1
|
Mittelstadt PR, Taves MD, Ashwell JD. Glucocorticoids Oppose Thymocyte Negative Selection by Inhibiting Helios and Nur77. THE JOURNAL OF IMMUNOLOGY 2019; 203:2163-2170. [PMID: 31527196 DOI: 10.4049/jimmunol.1900559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
Glucocorticoid (GC) signaling in thymocytes shapes the TCR repertoire by antagonizing thymocyte negative selection. The transcription factors Nur77 and Helios, which are upregulated in TCR-signaled thymocytes, have been implicated in negative selection. In this study, we found that GCs inhibited Helios and, to a lesser extent, Nur77 upregulation in TCR-stimulated mouse thymocytes. Inhibition was increased by GC preincubation, and reductions in mRNA were prevented by a protein synthesis inhibitor, suggesting that GCs suppress indirectly via an intermediary factor. Upregulation of Helios in TCR-stimulated thymocytes was unaffected by deletion of Nur77, indicating Nur77 and Helios are regulated independently. Whereas CD4+ thymocytes are positively selected in wild-type AND TCR-transgenic B6 mice, loss of GC receptor expression resulted in increased negative selection. Correspondingly, Helios and Nur77 levels were elevated in TCRhiCD4+CD8+ (TCR-signaled) thymocytes. Notably, deletion of Helios fully reversed this negative selection, whereas deletion of Nur77 had no effect on CD4+CD8+ cell numbers but reversed the loss of mature CD4+ thymocytes. Thus, Nur77 and Helios are GC targets that play nonredundant roles in setting the signaling threshold for thymocyte negative selection.
Collapse
Affiliation(s)
- Paul R Mittelstadt
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Matthew D Taves
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
2
|
Jin F, Li X, Deng Y, Timilshina M, Huang B, Kim DY, Chang JH, Ichinose H, Baek SH, Murakami M, Lee YJ, Chang HW. The orphan nuclear receptor NR4A1 promotes FcεRI-stimulated mast cell activation and anaphylaxis by counteracting the inhibitory LKB1/AMPK axis. Allergy 2019; 74:1145-1156. [PMID: 30565708 DOI: 10.1111/all.13702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Nuclear receptor subfamily 4 group A member 1 (NR4A1), an orphan nuclear receptor, has been implicated in several biological events such as metabolism, apoptosis, and inflammation. Recent studies indicate a potential role for NR4A1 in mast cells, yet its role in allergic responses remains largely unknown. OBJECTIVES The aim of this study was to clarify the role of NR4A1 in mast cell activation and anaphylaxis. METHODS To evaluate the function of NR4A1 in mast cells, the impacts of siRNA knockdown, gene knockout, adenoviral overexpression, and pharmacological inhibition of NR4A1 on FcεRI signaling and effector functions in mouse bone marrow-derived mast cells (BMMCs) in vitro and on anaphylactic responses in vivo were evaluated. RESULTS Knockdown or knockout of NR4A1 markedly suppressed degranulation and lipid mediator production by FcεRI-crosslinked BMMCs, while its overexpression augmented these responses. Treatment with a NR4A1 antagonist also blocked mast cell activation to a similar extent as NR4A1 knockdown or knockout. Moreover, mast cell-specific NR4A1-deficient mice displayed dampened anaphylactic responses in vivo. Mechanistically, NR4A1 promoted FcεRI signaling by counteracting the liver kinase B1 (LKB1)/adenosine monophosphate-activated protein kinase (AMPK) axis. Following FcεRI crosslinking, NR4A1 bound to the LKB1/AMPK complex and sequestered it in the nucleus, thereby promoting FcεRI downstream signaling pathways. Silencing or knockout of LKB1/AMPK largely abrogated the effect of NR4A1 on mast cell activation. Additionally, NR4A1 facilitated spleen tyrosine kinase activation independently of LKB1/AMPK. CONCLUSIONS Nuclear receptor subfamily 4 group A member 1 positively regulates mast cell activation by antagonizing the LKB1-AMPK-dependent negative regulatory axis. This finding may provide a novel therapeutic strategy for the development of anti-allergic compounds.
Collapse
Affiliation(s)
- Fansi Jin
- College of Pharmacy; Yeungnam University; Gyeongsan Korea
| | - Xian Li
- College of Pharmacy; Yeungnam University; Gyeongsan Korea
| | - Yifeng Deng
- College of Pharmacy; Yeungnam University; Gyeongsan Korea
| | | | - Bin Huang
- Department of Biochemistry and Molecular Biology; College of Medicine; Yeungnam University; Daegu Korea
| | - Dong-Young Kim
- College of Pharmacy; Yeungnam University; Gyeongsan Korea
| | - Jae-Hoon Chang
- College of Pharmacy; Yeungnam University; Gyeongsan Korea
| | - Hiroshi Ichinose
- School of Life Science and Technology; Tokyo Institute of Technology; Yokohama Japan
| | - Suk-Hwan Baek
- Department of Biochemistry and Molecular Biology; College of Medicine; Yeungnam University; Daegu Korea
| | - Makoto Murakami
- Laboratory of Microenvironmental Metabolic Health Sciences; Center for Disease Biology and Integrative Medicine; Graduate School of Medicine; The University of Tokyo; Hongo, Bunkyo-ku Japan
| | - Youn Ju Lee
- Department of Pharmacology; School of Medicine; Catholic University of Daegu; Daegu Korea
| | | |
Collapse
|
3
|
Murphy EP, Dobson AD, Keller C, Conneely OM. Differential regulation of transcription by the NURR1/NUR77 subfamily of nuclear transcription factors. Gene Expr 2018; 5:169-79. [PMID: 8882640 PMCID: PMC6138016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
NURR1 is an orphan member of the nuclear receptor superfamily of transcription factors that shares close sequence homology to the orphan nuclear receptor and immediate early gene product NUR77(NGF1 beta). The physiological role of NURR1 has not been established in mammalian cells. However, the observation that NURR1 and NUR77 interact with at least one common enhancer element (AAAAGGTCA), together with their partly overlapping but differential expression patterns in mammalian tissues, suggests that these proteins may have both shared and independent transcription regulatory functions. To identify potential target genes that may be regulated by NURR1, we analyzed its DNA binding properties to potential cis-acting enhancer elements. Using point mutagenesis of the AAAAGGTCA motif, we have identified three additional sequences that bind specifically to both NURR1 and NUR77, one of which serves as a functional enhancer element. Comparative analysis of the transcription regulatory properties of NURR1 and NUR77 indicates that the proteins can display opposing transregulatory activities that are influenced by the specific cis-acting sequences to which they bind. Our results indicate that the transcriptional responses of specific target genes to the NURR1/NUR77 subfamily may be differentially regulated by the relative cellular levels of NURR1 and NUR77 and influenced by the specific enhancer sequences that mediate their activity. Finally, we have identified several potential target genes of neuronal and neuroendocrine origin whose promoters contain this element.
Collapse
Affiliation(s)
- E P Murphy
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
4
|
Wang C, He H, Dou G, Li J, Zhang X, Jiang M, Li P, Huang X, Chen H, Li L, Yang D, Qi H. Ginsenoside 20(S)-Rh2 Induces Apoptosis and Differentiation of Acute Myeloid Leukemia Cells: Role of Orphan Nuclear Receptor Nur77. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7687-7697. [PMID: 28793767 DOI: 10.1021/acs.jafc.7b02299] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ginsenoside 20(S)-Rh2 has been shown to induce apoptosis and differentiation of acute myeloid leukemia (AML) cells. However, the underlying molecular mechanisms are not fully understood. In our study, 20(S)-Rh2 induced the expression of orphan nuclear receptor Nur77 and death receptor proteins Fas, FasL, DR5, and TRAIL, as well as the cleavage of caspase 8 and caspase 3 in HL-60 cells. Importantly, shNur77 attenuated 20(S)-Rh2-induced apoptosis and Fas and DR5 expression. Meanwhile, 20(S)-Rh2 promoted Nur77 translocation from the nucleus to mitochondria and enhanced the interaction between Nur77 and Bcl-2, resulting in the exposure of the BH3 domain of Bcl-2 and activation of Bax. Furthermore, 20(S)-Rh2 promoted the differentiation of HL-60 cells as evidenced by Wright-Giemsa staining, NBT reduction assay, and detection of the myeloid differentiation marker CD11b by flow cytometry. Notably, shNur77 reversed 20(S)-Rh2-mediated HL-60 differentiation. Additionally, 20(S)-Rh2 also exhibited an antileukemic effect and induced Nur77 expression in NOD/SCID mice with the injection of HL-60 cells into the tail vein. Together, our studies suggest that the Nur77-mediated signaling pathway is highly involved in 20(S)-Rh2-induced apoptosis and differentiation of AML cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Caspase 3/genetics
- Caspase 3/metabolism
- Caspase 8/genetics
- Caspase 8/metabolism
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Ginsenosides/pharmacology
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/physiopathology
- Mice
- Mice, Nude
- Mice, SCID
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
Collapse
Affiliation(s)
- Chengqiang Wang
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Hui He
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Guojun Dou
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Juan Li
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Xiaomei Zhang
- Chongqing Academy of Chinese Materia Medica , 34 Nanshan Road, Nan'an District, Chongqing 400065, China
| | - Mingdong Jiang
- Radiotherapy Department, Chongqing Ninth People's Hospital , Jialing Village 69, Beibei District, Chongqing 400700, China
| | - Pan Li
- Radiotherapy Department, Chongqing Ninth People's Hospital , Jialing Village 69, Beibei District, Chongqing 400700, China
| | - Xiaobo Huang
- Radiotherapy Department, Chongqing Ninth People's Hospital , Jialing Village 69, Beibei District, Chongqing 400700, China
| | - Hongxi Chen
- Radiotherapy Department, Chongqing Ninth People's Hospital , Jialing Village 69, Beibei District, Chongqing 400700, China
| | - Li Li
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| | - Dajian Yang
- Chongqing Academy of Chinese Materia Medica , 34 Nanshan Road, Nan'an District, Chongqing 400065, China
| | - Hongyi Qi
- College of Pharmaceutical Sciences, Southwest University , 2 Tiansheng Road, Beibei District, Chongqing 400716, China
| |
Collapse
|
5
|
Zhang L, Xie F, Zhang J, Dijke PT, Zhou F. SUMO-triggered ubiquitination of NR4A1 controls macrophage cell death. Cell Death Differ 2017. [PMID: 28622293 DOI: 10.1038/cdd.2017.29] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nuclear receptor NR4A1 has been implicated as a key regulator in a wide range of pathophysiological responses. As an immediate early response gene, NR4A1 can be rapidly and potently induced by a variety of stimuli. Its induction is followed by its rapid degradation, but the mechanism by which NR4A1 is degraded remains poorly understood. Here we show that nuclear receptor NR4A1 is sumoylated by SUMO2/3. Upon poly-SUMO modification, NR4A1 can be targeted by the SUMO-dependent E3 ubiquitin ligase RNF4 for polyubiquitination and subsequent degradation. The SUMO E3 ligase PIAS3 promotes SUMOylation and polyubiquitination of NR4A1, while the SUMO protease SENP1 acts to de-conjugate SUMO. We demonstrate that this pathway is important for rapid degradation of NR4A1 after induced by stress. Moreover, we identify two SUMO modification sites in NR4A1 that are critical for maintaining low levels of NR4A1 expression. Mutation of these two NR4A1 SUMO modification sites enhances the stability of NR4A1. Importantly, we show that SUMOylation is critical in controlling NR4A1 function in inflammatory cytokine signaling and controlling macrophage cell death. SUMOylation and subsequent ubiquitination on NR4A1 mitigates its inhibition of innate immune signaling, such as TNF-α- and IL-1β-induced NF-κB activation. This mechanism of sequential SUMOylation and ubiquitination, which together control the degradation of NR4A1, could be exploited for the therapeutic treatment of diseases with NR4A1 involvement.
