1
|
Fleischauer J, Bastone AL, Selich A, John-Neek P, Weisskoeppel L, Schaudien D, Schambach A, Rothe M. TGF β Inhibitor A83-01 Enhances Murine HSPC Expansion for Gene Therapy. Cells 2023; 12:1978. [PMID: 37566057 PMCID: PMC10416825 DOI: 10.3390/cells12151978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Murine hematopoietic stem and progenitor cells (HSPCs) are commonly used as model systems during gene therapeutic retroviral vector development and preclinical biosafety assessment. Here, we developed cell culture conditions to maintain stemness and prevent differentiation during HSPC culture. We used the small compounds A83-01, pomalidomide, and UM171 (APU). Highly purified LSK SLAM cells expanded in medium containing SCF, IL-3, FLT3-L, and IL-11 but rapidly differentiated to myeloid progenitors and mast cells. The supplementation of APU attenuated the differentiation and preserved the stemness of HSPCs. The TGFβ inhibitor A83-01 was identified as the major effector. It significantly inhibited the mast-cell-associated expression of FcεR1α and the transcription of genes regulating the formation of granules and promoted a 3800-fold expansion of LSK cells. As a functional readout, we used expanded HSPCs in state-of-the-art genotoxicity assays. Like fresh cells, APU-expanded HSPCs transduced with a mutagenic retroviral vector developed a myeloid differentiation block with clonal restriction and dysregulated oncogenic transcriptomic signatures due to vector integration near the high-risk locus Mecom. Thus, expanded HSPCs might serve as a novel cell source for retroviral vector testing and genotoxicity studies.
Collapse
Affiliation(s)
- Jenni Fleischauer
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Antonella Lucia Bastone
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Luisa Weisskoeppel
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Schaudien
- Department of Inhalation Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai Fuchs Strasse 1, 30625 Hannover, Germany;
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, 30625 Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
2
|
Horitani S, Ueda Y, Kamioka Y, Kondo N, Ikeda Y, Naganuma M, Kinashi T. The critical role of Rap1-GAPs Rasa3 and Sipa1 in T cells for pulmonary transit and egress from the lymph nodes. Front Immunol 2023; 14:1234747. [PMID: 37545505 PMCID: PMC10399222 DOI: 10.3389/fimmu.2023.1234747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Rap1-GTPase activates integrins and plays an indispensable role in lymphocyte trafficking, but the importance of Rap1 inactivation in this process remains unknown. Here we identified the Rap1-inactivating proteins Rasa3 and Sipa1 as critical regulators of lymphocyte trafficking. The loss of Rasa3 and Sipa1 in T cells induced spontaneous Rap1 activation and adhesion. As a consequence, T cells deficient in Rasa3 and Sipa1 were trapped in the lung due to firm attachment to capillary beds, while administration of LFA1 antibodies or loss of talin1 or Rap1 rescued lung sequestration. Unexpectedly, mutant T cells exhibited normal extravasation into lymph nodes, fast interstitial migration, even greater chemotactic responses to chemokines and sphingosine-1-phosphate, and entrance into lymphatic sinuses but severely delayed exit: mutant T cells retained high motility in lymphatic sinuses and frequently returned to the lymph node parenchyma, resulting in defective egress. These results reveal the critical trafficking processes that require Rap1 inactivation.
Collapse
Affiliation(s)
- Shunsuke Horitani
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
- Division of Gastroenterology and Hepatology, the Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Yoshihiro Ueda
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yuji Kamioka
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Naoyuki Kondo
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yoshiki Ikeda
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Makoto Naganuma
- Division of Gastroenterology and Hepatology, the Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Tatsuo Kinashi
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
3
|
Kamioka Y, Ueda Y, Kondo N, Tokuhiro K, Ikeda Y, Bergmeier W, Kinashi T. Distinct bidirectional regulation of LFA1 and α4β7 by Rap1 and integrin adaptors in T cells under shear flow. Cell Rep 2023; 42:112580. [PMID: 37267105 PMCID: PMC10592472 DOI: 10.1016/j.celrep.2023.112580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Bidirectional control of integrin activation plays crucial roles in cell adhesive behaviors, but how integrins are specifically regulated by inside-out and outside-in signaling has not been fully understood. Here, we report distinct bidirectional regulation of major lymphocyte homing receptors LFA1 and α4β7 in primary T cells. A small increase of Rap1 activation in L-selectin-mediated tether/rolling was boosted by the outside-in signaling from ICAM1-interacting LFA1 through subsecond, simultaneous activation of Rap1 GTPase and talin1, but not kindlin-3, resulting in increased capture and slowing. In contrast, none of them were required for tether/rolling by α4β7 on MAdCAM1. High Rap1 activation with chemokines or the loss of Rap1-inactivating proteins Rasa3 and Sipa1 increased talin1/kindlin-3-dependent arrest with high-affinity binding of LFA1 to membrane-anchored ICAM1. However, despite increased affinity of α4β7, activated Rap1 severely suppressed adhesion on MAdCAM1 under shear flow, indicating the critical importance of a sequential outside-in/inside-out signaling for α4β7.
Collapse
Affiliation(s)
- Yuji Kamioka
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Yoshihiro Ueda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Naoyuki Kondo
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Keizo Tokuhiro
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Yoshiki Ikeda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan.
| |
Collapse
|
4
|
Byron A, Griffith BGC, Herrero A, Loftus AEP, Koeleman ES, Kogerman L, Dawson JC, McGivern N, Culley J, Grimes GR, Serrels B, von Kriegsheim A, Brunton VG, Frame MC. Characterisation of a nucleo-adhesome. Nat Commun 2022; 13:3053. [PMID: 35650196 PMCID: PMC9160004 DOI: 10.1038/s41467-022-30556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 05/02/2022] [Indexed: 11/09/2022] Open
Abstract
In addition to central functions in cell adhesion signalling, integrin-associated proteins have wider roles at sites distal to adhesion receptors. In experimentally defined adhesomes, we noticed that there is clear enrichment of proteins that localise to the nucleus, and conversely, we now report that nuclear proteomes contain a class of adhesome components that localise to the nucleus. We here define a nucleo-adhesome, providing experimental evidence for a remarkable scale of nuclear localisation of adhesion proteins, establishing a framework for interrogating nuclear adhesion protein functions. Adding to nuclear FAK's known roles in regulating transcription, we now show that nuclear FAK regulates expression of many adhesion-related proteins that localise to the nucleus and that nuclear FAK binds to the adhesome component and nuclear protein Hic-5. FAK and Hic-5 work together in the nucleus, co-regulating a subset of genes transcriptionally. We demonstrate the principle that there are subcomplexes of nuclear adhesion proteins that cooperate to control transcription.
Collapse
Affiliation(s)
- Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK.
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| | - Billie G C Griffith
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Ana Herrero
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, 39011, Santander, Spain
| | - Alexander E P Loftus
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Emma S Koeleman
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, 69120, Heidelberg, Germany
| | - Linda Kogerman
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - John C Dawson
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Niamh McGivern
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Almac Diagnostic Services, 19 Seagoe Industrial Estate, Craigavon, BT63 5QD, UK
| | - Jayne Culley
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Graeme R Grimes
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Bryan Serrels
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- NanoString Technologies, Inc., Seattle, WA, 98109, USA
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Valerie G Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| |
Collapse
|
5
|
Liu C, Jiang W, Zhang L, Hargest R, Martin TA. SIPA1 Is a Modulator of HGF/MET Induced Tumour Metastasis via the Regulation of Tight Junction-Based Cell to Cell Barrier Function. Cancers (Basel) 2021; 13:1747. [PMID: 33917539 PMCID: PMC8038768 DOI: 10.3390/cancers13071747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer death. SIPA1 is a mitogen induced GTPase activating protein (GAP) and may hamper cell cycle progression. SIPA1 has been shown to be involved in MET signaling and may contribute to tight junction (TJ) function and cancer metastasis. METHODS Human lung tumour cohorts were analyzed. In vitro cell function assays were performed after knock down of SIPA1 in lung cancer cells with/without treatment. Quantitative polymerase chain reaction (qPCR) and western blotting were performed to analyze expression of HGF (hepatocyte growth factor), MET, and their downstream markers. Immunohistochemistry (IHC) and immunofluorescence (IFC) staining were performed. RESULTS Higher expression of SIPA1 in lung tumours was associated with a poorer prognosis. Knockdown of SIPA1 decreased invasiveness and proliferation of in vitro cell lines, and the SIPA1 knockdown cells demonstrated leaky barriers. Knockdown of SIPA1 decreased tight junction-based barrier function by downregulating MET at the protein but not the transcript level, through silencing of Grb2, SOCS, and PKCμ (Protein kinase Cµ), reducing the internalization and recycling of MET. Elevated levels of SIPA1 protein are correlated with receptor tyrosine kinases (RTKs), especially HGF/MET and TJs. The regulation of HGF on barrier function and invasion required the presence of SIPA1. CONCLUSIONS SIPA1 plays an essential role in lung tumourigenesis and metastasis. SIPA1 may be a diagnostic and prognostic predictive biomarker. SIPA1 may also be a potential therapeutic target for non-small cell lung cancer (NSCLC) patients with aberrant MET expression and drug resistance.
Collapse
Affiliation(s)
- Chang Liu
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (C.L.); (W.J.)
| | - Wenguo Jiang
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (C.L.); (W.J.)
| | - Lijian Zhang
- Peking University School of Oncology and Peking University Cancer Hospital, Fucheng Road, Beijing 100142, China;
| | - Rachel Hargest
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (C.L.); (W.J.)
| | - Tracey A. Martin
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (C.L.); (W.J.)
| |
Collapse
|
6
|
Ma Y, Weng J, Wang N, Zhang Y, Minato N, Su L. A novel nuclear localization region in SIPA1 determines protein nuclear distribution and epirubicin-sensitivity of breast cancer cells. Int J Biol Macromol 2021; 180:718-728. [PMID: 33753200 DOI: 10.1016/j.ijbiomac.2021.03.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/26/2021] [Accepted: 03/17/2021] [Indexed: 01/03/2023]
Abstract
Signal-induced proliferation-associated protein 1 (SIPA1) is highly expressed and mainly located in the nucleus in some breast cancer cell lines and clinical tumor tissues. Previous study revealed that nuclear localization of SIPA1 is functionally involved in breast cancer metastasis in the lymphatic gland. In the current study, we identified a non-typical region (140-179aa) of SIPA1 as a novel nuclear localization region (NLR) which is crucial for translocating the proteins into the nucleus in HEK293 cells and breast cancer cells. This region contained one basic amino acid, His160, and had no common features of typical nuclear localization signals. In addition, overexpressing SIPA1 without NLR could suppress breast cancer cell proliferation but could not promote cell migration in MCF7 cells. Furthermore, we found that a high expression of SIPA1 upregulated the expression of ABCB1, encoding multi-drug resistance protein MDR1, and promoted the resistance to epirubicin in breast cancer cells, while this effect was largely abolished in the cells with the expression of NLR-deleted SIPA1. This study overall, identified a nuclear localization-dependent region determining the nuclear distribution of SIPA1 and its regulation on epirubicin-sensitivity in breast cancer cells, which could be a potential drug target to facilitate the development of breast cancer chemotherapy.
