1
|
Rai SK, Singh D, Sarangi PP. Role of RhoG as a regulator of cellular functions: integrating insights on immune cell activation, migration, and functions. Inflamm Res 2023:10.1007/s00011-023-01761-9. [PMID: 37378671 DOI: 10.1007/s00011-023-01761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND RhoG is a multifaceted member of the Rho family of small GTPases, sharing the highest sequence identity with the Rac subfamily members. It acts as a molecular switch, when activated, plays a central role in regulating the fundamental processes in immune cells, such as actin-cytoskeleton dynamics, transendothelial migration, survival, and proliferation, including immunological functions (e.g., phagocytosis and trogocytosis) during inflammatory responses. METHOD We have performed a literature review based on published original and review articles encompassing the significant effect of RhoG on immune cell functions from central databases, including PubMed and Google Scholar. RESULTS AND CONCLUSIONS Recently published data shows that the dynamic expression of different transcription factors, non-coding RNAs, and the spatiotemporal coordination of different GEFs with their downstream effector molecules regulates the cascade of Rho signaling in immune cells. Additionally, alterations in RhoG-specific signaling can lead to physiological, pathological, and developmental adversities. Several mutations and RhoG-modulating factors are also known to pre-dispose the downstream signaling with abnormal gene expression linked to multiple diseases. This review focuses on the cellular functions of RhoG, interconnecting different signaling pathways, and speculates the importance of this small GTPase as a prospective target against several pathological conditions.
Collapse
Affiliation(s)
- Shubham Kumar Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Divya Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
2
|
Guenther C. β2-Integrins - Regulatory and Executive Bridges in the Signaling Network Controlling Leukocyte Trafficking and Migration. Front Immunol 2022; 13:809590. [PMID: 35529883 PMCID: PMC9072638 DOI: 10.3389/fimmu.2022.809590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Leukocyte trafficking is an essential process of immunity, occurring as leukocytes travel within the bloodstream and as leukocyte migration within tissues. While it is now established that leukocytes can utilize the mesenchymal migration mode or amoeboid migration mode, differences in the migratory behavior of leukocyte subclasses and how these are realized on a molecular level in each subclass is not fully understood. To outline these differences, first migration modes and their dependence on parameters of the extracellular environments will be explained, as well as the intracellular molecular machinery that powers migration in general. Extracellular parameters are detected by adhesion receptors such as integrins. β2-integrins are surface receptors exclusively expressed on leukocytes and are essential for leukocytes exiting the bloodstream, as well as in mesenchymal migration modes, however, integrins are dispensable for the amoeboid migration mode. Additionally, the balance of different RhoGTPases - which are downstream of surface receptor signaling, including integrins - mediate formation of membrane structures as well as actin dynamics. Individual leukocyte subpopulations have been shown to express distinct RhoGTPase profiles along with their differences in migration behavior, which will be outlined. Emerging aspects of leukocyte migration include signal transduction from integrins via actin to the nucleus that regulates DNA status, gene expression profiles and ultimately leukocyte migratory phenotypes, as well as altered leukocyte migration in tumors, which will be touched upon.
Collapse
Affiliation(s)
- Carla Guenther
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Lee CF, Carley RE, Butler CA, Morrison AR. Rac GTPase Signaling in Immune-Mediated Mechanisms of Atherosclerosis. Cells 2021; 10:2808. [PMID: 34831028 PMCID: PMC8616135 DOI: 10.3390/cells10112808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 11/17/2022] Open
Abstract
Coronary artery disease caused by atherosclerosis is a major cause of morbidity and mortality around the world. Data from preclinical and clinical studies support the belief that atherosclerosis is an inflammatory disease that is mediated by innate and adaptive immune signaling mechanisms. This review sought to highlight the role of Rac-mediated inflammatory signaling in the mechanisms driving atherosclerotic calcification. In addition, current clinical treatment strategies that are related to targeting hypercholesterolemia as a critical risk factor for atherosclerotic vascular disease are addressed in relation to the effects on Rac immune signaling and the implications for the future of targeting immune responses in the treatment of calcific atherosclerosis.
Collapse
Affiliation(s)
- Cadence F. Lee
- Ocean State Research Institute, Inc., Providence VA Medical Center, Research (151), 830 Chalkstone Avenue, Providence, RI 02908, USA; (C.F.L.); (R.E.C.); (C.A.B.)
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Rachel E. Carley
- Ocean State Research Institute, Inc., Providence VA Medical Center, Research (151), 830 Chalkstone Avenue, Providence, RI 02908, USA; (C.F.L.); (R.E.C.); (C.A.B.)
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Celia A. Butler
- Ocean State Research Institute, Inc., Providence VA Medical Center, Research (151), 830 Chalkstone Avenue, Providence, RI 02908, USA; (C.F.L.); (R.E.C.); (C.A.B.)
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Alan R. Morrison
- Ocean State Research Institute, Inc., Providence VA Medical Center, Research (151), 830 Chalkstone Avenue, Providence, RI 02908, USA; (C.F.L.); (R.E.C.); (C.A.B.)
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| |
Collapse
|
4
|
Pradhan R, Ngo PA, Martínez-Sánchez LDC, Neurath MF, López-Posadas R. Rho GTPases as Key Molecular Players within Intestinal Mucosa and GI Diseases. Cells 2021; 10:cells10010066. [PMID: 33406731 PMCID: PMC7823293 DOI: 10.3390/cells10010066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Rho proteins operate as key regulators of the cytoskeleton, cell morphology and trafficking. Acting as molecular switches, the function of Rho GTPases is determined by guanosine triphosphate (GTP)/guanosine diphosphate (GDP) exchange and their lipidation via prenylation, allowing their binding to cellular membranes and the interaction with downstream effector proteins in close proximity to the membrane. A plethora of in vitro studies demonstrate the indispensable function of Rho proteins for cytoskeleton dynamics within different cell types. However, only in the last decades we have got access to genetically modified mouse models to decipher the intricate regulation between members of the Rho family within specific cell types in the complex in vivo situation. Translationally, alterations of the expression and/or function of Rho GTPases have been associated with several pathological conditions, such as inflammation and cancer. In the context of the GI tract, the continuous crosstalk between the host and the intestinal microbiota requires a tight regulation of the complex interaction between cellular components within the intestinal tissue. Recent studies demonstrate that Rho GTPases play important roles for the maintenance of tissue homeostasis in the gut. We will summarize the current knowledge on Rho protein function within individual cell types in the intestinal mucosa in vivo, with special focus on intestinal epithelial cells and T cells.
Collapse
|
5
|
He M, Westerberg LS. Congenital Defects in Actin Dynamics of Germinal Center B Cells. Front Immunol 2019; 10:296. [PMID: 30894852 PMCID: PMC6414452 DOI: 10.3389/fimmu.2019.00296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/05/2019] [Indexed: 01/02/2023] Open
Abstract
The germinal center (GC) is a transient anatomical structure formed during the adaptive immune response that leads to antibody affinity maturation and serological memory. Recent works using two-photon microscopy reveals that the GC is a highly dynamic structure and GC B cells are highly motile. An efficient selection of high affinity B cells clones within the GC crucially relies on the interplay of proliferation, genome editing, cell-cell interaction, and migration. All these processes require actin cytoskeleton rearrangement to be well-coordinated. Dysregulated actin dynamics may impede on multiple stages during B cell affinity maturation, which could lead to aberrant GC response and result in autoimmunity and B cell malignancy. This review mainly focuses on the recent works that investigate the role of actin regulators during the GC response.
Collapse
Affiliation(s)
- Minghui He
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S. Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Olson MF. Rho GTPases, their post-translational modifications, disease-associated mutations and pharmacological inhibitors. Small GTPases 2018; 9:203-215. [PMID: 27548350 PMCID: PMC5927519 DOI: 10.1080/21541248.2016.1218407] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 10/24/2022] Open
Abstract
The 20 members of the Rho GTPase family are key regulators of a wide-variety of biological activities. In response to activation, they signal via downstream effector proteins to induce dynamic alterations in the organization of the actomyosin cytoskeleton. In this review, post-translational modifications, mechanisms of dysregulation identified in human pathological conditions, and the ways that Rho GTPases might be targeted for chemotherapy will be discussed.
