1
|
Ge F, Wang C, Wang W, Liu W, Wu B. MicroRNA-31 inhibits tumor invasion and metastasis by targeting RhoA in human gastric cancer. Oncol Rep 2017; 38:1133-1139. [PMID: 28656284 DOI: 10.3892/or.2017.5758] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 05/18/2017] [Indexed: 11/05/2022] Open
Abstract
Previous studies have shown that microRNA-31 (miR-31) functions as a tumor-suppressor in various types of cancer. In the present study we found that miR-31 was significantly downregulated in gastric cancer (GC) as determined by microRNA (miRNA) array screening analysis. Although aberrant expression of miR-31 has been found in different types of cancer, its pathophysiological effect and role in tumorigenesis still remain to be elucidated. In the present study, we detected miR-31 expression in both metastatic GC cell lines and tissues that are potentially highly metastatic by real-time polymerase chain reaction (PCR). Transwell and scratch healing assays were conducted to examine whether the ectopic expression of miR-31 could modify the invasion and migration abilities of GC cells in vitro. We found that miR-31 inhibited GC metastasis in a nude mouse xenograft model of GC. Luciferase reporter assays demonstrated that miR-31 could directly bind to the 3' untranslated region of RhoA and downregulate the expression of RhoA. Significant downregulation of miR-31 in 78 GC tissues and four GC cell lines was examined by real-time reverse transcription-PCR. Moreover, the decreased expression of miR-31 was demonstrated to be associated with lymph node metastasis, poor pT and pN stage, and invasion ability into lymphatic vessels as determined by the Mann-Whitney U test. We also found that miR-31 could inhibit cell invasion and migration abilities in vitro using the Transwell and scratch healing assays in BGC-823, SGC-7901, MGC-803 as well as AGS cells. Experiments in a nude mouse model revealed that miR-31 suppressed tumorigenicity in vivo. The luciferase activity assay and western blotting indicated that RhoA was the potential target of miR-31 in GC cells. Collectively, our results provide important evidence that the downregulation of miR-31 inhibited the invasion and migration abilities of GC cells through direct targeting of the tumor metastasis‑associated gene, RhoA. These findings suggest that miR-31 may be a promising therapeutic candidate in the treatment of GC metastasis.
Collapse
Affiliation(s)
- Fulin Ge
- Department of Gastroenterology, Division of Southern Building, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Changzheng Wang
- Department of Gastroenterology, Division of Southern Building, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Weihua Wang
- Department of Gastroenterology, Division of Southern Building, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wenhui Liu
- Department of Gastroenterology, Division of Southern Building, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Benyan Wu
- Department of Gastroenterology, Division of Southern Building, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
2
|
Abstract
Metastases are responsible for most cancer-related deaths. One of the hallmarks of metastatic cells is increased motility and migration through extracellular matrixes. These processes rely on specific small GTPases, in particular those of the Rho family. Deleted in liver cancer-1 (DLC1) is a tumor suppressor that bears a RhoGAP activity. This protein is lost in most cancers, allowing malignant cells to proliferate and disseminate in a Rho-dependent manner. However, DLC1 is also a scaffold protein involved in alternative pathways leading to tumor and metastasis suppressor activities. Recently, substantial information has been gathered on these mechanisms and this review is aiming at describing the potential and known alternative GAP-independent mechanisms allowing DLC1 to impair migration, invasion, and metastasis formation.
Collapse
|
3
|
Yi MH, Kwon K, Zhang E, Seo JH, Kang SS, Son CG, Kang JW, Kim DW. RhoGDI2 expression in astrocytes after an excitotoxic lesion in the mouse hippocampus. Cell Mol Neurobiol 2015; 35:167-174. [PMID: 25274045 PMCID: PMC11486206 DOI: 10.1007/s10571-014-0108-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
Abstract
The Rho GDP-dissociation inhibitor (RhoGDI) originally downregulates Rho family GTPases by preventing nucleotide exchange and membrane association. Although RhoGDI2 functions as a metastasis regulator, little is known in glial cells under neuropathological conditions. We monitored RhoGDI2 expression in the mouse brain after administering a kainic acid(KA)-induced excitotoxic lesion. In control, RhoGDI2 immunoreactivity (IR) was evident in the neuronal layer of the hippocampus. However, RhoGDI2 IR was increased in astrocytes markedly throughout the hippocampus at day 3 post-treatment with KA. To further investigate the molecular mechanism of RhoGDI2-induced cellular migration, primary astrocytes were transfected with the flag-tagged RhoGDI2 cDNA. Cell migration assay revealed that RhoGDI2 cDNA transfection inhibits astrocyte migration. Overexpression of RhoGDI2 leads to inhibit protein kinase B (PKB) activation and cdc42 and cAMP-responsive element-binding protein (CREB) phosphorylation. In conclusion, our results suggested for the first time that RhoGDI2 is required for PKB and CREB activation and cdc42 expression in astrocyte migration after KA-mediated excitotoxic lesion in mouse brain.
Collapse
Affiliation(s)
- Min-Hee Yi
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 301-747 South Korea
| | - Kisang Kwon
- Department of Biomedical Laboratory Science, College of Health & Welfare, Kyungwoon University, Gumi, 730-739 Korea
| | - Enji Zhang
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 301-747 South Korea
| | - Je Hoon Seo
- Department of Anatomy, School of Medicine, Chungbuk National University, Cheongju, 361-763 South Korea
| | - Sang Soo Kang
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, School of Medicine, Gyeongsang National University, Jinju, 660-702 South Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Korean Medical College of Daejeon University, Daejeon, 300-716 South Korea
| | - Joon Won Kang
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, 301-721 South Korea
| | - Dong Woon Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 301-747 South Korea
| |
Collapse
|
4
|
p104 binds to Rac1 and reduces its activity during myotube differentiation of C2C12 cell. ScientificWorldJournal 2014; 2014:592450. [PMID: 24600331 PMCID: PMC3926281 DOI: 10.1155/2014/592450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/12/2013] [Indexed: 11/17/2022] Open
Abstract
The p104 protein inhibits cellular proliferation when overexpressed in NIH3T3 cells and has been shown to associate with p85α, Grb2, and PLCγ1. In order to isolate other proteins that interact with p104, yeast two-hybrid screening was performed. Rac1 was identified as a binding partner of p104 and the interaction between p104 and Rac1 was confirmed by immunoprecipitation. Using a glutathione S-transferase (GST) pull-down assay with various p104 fragments, the 814–848 amino acid residue at the carboxyl-terminal region of p104 was identified as the key component to interact with Rac1. The CrkII which is involved in the Rac1-mediated cellular response was also found to interact with p104 protein. NIH3T3 cells which overexpressed p104 showed a decrease of Rac1 activity. However, neither the proline-rich domain mutant, which is unable to interact with CrkII, nor the carboxy-terminal deletion mutant could attenuate Rac1 activity. During the differentiation of myoblasts, the amount of p104 protein as well as transcript level was increased. The overexpression of p104 enhanced myotube differentiation, whereas siRNA of p104 reversed this process. In this process, more Rac1 and CrkII were bound to increased p104. Based on these results, we conclude that p104 is involved in muscle cell differentiation by modulating the Rac1 activity.
Collapse
|
5
|
Khalil BD, Hanna S, Saykali BA, El-Sitt S, Nasrallah A, Marston D, El-Sabban M, Hahn KM, Symons M, El-Sibai M. The regulation of RhoA at focal adhesions by StarD13 is important for astrocytoma cell motility. Exp Cell Res 2013; 321:109-22. [PMID: 24333506 DOI: 10.1016/j.yexcr.2013.11.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 10/25/2022]
Abstract
Malignant astrocytomas are highly invasive into adjacent and distant regions of the normal brain. Rho GTPases are small monomeric G proteins that play important roles in cytoskeleton rearrangement, cell motility, and tumor invasion. In the present study, we show that the knock down of StarD13, a GTPase activating protein (GAP) for RhoA and Cdc42, inhibits astrocytoma cell migration through modulating focal adhesion dynamics and cell adhesion. This effect is mediated by the resulting constitutive activation of RhoA and the subsequent indirect inhibition of Rac. Using Total Internal Reflection Fluorescence (TIRF)-based Förster Resonance Energy Transfer (FRET), we show that RhoA activity localizes with focal adhesions at the basal surface of astrocytoma cells. Moreover, the knock down of StarD13 inhibits the cycling of RhoA activation at the rear edge of cells, which makes them defective in retracting their tail. This study highlights the importance of the regulation of RhoA activity in focal adhesions of astrocytoma cells and establishes StarD13 as a GAP playing a major role in this process.
Collapse
Affiliation(s)
- Bassem D Khalil
- Department of Natural Sciences, The Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut 1102 2801, Lebanon
| | - Samer Hanna
- Department of Natural Sciences, The Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut 1102 2801, Lebanon
| | - Bechara A Saykali
- Department of Natural Sciences, The Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut 1102 2801, Lebanon
| | - Sally El-Sitt
- Department of Natural Sciences, The Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut 1102 2801, Lebanon
| | - Anita Nasrallah
- Department of Natural Sciences, The Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut 1102 2801, Lebanon
| | - Daniel Marston
- Department of Pharmacology, University of North Carolina School of Medicine, CB7365, Chapel Hill, NC27599, USA
| | - Marwan El-Sabban
- Department of Human Morphology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina School of Medicine, CB7365, Chapel Hill, NC27599, USA
| | - Marc Symons
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research at North Shore-LIJ, North Shore University Hospital, Manhasset, NY 11030, USA
| | - Mirvat El-Sibai
- Department of Natural Sciences, The Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut 1102 2801, Lebanon.
| |
Collapse
|
6
|
Mierke CT. The role of focal adhesion kinase in the regulation of cellular mechanical properties. Phys Biol 2013; 10:065005. [PMID: 24304934 DOI: 10.1088/1478-3975/10/6/065005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Institute of Experimental Physics I, Biological Physics Division, University of Leipzig, Linnéstr. 5, D-04103 Leipzig, Germany
| |
Collapse
|
7
|
Zhu Y, Liu C, Tummala R, Nadiminty N, Lou W, Gao AC. RhoGDIα downregulates androgen receptor signaling in prostate cancer cells. Prostate 2013; 73:1614-22. [PMID: 23922223 PMCID: PMC3941975 DOI: 10.1002/pros.22615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/15/2012] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Treatment of primary prostate cancer (CaP) is the withdrawal of androgens. However, CaP eventually progresses to grow in a castration-resistant state due to aberrant activation of androgen receptor (AR). Understanding the mechanisms leading to the aberrant activation of AR is critical to develop effective therapy. We have previously identified Rho GDP Dissociation Inhibitor alpha (GDIα) as a novel suppressor in prostate cancer. In this study, we examine the effect of GDIα on AR signaling in prostate cancer cells. METHODS GDIα was transiently or stably transfected into several prostate cancer cell lines including LNCaP, C4-2, CWR22Rv1, and DU145. The regulation of AR expression by GDIα was analyzed by qRT-PCR and Western blot. AR activity was measured by luciferase reporter assays and electrophoretic mobility shift analysis (EMSA). Immunofluorescence assay was performed to study AR nuclear translocation. The interaction between GDIα and AR was examined by co-immunoprecipitation assays. RESULTS In this study, we have identified GDIα as a negative regulator of AR signaling pathway. Overexpression of GDIα downregulates AR expression at both mRNA and protein levels. Overexpression of GDIα is able to prevent AR nuclear translocation and inhibit transactivation of AR target genes. Co-immunoprecipitation assays showed that GDIα physically interacts with the N-terminal domain of AR. CONCLUSIONS GDIα suppresses AR signaling through inhibition of AR expression, nuclear translocation, and recruitment to androgen-responsive genes. GDIα regulatory pathway may play a critical role in regulating AR signaling and prostate cancer growth and progression.
