1
|
Magli A, Perlingeiro RRC. Myogenic progenitor specification from pluripotent stem cells. Semin Cell Dev Biol 2018; 72:87-98. [PMID: 29107681 DOI: 10.1016/j.semcdb.2017.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022]
Abstract
Pluripotent stem cells represent important tools for both basic and translational science as they enable to study mechanisms of development, model diseases in vitro and provide a potential source of tissue-specific progenitors for cell therapy. Concomitantly with the increasing knowledge of the molecular mechanisms behind activation of the skeletal myogenic program during embryonic development, novel findings in the stem cell field provided the opportunity to begin recapitulating in vitro the events occurring during specification of the myogenic lineage. In this review, we will provide a perspective of the molecular mechanisms responsible for skeletal myogenic commitment in the embryo and how this knowledge was instrumental for specifying this lineage from pluripotent stem cells. In addition, we will discuss the current limitations for properly recapitulating skeletal myogenesis in the petri dish, and we will provide insights about future applications of pluripotent stem cell-derived myogenic cells.
Collapse
Affiliation(s)
- Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rita R C Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Sartorelli V, Puri PL. Shaping Gene Expression by Landscaping Chromatin Architecture: Lessons from a Master. Mol Cell 2018; 71:375-388. [PMID: 29887393 DOI: 10.1016/j.molcel.2018.04.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/05/2018] [Accepted: 04/27/2018] [Indexed: 01/14/2023]
Abstract
Since its discovery as a skeletal muscle-specific transcription factor able to reprogram somatic cells into differentiated myofibers, MyoD has provided an instructive model to understand how transcription factors regulate gene expression. Reciprocally, studies of other transcriptional regulators have provided testable hypotheses to further understand how MyoD activates transcription. Using MyoD as a reference, in this review, we discuss the similarities and differences in the regulatory mechanisms employed by tissue-specific transcription factors to access DNA and regulate gene expression by cooperatively shaping the chromatin landscape within the context of cellular differentiation.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cells & Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20892, USA.
| | - Pier Lorenzo Puri
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA; Epigenetics and Regenerative Medicine, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
3
|
Shin YC, Lee JH, Kim MJ, Hong SW, Kim B, Hyun JK, Choi YS, Park JC, Han DW. Stimulating effect of graphene oxide on myogenesis of C2C12 myoblasts on RGD peptide-decorated PLGA nanofiber matrices. J Biol Eng 2015; 9:22. [PMID: 26609319 PMCID: PMC4659147 DOI: 10.1186/s13036-015-0020-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/17/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In the field of biomedical engineering, many studies have focused on the possible applications of graphene and related nanomaterials due to their potential for use as scaffolds, coating materials and delivery carriers. On the other hand, electrospun nanofiber matrices composed of diverse biocompatible polymers have attracted tremendous attention for tissue engineering and regenerative medicine. However, their combination is intriguing and still challenging. RESULTS In the present study, we fabricated nanofiber matrices composed of M13 bacteriophage with RGD peptide displayed on its surface (RGD-M13 phage) and poly(lactic-co-glycolic acid, PLGA) and characterized their physicochemical properties. In addition, the effect of graphene oxide (GO) on the cellular behaviors of C2C12 myoblasts, which were cultured on PLGA decorated with RGD-M13 phage (RGD/PLGA) nanofiber matrices, was investigated. Our results revealed that the RGD/PLGA nanofiber matrices have suitable physicochemical properties as a tissue engineering scaffold and the growth of C2C12 myoblasts were significantly enhanced on the matrices. Moreover, the myogenic differentiation of C2C12 myoblasts was substantially stimulated when they were cultured on the RGD/PLGA matrices in the presence of GO. CONCLUSION In conclusion, these findings propose that the combination of RGD/PLGA nanofiber matrices and GO can be used as a promising strategy for skeletal tissue engineering and regeneration.
Collapse
Affiliation(s)
- Yong Cheol Shin
- />Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 609-735 >Korea
| | - Jong Ho Lee
- />Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 609-735 >Korea
| | - Min Jeong Kim
- />Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 609-735 >Korea
| | - Suck Won Hong
- />Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 609-735 >Korea
| | - Bongju Kim
- />Clinical Dental Research Institute, Seoul National University Dental Hospital, Seoul, 03080 Korea
| | - Jung Keun Hyun
- />Department of Rehabilitation Medicine, College of Medicine, Cheonan, 330-714 Korea
- />Department of Nanobiomedical Science & BK21+ NBM Global Research Center, Cheonan, 330-714 Korea
- />Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 330-714 Korea
| | - Yu Suk Choi
- />School of Anatomy, Physiology, and Human Biology, University of Western Australia, Crawley, WA 6009 Australia
| | - Jong-Chul Park
- />Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Korea
| | - Dong-Wook Han
- />Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 609-735 >Korea
| |
Collapse
|
4
|
Fong AP, Yao Z, Zhong JW, Johnson NM, Farr GH, Maves L, Tapscott SJ. Conversion of MyoD to a neurogenic factor: binding site specificity determines lineage. Cell Rep 2015; 10:1937-46. [PMID: 25801030 DOI: 10.1016/j.celrep.2015.02.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/16/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022] Open
Abstract
MyoD and NeuroD2, master regulators of myogenesis and neurogenesis, bind to a "shared" E-box sequence (CAGCTG) and a "private" sequence (CAGGTG or CAGATG, respectively). To determine whether private-site recognition is sufficient to confer lineage specification, we generated a MyoD mutant with the DNA-binding specificity of NeuroD2. This chimeric mutant gained binding to NeuroD2 private sites but maintained binding to a subset of MyoD-specific sites, activating part of both the muscle and neuronal programs. Sequence analysis revealed an enrichment for PBX/MEIS motifs at the subset of MyoD-specific sites bound by the chimera, and point mutations that prevent MyoD interaction with PBX/MEIS converted the chimera to a pure neurogenic factor. Therefore, redirecting MyoD binding from MyoD private sites to NeuroD2 private sites, despite preserved binding to the MyoD/NeuroD2 shared sites, is sufficient to change MyoD from a master regulator of myogenesis to a master regulator of neurogenesis.
Collapse
Affiliation(s)
- Abraham P Fong
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Pediatrics, Division of Hematology-Oncology, University of Washington School of Medicine, Seattle, WA 98105, USA.
| | - Zizhen Yao
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jun Wen Zhong
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nathan M Johnson
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Gist H Farr
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Lisa Maves
- Department of Pediatrics, Division of Cardiology, University of Washington, Seattle, WA 98105, USA; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Stephen J Tapscott
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Neurology, University of Washington School of Medicine, Seattle, WA 98105, USA.
| |
Collapse
|
5
|
Abstract
Since the seminal discovery of the cell-fate regulator Myod, studies in skeletal myogenesis have inspired the search for cell-fate regulators of similar potential in other tissues and organs. It was perplexing that a similar transcription factor for other tissues was not found; however, it was later discovered that combinations of molecular regulators can divert somatic cell fates to other cell types. With the new era of reprogramming to induce pluripotent cells, the myogenesis paradigm can now be viewed under a different light. Here, we provide a short historical perspective and focus on how the regulation of skeletal myogenesis occurs distinctly in different scenarios and anatomical locations. In addition, some interesting features of this tissue underscore the importance of reconsidering the simple-minded view that a single stem cell population emerges after gastrulation to assure tissuegenesis. Notably, a self-renewing long-term Pax7+ myogenic stem cell population emerges during development only after a first wave of terminal differentiation occurs to establish a tissue anlagen in the mouse. How the future stem cell population is selected in this unusual scenario will be discussed. Recently, a wealth of information has emerged from epigenetic and genome-wide studies in myogenic cells. Although key transcription factors such as Pax3, Pax7, and Myod regulate only a small subset of genes, in some cases their genomic distribution and binding are considerably more promiscuous. This apparent nonspecificity can be reconciled in part by the permissivity of the cell for myogenic commitment, and also by new roles for some of these regulators as pioneer transcription factors acting on chromatin state.
Collapse
Affiliation(s)
- Glenda Comai
- Stem Cells and Development, CNRS URA 2578, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, CNRS URA 2578, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France.
| |
Collapse
|
6
|
Fong AP, Tapscott SJ. Skeletal muscle programming and re-programming. Curr Opin Genet Dev 2013; 23:568-73. [PMID: 23756045 DOI: 10.1016/j.gde.2013.05.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/27/2013] [Accepted: 05/05/2013] [Indexed: 01/09/2023]
Abstract
The discovery of the transcription factor MyoD and its ability to induce muscle differentiation was the first demonstration of genetically programmed cell transdifferentiation. MyoD functions by activating a feed-forward circuit to regulate muscle gene expression. This requires binding to specific E-boxes throughout the genome, followed by recruitment of chromatin modifying complexes and transcription machinery. MyoD binding can be modified by both cooperative factors and inhibitors, including microRNAs that may serve as important developmental switches. Recent studies indicate that epigenetic regulation of MyoD binding sites is another important mechanism for controlling MyoD activity, which may ultimately limit its ability to induce transdifferentiation to cells with permissive epigenetic 'landscapes.'