Collapse
Affiliation(s)
- Michael F. Olson
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| |
Collapse
|
7
|
Pan X, Zhang R, Xie C, Gan M, Yao S, Yao Y, Jin J, Han T, Huang Y, Gong Y, Wang J, Yu B. GRHL2 suppresses tumor metastasis via regulation of transcriptional activity of RhoG in non-small cell lung cancer. Am J Transl Res 2017; 9:4217-4226. [PMID: 28979695 PMCID: PMC5622264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
The transcription factor, Grainyhead-like 2 (GRHL2), is involved in wound healing, epidermal integrity, and epithelial-to-mesenchymal transition (EMT) in various biological processes; however, the biological function of GRHL2 in non-small cell lung cancer (NSCLC) is unknown. In the current study, we investigated the effect of GRHL2 on cell growth and migration in NSCLC cell lines and clinical tissues. Immunohistochemical analysis of clinical NSCLC specimens revealed that patients with high GRHL2 expression were associated with poor prognosis compared to patients with low GRHL2 expression. GRHL2 overexpression promoted cell growth and colony formation, and simultaneously suppressed cell migration in NSCLC cells. Furthermore, GRHL2 decreased the transcriptional activity of RhoG by directly binding to the RhoG promoter region. These findings confirm that GRHL2 plays an important role in regulating cell proliferation and migration in NSCLC.
Collapse
Affiliation(s)
- Xiang Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang UniversityJiangxi 330006, China
| | - Rong Zhang
- Department of Health, The First Affiliated Hospital of Nanchang UniversityJiangxi 330006, China
| | - Caifeng Xie
- Institute of Translational Medicine, Nanchang UniversityJiangxi 330031, China
| | - Mingxi Gan
- Institute of Translational Medicine, Nanchang UniversityJiangxi 330031, China
| | - Sheng Yao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, China
| | - Yubin Yao
- Jiangxi Provincial Center for Disease Control and PreventionJiangxi 310009, China
| | - Jiangbo Jin
- School of Life Sciences, Nanchang UniversityJiangxi 310031, China
| | - Tianyu Han
- School of Life Sciences, Nanchang UniversityJiangxi 310031, China
| | - Yunhe Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang UniversityJiangxi 330006, China
| | - Yanlong Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang UniversityJiangxi 330006, China
| | - Jianbin Wang
- School of Basic Medical Sciences, Nanchang UniversityJiangxi 330006, China
| | - Bentong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang UniversityJiangxi 330006, China
| |
Collapse
|
8
|
Dasari T, Kondagari B, Dulapalli R, Abdelmonsef AH, Mukkera T, Padmarao LS, Malkhed V, Vuruputuri U. Design of novel lead molecules against RhoG protein as cancer target - a computational study. J Biomol Struct Dyn 2016; 35:3119-3139. [PMID: 27691842 DOI: 10.1080/07391102.2016.1244492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cancer is a class of diseases characterized by uncontrolled cell growth. Every year more than 2 million people are affected by the disease. Rho family proteins are actively involved in cytoskeleton regulation. Over-expression of Rho family proteins show oncogenic activity and promote cancer progression. In the present work RhoG protein is considered as novel target of cancer. It is a member of Rho family and Rac subfamily protein, which plays pivotal role in regulation of microtubule formation, cell migration and contributes in cancer progression. In order to understand the binding interaction between RhoG protein and the DH domain of Ephexin-4 protein, the 3D structure of RhoG was evaluated and Molecular Dynamic Simulations was performed to stabilize the structure. The 3D structure of RhoG protein was validated and active site identified using standard computational protocols. Protein-protein docking of RhoG with Ephexin-4 was done to understand binding interactions and the active site structure. Virtual screening was carried out with ligand databases against the active site of RhoG protein. The efficiency of virtual screening is analysed with enrichment factor and area under curve values. The binding free energy of docked complexes was calculated using prime MM-GBSA module. The SASA, FOSA, FISA, PISA and PSA values of ligands were carried out. New ligands with high docking score, glide energy and acceptable ADME properties were prioritized as potential inhibitors of RhoG protein.
Collapse
Affiliation(s)
- Thirupathi Dasari
- a Department of Chemistry , University College of Science, Osmania University , Tarnaka, Hyderabad 500007 , Telangana , India
| | - Bhargavi Kondagari
- a Department of Chemistry , University College of Science, Osmania University , Tarnaka, Hyderabad 500007 , Telangana , India
| | - Ramasree Dulapalli
- a Department of Chemistry , University College of Science, Osmania University , Tarnaka, Hyderabad 500007 , Telangana , India
| | - Aboubakr Haredi Abdelmonsef
- a Department of Chemistry , University College of Science, Osmania University , Tarnaka, Hyderabad 500007 , Telangana , India
| | - Thirupathi Mukkera
- a Department of Chemistry , University College of Science, Osmania University , Tarnaka, Hyderabad 500007 , Telangana , India
| | - Lavanya Souda Padmarao
- a Department of Chemistry , University College of Science, Osmania University , Tarnaka, Hyderabad 500007 , Telangana , India
| | - Vasavi Malkhed
- b Department of Chemistry , University College of Science, Osmania University , Saifabad, Hyderabad 500004 , Telangana , India
| | - Uma Vuruputuri
- a Department of Chemistry , University College of Science, Osmania University , Tarnaka, Hyderabad 500007 , Telangana , India
| |
Collapse
|
9
|
Donnelly SK, Bravo-Cordero JJ, Hodgson L. Rho GTPase isoforms in cell motility: Don't fret, we have FRET. Cell Adh Migr 2015; 8:526-34. [PMID: 25482645 PMCID: PMC4594258 DOI: 10.4161/cam.29712] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Rho-family of p21 small GTPases are directly linked to the regulation of actin-based motile machinery and play a key role in the control of cell migration. Aside from the original and most well-characterized canonical Rho GTPases RhoA, Rac1, and Cdc42, numerous isoforms of these key proteins have been identified and shown to have specific roles in regulating various cellular motility processes. The major difficulty in addressing these isoform-specific effects is that isoforms typically contain highly similar primary amino acid sequences and thus are able to interact with the same upstream regulators and the downstream effector targets. Here, we will introduce the major members of each GTPase subfamily and discuss recent advances in the design and application of fluorescent resonance energy transfer-based probes, which are at the forefront of the technologies available to directly probe the differential, spatiotemporal activation dynamics of these proteins in live single cells. Currently, it is possible to specifically detect the activation status of RhoA vs. RhoC isoforms, as well as Cdc42 vs. TC-10 isoforms in living cells. Clearly, additional efforts are still required to produce biosensor systems capable of detecting other isoforms of Rho GTPases including RhoB, Rac2/3, RhoG, etc. Through such efforts, we will uncover the isoform-specific roles of these near-identical proteins in living cells, clearly an important area of the Rho GTPase biology that is not yet fully appreciated.
Collapse
Affiliation(s)
- Sara K Donnelly
- a Department of Anatomy and Structural Biology ; Albert Einstein College of Medicine of Yeshiva University ; Bronx , NY USA
| | | | | |
Collapse
|
10
|
de Curtis I. Roles of Rac1 and Rac3 GTPases during the development of cortical and hippocampal GABAergic interneurons. Front Cell Neurosci 2014; 8:307. [PMID: 25309333 PMCID: PMC4174739 DOI: 10.3389/fncel.2014.00307] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/10/2014] [Indexed: 11/25/2022] Open
Abstract
Rac GTPases are regulators of the cytoskeleton that play an important role in several aspects of neuronal and brain development. Two distinct Rac GTPases are expressed in the developing nervous system, the widely expressed Rac1 and the neural-specific Rac3 proteins. Recent experimental evidence supports a central role of these two Rac proteins in the development of inhibitory GABAergic interneurons, important modulatory elements of the brain circuitry. The combined inactivation of the genes for the two Rac proteins has profound effects on distinct aspects of interneuron development, and has highlighted a synergistic contribution of the two proteins to the postmitotic maturation of specific populations of cortical and hippocampal interneurons. Rac function is modulated by different types of regulators, and can influence the activity of specific effectors. Some of these proteins have been associated to the development and maturation of interneurons. Cortical interneuron dysfunction is implicated in several neurological and psychiatric diseases characterized by cognitive impairment. Therefore the description of the cellular processes regulated by the Rac GTPases, and the identification of the molecular networks underlying these processes during interneuron development is relevant to the understanding of the role of GABAergic interneurons in cognitive functions.
Collapse
Affiliation(s)
- Ivan de Curtis
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute San Raffaele University Milano, Italy
| |
Collapse
|
11
|
Abstract
Activating mutations and overexpression of classical Ras subfamily members (K-Ras, N-Ras and H-Ras) have been widely investigated as key events in the development of human cancers. The role in cancer of its closest relatives, the Ras-related (RRas) subfamily members, has been less studied despite the fact that one of its members (TC21 or RRas2) is strongly transforming in vitro. Nevertheless, and in spite the paucity of publications, several studies have shown that wild type TC21 is overexpressed in different types of carcinomas and lymphomas. If the study of RRas members in cancer is still in its infancy, their role in physiological functions is even behind. For instance, T and B cell immunologists still use the vague term "Ras activation" without indication of what Ras family molecule is indeed intervening. In this view, we discuss the participation of TC21 in the specific process of T cell antigen receptor internalization from the immunological synapse and acquisition of membrane fragments from the antigen presenting cells by phagocytosis.