Collapse
Affiliation(s)
- Ying Ma
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Weng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ning Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yilei Zhang
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
7
|
Vergara IA, Mintoff CP, Sandhu S, McIntosh L, Young RJ, Wong SQ, Colebatch A, Cameron DL, Kwon JL, Wolfe R, Peng A, Ellul J, Dou X, Fedele C, Boyle S, Arnau GM, Raleigh J, Hatzimihalis A, Szeto P, Mooi J, Widmer DS, Cheng PF, Amann V, Dummer R, Hayward N, Wilmott J, Scolyer RA, Cho RJ, Bowtell D, Thorne H, Alsop K, Cordner S, Woodford N, Leditschke J, O'Brien P, Dawson SJ, McArthur GA, Mann GJ, Levesque MP, Papenfuss AT, Shackleton M. Evolution of late-stage metastatic melanoma is dominated by aneuploidy and whole genome doubling. Nat Commun 2021; 12:1434. [PMID: 33664264 PMCID: PMC7933255 DOI: 10.1038/s41467-021-21576-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
Although melanoma is initiated by acquisition of point mutations and limited focal copy number alterations in melanocytes-of-origin, the nature of genetic changes that characterise lethal metastatic disease is poorly understood. Here, we analyze the evolution of human melanoma progressing from early to late disease in 13 patients by sampling their tumours at multiple sites and times. Whole exome and genome sequencing data from 88 tumour samples reveals only limited gain of point mutations generally, with net mutational loss in some metastases. In contrast, melanoma evolution is dominated by whole genome doubling and large-scale aneuploidy, in which widespread loss of heterozygosity sculpts the burden of point mutations, neoantigens and structural variants even in treatment-naïve and primary cutaneous melanomas in some patients. These results imply that dysregulation of genomic integrity is a key driver of selective clonal advantage during melanoma progression.
Collapse
Affiliation(s)
- Ismael A Vergara
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Melanoma Institute of Australia, Sydney, Australia
| | | | | | - Lachlan McIntosh
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | | | - Stephen Q Wong
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | - Daniel L Cameron
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Julia Lai Kwon
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rory Wolfe
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Angela Peng
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Jason Ellul
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Xuelin Dou
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Clare Fedele
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Samantha Boyle
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | | | | | - Pacman Szeto
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Jennifer Mooi
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Daniel S Widmer
- Department of Dermatology, University of Zürich Hospital, Zürich, Switzerland
| | - Phil F Cheng
- Department of Dermatology, University of Zürich Hospital, Zürich, Switzerland
| | - Valerie Amann
- Department of Dermatology, University of Zürich Hospital, Zürich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University of Zürich Hospital, Zürich, Switzerland
| | - Nicholas Hayward
- Melanoma Institute of Australia, Sydney, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Richard A Scolyer
- Melanoma Institute of Australia, Sydney, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Raymond J Cho
- Department of Dermatology, University of California, San Francisco, CA, USA
| | - David Bowtell
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Heather Thorne
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Stephen Cordner
- The Victorian Institute of Forensic Medicine, Melbourne, Australia
| | - Noel Woodford
- The Victorian Institute of Forensic Medicine, Melbourne, Australia
| | - Jodie Leditschke
- The Victorian Institute of Forensic Medicine, Melbourne, Australia
| | - Patricia O'Brien
- The Victorian Institute of Forensic Medicine, Melbourne, Australia
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Centre of Cancer Research, The University of Melbourne, Parkville, VIC, Australia
| | - Grant A McArthur
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Graham J Mann
- Melanoma Institute of Australia, Sydney, Australia
- Centre for Cancer Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Mitchell P Levesque
- Department of Dermatology, University of Zürich Hospital, Zürich, Switzerland
| | - Anthony T Papenfuss
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.
| | - Mark Shackleton
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.
- Department of Oncology, Alfred Health, Melbourne, Australia.
| |
Collapse
|
8
|
Liu C, Jiang WG, Hargest R, Martin TA. The role of SIPA1 in the development of cancer and metastases (Review). Mol Clin Oncol 2020; 13:32. [PMID: 32789016 DOI: 10.3892/mco.2020.2102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/16/2020] [Indexed: 01/13/2023] Open
Abstract
Cancer is a leading cause of mortality and the majority of deaths are due to metastases. Many molecules have been implicated in the development of metastases. Signal induced proliferation associated protein 1 (SIPA1), a mitogen-inducible gene, has been demonstrated to be involved in the metastasis of various solid tumours and may indicate a poor prognosis. Polymorphisms of SIPA1 can be associated with several different types of cancer and interactions between SIPA1 and binding molecules integrate a series of cellular functions, which may promote the development and metastasis of cancer. The mechanisms by which SIPA1 promotes the development and metastasis of cancer varies among tumour types. The present review describes the structure, function and regulation of SIPA1 and focuses on its role in cancer metastasis. Possibilities for future research and the clinical application of SIPA1 are also discussed.
Collapse
Affiliation(s)
- Chang Liu
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Wen Guo Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Rachel Hargest
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Tracey Amanda Martin
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
9
|
Tao F, Beecham GW, Rebelo AP, Svaren J, Blanton SH, Moran JJ, Lopez-Anido C, Morrow JM, Abreu L, Rizzo D, Kirk CA, Wu X, Feely S, Verhamme C, Saporta MA, Herrmann DN, Day JW, Sumner CJ, Lloyd TE, Li J, Yum SW, Taroni F, Baas F, Choi BO, Pareyson D, Scherer SS, Reilly MM, Shy ME, Züchner S. Variation in SIPA1L2 is correlated with phenotype modification in Charcot- Marie- Tooth disease type 1A. Ann Neurol 2019; 85:316-330. [PMID: 30706531 PMCID: PMC7263419 DOI: 10.1002/ana.25426] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Genetic modifiers in rare disease have long been suspected to contribute to the considerable variance in disease expression, including Charcot-Marie-Tooth disease type 1A (CMT1A). To address this question, the Inherited Neuropathy Consortium collected a large standardized sample of such rare CMT1A patients over a period of 8 years. CMT1A is caused in most patients by a uniformly sized 1.5 Mb duplication event involving the gene PMP22. METHODS We genotyped DNA samples from 971 CMT1A patients on Illumina BeadChips. Genome-wide analysis was performed in a subset of 330 of these patients, who expressed the extremes of a hallmark symptom: mild and severe foot dorsiflexion strength impairment. SIPA1L2 (signal-induced proliferation-associated 1 like 2), the top identified candidate modifier gene, was expressed in the peripheral nerve, and our functional studies identified and confirmed interacting proteins using coimmunoprecipitation analysis, mass spectrometry, and immunocytochemistry. Chromatin immunoprecipitation and in vitro siRNA experiments were used to analyze gene regulation. RESULTS We identified significant association of 4 single nucleotide polymorphisms (rs10910527, rs7536385, rs4649265, rs1547740) in SIPA1L2 with foot dorsiflexion strength (p < 1 × 10-7 ). Coimmunoprecipitation and mass spectroscopy studies identified β-actin and MYH9 as SIPA1L2 binding partners. Furthermore, we show that SIPA1L2 is part of a myelination-associated coexpressed network regulated by the master transcription factor SOX10. Importantly, in vitro knockdown of SIPA1L2 in Schwannoma cells led to a significant reduction of PMP22 expression, hinting at a potential strategy for drug development. INTERPRETATION SIPA1L2 is a potential genetic modifier of CMT1A phenotypic expressions and offers a new pathway to therapeutic interventions. ANN NEUROL 2019;85:316-330.
Collapse
Affiliation(s)
- Feifei Tao
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL
| | - Gary W Beecham
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL
| | - Adriana P Rebelo
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL
| | - John Svaren
- Department of Comparative Biosciences and Waisman Center, University of Wisconsin, Madison, WI
| | - Susan H Blanton
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL
| | - John J Moran
- Department of Comparative Biosciences and Waisman Center, University of Wisconsin, Madison, WI
| | - Camila Lopez-Anido
- Department of Comparative Biosciences and Waisman Center, University of Wisconsin, Madison, WI
| | - Jasper M Morrow
- Medical Research Council Centre for Neuromuscular Diseases, University College London Institute of Neurology, London, United Kingdom
| | - Lisa Abreu
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL
| | - Devon Rizzo
- Data Management and Coordinating Center, Rare Diseases Clinical Research Network, Pediatrics Epidemiology Center, University of South Florida, Tampa, FL
| | - Callyn A Kirk
- Data Management and Coordinating Center, Rare Diseases Clinical Research Network, Pediatrics Epidemiology Center, University of South Florida, Tampa, FL
| | - Xingyao Wu
- Department of Neurology, University of Iowa, Iowa City, IA
| | - Shawna Feely
- Department of Neurology, University of Iowa, Iowa City, IA
| | - Camiel Verhamme
- Department of Neurology, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | - John W Day
- Department of Neurology, Stanford University, Palo Alto, CA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jun Li
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI
| | - Sabrina W Yum
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Franco Taroni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Davide Pareyson
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mary M Reilly
- Medical Research Council Centre for Neuromuscular Diseases, University College London Institute of Neurology, London, United Kingdom
| | - Michael E Shy
- Department of Neurology, University of Iowa, Iowa City, IA
| | - Stephan Züchner
- Department for Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL
| |
Collapse
|
10
|
Liu B, Pjanic M, Wang T, Nguyen T, Gloudemans M, Rao A, Castano VG, Nurnberg S, Rader DJ, Elwyn S, Ingelsson E, Montgomery SB, Miller CL, Quertermous T. Genetic Regulatory Mechanisms of Smooth Muscle Cells Map to Coronary Artery Disease Risk Loci. Am J Hum Genet 2018; 103:377-388. [PMID: 30146127 PMCID: PMC6128252 DOI: 10.1016/j.ajhg.2018.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/01/2018] [Indexed: 12/30/2022] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death globally. Genome-wide association studies (GWASs) have identified more than 95 independent loci that influence CAD risk, most of which reside in non-coding regions of the genome. To interpret these loci, we generated transcriptome and whole-genome datasets using human coronary artery smooth muscle cells (HCASMCs) from 52 unrelated donors, as well as epigenomic datasets using ATAC-seq on a subset of 8 donors. Through systematic comparison with publicly available datasets from GTEx and ENCODE projects, we identified transcriptomic, epigenetic, and genetic regulatory mechanisms specific to HCASMCs. We assessed the relevance of HCASMCs to CAD risk using transcriptomic and epigenomic level analyses. By jointly modeling eQTL and GWAS datasets, we identified five genes (SIPA1, TCF21, SMAD3, FES, and PDGFRA) that may modulate CAD risk through HCASMCs, all of which have relevant functional roles in vascular remodeling. Comparison with GTEx data suggests that SIPA1 and PDGFRA influence CAD risk predominantly through HCASMCs, while other annotated genes may have multiple cell and tissue targets. Together, these results provide tissue-specific and mechanistic insights into the regulation of a critical vascular cell type associated with CAD in human populations.
