1
|
Bharti J, Gogu P, Pandey SK, Verma A, Yadav JP, Singh AK, Kumar P, Dwivedi AR, Pathak P. BRAF V600E in cancer: Exploring structural complexities, mutation profiles, and pathway dysregulation. Exp Cell Res 2025; 446:114440. [PMID: 39961465 DOI: 10.1016/j.yexcr.2025.114440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/14/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
BRAF, a fundamental component of cellular signaling pathways regulating growth and survival, is frequently mutated in cancer development. Among entire BRAF mutations, the V600E substitution stands out as a dominant alteration in various malignancies, including melanoma, colorectal cancer, and thyroid cancer. Understanding the structural differences between wild-type BRAF and BRAFV600E is crucial for elucidating the molecular mechanisms underpinnings tumorigenesis and identifying dysregulation associated with the same. V600E mutation results in a constitutively active kinase domain, leading to dysregulated downstream signaling independent of extracellular stimuli. This sustained activation promotes cell proliferation, survival, angiogenesis, and hallmark features of the cancer cells. The study describes three distinct classes of BRAF mutations where Class 1 mutations predominantly involve point mutations within the BRAF gene, while Class 2 encompasses in-frame insertions and deletions, and Class 3 comprises gene fusions with large-scale chromosomal rearrangements. Further, we have discussed dysregulated pathways associated with mutation of BRAFV600E, which includes MAPK/ERK, PI3K/AKT/mTOR, TP53, DNA damage response, and WNT/β-Catenin from schematic representation. In the current review, we have shown how these dysregulated pathways play pivotal roles in tumorigenesis, tumor progression in BRAF-mutant cancers and highlighted the critical role of BRAF dysregulation in cancer development followed by its therapeutic implications of targeting dysregulated pathways in BRAF-driven malignancies.
Collapse
Affiliation(s)
- Jayhind Bharti
- Drug Discovery Laboratory, School of Pharmacy, GITAM (Deemed to be) University, Hyderabad Campus, 502329, India
| | - Priyadharshini Gogu
- Drug Discovery Laboratory, School of Pharmacy, GITAM (Deemed to be) University, Hyderabad Campus, 502329, India
| | | | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India; School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Jagat Pal Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Ankit Kumar Singh
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India; Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Ashish Ranjan Dwivedi
- Drug Discovery Laboratory, School of Pharmacy, GITAM (Deemed to be) University, Hyderabad Campus, 502329, India.
| | - Prateek Pathak
- Drug Discovery Laboratory, School of Pharmacy, GITAM (Deemed to be) University, Hyderabad Campus, 502329, India.
| |
Collapse
|
2
|
Gholizadeh Siahmazgi Z, Irani S, Ghiaseddin A, Soutodeh F, Gohari Z, Afifeh J, Pashapouryeganeh A, Samimi H, Naderi M, Fallah P, Haghpanah V. Exploring the inhibitory potential of xanthohumol on MEK1/2: a molecular docking and dynamics simulation investigation. Res Pharm Sci 2024; 19:669-682. [PMID: 39911899 PMCID: PMC11792713 DOI: 10.4103/rps.rps_38_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/29/2024] [Accepted: 12/01/2024] [Indexed: 02/07/2025] Open
Abstract
Background and purpose Xanthohumol (Xn), a small molecule found in Humulus lupulus, has shown promise as an anti-cancer compound. This in silico study was performed to understand the mechanism of action of Xn as a natural compound on MEK1/2 by simulation. Experimental approach After ligand and protein preparation, the best binding energy was determined using Autodock 4.2. Additionally, molecular dynamics simulations of the MEK1/2-Xn and BRaf-MEK1/2-Xn complexes were conducted using GROMACS 2022.1 software and compared to the complexes of MEK1/2-trametinib (Tra) and BRaf-MEK1/2-Tra. Findings/Results The docking results revealed that the best binding energies for MEK1-Xn (-10.70 Kcal/mol), MEK2-Xn (-9.41 Kcal/mol), BRaf-MEK1-Xn (-10.91 Kcal/mol), and BRaf-MEK2-Xn (-8.54 Kcal/mol) were very close to those of the Tra complexes with their targets, MEK1 and MEK2. Furthermore, Xn was found to interact with serine 222 at the active site of these two kinases. The results of the molecular dynamics simulations also indicated that Xn induced changes in the secondary structure of the studied proteins. The root mean square of proteins and the mean radius of gyration showed significant fluctuations. Conclusion and implications The findings of the study suggested that Xn, as a novel bioactive compound, potentially inhibits the MEK1/2 function in cancer cells.
Collapse
Affiliation(s)
- Zohreh Gholizadeh Siahmazgi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, I.R. Iran
| | - Ali Ghiaseddin
- Department of Biomedical Engineering Division, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, I.R. Iran
| | - Fereshteh Soutodeh
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, I.R. Iran
| | - Zahra Gohari
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, I.R. Iran
| | - Jaber Afifeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Amirreza Pashapouryeganeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Hilda Samimi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Mahmood Naderi
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Parviz Fallah
- Laboratory Science Department, Allied Medicine Faculty, Alborz University of Medical Sciences, Karaj, I.R. Iran
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
3
|
Ram T, Singh AK, Kumar A, Singh H, Pathak P, Grishina M, Khalilullah H, Jaremko M, Emwas AH, Verma A, Kumar P. MEK inhibitors in cancer treatment: structural insights, regulation, recent advances and future perspectives. RSC Med Chem 2023; 14:1837-1857. [PMID: 37859720 PMCID: PMC10583825 DOI: 10.1039/d3md00145h] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/12/2023] [Indexed: 10/21/2023] Open
Abstract
MEK1/2 are critical components of the RAS-RAF-MEK-ERK or MAPK signalling pathway that regulates a variety of cellular functions including proliferation, survival, and differentiation. In 1997, a lung cancer cell line was first found to have a MEK mutation (encoding MEK2P298L). MEK is involved in various human cancers such as non-small cell lung cancer (NSCLC), spurious melanoma, and pancreatic, colorectal, basal, breast, and liver cancer. To date, 4 MEK inhibitors i.e., trametinib, cobimetinib, selumetinib, and binimetinib have been approved by the FDA and several are under clinical trials. In this review, we have highlighted structural insights into the MEK1/2 proteins, such as the αC-helix, catalytic loop, P-loop, F-helix, hydrophobic pocket, and DFG motif. We have also discussed current issues with all FDA-approved MEK inhibitors or drugs under clinical trials and combination therapies to improve the efficacy of clinical drugs. Finally, this study addressed recent developments on synthetic MEK inhibitors (from their discovery in 1997 to 2022), their unique properties, and their relevance to MEK mutant inhibition.
Collapse
Affiliation(s)
- Teja Ram
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Prateek Pathak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University Chelyabinsk 454008 Russia
- Pharmaceutical Analysis and Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy at "Hyderabad Campus", GITAM (Deemed to be University) India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University Chelyabinsk 454008 Russia
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University Unayzah 51911 Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Amita Verma
- Bioorganic and Med. Chem. Res., Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|
4
|
Chen L, Li Y, Chen Y. KLHL7 promotes hepatocellular carcinoma progression and molecular therapy resistance by degrading RASA2. iScience 2023; 26:106914. [PMID: 37378318 PMCID: PMC10291331 DOI: 10.1016/j.isci.2023.106914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/27/2022] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common aggressive tumor with a poor prognosis, and patients often seem to be refractory to the use of therapeutic drugs. In this study, we found that the KLHL7 expression was upregulated in HCC that was associated with poor patient prognosis. KLHL7 has been found to promote HCC development in both in vitro and in vivo experiments. Mechanistically, RASA2, a RAS GAP, was identified as a substrate of KLHL7. Upregulation of KLHL7 by growth factors promotes K48-linked polyubiquitination of RASA2 for degradation via the proteasomal pathway. Our in vivo experiments revealed that inhibition of KLHL7 in combination with lenvatinib treatment resulted in efficient killing of HCC cells. Together, these findings demonstrate a role for KLHL7 in HCC and reveal a mechanism by which growth factors regulate the RAS-MAPK pathway. It represents a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Lin Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
5
|
Maloney RC, Zhang M, Liu Y, Jang H, Nussinov R. The mechanism of activation of MEK1 by B-Raf and KSR1. Cell Mol Life Sci 2022; 79:281. [PMID: 35508574 PMCID: PMC9068654 DOI: 10.1007/s00018-022-04296-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022]
Abstract
MEK1 interactions with B-Raf and KSR1 are key steps in Ras/Raf/MEK/ERK signaling. Despite this, vital mechanistic details of how these execute signal transduction are still enigmatic. Among these is why, despite B-Raf and KSR1 kinase domains similarity, the B-Raf/MEK1 and KSR1/MEK1 complexes have distinct contributions to MEK1 activation, and broadly, what is KSR1's role. Our molecular dynamics simulations clarify these still unresolved ambiguities. Our results reveal that the proline-rich (P-rich) loop of MEK1 plays a decisive role in MEK1 activation loop (A-loop) phosphorylation. In the inactive B-Raf/MEK1 heterodimer, the collapsed A-loop of B-Raf interacts with the P-rich loop and A-loop of MEK1, minimizing MEK1 A-loop fluctuation and preventing it from phosphorylation. In the active B-Raf/MEK1 heterodimer, the P-rich loop moves in concert with the A-loop of B-Raf as it extends. This reduces the number of residues interacting with MEK1 A-loop, allowing increased A-loop fluctuation, and bringing Ser222 closer to ATP for phosphorylation. B-Raf αG-helix Arg662 promotes MEK1 activation by orienting Ser218 towards ATP. In KSR1/MEK1, the KSR1 αG-helix has Ala826 in place of B-Raf Arg662. This difference results in much fewer interactions between KSR1 αG-helix and MEK1 A-loop, thus a more flexible A-loop. We postulate that if KSR1 were to adopt an active configuration with an extended A-loop as seen in other protein kinases, then the MEK1 P-rich loop would extend in a similar manner, as seen in the active B-Raf/MEK1 heterodimer. This would result in highly flexible MEK1 A-loop, and KSR1 functioning as an active, B-Raf-like, kinase.