Collapse
Affiliation(s)
- Abraham P Fong
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, School of Medicine, Seattle, WA 98105, USA
| | | |
Collapse
|
7
|
Schukur L, Zorlutuna P, Cha JM, Bae H, Khademhosseini A. Directed differentiation of size-controlled embryoid bodies towards endothelial and cardiac lineages in RGD-modified poly(ethylene glycol) hydrogels. Adv Healthc Mater 2013; 2:195-205. [PMID: 23193099 PMCID: PMC3635117 DOI: 10.1002/adhm.201200194] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 07/24/2012] [Indexed: 12/26/2022]
Abstract
Recent advances in stem cell research have demonstrated the importance of microenvironmental cues in directing stem cell fate towards specific cell lineages. For instance, the size of the embryoid body (EB) was shown to play a role in stem cell differentiation. Other studies have used cell adhesive RGD peptides to direct stem cell fate towards endothelial cells. In this study, materials and cell-based approaches are combined by using microwell arrays to produce size-controlled EBs and encapsulating the resulting aggregates in high molecular weight PEG-4 arm acrylate with and without conjugated RGD to study their effect on stem cell differentiation in a 3D microenvironment. Increasing EB size is observed along with a decrease in the total number of EBs in pristine PEG hydrogel, regardless of the initial EB size. In correlation with this aggregation, EBs in PEG show enhanced cardiogenic differentiation compared to RGD-PEG hydrogel. Both aggregation and cardiogenic differentiation are significantly reduced when RGD peptides are introduced to the microenvironment, while endothelial cell differentiation is accelerated by 3 to 5 days, depending on the EB size, and doubled over the course of cell culture for both EB sizes. Presented results indicate that RGD sequence has a dominant effect in driving endothelial cell differentiation in size-controlled EBs, while pristine multi-arm, high molecular weight PEG can induce cardiogenic differentiation, possibly through EB aggregation. The photopatternable nature of the hydrogel used in this study enabled patterning of such domains devoid or abundant of cell attachment sequences. Therefore, these hydrogels can potentially be used for spatially patterned embryonic stem cell differentiation, which may be beneficial for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Lina Schukur
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 02115, USA, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 02139, USA, 65 Landsdowne Street Cambridge, MA 02139, USA
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074, Germany
| | - Pinar Zorlutuna
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 02115, USA, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 02139, USA, 65 Landsdowne Street Cambridge, MA 02139, USA
| | - Jae Min Cha
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 02115, USA, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 02139, USA, 65 Landsdowne Street Cambridge, MA 02139, USA
| | - Hojae Bae
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 02115, USA, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 02139, USA, 65 Landsdowne Street Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 02115, USA, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 02139, USA, 65 Landsdowne Street Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 02115, USA
| |
Collapse
|
8
|
Adipose tissue-derived stem cell response to the differently processed 316L stainless steel substrates. Tissue Cell 2012; 44:365-72. [DOI: 10.1016/j.tice.2012.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 05/28/2012] [Accepted: 06/01/2012] [Indexed: 11/18/2022]
|
9
|
Voronova A, Al Madhoun A, Fischer A, Shelton M, Karamboulas C, Skerjanc IS. Gli2 and MEF2C activate each other's expression and function synergistically during cardiomyogenesis in vitro. Nucleic Acids Res 2012; 40:3329-3347. [PMID: 22199256 PMCID: PMC3333882 DOI: 10.1093/nar/gkr1232] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/07/2011] [Accepted: 11/24/2011] [Indexed: 02/07/2023] Open
Abstract
The transcription factors Gli2 (glioma-associated factor 2), which is a transactivator of Sonic Hedgehog (Shh) signalling, and myocyte enhancer factor 2C (MEF2C) play important roles in the development of embryonic heart muscle and enhance cardiomyogenesis in stem cells. Although the physiological importance of Shh signalling and MEF2 factors in heart development is well known, the mechanistic understanding of their roles is unclear. Here, we demonstrate that Gli2 and MEF2C activated each other's expression while enhancing cardiomyogenesis in differentiating P19 EC cells. Furthermore, dominant-negative mutant proteins of either Gli2 or MEF2C repressed each other's expression, while impairing cardiomyogenesis in P19 EC cells. In addition, chromatin immunoprecipitation (ChIP) revealed association of Gli2 to the Mef2c gene, and of MEF2C to the Gli2 gene in differentiating P19 cells. Finally, co-immunoprecipitation studies showed that Gli2 and MEF2C proteins formed a complex, capable of synergizing on cardiomyogenesis-related promoters containing both Gli- and MEF2-binding elements. We propose a model whereby Gli2 and MEF2C bind each other's regulatory elements, activate each other's expression and form a protein complex that synergistically activates transcription, enhancing cardiac muscle development. This model links Shh signalling to MEF2C function during cardiomyogenesis and offers mechanistic insight into their in vivo functions.
Collapse
Affiliation(s)
| | | | | | | | | | - Ilona Sylvia Skerjanc
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
10
|
Fong AP, Yao Z, Zhong JW, Cao Y, Ruzzo WL, Gentleman RC, Tapscott SJ. Genetic and epigenetic determinants of neurogenesis and myogenesis. Dev Cell 2012; 22:721-35. [PMID: 22445365 DOI: 10.1016/j.devcel.2012.01.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/12/2011] [Accepted: 01/22/2012] [Indexed: 10/28/2022]
Abstract
The regulatory networks of differentiation programs have been partly characterized; however, the molecular mechanisms of lineage-specific gene regulation by highly similar transcription factors remain largely unknown. Here we compare the genome-wide binding and transcription profiles of NEUROD2-mediated neurogenesis with MYOD-mediated myogenesis. We demonstrate that NEUROD2 and MYOD bind a shared CAGCTG E box motif and E box motifs specific for each factor: CAGGTG for MYOD and CAGATG for NEUROD2. Binding at factor-specific motifs is associated with gene transcription, whereas binding at shared sites is associated with regional epigenetic modifications but is not as strongly associated with gene transcription. Binding is largely constrained to E boxes preset in an accessible chromatin context that determines the set of target genes activated in each cell type. These findings demonstrate that the differentiation program is genetically determined by E box sequence, whereas cell lineage epigenetically determines the availability of E boxes for each differentiation program.
Collapse
Affiliation(s)
- Abraham P Fong
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Kanungo J, Chandrasekharappa SC. Menin induces endodermal differentiation in aggregated P19 stem cells by modulating the retinoic acid receptors. Mol Cell Biochem 2012; 359:95-104. [PMID: 21833538 PMCID: PMC3412628 DOI: 10.1007/s11010-011-1003-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/19/2011] [Indexed: 10/17/2022]
Abstract
Menin, a ubiquitously expressed protein, is the product of the multiple endocrine neoplasia type I (Men1) gene, mutations of which cause tumors primarily of the parathyroid, endocrine pancreas, and anterior pituitary. Menin-null mice display early embryonic lethality, and thus imply a critical role for menin in early development. In this study, using the P19 embryonic carcinoma stem cells, we studied menin's role in cell differentiation. Menin expression is induced in P19 cell aggregates by retinoic acid (RA). Menin over-expressing stable clones proliferated in a significantly reduced rate compared to the empty vector harboring cells. RA induced cell death in aggregated menin over-expressing cells. However, in the absence of RA, specific populations of the aggregated menin over-expressing cells displayed the characteristic of an endodermal phenotype by the acquisition of cytokeratin Endo A expression (TROMA-1), a marker for the primitive endoderm, with a concomitant loss of the stem cell marker SSEA-1. Menin's ability to induce endodermal differentiation in specific populations of the aggregated cells in the absence of RA implied that menin could substitute RA by inducing a set of target genes that are RA responsive. Menin over-expressing cells upon aggregation showed a robust expression of RA receptors (RAR), RARα, β, and γ relative to the empty vector-harboring cells. Moreover, endodermal differentiation was inhibited by the pan-RAR antagonist Ro41-5253, suggesting that menin could induce endodermal differentiation of uncommitted cells by functionally modulating the RARs.
Collapse
Affiliation(s)
- Jyotshnabala Kanungo
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 50 South Dr, Bldg 50, Room 5232, Bethesda, MD 20892, USA.
| | | |
Collapse
|
12
|
Bayoussef Z, Dixon JE, Stolnik S, Shakesheff KM. Aggregation promotes cell viability, proliferation, and differentiation in an in vitro model of injection cell therapy. J Tissue Eng Regen Med 2011; 6:e61-73. [PMID: 21932267 DOI: 10.1002/term.482] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 02/23/2011] [Accepted: 07/11/2011] [Indexed: 11/11/2022]
Abstract
Many cell therapy approaches aim to deliver high-density single-cell suspensions to diseased or injured sites in the body. Long term clinical success will in part be dependent on the cells that remain viable and that assume correct functionality post-administration. The research presented in this paper focuses on the potential of cell aggregate delivery to generate a more supportive environment for cells than single cell suspensions. An in vitro model of injection delivery of C2C12 myoblast cells showed a significant difference in cell function and phenotype between adhesive collagen and non-adhesive alginate, indicating that in vitro assays based on this approach can discriminate between cell-cell/cell-matrix interactions and could be valuable when assessing cell therapy systems. Contrary to single cells, aggregates maintain viability, cellular activity, and phenotype beyond that of single cells, even in non-adhesive matrices, enabling delivery of higher cell densities with enhanced proliferative and differentiation capacity.
