1
|
Cortés M, Brischetto A, Martinez-Campanario MC, Ninfali C, Domínguez V, Fernández S, Celis R, Esteve-Codina A, Lozano JJ, Sidorova J, Garrabou G, Siegert AM, Enrich C, Pintado B, Morales-Ruiz M, Castro P, Cañete JD, Postigo A. Inflammatory macrophages reprogram to immunosuppression by reducing mitochondrial translation. Nat Commun 2023; 14:7471. [PMID: 37978290 PMCID: PMC10656499 DOI: 10.1038/s41467-023-42277-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/05/2023] [Indexed: 11/19/2023] Open
Abstract
Acute inflammation can either resolve through immunosuppression or persist, leading to chronic inflammation. These transitions are driven by distinct molecular and metabolic reprogramming of immune cells. The anti-diabetic drug Metformin inhibits acute and chronic inflammation through mechanisms still not fully understood. Here, we report that the anti-inflammatory and reactive-oxygen-species-inhibiting effects of Metformin depend on the expression of the plasticity factor ZEB1 in macrophages. Using mice lacking Zeb1 in their myeloid cells and human patient samples, we show that ZEB1 plays a dual role, being essential in both initiating and resolving inflammation by inducing macrophages to transition into an immunosuppressed state. ZEB1 mediates these diverging effects in inflammation and immunosuppression by modulating mitochondrial content through activation of autophagy and inhibition of mitochondrial protein translation. During the transition from inflammation to immunosuppression, Metformin mimics the metabolic reprogramming of myeloid cells induced by ZEB1. Mechanistically, in immunosuppression, ZEB1 inhibits amino acid uptake, leading to downregulation of mTORC1 signalling and a decrease in mitochondrial translation in macrophages. These results identify ZEB1 as a driver of myeloid cell metabolic plasticity, suggesting that targeting its expression and function could serve as a strategy to modulate dysregulated inflammation and immunosuppression.
Collapse
Affiliation(s)
- Marlies Cortés
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain.
| | - Agnese Brischetto
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - M C Martinez-Campanario
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Chiara Ninfali
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Verónica Domínguez
- National Center of Biotechnology (CSIC-CNB) and Center for Molecular Biology Severo Ochoa (CSIC/UAM-CBMSO) Transgenesis Facility, Higher Research Council (CSIC) and Autonomous University of Madrid (UAM), Cantoblanco, 28049, Madrid, Spain
| | - Sara Fernández
- Medical Intensive Care Unit and Department of Internal Medicine, Hospital Clínic of Barcelona, Group of Muscle Research and Mitochondrial Function, IDIBAPS, and CIBERER, 08036, Barcelona, Spain
| | - Raquel Celis
- Arthritis Unit, Dept. of Rheumathology, Hospital Clínic and IDIBAPS, 08036, Barcelona, Spain
| | | | - Juan J Lozano
- Biomedical Research Networking Centers in Digestive and Hepatic Diseases (CIBERehd), Carlos III Health Institute, 08036, Barcelona, Spain
| | - Julia Sidorova
- Biomedical Research Networking Centers in Digestive and Hepatic Diseases (CIBERehd), Carlos III Health Institute, 08036, Barcelona, Spain
| | - Gloria Garrabou
- Medical Intensive Care Unit and Department of Internal Medicine, Hospital Clínic of Barcelona, Group of Muscle Research and Mitochondrial Function, IDIBAPS, and CIBERER, 08036, Barcelona, Spain
| | - Anna-Maria Siegert
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB1 0QQ, UK
| | - Carlos Enrich
- Department of Biomedicine, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain
| | - Belén Pintado
- National Center of Biotechnology (CSIC-CNB) and Center for Molecular Biology Severo Ochoa (CSIC/UAM-CBMSO) Transgenesis Facility, Higher Research Council (CSIC) and Autonomous University of Madrid (UAM), Cantoblanco, 28049, Madrid, Spain
| | - Manuel Morales-Ruiz
- Biomedical Research Networking Centers in Digestive and Hepatic Diseases (CIBERehd), Carlos III Health Institute, 08036, Barcelona, Spain
- Department of Biomedicine, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain
- Department of Biochemistry and Molecular Genetics, Hospital Clínic of Barcelona and IDIBAPS, 08036, Barcelona, Spain
| | - Pedro Castro
- Medical Intensive Care Unit and Department of Internal Medicine, Hospital Clínic of Barcelona, Group of Muscle Research and Mitochondrial Function, IDIBAPS, and CIBERER, 08036, Barcelona, Spain
| | - Juan D Cañete
- Arthritis Unit, Dept. of Rheumathology, Hospital Clínic and IDIBAPS, 08036, Barcelona, Spain
| | - Antonio Postigo
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain.
- Biomedical Research Networking Centers in Digestive and Hepatic Diseases (CIBERehd), Carlos III Health Institute, 08036, Barcelona, Spain.
- Molecular Targets Program, Division of Oncology, Department of Medicine, J.G. Brown Cancer Center, Louisville, KY, 40202, USA.
- ICREA, 08010, Barcelona, Spain.
| |
Collapse
|
2
|
Mechanisms of Binding Specificity among bHLH Transcription Factors. Int J Mol Sci 2021; 22:ijms22179150. [PMID: 34502060 PMCID: PMC8431614 DOI: 10.3390/ijms22179150] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptome of every cell is orchestrated by the complex network of interaction between transcription factors (TFs) and their binding sites on DNA. Disruption of this network can result in many forms of organism malfunction but also can be the substrate of positive natural selection. However, understanding the specific determinants of each of these individual TF-DNA interactions is a challenging task as it requires integrating the multiple possible mechanisms by which a given TF ends up interacting with a specific genomic region. These mechanisms include DNA motif preferences, which can be determined by nucleotide sequence but also by DNA’s shape; post-translational modifications of the TF, such as phosphorylation; and dimerization partners and co-factors, which can mediate multiple forms of direct or indirect cooperative binding. Binding can also be affected by epigenetic modifications of putative target regions, including DNA methylation and nucleosome occupancy. In this review, we describe how all these mechanisms have a role and crosstalk in one specific family of TFs, the basic helix-loop-helix (bHLH), with a very conserved DNA binding domain and a similar DNA preferred motif, the E-box. Here, we compile and discuss a rich catalog of strategies used by bHLH to acquire TF-specific genome-wide landscapes of binding sites.
Collapse
|
3
|
Sabet Sarvestani F, Azarpira N, Al-Abdullah IH, Tamaddon AM. microRNAs in liver and kidney ischemia reperfusion injury: insight to improve transplantation outcome. Biomed Pharmacother 2020; 133:110944. [PMID: 33227704 DOI: 10.1016/j.biopha.2020.110944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/03/2020] [Accepted: 10/25/2020] [Indexed: 12/26/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is a condition that occurs wherever blood flow and oxygen is reduced or absent, such as trauma, vascular disease, stroke, and solid organ transplantation. This condition can lead to tissue damage, especially during organ transplantation. Under such circumstances, some signaling pathways are activated, leading to up- or down- regulation of several genes such as microRNAs (miRNAs) that might attenuate or ameliorate this status. Therefore, by manipulating miRNAs level, they can be used as a biomarker for early diagnosis of IRI or suggestive to be therapeutic agents in clinical situation in future.
Collapse
Affiliation(s)
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ismail H Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, USA.
| | - Ali-Mohammad Tamaddon
- Department of Pharmaceutics and Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
de Barrios O, Sanchez-Moral L, Cortés M, Ninfali C, Profitós-Pelejà N, Martínez-Campanario MC, Siles L, Del Campo R, Fernández-Aceñero MJ, Darling DS, Castells A, Maurel J, Salas A, Dean DC, Postigo A. ZEB1 promotes inflammation and progression towards inflammation-driven carcinoma through repression of the DNA repair glycosylase MPG in epithelial cells. Gut 2019; 68:2129-2141. [PMID: 31366457 DOI: 10.1136/gutjnl-2018-317294] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Chronic inflammation is a risk factor in colorectal cancer (CRC) and reactive oxygen species (ROS) released by the inflamed stroma elicit DNA damage in epithelial cells. We sought to identify new drivers of ulcerative colitis (UC) and inflammatory CRC. DESIGN The study uses samples from patients with UC, mouse models of colitis and CRC and mice deficient for the epithelial-to-mesenchymal transition factor ZEB1 and the DNA repair glycosylase N-methyl-purine glycosylase (MPG). Samples were analysed by immunostaining, qRT-PCR, chromatin immunoprecipitation assays, microbiota next-generation sequencing and ROS determination. RESULTS ZEB1 was induced in the colonic epithelium of UC and of mouse models of colitis. Compared with wild-type counterparts, Zeb1-deficient mice were partially protected from experimental colitis and, in a model of inflammatory CRC, they developed fewer tumours and exhibited lower levels of DNA damage (8-oxo-dG) and higher expression of MPG. Knockdown of ZEB1 in CRC cells inhibited 8-oxo-dG induction by oxidative stress (H2O2) and inflammatory cytokines (interleukin (IL)1β). ZEB1 bound directly to the MPG promoter whose expression inhibited. This molecular mechanism was validated at the genetic level and the crossing of Zeb1-deficient and Mpg-deficient mice reverted the reduced inflammation and tumourigenesis in the former. ZEB1 expression in CRC cells induced ROS and IL1β production by macrophages that, in turn, lowered MPG in CRC cells thus amplifying a positive loop between both cells to promote DNA damage and inhibit DNA repair. CONCLUSIONS ZEB1 promotes colitis and inflammatory CRC through the inhibition of MPG in epithelial cells, thus offering new therapeutic strategies to modulate inflammation and inflammatory cancer.
Collapse
Affiliation(s)
- Oriol de Barrios
- Group of Transcriptional Regulation of Gene Expression, Dept of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | - Lidia Sanchez-Moral
- Group of Transcriptional Regulation of Gene Expression, Dept of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | - Marlies Cortés
- Group of Transcriptional Regulation of Gene Expression, Dept of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | - Chiara Ninfali
- Group of Transcriptional Regulation of Gene Expression, Dept of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | - Nuria Profitós-Pelejà
- Group of Transcriptional Regulation of Gene Expression, Dept of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | - M C Martínez-Campanario
- Group of Transcriptional Regulation of Gene Expression, Dept of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | - Laura Siles
- Group of Transcriptional Regulation of Gene Expression, Dept of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | - Rosa Del Campo
- Dept of Microbiology, Hospital Ramon y Cajal Health Research Institute (IRYCIS), Spanish Network of Infectious Diseases (REIPI), National Health Institute Carlos III (ISCIII), Madrid, Spain
| | | | - Douglas S Darling
- Dept of Oral Immunology and Infectious Diseases and Center for Genetics and Molecular Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Antoni Castells
- Dept of Gastroenterology, Hospital Clínic and IDIBAPS, Barcelona, Spain
- Gastrointestinal and Pancreatic Oncology Team, CIBERehd, Barcelona, Spain
| | - Joan Maurel
- Group of Translational Genomics and Targeted Therapeutics in Solid Tumours, Dept of Medical Oncology, Hospital Clínic and IDIBAPS, Barcelona, Spain
| | - Azucena Salas
- Dept of Gastroenterology, Hospital Clínic and IDIBAPS, Barcelona, Spain
| | - Douglas C Dean
- Dept of Ophthalmology and Visual Sciences and Birth Defects Center, University of Louisville, Louisville, Kentucky, USA
- Molecular Targets Program, James G. Brown Cancer Center, Louisville, Kentucky, USA
| | - Antonio Postigo
- Group of Transcriptional Regulation of Gene Expression, Dept of Oncology and Hematology, IDIBAPS, Barcelona, Spain
- Molecular Targets Program, James G. Brown Cancer Center, Louisville, Kentucky, USA
- ICREA, Barcelona, Spain
| |
Collapse
|
5
|
Das V, Bhattacharya S, Chikkaputtaiah C, Hazra S, Pal M. The basics of epithelial-mesenchymal transition (EMT): A study from a structure, dynamics, and functional perspective. J Cell Physiol 2019; 234:14535-14555. [PMID: 30723913 DOI: 10.1002/jcp.28160] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a key step in transdifferentiation process in solid cancer development. Forthcoming evidence suggest that the stratified program transforms polarized, immotile epithelial cells to migratory mesenchymal cells associated with enhancement of breast cancer stemness, metastasis, and drug resistance. It involves primarily several signaling pathways, such as transforming growth factor-β (TGF-β), cadherin, notch, plasminogen activator protein inhibitor, urokinase plasminogen activator, and WNT/beta catenin pathways. However, current understanding on the crosstalk of multisignaling pathways and assemblies of key transcription factors remain to be explored. In this review, we focus on the crosstalk of signal transduction pathways linked to the current therapeutic and drug development strategies. We have also performed the computational modeling on indepth the structure and conformational dynamic studies of regulatory proteins and analyze molecular interactions with their associate factors to understand the complicated process of EMT in breast cancer progression and metastasis. Electrostatic potential surfaces have been analyzed that help in optimization of electrostatic interactions between the protein and its ligand. Therefore, understanding the biological implications underlying the EMT process through molecular biology with biocomputation and structural biology approaches will enable the development of new therapeutic strategies to sensitize tumors to conventional therapy and suppress their metastatic phenotype.