Collapse
Affiliation(s)
- Yezi Zhu
- Department of Urology and Cancer Center, University of California at Davis, Sacramento, California
- Graduate Program of Pharmacology and Toxicology, University of California at Davis, Sacramento, California
| | - Chengfei Liu
- Department of Urology and Cancer Center, University of California at Davis, Sacramento, California
| | - Ramakumar Tummala
- Department of Urology and Cancer Center, University of California at Davis, Sacramento, California
| | - Nagalakshmi Nadiminty
- Department of Urology and Cancer Center, University of California at Davis, Sacramento, California
| | - Wei Lou
- Department of Urology and Cancer Center, University of California at Davis, Sacramento, California
| | - Allen C. Gao
- Department of Urology and Cancer Center, University of California at Davis, Sacramento, California
- Graduate Program of Pharmacology and Toxicology, University of California at Davis, Sacramento, California
- Correspondence to: Allen C. Gao, Department of Urology and Cancer Center, University of California Davis Medical Center, 4645 2nd Ave, Research III, Suite 1300, Sacramento, CA 95817.
| |
Collapse
|
8
|
Roy A, Lahiry L, Banerjee D, Ghosh M, Banerjee S. Increased cytoplasmic localization of p27(kip1) and its modulation of RhoA activity during progression of chronic myeloid leukemia. PLoS One 2013; 8:e76527. [PMID: 24098519 PMCID: PMC3788125 DOI: 10.1371/journal.pone.0076527] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 09/01/2013] [Indexed: 01/19/2023] Open
Abstract
The role of p27kip1 in Chronic Myeloid Leukemia (CML) has been well studied in relation to its function as a cell cycle inhibitor. However, its cytoplasmic function especially in CML remains to be seen. We studied the localization of p27kip1 and its function during the progression of CML from chronic to blast phase. Our investigations revealed an increased localization of p27kip1 in the cytoplasm of CD34+ cells in the blast phase compared to chronic phase. Cytoplasmic p27kip1 was found to modulate RhoA activity in CD34+ stem and progenitor cells. Further, RhoA activity was shown to be dependent on cytoplasmic p27kip1 which in turn was dependent on p210Bcr-Abl kinase activity. Interestingly, RhoA activity was observed to affect cell survival in the presence of imatinib through the SAPK/JNK pathway. Accordingly, inhibition of SAPK/JNK pathway using SP600125 increased apoptosis of K562 cells in presence of imatinib. Our results, for the first time, thus reveal a crucial link between cytoplasmic p27kip1, RhoA activity and SAPK/JNK signalling. To this effect we observed a correlation between increased cytoplasmic p27kip1, increased RhoA protein levels, decreased RhoA-GTP levels and increased SAPK/JNK phosphorylation in blast phase CD34+ cells compared to chronic phase CD34+ cells.
Collapse
MESH Headings
- Anthracenes/pharmacology
- Antigens, CD34/genetics
- Antigens, CD34/metabolism
- Apoptosis
- Blast Crisis/genetics
- Blast Crisis/metabolism
- Blast Crisis/pathology
- Cyclin-Dependent Kinase Inhibitor p27/genetics
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Cytoplasm/metabolism
- Cytoplasm/pathology
- Disease Progression
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic
- Guanosine Triphosphate/metabolism
- Humans
- K562 Cells
- Leukemia, Myeloid, Chronic-Phase/genetics
- Leukemia, Myeloid, Chronic-Phase/metabolism
- Leukemia, Myeloid, Chronic-Phase/pathology
- Lymphocytes/metabolism
- Lymphocytes/pathology
- MAP Kinase Kinase 4/antagonists & inhibitors
- MAP Kinase Kinase 4/genetics
- MAP Kinase Kinase 4/metabolism
- Phosphorylation/drug effects
- Primary Cell Culture
- Protein Kinase Inhibitors/pharmacology
- Signal Transduction
- rhoA GTP-Binding Protein/genetics
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Anita Roy
- Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| | - Lakshmishri Lahiry
- Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| | - Debasis Banerjee
- Department of Haematology, Ramkrishna Mission Seva Pratisthan, Kolkata, West Bengal, India
| | - Malay Ghosh
- Department of Haematology, N R S Medical College and Hospital, Kolkata, West Bengal, India
| | - Subrata Banerjee
- Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
9
|
Wang J, Sun L, Yang M, Luo W, Gao Y, Liu Z, Qiu X, Wang E. DEK depletion negatively regulates Rho/ROCK/MLC pathway in non-small cell lung cancer. J Histochem Cytochem 2013; 61:510-21. [PMID: 23571382 PMCID: PMC3707356 DOI: 10.1369/0022155413488120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/09/2013] [Indexed: 01/16/2023] Open
Abstract
The human DEK proto-oncogene is a nuclear protein with suspected roles in human carcinogenesis. DEK appears to function in several nuclear processes, including transcriptional regulation and modulation of chromatin structure. To investigate the clinicopathological significance of DEK in patients with non-small cell lung cancer (NSCLC), we analyzed DEK immunohistochemistry in 112 NSCLC cases. The results showed that DEK was overexpressed mainly in the nuclear compartment of tumor cells. In squamous cell carcinoma, DEK-positive expression occurred in 47.9% (23/48) of cases, and in lung adenocarcinoma, DEK-positive expression occurred in 67.2% (43/64) of cases and correlated with differentiation, p-TNM stage, and nodal status. Moreover, in lung adenocarcinoma, DEK expression was significantly higher compared with DEK expression in squamous cell carcinoma. Kaplan-Meier analysis showed that patients with low DEK expression had higher overall survival compared with patients with high DEK expression. Depleting DEK expression inhibited cellular proliferation and migration. Furthermore, in DEK-depleted NSCLC cells, we found that RhoA expression was markedly reduced; in conjunction, active RhoA-GTP levels and the downstream effector phosphorylated MLC2 were also reduced. Taken together, DEK depletion inhibited cellular migration in lung cancer cell lines possibly through inactivation of the RhoA/ROCK/MLC signal transduction pathway.
Collapse
Affiliation(s)
- Junying Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Huang B, Luo W, Sun L, Zhang Q, Jiang L, Chang J, Qiu X, Wang E. MiRNA-125a-3p is a negative regulator of the RhoA-actomyosin pathway in A549 cells. Int J Oncol 2013; 42:1734-42. [PMID: 23525486 DOI: 10.3892/ijo.2013.1861] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/15/2013] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) function as genetic modulators that regulate gene expression, and are, thus, involved in a wide range of biological roles, including tumor cell migration and invasion. MiR-125a-3p is a mature form of miR-125a, derived from the 3'-end of pre-miR-125a. Our group has previously reported that miR-125a-3p functions as a tumor suppressor gene that inhibits the migration and invasion of lung cancer cells. Here, we report the discovery of a new regulatory layer of the RhoA-actomyosin pathway through which miR-125a-3p controls tumor cell migration. Overexpression of miR-125a-3p by transfection of sense‑miR‑125a-3p resulted in decreased RhoA protein levels, while the levels of RhoA mRNA remained constant. The concentrations of both RhoA-GTP protein and actin filaments decreased after miR-125a-3p overexpression in the A549 lung cancer cell line. Conversely, knockdown of miR-125a-3p by transfection of antisense-miR-125a-3p resulted in increased RhoA protein levels while the levels of RhoA mRNA remained unchanged. However, the concentration of both RhoA-GTP protein and actin filaments increased. To further demonstrate that RhoA is a potential target of miR‑125a-3p, luciferase reporter constructs containing the RhoA 3'UTR demonstrated reduced reporter activity after ectopic expression of miR-125a-3p. Moreover, luciferase reporter constructs containing the RhoA 3'UTR mutant did not show significantly changed reporter activity. Furthermore, A549 cells demonstrated reduced migratory capacity after treatment with the Rho inhibitor CT04. Our results indicate that the loss of miR-125a‑3p-controlled regulation of the RhoA-actomyosin pathway can lead to increased migration of tumor cells because of the upregulation of RhoA expression. In particular, an increased intracellular concentration of RhoA-GTP protein in A549 cells leads to the accumulation of actin filaments. These results provide new insights into the role of the miR-125a family in lung cancer.
Collapse
Affiliation(s)
- Bo Huang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Heping, Shenyang, Liaoning 110001, PR China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Watanabe T, Urano E, Miyauchi K, Ichikawa R, Hamatake M, Misawa N, Sato K, Ebina H, Koyanagi Y, Komano J. The hematopoietic cell-specific Rho GTPase inhibitor ARHGDIB/D4GDI limits HIV type 1 replication. AIDS Res Hum Retroviruses 2012; 28:913-22. [PMID: 21936715 DOI: 10.1089/aid.2011.0180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rho GTPases are able to influence the replication of human immunodeficiency virus type 1 (HIV-1). However, little is known about the regulation of HIV-1 replication by guanine nucleotide dissociation inhibitors (GDIs), one of the three major regulators of the Rho GTPase activation cycle. From a T cell-based cDNA library screening, ARHGDIB/RhoGDIβ, a hematopoietic lineage-specific GDI family protein, was identified as a negative regulator of HIV-1 replication. Up-regulation of ARHGDIB attenuated the replication of HIV-1 in multiple T cell lines. The results showed that (1) a significant portion of RhoA and Rac1, but not Cdc42, exists in the GTP-bound active form under steady-state conditions, (2) ectopic ARHGDIB expression reduced the F-actin content and the active forms of both RhoA and Rac1, and (3) HIV-1 infection was attenuated by either ectopic expression of ARHGDIB or inhibition of the RhoA signal cascade at the HIV-1 Env-dependent early phase of the viral life cycle. This is in good agreement with the previous finding that RhoA and Rac1 promote HIV-1 entry by increasing the efficiency of receptor clustering and virus-cell membrane fusion. In conclusion, the ARHGDIB is a lymphoid-specific intrinsic negative regulator of HIV-1 replication that acts by simultaneously inhibiting RhoA and Rac1 functions.