Collapse
Affiliation(s)
- Balbino Alarcón
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid, Madrid, Spain.
| | | |
Collapse
|
12
|
Abstract
RhoG is a member of the Rho family of small GTPases sharing highest sequence similarity with Rac and Cdc42. Mig-2 and Mtl represent the functional equivalents of RhoG in Caenorhabditis elegans and Drosophila, respectively. RhoG has attracted great interest because it plays a central role in the regulation of cytoskeletal reorganization in various physiological and pathophysiological situations. For example, it is fundamental to phagocytotic processes, is able to regulate gene expression, cell survival and proliferation, and is involved in cell migration and in the invasion of pathogenic bacteria. The activation of Rac1 via an ELMO/Dock180 module has been elaborated to be important for RhoG signaling. Although a stimulatory role for neurite outgrowth in the pheochromocytoma PC12 cell line has been assigned to RhoG, the exact function of this GTPase for the development of the processes of primary neurons remains to be clarified. In this view, we discuss the impact of RhoG on axonal and dendritic differentiation, its role as a conductor of Rac1 and Cdc42 activity and the functional regulation of RhoG expression by the microRNA miR-124.
Collapse
Affiliation(s)
- Stefan Schumacher
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany.
| | | |
Collapse
|
13
|
Gualdoni S, Albertinazzi C, Corbetta S, Valtorta F, de Curtis I. Normal levels of Rac1 are important for dendritic but not axonal development in hippocampal neurons. Biol Cell 2012; 99:455-64. [PMID: 17428196 DOI: 10.1042/bc20060119] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND INFORMATION Rho family GTPases are required for cytoskeletal reorganization and are considered important for the maturation of neurons. Among these proteins, Rac1 is known to play a crucial role in the regulation of actin dynamics, and a number of studies indicate the involvement of this protein in different steps of vertebrate neuronal maturation. There are two distinct Rac proteins expressed in neurons, namely the ubiquitous Rac1 and the neuron-specific Rac3. The specific functions of each of these GTPases during early neuronal development are largely unknown. RESULTS The combination of the knockout of Rac3 with Rac1 down-regulation by siRNA (small interfering RNA) has been used to show that down-regulation of Rac1 affects dendritic development in mouse hippocampal neurons, without affecting axons. F-actin levels are strongly decreased in neuronal growth cones following down-regulation of Rac1, and time-lapse analysis indicated that the reduction of Rac1 levels decreases growth-cone dynamics. CONCLUSIONS These results show that normal levels of endogenous Rac1 activity are critical for early dendritic development, whereas dendritic outgrowth is not affected in hippocampal neurons from Rac3-null mice. On the other hand, early axonal development appears normal after Rac1 down-regulation. Our findings also suggest that the initial establishment of neuronal polarity is not affected by Rac1 down-regulation.
Collapse
Affiliation(s)
- Sara Gualdoni
- Dibit, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | |
Collapse
|
14
|
Konstantinidis D, George A, Kalfa TA. Rac GTPases in erythroid biology. Transfus Clin Biol 2010; 17:126-30. [PMID: 20655266 PMCID: PMC4473774 DOI: 10.1016/j.tracli.2010.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 05/21/2010] [Indexed: 12/20/2022]
Abstract
Rac1 and Rac2 GTPases, members of the Rho GTPases family, control actin organization and play distinct and overlapping roles in hematopoietic and mature blood cells of all lineages. Here, we review our findings on the role of Rac GTPases in erythroid cells, by using conditional gene-targeting in mice. Rac1 and Rac2 deficiency causes anemia with reticulocytosis, indicating decreased red blood cell (RBC) survival, altered actin assembly in the erythrocyte membrane skeleton and decreased RBC deformability. On the other hand, Rac1(-/-); Rac2(-/-) megakaryocyte-erythrocyte progenitors demonstrate decreased proliferation in the bone marrow, but increased survival and proliferation in the spleen, indicating that stress erythropoiesis circumvents Rac GTPases deficiency. Further elucidation of the signaling pathways controlled by Rac GTPases in erythroid cells may reveal potential therapeutic targets for diseases characterized by hemolytic anemia and erythropoiesis disorders.
Collapse
Affiliation(s)
- Diamantis Konstantinidis
- Hematology-Oncology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH
| | - Alex George
- Hematology-Oncology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH
| | - Theodosia A. Kalfa
- Hematology-Oncology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
15
|
Abstract
Rho family GTPases are intracellular signaling proteins regulating multiple pathways involved in cell actomyosin organization, adhesion, and proliferation. Our knowledge of their cellular functions comes mostly from previous biochemical studies that used mutant overexpression approaches in various clonal cell lines. Recent progress in understanding Rho GTPase functions in blood cell development and regulation by gene targeting of individual Rho GTPases in mice has allowed a genetic understanding of their physiologic roles in hematopoietic progenitors and mature lineages. In particular, mouse gene-targeting studies have provided convincing evidence that individual members of the Rho GTPase family are essential regulators of cell type-specific functions and stimuli-specific pathways in regulating hematopoietic stem cell interaction with bone marrow niche, erythropoiesis, and red blood cell actin dynamics, phagocyte migration and killing, and T- and B-cell maturation. In addition, deregulation of Rho GTPase family members has been associated with multiple human hematologic diseases such as neutrophil dysfunction, leukemia, and Fanconi anemia, raising the possibility that Rho GTPases and downstream signaling pathways are of therapeutic value. In this review we discuss recent genetic studies of Rho GTPases in hematopoiesis and several blood lineages and the implications of Rho GTPase signaling in hematologic malignancies, immune pathology. and anemia.
Collapse
|
16
|
Fujimoto S, Negishi M, Katoh H. RhoG promotes neural progenitor cell proliferation in mouse cerebral cortex. Mol Biol Cell 2009; 20:4941-50. [PMID: 19812248 DOI: 10.1091/mbc.e09-03-0200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In early cortical development, neural progenitor cells (NPCs) expand their population in the ventricular zone (VZ), and produce neurons. Although a series of studies have revealed the process of neurogenesis, the molecular mechanisms regulating NPC proliferation are still largely unknown. Here we found that RhoG, a member of Rho family GTPases, was expressed in the VZ at early stages of cortical development. Expression of constitutively active RhoG promoted NPC proliferation and incorporation of bromodeoxyuridine (BrdU) in vitro, and the proportion of Ki67-positive cells in vivo. In contrast, knockdown of RhoG by RNA interference suppressed the proliferation, BrdU incorporation, and the proportion of Ki67-positive cells in NPCs. However, knockdown of RhoG did not affect differentiation and survival of NPC. The RhoG-induced promotion of BrdU incorporation required phosphatidylinositol 3-kinase (PI3K) activity but not the interaction with ELMO. Taken together, these results indicate that RhoG promotes NPC proliferation through PI3K in cortical development.
Collapse
Affiliation(s)
- Satoshi Fujimoto
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
17
|
Halabi-Cabezon I, Huelsenbeck J, May M, Ladwein M, Rottner K, Just I, Genth H. Prevention of the cytopathic effect induced by Clostridium difficile Toxin B by active Rac1. FEBS Lett 2008; 582:3751-6. [PMID: 18848548 DOI: 10.1016/j.febslet.2008.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 09/11/2008] [Accepted: 10/01/2008] [Indexed: 02/06/2023]
Abstract
Clostridium difficile Toxin B (TcdB) glucosylates low molecular weight GTP-binding proteins of the Rho subfamily and thereby causes actin re-organization (cell rounding). This "cytopathic effect" has been generally attributed to RhoA inactivation. Here we show that cells expressing non-glucosylatable Rac1-Q61L are protected from the cytopathic effect of TcdB. In contrast, cells expressing RhoA-Q63L or mock-transfected cells are fully susceptible for the cytopathic effect of TcdB. These findings are extended to the Rac1/RhoG mimic IpgB1 and the RhoA mimic IpgB2 from Shigella. Ectopic expression of IpgB1, but not IpgB2, counteracts the cytopathic effect of TcdB. These data strongly suggest that Rac1 rather than RhoA glucosylation is critical for the cytopathic effect of TcdB.
Collapse
Affiliation(s)
- Ismael Halabi-Cabezon
- Institut für Toxikologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Heasman SJ, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 2008; 9:690-701. [PMID: 18719708 DOI: 10.1038/nrm2476] [Citation(s) in RCA: 1462] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rho GTPases are key regulators of cytoskeletal dynamics and affect many cellular processes, including cell polarity, migration, vesicle trafficking and cytokinesis. These proteins are conserved from plants and yeast to mammals, and function by interacting with and stimulating various downstream targets, including actin nucleators, protein kinases and phospholipases. The roles of Rho GTPases have been extensively studied in different mammalian cell types using mainly dominant negative and constitutively active mutants. The recent availability of knockout mice for several members of the Rho family reveals new information about their roles in signalling to the cytoskeleton and in development.