Collapse
Affiliation(s)
- Vishal Das
- Biological Sciences and Technology Division (Biotechnology Group), CSIR-North East Institute of Science and Technology, Academy of Scientific and Innovative Research, Jorhat, Assam, India
| | - Sourya Bhattacharya
- Department of Biotechnology, Centre for Nanotechnology, Indian Institute of Technology Roorkee (IITR), Roorkee, Uttarakhand, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division (Biotechnology Group), CSIR-North East Institute of Science and Technology, Academy of Scientific and Innovative Research, Jorhat, Assam, India
| | - Saugata Hazra
- Department of Biotechnology, Centre for Nanotechnology, Indian Institute of Technology Roorkee (IITR), Roorkee, Uttarakhand, India
| | - Mintu Pal
- Biological Sciences and Technology Division (Biotechnology Group), CSIR-North East Institute of Science and Technology, Academy of Scientific and Innovative Research, Jorhat, Assam, India
| |
Collapse
|
6
|
Ninfali C, Siles L, Darling DS, Postigo A. Regulation of muscle atrophy-related genes by the opposing transcriptional activities of ZEB1/CtBP and FOXO3. Nucleic Acids Res 2019; 46:10697-10708. [PMID: 30304480 PMCID: PMC6237734 DOI: 10.1093/nar/gky835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023] Open
Abstract
Multiple physiopathological and clinical conditions trigger skeletal muscle atrophy through the induction of a group of proteins (atrogenes) that includes components of the ubiquitin–proteasome and autophagy-lysosomal systems. Atrogenes are induced by FOXO transcription factors, but their regulation is still not fully understood. Here, we showed that the transcription factor ZEB1, best known for promoting tumor progression, inhibits muscle atrophy and atrogene expression by antagonizing FOXO3-mediated induction of atrogenes. Compared to wild-type counterparts, hindlimb immobilization in Zeb1-deficient mice resulted in enhanced muscle atrophy and higher expression of a number of atrogenes, including Atrogin-1/Fbxo32, MuRF1/Trim63, Ctsl, 4ebp1, Gabarapl1, Psma1 and Nrf2. Likewise, in the C2C12 myogenic cell model, ZEB1 knockdown augmented both myotube diameter reduction and atrogene upregulation in response to nutrient deprivation. Mechanistically, ZEB1 directly represses in vitro and in vivo Fbxo32 and Trim63 promoter transcription in a stage-dependent manner and in a reverse pattern with MYOD1. ZEB1 bound to the Fbxo32 promoter in undifferentiated myoblasts and atrophic myotubes, but not in non-atrophic myotubes, where it is displaced by MYOD1. ZEB1 repressed both promoters through CtBP-mediated inhibition of FOXO3 transcriptional activity. These results set ZEB1 as a new target in therapeutic approaches to clinical conditions causing muscle mass loss.
Collapse
Affiliation(s)
- Chiara Ninfali
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, Barcelona 08036, Spain
| | - Laura Siles
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, Barcelona 08036, Spain
| | - Douglas S Darling
- Center for Genetics and Molecular Medicine and Department of Immunology and Infectious Diseases, University of Louisville, Louisville, KY 40202, USA
| | - Antonio Postigo
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, Barcelona 08036, Spain.,Molecular Targets Program, James G. Brown Cancer Center, Louisville, KY 40202, USA.,ICREA, Barcelona 08010, Spain
| |
Collapse
|
7
|
The Vicious Cross-Talk between Tumor Cells with an EMT Phenotype and Cells of the Immune System. Cells 2019; 8:cells8050460. [PMID: 31096701 PMCID: PMC6562673 DOI: 10.3390/cells8050460] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023] Open
Abstract
Carcinoma cells that undergo an epithelial-mesenchymal transition (EMT) and display a predominantly mesenchymal phenotype (hereafter EMT tumor cells) are associated with immune exclusion and immune deviation in the tumor microenvironment (TME). A large body of evidence has shown that EMT tumor cells and immune cells can reciprocally influence each other, with EMT cells promoting immune exclusion and deviation and immune cells promoting, under certain circumstances, the induction of EMT in tumor cells. This cross-talk between EMT tumor cells and immune cells can occur both between EMT tumor cells and cells of either the native or adaptive immune system. In this article, we review this evidence and the functional consequences of it. We also discuss some recent evidence showing that tumor cells and cells of the immune system respond to similar stimuli, activate the expression of partially overlapping gene sets, and acquire, at least in part, identical functionalities such as migration and invasion. The possible significance of these symmetrical changes in the cross-talk between EMT tumor cells and immune cells is addressed. Eventually, we also discuss possible therapeutic opportunities that may derive from disrupting this cross-talk.
Collapse
|
8
|
Liu G, Wu J, Qiao M, Zhou J, Wu H, Peng X, Mekchay S, Mei S. Transcription elements AREB6 and miR-34a affect apoptosis of PAMs by regulating the expression of SS2-related gene PPP1R11. Cell Cycle 2019; 18:1033-1044. [PMID: 31014175 DOI: 10.1080/15384101.2019.1610241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In our previous work, gene PPP1R11 (protein phosphatase 1 regulatory subunit 11) was significantly expressed in pigs after Streptococcus suis 2 (SS2) challenged. This study firstly confirmed that SS2 induced significant expression of PPP1R11 gene in porcine alveolar macrophage (PAM) cells, and apoptosis of PAM cells were observed. After that, the core promoter of porcine PPP1R11 was identified and its transcription factor AREB6 which significantly regulated PPP1R11. We also characterized that the PPP1R11 gene is a target of miR-34a. Further, we found that PPP1R11 helped to inhibit apoptosis of PAM cells under SS2 infecting, through transcription factor AREB6 was negatively correlated with apoptosis whereas miR-34a was positively correlated. Those findings provide a functional connection among the transcription factor AREB6, miR-34a, PPP1R11 gene and apoptosis of PAM cells in the pathogenesis of the SS2 infection.
Collapse
Affiliation(s)
- Guisheng Liu
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Junjing Wu
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Mu Qiao
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Jiawei Zhou
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Huayu Wu
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Xianwen Peng
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| | - Supamit Mekchay
- c Department of Animal and Aquatic Sciences, Faculty of Agriculture , Chiang Mai University , Chiang Mai , Thailand
| | - Shuqi Mei
- a Institute of Animal Science and Veterinary Medicine , Hubei Academy of Agricultural Sciences , Wuhan , China.,b Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding , Wuhan , China
| |
Collapse
|
9
|
ZEB Proteins in Leukemia: Friends, Foes, or Friendly Foes? Hemasphere 2018; 2:e43. [PMID: 31723771 PMCID: PMC6745990 DOI: 10.1097/hs9.0000000000000043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 01/06/2023] Open
Abstract
ZEB1 and ZEB2 play pivotal roles in solid cancer metastasis by allowing cancer cells to invade and disseminate through the transcriptional regulation of epithelial-to-mesenchymal transition. ZEB expression is also associated with the acquisition of cancer stem cell properties and therapy resistance. Consequently, expression levels of ZEB1/2 and of their direct target genes are widely seen as reliable prognostic markers for solid tumor aggressiveness and cancer patient outcome. Recent loss-of-function mouse models demonstrated that both ZEBs are also essential hematopoietic transcription factors governing blood lineage commitment and fidelity. Interestingly, both gain- and loss-of-function mutations have been reported in multiple hematological malignancies. Combined with emerging functional studies, these data suggest that ZEB1 and ZEB2 can act as tumor suppressors and/or oncogenes in blood borne malignancies, depending on the cellular context. Here, we review these novel insights and discuss how balanced expression of ZEB proteins may be essential to safeguard the functionality of the immune system and prevent leukemia.
Collapse
|
10
|
Cortés M, Sanchez-Moral L, de Barrios O, Fernández-Aceñero MJ, Martínez-Campanario MC, Esteve-Codina A, Darling DS, Győrffy B, Lawrence T, Dean DC, Postigo A. Tumor-associated macrophages (TAMs) depend on ZEB1 for their cancer-promoting roles. EMBO J 2017; 36:3336-3355. [PMID: 29038174 PMCID: PMC5686549 DOI: 10.15252/embj.201797345] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 01/06/2023] Open
Abstract
Accumulation of tumor-associated macrophages (TAMs) associates with malignant progression in cancer. However, the mechanisms that drive the pro-tumor functions of TAMs are not fully understood. ZEB1 is best known for driving an epithelial-to-mesenchymal transition (EMT) in cancer cells to promote tumor progression. However, a role for ZEB1 in macrophages and TAMs has not been studied. Here we describe that TAMs require ZEB1 for their tumor-promoting and chemotherapy resistance functions in a mouse model of ovarian cancer. Only TAMs that expressed full levels of Zeb1 accelerated tumor growth. Mechanistically, ZEB1 expression in TAMs induced their polarization toward an F4/80low pro-tumor phenotype, including direct activation of Ccr2 In turn, expression of ZEB1 by TAMs induced Ccl2, Cd74, and a mesenchymal/stem-like phenotype in cancer cells. In human ovarian carcinomas, TAM infiltration and CCR2 expression correlated with ZEB1 in tumor cells, where along with CCL2 and CD74 determined poorer prognosis. Importantly, ZEB1 in TAMs was a factor of poorer survival in human ovarian carcinomas. These data establish ZEB1 as a key factor in the tumor microenvironment and for maintaining TAMs' tumor-promoting functions.