Collapse
Affiliation(s)
- Ryan C Maloney
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
6
|
Ras Isoforms from Lab Benches to Lives-What Are We Missing and How Far Are We? Int J Mol Sci 2021; 22:ijms22126508. [PMID: 34204435 PMCID: PMC8233758 DOI: 10.3390/ijms22126508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
The central protein in the oncogenic circuitry is the Ras GTPase that has been under intense scrutiny for the last four decades. From its discovery as a viral oncogene and its non-oncogenic contribution to crucial cellular functioning, an elaborate genetic, structural, and functional map of Ras is being created for its therapeutic targeting. Despite decades of research, there still exist lacunae in our understanding of Ras. The complexity of the Ras functioning is further exemplified by the fact that the three canonical Ras genes encode for four protein isoforms (H-Ras, K-Ras4A, K-Ras4B, and N-Ras). Contrary to the initial assessment that the H-, K-, and N-Ras isoforms are functionally similar, emerging data are uncovering crucial differences between them. These Ras isoforms exhibit not only cell-type and context-dependent functions but also activator and effector specificities on activation by the same receptor. Preferential localization of H-, K-, and N-Ras in different microdomains of the plasma membrane and cellular organelles like Golgi, endoplasmic reticulum, mitochondria, and endosome adds a new dimension to isoform-specific signaling and diverse functions. Herein, we review isoform-specific properties of Ras GTPase and highlight the importance of considering these towards generating effective isoform-specific therapies in the future.
Collapse
|
7
|
Mlakar V, Morel E, Mlakar SJ, Ansari M, Gumy-Pause F. A review of the biological and clinical implications of RAS-MAPK pathway alterations in neuroblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:189. [PMID: 34103089 PMCID: PMC8188681 DOI: 10.1186/s13046-021-01967-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Neuroblastoma is the most common extra-cranial solid tumor in children, representing approximately 8% of all malignant childhood tumors and 15% of pediatric cancer-related deaths. Recent sequencing and transcriptomics studies have demonstrated the RAS-MAPK pathway’s contribution to the development and progression of neuroblastoma. This review compiles up-to-date evidence of this pathway’s involvement in neuroblastoma. We discuss the RAS-MAPK pathway’s general functioning, the clinical implications of its deregulation in neuroblastoma, and current promising therapeutics targeting proteins involved in signaling.
Collapse
Affiliation(s)
- Vid Mlakar
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Edouard Morel
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Simona Jurkovic Mlakar
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Marc Ansari
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Avenue de la Roseraie 64, 1205, Geneva, Switzerland.,Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Hospital of Geneva, Rue Willy-Donzé 6, 1205, Geneva, Switzerland
| | - Fabienne Gumy-Pause
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Avenue de la Roseraie 64, 1205, Geneva, Switzerland. .,Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Hospital of Geneva, Rue Willy-Donzé 6, 1205, Geneva, Switzerland.
| |
Collapse
|
8
|
Rodríguez Stewart RM, Raghuram V, Berry JTL, Joshi GN, Mainou BA. Noncanonical Cell Death Induction by Reassortant Reovirus. J Virol 2020; 94:e01613-20. [PMID: 32847857 PMCID: PMC7592226 DOI: 10.1128/jvi.01613-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) constitutes 10 to 15% of all breast cancer and is associated with worse prognosis than other subtypes of breast cancer. Current therapies are limited to cytotoxic chemotherapy, radiation, and surgery, leaving a need for targeted therapeutics to improve outcomes for TNBC patients. Mammalian orthoreovirus (reovirus) is a nonenveloped, segmented, double-stranded RNA virus in the Reoviridae family. Reovirus preferentially kills transformed cells and is in clinical trials to assess its efficacy against several types of cancer. We previously engineered a reassortant reovirus, r2Reovirus, that infects TNBC cells more efficiently and induces cell death with faster kinetics than parental reoviruses. In this study, we sought to understand the mechanisms by which r2Reovirus induces cell death in TNBC cells. We show that r2Reovirus infection of TNBC cells of a mesenchymal stem-like (MSL) lineage downregulates the mitogen-activated protein kinase/extracellular signal-related kinase pathway and induces nonconventional cell death that is caspase-dependent but caspase 3-independent. Infection of different MSL lineage TNBC cells with r2Reovirus results in caspase 3-dependent cell death. We map the enhanced oncolytic properties of r2Reovirus in TNBC to epistatic interactions between the type 3 Dearing M2 gene segment and type 1 Lang genes. These findings suggest that the genetic composition of the host cell impacts the mechanism of reovirus-induced cell death in TNBC. Together, our data show that understanding host and virus determinants of cell death can identify novel properties and interactions between host and viral gene products that can be exploited for the development of improved viral oncolytics.IMPORTANCE TNBC is unresponsive to hormone therapies, leaving patients afflicted with this disease with limited treatment options. We previously engineered an oncolytic reovirus (r2Reovirus) with enhanced infective and cytotoxic properties in TNBC cells. However, how r2Reovirus promotes TNBC cell death is not known. In this study, we show that reassortant r2Reovirus can promote nonconventional caspase-dependent but caspase 3-independent cell death and that the mechanism of cell death depends on the genetic composition of the host cell. We also map the enhanced oncolytic properties of r2Reovirus in TNBC to interactions between a type 3 M2 gene segment and type 1 genes. Our data show that understanding the interplay between the host cell environment and the genetic composition of oncolytic viruses is crucial for the development of efficacious viral oncolytics.
Collapse
Affiliation(s)
- Roxana M Rodríguez Stewart
- Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Jameson T L Berry
- Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Bernardo A Mainou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Eblen ST. Extracellular-Regulated Kinases: Signaling From Ras to ERK Substrates to Control Biological Outcomes. Adv Cancer Res 2018; 138:99-142. [PMID: 29551131 DOI: 10.1016/bs.acr.2018.02.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extracellular-regulated kinases ERK1 and ERK2 are evolutionarily conserved, ubiquitous serine-threonine kinases that are involved in regulating cellular signaling in both normal and pathological conditions. Their expression is critical for development and their hyperactivation is a major factor in cancer development and progression. Since their discovery as one of the major signaling mediators activated by mitogens and Ras mutation, we have learned much about their regulation, including their activation, binding partners and substrates. In this review I will discuss some of what has been discovered about the members of the Ras to ERK pathway, including regulation of their activation by growth factors and cell adhesion pathways. Looking downstream of ERK activation I will also highlight some of the many ERK substrates that have been discovered, including those involved in feedback regulation, cell migration and cell cycle progression through the control of transcription, pre-mRNA splicing and protein synthesis.
Collapse
Affiliation(s)
- Scott T Eblen
- Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
10
|
Lee S, Wottrich S, Bonavida B. Crosstalks between Raf-kinase inhibitor protein and cancer stem cell transcription factors (Oct4, KLF4, Sox2, Nanog). Tumour Biol 2017; 39:1010428317692253. [PMID: 28378634 DOI: 10.1177/1010428317692253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Raf-kinase inhibitor protein has been reported to inhibit both the Raf/mitogen extracellular signal-regulated kinase/extracellular signal-regulated kinase and nuclear factor kappa-light-chain of activated B cells pathways. It has also been reported in cancers that Raf-kinase inhibitor protein behaves as a metastatic suppressor as well as a chemo-immunosensitizing factor to drug/immune-mediated apoptosis. The majority of cancers exhibit low or no levels of Raf-kinase inhibitor protein. Hence, the activities of Raf-kinase inhibitor protein contrast, in part, to those mediated by several cancer stem cell transcription factors for their roles in resistance and metastasis. In this review, the existence of crosstalks in the signaling pathways between Raf-kinase inhibitor protein and several cancer stem cell transcription factors (Oct4, KLF4, Sox2 and Nanog) was assembled. Oct4 is induced by Lin28, and Raf-kinase inhibitor protein inhibits the microRNA binding protein Lin28. The expression of Raf-kinase inhibitor protein inversely correlates with the expression of Oct4. KLF4 does not interact directly with Raf-kinase inhibitor protein, but rather interacts indirectly via Raf-kinase inhibitor protein's regulation of the Oct4/Sox2/KLF4 complex through the mitogen-activated protein kinase pathway. The mechanism by which Raf-kinase inhibitor protein inhibits Sox2 is via the inhibition of the mitogen-activated protein kinase pathway by Raf-kinase inhibitor protein. Thus, Raf-kinase inhibitor protein's relationship with Sox2 is via its regulation of Oct4. Inhibition of extracellular signal-regulated kinase by Raf-kinase inhibitor protein results in the upregulation of Nanog. The inhibition of Oct4 by Raf-kinase inhibitor protein results in the failure of the heterodimer formation of Oct4 and Sox2 that is necessary to bind to the Nanog promoter for the transcription of Nanog. The findings revealed that there exists a direct correlation between the expression of Raf-kinase inhibitor protein and the expression of each of the above transcription factors. Based on these analyses, we suggest that the expression level of Raf-kinase inhibitor protein may be involved in the regulation of the cancer stem cell phenotype.