Collapse
Affiliation(s)
- Tadashi Watanabe
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Emiko Urano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kosuke Miyauchi
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Reiko Ichikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makiko Hamatake
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoko Misawa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Kei Sato
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Hirotaka Ebina
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Yoshio Koyanagi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Jun Komano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
12
|
Ogura K, Fukunaga A, Taguchi K, Nagai H, Yu X, Oniki S, Okazawa H, Matozaki T, Horikawa T, Nishigori C. The Rho kinase pathway regulates the migration of dendritic cells through SIRP-α. J Dermatol Sci 2012; 66:74-6. [PMID: 22391241 DOI: 10.1016/j.jdermsci.2012.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 01/31/2012] [Accepted: 02/03/2012] [Indexed: 11/19/2022]
|
13
|
SMN deficiency attenuates migration of U87MG astroglioma cells through the activation of RhoA. Mol Cell Neurosci 2011; 49:282-9. [PMID: 22197680 DOI: 10.1016/j.mcn.2011.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/23/2011] [Accepted: 12/05/2011] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease that affects alpha motoneurons in the spinal cord caused by homozygous deletion or specific mutations in the survival motoneuron-1 (SMN1) gene. Cell migration is critical at many stages of nervous system development; to investigate the role of SMN in cell migration, U87MG astroglioma cells were transduced with shSMN lentivectors and about 60% reduction in SMN expression was achieved. In a monolayer wound-healing assay, U87MG SMN-depleted cells exhibit reduced cell migration. In these cells, RhoA was activated and phosphorylated levels of myosin regulatory light chain (MLC), a substrate of the Rho kinase (ROCK), were found increased. The decrease in cell motility was related to activation of RhoA/Rho kinase (ROCK) signaling pathway as treatment with the ROCK inhibitor Y-27632 abrogated both the motility defects and MLC phosphorylation in SMN-depleted cells. As cell migration is regulated by continuous remodeling of the actin cytoskeleton, the actin distribution was studied in SMN-depleted cells. A shift from filamentous to monomeric (globular) actin, involving the disappearance of stress fibers, was observed. In addition, profilin I, an actin-sequestering protein showed an increased expression in SMN-depleted cells. SMN is known to physically interact with profilin, reducing its actin-sequestering activity. The present results suggest that in SMN-depleted cells, the increase in profilin I expression and the reduction in SMN inhibitory action on profilin could lead to reduced filamentous actin polymerization, thus decreasing cell motility. We propose that the alterations reported here in migratory activity in SMN-depleted cells, related to abnormal activation of RhoA/ROCK pathway and increased profilin I expression could have a role in developing nervous system by impairing normal neuron and glial cell migration and thus contributing to disease pathogenesis in SMA.
Collapse
|
14
|
Nishimura Y, Bereczky B, Yoshioka K, Taniguchi S, Itoh K. A novel role of Rho-kinase in the regulation of ligand-induced phosphorylated EGFR endocytosis via the early/late endocytic pathway in human fibrosarcoma cells. J Mol Histol 2011; 42:427-42. [PMID: 21847509 DOI: 10.1007/s10735-011-9348-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/29/2011] [Indexed: 11/26/2022]
Abstract
The small GTPase RhoA and its downstream effectors, the Rho-associated kinase (Rho-kinase) family, are known to regulate cell morphology, motility, and tumor progression via the regulation of actin cytoskeleton rearrangement. In the present study, we evaluated the role of Rho-kinase in the intracellular endocytic trafficking of ligand-induced phosphorylated epidermal growth factor receptor (pEGFR). We investigated the time course of the internalization fate of EGF-induced pEGFR via the early/late endocytic pathway in human fibrosarcoma cell line HT1080 cells using Y-27632, a selective Rho-kinase inhibitor. We found, using confocal immunofluorescence microscopy and Western blot analysis, a large accumulation of pEGFR in the nuclei of HT1080 cells. In contrast, we observed decreased amounts of the pEGFR-positive staining in the nuclei along with an accumulation of cytosolic pEGFR staining when the cells were incubated for 15-30 min in the presence of Y-27632, implying that an aberrant endocytic trafficking mechanism of pEGFR occurs in HT1080 cells whereby pEGFR might be selectively translocated into the nucleus. Moreover, we demonstrated that after 15-min of stimulation with Texas Red-EGF, increasing numbers of pEGFR-positive staining that had colocalized with Texas Red-EGF-positive punctate staining were seen in the cytoplasm of HT1080 cells but after 30-min of stimulation, most of this staining had disappeared from the cytoplasm and a large accumulation of pEGFR-positive staining appeared in the nucleus. Thus, nuclear accumulation of pEGFR appears to occur in an EGF-dependent manner. In contrast, such nuclear pEGFR-positive staining was not seen in the Y-27632-treated cells. Furthermore, silencing of RhoA or Rho-kinases I/II by sequence specific siRNAs considerably inhibited the EGF-dependent nuclear accumulation of pEGFR. Collectively, these results provide the first evidence that Rho-kinase signaling pathway plays a suppressive role in the intracellular vesicle trafficking of pEGFR via the endocytic pathway and that an increased Rho-kinase activity leads to the attenuation of the normal endocytic vesicular traffic of pEGFR via the early/late endocytic pathway, instead causing pEGFR to be trafficked out of the endocytic vesicles into the nucleus.
Collapse
Affiliation(s)
- Yukio Nishimura
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
15
|
Discovery of safety biomarkers for atorvastatin in rat urine using mass spectrometry based metabolomics combined with global and targeted approach. Anal Chim Acta 2010; 661:47-59. [DOI: 10.1016/j.aca.2009.11.063] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/14/2009] [Accepted: 11/29/2009] [Indexed: 11/19/2022]
|
16
|
Wang N, Zhang P, Guo X, Xie J, Huo R, Wang F, Chen L, Shen J, Zhou Z, Shi Q, Zhao B, Sha J. Comparative proteome profile of immature rat ovary during primordial follicle assembly and development. Proteomics 2009; 9:3425-34. [DOI: 10.1002/pmic.200800822] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Cho HJ, Baek KE, Park SM, Kim IK, Choi YL, Cho HJ, Nam IK, Hwang EM, Park JY, Han JY, Kang SS, Kim DC, Lee WS, Lee MN, Oh GT, Kim JW, Lee CW, Yoo J. RhoGDI2 expression is associated with tumor growth and malignant progression of gastric cancer. Clin Cancer Res 2009; 15:2612-9. [PMID: 19351766 DOI: 10.1158/1078-0432.ccr-08-2192] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Rho GDP dissociation inhibitor 2 (RhoGDI2) has been identified as a regulator of Rho family GTPase. However, there is currently no direct evidence suggesting whether RhoGDI2 activates or inhibits Rho family GTPase in vivo (and which type), and the role of RhoGDI2 in tumor remains controversial. Here, we assessed the effects of RhoGDI2 expression on gastric tumor growth and metastasis progression. EXPERIMENTAL DESIGN Proteomic analysis was done to investigate the tumor-specific protein expression in gastric cancer and RhoGDI2 was selected for further study. Immunohistochemistry was used to detect RhoGDI2 expression in clinical samples of primary gastric tumor tissues which have different pathologic stages. Gain-of-function and loss-of-function approaches were done to examine the malignant phenotypes of the RhoGDI2-expressing or RhoGDI2-depleting cells. RESULTS RhoGDI2 expression was correlated positively with tumor progression and metastasis potential in human gastric tumor tissues, as well as cell lines. The forced expression of RhoGDI2 caused a significant increase in gastric cancer cell invasion in vitro, and tumor growth, angiogenesis, and metastasis in vivo, whereas RhoGDI2 depletion evidenced opposite effects. CONCLUSION Our findings indicate that RhoGDI2 is involved in gastric tumor growth and metastasis, and that RhoGDI2 may be a useful marker for tumor progression of human gastric cancer.
Collapse
Affiliation(s)
- Hee Jun Cho
- Department of Microbiology/Research Institute of Life Science, College of Natural Sciences, Physiology, Anatomy and Neurobiology, Institute of Health Science, Gyeongsang National University, Jinju, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Suzuki H, Masaoka T, Minegishi Y, Motosugi Y, Miura S, Ishii H. Lansoprazole promotes gastric mucosal cell proliferation and migration by activating p44/p42 mitogen-activated protein kinase. Wound Repair Regen 2008; 12:93-9. [PMID: 14974970 DOI: 10.1111/j.1067-1927.2004.012116.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell proliferation and migration are important repair mechanisms in cell defect type mucosal injuries, such as peptic ulcers. To evaluate the level of cell restitution in vitro, we established a normalized assay system for analyzing the area of a tissue defect created in the center of a cultured cell layer. Although proton pump inhibitors are known to be potently effective in the treatment of peptic ulcers by inducing acid suppression, they are also effective in low-acid conditions, such as in gastric ulcers associated with severe atrophic gastritis of the corpus. The present study was designed to examine the pH-independent effect of lansoprazole (LPZ) on cell restitution in vitro. The mouse gastric mucosal cell line, GSM06, was cultured to confluence. A 4-fluoric ethylene-tipped aluminum stick was then used to produce a cell-free area in the center of the culture well. After measuring the area of the cell defect using a digital analyzer equipped with an inverted microscope, LPZ was added to each well; the area of the residual cell defect was then measured 6 and 24 hours after LPZ administration. To investigate the involvement of the p44/p42 mitogen-activated protein kinase (MAPK) and p38 MAPK in this process, PD98059 (a MEK inhibitor) or FR167653 (a p38 MAPK inhibitor) was added to the cell cultures. In a separate experiment, GSM06 cells were cultured to the subconfluent level, each test agent was added, and the cell number in each well was measured using an MTT assay 16 hours after the administration of the agents. Six hours after the addition of LPZ, a slight but significant increase in the cell restitution rate was observed in the LPZ-treated groups compared with that in the control group. After 24 hours, a further significant increase in the cell restitution rate was observed in the LPZ groups compared with that in the control group. While the addition of PD98059 significantly attenuated the cell restitution rate in the LPZ groups, the addition of FR167653 had no such effect. The total cell number in the subconfluent cell cultures was significantly increased in the LPZ-treated groups compared with that in the control group. In conclusion, LPZ promotes the healing of injured gastric mucosal cells following injury by enhancing cell proliferation and migration. Furthermore, the mechanism by which cell proliferation and migration is promoted by LPZ may involve the activation of p44/p42 MAPK.