Collapse
Affiliation(s)
- Sarah J Heasman
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK.
| | | |
Collapse
|
19
|
Ladwein M, Rottner K. On the Rho'd: the regulation of membrane protrusions by Rho-GTPases. FEBS Lett 2008; 582:2066-74. [PMID: 18442478 DOI: 10.1016/j.febslet.2008.04.033] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 04/15/2008] [Accepted: 04/21/2008] [Indexed: 11/16/2022]
Abstract
Cell migration entails the formation of cellular protrusions such as lamellipodia or filopodia, the growth of which is powered by the polymerisation of actin filaments abutting the plasma membrane. Specific Rho-GTPase subfamilies are able to drive different types of protrusions. However, significant crosstalk between Rho-family members and the interplay of distinct Rho-effectors regulating or modulating actin reorganization in protrusions complicate the picture of how precisely they are initiated and maintained. Here, we briefly sketch our current knowledge on structure and dynamics of different protrusions as well as their regulation by Rho-GTPases. We also comment on topical, unresolved controversies in the field, with special emphasis on the interrelation of different protrusion types, and on the composition of the nanomachineries driving them.
Collapse
Affiliation(s)
- Markus Ladwein
- Cytoskeleton Dynamics Group, Helmholtz Centre for Infection Research (HZI), Inhoffen Strasse 7, D-38124 Braunschweig, Germany
| | | |
Collapse
|
20
|
de Curtis I. Functions of Rac GTPases during neuronal development. Dev Neurosci 2008; 30:47-58. [PMID: 18075254 DOI: 10.1159/000109851] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 02/27/2007] [Indexed: 12/11/2022] Open
Abstract
The small GTPases of the Rho family are important regulators of the actin cytoskeleton and are critical for several aspects of neuronal development including the establishment of neuronal polarity, extension of axon and dendrites, neurite branching, axonal navigation and synapse formation. The aim of this review is to present evidence supporting the function of Rac and Rac-related proteins in different aspects of neuronal maturation, based on work performed with organisms including nematodes, Drosophila, Xenopus and mice, and with primary cultures of developing neurons. Three of the 4 vertebrate Rac-related genes, namely Rac1, Rac3 and RhoG, are expressed in the nervous system, and several data support an essential role of all 3 GTPases in distinct aspects of neuronal development and function. Two important points emerge from the analysis presented: highly homologous Rac-related proteins may perform different functions in the developing nervous system; on the other hand, the data also indicate that similar GTPases may perform redundant functions in vivo.
Collapse
Affiliation(s)
- Ivan de Curtis
- Cell Adhesion Unit, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
21
|
Yamaki N, Negishi M, Katoh H. RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism. Exp Cell Res 2007; 313:2821-32. [PMID: 17570359 DOI: 10.1016/j.yexcr.2007.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 04/10/2007] [Accepted: 05/14/2007] [Indexed: 01/18/2023]
Abstract
In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as a Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85alpha and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1.
Collapse
Affiliation(s)
- Nao Yamaki
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
22
|
Bustelo XR, Sauzeau V, Berenjeno IM. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays 2007; 29:356-70. [PMID: 17373658 PMCID: PMC1971132 DOI: 10.1002/bies.20558] [Citation(s) in RCA: 501] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Rho/Rac proteins constitute a subgroup of the Ras superfamily of GTP hydrolases. Although originally implicated in the control of cytoskeletal events, it is currently known that these GTPases coordinate diverse cellular functions, including cell polarity, vesicular trafficking, the cell cycle and transcriptomal dynamics. In this review, we will provide an overview on the recent advances in this field regarding the mechanism of regulation and signaling, and the roles in vivo of this important GTPase family.
Collapse
Affiliation(s)
- Xosé R Bustelo
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-University of Salamanca, Salamanca, Spain.
| | | | | |
Collapse
|
23
|
Patel JC, Galán JE. Differential activation and function of Rho GTPases during Salmonella-host cell interactions. ACTA ACUST UNITED AC 2006; 175:453-63. [PMID: 17074883 PMCID: PMC2064522 DOI: 10.1083/jcb.200605144] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Salmonella enterica, the cause of food poisoning and typhoid fever, has evolved sophisticated mechanisms to modulate Rho family guanosine triphosphatases (GTPases) to mediate specific cellular responses such as actin remodeling, macropinocytosis, and nuclear responses. These responses are largely the result of the activity of a set of bacterial proteins (SopE, SopE2, and SopB) that, upon delivery into host cells via a type III secretion system, activate specific Rho family GTPases either directly (SopE and SopE2) or indirectly (SopB) through the stimulation of an endogenous exchange factor. We show that different Rho family GTPases play a distinct role in Salmonella-induced cellular responses. In addition, we report that SopB stimulates cellular responses by activating SH3-containing guanine nucleotide exchange factor (SGEF), an exchange factor for RhoG, which we found plays a central role in the actin cytoskeleton remodeling stimulated by Salmonella. These results reveal a remarkable level of complexity in the manipulation of Rho family GTPases by a bacterial pathogen.
Collapse
Affiliation(s)
- Jayesh C Patel
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT 06536, USA
| | | |
Collapse
|
24
|
Abstract
The Rho-family proteins make up a major branch of the Ras superfamily of small GTPases. To date, 22 human genes encoding at least 25 proteins have been described. The best known 'classical' members are RhoA, Rac1 and Cdc42. Highly related isoforms of these three proteins have not been studied as intensively, in part because it has been assumed that they are functionally identical to their better-studied counterparts. This now appears not to be the case. Variations in C-terminal-signaled modifications and subcellular targeting cause otherwise highly biochemically related isoforms (e.g. RhoA, RhoB and RhoC) to exhibit surprisingly divergent biological activities. Whereas the classical Rho GTPases are regulated by GDP/GTP cycling, other Rho GTPases are also regulated by other mechanisms, particularly by transcriptional regulation. Newer members of the family possess additional sequence elements beyond the GTPase domain, which suggests they exhibit yet other mechanisms of regulation.
Collapse
Affiliation(s)
- Krister Wennerberg
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.
| | | |
Collapse
|
25
|
Ellerbroek SM, Wennerberg K, Arthur WT, Dunty JM, Bowman DR, DeMali KA, Der C, Burridge K. SGEF, a RhoG guanine nucleotide exchange factor that stimulates macropinocytosis. Mol Biol Cell 2004; 15:3309-19. [PMID: 15133129 PMCID: PMC452585 DOI: 10.1091/mbc.e04-02-0146] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
SGEF (SH3-containing Guanine Nucleotide Exchange Factor) is a RhoGEF of unknown function. We found the SGEF protein to be expressed in many established cell lines and highly expressed in human liver tissue. SGEF stimulated the formation of large interconnected membrane ruffles across dorsal surfaces when expressed in fibroblasts. SGEF required its proline-rich amino-terminus to generate dorsal, but not lateral, membrane ruffles and a functional SH3 domain to colocalize with filamentous actin at sites of membrane protrusion. Full-length SGEF activated RhoG, but not Rac, when expressed in fibroblasts. Further, recombinant SGEF DH/PH protein exchanged nucleotide on RhoG, but not on Rac1 or Rac3, in vitro. Scanning electron microscopy of fibroblasts demonstrated that SGEF induced dorsal ruffles that were morphologically similar to those generated by constitutively active RhoG, but not constitutively active Rac1. Transient expression of SGEF stimulated fibroblast uptake of 10-kDa dextran, a marker of macropinocytosis. This required the full-length protein and a catalytically active DH domain. Finally, activated RhoG was found to be more effective than activated Rac, and comparable to SGEF, in its ability to trigger dextran uptake. Together, this work establishes SGEF as a RhoG exchange factor and provides evidence that both SGEF and RhoG regulate membrane dynamics in promotion of macropinocytosis.
Collapse
Affiliation(s)
- Shawn M Ellerbroek
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Many features of cell behavior are regulated by Rho family GTPases, but the most profound effects of these proteins are on the actin cytoskeleton and it was these that first drew attention to this family of signaling proteins. Focusing on Rho and Rac, we will discuss how their effectors regulate the actin cytoskeleton. We will describe how the activity of Rho proteins is regulated downstream from growth factor receptors and cell adhesion molecules by guanine nucleotide exchange factors and GTPase activating proteins. Additionally, we will discuss how there is signaling crosstalk between family members and how various bacterial pathogens have developed strategies to manipulate Rho protein activity so as to enhance their own survival.