Collapse
Affiliation(s)
- SoHyun Lee
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephanie Wottrich
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
11
|
Rotellini M, Maggiore G, Trovati M, Saraceno MS, Franchi A. Metastasizing Maxillary Ameloblastoma: Report of a Case with Molecular Characterization. J Oral Maxillofac Res 2016; 7:e5. [PMID: 27099699 PMCID: PMC4837609 DOI: 10.5037/jomr.2016.7105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/29/2016] [Indexed: 04/12/2023]
Abstract
BACKGROUND Ameloblastoma is a benign odontogenic tumour that may exhibit aggressive biological behaviour with local recurrence and metastasis following initial surgical resection. Surgery is the most acceptable modality of treatment, even if a biological approach is currently on study. We report a case of maxillary ameloblastoma with development of neck and brain metastases after repeated local recurrences. Molecular analysis was performed with the aim to better characterize this neoplasm and its peculiar behaviour. METHODS We investigated the status of tumour protein p53 (TP53), epidermal growth factor receptor (EGFR), B-Raf proto-oncogene (BRAF) and human epidermal growth factor receptor 2 (HER2) genes with immunohistochemical, fluorescent in situ hybridization and/or direct sequencing in order to clarify their possible role in the development of this neoplasm and the possibility of a targeted treatment. RESULTS The histological appearance of the tumour was the same in the primary lesion, in the recurrence and in the metastases. EGFR positivity was present in the recurrence and the brain metastasis, while HER2 was negative in all samples tested. Fluorescent in situ hybridization analysis for EGFR showed disomy of neoplastic cells. Direct DNA sequencing of TP53 gene exons 5 - 9 was carried out in tumour samples from the infratemporal recurrence and brain metastasis, with no mutational alteration detected. Similarly, sequencing analysis of BRAF exon 15 (V600) and EGFR gene showed wild type results in all samples tested. CONCLUSIONS Further studies are needed to identify molecular pathways that may provide an opportunity of alternative treatments and/or new potential predictive markers of local and distant spread of this rare tumour.
Collapse
Affiliation(s)
- Matteo Rotellini
- Department of Surgery and Translational Medicine, Section of Anatomic Pathology, University of FlorenceItaly.
| | - Giandomenico Maggiore
- Second Otolaryngology Head and Neck Surgery Clinic, Azienda Ospedaliera Universitaria Careggi, FlorenceItaly.
| | - Massimo Trovati
- Second Otolaryngology Head and Neck Surgery Clinic, Azienda Ospedaliera Universitaria Careggi, FlorenceItaly.
| | - Massimo Squadrelli Saraceno
- Second Otolaryngology Head and Neck Surgery Clinic, Azienda Ospedaliera Universitaria Careggi, FlorenceItaly.
| | - Alessandro Franchi
- Department of Surgery and Translational Medicine, Section of Anatomic Pathology, University of FlorenceItaly.
| |
Collapse
|
12
|
Bourquard T, Landomiel F, Reiter E, Crépieux P, Ritchie DW, Azé J, Poupon A. Unraveling the molecular architecture of a G protein-coupled receptor/β-arrestin/Erk module complex. Sci Rep 2015; 5:10760. [PMID: 26030356 PMCID: PMC4649906 DOI: 10.1038/srep10760] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/26/2015] [Indexed: 12/22/2022] Open
Abstract
β-arrestins serve as signaling scaffolds downstream of G protein-coupled receptors, and thus play a crucial role in a plethora of cellular processes. Although it is largely accepted that the ability of β-arrestins to interact simultaneously with many protein partners is key in G protein-independent signaling of GPCRs, only the precise knowledge of these multimeric arrangements will allow a full understanding of the dynamics of these interactions and their functional consequences. However, current experimental procedures for the determination of the three-dimensional structures of protein-protein complexes are not well adapted to analyze these short-lived, multi-component assemblies. We propose a model of the receptor/β-arrestin/Erk1 signaling module, which is consistent with most of the available experimental data. Moreover, for the β-arrestin/Raf1 and the β-arrestin/ERK interactions, we have used the model to design interfering peptides and shown that they compete with both partners, hereby demonstrating the validity of the predicted interaction regions.
Collapse
Affiliation(s)
- Thomas Bourquard
- 1] BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, 37041 Tours, France; IFCE, Nouzilly, F-37380 France [2] INRIA Nancy, 615 Rue du Jardin Botanique, Villers-lès-Nancy, 54600 France
| | - Flavie Landomiel
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, 37041 Tours, France; IFCE, Nouzilly, F-37380 France
| | - Eric Reiter
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, 37041 Tours, France; IFCE, Nouzilly, F-37380 France
| | - Pascale Crépieux
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, 37041 Tours, France; IFCE, Nouzilly, F-37380 France
| | - David W Ritchie
- INRIA Nancy, 615 Rue du Jardin Botanique, Villers-lès-Nancy, 54600 France
| | - Jérôme Azé
- Bioinformatics group - AMIB INRIA - Laboratoire de Recherche en Informatique, Université Paris-Sud, Orsay, 91405 France
| | - Anne Poupon
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, 37041 Tours, France; IFCE, Nouzilly, F-37380 France
| |
Collapse
|
13
|
Rahman M, Salajegheh A, Smith R, Lam AY. B-Raf mutation: A key player in molecular biology of cancer. Exp Mol Pathol 2013; 95:336-42. [DOI: 10.1016/j.yexmp.2013.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 12/21/2022]
|
14
|
de Araújo MEG, Stasyk T, Taub N, Ebner HL, Fürst B, Filipek P, Weys SR, Hess MW, Lindner H, Kremser L, Huber LA. Stability of the endosomal scaffold protein LAMTOR3 depends on heterodimer assembly and proteasomal degradation. J Biol Chem 2013; 288:18228-42. [PMID: 23653355 DOI: 10.1074/jbc.m112.349480] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
LAMTOR3 (MP1) and LAMTOR2 (p14) form a heterodimer as part of the larger Ragulator complex that is required for MAPK and mTOR1 signaling from late endosomes/lysosomes. Here, we show that loss of LAMTOR2 (p14) results in an unstable cytosolic monomeric pool of LAMTOR3 (MP1). Monomeric cytoplasmic LAMTOR3 is rapidly degraded in a proteasome-dependent but lysosome-independent manner. Mutational analyses indicated that the turnover of the protein is dependent on ubiquitination of several lysine residues. Similarly, other Ragulator subunits, LAMTOR1 (p18), LAMTOR4 (c7orf59), and LAMTOR5 (HBXIP), are degraded as well upon the loss of LAMTOR2. Thus the assembly of the Ragulator complex is monitored by cellular quality control systems, most likely to prevent aberrant signaling at the convergence of mTOR and MAPK caused by a defective Ragulator complex.
Collapse
Affiliation(s)
- Mariana E G de Araújo
- Biocenter, Division of Cell Biology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mitogen-activated protein kinase modulates ethanol inhibition of cell adhesion mediated by the L1 neural cell adhesion molecule. Proc Natl Acad Sci U S A 2013; 110:5683-8. [PMID: 23431142 DOI: 10.1073/pnas.1221386110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
There is a genetic contribution to fetal alcohol spectrum disorders (FASD), but the identification of candidate genes has been elusive. Ethanol may cause FASD in part by decreasing the adhesion of the developmentally critical L1 cell adhesion molecule through interactions with an alcohol binding pocket on the extracellular domain. Pharmacologic inhibition or genetic knockdown of ERK2 did not alter L1 adhesion, but markedly decreased ethanol inhibition of L1 adhesion in NIH/3T3 cells and NG108-15 cells. Likewise, leucine replacement of S1248, an ERK2 substrate on the L1 cytoplasmic domain, did not decrease L1 adhesion, but abolished ethanol inhibition of L1 adhesion. Stable transfection of NIH/3T3 cells with human L1 resulted in clonal cell lines in which L1 adhesion was consistently sensitive or insensitive to ethanol for more than a decade. ERK2 activity and S1248 phosphorylation were greater in ethanol-sensitive NIH/3T3 clonal cell lines than in their ethanol-insensitive counterparts. Ethanol-insensitive cells became ethanol sensitive after increasing ERK2 activity by transfection with a constitutively active MAP kinase kinase 1. Finally, embryos from two substrains of C57BL mice that differ in susceptibility to ethanol teratogenesis showed corresponding differences in MAPK activity. Our data suggest that ERK2 phosphorylation of S1248 modulates ethanol inhibition of L1 adhesion by inside-out signaling and that differential regulation of ERK2 signaling might contribute to genetic susceptibility to FASD. Moreover, identification of a specific locus that regulates ethanol sensitivity, but not L1 function, might facilitate the rational design of drugs that block ethanol neurotoxicity.
Collapse
|
16
|
Epidermal growth factor stimulates extracellular-signal regulated kinase phosphorylation of a novel site on cytoplasmic Dynein intermediate chain 2. Int J Mol Sci 2013; 14:3595-620. [PMID: 23434660 PMCID: PMC3588060 DOI: 10.3390/ijms14023595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 11/17/2022] Open
Abstract
Extracellular-signal regulated kinase (ERK) signaling is required for a multitude of physiological and patho-physiological processes. However, the identities of the proteins that ERK phosphorylates to elicit these responses are incompletely known. Using an affinity purification methodology of general utility, here we identify cytoplasmic dynein intermediate chain 2 (DYNC1I-2, IC-2) as a novel substrate for ERK following epidermal growth factor receptor stimulation of fibroblasts. IC-2 is a subunit of cytoplasmic dynein, a minus-end directed motor protein necessary for transport of diverse cargos along microtubules. Emerging data support the hypothesis that post-translational modification regulates dynein but the signaling mechanisms used are currently unknown. We find that ERK phosphorylates IC-2 on a novel, highly conserved Serine residue proximal to the binding site for the p150Glued subunit of the cargo adapter dynactin. Surprisingly, neither constitutive phosphorylation nor a phosphomimetic substitution of this Serine influences binding of p150Glued to IC-2. These data suggest that ERK phosphorylation of IC-2 regulates dynein function through mechanisms other than its interaction with dynactin.