Collapse
Affiliation(s)
- Long Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Feng Xie
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, PR China
| | - Juan Zhang
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, Postbus 9600 2300 RC Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, Postbus 9600 2300 RC Leiden, The Netherlands
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
6
|
Ray JD, Kener KB, Bitner BF, Wright BJ, Ballard MS, Barrett EJ, Hill JT, Moss LG, Tessem JS. Nkx6.1-mediated insulin secretion and β-cell proliferation is dependent on upregulation of c-Fos. FEBS Lett 2016; 590:1791-803. [PMID: 27164028 DOI: 10.1002/1873-3468.12208] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/02/2016] [Accepted: 05/05/2016] [Indexed: 01/01/2023]
Abstract
Understanding the molecular pathways that enhance β-cell proliferation, survival, and insulin secretion may be useful to improve treatments for diabetes. Nkx6.1 induces proliferation through the Nr4a nuclear receptors, and improves insulin secretion and survival through the peptide hormone VGF. Here we demonstrate that Nkx6.1-mediated upregulation of Nr4a1, Nr4a3, and VGF is dependent on c-Fos expression. c-Fos overexpression results in activation of Nkx6.1 responsive genes and increases β-cell proliferation, insulin secretion, and cellular survival. c-Fos knockdown impedes Nkx6.1-mediated β-cell proliferation and insulin secretion. These data demonstrate that c-Fos is critical for Nkx6.1-mediated expansion of functional β-cell mass.
Collapse
Affiliation(s)
- Jason D Ray
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Kyle B Kener
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Benjamin F Bitner
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Brent J Wright
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Matthew S Ballard
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Emily J Barrett
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Jonathon T Hill
- Physiology and Developmental Biology Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Larry G Moss
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University, Durham, NC, USA
| | - Jeffery S Tessem
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| |
Collapse
|
7
|
Zhao S, Zhou L, Niu G, Li Y, Zhao D, Zeng H. Differential regulation of orphan nuclear receptor TR3 transcript variants by novel vascular growth factor signaling pathways. FASEB J 2014; 28:4524-33. [PMID: 25016027 DOI: 10.1096/fj.13-248401] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Angiogenesis is a hallmark of many diseases, including cancer, ischemic heart disease, inflammation, and others. It is well known that vascular endothelial growth factor (VEGF) is the most important angiogenic factor. Recently, we demonstrated that orphan nuclear receptor TR3 (mouse Nur77 and rat NGFI-B) plays critical roles in tumor growth and angiogenesis induced by VEGF-A in vitro and in vivo. However, the signaling pathways that mediate the expression of TR3 induced by VEGF are still not completely understood. Here we reported that 3 TR3 transcript variants (TR3-TVs) are expressed at differential levels, and regulated differentially in endothelial cells. While the expression of TR3-TV1 is relatively low, the expression of TR3-TV2 is up-regulated markedly, and the expression of TR3-TV3 is up-regulated moderately in endothelial cells induced by VEGF-A. The kinetics of the induction of these TR3-TVs is different. We also found that several signaling pathways, including calcium-PLC-PKC-PKD1 pathway, NF-κB pathway, and MAP kinase (ERK, p38, and JNK) pathways are important for VEGF-A-induced TR3-TV2 and TR3-TV3 mRNA induction. More important, we found that VEGF-A or VEGF-E, but not VEGF-B, nor placenta growth factor (PlGF), induces the phosphorylation of insulin-like growth factor-1 receptor (IGF-1R) and the interaction of VEGF receptor 2/kinase insert domain receptor (VEGFR2/KDR) with IGF-1R, which mediates the expression of TR3-TV2, but not TR3-TV3. Taking together, we demonstrate that TR3-TVs are differentially regulated by VEGF-A and identify a novel signaling pathway by which VEGF-A and VEGF-E, but neither VEGF-B, nor PlGF, induce the interaction of VEGFR2/KDR with IGF-1R, resulting in IGF-1R transactivation to induce the high level expression of TR3-TV2. Our data not only elucidate the signaling pathways by which TR3-TVs are regulated, but extend the molecular mechanism, by which VEGF-A-induced angiogenesis. These studies should permit the development of screening assays for compounds that inhibit VEGF signaling.
Collapse
Affiliation(s)
- Shengqiang Zhao
- Center for Vascular Biology Research, Division of Molecular and Vascular Biology, and Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Ji-nan, China
| | - Lei Zhou
- Center for Vascular Biology Research, Division of Molecular and Vascular Biology, and Department of Hepatobiliary Surgery and Department of General Surgery, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China; and
| | - Gengming Niu
- Center for Vascular Biology Research, Division of Molecular and Vascular Biology, and Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Li
- Center for Vascular Biology Research, Division of Molecular and Vascular Biology, and Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Ji-nan, China
| | - Dezheng Zhao
- Center for Vascular Biology Research, Division of Molecular and Vascular Biology, and Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Huiyan Zeng
- Center for Vascular Biology Research, Division of Molecular and Vascular Biology, and
| |
Collapse
|
8
|
Zhu W, Pei R, Jin R, Hu X, Zhou Y, Wang Y, Wu C, Lu M, Chen X. Nuclear receptor 4 group A member 1 determines hepatitis C virus entry efficiency through the regulation of cellular receptor and apolipoprotein E expression. J Gen Virol 2014; 95:1510-1521. [PMID: 24744301 DOI: 10.1099/vir.0.065003-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Orphan nuclear receptor subfamily 4 group A member 1 (NR4A1) is a transcription factor stimulated by many factors and plays pivotal roles in metabolism, proliferation and apoptosis. In this study, the expression of NR4A1 in Huh7.5.1 cells was significantly upregulated by hepatitis C virus (HCV) infection. The silencing of NR4A1 inhibited the entry of HCV and reduced the specific infectivity of secreted HCV particles but had only minor or no effect on the genome replication and translation, virion assembly and virus release steps of the virus life cycle. Further experiments demonstrated that the silencing of NR4A1 affected virus entry through pan-downregulation of the expression of HCV receptors scavenger receptor BI, occludin, claudin-1 and epidermal growth factor receptor but not CD81. The reduced specific infectivity of HCV in the knockdown cells was due to decreased apolipoprotein E (ApoE) expression. These results explain the delayed spread of HCV in NR4A1 knockdown Huh7.5.1 cells. Thus, NR4A1 plays a role in HCV replication through regulating the expression of HCV receptors and ApoE, and facilitates HCV entry and spread.
Collapse
Affiliation(s)
- Wandi Zhu
- University of Chinese Academy of Sciences, Beijing, PR China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Rui Jin
- University of Chinese Academy of Sciences, Beijing, PR China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Yun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Chunchen Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Mengji Lu
- Institute of Virology, University hospital Essen, University of Duisburg-Essen, Essen, Germany
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| |
Collapse
|
9
|
Daems C, Martin LJ, Brousseau C, Tremblay JJ. MEF2 is restricted to the male gonad and regulates expression of the orphan nuclear receptor NR4A1. Mol Endocrinol 2014; 28:886-98. [PMID: 24694307 DOI: 10.1210/me.2013-1407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Leydig cell steroidogenesis is controlled by the pituitary gonadotropin LH that activates several signaling pathways, including the Ca(2+)/calmodulin kinase I (CAMKI) pathway. In other tissues, CAMKI regulates the activity of the myocyte enhancer factor 2 (MEF2) transcription factors. MEF2 factors are essential regulators of cell differentiation and organogenesis in numerous tissues but their expression and role in the mammalian gonad had not been explored. Here we show that MEF2 factors are expressed in a sexually dimorphic pattern in the mouse gonad. MEF2 factors are present in the testis throughout development and into adulthood but absent from the ovary. In the testis, MEF2 was localized mainly in the nucleus of both somatic lineages, the supporting Sertoli cells and the steroidogenic Leydig cells. In Leydig cells, MEF2 was found to activate the expression of Nr4a1, a nuclear receptor important for hormone-induced steroidogenesis. In these cells MEF2 also cooperates with forskolin and CAMKI to enhance Nr4a1 promoter activity via two MEF2 elements (-318 and -284 bp). EMSA confirmed direct binding of MEF2 to these elements whereas chromatin immunoprecipitation revealed that MEF2 recruitment to the proximal Nr4a1 promoter was increased following hormonal stimulation. Modulation of endogenous MEF2 protein level (small interfering RNA-mediated knockdown) or MEF2 activity (MEF2-Engrailed active dominant negative) led to a significant decrease in Nr4a1 mRNA levels in Leydig cells. All together, our results identify MEF2 as a novel testis-specific transcription factor, supporting a role for this factor in male sex differentiation and function. MEF2 was also positioned upstream of NR4A1 in a regulatory cascade controlling Leydig cell gene expression.
Collapse
Affiliation(s)
- Caroline Daems
- Reproduction, Mother and Child Health (C.D., L.J.M., C.B., J.J.T., Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada, G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada, G1V 0A6
| | | | | | | |
Collapse
|
10
|
Iacono G, Altafini C, Torre V. Early phase of plasticity-related gene regulation and SRF dependent transcription in the hippocampus. PLoS One 2013; 8:e68078. [PMID: 23935853 PMCID: PMC3720722 DOI: 10.1371/journal.pone.0068078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/25/2013] [Indexed: 02/07/2023] Open
Abstract
Hippocampal organotypic cultures are a highly reliable in vitro model for studying neuroplasticity: in this paper, we analyze the early phase of the transcriptional response induced by a 20 µM gabazine treatment (GabT), a GABA-Ar antagonist, by using Affymetrix oligonucleotide microarray, RT-PCR based time-course and chromatin-immuno-precipitation. The transcriptome profiling revealed that the pool of genes up-regulated by GabT, besides being strongly related to the regulation of growth and synaptic transmission, is also endowed with neuro-protective and pro-survival properties. By using RT-PCR, we quantified a time-course of the transient expression for 33 of the highest up-regulated genes, with an average sampling rate of 10 minutes and covering the time interval [10∶90] minutes. The cluster analysis of the time-course disclosed the existence of three different dynamical patterns, one of which proved, in a statistical analysis based on results from previous works, to be significantly related with SRF-dependent regulation (p-value<0.05). The chromatin immunoprecipitation (chip) assay confirmed the rich presence of working CArG boxes in the genes belonging to the latter dynamical pattern and therefore validated the statistical analysis. Furthermore, an in silico analysis of the promoters revealed the presence of additional conserved CArG boxes upstream of the genes Nr4a1 and Rgs2. The chip assay confirmed a significant SRF signal in the Nr4a1 CArG box but not in the Rgs2 CArG box.