Collapse
Affiliation(s)
- Hidekazu Suzuki
- Department of Internal Medicine and Center for the Integrated Medical Research, School of Medicine, Keio University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Kakinuma N, Roy BC, Zhu Y, Wang Y, Kiyama R. Kank regulates RhoA-dependent formation of actin stress fibers and cell migration via 14-3-3 in PI3K-Akt signaling. ACTA ACUST UNITED AC 2008; 181:537-49. [PMID: 18458160 PMCID: PMC2364698 DOI: 10.1083/jcb.200707022] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phosphoinositide-3 kinase (PI3K)/Akt signaling is activated by growth factors such as insulin and epidermal growth factor (EGF) and regulates several functions such as cell cycling, apoptosis, cell growth, and cell migration. Here, we find that Kank is an Akt substrate located downstream of PI3K and a 14-3-3–binding protein. The interaction between Kank and 14-3-3 is regulated by insulin and EGF and is mediated through phosphorylation of Kank by Akt. In NIH3T3 cells expressing Kank, the amount of actin stress fibers is reduced, and the coexpression of 14-3-3 disrupted this effect. Kank also inhibits insulin-induced cell migration via 14-3-3 binding. Furthermore, Kank inhibits insulin and active Akt-dependent activation of RhoA through binding to 14-3-3. Based on these findings, we hypothesize that Kank negatively regulates the formation of actin stress fibers and cell migration through the inhibition of RhoA activity, which is controlled by binding of Kank to 14-3-3 in PI3K–Akt signaling.
Collapse
Affiliation(s)
- Naoto Kakinuma
- Signaling Molecules Research Laboratory, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | |
Collapse
|
20
|
Tao Y, Chen YC, Li YY, Yang SQ, Xu WR. Localization and translocation of RhoA protein in the human gastric cancer cell line SGC-7901. World J Gastroenterol 2008; 14:1175-81. [PMID: 18300342 PMCID: PMC2690664 DOI: 10.3748/wjg.14.1175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To elucidate the localization of RhoA in gastric SGC-7901 cancer cells and its translocation by lysophosphatidic acid (LPA) and/or 8-chlorophenylthio-cAMP (CPT-cAMP).
METHODS: Immunofluorescence microscopy was used to determine the localization of RhoA. Western blotting was used to detect both endogenous and exogenous RhoA in different cellular compartments (membrane, cytosol, nucleus) and the translocation of RhoA following treatment with LPA, CPT-cAMP, or CPT-cAMP + LPA.
RESULTS: Immunofluorescence staining revealed endogenous RhoA to be localized in the membrane, the cytosol, and the nucleus, and its precise localization within the nucleus to be the nucleolus. Western blotting identified both endogenous and exogenous RhoA within different cellular compartments (membrane, cytosol, nucleus, nucleolus). After stimulation with LPA, the amount of RhoA within membrane and nuclear extracts increased, while it decreased in the cytosol fractions. After treatment with CPT-cAMP the amount of RhoA within the membrane and the nuclear extracts decreased, while it increased within the cytosol fraction. Treatment with a combination of both substances led to a decrease in RhoA in the membrane and the nucleus but to an increase in the cytosol.
CONCLUSION: In SGC-7901 cells RhoA was found to be localized within the membrane, the cytosol, and the nucleus. Within the nucleus its precise localization could be demonstrated to be the nucleolus. Stimulation with LPA caused a translocation of RhoA from the cytosol towards the membrane and the nucleus; treatment with CPT-cAMP caused the opposite effect. Furthermore, pre-treatment with CPT-cAMP was found to block the effect of LPA.
Collapse
|
21
|
El-Sibai M, Pertz O, Pang H, Yip SC, Lorenz M, Symons M, Condeelis JS, Hahn KM, Backer JM. RhoA/ROCK-mediated switching between Cdc42- and Rac1-dependent protrusion in MTLn3 carcinoma cells. Exp Cell Res 2008; 314:1540-52. [PMID: 18316075 DOI: 10.1016/j.yexcr.2008.01.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 01/15/2008] [Accepted: 01/16/2008] [Indexed: 12/11/2022]
Abstract
Rho GTPases are versatile regulators of cell shape that act on the actin cytoskeleton. Studies using Rho GTPase mutants have shown that, in some cells, Rac1 and Cdc42 regulate the formation of lamellipodia and filopodia, respectively at the leading edge, whereas RhoA mediates contraction at the rear of moving cells. However, recent reports have described a zone of RhoA/ROCK activation at the front of cells undergoing motility. In this study, we use a FRET-based RhoA biosensor to show that RhoA activation localizes to the leading edge of EGF-stimulated cells. Inhibition of Rho or ROCK enhanced protrusion, yet markedly inhibited cell motility; these changes correlated with a marked activation of Rac-1 at the cell edge. Surprisingly, whereas EGF-stimulated protrusion in control MTLn3 cells is Rac-independent and Cdc42-dependent, the opposite pattern is observed in MTLn3 cells after inhibition of ROCK. Thus, Rho and ROCK suppress Rac-1 activation at the leading edge, and inhibition of ROCK causes a switch between Cdc42 and Rac-1 as the dominant Rho GTPase driving protrusion in carcinoma cells. These data describe a novel role for Rho in coordinating signaling by Rac and Cdc42.
Collapse
Affiliation(s)
- Mirvat El-Sibai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tabu K, Ohba Y, Suzuki T, Makino Y, Kimura T, Ohnishi A, Sakai M, Watanabe T, Tanaka S, Sawa H. Oligodendrocyte lineage transcription factor 2 inhibits the motility of a human glial tumor cell line by activating RhoA. Mol Cancer Res 2007; 5:1099-109. [PMID: 17951409 DOI: 10.1158/1541-7786.mcr-07-0096] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The basic helix-loop-helix transcription factor, oligodendrocyte lineage transcription factor 2 (OLIG2), is specifically expressed in the developing and mature central nervous system and plays an important role in oligodendrogenesis from neural progenitors. It is also expressed in various types of glial tumors, but rarely in glioblastoma. Although we previously showed that OLIG2 expression inhibits glioma cell growth, its role in tumorigenesis remains incompletely understood. Here, we investigated the effect of OLIG2 expression on the migration of the human glioblastoma cell line U12-1. In these cells, OLIG2 expression is controlled by the Tet-off system. Induction of OLIG2 expression inhibited both the migration and invasiveness of U12-1 cells. OLIG2 expression also increased the activity of the GTPase RhoA as well as inducing the cells to form stress fibers and focal adhesions. Experiments using short interfering RNA against p27(Kip1) revealed that up-regulation of the p27(Kip1) protein was not essential for RhoA activation, rather it contributed independently to the decreased motility of OLIG2-expressing U12-1 cells. Alternatively, semiquantitative reverse transcription-PCR analysis revealed that mRNA expression of RhoGAP8, which regulates cell migration, was decreased by OLIG2 expression. Furthermore, expression of C3 transferase, which inhibits Rho via ADP ribosylation, attenuated the OLIG2-induced inhibition of cell motility. Imaging by fluorescence resonance energy transfer revealed that in U12-1 cells lacking OLIG2, the active form of RhoA was localized to protrusions of the cell membrane. In contrast, in OLIG2-expressing cells, it lined almost the entire plasma membrane. Thus, OLIG2 suppresses the motile phenotype of glioblastoma cells by activating RhoA.
Collapse
Affiliation(s)
- Kouichi Tabu
- Department of Molecular Pathobiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Takai Y, Kaibuchi K, Kikuchi A, Sasaki T, Shirataki H. Regulators of small GTPases. CIBA FOUNDATION SYMPOSIUM 2007; 176:128-38; discussion 138-46. [PMID: 8299416 DOI: 10.1002/9780470514450.ch9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Small GTPases are converted from the GDP-bound inactive form to the GTP-bound active form by a GDP/GTP exchange reaction which is regulated by GDP/GTP exchange proteins (GEPs). We have found both stimulatory and inhibitory GEPs, which we have named GDP dissociation stimulators (GDSs) and GDP dissociation inhibitors (GDIs) respectively. We have isolated Smg GDS, Rho GDI and Rab GDI, cloned them, and determined their primary structures. These GEPs are active on a group of small GTPases: Smg GDS on at least K-Ras, Rap1/Smg21, Rho and Rac; Rho GDI on at least Rho, Rac and Cdc42; Rab GDI on most of the Rab family members. These GEPs have an additional function, regulating the translocation of their substrate small GTPases between the membrane and the cytosol. The GEPs interact only with the post-translationally modified form of their substrate small GTPases.
Collapse
Affiliation(s)
- Y Takai
- Department of Biochemistry, Kobe University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
24
|
Choi MR, Groot M, Drexler HCA. Functional implications of caspase-mediated RhoGDI2 processing during apoptosis of HL60 and K562 leukemia cells. Apoptosis 2007; 12:2025-35. [PMID: 17726646 DOI: 10.1007/s10495-007-0121-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RhoGDI2, a cytosolic regulator of Rho GTPase, is cleaved during apoptosis in a caspase-3 dependent fashion. By using 2D-gel electrophoresis, mass spectrometry and Western blotting we investigate in this paper the functional consequences of RhoGDI2 processing. We can show that loss of the N-terminal 19 amino acids results in a shift of the isoelectric point of the truncated RhoGDI2 (NDelta19) to a more basic value due to the removal of 9 acidic amino acids from the N-terminus, which may be responsible for enhanced retention of the N-terminally truncated protein within the nuclear compartment. Fusion of the p53 nuclear export signaling sequence MFRELNEALELK to NDelta19 (NDelta19NES) abolished its apoptosis promoting properties, while overexpression of NDelta19 significantly increased the susceptibility to apoptosis induction by the proteasome inhibitor PSI and by staurosporine. These results suggest that cleavage of RhoGDI2 by caspase-3 is not a functionally irrelevant bystander effect of caspase activation during apoptosis, but rather expedites progression of the apoptotic process.