Collapse
Affiliation(s)
- Zahia Bayoussef
- Tissue Engineering, Wolfson Centre for Stem Cells, Tissue Engineering, Modelling (STEM), Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | | | | |
Collapse
|
13
|
Jasmin, Spray DC, Campos de Carvalho AC, Mendez-Otero R. Chemical induction of cardiac differentiation in p19 embryonal carcinoma stem cells. Stem Cells Dev 2010; 19:403-412. [PMID: 20163207 PMCID: PMC3032260 DOI: 10.1089/scd.2009.0234] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
P19 cells, a pluripotent cell line derived from a teratocarcinoma induced in C3H/HeHa mice, have been widely used as a model system to study cardiac differentiation. We have used these cells to evaluate the extent to which exposure to DMSO and/or cardiogenol C for 4 days in suspension culture enhanced their differentiation into cardiomyocytes. Cardiac differentiation was assessed by observing beating clusters and further confirmed using immunocytochemical, biochemical, and pharmacological approaches. The presence of functional gap junctions in differentiated P19 cells was identified through calcium wave analyses. Proliferation rate and cell death were analyzed by BrdU incorporation and activated caspase-3 immunodetection, respectively. Beating clusters of differentiated P19 cells were only found in cultures treated with DMSO. In addition, groups treated with DMSO up-regulated cardiac troponin-T expression. However, when DMSO was used together with cardiogenol C the up-regulation was less than that with DMSO alone, approximately 1.5 times. Moreover, P19 cells cultured in DMSO or DMSO plus 0.25 microM cardiogenol C had lower proliferation rates and higher numbers of activated caspase-3-positive cells. In summary, using several methodological approaches we have demonstrated that DMSO can induce cardiac differentiation of P19 cells but that cardiogenol C does not.
Collapse
Affiliation(s)
- Jasmin
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
14
|
Savage J, Conley AJ, Blais A, Skerjanc IS. SOX15 and SOX7 Differentially Regulate the Myogenic Program in P19 Cells. Stem Cells 2009; 27:1231-43. [DOI: 10.1002/stem.57] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Vijayaragavan K, Szabo E, Bossé M, Ramos-Mejia V, Moon RT, Bhatia M. Noncanonical Wnt signaling orchestrates early developmental events toward hematopoietic cell fate from human embryonic stem cells. Cell Stem Cell 2009; 4:248-62. [PMID: 19265664 PMCID: PMC2742366 DOI: 10.1016/j.stem.2008.12.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/09/2008] [Accepted: 12/30/2008] [Indexed: 10/21/2022]
Abstract
During human development, signals that govern lineage specification versus expansion of cells committed to a cell fate are poorly understood. We demonstrate that activation of canonical Wnt signaling by Wnt3a promotes proliferation of human embryonic stem cells (hESCs)--precursors already committed to the hematopoietic lineage. In contrast, noncanonical Wnt signals, activated by Wnt11, control exit from the pluripotent state and entry toward mesoderm specification. Unique to embryoid body (EB) formation of hESCs, Wnt11 induces development and arrangement of cells expressing Brachyury that coexpress E-cadherin and Frizzled-7 (Fzd7). Knockdown of Fzd7 expression blocks Wnt11-dependent specification. Our study reveals an unappreciated role for noncanonical Wnt signaling in hESC specification that involves development of unique mesoderm precursors via morphogenic organization within human EBs.
Collapse
Affiliation(s)
- Kausalia Vijayaragavan
- Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials 2008; 29:2757-66. [PMID: 18396331 DOI: 10.1016/j.biomaterials.2008.03.016] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 03/16/2008] [Indexed: 12/31/2022]
Abstract
We show that synthetic three-dimensional (3D) matrix metalloproteinase (MMP)-sensitive poly(ethylene glycol) (PEG)-based hydrogels can direct differentiation of pluripotent cardioprogenitors, using P19 embryonal carcinoma (EC) cells as a model, along a cardiac lineage in vitro. In order to systematically probe 3D matrix effects on P19 EC differentiation, matrix elasticity, MMP-sensitivity and the concentration of a matrix-bound RGDSP peptide were modulated. Soft matrices (E=322+/-64.2 Pa, stoichiometric ratio: 0.8), mimicking the elasticity of embryonic cardiac tissue, increased the fraction of cells expressing the early cardiac transcription factor Nkx2.5 around 2-fold compared to embryoid bodies (EB) in suspension. In contrast, stiffer matrices (E=4,036+/-419.6 Pa, stoichiometric ratio: 1.2) decreased the number of Nkx2.5-positive cells significantly. Further indicators of cardiac maturation were promoted by ligation of integrins relevant in early cardiac development (alpha(5)beta(1,) alpha(v)beta(3)) by the RGDSP ligand in combination with the MMP-sensitivity of the matrix, with a 6-fold increased amount of myosin heavy chain (MHC)-positive cells as compared to EB in suspension. This precisely controlled 3D culture system thus may serve as a potential alternative to natural matrices for engineering cardiac tissue structures for cell culture and potentially therapeutic applications.
Collapse
|
17
|
Abstract
Ordered heterogeneity was introduced as a basic feature of the living state in the mid-1950s. It was later expanded to "order in the large over heterogeneity in the small" as the first principle of a theory of organisms. Several examples of ordered heterogeneity were given at the time to illustrate the principle, but many more have become apparent since then to confirm its generality. They include minimum size requirements for progressive embryological development, the errant behavior of cells liberated from tissue architecture, their sorting out to reconstitute tissues on reaggregation, and contact regulation of cell proliferation. There is increasing heterogeneity of cell growth with age, and marked heterogeneity of many characters among cells of solid epithelial tumors. Normal growth behavior is reintroduced in solitary, carcinogen-initiated epidermal cells by contact with an excess of normal epidermal cells. Contact normalization also occurs when solitary hepatocarcinoma cells are transplanted into the parenchyma of normal liver of young, but not of old, animals. The role of the plasma membrane and adhesion molecules in ordering heterogeneity is evaluated. Organizing the results in a conceptual structure helps to understand classical observations of tumor biology such as the lifetime quiescence of carcinogen-initiated epidermal cells and the marked increase of cancer incidence with age. The principle of order above heterogeneity thus provides a unifying framework for a variety of seemingly unrelated processes in normal and neoplastic development. Whereas contact between cells is required for these processes to occur, gap junctional communication is not required.
Collapse
Affiliation(s)
- Harry Rubin
- Department of Molecular and Cell Biology, Life Sciences Addition, University of California, Berkeley, California 94720, USA
| |
Collapse
|
18
|
Karamboulas C, Swedani A, Ward C, Al-Madhoun AS, Wilton S, Boisvenue S, Ridgeway AG, Skerjanc IS. HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage. J Cell Sci 2006; 119:4305-4314. [PMID: 17038545 DOI: 10.1242/jcs.03185] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Class II histone deacetylases (HDAC4, HDAC5, HDAC7 and HDAC9) have been shown to interact with myocyte enhancer factors 2 (MEF2s) and play an important role in the repression of cardiac hypertrophy. We examined the role of HDACs during the differentiation of P19 embryonic carcinoma stem cells into cardiomyocytes. Treatment of aggregated P19 cells with the HDAC inhibitor trichostatin A induced the entry of mesodermal cells into the cardiac muscle lineage, shown by the upregulation of transcripts Nkx2-5, MEF2C, GATA4 and cardiac alpha-actin. Furthermore, the overexpression of HDAC4 inhibited cardiomyogenesis, shown by the downregulation of cardiac muscle gene expression. Class II HDAC activity is inhibited through phosphorylation by Ca2+/calmodulin-dependent kinase (CaMK). Expression of an activated CaMKIV in P19 cells upregulated the expression of Nkx2-5, GATA4 and MEF2C, enhanced cardiac muscle development, and activated a MEF2-responsive promoter. Moreover, inhibition of CaMK signaling downregulated GATA4 expression. Finally, P19 cells constitutively expressing a dominant-negative form of MEF2C, capable of binding class II HDACs, underwent cardiomyogenesis more efficiently than control cells, implying the relief of an inhibitor. Our results suggest that HDAC activity regulates the specification of mesoderm cells into cardiomyoblasts by inhibiting the expression of GATA4 and Nkx2-5 in a stem cell model system.
Collapse
Affiliation(s)
- Christina Karamboulas
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Karamboulas C, Dakubo GD, Liu J, De Repentigny Y, Yutzey K, Wallace VA, Kothary R, Skerjanc IS. Disruption of MEF2 activity in cardiomyoblasts inhibits cardiomyogenesis. J Cell Sci 2006; 119:4315-21. [PMID: 17003108 DOI: 10.1242/jcs.03186] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Myocyte enhancer factors (MEF2s) bind to muscle-specific promoters and activate transcription. Drosophila Mef2 is essential for Drosophila heart development, however, neither MEF2C nor MEF2B are essential for the early stages of murine cardiomyogenesis. Although Mef2c-null mice were defective in the later stages of heart morphogenesis, differentiation of cardiomyocytes still occurred. Since there are four isoforms of MEF2 factors (MEF2A, MEF2B, MEF2C and MEF2D), the ability of cells to differentiate may have been confounded by genetic redundancy. To eliminate this variable, the effect of a dominant-negative MEF2 mutant (MEF2C/EnR) during cardiomyogenesis was examined in transgenic mice and P19 cells. Targeting the expression of MEF2C/EnR to cardiomyoblasts using an Nkx2-5 enhancer in the P19 system resulted in the loss of both cardiomyocyte development and the expression of GATA4, BMP4, Nkx2-5 and MEF2C. In transiently transgenic mice, MEF2C/EnR expression resulted in embryos that lacked heart structures and exhibited defective differentiation. Our results show that MEF2C, or genes containing MEF2 DNA-binding sites, is required for the efficient differentiation of cardiomyoblasts into cardiomyocytes, suggesting conservation in the role of MEF2 from Drosophila to mammals.