Collapse
|
17
|
MEK-1 activates C-Raf through a Ras-independent mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:976-86. [PMID: 23360980 DOI: 10.1016/j.bbamcr.2013.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/29/2012] [Accepted: 01/15/2013] [Indexed: 12/16/2022]
Abstract
C-Raf is a member of the Ras-Raf-MEK-ERK mitogen-activated protein kinase (MAPK) signaling pathway that plays key roles in diverse physiological processes and is upregulated in many human cancers. C-Raf activation involves binding to Ras, increased phosphorylation and interactions with co-factors. Here, we describe a Ras-independent in vivo pathway for C-Raf activation by its downstream target MEK. Using (32)P-metabolic labeling and 2D-phosphopeptide mapping experiments, we show that MEK increases C-Raf phosphorylation by up-to 10-fold. This increase was associated with C-Raf kinase activation, matching the activity seen with growth factor stimulation. Consequently, coexpression of wildtype C-Raf and MEK was sufficient for full and constitutive activation of ERK. Notably, the ability of MEK to activate C-Raf was completely Ras independent, since mutants impaired in Ras binding that are irresponsive to growth factors or Ras were fully activated by MEK. The ability of MEK to activate C-Raf was only partially dependent on MEK kinase activity but required MEK binding to C-Raf, suggesting that the binding results in a conformational change that increases C-Raf susceptibility to phosphorylation and activation or in the stabilization of the phosphorylated-active form. These findings propose a novel Ras-independent mechanism for activating the C-Raf and the MAPK pathway without the need for mutations in the pathway. This mechanism could be of significance in pathological conditions or cancers overexpressing C-Raf and MEK or in conditions where C-Raf-MEK interaction is enhanced due to the down-regulation of RKIP and MST2.
Collapse
|
18
|
Trk activation of the ERK1/2 kinase pathway stimulates intermediate chain phosphorylation and recruits cytoplasmic dynein to signaling endosomes for retrograde axonal transport. J Neurosci 2013; 32:15495-510. [PMID: 23115187 DOI: 10.1523/jneurosci.5599-11.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The retrograde transport of Trk-containing endosomes from the axon to the cell body by cytoplasmic dynein is necessary for axonal and neuronal survival. We investigated the recruitment of dynein to signaling endosomes in rat embryonic neurons and PC12 cells. We identified a novel phosphoserine on the dynein intermediate chains (ICs), and we observed a time-dependent neurotrophin-stimulated increase in intermediate chain phosphorylation on this site in both cell types. Pharmacological studies, overexpression of constitutively active MAP kinase kinase, and an in vitro assay with recombinant proteins demonstrated that the intermediate chains are phosphorylated by the MAP kinase ERK1/2, extracellular signal-regulated kinase, a major downstream effector of Trk. Live cell imaging with fluorescently tagged IC mutants demonstrated that the dephosphomimic mutants had significantly reduced colocalization with Trk and Rab7, but not a mitochondrial marker. The phosphorylated intermediate chains were enriched on immunoaffinity-purified Trk-containing organelles. Inhibition of ERK reduced the amount of phospho-IC and the total amount of dynein that copurified with the signaling endosomes. In addition, inhibition of ERK1/2 reduced the motility of Rab7- and TrkB-containing endosomes and the extent of their colocalization with dynein in axons. NGF-dependent survival of sympathetic neurons was significantly reduced by the overexpression of the dephosphomimic mutant IC-1B-S80A, but not WT IC-1B, further demonstrating the functional significance of phosphorylation on this site. These results demonstrate that neurotrophin binding to Trk initiates the recruitment of cytoplasmic dynein to signaling endosomes through ERK1/2 phosphorylation of intermediate chains for their subsequent retrograde transport in axons.
Collapse
|
19
|
Affiliation(s)
- Dhirendra Govender
- Division of Anatomical Pathology, University of Cape Town and National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa.
| | | |
Collapse
|
20
|
Bromberg-White JL, Andersen NJ, Duesbery NS. MEK genomics in development and disease. Brief Funct Genomics 2012; 11:300-10. [PMID: 22753777 PMCID: PMC3398258 DOI: 10.1093/bfgp/els022] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mitogen-activated protein kinase kinases (the MAPK/ERK kinases; MKKs or MEKs) and their downstream substrates, the extracellular-regulated kinases have been intensively studied for their roles in development and disease. Until recently, it had been assumed any mutation affecting their function would have lethal consequences. However, the identification of MEK1 and MEK2 mutations in developmental syndromes as well as chemotherapy-resistant tumors, and the discovery of genomic variants in MEK1 and MEK2 have led to the realization the extent of genomic variation associated with MEKs is much greater than had been appreciated. In this review, we will discuss these recent advances, relating them to what is currently understood about the structure and function of MEKs, and describe how they change our understanding of the role of MEKs in development and disease.
Collapse
Affiliation(s)
- Jennifer L Bromberg-White
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA
| | | | | |
Collapse
|
21
|
Cantwell-Dorris ER, O'Leary JJ, Sheils OM. BRAFV600E: implications for carcinogenesis and molecular therapy. Mol Cancer Ther 2011; 10:385-94. [PMID: 21388974 DOI: 10.1158/1535-7163.mct-10-0799] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway is frequently mutated in human cancer. This pathway consists of a small GTP protein of the RAS family that is activated in response to extracellular signaling to recruit a member of the RAF kinase family to the cell membrane. Active RAF signals through MAP/ERK kinase to activate ERK and its downstream effectors to regulate a wide range of biological activities including cell differentiation, proliferation, senescence, and survival. Mutations in the v-raf murine sarcoma viral oncogenes homolog B1 (BRAF) isoform of the RAF kinase or KRAS isoform of the RAS protein are found as activating mutations in approximately 30% of all human cancers. The BRAF pathway has become a target of interest for molecular therapy, with promising results emerging from clinical trials. Here, the role of the most common BRAF mutation BRAF(V600E) in human carcinogenesis is investigated through a review of the literature, with specific focus on its role in melanoma, colorectal, and thyroid cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Emma R Cantwell-Dorris
- Department of Histopathology, Trinity College, Sir Patrick Dun Research Laboratory, Pathology Building, St. James' Hospital, Dublin 8, Ireland.
| | | | | |
Collapse
|
22
|
Chung E, Kondo M. Role of Ras/Raf/MEK/ERK signaling in physiological hematopoiesis and leukemia development. Immunol Res 2011; 49:248-68. [PMID: 21170740 DOI: 10.1007/s12026-010-8187-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent research on hematological malignancies has shown that malignant cells often co-opt physiological pathways to promote their growth and development. Bone marrow homeostasis requires a fine balance between cellular differentiation and self-renewal; cell survival and apoptosis; and cellular proliferation and senescence. The Ras/Raf/MEK/ERK pathway has been shown to be important in regulating these biological functions. Moreover, the Ras/Raf/MEK/ERK pathway has been estimated to be mutated in 30% of all cancers, thus making it the focus of many scientific studies which have lead to a deeper understanding of cancer development and help to elucidate potential weaknesses that can be targeted by pharmacological agents [1]. In this review, we specifically focus on the role of this pathway in physiological hematopoiesis and how augmentation of the pathway may lead to hematopoietic malignancies. We also discuss the challenges and success of targeting this pathway.
Collapse
Affiliation(s)
- Eva Chung
- Department of Immunology, Duke University Medical Center, 101 Jones Building, DUMC Box 3010, Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
23
|
Mitogen-activated protein kinases promote WNT/beta-catenin signaling via phosphorylation of LRP6. Mol Cell Biol 2010; 31:179-89. [PMID: 20974802 DOI: 10.1128/mcb.00550-10] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LDL-related protein 6 (LRP6) is a coreceptor of WNTs and a key regulator of the WNT/β-catenin pathway. Upon activation, LRP6 is phosphorylated within its intracellular PPPS/TP motifs. These phosphorylated motifs are required to recruit axin and to inhibit glycogen synthase kinase 3 (GSK3), two basic components of the β-catenin destruction complex. On the basis of a kinome-wide small interfering RNA (siRNA) screen and confirmative biochemical analysis, we show that several proline-directed mitogen-activated protein kinases (MAPKs), such as p38, ERK1/2, and JNK1 are sufficient and required for the phosphorylation of PPPS/TP motifs of LRP6. External stimuli, which control the activity of MAPKs, such as phorbol esters and fibroblast growth factor 2 (FGF2) control the choice of the LRP6-PPPS/TP kinase and regulate the amplitude of LRP6 phosphorylation and WNT/β-catenin-dependent transcription. Our findings suggest that cells not only recruit one dedicated LRP6 kinase but rather select their LRP6 kinase depending on cell type and the external stimulus. Moreover, direct phosphorylation of LRP6 by MAPKs provides a unique point for convergence between WNT/β-catenin signaling and mitogenic pathways.
Collapse
|
24
|
Nek10 mediates G2/M cell cycle arrest and MEK autoactivation in response to UV irradiation. Mol Cell Biol 2010; 31:30-42. [PMID: 20956560 DOI: 10.1128/mcb.00648-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Appropriate cell cycle checkpoint control is essential for the maintenance of cell and organismal homeostasis. Members of the Nek (NIMA-related kinase) family of serine/threonine protein kinases have been implicated in the regulation of various aspects of the cell cycle. We explored the cellular functions of Nek10, a novel member of the Nek family, and demonstrate a role for Nek10 in the cellular UV response. Nek10 was required for the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling upon UV irradiation but not in response to mitogens, such as epidermal growth factor stimulation. Nek10 physically associated with Raf-1 and MEK1 in a Raf-1-dependent manner, and the formation of this complex was necessary for Nek10-mediated MEK1 activation. Nek10 did not affect the kinase activity of Raf-1 but instead promoted the autophosphorylation-dependent activation of MEK1. The appropriate maintenance of the G(2)/M checkpoint following UV irradiation required Nek10 expression and ERK1/2 activation. Taken together, our results uncover a role for Nek10 in the cellular response to UV irradiation.