Collapse
MESH Headings
- Amino Acid Sequence
- Apoptosis/genetics
- Apoptosis/physiology
- Caspases/physiology
- Electrophoresis, Gel, Two-Dimensional
- Guanine Nucleotide Dissociation Inhibitors/genetics
- Guanine Nucleotide Dissociation Inhibitors/metabolism
- HL-60 Cells
- Humans
- K562 Cells
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Molecular Sequence Data
- RNA Processing, Post-Transcriptional
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tumor Cells, Cultured
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- U937 Cells
- rho Guanine Nucleotide Dissociation Inhibitor beta
- rho-Specific Guanine Nucleotide Dissociation Inhibitors
Collapse
Affiliation(s)
- Mi-Ran Choi
- Max-Planck-Institute for Heart and Lung Research, Parkstr.1, Bad Nauheim 61231, Germany
| | | | | |
Collapse
|
25
|
Ogawa T, Tashiro H, Miyata Y, Ushitora Y, Fudaba Y, Kobayashi T, Arihiro K, Okajima M, Asahara T. Rho-associated kinase inhibitor reduces tumor recurrence after liver transplantation in a rat hepatoma model. Am J Transplant 2007; 7:347-55. [PMID: 17229077 DOI: 10.1111/j.1600-6143.2006.01647.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tumor recurrence after liver transplantation still remains a significant problem in patients with hepatocellular carcinoma. The small GTPase Rho/Rho-associated kinase (ROCK) pathway is involved in the motility and invasiveness of cancer cells. We investigated whether tacrolimus activated the Rho/ROCK signal pathway to promote the invasiveness of rat hepatocellular carcinoma cells. We also investigated whether the ROCK inhibitor Y-27632 suppressed tumor recurrence after experimental liver transplantation in a rat hepatocellular carcinoma model. Orthotopic liver transplantation was performed in hepatocellular carcinoma cell line McA-RH7777-bearing rats. Tacrolimus was administered to liver transplant rats and these rats were divided into two groups: the Y-27632-treated (10 mg/kg, for 28 days) group and the Y-27632-untreated group. Tacrolimus enhanced the cancer cell migration and stimulated phosphorylation of the myosin light chain (MLC), a downstream effector of Rho/ROCK signaling. Y-27632 suppressed the cancer cell migration and tacrolimus-induced MLC phosphorylation. Suppression of tumor recurrence after liver transplantation and significant prolongation of survival were observed in the Y-27632-treated rats in comparison with theY-27632-untreated rats. Tacrolimus stimulates the Rho/ROCK signal pathway to enhance the invasiveness of hepatocellular carcinoma, and the ROCK inhibitor Y-27632 can be used as a new antimetastatic agent for the prevention of tumor recurrence after liver transplantation.
Collapse
Affiliation(s)
- T Ogawa
- Second Department of Surgery, Faculty of Medicine, Hirashima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hakuma N, Kinoshita I, Shimizu Y, Yamazaki K, Yoshida K, Nishimura M, Dosaka-Akita H. E1AF/PEA3 activates the Rho/Rho-associated kinase pathway to increase the malignancy potential of non-small-cell lung cancer cells. Cancer Res 2006; 65:10776-82. [PMID: 16322223 DOI: 10.1158/0008-5472.can-05-0060] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
E1AF/PEA3, an Ets family transcription factor, is frequently overexpressed in non-small-cell lung cancers (NSCLCs). Overexpression of E1AF increases motility and invasion of VMRC-LCD and NCI-H226 NSCLC cells, which lack endogenous E1AF expression, and the effect is synergistically increased by hepatocyte growth factor (HGF). The small GTPase Rho/Rho-associated kinase (ROCK) pathway is also involved in motility and invasion. To determine the role of the Rho/ROCK pathway in malignant phenotypes induced by E1AF, we analyzed VMRC-LCD cells transfected with an E1AF expression vector (LCD-E1AF cells) or with empty vector (LCD-vector cells). LCD-E1AF cells had more GTP-bound (active) Rho than LCD-vector cells and Rho activation was synergistically increased by HGF. The Rho activation by E1AF and HGF was also shown in NCI-H226 cells. Phosphorylation of myosin light chain (MLC), a downstream effector of ROCK signaling, was higher in LCD-E1AF cells than in LCD-vector cells, especially under HGF treatment. A specific ROCK inhibitor, Y27632, strongly suppressed MLC phosphorylation, cell motility, and invasion. In nude mice implanted s.c. and intrapulmonarily, LCD-E1AF cells made more local tumors than LCD-vector cells (six of six versus one of seven mice and four of seven versus one of seven mice, respectively). Three of the four mice with lung tumors from LCD-E1AF cells had lymph node metastases whereas the mouse with LCD-vector tumors did not. LCD-E1AF tumors showed higher MLC phosphorylation than LCD-vector tumors. These results suggest that E1AF activates the Rho/ROCK pathway in an HGF-enhanced manner and its activation is important in E1AF-induced motility and invasion as well as tumorigenesis and metastasis in NSCLC cells.
Collapse
Affiliation(s)
- Nobuyuki Hakuma
- First Department of Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Teckchandani AM, Panetti TS, Tsygankov AY. c-Cbl regulates migration of v-Abl-transformed NIH 3T3 fibroblasts via Rac1. Exp Cell Res 2005; 307:247-58. [PMID: 15922744 DOI: 10.1016/j.yexcr.2005.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 03/11/2005] [Accepted: 03/11/2005] [Indexed: 01/06/2023]
Abstract
Cellular events like cell adhesion and migration involve complex rearrangements of the actin cytoskeleton. We have previously shown that the multidomain adaptor protein c-Cbl facilitates actin cytoskeletal reorganizations that result in the adhesion of v-Abl-transformed NIH 3T3 fibroblasts. In this report, we demonstrate that c-Cbl also enhances migration of v-Abl-transformed NIH 3T3 fibroblasts. This effect of c-Cbl depends on its tyrosine phosphorylation, specifically on phosphorylation of its Tyr-731, which is required for binding of PI-3' kinase to c-Cbl. Furthermore, we demonstrate that the effect of c-Cbl on migration of v-Abl-transformed fibroblasts is mediated by active PI-3' kinase and the small GTPase Rac1. Our results also indicate that ubiquitin ligase activity of c-Cbl is required, while spatial localization of c-Cbl to the pseudopodia is not required for the observed effects of c-Cbl on cell migration.
Collapse
Affiliation(s)
- Anjali M Teckchandani
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
28
|
Fleming YM, Frame MC, Houslay MD. PDE4-regulated cAMP degradation controls the assembly of integrin-dependent actin adhesion structures and REF52 cell migration. J Cell Sci 2005; 117:2377-88. [PMID: 15126637 DOI: 10.1242/jcs.01096] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Plating of REF52 cells onto extracellular matrix components leads to the formation of integrin-dependent actin adhesion microspikes. We show that the formation of these structures is sensitive to chemical agents that regulate cAMP levels, such as forskolin and IBMX. In particular, by using the specific inhibitor rolipram, we identify the PDE4 family of cAMP-specific phosphodiesterases as critical regulators of this process. The effect of PDE4 on microspike formation is mediated by actions exerted through the activation of PKA - rather than through the alternative cAMP effector, Epac. We provide evidence that peripheral microspikes are RhoA-, ROCK- and myosin-dependent, and that this pathway is suppressed by PDE4 inhibition. In addition, PDE4 inhibition impairs cell locomotion that requires dynamic protrusion and retraction of peripheral spike structures. Our data demonstrate that PDE4 activity is a key modulator of integrin-induced actin assembly at the cell periphery which, in turn, controls cell migration.
Collapse
Affiliation(s)
- Yvonne M Fleming
- Institute of Biological and Life Sciences, Davidson and Wolfson Buildings, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
29
|
Nishimura Y, Yoshioka K, Bernard O, Himeno M, Itoh K. LIM kinase 1: evidence for a role in the regulation of intracellular vesicle trafficking of lysosomes and endosomes in human breast cancer cells. Eur J Cell Biol 2004; 83:369-80. [PMID: 15503860 DOI: 10.1078/0171-9335-00382] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
LIM kinase (LIMK) plays a critical role in stimulus-induced remodeling of the actin cytoskeleton by linking signals from the Rho family GTPases to changes in cofilin activity. Recent studies have shown an important role for LIMK1 signaling in tumor cell invasion through regulating actin dynamics. In this study, we investigate the role of LIMK1 in intracellular vesicle trafficking of lysosomes/endosomes. We analyzed by confocal immunofluorescence microscopy the cellular distribution of lysosomal proteins and the endocytosis of an endocytic tracer, epidermal growth factor (EGF), in LIMK1-transfected cells. We found in these cells an abnormal dispersed translocation of lysosomes stained for LIMPII and cathepsin D throughout the cytoplasm. The small punctate structures that stained for these lysosomal proteins were redistributed to the periphery of the cell. Computational 3D-image analysis of confocal immunofluorescence micrographs further demonstrated that these vesicles did not colocalize with the transferrin receptor, an early endosomal marker. Furthermore, LIMPII-positive lysosomes did not colocalize with early endosomes labeled with endocytosed Texas red-transferrin. These results indicate that there is no mixing between dispersed lysosomes and early endosomes in the LIMK1-transfected cells. Moreover, LIMK1 overexpression resulted in a marked retardation in the receptor-mediated internalization of Texas red-labeled EGF in comparison with mock-transfected cells. At 30 min after internalization, most of the Texas red-EGF staining overlapped with LIMPII-positive late endosomes/lysosomes in mock-transfected cells, whereas in LIMK1 transfectants only a small fraction of internalized EGF colocalized with LIMPII-positive structures in the perinuclear region. Taken together, the findings presented in this paper suggest that LIMK1 has a role in regulating vesicle trafficking of lysosomes and endosomes in invasive tumor cells.
