle C, Billon N, Dani C. Commitment of mouse embryonic stem cells to the adipocyte lineage requires retinoic acid receptor beta and active GSK3. Stem Cells Dev 2009; 18:457-63. [PMID: 18690793 DOI: 10.1089/scd.2008.0154] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Key events leading to terminal differentiation of preadipocytes into adipocytes have been identified in recent years. However, signaling pathways involved in the decision of stem cells to follow the adipogenic lineage have not yet been characterized. We have previously shown that differentiating mouse embryonic stem (mES) cells give rise to functional adipocytes upon an early treatment with retinoic acid (RA). The goal of this work was to identify regulators of RA-induced commitment of mES cells to the adipocyte lineage. First, we investigated the role of RA receptor (RAR) isotypes in the induction of mES cell adipogenesis. Using synthetic retinoids selective of RAR isotypes, we show that RARbeta activation is both sufficient and necessary to trigger commitment of mES cells to adipocytes. Then, we performed a small-scale drug screening to find signaling pathways involved in RARbeta-induced mES cell adipogenesis. We show that pharmacological inhibitors of glycogen synthase kinase (GSK) 3, completely inhibit RARbeta-induced adipogenesis in mES cells. This finding uncovers the requirement of active GSK3 in RARbeta-induced commitment of mES cells toward the adipocyte lineage. Finally, we investigated the role of the Wnt pathway, in which GSK3 is a critical negative regulator, in adipocyte commitment by analyzing Wnt pathway activity in RA- and RARbeta-induced mES cell adipogenesis. Our results suggest that although RARbeta and active GSK3 are required for RA-induced adipogenesis, they might be acting through a Wnt pathway-independent mechanism.
Collapse
Affiliation(s)
- Miguel C Monteiro
- Institute of Developmental Biology and Cancer, Centre de Biochimie, Faculté des Sciences, Université Nice Sophia-Antipolis, Nice, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Mofunanya A, Li FQ, Hsieh JC, Takemaru KI. Chibby forms a homodimer through a heptad repeat of leucine residues in its C-terminal coiled-coil motif. BMC Mol Biol 2009; 10:41. [PMID: 19435523 PMCID: PMC2686680 DOI: 10.1186/1471-2199-10-41] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 05/12/2009] [Indexed: 12/31/2022] Open
Abstract
Background The Wnt/β-catenin signaling pathway plays crucial roles in embryonic development and in maintenance of organs and tissues in adults. Chibby (Cby) is an evolutionarily conserved molecule that physically interacts with the key downstream coactivator β-catenin and represses its transcriptional activation potential. Although Cby harbors a predicted coiled-coil motif in the C-terminal region, its molecular nature and functional importance remain largely unexplored. Results Here we report that Cby forms a stable complex with itself. Alanine substitutions of two or more of four critical leucine residues within the C-terminal heptad repeats completely eliminate the Cby-Cby interaction. The Cby oligomer predominantly exists as a homodimer. Furthermore, we found that dimerization-deficient Cby mutants still retain the ability to bind to β-catenin and to repress β-catenin-dependent gene activation. More importantly, Cby homodimerization is required for its efficient interaction with the nuclear import receptor importin-α and subsequent nuclear translocation. Conclusion Our comprehensive mutational analysis of the Cby coiled-coil domain reveals that the four heptad leucine residues play an essential role in mediating Cby homodimerization. Although monomeric Cby is sufficient to bind to β-catenin and block β-catenin-mediated transcriptional activation, homodimer formation of Cby is indispensable for its efficient nuclear import.