Collapse
Affiliation(s)
- Keith Burridge
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
27
|
Linder K, Arner P, Flores-Morales A, Tollet-Egnell P, Norstedt G. Differentially expressed genes in visceral or subcutaneous adipose tissue of obese men and women. J Lipid Res 2003; 45:148-54. [PMID: 14563828 DOI: 10.1194/jlr.m300256-jlr200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
There is growing evidence that the distribution of adipose tissue in the body is of importance in the development of metabolic complications of obesity, such as diabetes, hypertension, and hyperlipidemia. The aim of this study was to identify differentially expressed genes in subcutaneous and omental human adipose tissue in obese men, using a subtractive hybridization strategy. From the obtained set of differentially expressed transcripts, we also aimed to identify genes that have a sex-specific pattern of expression in omental or subcutaneous adipose tissue. Representational difference analysis (RDA) was performed on cDNA from subcutaneous and omental fat tissue from a man with extreme abdominal obesity. Forty-four putatively differentially expressed genes were identified. The obtained RDA products were spotted onto glass slides to screen for differential expression in other obese patients by using a microarray hybridization procedure. Five genes were confirmed to be differentially expressed in subcutaneous or omental adipose tissue from male or female obese patients. One gene was detected only in males and was found to be upregulated in subcutaneous tissue. The findings extend previous knowledge that different fat depots have differential gene expression and indicate that sex differences exist in adipose gene expression patterns.
Collapse
Affiliation(s)
- Kristina Linder
- Department of Molecular Medicine, Karolinska Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
28
|
Prieto-Sánchez RM, Bustelo XR. Structural basis for the signaling specificity of RhoG and Rac1 GTPases. J Biol Chem 2003; 278:37916-25. [PMID: 12805377 DOI: 10.1074/jbc.m301437200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RhoG is a new GTPase that has high sequence similarity with members of the Rac subfamily (Rac1, Rac2, and Rac3), including the regions involved in effector recognition and binding. To characterize its biological properties, we have compared the activity of RhoG and Rac1 in a number of experimental systems, including the study of their subcellular localization, oncogenic potential, activation of effectors, and effect on F-actin dynamics. Our study indicates that RhoG and Rac1 share overlapping, but not identical, signal transduction pathways. In contrast to previous results, we also provide evidence that RhoG works in parallel to Rac1 rather than as a Rac1 upstream activator. Using an extensive collection of Rho/Rac1 chimeras and point mutants, we demonstrate that the different biological properties of RhoG and Rac1 can be traced to specific amino acid variations in their switch I, beta2/beta3 hairpin, alpha5 helix, and C-terminal polybasic regions. Taken collectively, our results highlight the complexity of the signal transduction pathways activated by Rho/Rac GTPases and provide insight into the structural determinants that mediate the differential engagement of biological responses by GTPases of very similar structure.
Collapse
Affiliation(s)
- Rosario M Prieto-Sánchez
- Centro de Investigación del Cáncer, University of Salamanca-Consejo Superior de Investigaciones Científicas, Campus Unamuno, Salamanca E-37007, Spain
| | | |
Collapse
|
29
|
Vigorito E, Billadeu DD, Savoy D, McAdam S, Doody G, Fort P, Turner M. RhoG regulates gene expression and the actin cytoskeleton in lymphocytes. Oncogene 2003; 22:330-42. [PMID: 12545154 DOI: 10.1038/sj.onc.1206116] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RhoG, a member of the Rho family of GTPases, has been implicated as a regulator of the actin cytoskeleton. In this study, we show a novel function for the small GTPase RhoG on the regulation of the interferon-gamma promoter and nuclear factor of activated T cells (NFAT) gene transcription in lymphocytes. Optimal function of RhoG for the expression of these genes requires a calcium signal, normally provided by the antigen receptor. In addition, RhoG potentiation of NFAT requires the indirect activity of Rac and Cdc42; however, pathways distinct from those activated by Rac and Cdc42 mediate RhoG activation of NFAT-dependent transcription. Using effector domain mutants of RhoG we found that its ability to potentiate NFAT-dependent transcription correlates with its capacity to increase actin polymerization, supporting the suggestion that NFAT-dependent transcription is an actin-dependent process. RhoG also promotes T-cell spreading on fibronectin, a property that is independent of its ability to enhance NFAT-dependent transcription. Hence, these results implicate RhoG in leukocyte trafficking and the control of gene expression induced in response to antigen encounter.
Collapse
Affiliation(s)
- Elena Vigorito
- Laboratory for Lymphocyte Signalling and Development, Molecular Immunology Programme, The Babraham Institute, Cambridge, UK.
| | | | | | | | | | | | | |
Collapse
|
30
|
Wennerberg K, Ellerbroek SM, Liu RY, Karnoub AE, Burridge K, Der CJ. RhoG signals in parallel with Rac1 and Cdc42. J Biol Chem 2002; 277:47810-7. [PMID: 12376551 DOI: 10.1074/jbc.m203816200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
RhoG is a member of the Rho family of small GTPases and shares high sequence identity with Rac1 and Cdc42. Previous studies suggested that RhoG mediates its effects through activation of Rac1 and Cdc42. To further understand the mechanism of RhoG signaling, we studied its potential activation pathways, downstream signaling properties, and functional relationship to Rac1 and Cdc42 in vivo. First, we determined that RhoG was regulated by guanine nucleotide exchange factors that also activate Rac and/or Cdc42. Vav2 (which activates RhoA, Rac1, and Cdc42) and to a lesser degree Dbs (which activates RhoA and Cdc42) activated RhoG in vitro. Thus, RhoG may be activated concurrently with Rac1 and Cdc42. Second, some effectors of Rac/Cdc42 (IQGAP2, MLK-3, PLD1), but not others (e.g. PAKs, POSH, WASP, Par-6, IRSp53), interacted with RhoG in a GTP-dependent manner. Third, consistent with this differential interaction with effectors, activated RhoG stimulated some (JNK and Akt) but not other (SRF and NF-kappaB) downstream signaling targets of activated Rac1 and Cdc42. Finally, transient transduction of a tat-tagged Rac1(17N) dominant-negative fusion protein inhibited the induction of lamellipodia by the Rac-specific activator, Tiam1, but not by activated RhoG. Together, these data argue that RhoG function is mediated by signals independent of Rac1 and Cdc42 activation and instead by direct utilization of a subset of common effectors.
Collapse
Affiliation(s)
- Krister Wennerberg
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Ishikawa Y, Katoh H, Nakamura K, Mori K, Negishi M. Developmental changes in expression of small GTPase RhoG mRNA in the rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 106:145-50. [PMID: 12393274 DOI: 10.1016/s0169-328x(02)00413-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have recently reported that RhoG, a member of Rho family small GTPases, is involved in neurite outgrowth in cultured neuronal cells. Here, we report the expression of RhoG mRNA in the developing rat brain by in situ hybridization analysis. At embryonic day 16, RhoG expression was observed throughout the ventricular zone, but was down-regulated in the region at birth. On the other hand, RhoG expression at postnatal day 20 was highly enriched in white matter tracts, including the corpus callosum, the anterior commissure, and the cerebellar white matter, and double-labeling experiments demonstrated that major RhoG-expressing cells in white matter tracts were oligodendrocytes. These results suggest distinct pre- and postnatal roles of RhoG in the development of the central nervous system.
Collapse
Affiliation(s)
- Yukio Ishikawa
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Japan
| | | | | | | | | |
Collapse
|
32
|
Abstract
During the development and progression of human cancer, cells undergo numerous changes in morphology, proliferation, and transcriptional profile. Over the past couple of decades there have been intense efforts to understand the molecular mechanisms involved, and members of the Ras superfamily of small GTPases have emerged as important players. Mutated versions of the Ras genes were first identified in human cancers some 20 years ago, but more recently, the Rho branch of the family has been receiving increased attention. In addition to the experimental evidence implicating Rho GTPase signaling in promoting malignant transformation, genetic analysis of human cancers has now revealed a few examples of direct alterations in the genes encoding regulators of Rho GTPases. In this review, we discuss the evidence implicating Rho GTPases in transformation and metastasis, as well as the progress made toward identifying their biochemical mechanism of action.
Collapse
Affiliation(s)
- Aron B Jaffe
- CRC Oncogene and Signal Transduction Group, University College London, UK
| | | |
Collapse
|
33
|
De Toledo M, Coulon V, Schmidt S, Fort P, Blangy A. The gene for a new brain specific RhoA exchange factor maps to the highly unstable chromosomal region 1p36.2-1p36.3. Oncogene 2001; 20:7307-17. [PMID: 11704860 DOI: 10.1038/sj.onc.1204921] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2001] [Revised: 06/25/2001] [Accepted: 08/14/2001] [Indexed: 11/09/2022]
Abstract
Guanine nucleotide exchange factors from the Dbl family are proto-oncogenic proteins that activate small GTPases of the Rho family. Here we report the characterization of GEF720, a novel Dbl-like protein related to p115Rho-GEF. GEF720 activated RhoA both in our recently developed Yeast Exchange Assay and in biochemical in vitro exchange assays. GEF720 induced RhoA dependent assembly of actin stress fibers in REF52 fibroblastic cells. In NIH3T3 cells this Dbl-like protein elicited formation of transformation foci with a morphology similar to RhoA-V14 induced foci. In the PC12 neuron-like cell line, expression of GEF720, whose mRNA is brain specific, inhibited NGF-induced neurite outgrowth. Finally, GEF720 gene is located on human chromosome 1 on band 1p36, between Tumor Protein 73 and Tumor Necrosis Factor Receptor 12, two genes rearranged in many neuroblastoma cell lines. Together, these results show that this new Dbl related protein, GEF720, is an exchange factor that can directly activate RhoA in vivo and is potentially involved in the control of neuronal cell differentiation. GEF720 is also a new candidate gene involved in the progression of neuroblastoma and developmental abnormalities associated with rearrangements in the 1p36 chromosomal region.