Collapse
Affiliation(s)
- Marlies Cortés
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | - Lidia Sanchez-Moral
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | - Oriol de Barrios
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | | | - M C Martínez-Campanario
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science & Technology, and Universitat Pompeu Fabra, Barcelona, Spain
| | - Douglas S Darling
- Department of Oral Immunology, and Center for Genetics and Molecular Medicine, University of Louisville, Louisville, KY, USA
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, and Semmelweis University 2 Department of Pediatrics, Budapest, Hungary
| | - Toby Lawrence
- Centre d'Immunologie de Marseille-Luminy, INSERM U1104 and CNRS MR7280, Marseille, France
| | - Douglas C Dean
- Department of Ophthalmology and Visual Sciences and Birth Defects Center, University of Louisville, Louisville, KY, USA
- Molecular Targets Program, James G. Brown Cancer Center, Louisville, KY, USA
| | - Antonio Postigo
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, Barcelona, Spain
- Molecular Targets Program, James G. Brown Cancer Center, Louisville, KY, USA
- ICREA, Barcelona, Spain
| |
Collapse
|
11
|
Wu Y, Gu C, Huang X. Sevoflurane protects against hepatic ischemia/reperfusion injury by modulating microRNA-200c regulation in mice. Biomed Pharmacother 2016; 84:1126-1136. [PMID: 27780142 DOI: 10.1016/j.biopha.2016.10.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/14/2016] [Accepted: 10/09/2016] [Indexed: 12/22/2022] Open
Abstract
This present study was aimed to investigate the molecular mechanisms involved in sevoflurane protection of hepatic ischemia-reperfusion (I/R) injury. Firstly, we investigated the protective effects of sevoflurane against hepatic I/R injury. Biochemical analysis results showed that sevoflurane preconditioning significantly protected against hepatic I/R injury by reducing liver enzymes and improving antioxidant defense markers. We also found that sevoflurane attenuates I/R-induced hepatic cell death, by TUNEL staining, DNA fragmentation ELISA and PARP activity determination. Next, In order to find the molecular mechanism of sevoflurane preconditioning in hepatic I/R injury, we poured our attention to microRNAs regulation. We focused on miR-200c, one of microRNAs which screened from the gene expression omnibus (GEO). Furthermore, a hydrogen peroxide (H2O2)-induced oxidative stress apoptosis model was also established to mimic hepatic I/R injury, the effects of MiR-200c was investigated. We observed that MiR-200c inhibition decreased the H2O2-induced apoptosis of hepatic AML-12 cells. And also, ZEB1 is found as a target gene of miR-200c and is involved in H2O2-induced apoptosis. On the other hand, the in vivo model was established to examine whether sevoflurane protect against hepatic IR injury by downregulating MiR-200c. Together with the biochemical tests and apoptosis detection, results showed that over-expression of miR-200c significantly inhibited the protect effect of sevoflurane in Hepatic IR injury. Summarizing, sevoflurane preconditioning seems to ameliorate hepatic I/R injury in mice, mediated by mechanisms that include microRNA 200c down regulation. However, further more studies need to be carried out to verify this point.
Collapse
Affiliation(s)
- Yamou Wu
- Department of Anesthesiology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Chengyong Gu
- Department of Anesthesiology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215000, China.
| | - Xiaochen Huang
- Department of Anesthesiology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215000, China
| |
Collapse
|
12
|
Hegarty SV, Sullivan AM, O'Keeffe GW. Zeb2: A multifunctional regulator of nervous system development. Prog Neurobiol 2015; 132:81-95. [PMID: 26193487 DOI: 10.1016/j.pneurobio.2015.07.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 12/19/2022]
Abstract
Zinc finger E-box binding homeobox (Zeb) 2 is a transcription factor, identified due its ability to bind Smad proteins, and consists of multiple functional domains which interact with a variety of transcriptional co-effectors. The complex nature of the Zeb2, both at its genetic and protein levels, underlie its multifunctional properties, with Zeb2 capable of acting individually or as part of a transcriptional complex to repress, and occasionally activate, target gene expression. This review introduces Zeb2 as an essential regulator of nervous system development. Zeb2 is expressed in the nervous system throughout its development, indicating its importance in neurogenic and gliogenic processes. Indeed, mutation of Zeb2 has dramatic neurological consequences both in animal models, and in humans with Mowat-Wilson syndrome, which results from heterozygous ZEB2 mutations. The mechanisms by which Zeb2 regulates the induction of the neuroectoderm (CNS primordium) and the neural crest (PNS primordium) are reviewed herein. We then describe how Zeb2 acts to direct the formation, delamination, migration and specification of neural crest cells. Zeb2 regulation of the development of a number of cerebral regions, including the neocortex and hippocampus, are then described. The diverse molecular mechanisms mediating Zeb2-directed development of various neuronal and glial populations are reviewed. The role of Zeb2 in spinal cord and enteric nervous system development is outlined, while its essential function in CNS myelination is also described. Finally, this review discusses how the neurodevelopmental defects of Zeb2 mutant mice delineate the developmental dysfunctions underpinning the multiple neurological defects observed in Mowat-Wilson syndrome patients.
Collapse
Affiliation(s)
- Shane V Hegarty
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland.
| | - Aideen M Sullivan
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Rojas-Marquez C, Valle-Rios R, Lopez-Bayghen E, Ortiz-Navarrete V. CRTAM is negatively regulated by ZEB1 in T cells. Mol Immunol 2015; 66:290-8. [PMID: 25910959 DOI: 10.1016/j.molimm.2015.03.253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/20/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
T cell activation leads to the induction of genes that are required for appropriate immune responses. This includes CRTAM (Class-I MHC-restricted T cell associated molecule), a protein that plays a key role in T cell development, proliferation, and generating cell polarity during activation. We previously characterized the CRTAM promoter and described how AP-1 family members are important for inducing CRTAM expression upon antigenic activation. Here, we show that CRTAM is a molecular target for ZEB1 (zinc finger E-box-binding protein), a homeodomain/Zn finger transcription factor. Overexpression of ZEB1 repressed CRTAM promoter activity, as well as endogenous CRTAM levels in human T cells. ZEB1-mediated transcriptional repression was abolished when E-box-like elements in the CRTAM promoter are mutated. In summary, ZEB1 functions as a transcriptional repressor for the CRTAM gene in both non-stimulated and stimulated T cells, thereby modulating adaptive immune responses.
Collapse
Affiliation(s)
- C Rojas-Marquez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV)-IPN, Av. IPN No. 2508, Colonia San Pedro Zacatenco, México, DF, Mexico
| | - R Valle-Rios
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Fedérico Gómez, México, DF, Mexico
| | - E Lopez-Bayghen
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (CINVESTAV)-IPN, Av. IPN No. 2508, Colonia San Pedro Zacatenco, México, DF, Mexico.
| | - V Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV)-IPN, Av. IPN No. 2508, Colonia San Pedro Zacatenco, México, DF, Mexico.
| |
Collapse
|
14
|
Gaur N, Gandhi J, Robertson ES, Verma SC, Kaul R. Epstein-Barr virus latent antigens EBNA3C and EBNA1 modulate epithelial to mesenchymal transition of cancer cells associated with tumor metastasis. Tumour Biol 2015; 36:3051-60. [PMID: 25501510 PMCID: PMC4793920 DOI: 10.1007/s13277-014-2941-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022] Open
Abstract
Epithelial-mesenchymal transition is an important mechanism in cancer invasiveness and metastasis. We had previously reported that cancer cells expressing Epstein-Barr virus (EBV) latent viral antigens EBV nuclear antigen EBNA3C and/ or EBNA1 showed higher motility and migration potential and had a propensity for increased metastases when tested in nude mice model. We now show that both EBNA3C and EBNA1 can modulate cellular pathways critical for epithelial to mesenchymal transition of cancer cells. Our data confirms that presence of EBNA3C or EBNA1 result in upregulation of transcriptional repressor Slug and Snail, upregulation of intermediate filament of mesenchymal origin vimentin, upregulation of transcription factor TCF8/ZEB1, downregulation as well as disruption of tight junction zona occludens protein ZO-1, downregulation of cell adhesion molecule E-cadherin, and nuclear translocation of β-catenin. We further show that the primary tumors as well as metastasized lesions derived from EBV antigen-expressing cancer cells in nude mice model display EMT markers expression pattern suggesting their greater propensity to mesenchymal transition.
Collapse
Affiliation(s)
- Nivedita Gaur
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Jaya Gandhi
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Erle S. Robertson
- Department of Microbiology and Tumour Virology Program, Abramson Cancer Centre, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada Reno, Reno, NV, USA
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
15
|
Transcription regulation of E-cadherin by zinc finger E-box binding homeobox proteins in solid tumors. BIOMED RESEARCH INTERNATIONAL 2014; 2014:921564. [PMID: 25197668 PMCID: PMC4147210 DOI: 10.1155/2014/921564] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/13/2014] [Accepted: 07/28/2014] [Indexed: 12/19/2022]
Abstract
Downregulation of E-cadherin in solid tumors with regional migration and systematic metastasis is well recognized. In view of its significance in tumorigenesis and solid cancer progression, studies on the regulatory mechanisms are important for the development of target treatment and prediction of clinical behavior for cancer patients. The vertebrate zinc finger E-box binding homeobox (ZEB) protein family comprises 2 major members: ZEB1 and ZEB2. Both contain the motif for specific binding to multiple enhancer boxes (E-boxes) located within the short-range transcription regulatory regions of the E-cadherin gene. Binding of ZEB1 and ZEB2 to the spaced E-cadherin E-boxes has been implicated in the regulation of E-cadherin expression in multiple human cancers. The widespread functions of ZEB proteins in human malignancies indicate their significance. Given the significance of E-cadherin in the solid tumors, a deeper understanding of the functional role of ZEB proteins in solid tumors could provide insights in the design of target therapy against the migratory nature of solid cancers.