Collapse
Affiliation(s)
- Boxiang Liu
- Department of Biology, School of Humanities and Sciences, Stanford University, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Milos Pjanic
- Cardiovascular Institute, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ting Wang
- Cardiovascular Institute, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Trieu Nguyen
- Cardiovascular Institute, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michael Gloudemans
- Biomedical Informatics Training Program, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Abhiram Rao
- Cardiovascular Institute, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Victor G Castano
- Cardiovascular Institute, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sylvia Nurnberg
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J Rader
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susannah Elwyn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erik Ingelsson
- Cardiovascular Institute, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Stephen B Montgomery
- Cardiovascular Institute, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Clint L Miller
- Center for Public Health Genomics, Department of Public Health Sciences, Biochemistry and Genetics, and Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Thomas Quertermous
- Cardiovascular Institute, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Shah B, Püschel AW. Regulation of Rap GTPases in mammalian neurons. Biol Chem 2017; 397:1055-69. [PMID: 27186679 DOI: 10.1515/hsz-2016-0165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022]
Abstract
Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.
Collapse
|
12
|
SIPA1 promotes invasion and migration in human oral squamous cell carcinoma by ITGB1 and MMP7. Exp Cell Res 2017; 352:357-363. [DOI: 10.1016/j.yexcr.2017.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/22/2022]
|
13
|
Rothe M, Monteiro F, Dietmann P, Kühl SJ. Comparative expression study of sipa family members during early Xenopus laevis development. Dev Genes Evol 2016; 226:369-82. [PMID: 27384056 DOI: 10.1007/s00427-016-0556-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/28/2016] [Indexed: 01/20/2023]
Abstract
The signal-induced proliferation-associated (SIPA) protein family belongs to the RapGAP protein superfamily. Previous studies mainly focused on the expression and function of SIPA genes in vertebrate neuronal tissue. Only limited data about the embryonic expression pattern of the genes are currently available. Our study provides the first expression analysis of sipa1, sipa1l1, sipa1l2, and sipa1l3 during early development of the vertebrate organism Xenopus laevis. In silico, analysis revealed that all genes are highly conserved across species. Semi-quantitative RT-PCR experiments demonstrated that the RNA of all genes was maternally supplied. By whole mount in situ hybridization approaches, we showed that sipa1 is mainly expressed in various sensory organs, the respiratory and blood system, heart, neural tube, and eye. In contrast, sipa1l1 showed a broad expression during development in particular within the brain, somites, eye, and heart. Sipa1l2 was detected in the branchial arches, glomerulus, and the developing eye. In contrast, sipa1l3 revealed a tissue specific expression within the olfactory and otic vesicles, the cranial placodes and ganglia, neural tube, pronephros, retina, and lens. In summary, all sipa gene family members are expressed throughout the whole developing Xenopus organism and might play an important role during vertebrate early embryogenesis.
Collapse
Affiliation(s)
- Melanie Rothe
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany
| | - Fabio Monteiro
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
14
|
The Rap1-RIAM-talin axis of integrin activation and blood cell function. Blood 2016; 128:479-87. [PMID: 27207789 DOI: 10.1182/blood-2015-12-638700] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/07/2016] [Indexed: 12/14/2022] Open
Abstract
Integrin adhesion receptors mediate the adhesion of blood cells, such as leukocytes, to other cells, such as endothelial cells. Integrins also are critical for anchorage of hematopoietic precursors to the extracellular matrix. Blood cells can dynamically regulate the affinities of integrins for their ligands ("activation"), an event central to their functions. Here we review recent progress in understanding the mechanisms of integrin activation with a focus on the functions of blood cells. We discuss how talin binding to the integrin β cytoplasmic domain, in conjunction with the plasma membrane, induces long-range allosteric rearrangements that lead to integrin activation. Second, we review our understanding of how signaling events, particularly those involving Rap1 small guanosine triphosphate (GTP)hydrolases, can regulate the talin-integrin interaction and resulting activation. Third, we review recent findings that highlight the role of the Rap1-GTP-interacting adapter molecule (RIAM), encoded by the APBB1IP gene, in leukocyte integrin activation and consequently in leukocyte trafficking.
Collapse
|
15
|
Zhang P, Wang X. Suppression of SIPA-1 expression may reduce bladder cancer invasion and metastasis via the downregulation of E-cadherin and ZO-1. Exp Ther Med 2015; 11:213-217. [PMID: 26889242 DOI: 10.3892/etm.2015.2891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 06/05/2015] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to investigate the capacity of signal-induced proliferation-associated protein 1 (SIPA-1) to regulate bladder cancer cell invasion and metastasis. BIU-87 and T24 cells were transfected with the SIPA gene and SIPA short hairpin (sh)RNA, respectively. Western blot analysis was conducted to analyze the expression levels of SIPA-1, Ras-related protein 1 (Rap1), Rap1 guanosine triphosphate (Rap1GTP), E-cadherin and zona occludens-1 (ZO-1). Cell motility and invasion were evaluated in vitro using wound and Transwell assays. Transfected cells were inoculated into the pelvic region of BALB/c nude mice, and the number of resulting tumors was recorded after 6 weeks. Western blot analysis revealed that expression levels of E-cadherin and ZO-1 were reduced in the cells with enhanced levels of SIPA-1. By contrast, the levels of E-cadherin and ZO-1 were elevated in the cells in which SIPA-1 was knocked down. In comparison with untransfected cells, the cells with reduced levels of SIPA-1 exhibited reduced wound closure and fewer cells crossed the chamber in the Transwell experiment, whereas the cells with enhanced levels of SIPA-1 exhibited increased migration and invasion In vivo, an increased tumor count was obtained in the mice with elevated levels of SIPA-1. Therefore, the results of the present study indicate that SIPA-1 is able to regulate bladder cancer cell metastasis and invasion by reducing the expression of E-cadherin and ZO-1.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China; Department of Urology, Yichang Central People's Hospital, The First Clinical Medical College, China Three Gorges University, Yichang, Hubei 443003, P.R. China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
16
|
Greenlees R, Mihelec M, Yousoof S, Speidel D, Wu SK, Rinkwitz S, Prokudin I, Perveen R, Cheng A, Ma A, Nash B, Gillespie R, Loebel DA, Clayton-Smith J, Lloyd IC, Grigg JR, Tam PP, Yap AS, Becker TS, Black GC, Semina E, Jamieson RV. Mutations inSIPA1L3cause eye defects through disruption of cell polarity and cytoskeleton organization. Hum Mol Genet 2015; 24:5789-804. [DOI: 10.1093/hmg/ddv298] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/21/2015] [Indexed: 01/27/2023] Open
|
17
|
Xie C, Yang L, Yang X, Yang R, Li Y, Qiu F, Chen M, Fang W, Bin X, Deng J, Huang D, Liu B, Zhou Y, Lu J. Sipa1 promoter polymorphism predicts risk and metastasis of lung cancer in Chinese. Mol Carcinog 2013; 52 Suppl 1:E110-7. [PMID: 23661532 DOI: 10.1002/mc.22039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/07/2013] [Accepted: 03/20/2013] [Indexed: 12/19/2022]
Abstract
Signal-induced proliferation associated gene 1 (Sipa1) is a signal transducer to activate the Ras-related proteins and modulate cell progression, differentiation, adhesion and cancer metastasis. In this study, we tested the hypothesis that single nucleotide polymorphisms (SNPs) in Sipa1 are associated with lung cancer risk and metastasis. Three common SNPs (rs931127A > G, rs2448490G > A, and rs3741379G > T) were genotyped in a discovery set of southern Chinese population and then validated the promising SNPs in a validation set of an eastern Chinese population in a total of 1559 lung cancer patients and 1679 cancer-free controls. The results from the two sets were consistent, the rs931127GG variant genotype had an increased risk of lung cancer compared to the rs931127AA/GA genotypes (OR = 1.27; 95% CI = 1.09-1.49) after combination of the two populations, and the rs931127GG interacted with pack-year smoked on increasing lung cancer risk (P = 0.037); this SNP also had an effect on patients' clinical stages (P = 0.012) that those patients with the rs931127GG genotype had a significant higher metastasis rate and been advanced N, M stages at diagnosis. However, these associations were not observed for rs2448490G > A and rs3741379G > T in the discovery set. Our data suggest that the SNP rs931127A > G in the promoter of Sipa1 was significantly associated with lung cancer risk and metastasis, which may be a biomarker to predict the risk and metastasis of lung cancer.