Collapse
Affiliation(s)
- Christina Karamboulas
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lee JH, Shin SY, Kim S, Choo J, Lee YH. Suppression of PTEN expression during aggregation with retinoic acid in P19 mouse embryonal carcinoma cells. Biochem Biophys Res Commun 2006; 347:715-22. [PMID: 16842746 DOI: 10.1016/j.bbrc.2006.06.161] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 06/25/2006] [Indexed: 12/19/2022]
Abstract
Apoptosis is thought to be involved in the maintenance of cellular homeostasis, as well as various pathological processes. However, little information is available about the regulation of apoptosis during the aggregation stage of P19 embryonal carcinoma (EC) cells. Here we report that aggregation-induced apoptosis is markedly attenuated by treatment with retinoic acid (RA). PTEN (phosphatase and tensin homolog deleted on chromosome 10) expression was down-regulated during the aggregation phase of P19 EC cells in the presence, but not in the absence, of RA. Suppression of PTEN expression during the aggregation was accompanied by increased phosphorylation of serine/threonine kinase Akt and glycogen synthase kinase-3beta (GSK-3beta). Our results suggest that RA attenuates the induction of apoptosis during the aggregation phase of P19 EC cells, probably by suppressing PTEN expression.
Collapse
Affiliation(s)
- Joon Ho Lee
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Gyeonggi-do, South Korea
| | | | | | | | | |
Collapse
|
21
|
Cole F, Zhang W, Geyra A, Kang JS, Krauss RS. Positive regulation of myogenic bHLH factors and skeletal muscle development by the cell surface receptor CDO. Dev Cell 2005; 7:843-54. [PMID: 15572127 DOI: 10.1016/j.devcel.2004.10.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 06/26/2004] [Accepted: 09/22/2004] [Indexed: 12/21/2022]
Abstract
Skeletal myogenesis is controlled by bHLH transcription factors of the MyoD family that, along with MEF-2 factors, comprise a positive feedback network that maintains the myogenic transcriptional program. Cell-cell contact between muscle precursors promotes myogenesis, but little is known of the underlying mechanisms. CDO, an Ig superfamily member, is a component of a cell surface receptor complex found at sites of cell-cell contact that positively regulates myogenesis in vitro. We report here that mice lacking CDO display delayed skeletal muscle development. Additionally, satellite cells from these mice differentiate defectively in vitro. CDO functions to activate myogenic bHLH factors via enhanced heterodimer formation, most likely by inducing hyperphosphorylation of E proteins. The Cdo gene is, in turn, a target of MyoD. The promyogenic effect of cell-cell contact is therefore linked to the activity of myogenic bHLH factors. Furthermore, the myogenic positive feedback network extends from the cell surface to the nucleus.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Western
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules/physiology
- Cell Communication
- Cell Line
- Cell Membrane/metabolism
- Cell Nucleus/metabolism
- Cells, Cultured
- Dimerization
- Genes, Reporter
- Immunohistochemistry
- Immunoprecipitation
- In Situ Hybridization
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C3H
- Models, Biological
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- MyoD Protein/metabolism
- Phosphoric Monoester Hydrolases/metabolism
- Phosphorylation
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- RNA/metabolism
- Time Factors
- Transfection
- Transgenes
- Tumor Suppressor Proteins/metabolism
- Tumor Suppressor Proteins/physiology
Collapse
Affiliation(s)
- Francesca Cole
- Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
22
|
Petropoulos H, Gianakopoulos PJ, Ridgeway AG, Skerjanc IS. Disruption of Meox or Gli activity ablates skeletal myogenesis in P19 cells. J Biol Chem 2004; 279:23874-81. [PMID: 15039437 DOI: 10.1074/jbc.m312612200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gli2 and Meox1 are transcription factors that are expressed in the developing somite and play roles in the commitment of cells to the skeletal muscle lineage. To further define their roles in regulating myogenesis, the function of wild type and dominant-negative forms of Gli2 and Meox1 were examined in the context of differentiating P19 stem cells. We found that Gli2 overexpression up-regulated transcript levels of Meox1 and, conversely, Meox1 overexpression resulted in the upregulation of Gli2 transcripts. Furthermore, dominant-negative forms of either Meox1 or Gli2 disrupted the ability of P19 cells to commit to the muscle lineage and to properly express either Gli2 or Meox1, respectively. Finally, Pax3 transcripts were induced by Gli2 overexpression and lost in the presence of either mutants Meox1 or Gli2. Taken together, these results support the existence of a regulatory loop between Gli2, Meox1, and Pax3 that is essential for specification of mesodermal cells into the muscle lineage.
Collapse
MESH Headings
- Animals
- Binding Sites
- Blotting, Northern
- Cell Differentiation
- Cell Line
- Cell Line, Tumor
- Cell Lineage
- Cells, Cultured
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Down-Regulation
- Genes, Dominant
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Kruppel-Like Transcription Factors
- Mesoderm/metabolism
- Mice
- Mice, Inbred C3H
- Microscopy, Fluorescence
- Models, Biological
- Muscle Proteins/metabolism
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Muscles/metabolism
- Mutation
- Myogenic Regulatory Factor 5
- Myogenin/metabolism
- PAX3 Transcription Factor
- Paired Box Transcription Factors
- Phenotype
- Plasmids/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Time Factors
- Trans-Activators
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription, Genetic
- Transfection
- Up-Regulation
- Zinc Finger Protein Gli2
Collapse
Affiliation(s)
- Helen Petropoulos
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
23
|
Velling T, Risteli J, Wennerberg K, Mosher DF, Johansson S. Polymerization of type I and III collagens is dependent on fibronectin and enhanced by integrins alpha 11beta 1 and alpha 2beta 1. J Biol Chem 2002; 277:37377-81. [PMID: 12145303 DOI: 10.1074/jbc.m206286200] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Polymerization of the ECM proteins fibronectin and laminin has been shown to take place in close vicinity to the cell surface and be facilitated by beta(1) integrins (Lohikangas, L., Gullberg, D., and Johansson, S. (2001) Exp. Cell Res. 265, 135-144 and Wennerberg, K., Lohikangas, L., Gullberg, D., Pfaff, M., Johansson, S., and Fassler, R. (1996) J. Cell Biol. 132, 227-238). We have studied the role of collagen receptors, integrins alpha(11)beta(1) and alpha(2)beta(1), and fibronectin in collagen polymerization using fibronectin-deficient mouse embryonic fibroblast cell lines. In contrast to the earlier belief that collagen polymerization occurs via self-assembly of collagen molecules we show that a preformed fibronectin matrix is essential for collagen network formation and that collagen-binding integrins strongly enhance this process. Thus, collagen deposition is regulated by the cells, both indirectly through integrin alpha(5)beta(1)-dependent polymerization of fibronectin and directly through collagen-binding integrins.
Collapse
Affiliation(s)
- Teet Velling
- Institute of Medical Biochemistry and Microbiology, 75123 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
24
|
Yoshiko Y, Hirao K, Maeda N. Differentiation in C(2)C(12) myoblasts depends on the expression of endogenous IGFs and not serum depletion. Am J Physiol Cell Physiol 2002; 283:C1278-86. [PMID: 12225990 DOI: 10.1152/ajpcell.00168.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myogenic differentiation in vitro has been usually viewed as being negatively controlled by serum mitogens. A depletion of critical serum components from medium has been considered to be essential for permanent withdrawal from the cell cycle and terminal differentiation of myoblasts. Removal of serum mitogens induces the expression of insulin-like growth factors (IGFs), whereas it inhibits that of basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-beta in myoblasts. These responses of growth factors to medium conditioning seem to be well matched to their functions in proliferation/differentiation. In the present study, we showed that C(2)C(12) myoblasts differentiated actively, even in mitogen-rich medium, and that this medium offered an advantage over mitogen-poor medium in terms of increasing differentiation. Our attention focused on endogenous growth factors, as described above, especially IGFs in mitogen-rich medium. During differentiation, IGF-I and IGF-II mRNA levels increased, but bFGF and TGF-beta(1) mRNAs decreased. Differentiation was commensurable with IGF mRNA levels and suppressed by antisense oligodeoxynucleotides and neutralizing monoclonal antibodies against IGFs. These results suggest that an autocrine/paracrine loop of IGFs, bFGF, and TGF-beta(1) is active in proliferating and differentiating C(2)C(12) cells without a depletion of serum and that endogenous IGFs actively override the negative control of differentiation by serum mitogens.
Collapse
Affiliation(s)
- Yuji Yoshiko
- Department of Oral Growth and Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, Minami-ku, Hiroshima 734-8553, Japan
| | | | | |
Collapse
|
25
|
Rogerson PJ, Jamali M, Skerjanc IS. The C-terminus of myogenin, but not MyoD, targets upregulation of MEF2C expression. FEBS Lett 2002; 524:134-8. [PMID: 12135755 DOI: 10.1016/s0014-5793(02)03024-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The myogenic regulatory family of basic helix-loop-helix transcription factors, including MyoD and myogenin, functions cooperatively with the myocyte-specific enhancer binding factor 2 (MEF2) family during skeletal myogenesis. Previously, using aggregated P19 cells, we have shown that myogenin upregulates MEF2C expression while MyoD does not [Ridgeway et al., J. Biol. Chem. 275 (2000) 41-46]. In order to identify the domain of myogenin responsible for activating MEF2C expression, a series of chimeras of MyoD and myogenin were generated. Only chimeras containing the C-terminal region of myogenin were able to activate MEF2C in aggregated P19 cells, suggesting that the C-terminus of myogenin is responsible for the regulation of specific target genes.