Collapse
|
16
|
Huang WT, Kuo SH, Cheng AL, Lin CW. Inhibition of ZEB1 by miR-200 characterizes Helicobacter pylori-positive gastric diffuse large B-cell lymphoma with a less aggressive behavior. Mod Pathol 2014; 27:1116-1125. [PMID: 24390222 DOI: 10.1038/modpathol.2013.229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 12/12/2022]
Abstract
Primary gastric diffuse large B-cell lymphomas may or may not have a concurrent component of mucosa-associated lymphoid tissue lymphoma. Diffuse large B-cell lymphoma/mucosa-associated lymphoid tissue lymphomas are often associated with Helicobacter pylori (H. pylori) infection, suggesting that the large cells are transformed from mucosa-associated lymphoid tissue lymphomas. In contrast, only limited data are available on the clinical and molecular features of pure gastric diffuse large B-cell lymphomas. In 102 pure gastric diffuse large B-cell lymphomas, we found H. pylori infection in 53% of the cases. H. pylori-positive gastric diffuse large B-cell lymphomas were more likely to present at an earlier stage (73% vs 52% at stage I/II, P=0.03), to achieve complete remission (75% vs 43%, P=0.001), and had a better 5-year disease-free survival rate (73% vs 29%, P<0.001) than H. pylori-negative gastric diffuse large B-cell lymphomas. Through genome-wide expression profiles of both miRNAs and mRNAs in nine H. pylori-positive and nine H. pylori-negative gastric diffuse large B-cell lymphomas, we identified inhibition of ZEB1 (zinc-finger E-box-binding homeobox 1) by miR-200 in H. pylori-positive gastric diffuse large B-cell lymphomas. ZEB1, a transcription factor for marginal zone B cells, can suppress BCL6, the master transcription factor for germinal center B cells. In 30 H. pylori-positive and 30 H. pylori-negative gastric diffuse large B-cell lymphomas, we confirmed that H. pylori-positive gastric diffuse large B-cell lymphomas had higher levels of miR-200 by qRT-PCR, and lower levels of ZEB1 and higher levels of BCL6 using immunohistochemistry. As BCL6 is a known predictor of a better prognosis in gastric diffuse large B-cell lymphomas, our data demonstrate that inhibition of ZEB1 by miR-200, with secondary increase in BCL6, is a molecular event that characterizes H. pylori-positive gastric diffuse large B-cell lymphomas with a less aggressive behavior.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- DNA-Binding Proteins/analysis
- Disease-Free Survival
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genome-Wide Association Study
- Helicobacter Infections/diagnosis
- Helicobacter Infections/microbiology
- Helicobacter pylori/isolation & purification
- Homeodomain Proteins/analysis
- Homeodomain Proteins/genetics
- Humans
- Immunohistochemistry
- Lymphoma, Large B-Cell, Diffuse/chemistry
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/microbiology
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- MicroRNAs/analysis
- MicroRNAs/genetics
- Middle Aged
- Neoplasm Staging
- Phenotype
- Proto-Oncogene Proteins c-bcl-6
- Real-Time Polymerase Chain Reaction
- Remission Induction
- Reverse Transcriptase Polymerase Chain Reaction
- Stomach Neoplasms/chemistry
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/genetics
- Stomach Neoplasms/microbiology
- Stomach Neoplasms/mortality
- Stomach Neoplasms/pathology
- Time Factors
- Transcription Factors/analysis
- Transcription Factors/genetics
- Treatment Outcome
- Zinc Finger E-box-Binding Homeobox 1
Collapse
Affiliation(s)
- Wei-Ting Huang
- Department of Pathology, National Taiwan University Hospital of Medicine, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Wu Lin
- Department of Pathology, National Taiwan University Hospital of Medicine, Taipei, Taiwan
| |
Collapse
|
17
|
MacQuarrie KL, Yao Z, Fong AP, Tapscott SJ. Genome-wide binding of the basic helix-loop-helix myogenic inhibitor musculin has substantial overlap with MyoD: implications for buffering activity. Skelet Muscle 2013; 3:26. [PMID: 24175993 PMCID: PMC4177542 DOI: 10.1186/2044-5040-3-26] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 10/10/2013] [Indexed: 11/20/2022] Open
Abstract
Background Musculin (MSC) is a basic helix-loop-helix transcription factor that inhibits myogenesis during normal development and contributes to the differentiation defect in rhabdomyosarcoma. As one of many transcription factors that impede myogenesis, its binding on a genome-wide scale relative to the widespread binding of the myogenic factor MyoD is unknown. Methods Chromatin immunoprecipitation coupled to high-throughput sequencing was performed for endogenous MSC in rhabdomyosarcoma cells and its binding was compared to that of MyoD in the same type of cells. Results MSC binds throughout the genome, in a pattern very similar to MyoD. Its binding overlaps strongly with regions enriched for acetylated histone H4, as well as regions that score high for DNase hypersensitivity in human myoblasts. In contrast to MyoD, MSC has a more relaxed binding sequence preference in the nucleotides that flank the core E-box motif. Conclusions The myogenic inhibitor MSC binds throughout the genome of rhabdomyosarcoma cells, in a pattern highly similar to that of MyoD, suggesting a broad role in buffering the activity of MyoD in development and rhabdomyosarcomas.
Collapse
Affiliation(s)
- Kyle L MacQuarrie
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N C3-168, Seattle WA 98109, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle WA 98105, USA
| | - Zizhen Yao
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N C3-168, Seattle WA 98109, USA
| | - Abraham P Fong
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle WA 98105, USA
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N C3-168, Seattle WA 98109, USA.,Department of Neurology, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
18
|
Zhang GJ, Zhou T, Tian HP, Liu ZL, Xia SS. High expression of ZEB1 correlates with liver metastasis and poor prognosis in colorectal cancer. Oncol Lett 2012; 5:564-568. [PMID: 23420790 PMCID: PMC3573155 DOI: 10.3892/ol.2012.1026] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/07/2012] [Indexed: 12/29/2022] Open
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1) has been shown to promote invasion and metastasis in several types of human cancer and to have a prognostic role in certain cancers. However, the clinical significance of ZEB1 in colorectal cancer (CRC) has not been sufficiently investigated. This study aimed to address this issue. In this study, we compared the expression of ZEB1 between CRC tissues and normal adjacent mucosa using quantitative real-time RT-PCR. The association of ZEB1 expression with clinicopathological characteristics was analyzed by appropriate statistical analyses. Kaplan-Meier analysis and Cox proportional hazards regression models were used to investigate the association of ZEB1 expression with survival of patients. The results showed that the relative expression levels of ZEB1 were significantly higher in CRC tissues compared to the normal adjacent mucosa and higher expression of ZEB1 correlated with liver metastasis. Kaplan-Meier analysis indicated that patients with high ZEB1 had a poor overall survival. Moreover, the multivariate analysis showed that high expression of ZEB1 was an independent predictor of overall survival. Our data indicate the potential of ZEB1 as a novel prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Guang-Jun Zhang
- The First Department of General Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | | | | | | | | |
Collapse
|
19
|
Gheldof A, Hulpiau P, van Roy F, De Craene B, Berx G. Evolutionary functional analysis and molecular regulation of the ZEB transcription factors. Cell Mol Life Sci 2012; 69:2527-41. [PMID: 22349261 PMCID: PMC11115101 DOI: 10.1007/s00018-012-0935-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 01/23/2012] [Accepted: 01/26/2012] [Indexed: 02/07/2023]
Abstract
ZEB1 and ZEB2, which are members of the ZEB family of transcription factors, play a pivotal role in the development of the vertebrate embryo. However, recent evidence shows that both proteins can also drive the process of epithelial-mesenchymal transition during malignant cancer progression. The understanding of how both ZEBs act as transcription factors opens up new possibilities for future treatment of advanced carcinomas. This review gives insight into the molecular mechanisms that form the basis of the multitude of cellular processes controlled by both ZEB factors. By using an evolutionary approach, we analyzed how the specific organization of the different domains and regulatory sites in ZEB1 and ZEB2 came into existence. On the basis of this analysis, a detailed overview is provided of the different cofactors and post-translational mechanisms that are associated with ZEB protein functionality.
Collapse
Affiliation(s)
- Alexander Gheldof
- Unit of Molecular and Cellular Oncology, Department for Molecular Biomedical Research, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Paco Hulpiau
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Frans van Roy
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
- Molecular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, 9052 Ghent, Belgium
| | - Bram De Craene
- Unit of Molecular and Cellular Oncology, Department for Molecular Biomedical Research, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Geert Berx
- Unit of Molecular and Cellular Oncology, Department for Molecular Biomedical Research, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
20
|
HEB in the spotlight: Transcriptional regulation of T-cell specification, commitment, and developmental plasticity. Clin Dev Immunol 2012; 2012:678705. [PMID: 22577461 PMCID: PMC3346973 DOI: 10.1155/2012/678705] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 12/12/2011] [Indexed: 12/02/2022]
Abstract
The development of T cells from multipotent progenitors in the thymus occurs by cascades of interactions between signaling molecules and transcription factors, resulting in the loss of alternative lineage potential and the acquisition of the T-cell functional identity. These processes require Notch signaling and the activity of GATA3, TCF1, Bcl11b, and the E-proteins HEB and E2A. We have shown that HEB factors are required to inhibit the thymic NK cell fate and that HEBAlt allows the passage of T-cell precursors from the DN to DP stage but is insufficient for suppression of the NK cell lineage choice. HEB factors are also required to enforce the death of cells that have not rearranged their TCR genes. The synergistic interactions between Notch1, HEBAlt, HEBCan, GATA3, and TCF1 are presented in a gene network model, and the influence of thymic stromal architecture on lineage choice in the thymus is discussed.
Collapse
|
21
|
Fong AP, Yao Z, Zhong JW, Cao Y, Ruzzo WL, Gentleman RC, Tapscott SJ. Genetic and epigenetic determinants of neurogenesis and myogenesis. Dev Cell 2012; 22:721-35. [PMID: 22445365 DOI: 10.1016/j.devcel.2012.01.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/12/2011] [Accepted: 01/22/2012] [Indexed: 10/28/2022]
Abstract
The regulatory networks of differentiation programs have been partly characterized; however, the molecular mechanisms of lineage-specific gene regulation by highly similar transcription factors remain largely unknown. Here we compare the genome-wide binding and transcription profiles of NEUROD2-mediated neurogenesis with MYOD-mediated myogenesis. We demonstrate that NEUROD2 and MYOD bind a shared CAGCTG E box motif and E box motifs specific for each factor: CAGGTG for MYOD and CAGATG for NEUROD2. Binding at factor-specific motifs is associated with gene transcription, whereas binding at shared sites is associated with regional epigenetic modifications but is not as strongly associated with gene transcription. Binding is largely constrained to E boxes preset in an accessible chromatin context that determines the set of target genes activated in each cell type. These findings demonstrate that the differentiation program is genetically determined by E box sequence, whereas cell lineage epigenetically determines the availability of E boxes for each differentiation program.
Collapse
Affiliation(s)
- Abraham P Fong
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
miR-200b regulates cell migration via Zeb family during mouse palate development. Histochem Cell Biol 2012; 137:459-70. [PMID: 22261924 DOI: 10.1007/s00418-012-0915-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2012] [Indexed: 01/07/2023]
Abstract
Palate development requires coordinating proper cellular and molecular events in palatogenesis, including the epithelial-mesenchymal transition (EMT), apoptosis, cell proliferation, and cell migration. Zeb1 and Zeb2 regulate epithelial cadherin (E-cadherin) and EMT during organogenesis. While microRNA 200b (miR-200b) is known to be a negative regulator of Zeb1 and Zeb2 in cancer progression, its regulatory effects on Zeb1 and Zeb2 in palatogenesis have not yet been clarified. The aim of this study is to investigate the relationship between the regulators of palatal development, specifically, miR-200b and the Zeb family. Expression of both Zeb1 and Zeb2 was detected in the mesenchyme of the mouse palate, while miR-200b was expressed in the medial edge epithelium. After contact with the palatal shelves, miR-200b was expressed in the palatal epithelial lining and epithelial island around the fusion region but not in the palatal mesenchyme. The function of miR-200b was examined by overexpression via a lentiviral vector in the palatal shelves. Ectopic expression of miR-200b resulted in suppression of the Zeb family, upregulation of E-cadherin, and changes in cell migration and palatal fusion. These results suggest that miR-200b plays crucial roles in cell migration and palatal fusion by regulating Zeb1 and Zeb2 as a noncoding RNA during palate development.
Collapse
|
23
|
Shen A, Zhang Y, Yang H, Xu R, Huang G. Overexpression of ZEB1 relates to metastasis and invasion in osteosarcoma. J Surg Oncol 2011; 105:830-4. [PMID: 22213004 DOI: 10.1002/jso.23012] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/28/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND This study aimed to investigate the expression of ZEB1 in osteosarcoma tissues and to discuss the relationship between ZEB1 expression and osteosarcoma metastasis. METHODS Using RT-PCR and Western blotting, the mRNA and protein expressions of ZEB1 in the osteosarcoma and normal bone tissues were detected. Using the RNA interference technique, the expression of ZEB1 in the human osteosarcoma MG-63 cell line was downregulated, and the changes in the invasion of MG-63 cells were examined. RESULTS The positive mRNA expression rate of ZEB1 in the osteosarcoma tissues was significantly higher than that in normal bone tissue (P < 0.05). The protein expression level of ZEB1 in the sarcoma tissues from patients with positive lung metastasis was significantly higher than that from patients without lung metastasis (P < 0.05). After the transfection of ZEB1 siRNA into the MG-63 cells, the protein expression of ZEB1 was significantly reduced (P < 0.05), and the number of cells that passed through the Transwell chamber was significantly lower than that in the non-transfected control group as well as the transfected control group (P < 0.05). CONCLUSIONS The overexpression of ZEB1 in osteosarcoma may be related to the carcinogenesis and development as well as metastasis and invasion of osteosarcoma.