Collapse
Affiliation(s)
- Chenli Xie
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, P.R., China; Dongguan Taiping People Hospital, Dongguan, P.R., China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pei R, Xu Y, Wei Y, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Xie Y. Association of SIPA1 545 C > T polymorphism with survival in Chinese women with metastatic breast cancer. Front Med 2013; 7:138-42. [PMID: 23358895 DOI: 10.1007/s11684-013-0247-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/12/2012] [Indexed: 12/14/2022]
Abstract
It has been demonstrated that single nucleotide polymorphisms (SNPs) of SIPA1 (signal-induced proliferation associated gene 1) are associated with metastatic efficiency in both human and rodents. The purpose of this study was to determine whether SIPA1 545 C > T polymorphism was associated with overall survival in patients with metastatic breast cancer. In this study, SIPA1 545 C > T polymorphism was detected in 185 metastatic breast cancer patients using polymerase chain reaction-restriction fragment length polymorphism assay (PCR-RFLP). Survival curves for patients with SIPA1 545 C > T polymorphism was compared using the Kaplan-Meier method with log-rank tests. We found that SIPA1 545 C > T polymorphism was significantly associated with survival in 185 patients with metastatic breast cancer. Patients with SIPA1 545 T/T genotype had a significantly worse overall survival (OS) than did patients with C/T or C/C genotype (50.0% vs. 62.9%, P = 0.042). Moreover, in multivariate analysis, as compared with the C/C or C/T genotype, the T/T genotype remained an independent unfavorable prognostic marker of OS in this cohort (hazard ratio [HR] = 2.16; 95% CI = 1.12-4.15; P = 0.022). Our findings indicate that metastatic breast cancer patients with SIPA1 545 T/T genotype have a poorer survival compared to patients with C/C or C/T genotype.
Collapse
Affiliation(s)
- Renling Pei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, 100142, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shen X, Zeng H, Xie L, He J, Li J, Xie X, Luo C, Xu H, Zhou M, Nie Q, Zhang X. The GTPase activating Rap/RanGAP domain-like 1 gene is associated with chicken reproductive traits. PLoS One 2012; 7:e33851. [PMID: 22496769 PMCID: PMC3322132 DOI: 10.1371/journal.pone.0033851] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 02/19/2012] [Indexed: 11/28/2022] Open
Abstract
Background Abundant evidence indicates that chicken reproduction is strictly regulated by the hypothalamic-pituitary-gonad (HPG) axis, and the genes included in the HPG axis have been studied extensively. However, the question remains as to whether any other genes outside of the HPG system are involved in regulating chicken reproduction. The present study was aimed to identify, on a genome-wide level, novel genes associated with chicken reproductive traits. Methodology/Principal Finding Suppressive subtractive hybridization (SSH), genome-wide association study (GWAS), and gene-centric GWAS were used to identify novel genes underlying chicken reproduction. Single marker-trait association analysis with a large population and allelic frequency spectrum analysis were used to confirm the effects of candidate genes. Using two full-sib Ningdu Sanhuang (NDH) chickens, GARNL1 was identified as a candidate gene involved in chicken broodiness by SSH analysis. Its expression levels in the hypothalamus and pituitary were significantly higher in brooding chickens than in non-brooding chickens. GWAS analysis with a NDH two tail sample showed that 2802 SNPs were significantly associated with egg number at 300 d of age (EN300). Among the 2802 SNPs, 2 SNPs composed a block overlapping the GARNL1 gene. The gene-centric GWAS analysis with another two tail sample of NDH showed that GARNL1 was strongly associated with EN300 and age at first egg (AFE). Single marker-trait association analysis in 1301 female NDH chickens confirmed that variation in this gene was related to EN300 and AFE. The allelic frequency spectrum of the SNP rs15700989 among 5 different populations supported the above associations. Western blotting, RT-PCR, and qPCR were used to analyze alternative splicing of the GARNL1 gene. RT-PCR detected 5 transcripts and revealed that the transcript, which has a 141 bp insertion, was expressed in a tissue-specific manner. Conclusions/Significance Our findings demonstrate that the GARNL1 gene contributes to chicken reproductive traits.
Collapse
Affiliation(s)
- Xu Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China
| | - Hua Zeng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Liang Xie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Institute of Animal Science and Veterinary, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Jun He
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China
| | - Jian Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China
| | - Xiujuan Xie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China
| | - Chenglong Luo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China
| | - Min Zhou
- Biotechnology Institute, Jiang Xi Education College, Nanchang, Jiangxi, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou, China
- * E-mail:
| |
Collapse
|
20
|
Regulation of angiogenesis by a small GTPase Rap1. Vascul Pharmacol 2010; 53:1-10. [DOI: 10.1016/j.vph.2010.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/20/2010] [Accepted: 03/11/2010] [Indexed: 01/09/2023]
|
21
|
Abstract
Small Rap guanosine-tri-phosphate (GTP)ases are crucially involved in many cellular processes, including cell proliferation, differentiation, survival, adhesion and movement. In line, it has been shown that Rap signalling is involved in various aspects of neuronal differentiation, like the establishment of neuronal polarity or axonal growth cone movement. Rap GTPases can be activated by a wide variety of external stimuli, and this is mediated by specific guanine nucleotide exchange factors (RapGEFs). Inactivation of RapGTP can be achieved with the aid of specific GTPase-activating proteins (RapGAPs). In the brain, the most prominent RapGAPs are Rap1GAP and those of the spine-associated RapGAP (SPAR) family. This latter family consists of three members (SPAR1-3), from which two of them, namely SPAR1 and 2, have been investigated in more detail. As such, the localization of RapGAPs is crucially important in regulating Rap signalling at various sites in the cell and, for both SPAR1 and 2, enrichment at synaptic sites has been demonstrated. In recent years particularly the role of SPAR1 in shaping dendritic spine morphology has attracted considerable interest. In this review we will summarize the described actions of different RapGAPs expressed in the brain, and we will focus in particular on the SPAR family members.
Collapse
Affiliation(s)
- Christina Spilker
- Project Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | |
Collapse
|
22
|
Polymorphisms of the SIPA1 gene and sporadic breast cancer susceptibility. BMC Cancer 2009; 9:331. [PMID: 19765277 PMCID: PMC2751777 DOI: 10.1186/1471-2407-9-331] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 09/18/2009] [Indexed: 12/28/2022] Open
Abstract
Background The novel breast cancer metastasis modulator gene signal-induced proliferation-associated 1 (Sipa1) underlies the breast cancer metastasis efficiency modifier locus Mtes 1 and has been shown to influence mammary tumour metastatic efficiency in the mouse, with an ectopically expressing Sipa1 cell line developing 1.5 to 2 fold more surface pulmonary metastases. Sipa1 encodes a mitogen-inducible GTPase activating (GAP) protein for members of the Ras-related proteins; participates in cell adhesion and modulates mitogen-induced cell cycle progression. Germline SIPA1 SNPs showed association with positive lymph node metastasis and hormonal receptor status in a Caucasian cohort. We hypothesized that SIPA1 may also be correlated to breast carcinoma incidence as well as prognosis. Therefore, this study investigated the potential relationship of SIPA1 and human breast cancer incidence by a germline SNP genotype frequency association study in a case-control Caucasian cohort in Queensland, Australia. Methods The SNPs genotyped in this study were identified in a previous study and the genotyping assays were carried out using TaqMan SNP Genotyping Assays. The data were analysed with chi-square method and the Monte Carlo style CLUMP analysis program. Results Results indicated significance with SIPA1 SNP rs3741378; the CC genotype was more frequently observed in the breast cancer group compared to the disease-free control group, indicating the variant C allele was associated with increased breast cancer incidence. Conclusion This observation indicates SNP rs3741378 as a novel potential sporadic breast cancer predisposition SNP. While it showed association with hormonal receptor status in breast cancer group in a previous pilot study, this exonic missense SNP (Ser (S) to Phe (F)) changes a hydrophilic residue (S) to a hydrophobic residue (F) and may significantly alter the protein functions of SIPA1 in breast tumourgenesis. SIPA1 SNPs rs931127 (5' near gene), and rs746429 (synonymous (Ala (A) to Ala (A)), did not show significant associations with breast cancer incidence, yet were associated with lymph node metastasis in the previous study. This suggests that SIPA1 may be involved in different stages of breast carcinogenesis and since this study replicates a previous study of the associated SNP, it implicates variants of the SIPA1 gene as playing a potential role in breast cancer.
Collapse
|
23
|
The ability of GAP1IP4BP to function as a Rap1 GTPase-activating protein (GAP) requires its Ras GAP-related domain and an arginine finger rather than an asparagine thumb. Mol Cell Biol 2009; 29:3929-40. [PMID: 19433443 DOI: 10.1128/mcb.00427-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
GAP1(IP4BP) is a member of the GAP1 family of Ras GTPase-activating proteins (GAPs) that includes GAP1(m), CAPRI, and RASAL. Composed of a central Ras GAP-related domain (RasGRD), surrounded by amino-terminal C2 domains and a carboxy-terminal PH/Btk domain, these proteins, with the notable exception of GAP1(m), possess an unexpected arginine finger-dependent GAP activity on the Ras-related protein Rap1 (S. Kupzig, D. Deaconescu, D. Bouyoucef, S. A. Walker, Q. Liu, C. L. Polte, O. Daumke, T. Ishizaki, P. J. Lockyer, A. Wittinghofer, and P. J. Cullen, J. Biol. Chem. 281:9891-9900, 2006). Here, we have examined the mechanism through which GAP1(IP4BP) can function as a Rap1 GAP. We show that deletion of domains on either side of the RasGRD, while not affecting Ras GAP activity, do dramatically perturb Rap1 GAP activity. By utilizing GAP1(IP4BP)/GAP1(m) chimeras, we establish that although the C2 and PH/Btk domains are required to stabilize the RasGRD, it is this domain which contains the catalytic machinery required for Rap1 GAP activity. Finally, a key residue in Rap1-specific GAPs is a catalytic asparagine, the so-called asparagine thumb. By generating a molecular model describing the predicted Rap1-binding site in the RasGRD of GAP1(IP4BP), we show that mutagenesis of individual asparagine or glutamine residues that lie in close proximity to the predicted binding site has no detectable effect on the in vivo Rap1 GAP activity of GAP1(IP4BP). In contrast, we present evidence consistent with a model in which the RasGRD of GAP1(IP4BP) functions to stabilize the switch II region of Rap1, allowing stabilization of the transition state during GTP hydrolysis initiated by the arginine finger.
Collapse
|
24
|
Minato N, Hattori M. Spa-1 (Sipa1) and Rap signaling in leukemia and cancer metastasis. Cancer Sci 2009; 100:17-23. [PMID: 19037996 PMCID: PMC11158263 DOI: 10.1111/j.1349-7006.2008.01011.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 09/03/2008] [Accepted: 09/16/2008] [Indexed: 01/15/2023] Open
Abstract
Although Rap GTPases of the Ras family remained enigmatic for years, extensive studies in this decade have revealed diverse functions of Rap in the control of cell proliferation, differentiation, survival, adhesion, and movement. With the use of genetic engineering strategies, we have uncovered essential roles of Rap signaling in normal lymphohematopoietic cell development as well as its crucial involvement in the development of a wide spectrum of leukemia in manners highly dependent on the contexts of cell lineages. Incidentally, recent results also indicate an important role of Spa-1, a Rap GTPase-activating protein, in invasion and metastasis in human cancers. While it is unlikely that Rap can function as a classic oncogene by itself, like Ras, emerging findings unveil crucial involvements of Rap GTPases in the distinct aspects of malignancy, including leukemia genesis and cancer metastasis.