Collapse
Affiliation(s)
- Parker J Rogerson
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, ON, Canada
| | | | | |
Collapse
|
26
|
Petropoulos H, Skerjanc IS. Beta-catenin is essential and sufficient for skeletal myogenesis in P19 cells. J Biol Chem 2002; 277:15393-9. [PMID: 11856745 DOI: 10.1074/jbc.m112141200] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wnt1 and Wnt3a are signaling factors known to play a role in the induction of myogenesis in the myotome of the differentiating somite. Both factors may transduce their signal by a conserved pathway that leads to transcriptional regulation by beta-catenin/Lef1. beta-Catenin and Lef1 are found in the myotome prior to MyoD expression. We have utilized the P19 cell system to study the mechanisms by which Wnt3a may activate MyoD expression and subsequent skeletal muscle development. We have isolated P19 cell lines that stably express either Wnt3a or activated beta-catenin and found that aggregation of these cells results in the induction of myogenesis compared with control cells. Pax3, Gli2, Mox1, and Six1 were expressed during Wnt3a and beta-catenin-induced differentiation prior to MyoD expression. Furthermore, we have shown that the nuclear function of beta-catenin was essential for skeletal myogenesis in P19 cells by overexpression of a dominant negative beta-catenin/engrailed chimera. Primitive streak factors were present, but expression of Pax3, Mox1, Gli2, and Six1 was lost in these cells, indicating that nuclear beta-catenin is essential for specification of mesodermal precursors to the myogenic lineage. Therefore, Wnt signaling, acting via beta-catenin, is necessary and sufficient for skeletal myogenesis in P19 cells.
Collapse
Affiliation(s)
- Helen Petropoulos
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | |
Collapse
|
27
|
Waliszewski P, Konarski J. Neuronal differentiation and synapse formation occur in space and time with fractal dimension. Synapse 2002; 43:252-8. [PMID: 11835520 DOI: 10.1002/syn.10042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The analysis of a set of experimental data obtained by an independent team of researchers confirms that neuronal differentiation or synapse formation do occur in time and space with fractal dimension. The interacting cells create first a dynamic system with its own attractor, (i.e., a fragment of time and space where the dynamic processes occur and where no further evolution of the system is possible at all owing to the action of the intrasystemic forces unless some extrasystemic forces act upon it). This attractor is then modified in the active manner by the differentiating cells until the system attains a degenerated stationary state and differentiation ends. The fractal structure of the system is also lost in the course of tumor progression. Our data indicate that the cellular system can attain the degenerated stationary state, leaving the attractor with a fractal dimension directly or undergoing diversification into many attractors and going through the areas of deterministic chaos. Since evolution of the cellular system is driven by the cooperative dynamic processes, as reflected by the changes of the mean fractal dimension between the intervals of the Gompertzian curve, it is likely that cells differentiate into neurons and create synapses with a conjugated probability and non-Gaussian distribution rather than with the classical probability and the Gaussian distribution. These findings can help to optimize features of artificial neural networks. They also define a simple in vitro biological model for biophysical and biochemical studies on natural neural networks.
Collapse
|
28
|
Jamali M, Karamboulas C, Rogerson PJ, Skerjanc IS. BMP signaling regulates Nkx2-5 activity during cardiomyogenesis. FEBS Lett 2001; 509:126-30. [PMID: 11734219 DOI: 10.1016/s0014-5793(01)03151-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nkx2-5 regulates the transcription of muscle-specific genes during cardiomyogenesis. Nkx2-5 expression can induce cardiomyogenesis in aggregated P19 cells but not in monolayer cultures. In order to investigate the mechanism by which cellular aggregation regulates Nkx2-5 function, we examined the role of bone morphogenetic protein 4 (BMP4). We showed that the expression of the BMP inhibitor, noggin, was sufficient to inhibit the induction of cardiomyogenesis by Nkx2-5 during cellular aggregation. Furthermore, soluble BMP4 could activate Nkx2-5 function in monolayer cultures, resulting in the formation of cardiomyocytes. Therefore, BMP signaling is necessary and sufficient for the regulation of Nkx2-5 activity during cardiomyogenesis in P19 cells.
Collapse
Affiliation(s)
- M Jamali
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, ON N6A 5C1, Canada
| | | | | | | |
Collapse
|
29
|
Jamali M, Rogerson PJ, Wilton S, Skerjanc IS. Nkx2-5 activity is essential for cardiomyogenesis. J Biol Chem 2001; 276:42252-8. [PMID: 11526122 DOI: 10.1074/jbc.m107814200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The homeobox transcription factor tinman is essential for heart vessel formation in Drosophila. In contrast, mice lacking the murine homologue Nkx2-5 are defective in cardiac looping but not in cardiac myocyte development. The lack of an essential role for Nkx2-5 in cardiomyogenesis in mammalian systems is most likely the result of genetic redundancy with family members. In this study, we used a dominant negative mutant of Nkx2-5, created by fusing the repressor domain of engrailed 2 to the Nkx2-5 homeodomain, termed Nkx/EnR. Expression of Nkx/EnR inhibited Me(2)SO-induced cardiomyogenesis in P19 cells but not skeletal myogenesis. Nkx/EnR inhibited expression of cardiomyoblast markers, such as GATA-4 and MEF2C, but not of mesoderm markers, such as Brachyury T and Wnt5b, or of skeletal lineage markers, such as MyoD and Mox1. To identify the minimal region of Nkx2-5 that can trigger cardiomyogenesis, we analyzed the activity of various Nkx2-5 deletion mutants. The C-terminal domain was not necessary for the ability of Nkx2-5 to induce cardiomyogenesis and loss of this domain did not enhance myogenesis. Therefore, Nkx2-5 function is essential for commitment of mesoderm into the cardiac muscle lineage, and the N-terminal region, together with the homeodomain, is sufficient for cardiomyogenesis in P19 cells.
Collapse
Affiliation(s)
- M Jamali
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
30
|
Jamali M, Karamboulas C, Wilton S, Skerjanc IS. Factors in serum regulate Nkx2.5 and MEF2C function. In Vitro Cell Dev Biol Anim 2001; 37:635-7. [PMID: 11776966 DOI: 10.1290/1071-2690(2001)037<0635:fisrna>2.0.co;2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Tiger CF, Fougerousse F, Grundström G, Velling T, Gullberg D. alpha11beta1 integrin is a receptor for interstitial collagens involved in cell migration and collagen reorganization on mesenchymal nonmuscle cells. Dev Biol 2001; 237:116-29. [PMID: 11518510 DOI: 10.1006/dbio.2001.0363] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
alpha11beta1 integrin constitutes a recent addition to the integrin family. Here, we present the first in vivo analysis of alpha11 protein and mRNA distribution during human embryonic development. alpha11 protein and mRNA were present in various mesenchymal cells around the cartilage anlage in the developing skeleton in a pattern similar to that described for the transcription factor scleraxis. alpha11 was also expressed by mesenchymal cells in intervertebral discs and in keratocytes in cornea, two sites with highly organized collagen networks. Neither alpha11 mRNA nor alpha11 protein could be detected in myogenic cells in human embryos. The described expression pattern is compatible with alpha11beta1 functioning as a receptor for interstitial collagens in vivo. To test this hypothesis in vitro, full-length human alpha11 cDNA was stably transfected into the mouse satellite cell line C2C12, lacking endogenous collagen receptors. alpha11beta1 mediated cell adhesion to collagens I and IV (with a preference for collagen I) and formed focal contacts on collagens. In addition, alpha11beta1 mediated contraction of fibrillar collagen gels in a manner similar to alpha2beta1, and supported migration on collagen I in response to chemotactic stimuli. Our data support a role for alpha11beta1 as a receptor for interstitial collagens on mesenchymally derived cells and suggest a multifunctional role of alpha11beta1 in the recognition and organization of interstitial collagen matrices during development.
Collapse
Affiliation(s)
- C F Tiger
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, S-75124, Sweden
| | | | | | | | | |
Collapse
|
32
|
Ridgeway AG, Skerjanc IS. Pax3 is essential for skeletal myogenesis and the expression of Six1 and Eya2. J Biol Chem 2001; 276:19033-9. [PMID: 11262400 DOI: 10.1074/jbc.m011491200] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Pax3 is a paired box transcription factor expressed during somitogenesis that has been implicated in initiating the expression of the myogenic regulatory factors during myogenesis. We find that Pax3 is necessary and sufficient to induce myogenesis in pluripotent stem cells. Pax3 induced the expression of the transcription factor Six1, its cofactor Eya2, and the transcription factor Mox1 prior to inducing the expression of MyoD and myogenin. Overexpression of a dominant negative Pax3, engineered by fusing the active transcriptional repression domain of mouse EN-2 in place of the Pax3 transcriptional activation domain, completely abolished skeletal myogenesis without inhibiting cardiogenesis. Expression of the dominant negative Pax3 resulted in a loss of expression of Six1, Eya2, and endogenous Pax3 as well as a down-regulation in the expression of Mox1. No effect was found on the expression of Gli2. These results indicate that Pax3 activity is essential for skeletal muscle development, the expression of Six1 and Eya2, and is involved in regulating its own expression. In summary, the combined approach of expressing both a wild type and dominant negative transcription factor in stem cells has identified a cascade of transcriptional events controlled by Pax3 that are necessary and sufficient for skeletal myogenesis.