Collapse
Affiliation(s)
- Giovanni Iacono
- Department of Functional Analysis, International School for Advanced Studies, Trieste, Italy
| | - Claudio Altafini
- Department of Functional Analysis, International School for Advanced Studies, Trieste, Italy
| | - Vincent Torre
- Department of Functional Analysis, International School for Advanced Studies, Trieste, Italy
- IIT Italian Institute of Technology, Genova, Italy
- * E-mail:
| |
Collapse
|
11
|
HDAC inhibition by SNDX-275 (Entinostat) restores expression of silenced leukemia-associated transcription factors Nur77 and Nor1 and of key pro-apoptotic proteins in AML. Leukemia 2012; 27:1358-68. [PMID: 23247046 DOI: 10.1038/leu.2012.366] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nur77 and Nor1 are highly conserved orphan nuclear receptors. We have recently reported that nur77(-/-)nor1(-/-) mice rapidly develop acute myeloid leukemia (AML) and that Nur77 and Nor1 transcripts were universally downregulated in human AML blasts. These findings indicate that Nur77 and Nor1 function as leukemia suppressors. We further demonstrated silencing of Nur77 and Nor1 in leukemia stem cells (LSCs). We here report that inhibition of histone deacetylase (HDAC) using the specific class I HDAC inhibitor SNDX-275 restored the expression of Nur77/Nor1 and induced expression of activator protein 1 transcription factors c-Jun and JunB, and of death receptor TRAIL, in AML cells and in CD34(+)/38(-) AML LSCs. Importantly, SNDX-275 induced extensive apoptosis in AML cells, which could be suppressed by silencing nur77 and nor1. In addition, pro-apoptotic proteins Bim and Noxa were transcriptionally upregulated by SNDX-275 in AML cells and in LSCs. Our present work is the first report of a novel mechanism of HDAC inhibitor-induced apoptosis in AML that involves restoration of the silenced nuclear receptors Nur77 and Nor1, activation of activator protein 1 transcription factors, a death receptor and pro-apoptotic proteins.
Collapse
|
12
|
|
13
|
Wolf C, Linden DEJ. Biological pathways to adaptability - interactions between genome, epigenome, nervous system and environment for adaptive behavior. GENES BRAIN AND BEHAVIOR 2011; 11:3-28. [DOI: 10.1111/j.1601-183x.2011.00752.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Harn HJ, Lin SZ, Lin PC, Liu CY, Liu PY, Chang LF, Yen SY, Hsieh DK, Liu FC, Tai DF, Chiou TW. Local interstitial delivery of z-butylidenephthalide by polymer wafers against malignant human gliomas. Neuro Oncol 2011; 13:635-48. [PMID: 21565841 DOI: 10.1093/neuonc/nor021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have shown that the natural compound z-butylidenephthalide (Bdph), isolated from the chloroform extract of Angelica sinensis, has antitumor effects. Because of the limitation of the blood-brain barrier, the Bdph dosage required for treatment of glioma is relatively high. To solve this problem, we developed a local-release system with Bdph incorporated into a biodegradable polyanhydride material, p(CPP-SA; Bdph-Wafer), and investigated its antitumor effects. On the basis of in vitro release kinetics, we demonstrated that the Bdph-Wafer released 50% of the available Bdph by the sixth day, and the release reached a plateau phase (90% of Bdph) by the 30th day. To investigate the in situ antitumor effects of the Bdph-Wafer on glioblastoma multiforme (GBM), we used 2 xenograft animal models-F344 rats (for rat GBM) and nude mice (for human GBM)-which were injected with RG2 and DBTRG-05MG cells, respectively, for tumor formation and subsequently treated subcutaneously with Bdph-Wafers. We observed a significant inhibitory effect on tumor growth, with no significant adverse effects on the rodents. Moreover, we demonstrated that the antitumor effect of Bdph on RG2 cells was via the PKC pathway, which upregulated Nurr77 and promoted its translocation from the nucleus to the cytoplasm. Finally, to study the effect of the interstitial administration of Bdph in cranial brain tumor, Bdph-Wafers were surgically placed in FGF-SV40 transgenic mice. Our Bdph-Wafer significantly reduced tumor size in a dose-dependent manner. In summary, our study showed that p(CPP-SA) containing Bdph delivered a sufficient concentration of Bdph to the tumor site and effectively inhibited the tumor growth in the glioma.
Collapse
Affiliation(s)
- Horng-Jyh Harn
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li Y, Cong B, Ma C, Qi Q, Fu L, Zhang G, Min Z. Expression of Nurr1 during rat brain and spinal cord development. Neurosci Lett 2011; 488:49-54. [DOI: 10.1016/j.neulet.2010.10.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 10/18/2010] [Accepted: 10/31/2010] [Indexed: 10/18/2022]
|
16
|
Wu H, Lin Y, Li W, Sun Z, Gao W, Zhang H, Xie L, Jiang F, Qin B, Yan T, Chen L, Zhao Y, Cao X, Wu Y, Lin B, Zhou H, Wong AST, Zhang XK, Zeng JZ. Regulation of Nur77 expression by β-catenin and its mitogenic effect in colon cancer cells. FASEB J 2010; 25:192-205. [PMID: 20847229 DOI: 10.1096/fj.10-166462] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The orphan nuclear receptor Nur77 is an immediate-early response gene whose expression is rapidly induced by various extracellular stimuli. The aims of this study were to study the role of Nur77 expression in the growth and survival of colon cancer cells and the mechanism by which Nur77 expression was regulated. We showed that levels of Nur77 were elevated in a majority of human colon tumors (9/12) compared to their nontumorous tissues and that Nur77 expression could be strongly induced by different colonic carcinogens including deoxycholic acid (DCA). DCA-induced Nur77 expression resulted in up-regulation of antiapoptotic BRE and angiogenic VEGF, and it enhanced the growth, colony formation, and migration of colon cancer cells. In studying the mechanism by which Nur77 was regulated in colon cancer cells, we found that β-catenin was involved in induction of Nur77 expression through its activation of the transcriptional activity of AP-1 (c-Fos/c-Jun) that bound to and transactivated the Nur77 promoter. Together, our results demonstrate that Nur77 acts to promote the growth and survival of colon cancer cells and serves as an important mediator of the Wnt/β-catenin and AP-1 signaling pathways.
Collapse
Affiliation(s)
- Hua Wu
- Institute for Biomedical Research, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kim HJ, Kim JY, Lee SJ, Kim HJ, Oh CJ, Choi YK, Lee HJ, Do JY, Kim SY, Kwon TK, Choi HS, Lee MO, Park IS, Park KG, Lee KU, Lee IK. α-Lipoic acid prevents neointimal hyperplasia via induction of p38 mitogen-activated protein kinase/Nur77-mediated apoptosis of vascular smooth muscle cells and accelerates postinjury reendothelialization. Arterioscler Thromb Vasc Biol 2010; 30:2164-72. [PMID: 20829507 DOI: 10.1161/atvbaha.110.212308] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To explore whether α-lipoic acid (ALA), a naturally occurring antioxidant, inhibits neointimal hyperplasia by inducing apoptosis of vascular smooth muscle cells and to examine its potential effects on reendothelialization and platelet aggregation. METHODS AND RESULTS Restenosis and late stent thrombosis, caused by neointimal hyperplasia and delayed reendothelialization, are significant clinical problems of balloon angioplasty and drug-eluting stents. ALA treatment strongly induced apoptosis of vascular smooth muscle cells and enhanced the expression and cytoplasmic localization of Nur77, which triggers intrinsic apoptotic events. Small interfering RNA-mediated downregulation of Nur77 diminished this proapoptotic effect of ALA. Moreover, ALA increased p38 mitogen-activated protein kinase phosphorylation, and inhibition of p38 mitogen-activated protein kinase completely blocked ALA-induced vascular smooth muscle cell apoptosis and Nur77 induction and cytoplasmic localization. In balloon-injured rat carotid arteries, ALA enhanced Nur77 expression and increased TUNEL-positive apoptotic cells in the neointima, leading to inhibition of neointimal hyperplasia. This preventive effect of ALA was significantly reduced by infection of an adenovirus encoding Nur77 small hairpin (sh)RNA. Furthermore, ALA reduced basal apoptosis of human aortic endothelial cells and accelerated reendothelialization after balloon injury. ALA also suppressed arachidonic acid-induced platelet aggregation. CONCLUSIONS ALA could be a promising therapeutic agent to prevent restenosis and late stent thrombosis after angioplasty and drug-eluting stent implantation.
Collapse
Affiliation(s)
- Han-Jong Kim
- Department of Internal Medicine, Kyungpook National University School of Medicine, 50 Samduk-2Ga, Jung-Gu, Daegu 700-721, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Costello P, Nicolas R, Willoughby J, Wasylyk B, Nordheim A, Treisman R. Ternary Complex Factors SAP-1 and Elk-1, but Not Net, Are Functionally Equivalent in Thymocyte Development. THE JOURNAL OF IMMUNOLOGY 2010; 185:1082-92. [DOI: 10.4049/jimmunol.1000472] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Kang SA, Na H, Kang HJ, Kim SH, Lee MH, Lee MO. Regulation of Nur77 protein turnover through acetylation and deacetylation induced by p300 and HDAC1. Biochem Pharmacol 2010; 80:867-73. [PMID: 20438716 DOI: 10.1016/j.bcp.2010.04.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 04/24/2010] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
Abstract
Although the roles of Nur77, an orphan member of the nuclear hormone receptor superfamily, in the control of cellular proliferation, apoptosis, inflammation, and glucose metabolism, are well recognized, the molecular mechanism regulating the activity and expression of Nur77 is not fully understood. Acetylation of transcription factors has emerged recently as a major post-translational modification that regulates protein stability and transcriptional activity. Here, we examined whether Nur77 is acetylated, and we characterized potential associated factors. First, Nur77 was found to be an acetylated protein when examined by immunoprecipitation and western blotting using acetyl protein-specific antibodies. Second, expression of p300, which possesses histone acetyltransferase activity, enhanced the acetylation and protein stability of Nur77. Treatment with a histone deacetylase (HDAC) inhibitor, trichostatin A, also increased Nur77 acetylation. Among the several types of HDACs, HDAC1 was found as the major enzyme affecting protein level of Nur77. HDAC1 decreased the acetylation level, protein level, and transcriptional activity of Nur77. Interestingly, overexpression of Nur77 induced expression of both p300 and HDAC1. Finally, the expression of Nur77 increased along with that of p300, but decreased with induction of HDAC1 after treatment with epithelial growth factor, nerve growth factor, or 6-mercaptopurine, suggesting that the self-control of the acetylation status contributes to the transient induction of Nur77 protein. Taken together, these results demonstrate that acetylation of Nur77 is modulated by p300 and HDAC1, and suggest that acetylation is an important post-translational modification for the rapid turnover of Nur77 protein.