Collapse
Affiliation(s)
- Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | |
Collapse
|
25
|
Spilker C, Acuña Sanhueza GA, Böckers TM, Kreutz MR, Gundelfinger ED. SPAR2, a novel SPAR-related protein with GAP activity for Rap1 and Rap2. J Neurochem 2007; 104:187-201. [PMID: 17961154 DOI: 10.1111/j.1471-4159.2007.04991.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spine-associated RapGAP 2 (SPAR2) is a novel GTPase activating protein (GAP) for the small GTPase Rap that shows significant sequence homology to SPAR, a synaptic RapGAP that was reported to regulate spine morphology in hippocampal neurons. SPAR2, like SPAR, interacts with the recently described synaptic scaffolding protein ProSAP-interacting protein (ProSAPiP), which in turn binds to the PDZ domain of ProSAP/Shank post-synaptic density proteins. In subcellular fractionation experiments, SPAR2 is enriched in synaptosomes and post-synaptic density fractions indicating that it is a synaptic protein. Furthermore, we could show using in vitro GAP assays that SPAR2 has GAP activity for Rap1 and Rap2. Expression in COS-7 cells, however, revealed different actin-binding properties of SPAR2 and SPAR. Additionally, over-expression of SPAR2 in cultured hippocampal neurons did not affect spine morphology as it was reported for SPAR. In situ hybridization studies also revealed a differential tissue distribution of SPAR and SPAR2 with SPAR2 transcripts being mainly expressed in cerebellar and hippocampal granule cells. Moreover, in the cerebellum SPAR2 is developmentally regulated with a peak of expression around the period of synapse formation. Our results imply that SPAR2 is a new RapGAP with specific functions in cerebellar and hippocampal granule cells.
Collapse
Affiliation(s)
- Christina Spilker
- Project Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
26
|
Crawford NPS, Qian X, Ziogas A, Papageorge AG, Boersma BJ, Walker RC, Lukes L, Rowe WL, Zhang J, Ambs S, Lowy DR, Anton-Culver H, Hunter KW. Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis. PLoS Genet 2007; 3:e214. [PMID: 18081427 PMCID: PMC2098807 DOI: 10.1371/journal.pgen.0030214] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 10/12/2007] [Indexed: 12/20/2022] Open
Abstract
A novel candidate metastasis modifier, ribosomal RNA processing 1 homolog B (Rrp1b), was identified through two independent approaches. First, yeast two-hybrid, immunoprecipitation, and functional assays demonstrated a physical and functional interaction between Rrp1b and the previous identified metastasis modifier Sipa1. In parallel, using mouse and human metastasis gene expression data it was observed that extracellular matrix (ECM) genes are common components of metastasis predictive signatures, suggesting that ECM genes are either important markers or causal factors in metastasis. To investigate the relationship between ECM genes and poor prognosis in breast cancer, expression quantitative trait locus analysis of polyoma middle-T transgene-induced mammary tumor was performed. ECM gene expression was found to be consistently associated with Rrp1b expression. In vitro expression of Rrp1b significantly altered ECM gene expression, tumor growth, and dissemination in metastasis assays. Furthermore, a gene signature induced by ectopic expression of Rrp1b in tumor cells predicted survival in a human breast cancer gene expression dataset. Finally, constitutional polymorphism within RRP1B was found to be significantly associated with tumor progression in two independent breast cancer cohorts. These data suggest that RRP1B may be a novel susceptibility gene for breast cancer progression and metastasis. Metastasis, which is defined as the spread of malignant tumor cells from their original site to other parts of the body, accounts for the vast majority of solid cancer-related mortality. Our laboratory has previously shown that host germline-encoded variation modifies primary tumor metastatic capacity. Here, we detail how germline-encoded Rrp1b variation likely modulates metastasis. In mice, constitutional Rrp1b variation correlates with ECM gene expression, which are genes commonly differentially regulated in metastasis prone tumors. Furthermore, we demonstrate that Rrp1b expression levels are modulated by germline variation in mice with differing metastatic propensities, and that variation of Rrp1b expression in a highly metastatic mouse mammary tumor cell line modifies progression. Differential RRP1B functionality also appears to play an important role in human breast cancer progression. Specifically, we demonstrate that a microarray gene expression signature indicative of differential RRP1B expression predicts breast cancer-specific survival. Furthermore, we show that germline-encoded RRP1B variation is associated with markers of outcome in two breast cancer populations. In summary, these data suggest that Rrp1b may be a germline-encoded metastasis modifier in both mice and humans, which leads to the possibility that knowledge of RRP1B functionality and variation in breast cancer might facilitate improved assessment of prognosis.
Collapse
Affiliation(s)
- Nigel P. S Crawford
- Laboratory of Population Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xiaolan Qian
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Argyrios Ziogas
- Epidemiology Division, Department of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Alex G Papageorge
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brenda J Boersma
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Renard C Walker
- Laboratory of Population Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Luanne Lukes
- Laboratory of Population Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William L Rowe
- Laboratory of Population Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jinghui Zhang
- Laboratory of Population Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Douglas R Lowy
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hoda Anton-Culver
- Epidemiology Division, Department of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Kent W Hunter
- Laboratory of Population Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Abstract
Rap1 (Ras-proximity 1), a member of the Ras family of small guanine triphosphatases (GTPases), is activated by diverse extracellular stimuli. While Rap1 has been discovered originally as a potential Ras antagonist, accumulating evidence indicates that Rap1 per se mediates unique signals and exerts biological functions distinctly different from Ras. Rap1 plays a dominant role in the control of cell-cell and cell-matrix interactions by regulating the function of integrins and other adhesion molecules in various cell types. Rap1 also regulates MAP kinase (MAPK) activity in a manner highly dependent on the context of cell types. Recent studies (including gene-targeting analysis) have uncovered that the Rap1 signal is integrated crucially and unpredictably in the diverse aspects of comprehensive biological systems. This review summarizes the role of the Rap1 signal in developments and functions of the immune and hematopoietic systems as well as in malignancy. Importantly, Rap1 activation is tightly regulated in tissue cells, and dysregulations of the Rap1 signal in specific tissues result in certain disorders, including myeloproliferative disorders and leukemia, platelet dysfunction with defective hemostasis, leukocyte adhesion-deficiency syndrome, lupus-like systemic autoimmune disease, and T cell anergy. Many of these disorders resemble human diseases, and the Rap1 signal with its regulators may provide rational molecular targets for controlling certain human diseases including malignancy.
Collapse
Affiliation(s)
- Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
28
|
Beattie BJ, Robinson PN. Binary state pattern clustering: a digital paradigm for class and biomarker discovery in gene microarray studies of cancer. J Comput Biol 2006; 13:1114-30. [PMID: 16796554 DOI: 10.1089/cmb.2006.13.1114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Class and biomarker discovery continue to be among the preeminent goals in gene microarray studies of cancer. We have developed a new data mining technique, which we call Binary State Pattern Clustering (BSPC) that is specifically adapted for these purposes, with cancer and other categorical datasets. BSPC is capable of uncovering statistically significant sample subclasses and associated marker genes in a completely unsupervised manner. This is accomplished through the application of a digital paradigm, where the expression level of each potential marker gene is treated as being representative of its discrete functional state. Multiple genes that divide samples into states along the same boundaries form a kind of gene-cluster that has an associated sample-cluster. BSPC is an extremely fast deterministic algorithm that scales well to large datasets. Here we describe results of its application to three publicly available oligonucleotide microarray datasets. Using an alpha-level of 0.05, clusters reproducing many of the known sample classifications were identified along with associated biomarkers. In addition, a number of simulations were conducted using shuffled versions of each of the original datasets, noise-added datasets, as well as completely artificial datasets. The robustness of BSPC was compared to that of three other publicly available clustering methods: ISIS, CTWC and SAMBA. The simulations demonstrate BSPC's substantially greater noise tolerance and confirm the accuracy of our calculations of statistical significance.
Collapse
Affiliation(s)
- Bradley J Beattie
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | |
Collapse
|
29
|
Kuwahara M, Asai T, Terada Y, Sasaki S. The C-terminal tail of aquaporin-2 determines apical trafficking. Kidney Int 2006; 68:1999-2009. [PMID: 16221200 DOI: 10.1111/j.1523-1755.2005.00654.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Aquaporin-2 (AQP-2) proteins are mainly expressed at the apical region of the collecting duct cells. We previously reported three different mutations in the C-terminus of AQP-2 that all-cause autosomal-dominant nephrogenic diabetes insipidus. When one of these mutant AQP-2s was expressed in Madin-Darby canine kidney (MDCK) cells, it was mistargeted to the basolateral membrane, suggesting a critical role of the C-terminal tail in the apical trafficking of AQP-2. METHODS Portions of the AQP-2 C-terminal tail (residues 226-271) were mutated by the polymerase chain reaction (PCR) technique and inserted into the pcDNA3.1 vector. Constructs were transfected into MDCK cells to examine the localization of mutated AQP-2 proteins by immunofluorescence microscopy. Cell surface expression was detected by biotinylation assay. RESULTS The wild-type AQP-2 was localized at the apical membrane, whereas mutants lacking residues 262-271 (the last 10 amino acids) were predominantly distributed in the endoplasmic reticulum. Deletion mutants of the initial (226-240del) and middle (241-252del) portions of the C-terminal tail were identified at the apical membrane, suggesting that residues 226-252 have no involvement in apical targeting. An AQP-4-AQP-2 chimera in which a portion of the AQP-4 C-terminal tail was replaced by the corresponding site in AQP-2 (residues 256-271) was found at the apical membrane. The sequence of the last 4 amino acids of AQP-2 (G-T-K-A) corresponds to a PDZ-interacting motif. Our investigations identified a mutant of this portion mostly localized to the subapical region. Further, apical expression was found to be significantly decreased in mutants lacking a consensus sequence for cyclic adenosine monophosphate (cAMP)-dependent phosphorylation (residues 253-256). CONCLUSION The sequence at 256-271 is sufficient for apical trafficking in AQP-2. The putative PDZ-interacting motif (G-T-K-A, residues 268-271) plays a key role in apical membrane expression. In addition, cAMP-dependent phosphorylation was found to be critical for apical targeting.