Collapse
MESH Headings
- Blotting, Northern
- Cells, Cultured
- DNA-Binding Proteins/physiology
- Down-Regulation
- Gene Expression Regulation, Developmental
- Genes, Dominant
- Homeodomain Proteins/biosynthesis
- Humans
- Intracellular Signaling Peptides and Proteins
- Models, Biological
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Muscles/cytology
- Muscles/metabolism
- MyoD Protein/biosynthesis
- Myogenin/biosynthesis
- NADH, NADPH Oxidoreductases/metabolism
- NADPH Oxidases
- Nuclear Proteins
- PAX3 Transcription Factor
- Paired Box Transcription Factors
- Plasmids/metabolism
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatases
- Recombinant Fusion Proteins/metabolism
- Stem Cells/metabolism
- Trans-Activators/biosynthesis
- Transcription Factors
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- A G Ridgeway
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | |
Collapse
|
33
|
Ridgeway AG, Petropoulos H, Wilton S, Skerjanc IS. Wnt signaling regulates the function of MyoD and myogenin. J Biol Chem 2000; 275:32398-405. [PMID: 10915791 DOI: 10.1074/jbc.m004349200] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The myogenic regulatory factors (MRFs), MyoD and myogenin, can induce myogenesis in a variety of cell lines but not efficiently in monolayer cultures of P19 embryonal carcinoma stem cells. Aggregation of cells expressing MRFs, termed P19[MRF] cells, results in an approximately 30-fold enhancement of myogenesis. Here we examine molecular events occurring during P19 cell aggregation to identify potential mechanisms regulating MRF activity. Although myogenin protein was continually present in the nuclei of >90% of P19[myogenin] cells, only a fraction of these cells differentiated. Consequently, it appears that post-translational regulation controls myogenin activity in a cell lineage-specific manner. A correlation was obtained between the expression of factors involved in somite patterning, including Wnt3a, Wnt5b, BMP-2/4, and Pax3, and the induction of myogenesis. Co-culturing P19[Wnt3a] cells with P19[MRF] cells in monolayer resulted in a 5- to 8-fold increase in myogenesis. Neither BMP-4 nor Pax3 was efficient in enhancing MRF activity in unaggregated P19 cultures. Furthermore, BMP-4 abrogated the enhanced myogenesis induced by Wnt signaling. Consequently, signaling events resulting from Wnt3a expression but not BMP-4 signaling or Pax3 expression, regulate MRF function. Therefore, the P19 cell culture system can be used to study the link between somite patterning events and myogenesis.
Collapse
Affiliation(s)
- A G Ridgeway
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
34
|
Petropoulos H, Skerjanc IS. Analysis of the inhibition of MyoD activity by ITF-2B and full-length E12/E47. J Biol Chem 2000; 275:25095-101. [PMID: 10833525 DOI: 10.1074/jbc.m004251200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MyoD heterodimerizes with E type factors (E12/E47 and ITF-2A/ITF-2B) and binds E box sequences within promoters of muscle-specific genes. In transient transfection assays, MyoD activates transcription in the presence of ITF-2A but not ITF-2B, which contains a 182-amino acid N-terminal extension. The first 83 amino acids of the inhibitory N terminus of ITF-2B show high sequence homology to the N terminus of full-length E12/E47. Previous studies that showed activation of MyoD by E12 used an artificially N-terminally truncated form. Here we show that the full-length form of E12 inhibits MyoD function. A conserved alpha-helix motif, capable of interacting with the transcriptional machinery, was not essential for inhibition. Furthermore, the fusion of N-terminal ITF-2B sequences or non-inhibiting ITF-2A sequences to truncated E12 was sufficient in converting the activator into an inhibitor. Overexpression of ITF-2B did not inhibit C2C12 myogenesis or affect levels of endogenous muscle gene expression, consistent with the finding that inhibitory E type proteins are present in muscle. Furthermore, we found that MyoD co-transfected with either ITF-2B or ITF-2A converted fibroblasts into myoblasts with the same frequency. Our findings suggest that the ability of E type proteins to inhibit MyoD activity is dependent on the context of the E box.
Collapse
Affiliation(s)
- H Petropoulos
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | |
Collapse
|
35
|
Toyofuku T, Hong Z, Kuzuya T, Tada M, Hori M. Wnt/frizzled-2 signaling induces aggregation and adhesion among cardiac myocytes by increased cadherin-beta-catenin complex. J Cell Biol 2000; 150:225-41. [PMID: 10893270 PMCID: PMC2185559 DOI: 10.1083/jcb.150.1.225] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/1999] [Accepted: 05/30/2000] [Indexed: 01/06/2023] Open
Abstract
Wingless is known to be required for induction of cardiac mesoderm in Drosophila, but the function of Wnt family proteins, vertebrate homologues of wingless, in cardiac myocytes remains unknown. When medium conditioned by HEK293 cells overexpressing Wnt-3a or -5a was applied to cultured neonatal cardiac myocytes, Wnt proteins induced myocyte aggregation in the presence of fibroblasts, concomitant with increases in beta-catenin and N-cadherin in the myocytes and with E- and M-cadherins in the fibroblasts. The aggregation was inhibited by anti-N-cadherin antibody and induced by constitutively active beta-catenin, but was unaffected by dominant negative and dominant positive T cell factor (TCF) mutants. Thus, increased stabilization of complexed cadherin-beta-catenin in both cell types appears crucial for the morphological effect of Wnt on cardiac myocytes. Furthermore, myocytes overexpressing a dominant negative frizzled-2, but not a dominant negative frizzled-4, failed to aggregate in response to Wnt, indicating frizzled-2 to be the predominant receptor mediating aggregation. By contrast, analysis of bromodeoxyuridine incorporation and transcription of various cardiogenetic markers showed Wnt to have little or no impact on cell proliferation or differentiation. These findings suggest that a Wnt-frizzled-2 signaling pathway is centrally involved in the morphological arrangement of cardiac myocytes in neonatal heart through stabilization of complexed cadherin- beta-catenin.
Collapse
Affiliation(s)
- T Toyofuku
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
36
|
Proulx A, Merrifield PA, Naus CC. Blocking gap junctional intercellular communication in myoblasts inhibits myogenin and MRF4 expression. DEVELOPMENTAL GENETICS 2000; 20:133-44. [PMID: 9144924 DOI: 10.1002/(sici)1520-6408(1997)20:2<133::aid-dvg6>3.0.co;2-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cells rely heavily on cues from their extracellular environment and other cells to coordinate normal physiological processes, and the exchange of molecules via gap junctions has been suggested as on important avenue for cell-cell communication. Gap junctions are found in virtually all mammalian tissues with the notable exception of adult skeletal muscle. However, since functional gap junctions have been detected during the early stages of muscle development, gap junctional intercellular communication (GJIC) may play on important role in myogenesis. In this study, GJIC in normal 16 myoblasts was inhibited using the known blockers l-octanol and beta-glycyrrhetinic acid (beta-GA). Under differentiation promoting conditions, 16 cells fused to form multinucleated myotubes, but when treated with either octanol or beta-GA, no fusion was observed. The expression of two muscle regulatory factors (MRFs), myogenin and MRF4, was examined in both the blocked and control cells. As expected, the activation of both the myogenin and MRF4 genes coincided with the onset of differentiation in the control 16 cells. Neither of these genes were turned on in the blocked cells, even when grown under low serum conditions. This inhibition of differentiation by octanol and beta-GA was reversible, since the activation of both MRF genes as well as myoblast fusion were observed when the blocking medium was replaced with normal differentiating medium. These results suggest that intercellular communication via gap junctions plays an important role in skeletal muscle development and perhaps in the cell signaling events that trigger the activation of muscle-specific MRF genes.
Collapse
Affiliation(s)
- A Proulx
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
37
|
Cozzolino M, Giovannone B, Serafino A, Knudsen K, Levi A, Alemà S, Salvatore A. Activation of TrkA tyrosine kinase in embryonal carcinoma cells promotes cell compaction, independently of tyrosine phosphorylation of catenins. J Cell Sci 2000; 113 ( Pt 9):1601-1610. [PMID: 10751151 DOI: 10.1242/jcs.113.9.1601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cadherins are transmembrane receptors whose extracellular domain mediates homophilic cell-cell interactions, while their cytoplasmic domain associates with a family of proteins known as catenins. Although the mechanisms that regulate the assembly and functional state of cadherin-catenin complexes are poorly understood, current evidence supports a role for protein tyrosine kinase activity in regulating cell adhesion and migration. Tyrosine phosphorylation of catenins is thought to mediate loss of intercellular adhesion promoted by activation of receptor tyrosine kinases in epithelial cells. Here, we show that activation of ectopically expressed TrkA, the tyrosine kinase receptor for nerve growth factor (NGF), stimulates embryonal carcinoma P19 cells to develop extensive intercellular contacts and to assemble into closely packed clusters. Thus, activation of receptor tyrosine kinases can differentially regulate adhesiveness by cell-type-specific mechanisms. Furthermore, activation of TrkA in P19 and epithelial MDCK cells induces tyrosine phosphorylation of p120(ctn) and of beta-catenin, irrespective of the elicited cellular response. The selective Src tyrosine kinase inhibitor PP2, however, suppresses NGF- or HGF-induced tyrosine phosphorylation of catenins in both P19 and MDCK cells without interfering with the acquisition of a compacted or scattered phenotype. These findings provide a cogent argument for considering that tyrosine phosphorylation of catenins is dispensable for their interaction with cadherins and, ultimately, for the modulation of cadherin-based cell adhesion by receptor tyrosine kinases.