Collapse
Affiliation(s)
- Adaobi Mofunanya
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.
| | | | | | | |
Collapse
|
41
|
Takemaru KI, Fischer V, Li FQ. Fine-tuning of nuclear-catenin by Chibby and 14-3-3. Cell Cycle 2009; 8:210-3. [PMID: 19158508 DOI: 10.4161/cc.8.2.7394] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chibby (Cby) is an evolutionarily conserved antagonist of beta-catenin, a central player of the canonical Wnt signaling pathway, which acts as a transcriptional coactivator. Cby physically interacts with the C-terminal activation domain of beta-catenin and blocks its transcriptional activation potential through competition with DNA-binding Tcf/Lef transcription factors. Our recent study revealed a second mechanism for Cby-mediated beta-catenin inhibition in which Cby cooperates with 14-3-3 adaptor proteins to facilitate nuclear export of beta-catenin, following phosphorylation of Cby by Akt kinase. Therefore, our findings unravel a novel molecular mechanism regulating the dynamic nucleo-cytoplasmic trafficking of beta-catenin and provide new insights into the cross-talk between the Wnt and Akt signaling pathways. Here, we review recent literature concerning Cby function and discuss our current understanding of the relationship between Wnt and Akt signaling.
Collapse
Affiliation(s)
- Ken-Ichi Takemaru
- Department of Pharmacological Sciences, SUNY at Stony Brook, Stony Brook, New York 11794-8651, USA.
| | | | | |
Collapse
|
42
|
Christodoulides C, Lagathu C, Sethi JK, Vidal-Puig A. Adipogenesis and WNT signalling. Trends Endocrinol Metab 2009; 20:16-24. [PMID: 19008118 PMCID: PMC4304002 DOI: 10.1016/j.tem.2008.09.002] [Citation(s) in RCA: 448] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 09/22/2008] [Accepted: 09/22/2008] [Indexed: 12/21/2022]
Abstract
An inability of adipose tissue to expand consequent to exhausted capacity to recruit new adipocytes might underlie the association between obesity and insulin resistance. Adipocytes arise from mesenchymal precursors whose commitment and differentiation along the adipocytic lineage is tightly regulated. These regulatory factors mediate cross-talk between adipose cells, ensuring that adipocyte growth and differentiation are coupled to energy storage demands. The WNT family of autocrine and paracrine growth factors regulates adult tissue maintenance and remodelling and, consequently, is well suited to mediate adipose cell communication. Indeed, several recent reports, summarized in this review, implicate WNT signalling in regulating adipogenesis. Manipulating the WNT pathway to alter adipose cellular makeup, therefore, constitutes an attractive drug-development target to combat obesity-associated metabolic complications.
Collapse
Affiliation(s)
- Constantinos Christodoulides
- Institute of Metabolic Science, MRC Centre for Obesity and Associated Diseases, Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| | | | | | | |
Collapse
|
43
|
Park JR, Jung JW, Lee YS, Kang KS. The roles of Wnt antagonists Dkk1 and sFRP4 during adipogenesis of human adipose tissue-derived mesenchymal stem cells. Cell Prolif 2008; 41:859-874. [PMID: 19040566 DOI: 10.1111/j.1365-2184.2008.00565.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The canonical Wnt signalling pathway performs an important function in the control of adipogenesis. However, the mechanisms and mediators underlying these interactions have yet to be defined in detail. Thus, this study was performed in order to elucidate the roles of the Wnt family during adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hAMSCs). MATERIALS AND METHODS We assessed several members of the Frizzled (FZD) family, the receptors of Wnts, inhibitors including the secreted frizzled-related protein (sFRP) family and Dickkopfs (Dkks), and the downstream factor, beta-catenin. Expressional levels of adipogenic markers regulated by the small interfering RNA of Dkk1 (siDkk1) and sFRP4 (sisFRP4) were assessed using real-time quantitative PCR and Western blot analysis. RESULTS The mRNA level of Dkk1 was expressed abundantly in the early stages of adipogenesis and decreased rapidly during the late stages of adipogenesis. However, sFRP4 mRNA was up-regulated gradually during adipogenic differentiation in hAMSCs. Expression of FZD1, FZD7 and beta-catenin were reduced during adipogenic differentiation. Transfection of hAMSCs with siDkk1 or sisFRP4 partially inhibited differentiation of hAMSCs into adipocytes and restored levels of beta-catenin. CONCLUSIONS We determined that Dkk1 was up-regulated transiently in the early stages of adipogenesis, and that sFRP4 levels increased gradually during adipogeneis via inhibition of Wnt signalling. Collectively, these results show that Dkk1 and sFRP4 perform an important function in adipogenesis in hAMSCs.