Collapse
Affiliation(s)
- Michio Kuwahara
- Department of Nephrology, Tokyo Medical and Dental University Graduate School, Japan.
| | | | | | | |
Collapse
|
30
|
Park YG, Zhao X, Lesueur F, Lowy DR, Lancaster M, Pharoah P, Qian X, Hunter KW. Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nat Genet 2005; 37:1055-62. [PMID: 16142231 PMCID: PMC2140048 DOI: 10.1038/ng1635] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 07/11/2005] [Indexed: 11/08/2022]
Abstract
We previously identified loci in the mouse genome that substantially influence the metastatic efficiency of mammary tumors. Here, we present data supporting the idea that the signal transduction molecule, Sipa1, is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Analysis of candidate genes identified a nonsynonymous amino acid polymorphism in Sipa1 that affects the Sipa1 Rap-GAP function. Spontaneous metastasis assays using cells ectopically expressing Sipa1 or cells with knocked-down Sipa1 expression showed that metastatic capacity was correlated with cellular Sipa1 levels. We examined human expression data and found that they were consistent with the idea that Sipa1 concentration has a role in metastasis. Taken together, these data suggest that the Sipa1 polymorphism is one of the genetic polymorphisms underlying the Mtes1 locus. This report is also the first demonstration, to our knowledge, of a constitutional genetic polymorphism affecting tumor metastasis.
Collapse
Affiliation(s)
- Yeong-Gwan Park
- Laboratory of Population Genetics, National Cancer Institute, Building 41, Room 702, 41 Library Drive, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Stork PJS, Dillon TJ. Multiple roles of Rap1 in hematopoietic cells: complementary versus antagonistic functions. Blood 2005; 106:2952-61. [PMID: 16076873 PMCID: PMC1895320 DOI: 10.1182/blood-2005-03-1062] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Small G proteins serve as critical control points in signal transduction, integrating a wide range of stimuli to dictate discrete cellular outcomes. The outcomes of small G-protein signaling can both potentiate and antagonize one another. Studies in hematopoietic cells have uncovered multiple functions for the small G protein, Rap1 (Ras-proximate-1). Because Rap1 can regulate cell proliferation, differentiation, and adhesion through distinct mechanisms, it serves as a paradigm for the need for tight cellular control of small G-protein function. Rap1 has received recent attention for its role in enhancing integrin-dependent signals. This action of Rap1 augments a variety of processes that characterize hematopoietic-cell function, including aggregation, migration, extravasation, and homing to target tissues. Rap1 may also regulate cellular differentiation and proliferation via pathways that are distinct from those mediating adhesion, and involve regulation of the mitogen-activated protein (MAP) kinase or ERK (extracellular signal-regulated kinase) cascade. These actions of Rap1 occur in selected cell types to enhance or diminish ERK signaling, depending on the expression pattern of the MAP kinase kinase kinases of the Raf family: Raf-1 and B-Raf. This review will examine the functions of Rap1 in hematopoietic cells, and focus on 3 cellular scenarios where the multiple actions of Rap1 function have been proposed. Recent studies implicating Rap1 in the maturation of megakaryocytes, the pathogenesis of chronic myelogenous leukemia (CML), and activation of peripheral T cells will receive particular attention.
Collapse
Affiliation(s)
- Philip J S Stork
- Vollum Institute, L474, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | | |
Collapse
|
32
|
Murata K, Hattori M, Hirai N, Shinozuka Y, Hirata H, Kageyama R, Sakai T, Minato N. Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1. Mol Cell Biol 2005; 25:4262-71. [PMID: 15870295 PMCID: PMC1087711 DOI: 10.1128/mcb.25.10.4262-4271.2005] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 11/18/2004] [Accepted: 02/17/2005] [Indexed: 01/16/2023] Open
Abstract
A transcriptional regulator, Hes1, plays crucial roles in the control of differentiation and proliferation of neuronal, endocrine, and T-lymphocyte progenitors during development. Mechanisms for the regulation of cell proliferation by Hes1, however, remain to be verified. In embryonic carcinoma cells, endogenous Hes1 expression was repressed by retinoic acid in concord with enhanced p27(Kip1) expression and cell cycle arrest. Conversely, conditional expression of a moderate but not maximal level of Hes1 in HeLa cells by a tetracycline-inducible system resulted in reduced p27(Kip1) expression, which was attributed to decreased basal transcript rather than enhanced proteasomal degradation, with concomitant increases in the growth rate and saturation density. Hes1 induction repressed the promoter activity of a 5' flanking basal enhancer region of p27(Kip1) gene in a manner dependent on Hes1 expression levels, and this was mediated by its binding to class C sites in the promoter region. Finally, hypoplastic fetal thymi, as well as livers and brains of Hes1-deficient mice, showed significantly increased p27(Kip1) transcripts compared with those of control littermates. These results have suggested that Hes1 directly contributes to the promotion of progenitor cell proliferation through transcriptional repression of a cyclin-dependent kinase inhibitor, p27(Kip1).
Collapse
Affiliation(s)
- Kaoru Murata
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Saito S, Honma K, Kita-Matsuo H, Ochiya T, Kato K. Gene expression profiling of cerebellar development with high-throughput functional analysis. Physiol Genomics 2005; 22:8-13. [PMID: 15797969 DOI: 10.1152/physiolgenomics.00142.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We measured the expression levels of 450 genes during mouse postnatal cerebellar development by quantitative PCR using RNA purified from layers of the cerebellar cortex. Principal component analysis of the data matrix demonstrated that the first and second components corresponded to general levels of gene expression and gene expression patterns, respectively. We introduced 288 of the 450 genes into PC12 cells using a high-throughput transfection assay based on atelocollagen and determined the ability of each gene to promote neurite outgrowth or cell proliferation. Five genes induced neurite outgrowth, and seven genes enhanced proliferation. Evaluation of the functional data and gene expression patterns showed that none of these genes exhibited elevated expression at maturation, suggesting that genes characteristic of mature neurons are not likely to participate in neuronal development. These results demonstrate that functional data can facilitate interpretation of expression profiles and identification of new molecules that participate in biological processes.
Collapse
Affiliation(s)
- Sakae Saito
- Taisho Laboratory of Functional Genomics, Nara Institute of Science and Technology, and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Tokyo, Japan
| | | | | | | | | |
Collapse
|
34
|
Abstract
Rap1 is a member of the Ras family of GTPases and, depending on the cellular context, has an important role in the regulation of proliferation or cell adhesion. In lymphohematopoietic tissues, SPA-1 is a principal Rap1 GTPase-activating protein. Mice that are deficient for the SPA-1 gene develop age-dependent progression of T-cell immunodeficiency followed by a spectrum of late onset myeloproliferative disorders, mimicking human chronic myeloid leukemia. Recent studies reveal that deregulated Rap1 activation in SPA-1-deficient mice causes enhanced expansion of the bone marrow hematopoietic progenitors, but induces progressive unresponsiveness or anergy in T cells. Rap1 and its regulator, SPA-1, could, therefore, provide unique molecular targets for the control of human hematologic malignancy.
Collapse
Affiliation(s)
- Kohei Kometani
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
35
|
Abstract
The small GTPases of the Ras superfamily mediate numerous biological processes through their ability to cycle between an inactive GDP-bound and an active GTP-bound form. Among the key regulators of GTPase cycling are the GTPase-activating proteins (GAPs), which stimulate the weak intrinsic GTP-hydrolysis activity of the GTPases, thereby inactivating them. Despite the abundance of GAPs and the fact that mutations in GAP-encoding genes underlie several human diseases, these proteins have received relatively little attention. Recent studies have addressed the regulatory mechanisms that influence GAP activity. So far, findings suggest that GAP activity is regulated by several mechanisms, including protein-protein interactions, phospholipid interactions, phosphorylation, subcellular translocation and proteolytic degradation.
Collapse
Affiliation(s)
- Andre Bernards
- MGH Cancer Center and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|
36
|
Schwarzbraun T, Vincent JB, Schumacher A, Geschwind DH, Oliveira J, Windpassinger C, Ofner L, Ledinegg MK, Kroisel PM, Wagner K, Petek E. Cloning, genomic structure, and expression profiles of TULIP1 (GARNL1), a brain-expressed candidate gene for 14q13-linked neurological phenotypes, and its murine homologue. Genomics 2005; 84:577-86. [PMID: 15498464 DOI: 10.1016/j.ygeno.2004.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2004] [Revised: 04/30/2004] [Indexed: 10/26/2022]
Abstract
Previously, we have described the clinical and molecular characterization of a de novo 14q13.1-q21.1 microdeletion, less than 3.5 Mb in size, in a patient with severe microcephaly, psychomotor retardation, and other clinical anomalies. Here we report the characterization of the genomic structure of the human tuberin-like protein gene 1 (TULIP1; approved gene symbol GARNL1), a CpGisland-associated, brain-expressed candidate gene for the neurological findings in our patient, and its murine homologue. The human TULIP1 gene was mapped to chromosome band 14q13.2 by fluorescence in situ hybridization of BAC clone RP11-355C3 (GenBank Accession No. AL160231), containing the 3' region of the gene. TULIP1 spans about 271 kb of human genomic DNA and is divided into 41 exons. An untranscribed, processed pseudogene of TULIP1 was found on human chromosome band 9q31.1. The active locus TULIP1, encoding a predicted protein of 2036 amino acids, is expressed ubiquitously in pre- and postnatal human tissues. The murine homologue Tulip1 spans about 220 kb of mouse genomic DNA and is also divided into 41 exons, encoding a predicted protein of 2035 amino acids. No pseudogene could be found in the available mouse sequence data. Several splicing variants were found. Considering the location, expression profile, and predicted function, TULIP1 is a strong candidate for several neurological features seen in 14q deletion patients. Additionally we searched for mutations in the coding region of TULIP1 in subjects from a family with idiopathic basal ganglia calcification (IBGC; Fahr disease), previously linked to chromosome 14q. We identified two novel SNPs in the intron-exon boundaries; however, they did not segregate only with affected subjects in the predicted model of an autosomal dominant disease such as IBGC.