Collapse
Affiliation(s)
- Shin-Ae Kang
- College of Pharmacy, Bio-MAX Institute, and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
20
|
Involvement of induction and mitochondrial targeting of orphan nuclear receptor Nur77 in 6-OHDA-induced SH-SY5Y cell death. Neurochem Int 2010; 56:620-6. [DOI: 10.1016/j.neuint.2010.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 12/21/2009] [Accepted: 01/13/2010] [Indexed: 11/22/2022]
|
21
|
Li Y, Ohashi R, Naito M. Expression of the nerve growth factor-induced gene B-beta in the developing rat brain and retina. ACTA ACUST UNITED AC 2010; 72:23-34. [PMID: 19789410 DOI: 10.1679/aohc.72.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The nerve growth factor-induced gene B-beta (NGFI-Bbeta, Nurr1) is a member of the nuclear receptor superfamily that is expressed predominantly in the central nervous system. We used an antibody against the human NGFI-Bbeta to observe the protein expression in neuronal cells in the retina, cerebral neocortex, and midbrain of humans and rats. To provide further insight into the role of NGFI-Bbeta in the differentiation of neuronal cells, we also examined the expression of NGFI-Bbeta in rat ontogeny. A few cells in the midbrain showed the expression of NGFIBbeta from 12 days of gestation, and NGFI-Bbeta positive cells increased in the neocortex, claustrum, thalamus and hypothalamus in the subsequent fetal days. NGFI-Bbeta-positive cells appeared in the inner nuclear layer of the retina at 18 days of gestation and also in the ganglion cell layer after birth. An immunohistochemical study on the expression of proliferating cell nuclear antigen (PCNA) demonstrated that NGFI-Bbeta-positive cells were not proliferating cells. These findings suggest that NGFI-Bbeta plays an important role during the postmitotic differentiation of neuronal cells in the brain and retina.
Collapse
Affiliation(s)
- Yingmin Li
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | | | | |
Collapse
|
22
|
Li X, Tai HH. Activation of thromboxane A(2) receptors induces orphan nuclear receptor Nurr1 expression and stimulates cell proliferation in human lung cancer cells. Carcinogenesis 2009; 30:1606-13. [PMID: 19570744 DOI: 10.1093/carcin/bgp161] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previous studies implicate that activation of thromboxane A(2) receptor (TP) induced cell proliferation and transformation in several cell lines. We report here that the activation of TP by its agonist, [1S-[1alpha, 2alpha (Z), 3beta (1E, 3S*), 4alpha]]-7-[3-[3-hydroxy-4-(4-iodophenoxy)-1-butenyl]-7-oxabicyclo [2.2.1] hept-2-yl]-5-heptenoic acid (I-BOP), induced Nurr1 expression and stimulated proliferation of human lung cancer cells. Nurr1, an orphan nuclear receptor in the nuclear receptor subfamily 4A subfamily, has been implicated in cell proliferation, differentiation and apoptosis. I-BOP markedly induced Nurr1 messenger RNA and protein levels as compared with other subfamily members, Nur77 and Nor-1. The signaling pathways of I-BOP-induced Nurr1 expression were examined by using various inhibitors of signaling molecules. The induction of Nurr1 expression by I-BOP appeared to be mediated through protein kinase A (PKA)/cAMP response element binding (CREB), protein kinase C and mitogen-activated protein kinase/extracellular signal-regulated kinase pathways and not related to epidermal growth factor receptor and prostaglandin E(2) pathways. Transcriptional activation of Nurr1 gene by I-BOP was further investigated at the promoter level in H157 cells. 5'-Deletion analysis, site-directed mutagenesis and luciferase reporter assay demonstrated that Nurr1 expression was induced by I-BOP in a PKA/CREB-dependent manner. Further studies have revealed that Nurr1 may mediate cyclin D1 expression and I-BOP-induced cell proliferation in H157 cells since small interfering RNA of Nurr1 blocked I-BOP-induced cyclin D1 expression and cell proliferation and also decreased cell growth rate. These results provide strong evidence that Nurr1 plays a significant role in cell proliferation and may mediate TP agonist-induced proliferation in lung cancer cells.
Collapse
Affiliation(s)
- Xiuling Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA
| | | |
Collapse
|
23
|
Liver X receptor is a regulator of orphan nuclear receptor NOR-1 gene transcription in adipocytes. Int J Obes (Lond) 2009; 33:519-24. [PMID: 19238156 DOI: 10.1038/ijo.2009.32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The liver X receptors (LXRs) are ligand-activated nuclear transcription factors that have been shown to play major roles in lipid, glucose and cholesterol metabolism. Recently, members of the NR4A orphan nuclear receptor family have also been shown to regulate the expression of important genes in metabolically active tissues such as liver, adipose and skeletal muscle. Here, we investigated the role of LXRs to regulate the expression of the nuclear receptor NOR-1 (neuron-derived orphan receptor-1) in adipocytes. APPROACH White and brown adipose tissues from wild-type, LXRalpha-/-- and LXRalpha:beta-deficient mice were collected from animals at room temperature or following cold exposure to measure NOR-1 mRNA. The expression of NOR-1 and its promoter activity in response to LXR ligands were determined in cultured primary brown adipocytes or mouse embryo fibroblasts derived from wild-type or LXRalpha-/- mice differentiated into adipocytes. RESULTS In LXRalpha-/-- and LXRalpha:beta-deficient adipocytes, basal levels of NOR-1 were significantly reduced while retaining an equivalent proportional induction by beta-adrenergic agonists. This reduced basal expression of NOR-1 in adipose tissue from LXR-deficient mice is a cell-autonomous event as it was also preserved in adipocytes differentiated from mouse embryo fibroblasts derived from these mice. In cultured primary brown adipocytes or cell lines, the expression of NOR-1 increased in response to an LXR agonist. A DNA sequence element (DR-4) capable of binding LXRs was found at -997 bp of the NOR-1 promoter, which was shown to be functional by promoter reporter gene activity, gel shift and chromatin immunoprecipitation assays. CONCLUSION These data describe a new role for LXR to regulate NOR-1 gene expression in adipocytes and demonstrate that these two nuclear receptors have an interdependent regulatory relationship, in addition to each being involved in the control of metabolic fuel usage.
Collapse
|
24
|
Chao LC, Bensinger SJ, Villanueva CJ, Wroblewski K, Tontonoz P. Inhibition of adipocyte differentiation by Nur77, Nurr1, and Nor1. Mol Endocrinol 2008; 22:2596-608. [PMID: 18945812 PMCID: PMC2610364 DOI: 10.1210/me.2008-0161] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Members of the nuclear receptor 4A (NR4A) subgroup of nuclear receptors have been implicated in the regulation of glucose and lipid metabolism in insulin-sensitive tissues such as liver and skeletal muscle. However, their function in adipocytes is not well defined. Previous studies have reported that these receptors are rapidly up-regulated after treatment of 3T3-L1 preadipocytes with an adipogenic cocktail. We show here that although Nur77 expression is acutely induced by cAMP agonists in 3T3-L1 cells, it is not induced by other adipogenic stimuli, such as peroxisome proliferator-activated receptor-gamma ligands, nor is it induced during the differentiation of 3T3-F442A preadipocytes, suggesting that Nur77 induction is not an obligatory feature of preadipocyte differentiation. We further demonstrate that inflammatory signals that antagonize differentiation, such as TNFalpha and lipopolysaccharide, acutely induce Nur77 expression both in vitro and in vivo. We also show that NR4A expression in adipose tissue is responsive to fasting/refeeding. Retroviral transduction of each of the NR4A receptors (Nur77, Nurr1, and NOR1) into either 3T3-L1 or 3T3-F442A preadipocytes potently inhibits adipogenesis. Interestingly, NR4A-mediated inhibition of adipogenesis cannot be rescued by peroxisome proliferator-activated receptor-gamma overexpression or activation. Transcriptional profiling of Nur77-expressing preadipocytes led to the identification of gap-junction protein alpha1 (Gja1) and tolloid-like 1 (Tll1) as Nur77-responsive genes. Remarkably, retroviral expression of either Gja1 or Tll1 in 3T3-L1 preadipocytes also inhibited adipocyte differentiation, implicating these genes as potential mediators of Nur77's effects on adipogenesis. Finally, we show that Nur77 expression inhibits mitotic clonal expansion of preadipocytes, providing an additional mechanism by which Nur77 may inhibit adipogenesis.
Collapse
Affiliation(s)
- Lily C Chao
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California 90095-1662, USA
| | | | | | | | | |
Collapse
|
25
|
Lin PC, Chen YL, Chiu SC, Yu YL, Chen SP, Chien MH, Chen KY, Chang WL, Lin SZ, Chiou TW, Harn HJ. Orphan nuclear receptor, Nurr-77 was a possible target gene of butylidenephthalide chemotherapy on glioblastoma multiform brain tumor. J Neurochem 2008; 106:1017-26. [DOI: 10.1111/j.1471-4159.2008.05432.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Pearen MA, Myers SA, Raichur S, Ryall JG, Lynch GS, Muscat GEO. The orphan nuclear receptor, NOR-1, a target of beta-adrenergic signaling, regulates gene expression that controls oxidative metabolism in skeletal muscle. Endocrinology 2008; 149:2853-65. [PMID: 18325999 DOI: 10.1210/en.2007-1202] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
beta 1-3-Adrenoreceptor (AR)-deficient mice are unable to regulate energy expenditure and develop diet-induced obesity on a high-fat diet. We determined previously that beta2-AR agonist treatment activated expression of the mRNA encoding the orphan nuclear receptor, NOR-1, in muscle cells and plantaris muscle. Here we show that beta2-AR agonist treatment significantly and transiently activated the expression of NOR-1 (and the other members of the NR4A subgroup) in slow-twitch oxidative soleus muscle and fast-twitch glycolytic tibialis anterior muscle. The activation induced by beta-adrenergic signaling is consistent with the involvement of protein kinase A, MAPK, and phosphorylation of cAMP response element-binding protein. Stable cell lines transfected with a silent interfering RNA targeting NOR-1 displayed decreased palmitate oxidation and lactate accumulation. In concordance with these observations, ATP production in the NOR-1 silent interfering RNA (but not control)-transfected cells was resistant to (azide-mediated) inhibition of oxidative metabolism and expressed significantly higher levels of hypoxia inducible factor-1alpha. In addition, we observed the repression of genes that promote fatty acid oxidation (peroxisomal proliferator-activated receptor-gamma coactivator-1alpha/beta and lipin-1alpha) and trichloroacetic acid cycle-mediated carbohydrate (pyruvate) oxidation [pyruvate dehydrogenase phosphatase 1 regulatory and catalytic subunits (pyruvate dehydrogenase phosphatases-1r and -c)]. Furthermore, we observed that beta2-AR agonist administration in mouse skeletal muscle induced the expression of genes that activate fatty acid oxidation and modulate pyruvate use, including PGC-1alpha, lipin-1alpha, FOXO1, and PDK4. Finally, we demonstrate that NOR-1 is recruited to the lipin-1alpha and PDK-4 promoters, and this is consistent with NOR-1-mediated regulation of these genes. In conclusion, NOR-1 is necessary for oxidative metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Michael A Pearen
- Institute for Molecular Bioscience, The University of Queensland, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Kim BY, Kim H, Cho EJ, Youn HD. Nur77 upregulates HIF-alpha by inhibiting pVHL-mediated degradation. Exp Mol Med 2008; 40:71-83. [PMID: 18305400 DOI: 10.3858/emm.2008.40.1.71] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In this study, we investigated the role of Nur77, an orphan nuclear receptor, in HIF-alpha transcriptional activity. We found that Nur77 associates and stabilizes HIF-1alpha via indirect interaction. Nur77 was found to interact with pVHL in vivo via the alpha-domain of pVHL. By binding to pVHL, Nur77 competed with elongin C for pVHL binding. Moreover, Nur77-binding to pVHL inhibited the pVHL-mediated ubiquitination of HIF-1alpha and ultimately increased the stability and transcriptional activity of HIF-1alpha. The ligand-binding domain of Nur77 was found to interact with pVHL and the expression of this ligand-binding domain was sufficient to stabilize and transactivate HIF-1alpha. Under the conditions that cobalt chloride was treated or pVHL was knocked down, Nur77 could not stabilize HIF-alpha. Moreover, Nur77 could not further stabilize HIF-2alpha in A498/VHL stable cells, which is consistent with our finding that Nur77 indirectly stabilizes HIF-alpha by binding to pVHL. Thus, our results suggest that an orphan nuclear receptor Nur77 binds to pVHL, thereby stabilizes and increases HIF-alpha transcriptional activity under the non-hypoxic conditions.