Collapse
|
25
|
Halilovic E, She QB, Ye Q, Pagliarini R, Sellers WR, Solit DB, Rosen N. PIK3CA mutation uncouples tumor growth and cyclin D1 regulation from MEK/ERK and mutant KRAS signaling. Cancer Res 2010; 70:6804-14. [PMID: 20699365 PMCID: PMC3178450 DOI: 10.1158/0008-5472.can-10-0409] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mutational activation of KRAS is a common event in human tumors. Identification of the key signaling pathways downstream of mutant KRAS is essential for our understanding of how to pharmacologically target these cancers in patients. We show that PD0325901, a small-molecule MEK inhibitor, decreases MEK/ERK pathway signaling and destabilizes cyclin D1, resulting in significant anticancer activity in a subset of KRAS mutant tumors in vitro and in vivo. Mutational activation of PIK3CA, which commonly co-occurs with KRAS mutation, provides resistance to MEK inhibition through reactivation of AKT signaling. Genetic ablation of the mutant PIK3CA allele in MEK inhibitor-resistant cells restores MEK pathway sensitivity, and re-expression of mutant PIK3CA reinstates the resistance, highlighting the importance of this mutation in resistance to therapy in human cancers. In KRAS mutant tumors, PIK3CA mutation restores cyclin D1 expression and G(1)-S cell cycle progression so that they are no longer dependent on KRAS and MEK/ERK signaling. Furthermore, the growth of KRAS mutant tumors with coexistent PIK3CA mutations in vivo is profoundly inhibited with combined pharmacologic inhibition of MEK and AKT. These data suggest that tumors with both KRAS and phosphoinositide 3-kinase mutations are unlikely to respond to the inhibition of the MEK pathway alone but will require effective inhibition of both MEK and phosphoinositide 3-kinase/AKT pathway signaling.
Collapse
Affiliation(s)
- Ensar Halilovic
- Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Department of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065
| | - Qing-Bai She
- Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Qing Ye
- Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | | | | | - David B. Solit
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Neal Rosen
- Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Department of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065
| |
Collapse
|
26
|
Pratilas CA, Solit DB. Targeting the mitogen-activated protein kinase pathway: physiological feedback and drug response. Clin Cancer Res 2010; 16:3329-34. [PMID: 20472680 PMCID: PMC2912210 DOI: 10.1158/1078-0432.ccr-09-3064] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitogen-activated protein kinase (MAPK) pathway activation is a frequent event in human cancer and is often the result of activating mutations in the BRAF and RAS oncogenes. Targeted inhibitors of BRAF and its downstream effectors are in various stages of preclinical and clinical development. These agents offer the possibility of greater efficacy and less toxicity than current therapies for tumors driven by oncogenic mutations in the MAPK pathway. Early clinical results with the BRAF-selective inhibitor PLX4032 suggest that this strategy will prove successful in a select group of patients whose tumors are driven by V600E BRAF. Relief of physiologic feedback upon pathway inhibition may, however, attenuate drug response and contribute to the development of acquired resistance. An improved understanding of the adaptive response of cancer cells to MAPK pathway inhibition may thus aid in the identification of those patients most likely to respond to targeted pathway inhibitors and provide a rational basis for tailored combination strategies.
Collapse
Affiliation(s)
- Christine A. Pratilas
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - David B. Solit
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Department of Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
27
|
Dasari A, Messersmith WA. New strategies in colorectal cancer: biomarkers of response to epidermal growth factor receptor monoclonal antibodies and potential therapeutic targets in phosphoinositide 3-kinase and mitogen-activated protein kinase pathways. Clin Cancer Res 2010; 16:3811-8. [PMID: 20554751 DOI: 10.1158/1078-0432.ccr-09-2283] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Initial experience with the epidermal growth factor receptor monoclonal antibodies (EGFR MoAb) in unselected patients with metastatic colorectal cancer (mCRC) showed that most of the treated patients did not derive therapeutic benefit. This outcome has driven the search for biomarkers for this population. Recent advances have further shown the heterogeneous nature of this disease with multiple interlinked pathways being implicated. Two such pathways downstream to the EGFR, mitogen-activated protein kinase (MAPK) and (phosphoinositide 3-kinase) PI3K, have gained increasing attention and become targets for development of novel biomarkers and therapeutic agents. Here, we highlight recent progress.
Collapse
Affiliation(s)
- Arvind Dasari
- University of Colorado Cancer Center, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | | |
Collapse
|
28
|
Extracellular signal-regulated kinase promotes Rho-dependent focal adhesion formation by suppressing p190A RhoGAP. Mol Cell Biol 2010; 30:3233-48. [PMID: 20439493 DOI: 10.1128/mcb.01178-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cell migration is critical for normal development and for pathological processes including cancer cell metastasis. Dynamic remodeling of focal adhesions and the actin cytoskeleton are crucial determinants of cell motility. The Rho family and the mitogen-activated protein kinase (MAPK) module consisting of MEK-extracellular signal-regulated kinase (ERK) are important regulators of these processes, but mechanisms for the integration of these signals during spreading and motility are incompletely understood. Here we show that ERK activity is required for fibronectin-stimulated Rho-GTP loading, Rho-kinase function, and the maturation of focal adhesions in spreading cells. We identify p190A RhoGAP as a major target for ERK signaling in adhesion assembly and identify roles for ERK phosphorylation of the C terminus in p190A localization and activity. These observations reveal a novel role for ERK signaling in adhesion assembly in addition to its established role in adhesion disassembly.
Collapse
|
29
|
Morandell S, Grosstessner-Hain K, Roitinger E, Hudecz O, Lindhorst T, Teis D, Wrulich OA, Mazanek M, Taus T, Ueberall F, Mechtler K, Huber LA. QIKS--Quantitative identification of kinase substrates. Proteomics 2010; 10:2015-25. [PMID: 20217869 DOI: 10.1002/pmic.200900749] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 02/22/2010] [Indexed: 11/11/2022]
Abstract
Signaling networks regulate cellular responses to external stimuli through post-translational modifications such as protein phosphorylation. Phosphoproteomics facilitate the large-scale identification of kinase substrates. Yet, the characterization of critical connections within these networks and the identification of respective kinases remain the major analytical challenge. To address this problem, we present a novel approach for the identification of direct kinase substrates using chemical genetics in combination with quantitative phosphoproteomics. Quantitative identification of kinase substrates (QIKS) is a novel-screening platform developed for the proteome-wide substrate-analysis of specific kinases. Here, we aimed to identify substrates of mitogen-activated protein kinase/Erk kinase (Mek1), an essential kinase in the mitogen-activated protein kinase cascade. An ATP analog-sensitive mutant of Mek1 (Mek1-as) was incubated with a cell extract from Mek1 deficient cells. Phosphorylated proteins were analyzed by LC-MS/MS of IMAC-enriched phosphopeptides, labeled differentially for relative quantification. The identification of extracellular regulated kinase 1/2 as the sole cytoplasmic substrates of MEK1 validates the applicability of this approach and suggests that QIKS could be used to identify substrates of a wide variety of kinases.
Collapse
Affiliation(s)
- Sandra Morandell
- Biocenter, Division of Cell Biology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Mitogen Activated Protein Kinase (MAPK) pathway activation is a frequent event in human cancer and is often the result of activating mutations in the BRAF and RAS oncogenes. BRAF missense mutations, the vast majority of which are V600E, occur in approximately 8% of human tumors. These kinase domain mutations, which are non-overlapping in distribution with RAS mutations, are observed most frequently in melanoma but are also common in tumors arising in the colon, thyroid, lung, and other sites. Supporting its classification as an oncogene, (V600E)BRAF stimulates ERK signaling, induces proliferation, and is capable of promoting transformation. Given the frequent occurrence of BRAF mutations in human cancer and the continued requirement for BRAF activity in the tumors in which it is mutated, efforts are underway to develop targeted inhibitors of BRAF and its downstream effectors. These agents offer the possibility of greater efficacy and less toxicity than the systemic therapies currently available for tumors driven by activating mutations of MAPK pathway components. Early clinical results with the BRAF-selective inhibitors PLX4032 and GSK2118436 suggest that this strategy will prove successful in a select group of patients whose tumors are driven by oncogenic BRAF.
Collapse
|
31
|
Nadeau V, Guillemette S, Bélanger LF, Jacob O, Roy S, Charron J. Map2k1 and Map2k2 genes contribute to the normal development of syncytiotrophoblasts during placentation. Development 2009; 136:1363-74. [PMID: 19304888 DOI: 10.1242/dev.031872] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mammalian genome contains two ERK/MAP kinase kinase genes, Map2k1 and Map2k2, which encode dual-specificity kinases responsible for ERK/MAP kinase activation. In the mouse, loss of Map2k1 function causes embryonic lethality, whereas Map2k2 mutants survive with a normal lifespan, suggesting that Map2k1 masks the phenotype due to the Map2k2 mutation. To uncover the specific function of MAP2K2 and the threshold requirement of MAP2K proteins during embryo formation, we have successively ablated the Map2k gene functions. We report here that Map2k2 haploinsufficiency affects the normal development of placenta in the absence of one Map2k1 allele. Most Map2k1(+/-)Map2k2(+/-) embryos die during gestation because of placenta defects restricted to extra-embryonic tissues. The impaired viability of Map2k1(+/-)Map2k2(+/-) embryos can be rescued when the Map2k1 deletion is restricted to the embryonic tissues. The severity of the placenta phenotype is dependent on the number of Map2k mutant alleles, the deletion of the Map2k1 allele being more deleterious. Moreover, the deletion of one or both Map2k2 alleles in the context of one null Map2k1 allele leads to the formation of multinucleated trophoblast giant (MTG) cells. Genetic experiments indicate that these structures are derived from Gcm1-expressing syncytiotrophoblasts (SynT), which are affected in their ability to form the uniform SynT layer II lining the maternal sinuses. Thus, even though Map2k1 plays a predominant role, these results enlighten the function of Map2k2 in placenta development.