Collapse
Affiliation(s)
- M De Toledo
- Centre de Recherches en Biochimie Macromoléculaire, CNRS IFR24-UPR 1086, 1919 route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
34
|
Embade N, Valerón PF, Aznar S, López-Collazo E, Lacal JC. Apoptosis induced by Rac GTPase correlates with induction of FasL and ceramides production. Mol Biol Cell 2000; 11:4347-58. [PMID: 11102528 PMCID: PMC15077 DOI: 10.1091/mbc.11.12.4347] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Rho proteins, members of the Ras superfamily of GTPases, are critical elements in signal transduction pathways governing cell proliferation and cell death. Different members of the family of human Rho GTPases, including RhoA, RhoC, and Rac1, participate in the regulation of apoptosis in response to cytokines and serum deprivation in different cell systems. Here, we have characterized the mechanism of apoptosis induced by Rac1 in NIH 3T3 cells. It requires protein synthesis and caspase-3 activity, but it is independent of the release of cytochrome c from mitochondria. Moreover, an increase in mitochondria membrane potential and the production of reactive oxygen species was observed. Rac1-induced apoptosis was related to the simultaneous increase in ceramide production and synthesis of FasL. Generation of FasL may be mediated by transcriptional regulation involving both c-Jun amino terminal kinase as well as nuclear factor-kappa B-dependent signals. None of these signals, ceramides or FasL, was sufficient to induce apoptosis in the parental cell line, NIH 3T3 cells. However, any of them was sufficient to induce apoptosis in the Rac1-expressing cells. Finally, inhibition of FasL signaling drastically reduced apoptosis by Rac1. Thus, Rac1 seems to induce apoptosis by a complex mechanism involving the generation of ceramides and the de novo synthesis of FasL. These results suggest that apoptosis mediated by Rac1 results from a signaling mechanism that involves biochemical and transcriptional events under control of Rac1.
Collapse
Affiliation(s)
- N Embade
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Cientificas, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
35
|
Kwon T, Kwon DY, Chun J, Kim JH, Kang SS. Akt protein kinase inhibits Rac1-GTP binding through phosphorylation at serine 71 of Rac1. J Biol Chem 2000; 275:423-8. [PMID: 10617634 DOI: 10.1074/jbc.275.1.423] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A putative Akt kinase phosphorylation site ((64)ydRIRplSYp(73)) was found in Rac1/CDC42 and Rho family proteins (RhoA, RhoB, RhoC, and RhoG). Phosphorylation of Rac1 by Akt kinase was assayed with recombinant Rac1 protein and the fluorescein-labeled Rac1 peptide. It was shown that the Rac1 peptide and the recombinant protein were phosphorylated by the activated recombinant Akt kinase and the lysate of SK-MEL28 cells, a human melanoma cell line. The phosphorylation of Rac1 inhibited its GTP-binding activity without any significant change in GTPase activity. Both the GTP-binding and GTPase activities of Rac1 S71A protein (with the serine residue to be phosphorylated replaced with alanine) were abolished regardless of the treatment of Akt kinase. Akt kinase activity and Rac1 peptide phosphorylation were down-regulated by the treatment of SK-MEL28 cells with wortmannin or LY294002 (a phosphoinositide 3-kinase inhibitor), but JNK/SAPK kinase activity was up-regulated. Thus, the results suggest that Akt kinase of the phosphoinositide 3-kinase signal transduction pathway phosphorylates serine 71 of Rac1 as one of its authentic substrates and modulates the Rac1 signal transduction pathway through phosphorylation.
Collapse
Affiliation(s)
- T Kwon
- Clinical Research Center, Samsung Biomedical Research Institute, Seoul 135-230, Republic of Korea
| | | | | | | | | |
Collapse
|
36
|
Abstract
The small G proteins of the Ras family act as bimodal relays in the transfer of intracellular signals. This is a dynamic phenomenon involving a cascade of protein-protein interactions modulated by chemical modifications, structural rearrangements and intracellular relocalisations. Most of the small G proteins could be operationally defined as proteins having two conformational states, each of which interacts with different cellular partners. These two states are determined by the nature of the bound nucleotide, GDP or GTP. This capacity to cycle between a GDP-bound conformation and a GTP-bound conformation enables them to filter, to amplify or to temporise the upstream signals that they receive. Thus the control of this cycle is crucial. Membrane anchoring of the proteins in the Ras family is a prerequisite for their activity. Most of the proteins in the Rho/Rac and Rab subfamilies of Ras proteins cycle between cytosol and membranes. Then the control of membrane association/dissociation is an other important regulation level. This review will describe one family of crucial regulators acting on proteins in the Rho/Rac family-the Rho guanine nucleotide dissociation inhibitors, or RhoGDIs. As yet, only three RhoGDIs have been described: RhoGDI-1, RhoGDI-2 (or D4/Ly-GDI) and RhoGDI-3. RhoGDI 1 and 2 are cytosolic and participate in the regulation of both the GDP/GTP cycle and the membrane association/dissociation cycle of Rho/Rac proteins. The non-cytosolic RhoGDI-3 seems to act in a slightly different way.
Collapse
Affiliation(s)
- B Olofsson
- CNRS UPR 9063, Laboratoire d'Enzymologie et Biochimie Structurales, Gif sur Yvette, France.
| |
Collapse
|
37
|
Tsubakimoto K, Matsumoto K, Abe H, Ishii J, Amano M, Kaibuchi K, Endo T. Small GTPase RhoD suppresses cell migration and cytokinesis. Oncogene 1999; 18:2431-40. [PMID: 10229194 DOI: 10.1038/sj.onc.1202604] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rho family small GTPases regulate organization of the actin cytoskeleton. Among them, RhoA plays essential roles in the formation of the actin stress fibers, the associated focal adhesions, and the contractile rings necessary for cytokinesis. Recently, RhoD, a novel member of Rho family has been identified. The amino acid sequences of its effector domain is distinct from those of the other Rho family proteins, suggesting its unique cellular functions. Introduction of the constitutively active form of RhoD(G26V) into fibroblasts by microinjection or transfection resulted in disassembly of the actin stress fibers and the focal adhesions, whereas the dominant negative form of RhoD(T31K) did not affect these structures. The degree of cell migration assessed by the phagokinetic tracks on a substrate covered with gold particles was diminished by the expression of RhoD(G26V) but not by RhoD(T31K). Thus, cytoskeletal alterations including the loss of stress fibers and focal adhesions by RhoD seems to lead to the retardation of cell migration. Transfection of RhoD(G26V) cDNA into cultured cells also induced multinucleation. Moreover, RhoD(G26V) microinjected into fertilized eggs and embryos of Xenopus laevis caused cleavage arrest only in the injected cells, and the uncleaved cells contained multiple nuclei. These results imply that RhoD does not affect nuclear division but can interfere with cytokinesis presumably by preventing the formation of the actin-based contractile ring. Enhancement of the stress fibers by RhoA or RhoA-activating lysophosphatidic acid was reversed by the transfection of RhoD cDNA. Accordingly, the cellular functions of RhoD are likely to be antagonistic to those of RhoA.