Collapse
Affiliation(s)
- Bu Yeon Kim
- Department of Biochemistry and Molecular Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea
| | | | | | | |
Collapse
|
28
|
Marampon F, Casimiro MC, Fu M, Powell MJ, Popov VM, Lindsay J, Zani BM, Ciccarelli C, Watanabe G, Lee RJ, Pestell RG. Nerve Growth factor regulation of cyclin D1 in PC12 cells through a p21RAS extracellular signal-regulated kinase pathway requires cooperative interactions between Sp1 and nuclear factor-kappaB. Mol Biol Cell 2008; 19:2566-78. [PMID: 18367547 DOI: 10.1091/mbc.e06-12-1110] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The PC12 pheochromocytoma cell line responds to nerve growth factor (NGF) by exiting from the cell cycle and differentiating to induce extending neurites. Cyclin D1 is an important regulator of G1/S phase cell cycle progression, and it is known to play a role in myocyte differentiation in cultured cells. Herein, NGF induced cyclin D1 promoter, mRNA, and protein expression via the p21(RAS) pathway. Antisense- or small interfering RNA to cyclin D1 abolished NGF-mediated neurite outgrowth, demonstrating the essential role of cyclin D1 in NGF-mediated differentiation. Expression vectors encoding mutants of the Ras/mitogen-activated protein kinase pathway, and chemical inhibitors, demonstrated NGF induction of cyclin D1 involved cooperative interactions of extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase pathways downstream of p21(RAS). NGF induced the cyclin D1 promoter via Sp1, nuclear factor-kappaB, and cAMP-response element/activated transcription factor sites. NGF induction via Sp1 involved the formation of a Sp1/p50/p107 complex. Cyclin D1 induction by NGF governs differentiation and neurite outgrowth in PC12 cells.
Collapse
Affiliation(s)
- Francesco Marampon
- Department of Cancer Biology and Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yoo YG, Na TY, Yang WK, Kim HJ, Lee IK, Kong G, Chung JH, Lee MO. 6-Mercaptopurine, an activator of Nur77, enhances transcriptional activity of HIF-1alpha resulting in new vessel formation. Oncogene 2006; 26:3823-34. [PMID: 17146432 DOI: 10.1038/sj.onc.1210149] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1alpha) plays a central role in oxygen homeostasis. Previously, we reported that the orphan nuclear receptor Nur77 functions in stabilizing HIF-1alpha. Here, we demonstrate that 6-mercaptopurine (6-MP), an activator of the NR4A family members, enhances transcriptional activity of HIF-1. 6-MP enhanced the protein-level of HIF-1alpha as well as vascular endothelial growth factor (VEGF) in a dose- and time-dependent manner. The induction of HIF-1alpha was abolished by the transfection of either a dominant-negative Nur77 mutant or si-Nur77, indicating a critical role of Nur77 in the 6-MP action. The HIF-1alpha protein level remained up to 60 min in the presence of 6-MP when de novo protein synthesis was blocked by cycloheximide, suggesting that 6-MP induces stabilization of the HIF-1alpha protein. The fact that 6-MP decreased the association of HIF-1alpha with von Hippel-Lindau protein and the acetylation of HIF-1alpha, may explain how 6-MP induced stability of HIF-1alpha. Further, 6-MP induced the transactivation function of HIF-1alpha by recruiting co-activator cyclic-AMP-response-element-binding protein. Finally, 6-MP enhanced the expression of HIF-1alpha and VEGF, and the formation of capillary tubes in human umbilical vascular endothelial cells. Together, our results provide a new insight for 6-MP action in the stabilization of HIF-1alpha and imply a potential application of 6-MP in hypoxia-associated human vascular diseases.
Collapse
MESH Headings
- Cell Line, Tumor
- DNA-Binding Proteins/drug effects
- DNA-Binding Proteins/metabolism
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/drug effects
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immunosuppressive Agents/pharmacology
- Mercaptopurine/pharmacology
- Neovascularization, Physiologic/drug effects
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/drug effects
- Receptors, Steroid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/drug effects
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- Vascular Endothelial Growth Factor A/drug effects
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Y-G Yoo
- College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Benoit G, Cooney A, Giguere V, Ingraham H, Lazar M, Muscat G, Perlmann T, Renaud JP, Schwabe J, Sladek F, Tsai MJ, Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev 2006; 58:798-836. [PMID: 17132856 DOI: 10.1124/pr.58.4.10] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Half of the members of the nuclear receptors superfamily are so-called "orphan" receptors because the identity of their ligand, if any, is unknown. Because of their important biological roles, the study of orphan receptors has attracted much attention recently and has resulted in rapid advances that have helped in the discovery of novel signaling pathways. In this review we present the main features of orphan receptors, discuss the structure of their ligand-binding domains and their biological functions. The paradoxical existence of a pharmacology of orphan receptors, a rapidly growing and innovative field, is highlighted.
Collapse
Affiliation(s)
- Gérard Benoit
- Unité Mixte de Recherche 5161 du Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique 1237, Institut Fédératif de Recherche 128 BioSciences Lyon-Gerland, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kim H, Kim BY, Soh JW, Cho EJ, Liu JO, Youn HD. A novel function of Nur77: physical and functional association with protein kinase C. Biochem Biophys Res Commun 2006; 348:950-6. [PMID: 16904076 DOI: 10.1016/j.bbrc.2006.07.167] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 07/21/2006] [Indexed: 01/11/2023]
Abstract
Despite the involvement in diverse physiological process and pleiotropic expression profile, the molecular functions of Nur77 are not likely to be fully elucidated. From the effort to find a novel function of Nur77, we detected molecular interaction between Nur77 and PKC. Details of interaction revealed that C-terminal ligand binding domain (LBD) of Nur77 specifically interacted with highly conserved glycine-rich loop of PKC required for catalytic activity. This molecular interaction resulted in inhibition of catalytic activity of PKCtheta by Nur77. C-terminal LBD of Nur77 is sufficient for inhibiting the phosphorylation of substrate by PKCtheta. Ultimately, inhibition of catalytic activity by Nur77 is deeply associated with repression of PKC-mediated activation of AP-1 and NF-kappaB. Therefore, these findings demonstrate a novel function of Nur77 as a PKC inhibitor and give insights into molecular mechanisms of various Nur77-mediated physiological phenomena.
Collapse
Affiliation(s)
- Hyungsoo Kim
- Department of Biochemistry and Molecular Biology, Cancer Research Institute, Interdisciplinary Program in Genetic Engineering, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, Republic of Korea
| | | | | | | | | | | |
Collapse
|
32
|
Lindecke A, Korte M, Zagrebelsky M, Horejschi V, Elvers M, Widera D, Prüllage M, Pfeiffer J, Kaltschmidt B, Kaltschmidt C. Long-term depression activates transcription of immediate early transcription factor genes: involvement of serum response factor/Elk-1. Eur J Neurosci 2006; 24:555-63. [PMID: 16903857 DOI: 10.1111/j.1460-9568.2006.04909.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Long-term depression (LTD) is one of the paradigms used in vivo or ex vivo for studying memory formation. In order to identify genes with potential relevance for memory formation we used mouse organotypic hippocampal slice cultures in which chemical LTD was induced by applications of 3,5-dihydroxyphenylglycine (DHPG). The induction of chemical LTD was robust, as monitored electrophysiologically. Gene expression analysis after chemical LTD induction was performed using cDNA microarrays containing >7,000 probes. The DHPG-induced expression of immediate early genes (c-fos, junB, egr1 and nr4a1) was subsequently verified by TaqMan polymerase chain reaction. Bioinformatic analysis suggested a common regulator element [serum response factor (SRF)/Elk-1 binding sites] within the promoter region of these genes. Indeed, here we could show a DHPG-dependent binding of SRF at the SRF response element (SRE) site within the promoter region of c-fos and junB. However, SRF binding to egr1 promoter sites was constitutive. The phosphorylation of the ternary complex factor Elk-1 and its localization in the nucleus of hippocampal neurones after DHPG treatment was shown by immunofluorescence using a phosphospecific antibody. We suggest that LTD leads to SRF/Elk-1-regulated gene expression of immediate early transcription factors, which could in turn promote a second broader wave of gene expression.
Collapse
Affiliation(s)
- Antje Lindecke
- Institut für Neurobiochemie Universität Witten/Herdecke, Stockumer Strasse 10, D-58448 Witten, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cai Z, Wang Y, Yu W, Xiao J, Li Y, Liu L, Zhu C, Tan K, Deng Y, Yuan W, Liu M, Wu X. hnulp1, a basic helix-loop-helix protein with a novel transcriptional repressive domain, inhibits transcriptional activity of serum response factor. Biochem Biophys Res Commun 2006; 343:973-81. [PMID: 16574069 DOI: 10.1016/j.bbrc.2006.02.187] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
Many bHLH proteins are involved in cardiac development and cardiovascular diseases. Herein, we identified and characterized the human homologue (hnulp1) of mouse gene nulp1. The predicted protein contains a bHLH domain and a DUF654 domain in N-terminal and C-terminal, respectively. Northern blot analysis shows that a 2.3-kb transcript expressed broadly in early human embryonic and adult tissues, especially with a higher level in adult heart. hnulp1 is a transcription repressor when fused to GAL4 DNA-binding domain and co-transfected with VP-16, in which DUF654 motif represents the basal transcriptional repressive activity. Treatment of cells with trichostatin A can relieve this repression, suggesting that the DUF654 motif acts through increasing deacetylase activity at the GAL4-driven promoter. Overexpression of hnulp1 protein in COS-7 cells inhibits the transcriptional activity of serum response factor (SRF), suggesting that hnulp1 may act as a novel bHLH transcriptional repressor in SRF signaling pathway to mediate cellular functions.
Collapse
Affiliation(s)
- Zhenyu Cai
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zeng H, Qin L, Zhao D, Tan X, Manseau EJ, Van Hoang M, Senger DR, Brown LF, Nagy JA, Dvorak HF. Orphan nuclear receptor TR3/Nur77 regulates VEGF-A-induced angiogenesis through its transcriptional activity. ACTA ACUST UNITED AC 2006; 203:719-29. [PMID: 16520388 PMCID: PMC2118245 DOI: 10.1084/jem.20051523] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Vascular endothelial growth factor (VEGF)-A has essential roles in vasculogenesis and angiogenesis, but the downstream steps and mechanisms by which human VEGF-A acts are incompletely understood. We report here that human VEGF-A exerts much of its angiogenic activity by up-regulating the expression of TR3 (mouse homologue Nur77), an immediate-early response gene and orphan nuclear receptor transcription factor previously implicated in tumor cell, lymphocyte, and neuronal growth and apoptosis. Overexpression of TR3 in human umbilical vein endothelial cells (HUVECs) resulted in VEGF-A–independent proliferation, survival, and induction of several cell cycle genes, whereas expression of antisense TR3 abrogated the response to VEGF-A in these assays and also inhibited tube formation. Nur77 was highly expressed in several types of VEGF-A–dependent pathological angiogenesis in vivo. Also, using a novel endothelial cell-selective retroviral targeting system, overexpression of Nur77 DNA potently induced angiogenesis in the absence of exogenous VEGF-A, whereas Nur77 antisense strongly inhibited VEGF-A–induced angiogenesis. B16F1 melanoma growth and angiogenesis were greatly inhibited in Nur77−/− mice. Mechanistic studies with TR3/Nur77 mutants revealed that TR3/Nur77 exerted most of its effects on cultured HUVECs and its pro-angiogenic effects in vivo, through its transactivation and DNA binding domains (i.e., through transcriptional activity).