Collapse
Affiliation(s)
- Aidong Shen
- Department of Orthopedics, Jiangyin People's Hospital, Medical School of Nantong University, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
24
|
Sánchez-Tilló E, Siles L, de Barrios O, Cuatrecasas M, Vaquero EC, Castells A, Postigo A. Expanding roles of ZEB factors in tumorigenesis and tumor progression. Am J Cancer Res 2011; 1:897-912. [PMID: 22016835 PMCID: PMC3196287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/19/2011] [Indexed: 05/31/2023] Open
Abstract
The ZEB family of transcription factors regulates key factors during embryonic development and cell differentiation but their role in cancer biology has only more recently begun to be recognized. Early evidence showed that ZEB proteins induce an epithelial-to-mesenchymal transition linking their expression with increased aggressiveness and metastasis in mice models and a wide range of primary human carcinomas. Reports over the last few years have found that ZEB proteins also play critical roles in the maintenance of cancer cell stemness, control of replicative senescence, tumor angiogenesis, overcoming of oncogenic addiction and resistance to chemotherapy. These expanding roles in tumorigenesis and tumor progression set ZEB proteins as potential diagnostic, prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Ester Sánchez-Tilló
- Group of Transcriptional Regulation of Gene Expression, Dept. of Oncology and Hematology, IDIBAPSBarcelona, Spain
| | - Laura Siles
- Master Program in Molecular Biotechnology, University of BarcelonaSpain
| | | | | | - Eva C Vaquero
- Dept. of Gastroenterology, Hospital Clinic of Barcelona, CIBERehd, IDIBAPSBarcelona, Spain
| | - Antoni Castells
- Dept. of Gastroenterology, Hospital Clinic of Barcelona, CIBERehd, IDIBAPSBarcelona, Spain
| | - Antonio Postigo
- Group of Transcriptional Regulation of Gene Expression, Dept. of Oncology and Hematology, IDIBAPSBarcelona, Spain
- ICREABarcelona, Spain
- James Graham Brown Cancer Center, University of LouisvilleKY, USA
| |
Collapse
|
25
|
Smit MA, Peeper DS. Zeb1 is required for TrkB-induced epithelial-mesenchymal transition, anoikis resistance and metastasis. Oncogene 2011; 30:3735-44. [PMID: 21478908 DOI: 10.1038/onc.2011.96] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anoikis (detachment-induced apoptosis) prevents the survival of cells at inappropriate sites of the body and can therefore act as a barrier to metastasis. In a function-based genome-wide screen, we have previously identified the neurotrophic tyrosine kinase receptor TrkB as a potent suppressor of anoikis. Consistently, activated TrkB oncogenically transforms non-malignant epithelial cells and causes them to invade and produce metastatic tumors in vivo. Overexpression of activated TrkB also results in morphological transformation, resembling epithelial-mesenchymal transition (EMT). E-cadherin, an important EMT regulator, and two E-cadherin repressors, Twist and Snail, are critical for these TrkB functions. As Snail has been shown to induce Zeb1, another E-cadherin repressor, we hypothesized that Zeb1 could be a TrkB target, too. We show here that Zeb1 is required for TrkB-induced EMT in epithelial cells, as RNAi-mediated knockdown of Zeb1 reverted the morphological changes induced by TrkB. Furthermore, Zeb1 is involved in TrkB-induced anoikis resistance, migration and invasion. In vivo, knockdown of Zeb1 strongly reduced TrkB-induced metastasis. Finally, epistasis experiments showed that Zeb1 acts downstream of Twist and Snail. We conclude that Zeb1 is required for several TrkB-induced effects in vitro and in vivo, including metastasis.
Collapse
Affiliation(s)
- M A Smit
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam
| | | |
Collapse
|
26
|
ZEB1 and CtBP form a repressive complex at a distal promoter element of the BCL6 locus. Biochem J 2010; 427:541-50. [DOI: 10.1042/bj20091578] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BCL6 is essential for normal antibody responses and is highly expressed in germinal centre B-cells. Constitutive expression due to chromosomal translocations or mutations of cis-acting regulatory elements contributes to diffuse large B-cell lymphoma. BCL6 expression is therefore tightly regulated in a lineage- and developmental-stage-specific manner, and disruption of normal controls can contribute to lymphomagenesis. In order to discover potential cis-acting control regions we carried out DNase I-hypersensitive site mapping. Gel-shift assays and chromatin immunoprecipitation of the core region of a hypersensitive site 4.4 kb upstream of BCL6 transcription initiation (HSS-4.4) showed an E-box element-binding ZEB1 (zinc finger E-boxbinding homeobox 1) and the co-repressor CtBP (C-terminal binding protein). As compared with peripheral blood B-cells, ZEB1, a two-handed zinc finger transcriptional repressor, is expressed at relatively low levels in germinal centre cells, whereas BCL6 has the opposite pattern of expression. Transfection of ZEB1 cDNA caused a reduction in BCL6 expression and a mutated ZEB1, incapable of binding CtBP, lacked this effect. siRNA (small interfering RNA)-mediated knockdown of ZEB1 or CtBP produced an increase in BCL6 mRNA. We propose that HSS-4.4 is a distal promoter element binding a repressive complex consisting of ZEB1 and CtBP. CtBP is ubiquitously expressed and the results of the present study suggest that regulation of ZEB1 is required for control of BCL6 expression.
Collapse
|
27
|
Bellon E, Luyten FP, Tylzanowski P. delta-EF1 is a negative regulator of Ihh in the developing growth plate. ACTA ACUST UNITED AC 2009; 187:685-99. [PMID: 19948490 PMCID: PMC2806579 DOI: 10.1083/jcb.200904034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Indian hedgehog (Ihh) regulates proliferation and differentiation of chondrocytes in the growth plate. Although the biology of Ihh is currently well documented, its transcriptional regulation is poorly understood. delta-EF1 is a two-handed zinc finger/homeodomain transcriptional repressor. Targeted inactivation of mouse delta-EF1 leads to skeletal abnormalities including disorganized growth plates, shortening of long bones, and joint fusions, which are reminiscent of defects associated with deregulation of Ihh signaling. Here, we show that the absence of delta-EF1 results in delayed hypertrophic differentiation of chondrocytes and increased cell proliferation in the growth plate. Further, we demonstrate that delta-EF1 binds to the putative regulatory elements in intron 1 of Ihh in vitro and in vivo, resulting in down-regulation of Ihh expression. Finally, we show that delta-EF1 haploinsufficiency leads to a postnatal increase in trabecular bone mass associated with enhanced Ihh expression. In summary, we have identified delta-EF1 as an in vivo negative regulator of Ihh expression in the growth plate.
Collapse
Affiliation(s)
- Ellen Bellon
- Laboratory of Skeletal Development and Joint Disorders, Division of Rheumatology, Department of Musculoskeletal Sciences, University of Leuven, Leuven 3000, Belgium
| | | | | |
Collapse
|
28
|
Desai S, Bolick SCE, Maurin M, Wright KL. PU.1 regulates positive regulatory domain I-binding factor 1/Blimp-1 transcription in lymphoma cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:5778-87. [PMID: 19828640 DOI: 10.4049/jimmunol.0901120] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human positive regulatory domain I-binding factor 1 (PRDI-BF1) and its murine homolog Blimp-1 promote differentiation of mature B cells into Ab-secreting plasma cells. In contrast, ectopic expression of PRDI-BF1 in lymphoma cells can lead to inhibition of proliferation or apoptosis. However, little is currently known about the regulation of PRDM1, the gene encoding PRDI-BF1. This report establishes that in lymphoma cells stimulation through the BCR rapidly induces endogenous PRDM1 at the level of transcription with minor changes in mRNA stability. The induced PRDM1-encoded protein localizes to its target genes in vivo and suppresses their expression. In vivo genomic footprinting of the PRDM1 promoter in unstimulated lymphoma and myeloma cells reveals multiple common in vivo occupied elements throughout the promoter. Further functional and structural analysis of the promoter reveals that the promoter is preloaded and poised for activation in the B cell lines. The transcription factor PU.1 is shown to be required for the BCR-induced expression of PRDM1 in lymphoma cells and in PU.1-positive myeloma cells. Activation of PRDM1 is associated with loss of the corepressor transducin-like enhancer of split 4 from the PU.1 complex. These findings indicate that PRDM1 is poised for activation in lymphoma cells and therefore may be a potential therapeutic target to inhibit lymphoma cell proliferation and survival.
Collapse
Affiliation(s)
- Shruti Desai
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
29
|
Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 2009; 28:151-66. [PMID: 19153669 DOI: 10.1007/s10555-008-9179-y] [Citation(s) in RCA: 614] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The embryonic program 'epithelial-mesenchymal transition' (EMT) is activated during tumor invasion in disseminating cancer cells. Characteristic to these cells is a loss of E-cadherin expression, which can be mediated by EMT-inducing transcriptional repressors, e.g. ZEB1. Consequences of a loss of E-cadherin are an impairment of cell-cell adhesion, which allows detachment of cells, and nuclear localization of beta-catenin. In addition to an accumulation of cancer stem cells, nuclear beta-catenin induces a gene expression pattern favoring tumor invasion, and mounting evidence indicates multiple reciprocal interactions of E-cadherin and beta-catenin with EMT-inducing transcriptional repressors to stabilize an invasive mesenchymal phenotype of epithelial tumor cells.
Collapse
Affiliation(s)
- Otto Schmalhofer
- Department of Visceral Surgery, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | | | | |
Collapse
|
30
|
ZEB1 links p63 and p73 in a novel neuronal survival pathway rapidly induced in response to cortical ischemia. PLoS One 2009; 4:e4373. [PMID: 19194497 PMCID: PMC2632749 DOI: 10.1371/journal.pone.0004373] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 12/26/2008] [Indexed: 01/02/2023] Open
Abstract
Background Acute hypoxic/ischemic insults to the forebrain, often resulting in significant cellular loss of the cortical parenchyma, are a major cause of debilitating injury in the industrialized world. A clearer understanding of the pro-death/pro-survival signaling pathways and their downstream targets is critical to the development of therapeutic interventions to mitigate permanent neurological damage. Methodology/Principal Findings We demonstrate here that the transcriptional repressor ZEB1, thought to be involved in regulating the timing and spatial boundaries of basic-Helix-Loop-Helix transactivator-mediated neurogenic determination/differentiation programs, functions to link a pro-survival transcriptional cascade rapidly induced in cortical neurons in response to experimentally induced ischemia. Employing histological, tissue culture, and molecular biological read-outs, we show that this novel pro-survival response, initiated through the rapid induction of p63, is mediated ultimately by the transcriptional repression of a pro-apoptotic isoform of p73 by ZEB1. We show further that this phylogenetically conserved pathway is induced as well in the human cortex subjected to episodes of clinically relevant stroke. Conclusions/Significance The data presented here provide the first evidence that ZEB1 induction is part of a protective response by neurons to ischemia. The stroke-induced increase in ZEB1 mRNA and protein levels in cortical neurons is both developmentally and phylogenetically conserved and may therefore be part of a fundamental cellular response to this insult. Beyond the context of stroke, the finding that ZEB1 is regulated by a member of the p53 family has implications for cell survival in other tissue and cellular environments subjected to ischemia, such as the myocardium and, in particular, tumor masses.