Collapse
Affiliation(s)
- K Tsubakimoto
- Department of Biology, Faculty of Sciences, Chiba University, Yayoicho, Inageku, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Fort P. Small GTPases of the Rho family and cell transformation. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 22:159-81. [PMID: 10081069 DOI: 10.1007/978-3-642-58591-3_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- P Fort
- Institut de Génétique Moléculaire de Montpellier, UMR, CNRS 5535, France
| |
Collapse
|
39
|
Ridley AJ. Rho family proteins and regulation of the actin cytoskeleton. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 22:1-22. [PMID: 10081062 DOI: 10.1007/978-3-642-58591-3_1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A J Ridley
- Ludwig Institute for Cancer Research, London, UK
| |
Collapse
|
40
|
Gauthier-Rouvière C, Vignal E, Mériane M, Roux P, Montcourier P, Fort P. RhoG GTPase controls a pathway that independently activates Rac1 and Cdc42Hs. Mol Biol Cell 1998; 9:1379-94. [PMID: 9614181 PMCID: PMC25357 DOI: 10.1091/mbc.9.6.1379] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RhoG is a member of the Rho family of GTPases that shares 72% and 62% sequence identity with Rac1 and Cdc42Hs, respectively. We have expressed mutant RhoG proteins fused to the green fluorescent protein and analyzed subsequent changes in cell surface morphology and modifications of cytoskeletal structures. In rat and mouse fibroblasts, green fluorescent protein chimera and endogenous RhoG proteins colocalize according to a tubular cytoplasmic pattern, with perinuclear accumulation and local concentration at the plasma membrane. Constitutively active RhoG proteins produce morphological and cytoskeletal changes similar to those elicited by a simultaneous activation of Rac1 and Cdc42Hs, i.e., the formation of ruffles, lamellipodia, filopodia, and partial loss of stress fibers. In addition, RhoG and Cdc42Hs promote the formation of microvilli at the cell apical membrane. RhoG-dependent events are not mediated through a direct interaction with Rac1 and Cdc42Hs targets such as PAK-1, POR1, or WASP proteins but require endogenous Rac1 and Cdc42Hs activities: coexpression of a dominant negative Rac1 impairs membrane ruffling and lamellipodia but not filopodia or microvilli formation. Conversely, coexpression of a dominant negative Cdc42Hs only blocks microvilli and filopodia, but not membrane ruffling and lamellipodia. Microtubule depolymerization upon nocodazole treatment leads to a loss of RhoG protein from the cell periphery associated with a reversal of the RhoG phenotype, whereas PDGF or bradykinin stimulation of nocodazole-treated cells could still promote Rac1- and Cdc42Hs-dependent cytoskeletal reorganization. Therefore, our data demonstrate that RhoG controls a pathway that requires the microtubule network and activates Rac1 and Cdc42Hs independently of their growth factor signaling pathways.
Collapse
|
41
|
Lozano JC, Schatt P, Marquès F, Peaucellier G, Fort P, Féral JP, Genevière AM, Picard A. A presumptive developmental role for a sea urchin cyclin B splice variant. J Cell Biol 1998; 140:283-93. [PMID: 9442104 PMCID: PMC2132573 DOI: 10.1083/jcb.140.2.283] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We show that a splice variant-derived cyclin B is produced in sea urchin oocytes and embryos. This splice variant protein lacks highly conserved sequences in the COOH terminus of the protein. It is found strikingly abundant in growing oocytes and cells committed to differentiation during embryogenesis. Cyclin B splice variant (CBsv) protein associates weakly in the cell with Xenopus cdc2 and with budding yeast CDC28p. In contrast to classical cyclin B, CBsv very poorly complements a triple CLN deletion in budding yeast, and its microinjection prevents an initial step in MPF activation, leading to an important delay in oocyte meiosis reinitiation. CBsv microinjection in fertilized eggs induces cell cycle delay and abnormal development. We assume that CBsv is produced in growing oocytes to keep them in prophase, and during embryogenesis to slow down cell cycle in cells that will be committed to differentiation.
Collapse
Affiliation(s)
- J C Lozano
- Centre National de la Recherche Scientifique, URA 2156, Laboratoire Arago, BP 44, F 66651 Banyuls sur mer Cedex France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Roux P, Gauthier-Rouvière C, Doucet-Brutin S, Fort P. The small GTPases Cdc42Hs, Rac1 and RhoG delineate Raf-independent pathways that cooperate to transform NIH3T3 cells. Curr Biol 1997; 7:629-37. [PMID: 9285711 DOI: 10.1016/s0960-9822(06)00289-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ras-mediated transformation of mammalian cells has been shown to activate multiple signalling pathways, including those involving mitogen-activated protein kinases and the small GTPase Rho. Members of the Rho family affect cell morphology by controlling the formation of actin-dependent structures: specifically, filopodia are induced by Cdc42Hs, lamellipodia and ruffles by Rac, and stress fibers by RhoA. In addition, Rho GTPases are involved in progression through the G1 phase of the cell cycle, and Rac1 and RhoA have recently been directly implicated in the morphogenic and mitogenic responses to transformation by oncogenic Ras. In order to examine the cross-talk between Ras and Rho proteins, we investigated the effects on focus-forming activity and cell growth of the Rho-family members Cdc42Hs, Rac1 and RhoG by expressing constitutively active or dominant-negative forms in NIH3T3 cells. RESULTS Expression of Rac1 or RhoG modulated the saturation density to which the cells grew, probably by affecting the level of contact inhibition. Although all three GTPases were required for cell transformation mediated by Ras but not by constitutively active Raf, the selective activation of each GTPase was not sufficient to induce the formation of foci. The coordinated activation of Cdc42Hs, RhoG and Rac1, however, elicited a high focus-forming activity, independent of the mitogen-activated ERK and JNK protein kinase pathways. CONCLUSIONS Ras-mediated transformation induces extensive changes in cell morphology which require the activity of members of the Rho family of GTPases. Our data show that the pattern of coordinated Rho family activation that elicits a focus-forming activity in NIH3T3 cells is distinct from the regulatory cascade that has been proposed for the control of actin-dependent structures in Swiss 3T3 cells.
Collapse
Affiliation(s)
- P Roux
- Institut de Génétique Moléculaire, C.N.R.S. UMR5535, 1919 route de Mende, F-34293 Montpellier cedex 5, France.
| | | | | | | |
Collapse
|
43
|
Courjal F, Chuchana P, Theillet C, Fort P. Structure and chromosomal assignment to 22q12 and 17qter of the ras-related Rac2 and Rac3 human genes. Genomics 1997; 44:242-6. [PMID: 9299243 DOI: 10.1006/geno.1997.4871] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Members of the Rho/Rac/Cdc42Hs family of GTPases have been shown to participate in many aspects of the signaling of cell growth and differentiation. Although the biochemical properties of these GTPases have been extensively studied, very little is known about the structure of the corresponding genes. To gain insight on the evolution of the Rho family, we were interested in studying the genomic structure of several members. We report here the structure and the localization to 22q12 of the human Rac2 gene, as well as the localization to 17qter of Rac3, a new member closely related to Rac1 and Rac2. Unlike the structure of its closest relative ARH-G gene, which contains a single intron, Rac2 is made of at least 7 exons, spanning over 18 kb of DNA. Comparison of gene structure and exonic borders suggests that the emergence of the whole superfamily took place early during evolution.
Collapse
MESH Headings
- Amino Acid Sequence
- Cell Cycle Proteins/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 17/genetics
- Chromosomes, Human, Pair 17/ultrastructure
- Chromosomes, Human, Pair 22/genetics
- Chromosomes, Human, Pair 22/ultrastructure
- Evolution, Molecular
- Exons
- GTP Phosphohydrolases
- GTP-Binding Proteins/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Molecular Sequence Data
- Sequence Homology, Amino Acid
- Transcription Factors/genetics
- cdc42 GTP-Binding Protein
- rac GTP-Binding Proteins
- rho GTP-Binding Proteins
Collapse
Affiliation(s)
- F Courjal
- IGM-UMR5535, CNRS, route de Mende, Montpellier cedex 5, 34293, France
| | | | | | | |
Collapse
|
44
|
Finlin BS, Andres DA. Rem is a new member of the Rad- and Gem/Kir Ras-related GTP-binding protein family repressed by lipopolysaccharide stimulation. J Biol Chem 1997; 272:21982-8. [PMID: 9268335 DOI: 10.1074/jbc.272.35.21982] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report the cDNA cloning and characterization of a novel GTP-binding protein, termed Rem (for Rad and Gem-related), that was identified as a product of polymerase chain reaction amplification using oligonucleotide primers derived from conserved regions of the Rad, Gem, and Kir Ras subfamily. Alignment of the full-length open reading frame of mouse Rem revealed the encoded protein to be 47% identical to the Rad, Gem, and Kir proteins. The distinct structural features of the Rad, Gem, and Kir subfamily are maintained including a series of nonconservative amino acid substitutions at positions important for GTPase activity and a unique sequence motif thought to direct membrane association. Recombinant Rem binds GTP in a specific and saturable manner. Ribonuclease protection analysis found Rem to be expressed at comparatively high levels in cardiac muscle and at moderate levels in lung, skeletal muscle, and kidney. The administration of lipopolysaccharide to mice, a potent activator of the inflammatory and immune systems, results in the general repression of Rem mRNA levels in a dose- and time-dependent manner. Thus, Rem is the first Ras-related gene whose mRNA levels have been shown to be regulated by repression.