Collapse
Affiliation(s)
- Valérie Nadeau
- Centre de recherche en cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, QC, G1R 2J6, Canada
| | | | | | | | | | | |
Collapse
|
32
|
McKay MM, Ritt DA, Morrison DK. Signaling dynamics of the KSR1 scaffold complex. Proc Natl Acad Sci U S A 2009; 106:11022-7. [PMID: 19541618 PMCID: PMC2708738 DOI: 10.1073/pnas.0901590106] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Indexed: 12/27/2022] Open
Abstract
Scaffold proteins contribute to the spatiotemporal control of MAPK signaling and KSR1 is an ERK cascade scaffold that localizes to the plasma membrane in response to growth factor treatment. To better understand the molecular mechanisms of KSR1 function, we examined the interaction of KSR1 with each of the ERK cascade components, Raf, MEK, and ERK. Here, we identify a hydrophobic motif within the proline-rich sequence (PRS) of MEK1 and MEK2 that is required for constitutive binding to KSR1 and find that MEK binding and residues in the KSR1 CA1 region enable KSR1 to form a ternary complex with B-Raf and MEK following growth factor treatment that enhances MEK activation. We also find that docking of active ERK to the KSR1 scaffold allows ERK to phosphorylate KSR1 and B-Raf on feedback S/TP sites. Strikingly, feedback phosphorylation of KSR1 and B-Raf promote their dissociation and result in the release of KSR1 from the plasma membrane. Together, these findings provide unique insight into the signaling dynamics of the KSR1 scaffold and reveal that through regulated interactions with Raf and ERK, KSR1 acts to both potentiate and attenuate ERK cascade activation, thus regulating the intensity and duration of ERK cascade signaling emanating from the plasma membrane during growth factor signaling.
Collapse
Affiliation(s)
- Melissa M. McKay
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, P. O. Box B, Frederick, MD 21702
| | - Daniel A. Ritt
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, P. O. Box B, Frederick, MD 21702
| | - Deborah K. Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, P. O. Box B, Frederick, MD 21702
| |
Collapse
|
33
|
Meng D, Lynch MJ, Huston E, Beyermann M, Eichhorst J, Adams DR, Klussmann E, Klusmann E, Houslay MD, Baillie GS. MEK1 binds directly to betaarrestin1, influencing both its phosphorylation by ERK and the timing of its isoprenaline-stimulated internalization. J Biol Chem 2009; 284:11425-35. [PMID: 19153083 PMCID: PMC2670148 DOI: 10.1074/jbc.m806395200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 01/12/2009] [Indexed: 01/14/2023] Open
Abstract
betaArrestin is a multifunctional signal scaffold protein. Using SPOT immobilized peptide arrays, coupled with scanning alanine substitution and mutagenesis, we show that the MAPK kinase, MEK1, interacts directly with betaarrestin1. Asp(26) and Asp(29) in the N-terminal domain of betaarrestin1 are critical for its binding to MEK1, whereas Arg(47) and Arg(49) in the N-terminal domain of MEK1 are critical for its binding to betaarrestin1. Wild-type FLAG-tagged betaarrestin1 co-immunopurifies with MEK1 in HEKB2 cells, whereas the D26A/D29A mutant does not. ERK-dependent phosphorylation at Ser(412) was compromised in the D26A/D29A-betaarrestin1 mutant. A cell-permeable, 25-mer N-stearoylated betaarrestin1 peptide that encompassed the N-domain MEK1 binding site blocked betaarrestin1/MEK1 association in HEK cells and recapitulated the altered phenotype seen with the D26A/D29A-betaarrestin1 in compromising the ERK-dependent phosphorylation of betaarrestin1. In addition, the MEK disruptor peptide promoted the ability of betaarrestin1 to co-immunoprecipitate with endogenous c-Src and clathrin, facilitating the isoprenaline-stimulated internalization of the beta(2)-adrenergic receptor.
Collapse
Affiliation(s)
- Dong Meng
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, Wolfson Building, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ren Y, Chen Z, Chen L, Woods NT, Reuther GW, Cheng JQ, Wang HG, Wu J. Shp2E76K mutant confers cytokine-independent survival of TF-1 myeloid cells by up-regulating Bcl-XL. J Biol Chem 2007; 282:36463-73. [PMID: 17942397 PMCID: PMC3000740 DOI: 10.1074/jbc.m705789200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Shp2 has been known to mediate growth factor-stimulated cell proliferation, but its role in cell survival is less clear. Gain-of-function Shp2 mutants such as Shp2E76K are associated with myeloid leukemias. We found that Shp2E76K could transform cytokine-dependent human TF-1 myeloid cells into cytokine independence and further characterized the Shp2E76K-induced cell survival mechanism in this study. Expression of Shp2E76K suppressed the cytokine withdrawal-induced intrinsic/mitochondrial apoptosis pathway, which is controlled by the Bcl-2 family proteins. Analysis of Bcl-2 family proteins showed that Bcl-XL and Mcl-1 were up-regulated in Shp2E76K-transformed TF-1 (TF-1/Shp2E76K) cells. Knockdown of Bcl-XL but not Mcl-1 with short hairpin RNAs prevented Shp2E76K-induced cytokine-independent survival. Roscovitine, which down-regulated Mcl-1, also did not prevent cytokine-independent survival of TF-1/Shp2E76K cells, whereas the Bcl-XL inhibitor HA14-1 did. Ras and mitogen-activated protein kinases Erk1 and Erk2 (Erk1/2) were constitutively activated in TF-1/Shp2E76K cells, whereas little active Akt was detected under cytokine-free conditions. Shp2E76K-induced Bcl-XL expression was suppressed by Mek inhibitors and by a dominant-negative Mek1 mutant but not by the phosphoinositide 3-phosphate inhibitor LY294002 and the Akt inhibitor API-2. Inhibition of Erk1/2 blocked cytokine-independent survival of TF-1/Shp2E76K cells, whereas inhibition of Akt had a minimal effect on cytokine-independent survival of TF-1/Shp2E76K cells. These results show that Shp2E76K can evoke constitutive Erk1/2 activation in TF-1 cells. Furthermore, Shp2E76K induces cytokine-independent survival of TF-1 cells by a novel mechanism involving up-regulation of Bcl-XL through the Erk1/2 pathway.
Collapse
Affiliation(s)
- Yuan Ren
- Molecular Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Zhengming Chen
- Molecular Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Liwei Chen
- Molecular Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Nicholas T. Woods
- Drug Discovery Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Gary W. Reuther
- Molecular Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Department of Interdisciplinary Oncology, University of South Florida, Tampa, Florida
| | - Jin Q. Cheng
- Molecular Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Drug Discovery Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Department of Interdisciplinary Oncology, University of South Florida, Tampa, Florida
| | - Hong-gang Wang
- Drug Discovery Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Department of Interdisciplinary Oncology, University of South Florida, Tampa, Florida
| | - Jie Wu
- Molecular Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Drug Discovery Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Department of Interdisciplinary Oncology, University of South Florida, Tampa, Florida
| |
Collapse
|
35
|
Lester RD, Jo M, Montel V, Takimoto S, Gonias SL. uPAR induces epithelial-mesenchymal transition in hypoxic breast cancer cells. ACTA ACUST UNITED AC 2007; 178:425-36. [PMID: 17664334 PMCID: PMC2064849 DOI: 10.1083/jcb.200701092] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoxia activates genetic programs that facilitate cell survival; however, in cancer, it may promote invasion and metastasis. In this study, we show that breast cancer cells cultured in 1.0% O(2) demonstrate changes consistent with epithelial-mesenchymal transition (EMT). Snail translocates to the nucleus, and E-cadherin is lost from plasma membranes. Vimentin expression, cell migration, Matrigel invasion, and collagen remodeling are increased. Hypoxia-induced EMT is accompanied by increased expression of the urokinase-type plasminogen activator receptor (uPAR) and activation of cell signaling factors downstream of uPAR, including Akt and Rac1. Glycogen synthase kinase-3beta is phosphorylated, and Snail expression is increased. Hypoxia-induced EMT is blocked by uPAR gene silencing and mimicked by uPAR overexpression in normoxia. Antagonizing Rac1 or phosphatidylinositol 3-kinase also inhibits development of cellular properties associated with EMT in hypoxia. Breast cancer cells implanted on chick chorioallantoic membranes and treated with CoCl(2), to model hypoxia, demonstrate increased dissemination. We conclude that in hypoxia, uPAR activates diverse cell signaling pathways that cooperatively induce EMT and may promote cancer metastasis.
Collapse
Affiliation(s)
- Robin D Lester
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
36
|
Skinner SJ, Deleault KM, Fecteau R, Brooks SA. Extracellular signal-regulated kinase regulation of tumor necrosis factor-alpha mRNA nucleocytoplasmic transport requires TAP-NxT1 binding and the AU-rich element. J Biol Chem 2007; 283:3191-3199. [PMID: 18048358 DOI: 10.1074/jbc.m705575200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha) production is regulated by transcriptional and posttranscriptional mechanisms. Lipopolysaccharide activates the NFkappaB pathway increasing TNF-alpha transcription. Lipopolysaccharide also activates the mitogen-activated protein kinase pathways, resulting in stabilization and enhanced translation of the TNF-alpha message. In addition, nuclear export of the TNF-alpha mRNA is a posttranscriptionally regulated process involving the Tpl2-ERK pathway and requiring the presence of the TNF-alpha AU-rich element (ARE). We demonstrate that nuclear export of the TNF-alpha message requires not only the TNF-alpha ARE but also the interaction of the proteins TAP and NxT1, both of which are involved in nucleocytoplasmic transport of mRNA. Through the use of dominant negative ERK1 and ERK2, we establish that control of TNF-alpha mRNA nuclear export operates specifically through ERK1. Finally, we examined the role of two established TNF-alpha ARE-binding proteins, HuR and tristetraprolin, that shuttle between the nucleus and cytoplasm. These data demonstrate that neither tristetraprolin nor HuR is required for TNF-alpha mRNA export. It is unclear at this time if ARE-binding protein(s) directly interact with the TAP-NxT1 complex, if each complex is independently targeted by ERK1, or if only one complex is targeted.