Collapse
Affiliation(s)
- J-R Park
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea, andLaboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | - J-W Jung
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea, andLaboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Y-S Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea, andLaboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | - K-S Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea, andLaboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
44
|
Methods that resolve different contributions of clonal expansion to adipogenesis in 3T3-L1 and C3H10T1/2 cells. Methods Mol Biol 2008; 456:173-93. [PMID: 18516561 DOI: 10.1007/978-1-59745-245-8_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The mouse embryo fibroblast cell lines 3T3-L1 and C3H10T1/2 differentiate to adipocytes that exhibit similar insulin regulation of lipogenesis. These cell lines, however, differ appreciably in the processes that produce the major regulator PPAR gamma. Each line is stimulated by a mixture of insulin, dexamethasone, and methylisobutylxanthine (IDM). In the first 24h, IDM activates each cell type to produce similar regulatory changes and cell contraction. However, the increase in PPARy is delayed by 24h in typical 3T3-L1 cells compared with C3H10T1/2 cells. This delay is caused by the need for one or two rounds of cell division (clonal expansion) for PPAR gamma synthesis in 3T3-L1 cells. This expansion also occurs in C3H10T1/2 cells, but is not needed for PPAR gamma synthesis and differentiation. Other 3T3-L1 sublines have been described that follow the C3H10T1/2 pattern of differentiation. Culture conditions and inhibitors are described here that remove clonal expansion in C3H10T1/2 cells. With these constraints the cells retain full commitment to differentiation. This distinction is significant because many agents suppress differentiation in 3T3-L1 cells through inhibition of clonal expansion. Other effects on differentiation may be seen in C3H10T1/2 cells that are obscured in 3T3-L1 cells due to this inhibition of proliferation. Human preadipocytes do not need clonal expansion for adipogenesis, thus paralleling C3H10T1/2 cells.
Collapse
|
45
|
Li FQ, Mofunanya A, Harris K, Takemaru KI. Chibby cooperates with 14-3-3 to regulate beta-catenin subcellular distribution and signaling activity. ACTA ACUST UNITED AC 2008; 181:1141-54. [PMID: 18573912 PMCID: PMC2442201 DOI: 10.1083/jcb.200709091] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
β-Catenin functions in both cell–cell adhesion and as a transcriptional coactivator in the canonical Wnt pathway. Nuclear accumulation of β-catenin is the hallmark of active Wnt signaling and is frequently observed in human cancers. Although β-catenin shuttles in and out of the nucleus, the molecular mechanisms underlying its translocation remain poorly understood. Chibby (Cby) is an evolutionarily conserved molecule that inhibits β-catenin–mediated transcriptional activation. Here, we identified 14-3-3ε and 14-3-3ζ as Cby-binding partners using affinity purification/mass spectrometry. 14-3-3 proteins specifically recognize serine 20 within the 14-3-3–binding motif of Cby when phosphorylated by Akt kinase. Notably, 14-3-3 binding results in sequestration of Cby into the cytoplasm. Moreover, Cby and 14-3-3 form a stable tripartite complex with β-catenin, causing β-catenin to partition into the cytoplasm. Our results therefore suggest a novel paradigm through which Cby acts in concert with 14-3-3 proteins to facilitate nuclear export of β-catenin, thereby antagonizing β-catenin signaling.
Collapse
Affiliation(s)
- Feng-Qian Li
- Department of Pharmacological Sciences and 2Graduate Program in Genetics, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.