Collapse
|
31
|
Adachi Y, Takeuchi T, Nagayama T, Ohtsuki Y, Furihata M. Zeb1-mediated T-cadherin repression increases the invasive potential of gallbladder cancer. FEBS Lett 2008; 583:430-6. [DOI: 10.1016/j.febslet.2008.12.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/04/2008] [Accepted: 12/18/2008] [Indexed: 12/21/2022]
|
32
|
Jin JZ, Li Q, Higashi Y, Darling DS, Ding J. Analysis of Zfhx1a mutant mice reveals palatal shelf contact-independent medial edge epithelial differentiation during palate fusion. Cell Tissue Res 2008; 333:29-38. [PMID: 18470539 DOI: 10.1007/s00441-008-0612-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 03/18/2008] [Indexed: 11/25/2022]
Abstract
Cleft palate is a common birth defect that involves disruptions in multiple developmental steps such as growth, differentiation, elevation, and fusion. Medial edge epithelial (MEE) differentiation is essential for palate fusion. An important question is whether the MEE differentiation that occurs during fusion is induced by palate shelf contact or is programmed intrinsically by the palate shelf itself. Here, we report that the loss of Zfhx1a function in mice leads to a cleft palate phenotype that is mainly attributable to a delay in palate elevation. Zfhx1a encodes a transcription regulatory protein that modulates several signaling pathways including those activated by members of the transforming growth factor-beta (TGF-beta) superfamily. Loss of Zfhx1a function in mice leads to a complete cleft palate with 100% penetrance. Zfhx1a mutant palatal shelves display normal cell differentiation and proliferation and are able to fuse in an in vitro culture system. The only defect detected was a delay of 24-48 h in palatal shelf elevation. Using the Zfhx1a mutant as a model, we studied the relationship between MEE differentiation and palate contact/adhesion. We found that down-regulation of Jag2 expression in the MEE cells, a key differentiation event establishing palate fusion competence, was independent of palate contact/adhesion. Moreover, the expression of several key factors essential for fusion, such as TGF-beta3 and MMP13, was also down-regulated at embryonic stage 16.5 in a contact-independent manner, suggesting that differentiation of the medial edge epithelium was largely programmed through an intrinsic mechanism within the palate shelf.
Collapse
Affiliation(s)
- Jiu-Zhen Jin
- Department of Molecular, Cellular & Craniofacial Biology, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
33
|
Liu Y, El-Naggar S, Darling DS, Higashi Y, Dean DC. Zeb1 links epithelial-mesenchymal transition and cellular senescence. Development 2008; 135:579-88. [PMID: 18192284 DOI: 10.1242/dev.007047] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Overexpression of zinc finger E-box binding homeobox transcription factor 1 (Zeb1) in cancer leads to epithelial-to-mesenchymal transition (EMT) and increased metastasis. As opposed to overexpression, we show that mutation of Zeb1 in mice causes a mesenchymal-epithelial transition in gene expression characterized by ectopic expression of epithelial genes such as E-cadherin and loss of expression of mesenchymal genes such as vimentin. In contrast to rapid proliferation in cancer cells where Zeb1 is overexpressed, this mesenchymal-epithelial transition in mutant mice is associated with diminished proliferation of progenitor cells at sites of developmental defects, including the forming palate, skeleton and CNS. Zeb1 dosage-dependent deregulation of epithelial and mesenchymal genes extends to mouse embryonic fibroblasts (MEFs), and mutant MEFs also display diminished replicative capacity in culture, leading to premature senescence. Replicative senescence in MEFs is classically triggered by products of the Ink4a (Cdkn2a) gene. However, this Ink4a pathway is not activated during senescence of Zeb1 mutant MEFs. Instead, there is ectopic expression of two other cell cycle inhibitory cyclin-dependent kinase inhibitors, p15Ink4b (Cdkn2b) and p21Cdkn1a (Cdkn1a). We demonstrate that this ectopic expression of p15Ink4b extends in vivo to sites of diminished progenitor cell proliferation and developmental defects in Zeb1-null mice.
Collapse
Affiliation(s)
- Yongqing Liu
- James Graham Brown Cancer Center, Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
34
|
Kowase T, Walsh HE, Darling DS, Shupnik MA. Estrogen enhances gonadotropin-releasing hormone-stimulated transcription of the luteinizing hormone subunit promoters via altered expression of stimulatory and suppressive transcription factors. Endocrinology 2007; 148:6083-91. [PMID: 17823254 DOI: 10.1210/en.2007-0407] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transcription of the LH subunit genes is stimulated by GnRH and may be modulated physiologically by steroids such as 17beta-estradiol (E). We found that E treatment amplified GnRH stimulation of the rat LHbeta and alpha-subunit promoters, and expression of the endogenous mRNA, in LbetaT2 gonadotrope cells 2- to 5-fold above GnRH alone. We examined gene expression in LbetaT2 cells after E and/or GnRH treatment, and found that E suppressed expression of transcription factor Zfhx1a, and enhanced GnRH stimulation of Egr-1 mRNA and protein. E effects were abolished in the presence of antiestrogen. Egr-1 is critical for LHbeta expression; however, the role of Zfhx1a, which binds to E-box sequences, was untested. We found E-box motifs in both the rat LHbeta (-381, -182, and -15 bp) and alpha-subunit (-292, -64, -58 bp) promoters. Zfhx1a overexpression suppressed basal and GnRH-stimulated activity of both promoters. Mutation of the alpha-subunit promoter E boxes at either -64 or -58 bp eliminated Zfhx1a suppression, whereas mutation of the -292 bp E box had no effect. Gel shift assays demonstrated that Zfhx1a bound to the -64 and -58, but not -292, bp E-box DNA. Similarly, mutation of LHbeta promoter E boxes at either -381 or -182, but not -15, bp reduced Zfhx1a suppression, correlating with binding of Zfhx1a. The -381 bp LHbeta E box overlaps with an Sp1 binding site in the distal GnRH-stimulatory region, and increased Sp1 expression overcame Zfhx1a suppression. Thus, one mechanism by which E may enhance GnRH-stimulated LH subunit promoter activity is through regulation of both activators and suppressors of transcription.
Collapse
Affiliation(s)
- Takanori Kowase
- Division of Endocrinology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
35
|
Hebert SL, Simmons C, Thompson AL, Zorc CS, Blalock EM, Kraner SD. Basic helix-loop-helix factors recruit nuclear factor I to enhance expression of the NaV 1.4 Na+ channel gene. ACTA ACUST UNITED AC 2007; 1769:649-58. [PMID: 17936922 DOI: 10.1016/j.bbaexp.2007.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 08/18/2007] [Accepted: 08/20/2007] [Indexed: 11/29/2022]
Abstract
We have previously shown that the basic helix-loop-helix (bHLH) transcription factors coordinate Na(V) 1.4 Na(+) channel gene expression in skeletal muscle, but the identity of the co-factors they direct is unknown. Using C2C12 muscle cells as a model system, we test the hypothesis that the bHLH factors counteract negative regulation exerted through a repressor E box (-90/-85) by recruiting positive-acting transcription factors to the nucleotides (-135/-57) surrounding the repressor E box. We used electrophoretic mobility shift assays to identify candidate factors that bound the repressor E box or these adjacent regions. Repressor E box-binding factors included the known transcription factor, ZEB/AREB6, and a novel repressor E box-binding factor designated REB. Mutations of the repressor E box that interfere with the binding of these factors prevented repression. The transcription factor, nuclear factor I (NFI), bound immediately upstream and downstream of the repressor E box. Mutation of the NFI-binding sites diminished the ability of myogenin and MRF4 to counteract repression. Based on these observations we suggest that bHLH factors recruit NFI to enhance skeletal muscle Na(+) channel expression.
Collapse
Affiliation(s)
- Sadie L Hebert
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, KY 40536, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Domínguez G, Peña C, Silva J, García JM, García V, Rodríguez R, Cantos B, Citores MJ, España P, Bonilla F. The presence of an intronic deletion in p73 and high levels of ZEB1 alter the TAp73/DeltaTAp73 ratio in colorectal carcinomas. J Pathol 2006; 210:390-397. [PMID: 17029218 DOI: 10.1002/path.2066] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Accepted: 08/16/2006] [Indexed: 02/05/2023]
Abstract
TAp73 variants largely mimic p53 suppressor activities, while DeltaTAp73 forms act as oncogenes through the inactivation of p53 and TAp73. The present study analysed how TAp73 and DeltaTAp73 levels might be affected by the presence of a 73 bp deletion in a regulatory region of p73. The clinical relevance of this deletion was also examined. ZEB1 can bind to the region repressing p73 transcription in vitro. The relationship between ZEB1 and p73 variant expression levels was studied in the context of this deletion and the levels of the ZEB1 cofactors p300 and CtBP. Tumour and normal tissue from 81 colorectal cancer patients was analysed to evaluate firstly the levels of TAp73, DeltaTAp73 (DeltaEx2p73, DeltaEx2/3p73, and DeltaNp73), ZEB1, p300, and CtBP by quantitative real-time RT-PCR, and secondly the presence of the 73 bp deletion. Tumour characteristics were examined in each patient. Suppressor and oncogenic isoforms of p73 were co-up-regulated in tumour tissues. Overexpression of p73 variants was associated with adverse tumour features. The 73 bp deletion was present in 40% of the patients and was associated with adverse pathological parameters of the tumours and also with TAp73 down-regulation. In those cases harbouring the deletion, the levels of ZEB1 and those of DeltaEx2p73, DeltaEx2/3p73, and DeltaNp73 correlated directly. Variations in the concentration of p300 affected the observed correlations between ZEB1 and the different p73 variants. In conclusion, in colorectal cancer, the 73 bp deletion in the first intron of the p73 gene and different expression levels of ZEB1 and p300 may act in concert to affect the ratio of TAp73/DeltaTAp73 forms, favouring p73 oncogenic variants. In addition, up-regulation of p73 oncogenic isoforms predicts a poor prognosis based on its relationship with advanced tumour stage.
Collapse
Affiliation(s)
- G Domínguez
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Peña C, García JM, García V, Silva J, Domínguez G, Rodríguez R, Maximiano C, García de Herreros A, Muñoz A, Bonilla F. The expression levels of the transcriptional regulators p300 and CtBP modulate the correlations between SNAIL, ZEB1, E-cadherin and vitamin D receptor in human colon carcinomas. Int J Cancer 2006; 119:2098-104. [PMID: 16804902 DOI: 10.1002/ijc.22083] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ZEB1 and SNAIL repress CDH1 and induce epithelial-mesenchymal transition (EMT). However, SNAIL and ZEB1 also activate or regulate other target genes in different ways. For instance, vitamin D receptor (VDR), which activates CDH1 expression upon ligand binding, is repressed by SNAIL but induced by ZEB1. We examined whether the biological activity of SNAIL and ZEB1 in colon cancer is regulated by interacting cofactors. The mRNA expression levels of SNAIL and ZEB1, and of transcriptional regulators p300 and CtBP, were measured by RT-PCR in tumor and normal tissue from 101 colon carcinoma patients. Overexpression of SNAIL was associated with down-regulation of CDH1 and VDR (p = 0.004 and p < 0.001). CDH1 correlated with VDR (r = 0.49; p < 0.001). ZEB1 expression also correlated with VDR (r = 0.23; p = 0.019). However, when CtBP was strongly expressed, ZEB1 was inversely correlated with CDH1 (r = -0.39; p = 0.053). Furthermore, when there were elevated p300 expression levels, the correlation between expression of ZEB1 and VDR was stronger (r = 0.38; p = 0.070). Association between SNAIL expression and down-regulation of CDH1 and VDR was lost in tumors in which p300 and CtBP were strongly expressed. These results indicate that the levels of expression of CtBP and p300 are critical for the action of SNAIL and ZEB1, which have a pivotal role in EMT, and show the importance of CtBP and p300 for tumor progression.