Collapse
Affiliation(s)
- B S Finlin
- Department of Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0084, USA
| | | |
Collapse
|
45
|
Abstract
Members of the Rho/Rac/Cdc42Hs family of GTPases have been shown to participate in many aspects of the signaling of cell growth and differentiation. Although the biochemical properties of these GTPases have been extensively studied, very little is known about their gene structure and regulation. RhoG, a member related to Rac and Cdc42Hs, is activated at the transcriptional level in the mid-G1 phase of stimulated fibroblasts. As a first step toward the characterization of the regulatory elements involved in serum-regulated expression, we isolated and determined the structure of the corresponding human locus (ARHG, localized in 11p15.4-p15.5). This is the first gene structure of a member of the Rho/Rac/Cdc42Hs family. At variance with Ras and Rab3A genes, ARHG contains a single intron larger than 20 kb that splits a 62-nt-long 5' noncoding first exon from the rest of the mRNA. The sequences upstream of the cap sites exhibit transcriptional activity. They are G/C-rich and devoid of TATA or CAAT boxes, as found for many housekeeping genes, including Ras genes.
Collapse
Affiliation(s)
- L Le Gallic
- Institut de Génétique Moléculaire, CNRS UMR5535, Montpellier, France
| | | |
Collapse
|
46
|
Marty L, Taviaux S, Fort P. Expression and human chromosomal localization to 17q25 of the growth-regulated gene encoding the mitochondrial ribosomal protein MRPL12. Genomics 1997; 41:453-7. [PMID: 9169145 DOI: 10.1006/geno.1997.4691] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mitochondrial activity requires the expression of nuclear genes, whose products are part of multiproteic complexes leading to ATP production and delivery. We recently characterized a growth-activated mRNA encoding the human mitochondrial ribosomal MRPL12 protein, which is thought to act as a translational regulator of mitochondrial mRNAs. We show here that MRPL12 mRNA expression is enhanced in growth-stimulated cells as a result of transcriptional activation, a feature lost in transformed cell lines. MRPL12 mRNA is highly expressed in the colon, in which a reduction in mitochondrial activity was shown to be associated with tumor formation. The human MRPL12 protein is encoded by a unique gene located on chromosome 17 (q25-qter). As no predisposition to colon cancer linked to this chromosomal region was hitherto reported, the MRPL12 gene might be involved in the process of differentiation of colonic epithelial cells.
Collapse
Affiliation(s)
- L Marty
- Institut de Génétique Moléculaire, CNRS-UMR5535, BP5051, Montpellier, France
| | | | | |
Collapse
|
47
|
Vanhove B, Hofer-Warbinek R, Kapetanopoulos A, Hofer E, Bach FH, de Martin R. Gem, a GTP-binding protein from mitogen-stimulated T cells, is induced in endothelial cells upon activation by inflammatory cytokines. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 1997; 5:51-61. [PMID: 9142321 DOI: 10.3109/10623329709044158] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Using differential screening of cytokine-activated versus resting porcine aortic endothelial cells (PAEC), we have isolated a member of the family of Ras/GTP-binding proteins. The cDNA encodes a 34-kilodalton protein showing 97% homology to Gem, a gene recently isolated from activated T cells, likely representing its porcine homologue. The amino acid sequence differs from the Ras consensus by the absence of a C-terminal isoprenylation site and a glycine to glutamic acid substitution in the third GTP-binding domain. We report here, that pigGem mRNA is strongly inducible in PAEC upon activation by either IL-1 alpha, TNF alpha or lipopolysaccharide (LPS). Low constitutive expression is found in several organs. Epitope-tagged pigGem transfected into endothelial cells (EC) localizes to the cytoplasm and to the inner side of the plasma membrane. Structural features of Gem and its inducibility apparently restricted to T cells and endothelial cells, together with Rad, a GTPase overexpressed in skeletal muscle cells of type II diabetic individuals, define a new branch within the superfamily of GTP-binding proteins.
Collapse
Affiliation(s)
- B Vanhove
- Vienna International Research Cooperation Center (VIRCC), Austria
| | | | | | | | | | | |
Collapse
|
48
|
Zalcman G, Closson V, Camonis J, Honoré N, Rousseau-Merck MF, Tavitian A, Olofsson B. RhoGDI-3 is a new GDP dissociation inhibitor (GDI). Identification of a non-cytosolic GDI protein interacting with the small GTP-binding proteins RhoB and RhoG. J Biol Chem 1996; 271:30366-74. [PMID: 8939998 DOI: 10.1074/jbc.271.48.30366] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
RhoB is a small GTP-binding protein highly homologous to the RhoA protein. While RhoA is known to regulate the assembly of focal adhesions and stress fibers in response to growth factors, the function of RhoB remains unknown. We have reported that the transient expression of the endogenous RhoB protein is regulated during the cell cycle, contrasting with the permanent RhoA protein expression (). Using the yeast two-hybrid system to characterize proteins interacting with RhoB, we identified a new mouse Rho GDP dissociation inhibitor, referenced as RhoGDI-3. The NH2-terminal alpha helix of RhoGDI-3 is strongly amphipatic and differs thus from that found in previously described bovine, human, and yeast RhoGDI proteins and mouse and human D4/Ly-GDIs. Contrary to the cytosolic localization of all known GDI proteins, acting on Rab or Rho, RhoGDI-3 is associated to a Triton X-100-insoluble membranous or cytoskeletal subcellular fraction. In the two-hybrid system, RhoGDI-3 interacts specifically with GDP- and GTP-bound forms of post-translationally processed RhoB and RhoG proteins, both of which show a growth-regulated expression in mammalian cells. No interaction is found with RhoA, RhoC, or Rac1 proteins. We show that GDI-3 is able to inhibit GDP/GTP exchange of RhoB and to release GDP-bound but not GTP-bound RhoB from cell membranes.
Collapse
Affiliation(s)
- G Zalcman
- Unité INSERM 248, Section de Recherche, Institut Curie, 26 rue d'Ulm, 75231 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Cussac D, Leblanc P, L'Heritier A, Bertoglio J, Lang P, Kordon C, Enjalbert A, Saltarelli D. Rho proteins are localized with different membrane compartments involved in vesicular trafficking in anterior pituitary cells. Mol Cell Endocrinol 1996; 119:195-206. [PMID: 8807639 DOI: 10.1016/0303-7207(96)03814-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In order to explore the role of certain GTP binding proteins in the rat anterior pituitary, we have analyzed the subcellular distribution of the proteins rho and rab. They were found in both membrane and cytosolic fractions. Rab1 and rab2 were localized in both Golgi and endoplasmic reticulum (ER) membranes, while rab4 and rab6 were found in fractions enriched with Golgi and plasma membranes, implicating these proteins in the control of vesicular intracellular trafficking as described in other systems. Rab3 was localized like a fraction of synaptophysin, suggesting a role for rab3 in the targeting of "synaptic-like' microvesicles. We have identified three substrates of C. botulinum exoenzyme C3. A 26-kDa substrate with an isoelectric point (pI) of 5.2, probably rhoB, was localized in the lightest fractions such as rab3 and synaptophysin proteins. Two other 23-24 kDa substrates with pI of 5.5-5.8, probably rhoA and/or rhoC, were found in both fractions enriched with ER and secretory granules. Rho proteins have been implicated in the control of actin polymerization. Their localization in anterior pituitary suggests that rhoB could control the association of synaptic-like microvesicles and plasma membrane, and that rhoA/rhoC could play a role in secretory granule exocytosis; these two pathways being involved in cytoskeleton protein reorganisation in response to extracellular signals.
Collapse
Affiliation(s)
- D Cussac
- I.C.N.E. UMR 9941 CNRS Institut Jean Roche Faculté de Médecine Nord, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Marty L, Fort P. A delayed-early response nuclear gene encoding MRPL12, the mitochondrial homologue to the bacterial translational regulator L7/L12 protein. J Biol Chem 1996; 271:11468-76. [PMID: 8626705 DOI: 10.1074/jbc.271.19.11468] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have characterized a new delayed-early response mRNA encoding a 21-kDa product (MRPL12) that accumulates during the G1 phase of growth-stimulated cells. MRPL12 is the mammalian homologue to chloroplastic and bacterial L12 ribosomal proteins. Immunofluorescence microscopy and cell fractionation indicate a predominant mitochondrial localization in various mammalian cell lines. The NH2-terminal 49 amino acids are necessary and sufficient to target the protein within the mitochondria and are probably cleaved off during import. MRPL12 proteins associated in vitro and cofractionate with ribosomal structures, as is the case for prokaryotic L12 proteins. Expression of a dominant inhibitory truncated protein leads to a severe reduction in cell growth by inhibiting mitochondrial ATP production. MRPL12 is the first mammalian mitochondrial ribosomal protein to be characterized.
Collapse
Affiliation(s)
- L Marty
- Institut de Génétique Moléculaire, UMR5535, CNRS-Universités Montpellier I et II, France
| | | |
Collapse
|