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/immunology
- Cell Cycle/drug effects
- Cell Cycle/physiology
- Cell Line, Tumor
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- Fetal Blood/cytology
- Fetal Blood/metabolism
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Humans
- Lymphocytes/metabolism
- Mice
- Mice, Knockout
- Mice, Nude
- Neovascularization, Physiologic/drug effects
- Neovascularization, Physiologic/physiology
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Protein Structure, Tertiary/genetics
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Retroviridae
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transduction, Genetic/methods
- Vascular Endothelial Growth Factor A/administration & dosage
Collapse
Affiliation(s)
- Huiyan Zeng
- Department of Pathology, Gastroenterology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Maxwell MA, Muscat GEO. The NR4A subgroup: immediate early response genes with pleiotropic physiological roles. NUCLEAR RECEPTOR SIGNALING 2006; 4:e002. [PMID: 16604165 PMCID: PMC1402209 DOI: 10.1621/nrs.04002] [Citation(s) in RCA: 338] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 12/20/2005] [Indexed: 12/20/2022]
Abstract
The nuclear hormone receptor (NR) superfamily includes the orphan NR4A subgroup, comprised of Nur77 (NR4A1), Nurr1 (NR4A2) and NOR-1 (NR4A3). These NRs are classified as early response genes, are induced by a diverse range of signals, including fatty acids, stress, growth factors, cytokines, peptide hormones, phorbol esters, neurotransmitters, and physical stimuli (for example magnetic fields, shear stress). The ability to sense and rapidly respond to changes in the cellular environment thus appears to be a hallmark of this subfamily. The members of the NR4A subgroup are well conserved in the DNA binding domain (~91-95%) and the C-terminal ligand-binding domain (~60%), but are divergent in the N-terminal AB region. These receptors bind as monomers, homodimers and heterodimers with RXRs (to mediate retinoid signaling) to different permutations of the canonical NR binding motif. The NR4A subgroup activates gene expression in a constitutive ligand-independent manner. NR4A-mediated trans-activation (LBD) involves unusually active N-terminal AF-1 domains that mediate coactivator recruitment. Moreover, the NR4A receptors encode atypical LBDs and AF-2 domains. For example, the LBDs contain no cavity due to bulky hydrophobic residue side chains, and lack the classical coactivator-binding cleft constituted by helices 3, 4 and 12. However, a hydrophobic patch exists between helices 11 and 12, that encodes a novel cofactor interface that modulates transcriptional activity. In line with the pleiotropic physiological stimuli that induce the NR4A subgroup, these orphan NRs have been implicated in cell cycle regulation (and apoptosis), neurological disease, steroidogenesis, inflammation, carcinogenesis and atherogenesis.
Collapse
Affiliation(s)
- Megan A Maxwell
- Institute for Molecular Bioscience, Division of Molecular Genetics and Development, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | | |
Collapse
|
36
|
Kanzleiter T, Schneider T, Walter I, Bolze F, Eickhorst C, Heldmaier G, Klaus S, Klingenspor M. Evidence for Nr4a1 as a cold-induced effector of brown fat thermogenesis. Physiol Genomics 2005; 24:37-44. [PMID: 16219868 DOI: 10.1152/physiolgenomics.00204.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute cold exposure leads to norepinephrine release in brown adipose tissue (BAT) and activates uncoupling protein (UCP)1-mediated nonshivering thermogenesis. Chronic sympathetic stimulation is known to initiate mitochondrial biogenesis, UCP1 expression, hyperplasia of BAT, and recruitment of brown adipocytes in white adipose tissue (WAT) depots. Despite distinct functions of BAT and WAT in energy balance, only a few genes are exclusively expressed in either tissue. We identified NUR77 (Nr4a1), an orphan receptor, to be induced transiently in brown adipocytes in response to beta-adrenergic stimulation and in BAT of cold-exposed mice. Subsequent reporter gene assays demonstrated an inhibitory action of NUR77 on basal and peroxisome proliferator-activated receptor (PPAR)gamma/retinoid X receptor (RXR)alpha-mediated transactivation of the Ucp1 enhancer in heterologous cotransfection experiments. Despite this function of NUR77 in the control of Ucp1 gene expression, nonshivering thermogenesis was not affected in Nur77 knockout mice. However, we observed a superinduction of Nor1 in BAT of cold-exposed knockout mice. We conclude that NUR77 is a cold-induced negative regulator of Ucp1, but phenotypic consequences in knockout mice are compensated by functional redundancy of Nor1.
Collapse
Affiliation(s)
- Timo Kanzleiter
- Department of Animal Physiology, Biology Faculty, Philipps University-Marburg, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Knapska E, Kaczmarek L. A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog Neurobiol 2005; 74:183-211. [PMID: 15556287 DOI: 10.1016/j.pneurobio.2004.05.007] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Accepted: 05/26/2004] [Indexed: 11/25/2022]
Abstract
Zif268 is a transcription regulatory protein, the product of an immediate early gene. Zif268 was originally described as inducible in cell cultures; however, it was later shown to be activated by a variety of stimuli, including ongoing synaptic activity in the adult brain. Recently, mice with experimentally mutated zif268 gene have been obtained and employed in neurobiological research. In this review we present a critical overview of Zif268 expression patterns in the naive brain and following neuronal stimulation as well as functional data with Zif268 mutants. In conclusion, we suggest that Zif268 expression and function should be considered in a context of neuronal activity that is tightly linked to neuronal plasticity.
Collapse
Affiliation(s)
- Ewelina Knapska
- Department of Neurophysiology, Nencki Institute, Pasteura 3, 02-093 Warsaw, Poland
| | | |
Collapse
|
38
|
Belluardo N, Olsson PA, Mudo' G, Sommer WH, Amato G, Fuxe K. Transcription factor gene expression profiling after acute intermittent nicotine treatment in the rat cerebral cortex. Neuroscience 2005; 133:787-96. [PMID: 15890456 DOI: 10.1016/j.neuroscience.2005.01.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 12/22/2004] [Accepted: 01/26/2005] [Indexed: 10/25/2022]
Abstract
Several studies in different in vitro and in vivo models have demonstrated neuroprotective effects of nicotinic receptor agonists and indirect trophic actions of nicotine on brain are suggested from observations describing nicotine as a cognitive enhancer by increasing vigilance and improving learning and memory. While an increasing number of studies have given evidence of neuroprotective and neurotrophic effects of nicotine treatment, the molecular mechanism mediating the neurotrophic effects of nicotine are not fully understood. Previously in an analysis of several neurotrophic factors as possible mediators of nicotine-induced neuroprotection and/or neurotrophic effects we could reveal that an acute intermittent nicotine treatment increases fibroblast growth factor-2 mRNA and protein in several brain regions of rat brain. Even if other studies have demonstrated in different paradigms that nicotine administration modulates expression level of a variety of genes, there is still a lack of indication which candidate genes, involved in neuroprotective responses are modulated by nicotine. In the present work we have used a microarray assay to further find and characterize new genes responsive to acute intermittent nicotine treatment and linked to neuroprotection. Therefore, we used Rat Genome U34A Affymetrix GeneChip arrays containing about 8800 probe sets to characterize transcriptional responses in the rat parietal cortex after acute intermittent nicotine treatment. We focused our attention to expression of transcription factors and several of them were up- or down-regulated by nicotine, among these Nr4a1 (Nurr77), Egr-1 and Egr-2. In situ hybridization was used to corroborate the microarray data and to reveal further spatial and temporal patterns of these nicotine induced genes. Taken together the present results identified several novel candidate genes modified by acute intermittent nicotine exposure and as such potentially involved in neuroprotective-neurotrophic actions.
Collapse
Affiliation(s)
- N Belluardo
- Department of Experimental Medicine, Division of Human Physiology, University of Palermo, Corso Tukory 129, 90134 Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
39
|
Yoo YG, Yeo MG, Kim DK, Park H, Lee MO. Novel Function of Orphan Nuclear Receptor Nur77 in Stabilizing Hypoxia-inducible Factor-1α. J Biol Chem 2004; 279:53365-73. [PMID: 15385570 DOI: 10.1074/jbc.m408554200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypoxia-inducible factor-1alpha (HIF-1alpha) plays a central role in oxygen homeostasis by inducing the expression of a broad range of genes in a hypoxia-dependent manner. Here, we show that the orphan nuclear receptor Nur77 is an important regulator of HIF-1alpha. Under hypoxic conditions, Nur77 protein and transcripts were induced in a time-dependent manner. When Nur77 was exogenously introduced, it enhanced the transcriptional activity of HIF-1, whereas the dominant negative Nur77 mutant abolished the function of HIF-1. The HIF-1alpha protein was greatly increased and completely localized in the nucleus when coexpressed with Nur77. The N-terminal transactivation domain of Nur77 was required and sufficient for the activation of HIF-1alpha. The association of HIF-1alpha with von Hippel-Lindau protein was not affected, whereas that with mouse double minute 2 (MDM2) was greatly reduced in the presence of Nur77. Further we found that the expression of MDM2 was repressed at transcription level in the presence of Nur77 as well as under hypoxic conditions. Finally, PD98059 decreased Nur77-induced HIF-1alpha stability and recovered MDM2 expression, indicating that the extracellular signal-regulated kinase pathway is critical in the Nur77-induced activation of HIF-1alpha. Together, our results demonstrate a novel function for Nur77 in the stabilization of HIF-1alpha and suggest a potential role for Nur77 in tumor progression and metastasis.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Line
- Cell Line, Tumor
- Cell Nucleus/metabolism
- DNA-Binding Proteins/physiology
- Disease Progression
- Enzyme Inhibitors/pharmacology
- Flavonoids/pharmacology
- Genes, Dominant
- Green Fluorescent Proteins/metabolism
- Humans
- Hypoxia
- Hypoxia-Inducible Factor 1, alpha Subunit
- Immunoprecipitation
- Mice
- Microscopy, Fluorescence
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Neoplasm Metastasis
- Nuclear Proteins/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Plasmids/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-mdm2
- Receptors, Cytoplasmic and Nuclear
- Receptors, Steroid
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription, Genetic
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- Young-Gun Yoo
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Korea
| | | | | | | | | |
Collapse
|
40
|
Wycuff DR, Yanites HL, Marriott SJ. Identification of a functional serum response element in the HTLV-I LTR. Virology 2004; 324:540-53. [PMID: 15207639 DOI: 10.1016/j.virol.2004.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 03/15/2004] [Accepted: 04/07/2004] [Indexed: 11/19/2022]
Abstract
In response to various mitogenic signals, serum response factor (SRF) activates cellular gene expression after binding to its cognate target sequence (CArG box) located within a serum response element (SRE). SRF is particularly important in T cell activation, and we now report that SRF activates basal transcription from the human T-cell leukemia virus-I (HTLV-I) long terminal repeat (LTR). A DNA element, with similarity to the consensus cellular CArG box found in the c-fos promoter centered approximately 120 base pairs upstream from the viral transcription start site, has been identified and named the vCArG box. SRF activation of gene expression from the LTR was localized to the vCArG box, and mutation of this site abolished SRF responsiveness. An oligonucleotide probe containing the vCArG box bound purified SRF, and a complex formed on this probe with nuclear extract was supershifted by anti-SRF antibody. Moreover, a biotinylated probe containing the vCArG box bound SRF in avidin-biotin pull-down assays. Quantitative binding analysis yielded nanomolar affinities for both the viral and cellular CArG boxes. Chromatin immunoprecipitation experiments demonstrated that SRF is resident on the HTLV-I LTR in vivo. These data identify a functional serum response element in the HTLV-I LTR and suggest that SRF may play an important role in regulating basal HTLV-I gene expression in early infection and reactivation from latency.