Collapse
Affiliation(s)
- Cristina Peña
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fontemaggi G, Gurtner A, Damalas A, Costanzo A, Higashi Y, Sacchi A, Strano S, Piaggio G, Blandino G. deltaEF1 repressor controls selectively p53 family members during differentiation. Oncogene 2005; 24:7273-80. [PMID: 16007124 DOI: 10.1038/sj.onc.1208891] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of two new p53 homologs, p73 and p63, has defined a family of transcription factors heavily involved in the control of growth suppression, apoptosis, differentiation and development. While p53-deficient mice undergo spontaneous tumors, p73 and p63 knockout mice exhibit severe developmental defects. We demonstrate here that p73 gene is an in vivo transcriptional target of the muscle regulatory factors MyoD, myogenin, Myf5 and Myf6. Ectopic expression of the transcriptional repressor deltaEF1/ZEB/zfhx1a counteracts MyoD/Myf5- or MyoD/Myf6-mediated transcriptional activation of p73. A distinct pattern of in vivo recruitment of muscle regulatory factors and deltaEF1 on p73 regulatory regions was found between proliferating and differentiating muscle cells. We also found that deltaEF1 plays a role in the transcriptional regulation of p53 family members during keratinocytic differentiation. Mouse embryo fibroblasts derived from deltaEF1-deficient mice exhibit unbalanced expression of DeltaNp63, TAp73 and DeltaNp73 but not of TAp63 and p53. The analysis of tissues derived from deltaEF1+/- mice exhibit a selective enrichment of DeltaNp63 in skin.
Collapse
Affiliation(s)
- Giulia Fontemaggi
- Department of Experimental Oncology, Regina Elena Cancer Institute, 00158 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
McNutt MC, Tongbai R, Cui W, Collins I, Freebern WJ, Montano I, Haggerty CM, Chandramouli GVR, Gardner K. Human promoter genomic composition demonstrates non-random groupings that reflect general cellular function. BMC Bioinformatics 2005; 6:259. [PMID: 16232321 PMCID: PMC1274301 DOI: 10.1186/1471-2105-6-259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 10/18/2005] [Indexed: 11/17/2022] Open
Abstract
Background The purpose of this study is to determine whether or not there exists nonrandom grouping of cis-regulatory elements within gene promoters that can be perceived independent of gene expression data and whether or not there is any correlation between this grouping and the biological function of the gene. Results Using ProSpector, a web-based promoter search and annotation tool, we have applied an unbiased approach to analyze the transcription factor binding site frequencies of 1400 base pair genomic segments positioned at 1200 base pairs upstream and 200 base pairs downstream of the transcriptional start site of 7298 commonly studied human genes. Partitional clustering of the transcription factor binding site composition within these promoter segments reveals a small number of gene groups that are selectively enriched for gene ontology terms consistent with distinct aspects of cellular function. Significance ranking of the class-determining transcription factor binding sites within these clusters show substantial overlap between the gene ontology terms of the transcriptions factors associated with the binding sites and the gene ontology terms of the regulated genes within each group. Conclusion Thus, gene sorting by promoter composition alone produces partitions in which the "regulated" and the "regulators" cosegregate into similar functional classes. These findings demonstrate that the transcription factor binding site composition is non-randomly distributed between gene promoters in a manner that reflects and partially defines general gene class function.
Collapse
Affiliation(s)
- Markey C McNutt
- The Advanced Technology Center, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, Maryland 20892-4605, USA
- The University of Texas Southwestern Medical Center at Dallas, TX, USA
| | - Ron Tongbai
- The Advanced Technology Center, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, Maryland 20892-4605, USA
| | - Wenwu Cui
- The Advanced Technology Center, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, Maryland 20892-4605, USA
| | - Irene Collins
- The Advanced Technology Center, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, Maryland 20892-4605, USA
| | - Wendy J Freebern
- The Advanced Technology Center, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, Maryland 20892-4605, USA
- Bristol-Myers Squibb, Syracuse, NY, USA
| | - Idalia Montano
- The Advanced Technology Center, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, Maryland 20892-4605, USA
| | - Cynthia M Haggerty
- The Advanced Technology Center, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, Maryland 20892-4605, USA
| | | | - Kevin Gardner
- The Advanced Technology Center, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, Maryland 20892-4605, USA
| |
Collapse
|
40
|
Darling DS, Stearman RP, Qi Y, Qiu MS, Feller JP. Expression of Zfhep/deltaEF1 protein in palate, neural progenitors, and differentiated neurons. Gene Expr Patterns 2004; 3:709-17. [PMID: 14643678 PMCID: PMC3682426 DOI: 10.1016/s1567-133x(03)00147-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zfhep/deltaEF1 is essential for embryonic development. We have investigated the expression pattern of Zfhep protein during mouse embryogenesis. We show expression of Zfhep in the mesenchyme of the palatal shelves, establishing concordance of expression with the reported cleft palate of the deltaEF1-null mice. Zfhep protein is strongly expressed in proliferating progenitors of the nervous system. In most regions of the brain, post-mitotic cells stop expressing Zfhep when they migrate out of the ventricular zone (VZ) and differentiate. However, in the hindbrain, Zfhep protein is also highly expressed in post-mitotic migratory neuronal cells of the precerebellar extramural stream that arise from the neuroepithelium adjacent to the lower rhombic lip. Also, Zfhep is expressed as cells migrate from a narrow region of the pons VZ towards the trigeminal nucleus. Co-expression with Islet1 shows that Zfhep is expressed in motor neurons of the trigeminal nucleus of the pons, but not in the inferior olive motor neurons at E12.5. Therefore, Zfhep is strongly expressed in a tightly regulated pattern in proliferating neural stem cells and a subset of neurons. Zfhep protein is also strongly expressed in trigeminal ganglia, and is moderately expressed in other cranial ganglia. In vitro studies have implicated Zfhep as a repressor of myogenesis, however, we find that Zfhep protein expression increases during muscle differentiation.
Collapse
Affiliation(s)
- Douglas S Darling
- Periodontics, Endodontics and Dental Hygiene, University of Louisville School of Dentistry, Health Sciences Center, 501 South Preston Street, Louisville, KY 40292, USA.
| | | | | | | | | |
Collapse
|
41
|
Fanzani A, Colombo F, Giuliani R, Preti A, Marchesini S. Cytosolic sialidase Neu2 upregulation during PC12 cells differentiation. FEBS Lett 2004; 566:178-82. [PMID: 15147891 DOI: 10.1016/j.febslet.2004.03.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 03/19/2004] [Accepted: 03/31/2004] [Indexed: 11/18/2022]
Abstract
The cytosolic sialidase Neu2 is known to be involved in myoblast differentiation. Here, we observed a Neu2 transcriptional induction during nerve growth factor, fibroblast growth factor 2 and epidermal growth factor treatments of PC12 cells, a favored model to study neuronal differentiation. The expression analysis of Neu2 deleted promoter revealed a remarkable increase of luciferase activity in treated PC12 cells, suggesting that in this cell line the Neu2 transcriptional levels are highly regulated. The enzymatic activity of cytosolic sialidase Neu2 was found to increase transiently only during differentiation, whereas was undetectable in untreated PC12 cells. These data suggest a possible involvement of cytosolic sialidase Neu2 in differentiation of PC12 cells.
Collapse
Affiliation(s)
- A Fanzani
- Department of Biomedical Sciences and Biotechnology, Unit of Biochemistry, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | | | | | | | | |
Collapse
|
42
|
Xu P, LaVallee PA, Lin JJ, Hoidal JR. Characterization of Proteins Binding to E-box/Ku86 Sites and Function of Ku86 in Transcriptional Regulation of the Human Xanthine Oxidoreductase Gene. J Biol Chem 2004; 279:16057-63. [PMID: 14761964 DOI: 10.1074/jbc.m305856200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We reported previously that E-box and TATA-like elements repress human xanthine oxidoreductase gene (hXOR) expression. In the present investigation, we determined the means by which the E-box site functions in this basal repression. DNA affinity purification demonstrated that at least five proteins are involved in the nuclear protein complex binding to the E-box and adjacent Ku86-binding sites. Amino acid sequence analysis demonstrated that three proteins, DNA-PK catalytic subunit, Ku86, and Ku70 are components of DNA-dependent protein kinase (DNA-PK). By electrophoretic mobility shift assays, gel-shift, and site-directed mutagenesis, we confirmed Ku86 binding to the Ku86 site. Studies indicated that the other two proteins of the complex are AREB6-like proteins binding to the E-box. Pull-down and immunoprecipitation analyses demonstrated the binding of Ku86 to AREB6-like proteins. The functional loss of Ku86 increases hXOR promoter activity and transcript expression. Based on the findings, we propose that DNA-PK/AREB6-like proteins play a central role in repression of basal hXOR activity. AREB6-like proteins specifically bind to the E-box, whereas Ku86 binds an adjacent site and recruits DNA-PK catalytic subunit and Ku70 proteins. A working model is presented to account for the role of DNA-PK and AREB6-like proteins in regulating hXOR activity.
Collapse
Affiliation(s)
- Ping Xu
- Department of Internal Medicine, Division of Respiratory, Critical Care and Occupational Medicine, University of Utah Health Sciences Center and Veterans Affairs Medical Center, Salt Lake City, Utah 84132, USA
| | | | | | | |
Collapse
|
43
|
Dillner NB, Sanders MM. Transcriptional Activation by the Zinc-Finger Homeodomain ProteinδEF1 in Estrogen Signaling Cascades. DNA Cell Biol 2004; 23:25-34. [PMID: 14965470 DOI: 10.1089/104454904322745907] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The transcription factor delta EF1 is a key player in estrogen-signaling cascades in vertebrates. In this pathway, estrogen induces the expression of the gene encoding delta EF1, and then delta EF1 activates transcription of downstream targets. Yet, the molecular mechanisms of transcriptional activation by delta EF1 have remained obscure. Furthermore, most work has concentrated on the capacity of delta EF1 to repress gene expression, rather than its ability to activate transcription. To investigate this activation potential in an endogenous signaling pathway, we characterized ovalbumin (Ov) gene induction by delta EF1. Gel mobility shift assays demonstrate that delta EF1 binds to the 5' flanking region of the Ov gene at two sites, one at -810 to -806 and one at -152 to -148 with respect to the start point of transcription. Correspondingly, these sites are required for induction by estrogen or by delta EF1 in transfection experiments. Furthermore, the activation potential of delta EF1 is not restricted to the chick homolog, as the human ZEB and the mouse delta EF1 homologs also induce Ov gene expression. To characterize the molecular mechanisms whereby delta EF1 activates gene expression, its C-terminal acidic domain was deleted and shown to be necessary for activation of transcription. Furthermore, the acidic domain has intrinsic activation potential, as it can induce the heterologous thymidine kinase promoter. These data establish delta EF1 as an activator of transcription whose action may be DNA-context and cell-type specific, but not species specific.