Collapse
Affiliation(s)
- Thomas Schwarzbraun
- Institute of Medical Biology and Human Genetics, Medical University of Graz, Harrachgasse 21/8, A-8010 Graz, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Farina A, Hattori M, Qin J, Nakatani Y, Minato N, Ozato K. Bromodomain protein Brd4 binds to GTPase-activating SPA-1, modulating its activity and subcellular localization. Mol Cell Biol 2004; 24:9059-69. [PMID: 15456879 PMCID: PMC517877 DOI: 10.1128/mcb.24.20.9059-9069.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brd4 is a mammalian protein that contains a double bromodomain. It binds to chromatin and regulates cell cycle progression at multiple stages. By immunopurification and mass spectrometry, we identified a Rap GTPase-activating protein (GAP), signal-induced proliferation-associated protein 1 (SPA-1), as a factor that interacts with Brd4. SPA-1 localizes to the cytoplasm and to a lesser degree in the nucleus, while Brd4 resides in the nucleus. Bifluorescence complementation revealed that Brd4 and SPA-1 interact with each other in the nucleus of living cells. Supporting the functional importance of the interaction, Brd4 enhanced Rap GAP activity of SPA-1. Furthermore ectopic expression of SPA-1 and Brd4 redirected subcellular localization of the partner and disrupted normal cell cycle progression. These effects were, however, reversed by coexpression of the two proteins, indicating that a proper balance between Brd4 and SPA-1 in G2 is required for cell division. This work reveals a novel link between Brd4 and a GTPase-dependent mitogenic signaling pathway.
Collapse
Affiliation(s)
- Andrea Farina
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
CD40, a member of the tumor necrosis factor (TNF) receptor family that is expressed on B cells, monocytes, dendritic cells, endothelial cells, and epithelial cells, as well as on B cell lymphomas and carcinomas, activates multiple signaling pathways. In B cells, the response to CD40 is complex and depends on the maturation status of the cell. It is well established that CD40 can promote cell survival through up-regulation of the expression of genes encoding antiapoptotic proteins. However, a new role for CD40 signaling is being recognized in promoting progression through the cell cycle. The roles of the phosphoinositide 3-kinase, mitogen-activated protein kinase, and nuclear factor kappaB pathways in mediating CD40 stimulation of the cell cycle are described.
Collapse
Affiliation(s)
- Margaret M Harnett
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow G11 6NT, UK.
| |
Collapse
|
39
|
Daumke O, Weyand M, Chakrabarti PP, Vetter IR, Wittinghofer A. The GTPase-activating protein Rap1GAP uses a catalytic asparagine. Nature 2004; 429:197-201. [PMID: 15141215 DOI: 10.1038/nature02505] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Accepted: 03/16/2004] [Indexed: 11/09/2022]
Abstract
Rap1 is a Ras-like guanine-nucleotide-binding protein (GNBP) that is involved in a variety of signal-transduction processes. It regulates integrin-mediated cell adhesion and might activate extracellular signal-regulated kinase. Like other Ras-like GNBPs, Rap1 is regulated by guanine-nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs). These GAPs increase the slow intrinsic GTPase reaction of Ras-like GNBPs by many orders of magnitude and allow tight regulation of signalling. The activation mechanism involves stabilization of the catalytic glutamine of the GNBP and, in most cases, the insertion of a catalytic arginine of GAP into the active site. Rap1 is a close homologue of Ras but does not possess the catalytic glutamine essential for GTP hydrolysis in all other Ras-like and Galpha proteins. Furthermore, RapGAPs are not related to other GAPs and apparently do not use a catalytic arginine residue. Here we present the crystal structure of the catalytic domain of the Rap1-specific Rap1GAP at 2.9 A. By mutational analysis, fluorescence titration and stopped-flow kinetic assay, we demonstrate that Rap1GAP provides a catalytic asparagine to stimulate GTP hydrolysis. Implications for the disease tuberous sclerosis are discussed.
Collapse
Affiliation(s)
- Oliver Daumke
- Max-Planck-Institut für Molekulare Physiologie, Otto-Hahnstr. 11, 44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
40
|
Ishida D, Yang H, Masuda K, Uesugi K, Kawamoto H, Hattori M, Minato N. Antigen-driven T cell anergy and defective memory T cell response via deregulated Rap1 activation in SPA-1-deficient mice. Proc Natl Acad Sci U S A 2003; 100:10919-24. [PMID: 12958214 PMCID: PMC196903 DOI: 10.1073/pnas.1834525100] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SPA-1 is a principal Rap1 GTPase-activating protein in the hematopoietic progenitors and peripheral T cells, and SPA-1-deficient mice develop a spectrum of myeloproliferative stem cell disorders of late onset. In the present study, we show that SPA-1-deficient mice develop age-dependent T cell unresponsiveness preceding the myeloid disorders, whereas the T cell numbers remained unchanged. Progression of the T cell dysfunction was attributed to the age-dependent increase in CD44high T cell population that was unresponsive to T cell receptor stimulation. Younger SPA-1-deficient mice exhibited selectively impaired recall T cell responses against a T-dependent antigen with normal primary antibody response. These results suggested that the unresponsiveness of CD44high T cells was antigen-driven in vivo. T cells from younger SPA-1-/- mice showed much greater and more persisted Rap1 activation by anti-CD3 stimulation than control T cells. Furthermore, freshly isolated T cells from SPA-1-/- mice exhibited progressive accumulation of Rap1GTP as mice aged. T cells from aged SPA-1-/- mice with high amounts of Rap1GTP showed normal or even enhanced Ras activation with little extracellular signal-regulated kinase activation in response to anti-CD3 stimulation, indicating that excess Rap1GTP induced the uncoupling of Ras-mediated extracellular signal-regulated kinase activation. These results suggested that antigenic activation of naïve T cells in SPA-1-/- mice was followed by anergic rather than memory state due to the defective down-regulation of Rap1 activation, resulting in the age-dependent progression of overall T cell immunodeficiency.
Collapse
Affiliation(s)
- Daisuke Ishida
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Ishida D, Kometani K, Yang H, Kakugawa K, Masuda K, Iwai K, Suzuki M, Itohara S, Nakahata T, Hiai H, Kawamoto H, Hattori M, Minato N. Myeloproliferative stem cell disorders by deregulated Rap1 activation in SPA-1-deficient mice. Cancer Cell 2003; 4:55-65. [PMID: 12892713 DOI: 10.1016/s1535-6108(03)00163-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
SPA-1 (signal-induced proliferation-associated gene-1) is a principal Rap1 GTPase-activating protein in hematopoietic progenitors. SPA-1-deficient mice developed a spectrum of myeloid disorders that resembled human chronic myelogenous leukemia (CML) in chronic phase, CML in blast crisis, and myelodysplastic syndrome as well as anemia. Preleukemic SPA-1-deficient mice revealed selective expansion of marrow pluripotential hematopoietic progenitors, which showed abnormal Rap1GTP accumulation. Overexpression of an active form of Rap1 promoted the proliferation of normal hematopoietic progenitors, while SPA-1 overexpression markedly suppressed it. Furthermore, restoring SPA-1 gene in a SPA-1-deficient leukemic blast cell line resulted in the dissolution of Rap1GTP accumulation and concomitant loss of the leukemogenicity in vivo. These results unveiled a role of Rap1 in myeloproliferative stem cell disorders and a tumor suppressor function of SPA-1.
Collapse
Affiliation(s)
- Daisuke Ishida
- Department of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, 606-8501, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bernards A. GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1603:47-82. [PMID: 12618308 DOI: 10.1016/s0304-419x(02)00082-3] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Typical members of the Ras superfamily of small monomeric GTP-binding proteins function as regulators of diverse processes by cycling between biologically active GTP- and inactive GDP-bound conformations. Proteins that control this cycling include guanine nucleotide exchange factors or GEFs, which activate Ras superfamily members by catalyzing GTP for GDP exchange, and GTPase activating proteins or GAPs, which accelerate the low intrinsic GTP hydrolysis rate of typical Ras superfamily members, thus causing their inactivation. Two among the latter class of proteins have been implicated in common genetic disorders associated with an increased cancer risk, neurofibromatosis-1, and tuberous sclerosis. To facilitate genetic analysis, I surveyed Drosophila and human sequence databases for genes predicting proteins related to GAPs for Ras superfamily members. Remarkably, close to 0.5% of genes in both species (173 human and 64 Drosophila genes) predict proteins related to GAPs for Arf, Rab, Ran, Rap, Ras, Rho, and Sar family GTPases. Information on these genes has been entered into a pair of relational databases, which can be used to identify evolutionary conserved proteins that are likely to serve basic biological functions, and which can be updated when definitive information on the coding potential of both genomes becomes available.
Collapse
Affiliation(s)
- André Bernards
- Massachusetts General Hospital Cancer Center, Building 149, 13th Street, Charlestown, MA 02129-2000, USA.
| |
Collapse
|
43
|
Singh L, Gao Q, Kumar A, Gotoh T, Wazer DE, Band H, Feig LA, Band V. The high-risk human papillomavirus type 16 E6 counters the GAP function of E6TP1 toward small Rap G proteins. J Virol 2003; 77:1614-20. [PMID: 12502878 PMCID: PMC140801 DOI: 10.1128/jvi.77.2.1614-1620.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently identified E6TP1 (E6-targeted protein 1) as a novel high-risk human papillomavirus type 16 (HPV16) E6-binding protein. Importantly, mutational analysis of E6 revealed a strong correlation between the transforming activity and its abilities to bind and target E6TP1 for ubiquitin-mediated degradation. As a region within E6TP1 has high homology with GAP domains of known and putative Rap GTPase-activating proteins (GAPs), these results raised the possibility that HPV E6 may alter the Rap small-G-protein signaling pathway. Using two different approaches, we now demonstrate that human E6TP1 exhibits GAP activity for Rap1 and Rap2, confirming recent findings that a closely related rat homologue exhibits Rap-specific GAP activity. Using mutational analysis, we localize the GAP activity to residues 240 to 945 of E6TP1. Significantly, we demonstrate that coexpression of HPV16 E6, by promoting the degradation of E6TP1, enhances the GTP loading of Rap. These results support a role of Rap small-G-protein pathway in E6-mediated oncogenesis.