Collapse
Affiliation(s)
- M Cozzolino
- Istituto di Neurobiologia, Area di Ricerca Roma Tor Vergata-PBI and Istituto di Biologia Cellulare, CNR, Viale Marx 43, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Constantin B, Cronier L. Involvement of gap junctional communication in myogenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 196:1-65. [PMID: 10730212 DOI: 10.1016/s0074-7696(00)96001-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-to-cell communication plays important roles in development and in tissue morphogenesis. Gap junctional intercellular communication (GJIC) has been implicated in embryonic development of various tissues and provides a pathway to exchange ions, secondary messengers, and metabolites through the intercellular gap junction channels. Although GJIC is absent in adult skeletal muscles, the formation of skeletal muscles involves a sequence of complex events including cell-cell interaction processes where myogenic cells closely adhere to each other. Much experimental evidence has shown that myogenic precursors and developing muscle fibers can directly communicate through junctional channels. This review summarizes current knowledge on the GJIC and developmental events involved in the formation of skeletal muscle fibers and describes recent progress in the investigation of the role of GJIC in myogenesis: evidence of gap junctions in somitic and myotomal tissue as well as in developing muscle fibers in situ, GJIC between perfusion myoblasts in culture, and involvement of GJIC in cytodifferentiation of skeletal muscle cells and in myoblast fusion. A model of intercellular signaling is proposed where GJIC participates to coordinate a multicellular population of interacting myogenic precursors to allow commitment to the skeletal muscle fate.
Collapse
Affiliation(s)
- B Constantin
- Laboratoire de Physiologie Générale, CNRS UMR 6558, University of Poitiers, France.
| | | |
Collapse
|
39
|
Skerjanc IS, Wilton S. Myocyte enhancer factor 2C upregulates MASH-1 expression and induces neurogenesis in P19 cells. FEBS Lett 2000; 472:53-6. [PMID: 10781804 DOI: 10.1016/s0014-5793(00)01438-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MEF2C is a transcription factor expressed in neural lineages. After transient transfection, the MEF2 family of factors can act synergistically with the neural-specific transcription factor, MASH-1, and activate exogenous neural-specific promoters. To determine whether MEF2C is capable of modulating endogenous gene expression, P19 cell lines were analyzed that overexpressed MEF2C, termed P19[MEF2C] cells. Here we show that P19[MEF2C] cells differentiate into neurons when aggregated with ME(2)SO. MEF2C-induced neurons expressed neurofilament protein, the nuclear antigen NeuN, as well as MASH-1. Our results indicate that MEF2C can directly or indirectly activate the expression of MASH-1, leading to neurogenesis.
Collapse
Affiliation(s)
- I S Skerjanc
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ont., Canada.
| | | |
Collapse
|
40
|
Seghatoleslami MR, Myers L, Knudsen KA. Upregulation of myogenin by N-cadherin adhesion in three-dimensional cultures of skeletal myogenic BHK cells. J Cell Biochem 2000; 77:252-64. [PMID: 10723091 DOI: 10.1002/(sici)1097-4644(20000501)77:2<252::aid-jcb8>3.0.co;2-j] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cells of the baby hamster kidney (BHK) line express the skeletal muscle determining transcription factor MyoD but fail to differentiate. Unlike most skeletal myogenic cells, which express multiple members of the cadherin family of cell-cell adhesion proteins, the BHK cells lack a robust cadherin adhesion system. We previously published that forced expression of N- (or E)-cadherin in BHK cells increases the level of endogenous catenins, mediates strong cell-cell adhesion, and enhances differentiation of BHK cells induced to differentiate by placing them in three-dimensional (3-D) culture (Redfield et al. [1997] J. Cell. Biol. 138:1323-1331). This report demonstrates that N-cadherin adhesion upregulates the protein level of nuclear myogenin in cells induced to differentiate by 3-D culture. Myogenin is a transcription factor required for differentiation of skeletal muscle. It was not detected in monolayer culture, whether the cells expressed N-cadherin or not, nor was it upregulated in 3-D cultures of cells lacking N-cadherin. The activity of two myogenin-chloramphenicol acetyltransferase (CAT) reporter constructs containing 3.7 or 1.1 kb upstream regulatory region of the mouse myogenin gene was increased significantly in N-cadherin-expressing cells induced to differentiate by 3-D culture. Our observations indicate that N-cadherin adhesion stimulates skeletal myogenesis by upregulating myogenin.
Collapse
|
41
|
Ridgeway AG, Wilton S, Skerjanc IS. Myocyte enhancer factor 2C and myogenin up-regulate each other's expression and induce the development of skeletal muscle in P19 cells. J Biol Chem 2000; 275:41-6. [PMID: 10617583 DOI: 10.1074/jbc.275.1.41] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two families of transcription factors, myogenic regulatory factors (MRFs) and myocyte enhancer factor 2 (MEF2), function synergistically to regulate myogenesis. In addition to activating structural muscle-specific genes, MRFs and MEF2 activate each other's expression. The MRF, myogenin, can activate MEF2 DNA binding activity when transfected into fibroblasts and, in turn, the myogenin promoter contains essential MEF2 DNA binding elements. To determine which MEF2 is involved in this regulation, P19 cells stably expressing MyoD and myogenin were compared for their ability to activate the expression of MEF2 family members. There was very little cross-activation of MyoD expression by myogenin and vice versa. Myogenin expression, and not MyoD, was found to up-regulate MEF2C expression. MEF2A, -B, and -D expression levels were not up-regulated by overexpression of either MyoD or myogenin. To examine whether MEF2C can differentially regulate MyoD or myogenin expression, P19 cell lines overexpressing MEF2C were analyzed. MEF2C induced myogenesis in P19 cells and up-regulated the expression of myogenin with 25-fold greater efficiency than that of MyoD. Therefore, myogenin and MEF2C participate in a regulatory loop in differentiating stem cells. This positive regulation does not extend to MyoD or the other MEF2 family members. Consequently, MEF2C appears to play a specific role in early events of myogenesis.
Collapse
Affiliation(s)
- A G Ridgeway
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
42
|
Armour C, Garson K, McBurney MW. Cell-cell interaction modulates myoD-induced skeletal myogenesis of pluripotent P19 cells in vitro. Exp Cell Res 1999; 251:79-91. [PMID: 10438573 DOI: 10.1006/excr.1999.4567] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
P19 embryonal carcinoma cells can be induced to differentiate in culture to develop into a wide variety of cell types that include skeletal muscle. Skeletal myogenesis is controlled by transcription factors of the bHLH class, such as myoD. Expression of myoD from transfected genes did not induce significant amounts of myogenesis in P19 cells and it was possible to establish lines of undifferentiated P19[myoD] cells that express high levels of myoD mRNA. These P19[myoD] cells remained undifferentiated when cultured on solid surfaces but when allowed to aggregate, P19[myoD] cells differentiated efficiently into skeletal muscle. Aggregation did not increase the amount of myoD mRNA or the amount of myoD protein in P19[myoD] cells. The myoD protein was present in the nucleus in cells grown as attached or aggregated cultures and, in both culture conditions, the myoD protein was associated with transcription factors of the E2A family and was able to bind DNA at E-box sequences. Thus, the aggregation-induced myogenesis of P19[myoD] cells occurs in the absence of change in the myoD protein, suggesting that the cell-cell contact achieved in aggregates may result in the induction of an activity that increases accessibility of the myoD transcription factor to muscle-specific genes in chromatin.
Collapse
Affiliation(s)
- C Armour
- Departments of Biochemistry and Medicine, University of Ottawa and the Ottawa Regional Cancer Centre, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
| | | | | |
Collapse
|
43
|
Ridgeway AG, Petropoulos H, Siu A, Ball JK, Skerjanc IS. Cloning, tissue distribution, subcellular localization and overexpression of murine histidine-rich Ca2+ binding protein. FEBS Lett 1999; 456:399-402. [PMID: 10462052 DOI: 10.1016/s0014-5793(99)00993-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The histidine-rich Ca2+ binding protein (HRC) resides in the sarcoplasmic reticulum of muscle and binds Ca2+. Since Ca2+ concentrations can regulate gene expression via calcineurin, the mouse homologue of HRC (mHRC) was isolated and characterized. mHRC was detected in muscle progenitor cells, in primary clonal thymic tumors and a tumor cell line, suggesting a broader role for mHRC than in Ca2+ storage during muscle contraction. mHRC was present in the perinuclear region of myoblasts. To examine if it can regulate gene expression, mHRC was overexpressed in cells differentiating into cardiac and skeletal muscle. mHRC had no effect on cardiogenesis or myogenesis. Therefore, if mHRC plays a role in the regulation of gene expression during cellular differentiation, it does not appear to be either rate-limiting or inhibitory.