| | | | | | | |
Collapse
|
46
|
Laurençon A, Dubruille R, Efimenko E, Grenier G, Bissett R, Cortier E, Rolland V, Swoboda P, Durand B. Identification of novel regulatory factor X (RFX) target genes by comparative genomics in Drosophila species. Genome Biol 2008; 8:R195. [PMID: 17875208 PMCID: PMC2375033 DOI: 10.1186/gb-2007-8-9-r195] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 09/14/2007] [Accepted: 09/17/2007] [Indexed: 01/02/2023] Open
Abstract
An RFX-binding site is shown to be conserved in the promoters of a subset of ciliary genes and a subsequent screen for this site in two Drosophila species identified novel RFX target genes that are involved in sensory ciliogenesis. Background Regulatory factor X (RFX) transcription factors play a key role in ciliary assembly in nematode, Drosophila and mouse. Using the tremendous advantages of comparative genomics in closely related species, we identified novel genes regulated by dRFX in Drosophila. Results We first demonstrate that a subset of known ciliary genes in Caenorhabditis elegans and Drosophila are regulated by dRFX and have a conserved RFX binding site (X-box) in their promoters in two highly divergent Drosophila species. We then designed an X-box consensus sequence and carried out a genome wide computer screen to identify novel genes under RFX control. We found 412 genes that share a conserved X-box upstream of the ATG in both species, with 83 genes presenting a more restricted consensus. We analyzed 25 of these 83 genes, 16 of which are indeed RFX target genes. Two of them have never been described as involved in ciliogenesis. In addition, reporter construct expression analysis revealed that three of the identified genes encode proteins specifically localized in ciliated endings of Drosophila sensory neurons. Conclusion Our X-box search strategy led to the identification of novel RFX target genes in Drosophila that are involved in sensory ciliogenesis. We also established a highly valuable Drosophila cilia and basal body dataset. These results demonstrate the accuracy of the X-box screen and will be useful for the identification of candidate genes for human ciliopathies, as several human homologs of RFX target genes are known to be involved in diseases, such as Bardet-Biedl syndrome.
Collapse
Affiliation(s)
- Anne Laurençon
- Université de Lyon, Lyon, F-69003, France
- Université Lyon 1, CNRS, UMR5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, F-69622, France
| | - Raphaëlle Dubruille
- Université de Lyon, Lyon, F-69003, France
- Université Lyon 1, CNRS, UMR5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, F-69622, France
- University of Massachusetts Medical School, Department of Neurobiology, Worcester, MA 01605, USA
| | - Evgeni Efimenko
- Karolinska Institute, Department of Biosciences and Nutrition, Södertörn University College, School of Life Sciences, S-14189 Huddinge, Sweden
| | - Guillaume Grenier
- Université de Lyon, Lyon, F-69003, France
- Université Lyon 1, CNRS, UMR5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, F-69622, France
| | - Ryan Bissett
- Université de Lyon, Lyon, F-69003, France
- Université Lyon 1, CNRS, UMR5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, F-69622, France
- University of Glasgow, Glasgow Biomedical Research Centre, Wellcome Centre for Molecular Parasitology and Infection and Immunity, Glasgow G12 8TA, UK
| | - Elisabeth Cortier
- Université de Lyon, Lyon, F-69003, France
- Université Lyon 1, CNRS, UMR5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, F-69622, France
| | - Vivien Rolland
- Université de Lyon, Lyon, F-69003, France
- Université Lyon 1, CNRS, UMR5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, F-69622, France
| | - Peter Swoboda
- Karolinska Institute, Department of Biosciences and Nutrition, Södertörn University College, School of Life Sciences, S-14189 Huddinge, Sweden
| | - Bénédicte Durand
- Université de Lyon, Lyon, F-69003, France
- Université Lyon 1, CNRS, UMR5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, F-69622, France
| |
Collapse
|
47
|
Prestwich TC, Macdougald OA. Wnt/beta-catenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol 2007; 19:612-7. [PMID: 17997088 DOI: 10.1016/j.ceb.2007.09.014] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 09/21/2007] [Indexed: 01/22/2023]
Abstract
Adipocyte differentiation consists of a complex series of events in which scores of cellular and extracellular factors interact to transform a fibroblast-like preadipocyte into a mature, lipid-filled adipocyte. Many of the pathways influencing this process have been identified using well-characterized preadipocyte culture systems and have subsequently been confirmed in animal models. Research conducted over the past decade has established the Wnt/beta-catenin signaling pathway as an important regulator of adipocyte differentiation. While initial reports implicated activators of Wnt/beta-catenin signaling as potent inhibitors of adipogenesis, recent investigations of mesenchymal cell fate, obesity, and type 2 diabetes highlight significant additional roles for Wnt signaling in metabolism and adipocyte biology.
Collapse
Affiliation(s)
- Tyler C Prestwich
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|