Collapse
Affiliation(s)
- Diane R Wycuff
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
41
|
Janket ML, Manickam P, Majumder B, Thotala D, Wagner M, Schafer EA, Collman RG, Srinivasan A, Ayyavoo V. Differential regulation of host cellular genes by HIV-1 viral protein R (Vpr): cDNA microarray analysis using isogenic virus. Biochem Biophys Res Commun 2004; 314:1126-32. [PMID: 14751250 DOI: 10.1016/j.bbrc.2004.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HIV-1 Vpr is a protein with multiple functions. It has been suggested that such pleiotropic effects by a viral protein may be mediated by its association with viral and cellular proteins or through modulation of expression of specific cellular genes. To address this, we used cDNA microarray techniques to analyze the regulation of a panel of host cellular genes by HIV-1 Vpr using isogenic HIV-1 either with or without Vpr expression. Results indicate that Vpr downregulated the expression of genes involved in cell cycle/proliferation regulation, DNA repair, tumor antigens, and immune activation factors, and upregulated many ribosomal and structural proteins. These results for the first time reveal the involvement of several potential cellular genes, which may be useful, both for understanding Vpr functions and for the development of therapeutics targeting the Vpr molecule.
Collapse
Affiliation(s)
- Michelle L Janket
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tullai JW, Schaffer ME, Mullenbrock S, Kasif S, Cooper GM. Identification of transcription factor binding sites upstream of human genes regulated by the phosphatidylinositol 3-kinase and MEK/ERK signaling pathways. J Biol Chem 2004; 279:20167-77. [PMID: 14769801 DOI: 10.1074/jbc.m309260200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have taken an integrated approach in which expression profiling has been combined with the use of small molecule inhibitors and computational analysis of transcription factor binding sites to characterize regulatory sequences of genes that are targets of specific signaling pathways in growth factor-stimulated human cells. T98G cells were stimulated with platelet-derived growth factor (PDGF) and analyzed by DNA microarrays, which identified 74 immediate-early gene transcripts. Cells were then treated with inhibitors to identify subsets of genes that are targets of the phosphatidylinositol 3-kinase (PI3K) and MEK/ERK signaling pathways. Four groups of PDGF-induced genes were defined: independent of PI3K and MEK/ERK signaling, dependent on PI3K signaling, dependent on MEK/ERK signaling, and dependent on both pathways. The upstream regions of all genes in the four groups were scanned using TRANSFAC for putative cis-elements as compared with a background set of non-induced genes. Binding sites for 18 computationally predicted transcription factors were over-represented in the four groups of co-expressed genes compared with the background sequences (p < 0.01). Many of the cis-elements identified were conserved in orthologous mouse genes, and many of the predicted elements and their cognate transcription factors were consistent with previous experimental data. In addition, chromatin immunoprecipitation assays experimentally verified nine predicted SRF binding sites in T98G cells, including a previously unknown SRF site upstream of DUSP5. These results indicate that groups of human genes regulated by discrete intracellular signaling pathways share common cis-regulatory elements.
Collapse
Affiliation(s)
- John W Tullai
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
43
|
Costello PS, Nicolas RH, Watanabe Y, Rosewell I, Treisman R. Ternary complex factor SAP-1 is required for Erk-mediated thymocyte positive selection. Nat Immunol 2004; 5:289-98. [PMID: 14770179 DOI: 10.1038/ni1038] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Accepted: 12/15/2003] [Indexed: 01/25/2023]
Abstract
Thymocyte selection and differentiation requires extracellular signal-regulated kinase (Erk) signaling, but transcription factor substrates of Erk in thymocytes are unknown. We have characterized the function of SAP-1 (Elk4), an Erk-regulated transcription factor, in thymocyte development. Early thymocyte development was normal, but single-positive thymocyte and peripheral T cell numbers were reduced, reflecting a T cell-autonomous defect. T cell receptor-induced activation of SAP-1 target genes such as Egr1 was substantially impaired in double-positive thymocytes, although Erk activation was normal. Analysis of T cell receptor transgenes showed that positive selection was reduced by 80-90% in SAP-1-deficient mice; heterozygous mice showed a moderate defect. Negative selection was unimpaired. SAP-1 thus directly links Erk signaling to the transcriptional events required for thymocyte positive selection.
Collapse
Affiliation(s)
- Patrick S Costello
- Transcription Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Fields, London WC2A 3PX, UK
| | | | | | | | | |
Collapse
|
44
|
Carmel JB, Kakinohana O, Mestril R, Young W, Marsala M, Hart RP. Mediators of ischemic preconditioning identified by microarray analysis of rat spinal cord. Exp Neurol 2004; 185:81-96. [PMID: 14697320 DOI: 10.1016/j.expneurol.2003.09.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spinal ischemia is a frequent cause of paralysis. Here we explore the biological basis of ischemic preconditioning (IPC), the phenomenon in which a brief period of ischemia can confer protection against subsequent longer and normally injurious ischemia, to identify mediators of endogenous neuroprotection. Using microarrays, we examined gene expression changes induced by brief spinal ischemia using a rat balloon occlusion model. Among the nearly 5000 genes assayed, relatively few showed two-fold changes, and three groups stood out prominently. The first group codes for heat shock protein 70, which is induced selectively and robustly at 30 min after brief ischemia, with increases up to 100-fold. A second group encodes metallothioneins 1 and 2. These mRNAs are increased at 6 and 12 h after ischemia, up to 12-fold. The third group codes for a group of immediate-early genes not previously associated with spinal ischemia: B-cell translocation gene 2 (BTG2), the transcription factors early growth response 1 (egr-1) and nerve growth factor inducible B (NGFI-B), and a mitogen-activated protein kinase phosphatase, ptpn16, an important cell signaling regulator. These mRNAs peak at 30 min and return to baseline or are decreased 6 h after ischemia. Several other potentially protective genes cluster with these induced mRNAs, including small heat shock proteins, and many have not been previously associated with IPC. These results provide both putative mediators of IPC and molecular targets for testing preconditioning therapies.
Collapse
Affiliation(s)
- Jason B Carmel
- WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
45
|
Dahlqvist P, Rönnbäck A, Risedal A, Nergårdh R, Johansson IM, Seckl JR, Johansson BB, Olsson T. Effects of postischemic environment on transcription factor and serotonin receptor expression after permanent focal cortical ischemia in rats. Neuroscience 2003; 119:643-52. [PMID: 12809685 DOI: 10.1016/s0306-4522(03)00195-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Housing rats in an enriched environment improves functional outcome after ischemic stroke, this may reflect neuronal plasticity in brain regions outside the lesion. Which components of the enriched environment that are of greatest importance for recovery after brain ischemia is uncertain. We have previously found that enriched environment and social interaction alone both improve functional recovery after focal cerebral ischemia, compared with isolated housing with voluntary wheel-running. In this study, the aim was to separate components of the enriched environment and investigate the effects on some potential mediators of improved functional recovery; such as the inducible transcription factors nerve growth factor-induced gene A (NGFI-A) and NGFI-B, and the glucocorticoid and serotonin systems. After permanent middle cerebral artery occlusion, rats were divided into four groups: individually housed with no equipment (deprived group), individually housed with free access to a running wheel (running group), housed together in a large cage with no equipment (social group) or in a large cage furnished with exchangeable bars, chains and other objects (enriched group). mRNA expression of inducible transcription factors, serotonin and glucocorticoid receptors was determined with in situ hybridisation 1 month after cerebral ischemia. Rats housed in enriched or social environments showed significantly higher mRNA expression of NGFI-A and NGFI-B in cortical regions outside the lesion and in the CA1 (cornu ammonis region of the hippocampus), compared with isolated rats with or without a running wheel. NGFI-A and NGFI-B mRNA expression in cortex and in CA1 was significantly correlated to functional outcome. 5-Hydroxytryptamine receptor 1A (5-HT(1A)) mRNA expression and binding, as well as 5-HT(2A) receptor mRNA expression were decreased in the hippocampus (CA4 region) of the running wheel rats. Mineralocorticoid receptor gene expression was increased in the dentate gyrus amongst wheel-running rats. No group differences were found in plasma corticosterone levels or mRNA levels of glucocorticoid receptor, corticotropin-releasing hormone, 5-HT(2C) or c-fos. In conclusion, we have found that social interaction is a major component of the enriched environment regarding the effects on NGFI-A and NGFI-B expression. These transcription factors may be important mediators of improved functional recovery after brain infarctions, induced by environmental enrichment.
Collapse
MESH Headings
- Animals
- Brain Ischemia/genetics
- Brain Ischemia/metabolism
- Brain Ischemia/physiopathology
- Cerebral Cortex/growth & development
- Cerebral Cortex/metabolism
- Cerebral Cortex/physiopathology
- DNA-Binding Proteins/genetics
- Early Growth Response Protein 1
- Environment, Controlled
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamo-Hypophyseal System/physiopathology
- Immediate-Early Proteins
- Male
- Motor Activity/genetics
- Neuronal Plasticity/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred SHR
- Receptor, Serotonin, 5-HT2A
- Receptors, Cytoplasmic and Nuclear
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
- Receptors, Serotonin, 5-HT1
- Receptors, Steroid
- Recovery of Function/genetics
- Sensory Deprivation/physiology
- Social Behavior
- Synaptic Transmission/genetics
- Transcription Factors/genetics
Collapse
Affiliation(s)
- P Dahlqvist
- Department of Public Health and Clinical Medicine, Medicine, Umeå University Hospital, S-901 85, Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Selvaraj A, Prywes R. Megakaryoblastic leukemia-1/2, a transcriptional co-activator of serum response factor, is required for skeletal myogenic differentiation. J Biol Chem 2003; 278:41977-87. [PMID: 14565952 DOI: 10.1074/jbc.m305679200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serum response factor (SRF) is required for the expression of a wide variety of muscle-specific genes that are expressed upon differentiation and is thus required for both striated and smooth muscle differentiation in addition to its role in regulating growth factor-inducible genes. A heart and smooth muscle-specific SRF co-activator, myocardin, has been shown to be required for cardiac development and smooth muscle differentiation. However, no such co-factors of SRF have been identified in the skeletal myogenic differentiation program. Myocardin and the related transcription factor megakaryoblastic leukemia-1 (MKL1/MAL/MRTF-A) can strongly potentiate the activity of SRF. Here we report the cloning of the third member of the myocardin/MKL family in humans, MKL2. MKL2 binds to and activates SRF similar to myocardin and MKL1. To determine the role of these factors in skeletal myogenic differentiation we used a dominant negative MKL2 to show that the MKL family of proteins is required for skeletal myogenic differentiation. Expression of the dominant negative protein in C2C12 skeletal myoblasts blocked the differentiation-induced expression of the SRF target genes skeletal alpha-actin and alpha-myosin heavy chain and blocked differentiation of the myoblasts to myotubes in vitro. C2C12 cells express both MKL1 and MKL2, but not myocardin, implicating MKL1 and/or MKL2 in the requirement for skeletal myogenic differentiation. MKL1 was predominantly cytoplasmic in C2C12 cells, with a small amount in the nucleus, however, no movement of MKL1 to the nucleus was observed upon differentiation.