Collapse
Affiliation(s)
- A G Ridgeway
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | | | | | | | |
Collapse
|
44
|
Layne MD, Farmer SR. Tumor necrosis factor-alpha and basic fibroblast growth factor differentially inhibit the insulin-like growth factor-I induced expression of myogenin in C2C12 myoblasts. Exp Cell Res 1999; 249:177-87. [PMID: 10328964 DOI: 10.1006/excr.1999.4465] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) plays a role in several disease states such as sepsis, cachexia, and non-insulin-dependent diabetes. TNF-alpha interferes with insulin signaling and inhibits differentiation-specific gene expression in adipose tissue and skeletal muscle. We have examined the mechanisms by which TNF-alpha, in comparison to basic fibroblast growth factor (bFGF), inhibits the insulin-like growth factor-I (IGF-I)-induced differentiation of C2C12 myoblasts. Adhesion of quiescent, suspended myoblasts to collagen in high concentrations of IGF-I (10 nM) induced these cells to proliferate during the initial 24 h postplating and in so doing transiently inhibited the expression of myogenin, an essential transcription factor controlling myoblast differentiation. Low doses of IGF-I (1 nM) were minimally mitogenic and enhanced muscle-specific gene expression. Quiescent myoblasts treated with bFGF in combination with IGF-I did not express myogenin, but expressed proliferating cell nuclear antigen and underwent DNA synthesis. In contrast, TNF-alpha in the presence or absence of 1 nM IGF-I, did not stimulate DNA synthesis in myoblasts. However, TNF-alpha inhibited myogenin mRNA and protein expression. Expression of the cyclin-dependent kinase inhibitor p21 correlated with myogenin expression and myoblast differentiation, but not with growth arrest. These results indicate that both TNF-alpha and bFGF inhibit myogenin expression but differentially influence myoblast proliferation.
Collapse
Affiliation(s)
- M D Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
45
|
Skerjanc IS, Petropoulos H, Ridgeway AG, Wilton S. Myocyte enhancer factor 2C and Nkx2-5 up-regulate each other's expression and initiate cardiomyogenesis in P19 cells. J Biol Chem 1998; 273:34904-10. [PMID: 9857019 DOI: 10.1074/jbc.273.52.34904] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Nkx2-5 homeodomain protein plays a key role in cardiomyogenesis. Ectopic expression in frog and zebrafish embryos results in an enlarged myocardium; however, expression of Nkx2-5 in fibroblasts was not able to trigger the development of beating cardiac muscle. In order to examine the ability of Nkx2-5 to modulate endogenous cardiac specific gene expression in cells undergoing early stages of differentiation, P19 cell lines overexpressing Nkx2-5 were differentiated in the absence of Me2SO. Nkx2-5 expression induced cardiomyogenesis in these cultures aggregated without Me2SO. During differentiation into cardiac muscle, Nkx2-5 expression resulted in the activation of myocyte enhancer factor 2C (MEF2C), but not MEF2A, -B, or -D. In order to compare the abilities of Nkx2-5 and MEF2C to induce cellular differentiation, P19 cells overexpressing MEF2C were aggregated in the absence of Me2SO. Similar to Nkx2-5, MEF2C expression initiated cardiomyogenesis, resulting in the up-regulation of Brachyury T, bone morphogenetic protein-4, Nkx2-5, GATA-4, cardiac alpha-actin, and myosin heavy chain expression. These findings indicate the presence of a positive regulatory network between Nkx2-5 and MEF2C and show that both factors can direct early stages of cell differentiation into a cardiomyogenic pathway.
Collapse
Affiliation(s)
- I S Skerjanc
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | | | | | | |
Collapse
|
46
|
Affiliation(s)
- J D Waring
- Solange Gauthier Karsh Laboratory, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | |
Collapse
|
47
|
Storbeck CJ, Sabourin LA, Waring JD, Korneluk RG. Definition of regulatory sequence elements in the promoter region and the first intron of the myotonic dystrophy protein kinase gene. J Biol Chem 1998; 273:9139-47. [PMID: 9535904 DOI: 10.1074/jbc.273.15.9139] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Myotonic dystrophy is the most common inherited adult neuromuscular disorder with a global frequency of 1/8000. The genetic defect is an expanding CTG trinucleotide repeat in the 3'-untranslated region of the myotonic dystrophy protein kinase gene. We present the in vitro characterization of cis regulatory elements controlling transcription of the myotonic dystrophy protein kinase gene in myoblasts and fibroblasts. The region 5' to the initiating ATG contains no consensus TATA or CCAAT box. We have mapped two transcriptional start sites by primer extension. Deletion constructs from this region fused to the bacterial chloramphenicol acetyltransferase reporter gene revealed only subtle muscle specific cis elements. The strongest promoter activity mapped to a 189-base pair fragment. This sequence contains a conserved GC box to which the transcription factor Sp1 binds. Reporter gene constructs containing a 2-kilobase pair first intron fragment of the myotonic dystrophy protein kinase gene enhances reporter activity up to 6-fold in the human rhabdomyosarcoma myoblast cell line TE32 but not in NIH 3T3 fibroblasts. Co-transfection of a MyoD expression vector with reporter constructs containing the first intron into 10 T1/2 fibroblasts resulted in a 10-20-fold enhancement of expression. Deletion analysis of four E-box elements within the first intron reveal that these elements contribute to enhancer activity similarly in TE32 myoblasts and 10 T1/2 fibroblasts. These data suggest that E-boxes within the myotonic dystrophy protein kinase first intron mediate interactions with upstream promoter elements to up-regulate transcription of this gene in myoblasts.
Collapse
Affiliation(s)
- C J Storbeck
- Department of Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | |
Collapse
|
48
|
Angello JC, Stern HM, Hauschka SD. P19 embryonal carcinoma cells: a model system for studying neural tube induction of skeletal myogenesis. Dev Biol 1997; 192:93-8. [PMID: 9405099 DOI: 10.1006/dbio.1997.8722] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A model experimental system for investigating myogenic induction signals has been devised with mouse P19 embryonal carcinoma cells. When cocultured with pieces of chick neural tube, aggregated P19 cells are induced to become skeletal muscle. The most potent inducing activity is localized to the dorsal neural tube. Less activity was found in the ventral neural tube, notochord, ectoderm, and lateral plate mesoderm, and none was detected in the neural retina. These results suggest that P19 cells may be a useful model system for investigating the mechanisms underlying induction of somite myogenesis.
Collapse
Affiliation(s)
- J C Angello
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
49
|
Sabourin LA, Tamai K, Narang MA, Korneluk RG. Overexpression of 3'-untranslated region of the myotonic dystrophy kinase cDNA inhibits myoblast differentiation in vitro. J Biol Chem 1997; 272:29626-35. [PMID: 9368029 DOI: 10.1074/jbc.272.47.29626] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The genetic defect underlying myotonic dystrophy (DM) has been identified as an unstable CTG trinucleotide repeat amplification in the 3'-untranslated region (3'-UTR) of the DM kinase gene (DMK). Individuals with the most severe congenital form display a marked delay in muscle terminal differentiation. To gain insight into the role of DMK during myogenesis, we have examined the effect of DMK overexpression on the terminal differentiation of the murine myoblast cell line C2C12. We demonstrate that a 4-10-fold constitutive overexpression of DMK mRNA in myoblasts caused a marked inhibition of terminal differentiation. Surprisingly, this activity was mapped to a 239-nucleotide region of the 3'-UTR of the DMK transcript. When the DMK 3'-UTR was placed downstream of a reporter gene, the same inhibition of myogenesis was observed. Following the induction of differentiation of myoblast clones overexpressing the DMK 3'-UTR, the levels of myogenin mRNA were reduced by approximately 4-fold, whereas the steady state levels of mef-2c transcripts were not affected. These data suggest that overexpression of the DMK 3'-UTR may interfere with the expression of musclespecific mRNAs leading to a delay in terminal differentiation.
Collapse
Affiliation(s)
- L A Sabourin
- Department of Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8L1.
| | | | | | | |
Collapse
|
50
|
Redfield A, Nieman MT, Knudsen KA. Cadherins promote skeletal muscle differentiation in three-dimensional cultures. J Biophys Biochem Cytol 1997; 138:1323-31. [PMID: 9298987 PMCID: PMC2132549 DOI: 10.1083/jcb.138.6.1323] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cell-cell adhesion molecule N-cadherin, with its associated catenins, is expressed by differentiating skeletal muscle and its precursors. Although N-cadherin's role in later events of skeletal myogenesis such as adhesion during myoblast fusion is well established, less is known about its role in earlier events such as commitment and differentiation. Using an in vitro model system, we have determined that N-cadherin- mediated adhesion enhances skeletal muscle differentiation in three-dimensional cell aggregates. We transfected the cadherin-negative BHK fibroblastlike cell line with N-cadherin. Expression of exogenous N-cadherin upregulated endogenous beta-catenin and induced strong cell-cell adhesion. When BHK cells were cultured as three-dimensional aggregates, N-cadherin enhanced withdrawal from the cell cycle and stimulated differentiation into skeletal muscle as measured by increased expression of sarcomeric myosin and the 12/101 antigen. In contrast, N-cadherin did not stimulate differentiation of BHK cells in monolayer cultures. The effect of N-cadherin was not unique since E-cadherin also increased the level of sarcomeric myosin in BHK aggregates. However, a nonfunctional mutant N-cadherin that increased the level of beta-catenin failed to promote skeletal muscle differentiation suggesting an adhesion-competent cadherin is required. Our results suggest that cadherin-mediated cell-cell interactions during embryogenesis can dramatically influence skeletal myogenesis.
Collapse
Affiliation(s)
- A Redfield
- The Lankenau Medical Research Center, Wynnewood, Pennsylvania 19096, USA
| | | | | |
Collapse
|