Collapse
Affiliation(s)
- Stephen J Skinner
- Veterans Affairs Medical Center, White River Junction, Vermont 05009
| | - Kristen M Deleault
- Department of Medicine, Dartmouth Medical School, Dartmouth College, Lebanon, New Hampshire 03756
| | - Ryan Fecteau
- Department of Medicine, Dartmouth Medical School, Dartmouth College, Lebanon, New Hampshire 03756
| | - Seth A Brooks
- Veterans Affairs Medical Center, White River Junction, Vermont 05009; Department of Medicine, Dartmouth Medical School, Dartmouth College, Lebanon, New Hampshire 03756; Department of Microbiology and Immunology, Dartmouth College, Lebanon, New Hampshire 03756.
| |
Collapse
|
37
|
Casarez EV, Dunlap-Brown ME, Conaway MR, Amorino GP. Radiosensitization and modulation of p44/42 mitogen-activated protein kinase by 2-Methoxyestradiol in prostate cancer models. Cancer Res 2007; 67:8316-24. [PMID: 17804747 DOI: 10.1158/0008-5472.can-07-1755] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
2-Methoxyestradiol (2ME2) is an endogenous estradiol metabolite that inhibits microtubule polymerization, tumor growth, and angiogenesis. Because prostate cancer is often treated with radiotherapy, and 2ME2 has shown efficacy as a single agent against human prostate carcinoma, we evaluated 2ME2 as a potential radiosensitizer in prostate cancer models. A dose-dependent decrease in mitogen-activated protein kinase phosphorylation was observed in human PC3 prostate cancer cells treated with 2ME2 for 18 h. This decrease correlated with in vitro radiosensitization measured by clonogenic assays, and these effects were blocked by the expression of constitutively active MEK. Male nude mice with subcutaneous PC3 xenografts in the hind leg were treated with 2ME2 (75 mg/kg) p.o. for 5 days, and 2 Gy radiation fractions were delivered each day at 4 h after drug treatment. A statistically significant super-additive effect between radiation and 2ME2 was observed in this subcutaneous model, using analysis of within-animal slopes. A PC-3M orthotopic model was also used, with bioluminescence imaging as an end point. PC-3M cells stably expressing the luciferase gene were surgically implanted into the prostates of male nude mice. Mice were given oral doses of 2ME2 (75 mg/kg), with radiation fractions (3 Gy) delivered 4 h later. Mice were then imaged weekly for 4 to 5 weeks with a Xenogen system. A significant super-additive effect was also observed in the orthotopic model. These data show that 2ME2 is an effective radiosensitizing agent against human prostate cancer xenografts, and that the mechanism may involve a decrease in mitogen-activated protein kinase phosphorylation by 2ME2.
Collapse
Affiliation(s)
- Eli V Casarez
- Department of Radiation Oncology, Cancer Center, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
38
|
Skarpen E, Flinder LI, Rosseland CM, Orstavik S, Wierød L, Oksvold MP, Skålhegg BS, Huitfeldt HS. MEK1 and MEK2 regulate distinct functions by sorting ERK2 to different intracellular compartments. FASEB J 2007; 22:466-76. [PMID: 17928366 DOI: 10.1096/fj.07-8650com] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, we provide novel insight into the mechanism of how ERK2 can be sorted to different intracellular compartments and thereby mediate different responses. MEK1-activated ERK2 accumulated in the nucleus and induced proliferation. Conversely, MEK2-activated ERK2 was retained in the cytoplasm and allowed survival. Localization was a determinant for ERK2 functions since MEK1 switched from providing proliferation to be a mediator of survival when ERK2 was routed to the cytoplasm by the attachment of a nuclear export site. MEK1-mediated ERK2 nuclear translocation and proliferation were shown to depend on phosphorylation of S298 and T292 sites in the MEK1 proline-rich domain. These sites are phosphorylated on cellular adhesion in MEK1 but not MEK2. Whereas p21-activated kinase phosphorylates S298 and thus enhances the MEK1-ERK2 association, ERK2 phosphorylates T292, leading to release of active ERK2 from MEK1. On the basis of these results, we propose that the requirement of adhesion for cells to proliferate in response to growth factors, in part, may be explained by the MEK1 S298/T292 control of ERK2 nuclear translocation. In addition, we suggest that ERK2 intracellular localization determines whether growth factors mediate proliferation or survival and that the sorting occurs in an adhesion-dependent manner.
Collapse
Affiliation(s)
- Ellen Skarpen
- Laboratory for Toxicopathology, Institute of Pathology, Rikshospitalet-Radiumhospitalet Medical Centre, University Hospital, N-0027 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Chrestensen CA, Eschenroeder A, Ross WG, Ueda T, Watanabe-Fukunaga R, Fukunaga R, Sturgill TW. Loss of MNK function sensitizes fibroblasts to serum-withdrawal induced apoptosis. Genes Cells 2007; 12:1133-40. [PMID: 17903173 DOI: 10.1111/j.1365-2443.2007.01122.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Map kinase-interacting protein kinases 1 and 2 (MNK1, MNK2) function downstream of p38 and ERK MAP kinases, but there are large gaps in our knowledge of how MNKs are regulated and function. Mice deleted of both genes are apparently normal, suggesting that MNKs function in adaptive pathways during stress. Here, we show that mouse embryo fibroblasts (MEFs) obtained from mnk1 (-/-)/mnk2 (-/-) as well as mnk1 (-/-) and mnk2 (-/-) mice are sensitized to caspase-3 activation upon withdrawal of serum in comparison to wild-type cells. Caspase-3 cleavage occurs with all cells in the panel, but most rapidly and robustly in cells derived from mice lacking both MNK genes. Treatment of wild-type MEFs in the panel with a compound (CGP57380) that inhibits MNK1 and MNK2 sensitizes wild-type cells for serum-withdrawal induced apoptosis, suggesting that sensitization is due to loss of MNK function and not to a secondary event. Reintroduction of wild-type MNK1 in the double knockout MEFs results in decreased sensitivity to serum withdrawal that is not observed for wild-type MNK2, or the kinase dead variant. Our work identifies MNKs as kinases involved in anti-apoptotic signaling in response to serum withdrawal.
Collapse
Affiliation(s)
- Carol A Chrestensen
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Legewie S, Schoeberl B, Blüthgen N, Herzel H. Competing docking interactions can bring about bistability in the MAPK cascade. Biophys J 2007; 93:2279-88. [PMID: 17526574 PMCID: PMC1965452 DOI: 10.1529/biophysj.107.109132] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 05/18/2007] [Indexed: 11/18/2022] Open
Abstract
Mitogen-activated protein kinases are crucial regulators of various cell fate decisions including proliferation, differentiation, and apoptosis. Depending on the cellular context, the Raf-Mek-Erk mitogen-activated protein kinase cascade responds to extracellular stimuli in an all-or-none manner, most likely due to bistable behavior. Here, we describe a previously unrecognized positive-feedback mechanism that emerges from experimentally observed sequestration effects in the core Raf-Mek-Erk cascade. Unphosphorylated/monophosphorylated Erk sequesters Mek into Raf-inaccessible complexes upon weak stimulation, and thereby inhibits cascade activation. Mek, once phosphorylated by Raf, triggers Erk phosphorylation, which in turn induces dissociation of Raf-inaccessible Mek-Erk heterodimers, and thus further amplifies Mek phosphorylation. We show that this positive circuit can bring about bistability for parameter values measured experimentally in living cells. Previous studies revealed that bistability can also arise from enzyme depletion effects in the Erk double (de)phosphorylation cycle. We demonstrate that the feedback mechanism proposed in this article synergizes with such enzyme depletion effects to bring about a much larger bistable range than either mechanism alone. Our results show that stable docking interactions and competition effects, which are common in protein kinase cascades, can result in sequestration-based feedback, and thus can have profound effects on the qualitative behavior of signaling pathways.
Collapse
Affiliation(s)
- Stefan Legewie
- Institute for Theoretical Biology, Humboldt University, Berlin, Germany.
| | | | | | | |
Collapse
|
41
|
Park ER, Eblen ST, Catling AD. MEK1 activation by PAK: a novel mechanism. Cell Signal 2007; 19:1488-96. [PMID: 17314031 PMCID: PMC2233889 DOI: 10.1016/j.cellsig.2007.01.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2006] [Revised: 01/12/2007] [Accepted: 01/16/2007] [Indexed: 10/23/2022]
Abstract
Extracellular signal-Regulated Kinase (ERK) controls a variety of cellular processes, including cell proliferation and cell motility. While oncogenic mutations in Ras and B-Raf result in deregulated ERK activity and proliferation and migration in some tumor cells, other tumors exhibit elevated ERK signaling in the absence of these mutations. Here we provide evidence that PAK can directly activate MEK1 by a mechanism distinct from conventional Ras/Raf mediated activation. We find that PAK phosphorylation of MEK1 serine 298 stimulates MEK1 autophosphorylation on the activation loop, and activation of MEK1 activity towards ERK in in vitro reconstitution experiments. Serines 218 and/or 222 in the MEK1 activation loop are required for PAK-stimulated MEK1 activity towards ERK. MEK2, which is a poor target for PAK phosphorylation in cells, is not activated in this manner. Tissue culture experiments verify that this mechanism is used in suspended fibroblasts expressing mutationally activated PAK1. We speculate that aberrant signaling through PAK may directly induce anchorage-independent MEK1 activation in tumor cells lacking oncogenic Ras or Raf mutations, and that this mechanism may contribute to localized MEK signaling in focal contacts and adhesions during cell adhesion or migration.