Collapse
Affiliation(s)
- Yukio Nishimura
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
30
|
Fuse T, Kanai Y, Kanai-Azuma M, Suzuki M, Nakamura K, Mori H, Hayashi Y, Mishina M. Conditional activation of RhoA suppresses the epithelial to mesenchymal transition at the primitive streak during mouse gastrulation. Biochem Biophys Res Commun 2004; 318:665-72. [PMID: 15144889 DOI: 10.1016/j.bbrc.2004.04.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Indexed: 11/28/2022]
Abstract
Gastrulation is a pivotal event of mouse early embryogenesis. In telencephalin (TLCN)-Cre mice carrying the Cre recombinase gene inserted into the translational initiation site of the TLCN gene, Cre-mediated recombination took place at the postimplantation stage. To examine the role of RhoA signaling in early embryogenesis, we produced Rho36 mice carrying constitutively active RhoA(G14V) gene inducible by Cre recombinase and crossed with TLCN-Cre mice. In doubly transgenic embryos at the gastrulation stage, there appeared an abnormal bulge of cells protruded from the primitive streak region into the amniotic cavity. The bulged cell mass expressed the epiblast marker gene Oct3 and E-cadherin, but not the primitive streak marker gene T except for the basal portion. These results suggest that the conditional activation of RhoA signaling suppressed the epithelial to mesenchymal transition at the primitive streak during mouse gastrulation.
Collapse
Affiliation(s)
- Toshimitsu Fuse
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, and SORST, Japan Science and Technology Agency, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Nishimura Y, Itoh K, Yoshioka K, Tokuda K, Himeno M. Overexpression of ROCK in human breast cancer cells: evidence that ROCK activity mediates intracellular membrane traffic of lysosomes. Pathol Oncol Res 2003; 9:83-95. [PMID: 12858212 DOI: 10.1007/bf03033750] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2003] [Accepted: 06/15/2003] [Indexed: 10/20/2022]
Abstract
Small GTPase Rho and its downstream effectors, ROCK family of Rho-associated serine-threonine kinases, are thought to participate in cell morphology, motility, and tumor progression through regulating the rearrangement of actin cytoskeleton. Here we present evidence that transfection of human breast cancer cells with cDNA encoding a dominant active mutant of ROCK causes dispersal of lysosomal vesicles throughout the cytoplasm without perturbing the machinery of the endocytic pathway. The intracellular distribution of lysosomes and endocytosed transferrin, an early endosomal marker, were further assessed by confocal immunofluorescence microscopy. In the active ROCK transfected cells the lysosomal proteins, cathepsin D, LIMPII, and LAMP1, were found throughout the cytoplasm in dispersed small vesicles, which were accessible to the endocytosed Texas Red-labeled transferrin. 3D-image analysis of lysosomal distribution in the active ROCK transfectants revealed abundant punctate signals in the peripheral region of the basal plasma membrane. Cells expressing vector alone did not exhibit these alterations. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, induced LIMPII-positive/ transferrin negative large vacuoles in the perinuclear region, and disappearence of the dispersed small vesicular structures. To our knowledge, this is the first evidence that increasing ROCK expression contributes to selective cellular dispersion of lysosomes in invasive breast cancer cells.
Collapse
Affiliation(s)
- Yukio Nishimura
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
32
|
Paul BZS, Kim S, Dangelmaier C, Nagaswami C, Jin J, Hartwig JH, Weisel JW, Daniel JL, Kunapuli SP. Dynamic regulation of microtubule coils in ADP-induced platelet shape change by p160ROCK (Rho-kinase). Platelets 2003; 14:159-69. [PMID: 12850840 DOI: 10.1080/0953710031000092794] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Platelet shape change is an extremely rapid process mediated by both the calcium-sensitive and p160ROCK pathways. The present study examines how different features of shape change studied by scanning electron microscopy clearly correlate to changes in the pattern of light absorbance measured in an aggregometer. Platelets change shape from the initial 'disc' form by producing: membrane 'blebs', sphere formation (cell-rounding), filopodia extension, and surface membrane folding. The presentation of these features was dramatically slower in the absence of intracellular calcium mobilization. In the presence of the p160ROCK-inhibitor, Y-27632, shape change was initially normal but platelets rapidly transformed back to smooth discs with extended filopodia. The reappearance of the disc shape is reflected by an increase in the amplitude of oscillations in the aggregometer shape change tracing. The kinetics of actin/cytoskeleton association correlated with filopodia formation but not with disc to sphere transformation. Changes in the level of tubulin polymerization correlated with changes from disc to sphere morphology. These experiments are consistent with a role for a RhoA/Rho kinase-regulated pathway in the maintenance of a spherical platelet shape after agonist-dependent activation. Continued disruption of the cytoskeletal microtubule ring, appears to be a Rhokinase-dependent event involved in the transformation of discoid platelets into spheres.
Collapse
Affiliation(s)
- Benjamin Z S Paul
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
McKean DM, Sisbarro L, Ilic D, Kaplan-Alburquerque N, Nemenoff R, Weiser-Evans M, Kern MJ, Jones PL. FAK induces expression of Prx1 to promote tenascin-C-dependent fibroblast migration. J Cell Biol 2003; 161:393-402. [PMID: 12741393 PMCID: PMC2172901 DOI: 10.1083/jcb.jcb.200302126] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fibroblast migration depends, in part, on activation of FAK and cellular interactions with tenascin-C (TN-C). Consistent with the idea that FAK regulates TN-C, migration-defective FAK-null cells expressed reduced levels of TN-C. Furthermore, expression of FAK in FAK-null fibroblasts induced TN-C, whereas inhibition of FAK activity in FAK-wild-type cells had the opposite effect. Paired-related homeobox 1 (Prx1) encodes a homeobox transcription factor that induces TN-C by interacting with a binding site within the TN-C promoter, and it also promotes fibroblast migration. Therefore, we hypothesized that FAK regulates TN-C by controlling the DNA-binding activity of Prx1 and/or by inducing Prx1 expression. Prx1-homeodomain binding site complex formation observed with FAK-wild-type fibroblasts failed to occur in FAK-null fibroblasts, yet expression of Prx1 in these cells induced TN-C promoter activity. Thus, FAK is not essential for Prx1 DNA-binding activity. However, activated FAK was essential for Prx1 expression. Functionally, Prx1 expression in FAK-null fibroblasts restored their ability to migrate toward fibronectin, in a manner that depends on TN-C. These results appear to be relevant in vivo because Prx1 and TN-C expression levels were reduced in FAK-null embryos. This paper suggests a model whereby FAK induces Prx1, and subsequently the formation of a TN-C-enriched ECM that contributes to fibroblast migration.
Collapse
Affiliation(s)
- David M McKean
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Nakano K, Mutoh T, Arai R, Mabuchi I. The small GTPase Rho4 is involved in controlling cell morphology and septation in fission yeast. Genes Cells 2003; 8:357-70. [PMID: 12653963 DOI: 10.1046/j.1365-2443.2003.00639.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Rho family small GTPases have been shown to be involved in various cellular activities, including the organization of actin cytoskeleton in eukaryotic cells. There are six rho genes in the fission yeast Schizosaccharomyces pombe. Cdc42 is known to control the polarity of the cell. Rho1, Rho2 and Rho3 play important roles in controlling cell shape and septation. On the other hand, Rho4 and Rho5 have not yet been characterized. Here we report the function of rho4+ in fission yeast. RESULTS Gene disruption revealed that rho4+ is not essential for cell growth. However, rho4-null cells were abnormally elongated and had multiple septa of irregular shape at 37 degrees C. In these cells, F-actin patches were randomly localized all over the cell periphery, and cytoplasmic microtubules (MTs) were misoriented. On the other hand, the exogenous expression of a constitutively active Rho4-G23V or Rho4-Q74L in wild-type cells induced depolarization of F-actin patches and cytoplasmic MTs. Rho4 was localized to the cell periphery during interphase and septum during mitosis. Both the binding of GTP and isoprenylation of its C-terminus were necessary for the localization. Furthermore, the localization of Rho4 was likely to be controlled by Rho GAP and Rho GDI. CONCLUSION Rho4 may control cell morphogenesis and septation by regulating both the actin cytoskeleton and cytoplasmic MTs.
Collapse
Affiliation(s)
- Kentaro Nakano
- Division of Biology, Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | | | |
Collapse
|
35
|
Bezerra JA, Tiao G, Ryckman FC, Alonso M, Sabla GE, Shneider B, Sokol RJ, Aronow BJ. Genetic induction of proinflammatory immunity in children with biliary atresia. Lancet 2002; 360:1653-9. [PMID: 12457789 DOI: 10.1016/s0140-6736(02)11603-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Biliary atresia is the commonest cause of pathological jaundice in infants and the leading indication for liver transplantation in children worldwide. The cause and pathogenesis remain largely unknown. Because of clinical heterogeneity and experimental difficulties in addressing molecular mechanisms underlying multifactorial disorders in human beings, we searched for genomic signatures of biliary atresia in affected infants. METHODS We generated pools of biotinylated cRNA from livers of 14 infants with biliary atresia and six with neonatal intrahepatic cholestasis (diseased controls) and hybridised the cRNA against oligonucleotide-based gene chips. Immunohistochemistry and reverse transcriptase (RT)-PCR were used to assess the specificity of the findings and functional commitment of lymphocytes in affected livers. FINDINGS Data filtering, to identify genes that are differentially expressed, and cluster analysis revealed a predominant and coordinated activation of immunity/inflammation genes within the livers of infants with biliary atresia. Most of the genes showed differential lymphocyte function, with activation of osteopontin, a regulator of cell-mediated (T-helper 1 [Th-1]) immunity in T-helper lymphocytes, and suppression of immunoglobulin genes in early stages of disease. These findings were associated with production of interferon gamma in 65% of infants with biliary atresia and no diseased control. However, histologically similar inflammatory infiltrates were present in livers of both groups, implying differential activation states of similar cell types. INTERPRETATION Livers of infants with biliary atresia have a coordinated activation of genes involved in lymphocyte differentiation. Among these genes, the overexpression of osteopontin and interferon gamma points to a potential role of Th-1-like cytokines in disease pathogenesis.
Collapse
Affiliation(s)
- Jorge A Bezerra
- Division of Pediatric Gastroenterology, Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Langlois A, Lee S, Kim DS, Dirks PB, Rutka JT. p16(ink4a) and retinoic acid modulate rhoA and GFAP expression during induction of a stellate phenotype in U343 MG-A astrocytoma cells. Glia 2002; 40:85-94. [PMID: 12237846 DOI: 10.1002/glia.10127] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We previously showed that the expression of p16(ink4a) (p16), in conjunction with retinoic acid (RA) treatment in the p16-deficient astrocytoma cell line, U343 MG-A, induced a potent cell cycle arrest in G(1) associated with changes in morphology. In this study, we investigated the effects of p16 expression and RA treatment on the expression and distribution of actin, glial fibrillary acidic protein (GFAP), and vimentin within the U343 MG-A astrocytoma cytoskeleton. Changes in expression and location of the small GTPase, rhoA, were also examined after p16 expression and RA treatment. We showed that p16 expression and RA treatment led to an increase in the expression of GFAP, as well as its reorganization but that it did not significantly affect actin or vimentin expression. p16 induction in combination with RA treatment resulted in a decreased expression and activation of rhoA as determined by immunocytochemistry and Western blot analysis of soluble and insoluble fractions of cell lysates. Endogenous levels of rhoA expression varied among samples in a panel of astrocytoma cell lines as determined by Western blot analysis. Introduction of a dominant active rhoA mutant into p16-induced, RA-treated U343 MG-A astrocytoma cells was associated with the loss of long astrocytic processes and stellate morphology. These data are among the first to report the pattern of rhoA expression in human astrocytoma cell lines. They furthermore suggest that the stellate cell phenotype observed in U343 MG-A astrocytoma cells after cyclin-dependent kinase inhibitor (CKI) induction and RA treatment is accompanied by an inhibition and inactivation of rhoA in this cell system.