Collapse
Affiliation(s)
- Latika Singh
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, New England Medical Center, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Chakrabarti R, Robles LD, Gibson J, Muroski M. Profiling of differential expression of messenger RNA in normal, benign, and metastatic prostate cell lines. CANCER GENETICS AND CYTOGENETICS 2002; 139:115-25. [PMID: 12550771 DOI: 10.1016/s0165-4608(02)00641-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To understand the phenotypic changes associated with prostate cancer development and metastasis, we investigated differential gene expression in primary and established prostate cell lines used as models. We have used a differential display of messenger RNA (DDRT-PCR) technique using 168 primer combinations and total RNA from BPH-1, LNCaP, and PC3 cells to identify filter-based cDNA microarrays containing 18,376 nonredundant clones of genes and expressed sequence tags (EST) using mRNA from PrEC and MDAPCa2a cells to identify genes that are differentially expressed in normal, benign, and cancerous prostate cell lines. Twenty-five cDNA with a significant difference in expression of 76 candidate cDNA, as identified by DDRT-PCR and confirmed by slot-blot analysis, were selected for sequence analysis. Of these, 14 cDNA were further confirmed by Northern blot analysis. Analysis of the cDNA microarray data showed that a variety of genes/EST were up- or down-regulated in the metastatic prostate tumor cells and a majority of these genes encode cytoskeletal proteins and proteins with regulatory function. Expression profile of two EST was confirmed by reverse transcription polymerase chain reaction. We also have identified a number of genes exhibiting differential expression in prostate cancer cells, which were not known earlier to be involved in prostate cancer. This report provides a comparative analysis of differential gene expression between normal prostatic epithelial cells and prostate cancer cells, and a foundation to facilitate in-depth studies on the mechanism of prostate cancer development and metastasis.
Collapse
Affiliation(s)
- Ratna Chakrabarti
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL 32826, USA.
| | | | | | | |
Collapse
|
45
|
Dadgostar H, Zarnegar B, Hoffmann A, Qin XF, Truong U, Rao G, Baltimore D, Cheng G. Cooperation of multiple signaling pathways in CD40-regulated gene expression in B lymphocytes. Proc Natl Acad Sci U S A 2002; 99:1497-502. [PMID: 11830667 PMCID: PMC122219 DOI: 10.1073/pnas.032665099] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2001] [Indexed: 11/18/2022] Open
Abstract
CD40/CD40L interaction is essential for multiple biological events in T dependent humoral immune responses, including B cell survival and proliferation, germinal center and memory B cell formation, and antibody isotype switching and affinity maturation. By using high-density microarrays, we examined gene expression in primary mouse B lymphocytes after multiple time points of CD40L stimulation. In addition to genes involved in cell survival and growth, which are also induced by other mitogens such as lipopolysaccharide, CD40L specifically activated genes involved in germinal center formation and T cell costimulatory molecules that facilitate T dependent humoral immunity. Next, by examining the roles of individual CD40-activated signal transduction pathways, we dissected the overall CD40-mediated response into genes independently regulated by the individual pathways or collectively by all pathways. We also found that gene down-regulation is a significant part of the overall response and that the p38 pathway plays an important role in this process, whereas the NF-kappa B pathway is important for the up-regulation of primary response genes. Our finding of overlapping independent control of gene expression modules by different pathways suggests, in principle, that distinct biological behaviors that depend on distinct gene expression subsets can be manipulated by targeting specific signaling pathways.
Collapse
Affiliation(s)
- Hajir Dadgostar
- Molecular Biology Institute and Medical Scientist Training Program, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Pak DT, Yang S, Rudolph-Correia S, Kim E, Sheng M. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron 2001; 31:289-303. [PMID: 11502259 DOI: 10.1016/s0896-6273(01)00355-5] [Citation(s) in RCA: 301] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The PSD-95/SAP90 family of scaffold proteins organizes the postsynaptic density (PSD) and regulates NMDA receptor signaling at excitatory synapses. We report that SPAR, a Rap-specific GTPase-activating protein (RapGAP), interacts with the guanylate kinase-like domain of PSD-95 and forms a complex with PSD-95 and NMDA receptors in brain. In heterologous cells, SPAR reorganizes the actin cytoskeleton and recruits PSD-95 to F-actin. In hippocampal neurons, SPAR localizes to dendritic spines and causes enlargement of spine heads, many of which adopt an irregular appearance with putative multiple synapses. Dominant negative SPAR constructs cause narrowing and elongation of spines. The effects of SPAR on spine morphology depend on the RapGAP and actin-interacting domains, implicating Rap signaling in the regulation of postsynaptic structure.
Collapse
Affiliation(s)
- D T Pak
- Department of Neurobiology, Howard Hughes Medical Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
47
|
Galande S, Dickinson LA, Mian IS, Sikorska M, Kohwi-Shigematsu T. SATB1 cleavage by caspase 6 disrupts PDZ domain-mediated dimerization, causing detachment from chromatin early in T-cell apoptosis. Mol Cell Biol 2001; 21:5591-604. [PMID: 11463840 PMCID: PMC87280 DOI: 10.1128/mcb.21.16.5591-5604.2001] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SATB1 is expressed primarily in thymocytes and orchestrates temporal and spatial expression of a large number of genes in the T-cell lineage. SATB1 binds to the bases of chromatin loop domains in vivo, recognizing a special DNA context with strong base-unpairing propensity. The majority of thymocytes are eliminated by apoptosis due to selection processes in the thymus. We investigated the fate of SATB1 during thymocyte and T-cell apoptosis. Here we show that SATB1 is specifically cleaved by a caspase 6-like protease at amino acid position 254 to produce a 65-kDa major fragment containing both a base-unpairing region (BUR)-binding domain and a homeodomain. We found that this cleavage separates the DNA-binding domains from amino acids 90 to 204, a region which we show to be a dimerization domain. The resulting SATB1 monomer loses its BUR-binding activity, despite containing both its DNA-binding domains, and rapidly dissociates from chromatin in vivo. We found this dimerization region to have sequence similarity to PDZ domains, which have been previously shown to be involved in signaling by conferring protein-protein interactions. SATB1 cleavage during Jurkat T-cell apoptosis induced by an anti-Fas antibody occurs concomitantly with the high-molecular-weight fragmentation of chromatin of ~50-kb fragments. Our results suggest that mechanisms of nuclear degradation early in apoptotic T cells involve efficient removal of SATB1 by disrupting its dimerization and cleavage of genomic DNA into loop domains to ensure rapid and efficient disassembly of higher-order chromatin structure.
Collapse
Affiliation(s)
- S Galande
- Department of Cell and Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | | | | | | |
Collapse
|
48
|
Kohu K, Roy BC, Kuroda T, Kakinuma N, Akiyama T, Senda T. Localization of the Novel GAP Family Protein SPAL in Epithelial Cells. Acta Histochem Cytochem 2000. [DOI: 10.1267/ahc.33.451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Kazuyoshi Kohu
- Department of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, University of Tokyo
| | - Badal C. Roy
- Department of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, University of Tokyo
| | - Toshihiko Kuroda
- Department of Pathology, Institute of Medical Science, University of Tokyo
| | - Naoto Kakinuma
- Department of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, University of Tokyo
| | - Tetsu Akiyama
- Department of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, University of Tokyo
| | - Takao Senda
- Department of Anatomy I, Fujita Health University School of Medicine
| |
Collapse
|
49
|
Gao Q, Srinivasan S, Boyer SN, Wazer DE, Band V. The E6 oncoproteins of high-risk papillomaviruses bind to a novel putative GAP protein, E6TP1, and target it for degradation. Mol Cell Biol 1999; 19:733-44. [PMID: 9858596 PMCID: PMC83930 DOI: 10.1128/mcb.19.1.733] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The high-risk human papillomaviruses (HPVs) are associated with carcinomas of the cervix and other genital tumors. Previous studies have identified two viral oncoproteins, E6 and E7, which are expressed in the majority of HPV-associated carcinomas. The ability of high-risk HPV E6 protein to immortalize human mammary epithelial cells (MECs) has provided a single-gene model to study the mechanisms of E6-induced oncogenic transformation. In this system, the E6 protein targets the p53 tumor suppressor protein for degradation, and mutational analyses have shown that E6-induced degradation of p53 protein is required for MEC immortalization. However, the inability of most dominant-negative p53 mutants to induce efficient immortalization of MECs suggests the existence of additional targets of the HPV E6 oncoprotein. Using the yeast two-hybrid system, we have isolated a novel E6-binding protein. This polypeptide, designated E6TP1 (E6-targeted protein 1), exhibits high homology to GTPase-activating proteins for Rap, including SPA-1, tuberin, and Rap1GAP. The mRNA for E6TP1 is widely expressed in tissues and in vitro-cultured cell lines. The gene for E6TP1 localizes to chromosome 14q23.2-14q24.3 within a locus that has been shown to undergo loss of heterozygosity in malignant meningiomas. Importantly, E6TP1 is targeted for degradation by the high-risk but not the low-risk HPV E6 proteins both in vitro and in vivo. Furthermore, the immortalization-competent but not the immortalization-incompetent HPV16 E6 mutants target the E6TP1 protein for degradation. Our results identify a novel target for the E6 oncoprotein and provide a potential link between HPV E6 oncogenesis and alteration of a small G protein signaling pathway.
Collapse
Affiliation(s)
- Q Gao
- Department of Radiation Oncology, New England Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
50
|
Deguchi M, Hata Y, Takeuchi M, Ide N, Hirao K, Yao I, Irie M, Toyoda A, Takai Y. BEGAIN (brain-enriched guanylate kinase-associated protein), a novel neuronal PSD-95/SAP90-binding protein. J Biol Chem 1998; 273:26269-72. [PMID: 9756850 DOI: 10.1074/jbc.273.41.26269] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PSD-95/SAP90 is a synaptic membrane-associated guanylate kinase with three PDZ, one SH3, and one guanylate kinase (GK) domain. PSD-95/SAP90 binds various proteins through the PDZ domains and organizes synaptic junctions. PSD-95/SAP90 also interacts with the postsynaptic density (PSD) fraction-enriched protein, named SAPAP (also called GKAP and DAP), through the GK domain. SAPAP is Triton X-100-insoluble and recruits PSD-95/SAP90 into the Triton X-100-insoluble fraction in the transfected cells, suggesting that SAPAP may fix PSD-95/SAP90 to the PSD. Here we report a novel protein interacting with the GK domain of PSD-95/SAP90, BEGAIN. BEGAIN is specifically expressed in brain and enriched in the PSD fraction. BEGAIN is Triton X-100-soluble in the transfected cells but is recruited to the Triton X-100-insoluble fraction by SAPAP when coexpressed with PSD-95/SAP90. BEGAIN may be a novel PSD component associated with the core complex of PSD-95/SAP90 and SAPAP.
Collapse
Affiliation(s)
- M Deguchi
- Takai Biotimer Project, ERATO, Japan Science and Technology Corporation, c/o JCR Pharmaceuticals Co. Ltd., 2-2-10 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|