Collapse
Affiliation(s)
- Ahalya Selvaraj
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | | |
Collapse
|
47
|
Wansa KDSA, Harris JM, Yan G, Ordentlich P, Muscat GEO. The AF-1 domain of the orphan nuclear receptor NOR-1 mediates trans-activation, coactivator recruitment, and activation by the purine anti-metabolite 6-mercaptopurine. J Biol Chem 2003; 278:24776-90. [PMID: 12709428 DOI: 10.1074/jbc.m300088200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NOR-1/NR4A3 is an "orphan member" of the nuclear hormone receptor superfamily. NOR-1 and its close relatives Nurr1 and Nur77 are members of the NR4A subgroup of nuclear receptors. Members of the NR4A subgroup are induced through multiple signal transduction pathways. They have been implicated in cell proliferation, differentiation, T-cell apoptosis, chondrosarcomas, neurological disorders, inflammation, and atherogenesis. However, the mechanism of transcriptional activation, coactivator recruitment, and agonist-mediated activation remain obscure. Hence, we examined the molecular basis of NOR-1-mediated activation. We observed that NOR-1 trans-activates gene expression in a cell- and target-specific manner; moreover, it operates in an activation function (AF)-1-dependent manner. The N-terminal AF-1 domain delimited to between amino acids 1 and 112, preferentially recruits the steroid receptor coactivator (SRC). Furthermore, SRC-2 modulates the activity of the AF-1 domain but not the C-terminal ligand binding domain (LBD). Homology modeling indicated that the NOR-1 LBD was substantially different from that of hRORbeta, a closely related AF-2-dependent receptor. In particular, the hydrophobic cleft characteristic of nuclear receptors was replaced with a very hydrophilic surface with a distinct topology. This observation may account for the inability of this nuclear receptor LBD to efficiently mediate cofactor recruitment and transcriptional activation. In contrast, the N-terminal AF-1 is necessary for cofactor recruitment and can independently conscript coactivators. Finally, we demonstrate that the purine anti-metabolite 6-mercaptopurine, a widely used antineoplastic and anti-inflammatory drug, activates NOR-1 in an AF-1-dependent manner. Additional 6-mercaptopurine analogs all efficiently activated NOR-1, suggesting that the signaling pathways that modulate proliferation via inhibition of de novo purine and/or nucleic acid biosynthesis are involved in the regulation NR4A activity. We hypothesize that the NR4A subgroup mediates the genotoxic stress response and suggest that this subgroup may function as sensors that respond to genotoxicity.
Collapse
|
48
|
Satoh JI, Kuroda Y. The constitutive and inducible expression of Nurr1, a key regulator of dopaminergic neuronal differentiation, in human neural and non-neural cell lines. Neuropathology 2002; 22:219-32. [PMID: 12564761 DOI: 10.1046/j.1440-1789.2002.00460.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nur-related factor 1 (Nurr1), nerve growth factor-induced gene B (NGFI-B) and neuron-derived orphan receptor-1 (NOR-1) constitute the orphan nuclear receptor subfamily of transcription factors. Previous studies showed that midbrain dopaminergic neuronal precursor cells failed to differentiate in Nurr1-deficient mice. To investigate a role of Nurr1 in human neuronal function, Nurr1 mRNA expression was studied in human neural cell lines by RT-PCR and northern blot analysis. Nurr1, NGFI-B and NOR-1 mRNA were coexpressed in all human neural and nonneural cell lines under the serum-containing culture condition, except for SK-N-SH neuroblastoma, in which Nurr1 mRNA was undetectable. The levels of Nurr1, NGFI-B and NOR-1 mRNA were elevated markedly in NTera2 teratocarcinoma-derived neurons (NTera2-N), a model of differentiated human neurons, following a 1.5 or 3 h-exposure to 1 mM dibutyryl cyclic AMP or 100 nm phorbol 12-myristate 13-acetate. NGFI-B mRNA levels were also elevated in NTera2-N cells by exposure to 100 ng/mL brain-derived neurotrophic factor (BDNF). To identify Nurr1-target genes, the mRNA expression of 27 genes potentially involved in dopaminergic neuronal differentiation and survival, including BDNF, glia-derived neurotrophic factor, their receptors, tyrosine hydroxylase and alpha-synuclein, were studied in HEK293 cells following overexpression of Nurr1. None of these genes examined, however, showed significant changes. These results indicate that Nurr1, NGFI-B and NOR-1 mRNA are expressed constitutively in various human neural and non-neural cell lines under the serum-containing culture condition, and their levels are up-regulated in human neurons by activation of protein kinase A or protein kinase C pathway, although putative coactivators expressed in dopaminergic neuronal precursor cells might be required for efficient transcriptional activation of Nurr1-target genes.
Collapse
MESH Headings
- Blotting, Northern
- Brain-Derived Neurotrophic Factor/pharmacology
- Bucladesine/pharmacology
- Cell Culture Techniques
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/drug effects
- Enzyme Activators/pharmacology
- Gene Expression Regulation
- Humans
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/drug effects
- Neurons/cytology
- Neurons/drug effects
- Neurons/physiology
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Nuclear Receptor Subfamily 4, Group A, Member 2
- RNA, Messenger/analysis
- Receptors, Cytoplasmic and Nuclear
- Receptors, Steroid
- Receptors, Thyroid Hormone
- Reverse Transcriptase Polymerase Chain Reaction
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription Factors/biosynthesis
- Transcription Factors/drug effects
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jun-ichi Satoh
- Department of Immunology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan.
| | | |
Collapse
|
49
|
Wansa KDSA, Harris JM, Muscat GEO. The activation function-1 domain of Nur77/NR4A1 mediates trans-activation, cell specificity, and coactivator recruitment. J Biol Chem 2002; 277:33001-11. [PMID: 12082103 DOI: 10.1074/jbc.m203572200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nur77/NR4A1 is an "orphan member" of the nuclear hormone receptor superfamily. Nur77 and its close relatives Nurr1 and NOR-1 bind as monomers to a consensus binding site, the nerve growth factor induced protein I-B (NGFI-B)-binding response element (NBRE). The Nur77/NURR1/NOR1 nuclear receptors are classified as immediate early response genes which are induced through multiple signal transduction pathways. They have been implicated in cell proliferation, differentiation, and apoptosis. However, the mechanism of coactivation and ligand independent trans-activation remains unclear. Hence we examined the molecular basis of Nur77-mediated cofactor recruitment and activation. We observed that Nur77 trans-activates gene expression in a cell-specific manner, and operates in an activation function-1 (AF-1)-dependent manner. The AB region encodes an uncommonly potent N-terminal AF-1 domain delimited to between amino acids 50 and 160 and is essential for the ligand-independent activation of gene expression. Steroid receptor coactivator-2 (SRC-2) modulates the activity of the N-terminal AF-1 domain. Moreover, SRC-2 dramatically potentiates the retinoid induced RXR-dependent activation of the Nur77 ligand binding domain (LBD). Interestingly, the N-terminal AB region (not the LBD) facilitates coactivator recruitment and directly interacts with SRC, p300, PCAF, and DRIP-205. Consistent with this, homology modeling indicated that the Nur77 LBD coactivator binding cleft was substantially different from that of retinoic acid receptor gamma, a closely related AF-2-dependent receptor. In particular, the hydrophobic cleft characteristic of nuclear receptors was replaced with a much more hydrophilic surface with a distinct topology. This observation accounts for the inability of this nuclear receptor LBD to directly mediate cofactor recruitment. Furthermore, the AF-1 domain physically associates with the Nur77 C-terminal LBD and synergizes with the retinoid X receptor LBD. Thus, the AF-1 domain plays a major role in Nur77-mediated transcriptional activation, cofactor recruitment, and intra- and intermolecular interactions.
Collapse
Affiliation(s)
- K D Senali Abayratna Wansa
- University of Queensland Centre for Molecular and Cellular Biology Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | | | | |
Collapse
|
50
|
Liu S, Wu Q, Ye XF, Cai JH, Huang ZW, Su WJ. Induction of apoptosis by TPA and VP-16 is through translocation of TR3. World J Gastroenterol 2002; 8:446-50. [PMID: 12046067 PMCID: PMC4656418 DOI: 10.3748/wjg.v8.i3.446] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of TR3 in induction of apoptosis in gastric cancer cells.
METHODS: Human gastric cancer cell line, MGC80-3, was used. Expression of TR3 mRNA and its protein was detected by Northern blot and Western blot. Localization of TR3 protein was showed by immunofluorescence analysis under laser-scanning confocal microscope. Apoptotic morphology was observed by DAPI fluorescence staining, and apoptotic index was counted among 1000 cells randomly. Stable transfection assay was carried out by Lipofectamine.
RESULTS: Treatment of MGC80-3 cells with TPA and VP-16 resulted in apoptosis, accompanied by the repression of Bcl-2 protein in a time-dependent manner. At the same time, TPA and VP-16 also up-regulated expression level of TR3 mRNA in MGC80-3 cells that expressed TR3 mRNA. When antisense-TR3 expression vector was transfected into the cells, expression of TR3 protein was repressed. In this case, TPA and VP-16 did not induce apoptosis. In addition, TPA and VP-16-induced apoptosis involved in translocation of TR3. In MGC80-3 cells, TR3 localized concentrative in nucleus, after treatment of cells with TPA and VP-16, TR3 translocated from nucleus to cytosol obviously. However, when this nuclear translocation was blocked by LMB, apoptosis was not occurred in MGC80-3 cells even in the presence of TPA and VP-16.
CONCLUSION: Induction of apoptosis by TPA and VP-16 is through induction of TR3 expression and translocation of TR3 from nucleus to cytosol, which may be a novel signal pathway for TR3, and represent the new biological function of TR3 to exert its effect on apoptosis in gastric cancer cells.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Apoptosis/drug effects
- Apoptosis/physiology
- DNA-Binding Proteins/genetics
- Etoposide/pharmacology
- Gene Expression
- Nuclear Receptor Subfamily 4, Group A, Member 1
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Receptors, Cytoplasmic and Nuclear
- Receptors, Steroid
- Signal Transduction
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/genetics
- Stomach Neoplasms/pathology
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription Factors/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Su Liu
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005,Fujian Province,China
| | | | | | | | | | | |
Collapse
|