Collapse
Affiliation(s)
- Agnes Langlois
- Arthur and Sonia Labatt Brain Tumour Research Centre, and Division of Neurosurgery, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
37
|
Wilcox-Adelman SA, Denhez F, Goetinck PF. Syndecan-4 modulates focal adhesion kinase phosphorylation. J Biol Chem 2002; 277:32970-7. [PMID: 12087088 DOI: 10.1074/jbc.m201283200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The cell-surface heparan sulfate proteoglycan syndecan-4 acts in conjunction with the alpha(5)beta(1) integrin to promote the formation of actin stress fibers and focal adhesions in fibronectin (FN)-adherent cells. Fibroblasts seeded onto the cell-binding domain (CBD) fragment of FN attach but do not fully spread or form focal adhesions. Activation of Rho, with lysophosphatidic acid (LPA), or protein kinase C, using the phorbol ester phorbol 12-myristate 13-acetate, or clustering of syndecan-4 with antibodies directed against its extracellular domain will stimulate formation of focal adhesions and stress fibers in CBD-adherent fibroblasts. The distinct morphological differences between the cells adherent to the CBD and to full-length FN suggest that syndecan-4 may influence the organization of the focal adhesion or the activation state of the proteins that comprise it. FN-null fibroblasts (which express syndecan-4) exhibit reduced phosphorylation of focal adhesion kinase (FAK) tyrosine 397 (Tyr(397)) when adherent to CBD compared with FN-adherent cells. Treating the CBD-adherent fibroblasts with LPA, to activate Rho, or the tyrosine phosphatase inhibitor sodium vanadate increased the level of phosphorylation of Tyr(397) to match that of cells plated on FN. Treatment of the fibroblasts with PMA did not elicit such an effect. To confirm that this regulatory pathway includes syndecan-4 specifically, we examined fibroblasts derived from syndecan-4-null mice. The phosphorylation levels of FAK Tyr(397) were lower in FN-adherent syndecan-4-null fibroblasts compared with syndecan-4-wild type and these levels were rescued by the addition of LPA or re-expression of syndecan-4. These data indicate that syndecan-4 ligation regulates the phosphorylation of FAK Tyr(397) and that this mechanism is dependent on Rho but not protein kinase C activation. In addition, the data suggest that this pathway includes the negative regulation of a protein-tyrosine phosphatase. Our results implicate syndecan-4 activation in a direct role in focal adhesion regulation.
Collapse
Affiliation(s)
- Sarah A Wilcox-Adelman
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
38
|
Bouzahzah B, Albanese C, Ahmed F, Pixley F, Lisanti MP, Segall JD, Condeelis J, Joyce D, Minden A, Der CJ, Chan A, Symons M, Pestell RG. Rho Family GTPases Regulate Mammary Epithelium Cell Growth and Metastasis Through Distinguishable Pathways. Mol Med 2001. [DOI: 10.1007/bf03401974] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
39
|
Kodama A, Matozaki T, Shinohara M, Fukuhara A, Tachibana K, Ichihashi M, Nakanishi H, Takai Y. Regulation of Ras and Rho small G proteins by SHP-2. Genes Cells 2001; 6:869-76. [PMID: 11683915 DOI: 10.1046/j.1365-2443.2001.00467.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Hepatocyte growth factor/scatter factor (HGF/SF) induces cell scattering through the tyrosine kinase-type HGF/SF receptor, c-Met. We have previously shown that SHP-2, a protein tyrosine phosphatase, positively regulates the HGF/SF-induced cell scattering through modulating the activity of Rho to form stress fibres and focal adhesions. To further investigate the role of SHP-2 in HGF/SF-induced cell scattering, we have now examined the effect of a dominant active mutant of SHP-2 (SHP-2-DA). RESULTS Expression of SHP-2-DA markedly increased the formation of lamellipodia with ruffles, while it decreased the accumulation of E-cadherin and beta-catenin at cell-cell adhesion sites in MDCK cells. In addition, expression of SHP-2-DA markedly enhanced cell scattering of MDCK cells in response to HGF/SF. Expression of SHP-2-DA induced the activation of MAP kinase without HGF/SF stimulation, whereas an inhibitor of MEK partly reversed the SHP-2-DA-induced morphological phenotypes. Furthermore, expression of either a dominant-active mutant of Rho or Vav2 also reversed the SHP-2-DA-induced morphological phenotypes. CONCLUSION These results indicate that SHP-2 plays a crucial role in the HGF/SF-induced cell scattering through the regulation of two distinct small G proteins, Ras and Rho.
Collapse
Affiliation(s)
- A Kodama
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Soga N, Namba N, McAllister S, Cornelius L, Teitelbaum SL, Dowdy SF, Kawamura J, Hruska KA. Rho family GTPases regulate VEGF-stimulated endothelial cell motility. Exp Cell Res 2001; 269:73-87. [PMID: 11525641 DOI: 10.1006/excr.2001.5295] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Migration of endothelial cells induced by vascular endothelial growth factor (VEGF) is a critical step in angiogenesis. Stimulation of motility by growth factors such as VEGF requires interaction with the signal transduction pathways activated by the extracellular matrix (ECM). Here we demonstrate that the Rac GTPase is the critical intersection activated by type 1 collagen ECM and VEGF during stimulation of endothelial cell motility. To analyze the role of the Rho family GTPases in VEGF-stimulated endothelial cell chemotaxis and ECM-stimulated haptotaxis, we transduced the respective fusion proteins in human foreskin dermal endothelial cells using a Tat peptide from the human immunodeficiency virus Tat protein. VEGF signaling required Rac activation during chemotaxis, and Rac and Cdc42 were activated during haptotaxis on type I collagen. Similar to VEGF, Rac activation induced an increase in endothelial cell stress fiber and focal adhesion. Surprisingly, Rho activation was not present in collagen-induced haptotaxis or stimulation of chemotaxis by VEGF, although Rho induced stress fibers and focal adhesions similar to Rac activation. The result of constitutive Rho activation was an inhibition of haptotaxis. Thus, Rac is required and sufficient for the activation of endothelial cell haptotaxis and VEGF-stimulated chemotaxis.
Collapse
Affiliation(s)
- N Soga
- Renal Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Buensuceso CS, Woodside D, Huff JL, Plopper GE, O'Toole TE. The WD protein Rack1 mediates protein kinase C and integrin-dependent cell migration. J Cell Sci 2001; 114:1691-8. [PMID: 11309199 DOI: 10.1242/jcs.114.9.1691] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The scaffolding protein, Rack1, is a seven-WD-domain-containing protein that has been implicated in binding to integrin (β) subunit cytoplasmic domains and to members of two kinase families (src and protein kinase C, PKC) that mediate integrin bidirectional signaling. To explore the role of Rack1 in integrin function we have transfected this protein in Chinese hamster ovary (CHO) cells. We have observed no effect of Rack1 overexpression on inside-out signaling as the ligand binding properties of CHO cells also expressing constitutively active or inactive integrins were not affected. In contrast, we observed that cells stably or transiently overexpressing Rack1 had decreased migration compared to mock transfected cells. Stable Rack1 transfectants also demonstrated an increased number of actin stress fibers and focal contacts. These effects on motility and cytoskeletal organization did not appear to result from Rack1 inhibition of src function as downstream substrates of this kinase were phosphorylated normally. In addition, expression of an active src construct did not reverse the migratory deficit induced by Rack1 overexpression. On the other hand when we overexpressed a Rack1 variant with alanine substitutions in the putative PKC binding site in its third WD domain, we observed no deficit in migration. Thus the ability of Rack1 to bind, localize and stabilize PKC isoforms is likely to be involved in aspects of integrin outside-in signaling.
Collapse
Affiliation(s)
- C S Buensuceso
- Department of Vascular Biology, Scripps Research Institute-VB2, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
42
|
Ho W, Uniyal S, Meakin SO, Morris VL, Chan BM. A differential role of extracellular signal-regulated kinase in stimulated PC12 pheochromocytoma cell movement. Exp Cell Res 2001; 263:254-64. [PMID: 11161724 DOI: 10.1006/excr.2000.5112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rat pheochromocytoma PC12 cells have been widely used as a cell system for study of growth factor-stimulated cell functions. We report here that nerve growth factor (NGF) stimulated both chemotaxis (directional migration) and chemokinesis (random migration) of PC12 cells. Treatment with a MEK1/2-specific inhibitor (PD98059) or expression of a dominant negative variant of Ras differentially inhibited NGF-stimulated chemotaxis but not chemokinesis of PC12 cells. Priming of PC12 cells with NGF resulted in reduced extracellular signal-regulated kinase (ERK) activation and loss of chemotactic, but not chemokinetic, response. In addition, NGF stimulation of ERK is known to involve an early transient phase of activation followed by a late sustained phase of activation; in contrast, epidermal growth factor (EGF) elicits only early transient ERK activation. We observed that like NGF, EGF also stimulated both chemotaxis and chemokinesis, and treatment with PD98059 abolished the EGF-stimulated chemotaxis. Therefore, the early transient phase of ERK activation functioned in signaling chemotaxis; the late sustained phase of ERK activation did not seem to have an essential role. In addition, our results suggested that chemotactic signaling required a threshold level of ERK activation; at below threshold level of ERK activation, chemotaxis would not occur.