Collapse
Affiliation(s)
- Naomi B Dillner
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
44
|
Ishii Y, Kawaguchi M, Takagawa K, Oya T, Nogami S, Tamura A, Miura Y, Ido A, Sakata N, Hashimoto-Tamaoki T, Kimura T, Saito T, Tamaoki T, Sasahara M. ATBF1-A protein, but not ATBF1-B, is preferentially expressed in developing rat brain. J Comp Neurol 2003; 465:57-71. [PMID: 12926016 DOI: 10.1002/cne.10807] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ATBF1 gene encodes transcription factors containing four homeodomains and multiple zinc finger motifs. However, the gene products have yet to be identified and the role remains unknown in vivo. In this study, we raised an antiserum for ATBF1 and found high levels of expression of ATBF1 in developing rat brain. Western and Northern blot analyses detected a 400 kDa protein and 12.5 kb mRNA in developing rat brain, respectively; both corresponding to ATBF1-A but not the B isoform. The protein was highly expressed in the midbrain and diencephalon and mRNA was highly expressed in the brainstem, mostly in embryo and neonatal brain. Immunohistochemistry identified postmitotic neurons in the brainstem as the major site of ATBF1 expression, and the expression levels varied depending on age of and location in the brain. Expression was transient and weak in the precursor cells at early neurogenesis. ATBF1 decreased postnatally, but remained in mature neurons, including those expressing DOPA decarboxylase (DDC). High levels of ATBF1 were expressed in precursor cells in accordance with neurogenesis and were continued to the mature neurons in specific areas such as the inferior colliculus. Expression was not significant from precursor cells to mature neurons in the cerebral cortex and hippocampus. ATBF1 and its Drosophila homolog, Zfh-2, are known to regulate cell differentiation and proliferation via the interaction with either of the basic helix-loop-helix transcription factors, c-myb, or the DDC gene. Together with these reported functions the expression features detected here suggest that ATBF1 may participate in the regulation of neuronal cell maturation or region-specific central nervous system differentiation.
Collapse
Affiliation(s)
- Yoko Ishii
- Faculty of Medicine, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wacker I, Schwarz V, Hedgecock EM, Hutter H. zag-1, a Zn-finger homeodomain transcription factor controlling neuronal differentiation and axon outgrowth in C. elegans. Development 2003; 130:3795-805. [PMID: 12835395 DOI: 10.1242/dev.00570] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nervous system consists of diverse subtypes of neurons, whose identities must be specified during development. One important aspect of the differentiation program of neurons is the expression of the appropriate set of genes controlling axon pathway selection. We have identified a novel Znfinger/homeodomain containing transcription factor, zag-1, required for particular aspects of axonal pathfinding. In zag-1 mutants, motorneuron commissures either branch prematurely or fail to branch at the correct point. Ventral cord interneurons show defects in the guidance towards the ventral cord and also in the ventral cord. Several neurons misexpress differentiation markers, including glutamate receptor subunits and chemosensory receptors. zag-1 is expressed transiently in embryonic and postembryonic neurons during differentiation as well as in some mesodermal tissues. Null mutants of zag-1 are unable to swallow food and die as L1 larvae with a starved appearance, indicating that zag-1 has an additional role in pharynx development. The vertebrate homolog, deltaEF1, is highly conserved and known to act as transcriptional repressor in various tissues. Our data indicate that zag-1 also acts as transcriptional repressor controlling important aspects of terminal differentiation of neurons.
Collapse
Affiliation(s)
- Irene Wacker
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
46
|
van Grunsven LA, Michiels C, Van de Putte T, Nelles L, Wuytens G, Verschueren K, Huylebroeck D. Interaction between Smad-interacting protein-1 and the corepressor C-terminal binding protein is dispensable for transcriptional repression of E-cadherin. J Biol Chem 2003; 278:26135-45. [PMID: 12714599 DOI: 10.1074/jbc.m300597200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
deltaEF1 and SIP1 (or Zfhx1a and Zfhx1b, respectively) are the only known members of the vertebrate Zfh1 family of homeodomain/zinc finger-containing proteins. Similar to other transcription factors, both Smad-interacting protein-1 (SIP1) and deltaEF1 are capable of repressing E-cadherin transcription through binding to the E2 boxes located in its promoter. In the case of deltaEF1, this repression has been proposed to occur via interaction with the corepressor C-terminal binding protein (CtBP). In this study, we show by coimmunoprecipitation that SIP1 and CtBP interact in vivo and that an isolated CtBP-binding SIP1 fragment depends on CtBP for transcriptional repression. However, and most importantly, full-length SIP1 and deltaEF1 proteins do not depend on their interaction with CtBP to repress transcription from the E-cadherin promoter. Furthermore, in E-cadherin-positive kidney epithelial cells, the conditional synthesis of mutant SIP1 that cannot bind to CtBP abrogates endogenous E-cadherin expression in a similar way as wild-type SIP1. Our results indicate that full-length SIP1 can repress E-cadherin in a CtBP-independent manner.
Collapse
Affiliation(s)
- Leo A van Grunsven
- Department of Developmental Biology (VIB7), Flanders Interuniversity Institute for Biotechnology (VIB) and Laboratory of Molecular Biology (Celgen), University of Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Whole-genome sequence assemblies are now available for seven different animals, including nematode worms, mice and humans. Comparative genome analyses reveal a surprising constancy in genetic content: vertebrate genomes have only about twice the number of genes that invertebrate genomes have, and the increase is primarily due to the duplication of existing genes rather than the invention of new ones. How, then, has evolutionary diversity arisen? Emerging evidence suggests that organismal complexity arises from progressively more elaborate regulation of gene expression.
Collapse
Affiliation(s)
- Michael Levine
- Department of Molecular and Cell Biology, Division of Genetics and Development, Center for Integrative Genomics, University of California, Berkeley, 401 Barker Hall, Berkeley, California 94720, USA.
| | | |
Collapse
|
48
|
Gothilf Y, Toyama R, Coon SL, Du SJ, Dawid IB, Klein DC. Pineal-specific expression of green fluorescent protein under the control of the serotonin-N-acetyltransferase gene regulatory regions in transgenic zebrafish. Dev Dyn 2002; 225:241-9. [PMID: 12412006 DOI: 10.1002/dvdy.10152] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Zebrafish serotonin-N-acetyltransferase-2 (zfAANAT-2) mRNA is exclusively expressed in the pineal gland (epiphysis) at the embryonic stage. Here, we have initiated an effort to study the mechanisms underlying tissue-specific expression of this gene. DNA constructs were prepared in which green fluorescent protein (GFP) is driven by regulatory regions of the zfAANAT-2 gene. In vivo transient expression analysis in zebrafish embryos indicated that in addition to the 5'-flanking region, a regulatory sequence in the 3'-flanking region is required for pineal-specific expression. This finding led to an effort to produce transgenic lines expressing GFP under the control of the 5' and 3' regulatory regions of the zfAANAT-2 gene. Embryos transiently expressing GFP were raised to maturity and tested for germ cell transmission of the transgene. Three transgenic lines were produced in which GFP fluorescence in the pineal was detected starting 1 to 2 days after fertilization. One line was crossed with mindbomb and floating head mutants that cause abnormal development of the pineal and an elevation or reduction of zfAANAT-2 mRNA levels, respectively. Homozygous mutant transgenic embryos exhibited similar effects on GFP expression in the pineal gland. These observations indicate that the transgenic lines described here will be useful in studying the development of the pineal gland and the mechanisms that determine pineal-specific gene expression in the zebrafish. Published 2002 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Yoav Gothilf
- Department of Zoology, George S Wise Faculty of Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
49
|
Costantino ME, Stearman RP, Smith GE, Darling DS. Cell-specific phosphorylation of Zfhep transcription factor. Biochem Biophys Res Commun 2002; 296:368-73. [PMID: 12163027 PMCID: PMC3682420 DOI: 10.1016/s0006-291x(02)00880-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Zinc finger homeodomain enhancer-binding protein (Zfhep/Zfhx1a) is a transcription factor essential for immune system development, skeletal patterning, and life. Regulation of the interleukin-2 gene in T cells has been suggested to depend on post-translational processing of Zfhep, however, no modifications of Zfhep are known. Here we demonstrate that Zfhep is present in both hyperphosphorylated and hypophosphorylated forms. Western blot analysis demonstrates two forms of Zfhep with different mobilities. Differences in phosphorylation are sufficient to explain the difference in mobilities. Zfhep is primarily phosphorylated on Ser and Thr residues since PP2A dephosphorylates the slower mobility band. Treatment of nuclear extract with O-GlcNAcase did not detect O-linked sugar. Importantly, post-translational processing is cell-specific. Doublets of Zfhep were detected in five cell lines, whereas 6 cell lines contain only, or predominantly, non-phosphorylated Zfhep, and Saos-2 cells contain predominantly the phosphorylated form. These data provide the first demonstration that Zfhep is post-translationally modified.
Collapse
Affiliation(s)
- Mary E. Costantino
- Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, KY 40292
| | - Randi P. Stearman
- Periodontics, Endodontics and Dental Hygiene, University of Louisville Health Sciences Center, Louisville, KY 40292
| | - Gregory E. Smith
- Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, KY 40292
| | - Douglas S. Darling
- Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, KY 40292
- Periodontics, Endodontics and Dental Hygiene, University of Louisville Health Sciences Center, Louisville, KY 40292
- To whom correspondence should be addressed at University of Louisville School of Dentistry 501 South Preston St., Room 315 Louisville, KY 40292, Tel: (502) 852-5508, FAX: (502) 852-1317,
| |
Collapse
|
50
|
Ninomiya T, Mihara K, Fushimi K, Hayashi Y, Hashimoto-Tamaoki T, Tamaoki T. Regulation of the alpha-fetoprotein gene by the isoforms of ATBF1 transcription factor in human hepatoma. Hepatology 2002; 35:82-7. [PMID: 11786962 DOI: 10.1053/jhep.2002.30420] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
We investigated mechanisms regulating expression of alpha-fetoprotein (AFP) in 3 human hepatoma cell lines, HuH-7, HepG2, and huH-1, producing high, medium, and low levels of AFP, respectively. The silencer, a negative cis-acting element of the AFP gene, was highly activated in huH-1 and HepG2 to repress AFP enhancer activity by 91%, whereas only 26% repression was observed in HuH-7. To account for the difference in AFP production between HepG2 and huH-1, we investigated the roles of two isoforms of the AT motif-binding factor 1 (ATBF1) transcription factor, ATBF1-A and -B. Cotransfection assays showed that the ATBF1 isoforms regulated the AFP gene differently in HepG2 and huH-1. In huH-1 and HuH-7, both ATBF1 isoforms suppressed strongly enhancer activity and slightly promoter activity. In HepG2, on the other hand, ATBF1-A suppressed the enhancer and promoter activities, but surprisingly, ATBF1-B was found to stimulate enhancer activity while showing no effect on the promoter. Levels of ATBF1-A mRNA were similar in all 3 cell lines, whereas the expression ATBF1-B mRNA varied greatly, with the highest level seen in HepG2 followed by huH-1 and HuH-7. These results suggest that, in HepG2, ATBF1-B may have a dominant negative effect to relieve the transcriptional repression caused by its isoform. In support of this view, we found that the N-terminal region specific to the ATBF1-A molecule possessed transcriptional repressor activity. Thus, the use of the ATBF1 variants as well as the silencer may provide a unique mechanism that contributes to the determination of AFP levels in human hepatoma cell lines.
Collapse
Affiliation(s)
- Toshiaki Ninomiya
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|