Collapse
Affiliation(s)
- W Ho
- Transplantation and Immunobiology Group, University of Western Ontario, London, Ontario, N6A 5K8, Canada
| | | | | | | | | |
Collapse
|
43
|
Abstract
Small GTP-binding proteins (G proteins) exist in eukaryotes from yeast to human and constitute a superfamily consisting of more than 100 members. This superfamily is structurally classified into at least five families: the Ras, Rho, Rab, Sar1/Arf, and Ran families. They regulate a wide variety of cell functions as biological timers (biotimers) that initiate and terminate specific cell functions and determine the periods of time for the continuation of the specific cell functions. They furthermore play key roles in not only temporal but also spatial determination of specific cell functions. The Ras family regulates gene expression, the Rho family regulates cytoskeletal reorganization and gene expression, the Rab and Sar1/Arf families regulate vesicle trafficking, and the Ran family regulates nucleocytoplasmic transport and microtubule organization. Many upstream regulators and downstream effectors of small G proteins have been isolated, and their modes of activation and action have gradually been elucidated. Cascades and cross-talks of small G proteins have also been clarified. In this review, functions of small G proteins and their modes of activation and action are described.
Collapse
Affiliation(s)
- Y Takai
- Department of Molecular Biology, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Japan.
| | | | | |
Collapse
|
44
|
Tanaka H, Hirose M, Osada T, Miwa H, Watanabe S, Sato N. Implications of mechanical stretch on wound repair of gastric smooth muscle cells in vitro. Dig Dis Sci 2000; 45:2470-7. [PMID: 11258577 DOI: 10.1023/a:1005619815359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Gastric smooth muscle cells continually receive repetitive physical stretching by food storage, peristalsis and fasting contraction; therefore mechanical stretch can not be disregarded in gastric events. The aim of this study was to clarify the effects of mechanical stretch on wound repair using a rabbit gastric smooth muscle cell sheet. Mechanical stretch was imposed on adherent cells on a flexible membrane in order to increase elongation by an average of 5% and 10%, respectively, at 5 cycles per minute after artificial wounding. Adherent cells not subjected to mechanical stretch served as controls. The restoration process was monitored by measuring wound size for 48 h. Proliferation was assessed by BrdU staining and the influence on the cytoskeletal system was assessed by actin staining. The speed of restoration was highest in controls and lowest in the 10% stretch groups. Proliferation was almost equal to that of controls in the stretch groups. Under the condition of mechanical stretch, stress fibers appeared weakened and the direction of fibers was not consistent but random. In conclusion, mechanical stretch inhibited the migration of gastric smooth muscle cells, leading to cytoskeletal dysfunction. It is suggested that physical stretch, such as mechanical stretch, might be an important factor in the process of gastric wound repair.
Collapse
Affiliation(s)
- H Tanaka
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Ren XD, Kiosses WB, Sieg DJ, Otey CA, Schlaepfer DD, Schwartz MA. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J Cell Sci 2000; 113 ( Pt 20):3673-8. [PMID: 11017882 DOI: 10.1242/jcs.113.20.3673] [Citation(s) in RCA: 316] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Focal adhesion kinase (FAK) is activated and localized at focal adhesions upon cell adhesion to extracellular matrices. Cells lacking FAK show increased focal adhesion number and decreased cell migration, functions that are regulated by the small GTPase Rho. We now report that fibroblasts from FAK-/- mice failed to transiently inhibit Rho activity when plated on fibronectin. Re-expression of FAK restored normal Rho regulation. Turnover of focal adhesions correlated inversely with Rho activity. The presence or absence of FAK was mimicked by inhibiting or activating Rho, respectively. These data suggest that loss of FAK resulting in constitutive activation of Rho and inhibition of focal adhesion turnover can account for deficiencies in cell migration and embryonic lethality of the FAK knockout.
Collapse
Affiliation(s)
- X D Ren
- Departments of Vascular Biology and Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
46
|
Allal C, Favre G, Couderc B, Salicio S, Sixou S, Hamilton AD, Sebti SM, Lajoie-Mazenc I, Pradines A. RhoA prenylation is required for promotion of cell growth and transformation and cytoskeleton organization but not for induction of serum response element transcription. J Biol Chem 2000; 275:31001-8. [PMID: 10896672 DOI: 10.1074/jbc.m005264200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The importance of post-translational geranylgeranylation of the GTPase RhoA for its ability to induce cellular proliferation and malignant transformation is not well understood. In this manuscript we demonstrate that geranylgeranylation is required for the proper cellular localization of V14RhoA and for its ability to induce actin stress fiber and focal adhesion formation. Furthermore, V14RhoA geranylgeranylation was also required for suppressing p21(WAF) transcription, promoting cell cycle progression and cellular proliferation. The ability of V14RhoA to induce focus formation and enhance plating efficiency and oncogenic Ras anchorage-dependent growth was also dependent on its geranylgeranylation. The only biological activity of V14RhoA that was not dependent on its prenylation was its ability to induce serum response element transcriptional activity. Furthermore, we demonstrate that a farnesylated form of V14RhoA was also able to bind RhoGDI-1, was able to induce cytoskeleton organization, proliferation, and transformation, and was just as potent as geranylgeranylated V14RhoA at suppressing p21(WAF) transcriptional activity. These results demonstrate that RhoA geranylgeranylation is required for its biological activity and that the nature of the lipid modification is not critical.
Collapse
Affiliation(s)
- C Allal
- Oncologie Cellulaire et Moléculaire, EA 2048 Université Paul Sabatier, Centre de Lutte Contre le Cancer Claudius Regaud, 20-24 rue du Pont Saint-Pierre, 31052 Toulouse cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kodama A, Matozaki T, Fukuhara A, Kikyo M, Ichihashi M, Takai Y. Involvement of an SHP-2-Rho small G protein pathway in hepatocyte growth factor/scatter factor-induced cell scattering. Mol Biol Cell 2000; 11:2565-75. [PMID: 10930454 PMCID: PMC14940 DOI: 10.1091/mbc.11.8.2565] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) induces cell scattering through the tyrosine kinase-type HGF/SF receptor c-Met. We have previously shown that Rho small G protein (Rho) is involved in the HGF/SF-induced scattering of Madin-Darby canine kidney (MDCK) cells by regulating at least the assembly and disassembly of stress fibers and focal adhesions, but it remains unknown how c-Met regulates Rho activity. We have found here a novel signaling pathway of c-Met consisting of SHP-2-Rho that regulates the assembly and disassembly of stress fibers and focal adhesions in MDCK cells. SHP-2 is a protein-tyrosine phosphatase that contains src homology-2 domains. Expression of a dominant negative mutant of SHP-2 (SHP-2-C/S) markedly increased the formation of stress fibers and focal adhesions in MDCK cells and inhibited their scattering. C3, a Clostridium botulinum ADP-ribosyltransferase, and Y-27632, a specific inhibitor for ROCK, reversed the stimulatory effect of SHP-2-C/S on stress fiber formation and the inhibitory effect on cell scattering. Vav2 is a GDP/GTP exchange protein for Rho. Expression of a dominant negative mutant of Vav2 blocked the stimulatory effect of SHP-2-C/S on stress fiber formation. Conversely, expression of mutants of Vav2 that increased stress fiber formation inhibited HGF/SF-induced cell scattering. These results indicate that SHP-2 physiologically modulates the activity of Rho to form stress fibers and focal adhesions and thereby regulates HGF/SF-induced cell scattering. In addition, Vav2 may be involved in the SHP-2-Rho pathway.
Collapse
Affiliation(s)
- A Kodama
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Kaibuchi K, Kuroda S, Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 2000; 68:459-86. [PMID: 10872457 DOI: 10.1146/annurev.biochem.68.1.459] [Citation(s) in RCA: 781] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Members of the Rho family of small Ras-like GTPases--including RhoA, -B, and -C, Rac1 and -2, and Cdc42--exhibit guanine nucleotide-binding activity and function as molecular switches, cycling between an inactive GDP-bound state and an active GTP-bound state. The Rho family GTPases participate in regulation of the actin cytoskeleton and cell adhesion through specific targets. Identification and characterization of these targets have begun to clarify how the Rho family GTPases act to regulate cytoskeletal structure and cell-cell and cell-substratum contacts in mammalian cells. The Rho family GTPases are also involved in regulation of smooth muscle contraction, cell morphology, cell motility, neurite retraction, and cytokinesis. However, the molecular mechanisms by which the Rho family GTPases participate in the regulation of such processes are not well established.
Collapse
Affiliation(s)
- K Kaibuchi
- Division of Signal Transduction, Nara Institute of Science and Technology, Ikoma, Japan.
| | | | | |
Collapse
|
49
|
Banyard J, Anand-Apte B, Symons M, Zetter BR. Motility and invasion are differentially modulated by Rho family GTPases. Oncogene 2000; 19:580-91. [PMID: 10698528 DOI: 10.1038/sj.onc.1203338] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell migration in vivo often requires invasion through tissue matrices. Currently little is known regarding the signaling pathways that regulate cell invasion through three-dimensional matrices. The small GTPases Cdc42, Rac and Rho are key regulators of actin cytoskeletal and adhesive structures. We now show that expression of dominant negative forms of either Cdc42, Rac or Rho inhibited PDGF-BB-stimulated Rat1 fibroblast invasion into 3D collagen matrices, indicating that the activity of each of these GTPases is necessary for cell invasion. In contrast, only Rac activation was required for PDGF-BB-stimulated locomotion across a planar substrate in the Boyden chamber. Interestingly, PDGF-induced invasion was also strongly inhibited by expression of constitutively active forms of Cdc42 or Rho, and to a lesser extent by constitutively active Rac. We also show that constitutively active V12-Rac significantly stimulated basal Rat1 fibroblast invasion, independent of PI-3-kinase activity, and that this effect was suppressed by the effector mutant V12/H40-Rac. These results suggest that cellular invasion may require an optimal level of activation of Cdc42, Rho and Rac, and that migration and invasion are differentially modulated by Rho family GTPases.
Collapse
Affiliation(s)
- J Banyard
- Department of Surgical Research, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
50
|
Abstract
The Rho GTPase (Rho) is a member of the Rho family, which belongs to the Ras superfamily of GTP-binding proteins. Like other GTP-binding proteins, Rho exists in two conformational states, an inactive GDP-bound form and an active GTP-bound form. Active Rho interacts with specific effectors to regulate the actin cytoskeleton and to mediate a variety of biological functions in cells. Rho-associated kinase (Rho-kinase) is the most studied Rho-effector, and studies of its biochemical and cell biological functions have provided us with useful information for understanding the molecular mechanisms of the actions of Rho. This review aims to summarize the roles of Rho and Rho-kinase in the regulation of the cytoskeletons.
Collapse
Affiliation(s)
- Y Fukata
- Division of Signal Transduction, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | |
Collapse
|