Collapse
Affiliation(s)
- Electa R. Park
- Department of Biochemistry, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Scott T. Eblen
- Department of Pharmacology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Andrew D. Catling
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| |
Collapse
|
42
|
Brahma A, Dalby KN. Regulation of protein phosphorylation within the MKK1-ERK2 complex by MP1 and the MP1*P14 heterodimer. Arch Biochem Biophys 2007; 460:85-91. [PMID: 17254543 PMCID: PMC2853909 DOI: 10.1016/j.abb.2006.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 11/29/2006] [Accepted: 11/29/2006] [Indexed: 11/30/2022]
Abstract
MEK partner 1 (MP1) and P14 are small proteins that modulate the Raf-MKK1/2-ERK1/2 pathway. To examine the biochemical basis for their function a fluorescent form of MP1 was prepared by labeling Cys-74 with fluorescein. Using this protein it was shown that MP1 binds unactivated ERK1, ERK2 and a constitutively active form of MKK1 (MKK1G7B) with dissociation constants of 9.7+/-1.6, 3.3+/-0.6 and 2.2+/-0.5 microM, respectively. MP1 inhibits the ability of activated ERK2 to phosphorylate the transcription factor Ets-1. Both MP1 and the MP1*P14 complex inhibit the ability of activated ERK2 to phosphorylate MKK1G7B, thus impeding feedback inhibition. In contrast, MP1 and the P14*MP1 complex enhance the ability of MKK1G7B to phosphorylate ERK2, when ERK2 is present at a low concentration, but not when it is present at a high concentration. Thus, MP1 and the MP1*P14 complex have the potential to differentially modulate activating and inhibiting signals in the Raf-MKK1/2-ERK1/2 pathway.
Collapse
Affiliation(s)
- Amrita Brahma
- Division of Medicinal Chemistry, University of Texas, Austin, TX 78712-0252
| | - Kevin N. Dalby
- Division of Medicinal Chemistry, University of Texas, Austin, TX 78712-0252
- Graduate Program in Biochemistry, University of Texas, Austin, TX 78712-0252
- Graduate Program in Molecular Biology, University of Texas, Austin, TX 78712-0252
- Center for Molecular and Cellular Toxicology, University of Texas, Austin, TX 78712-0252
| |
Collapse
|
43
|
Sebolt-Leopold JS, Herrera R, Ohren JF. The mitogen-activated protein kinase pathway for molecular-targeted cancer treatment. Recent Results Cancer Res 2007; 172:155-67. [PMID: 17607940 DOI: 10.1007/978-3-540-31209-3_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|
44
|
Kim SK, Novak RF. The role of intracellular signaling in insulin-mediated regulation of drug metabolizing enzyme gene and protein expression. Pharmacol Ther 2006; 113:88-120. [PMID: 17097148 PMCID: PMC1828071 DOI: 10.1016/j.pharmthera.2006.07.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 07/18/2006] [Indexed: 12/28/2022]
Abstract
Endogenous factors, including hormones, growth factors and cytokines, play an important role in the regulation of hepatic drug metabolizing enzyme expression in both physiological and pathophysiological conditions. Diabetes, fasting, obesity, protein-calorie malnutrition and long-term alcohol consumption produce changes in hepatic drug metabolizing enzyme gene and protein expression. This difference in expression alters the metabolism of xenobiotics, including procarcinogens, carcinogens, toxicants and therapeutic agents, potentially impacting the efficacy and safety of therapeutic agents, and/or resulting in drug-drug interactions. Although the mechanisms by which xenobiotics regulate drug metabolizing enzymes have been studied intensively, less is known regarding the cellular signaling pathways and components which regulate drug metabolizing enzyme gene and protein expression in response to hormones and cytokines. Recent findings, however, have revealed that several cellular signaling pathways are involved in hormone- and growth factor-mediated regulation of drug metabolizing enzymes. Our laboratory has reported that insulin and growth factors regulate drug metabolizing enzyme gene and protein expression, including cytochromes P450 (CYP), glutathione S-transferases (GST) and microsomal epoxide hydrolase (mEH), through receptors which are members of the large receptor tyrosine kinase (RTK) family, and by downstream effectors such as phosphatidylinositol 3-kinase, mitogen activated protein kinase (MAPK), Akt/protein kinase B (PKB), mammalian target of rapamycin (mTOR), and the p70 ribosomal protein S6 kinase (p70S6 kinase). Here, we review current knowledge of the signaling pathways implicated in regulation of drug metabolizing enzyme gene and protein expression in response to insulin and growth factors, with the goal of increasing our understanding of how disease affects these signaling pathways, components, and ultimately gene expression and translational control.
Collapse
Affiliation(s)
- Sang K. Kim
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Room 4000, Detroit, MI 48201, USA
- College of Pharmacy and Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon 305-764, South Korea
| | - Raymond F. Novak
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Room 4000, Detroit, MI 48201, USA
| |
Collapse
|
45
|
Kumar R, Manning J, Spendlove HE, Kremmidiotis G, McKirdy R, Lee J, Millband DN, Cheney KM, Stampfer MR, Dwivedi PP, Morris HA, Callen DF. ZNF652, A Novel Zinc Finger Protein, Interacts with the Putative Breast Tumor Suppressor CBFA2T3 to Repress Transcription. Mol Cancer Res 2006; 4:655-65. [PMID: 16966434 DOI: 10.1158/1541-7786.mcr-05-0249] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcriptional repressor CBFA2T3 is a putative breast tumor suppressor. To define the role of CBFA2T3, we used a segment of this protein as bait in a yeast two-hybrid screen and identified a novel uncharacterized protein, ZNF652. In general, primary tumors and cancer cell lines showed lower expression of ZNF652 than normal tissues. Together with the location of this gene on the long arm of chromosome 17q, a region of frequent loss of heterozygosity in cancer, these results suggest a possible role of ZNF652 in tumorigenesis. In silico analysis of this protein revealed that it contains multiple classic zinc finger domains that are predicted to bind DNA. Coimmunoprecipitation assays showed that ZNF652 strongly interacts with CBFA2T3 and this interaction occurs through the COOH-terminal 109 amino acids of ZNF652. In contrast, there was a weak interaction of ZNF652 with CBFA2T1 and CBFA2T2, the other two members of this ETO family. Transcriptional reporter assays further confirmed the strength and selectivity of the ZNF652-CBFA2T3 interaction. The transcriptional repression of growth factor independent-1 (GFI-1), a previously characterized ETO effector zinc finger protein, was shown to be enhanced by CBFA2T1, but to a lesser extent by CBFA2T2 and CBFA2T3. We therefore suggest that each of the various gene effector zinc finger proteins may specifically interact with one or more of the ETO proteins to generate a defined range of transcriptional repressor complexes.
Collapse
Affiliation(s)
- Raman Kumar
- Breast Cancer Genetics Group, Dame Roma Mitchell Cancer Research Laboratories, Hanson Institute, Institute of Medical and Veterinary Science, Frome Road, Adelaide, SA 5000, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bissonauth V, Roy S, Gravel M, Guillemette S, Charron J. Requirement for Map2k1 (Mek1) in extra-embryonic ectoderm during placentogenesis. Development 2006; 133:3429-40. [PMID: 16887817 DOI: 10.1242/dev.02526] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Map2k1(-/-) embryos die at mid-gestation from abnormal development and hypovascularization of the placenta. We now show that this phenotype is associated with a decreased labyrinth cell proliferation and an augmented cell apoptosis. Although the activation of MAP2K1 and MAP2K2 is widespread in the labyrinthine region, MAPK1 and MAPK3 activation is restricted to the cells lining the maternal sinuses, suggesting an important role for the ERK/MAPK cascade in these cells. In Map2k1(-/-) placenta, ERK/MAPK cascade activation is perturbed. Abnormal localization of the syncytiotrophoblasts is also observed in Map2k1(-/-) placenta, even though this cell lineage is specified at the correct time during placentogenesis. The placental phenotype can be rescued in tetraploid experiments. In addition, Map2k1-specific deletion in the embryo leads to normal embryo development and to the birth of viable Map2k1(-/-) mice. Altogether, these data enlighten the essential role of Map2k1 in extra-embryonic ectoderm during placentogenesis. In the embryo, the Map2k1 gene function appears dispensable.
Collapse
Affiliation(s)
- Vickram Bissonauth
- Centre de recherche en cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, QC G1R 2J6, Canada
| | | | | | | | | |
Collapse
|
47
|
Mishra NS, Tuteja R, Tuteja N. Signaling through MAP kinase networks in plants. Arch Biochem Biophys 2006; 452:55-68. [PMID: 16806044 DOI: 10.1016/j.abb.2006.05.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 05/04/2006] [Accepted: 05/05/2006] [Indexed: 01/01/2023]
Abstract
Protein phosphorylation is the most important mechanism for controlling many fundamental cellular processes in all living organisms including plants. A specific class of serine/threonine protein kinases, the mitogen-activated protein kinases (MAP kinases) play a central role in the transduction of various extra- and intracellular signals and are conserved throughout eukaryotes. These generally function via a cascade of networks, where MAP kinase (MAPK) is phosphorylated and activated by MAPK kinase (MAPKK), which itself is activated by MAPKK kinase (MAPKKK). Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as response to various stresses. In plants, MAP kinases are represented by multigene families and are organized into a complex network for efficient transmission of specific stimuli. Putative plant MAP kinase cascades have been postulated based on experimental analysis of in vitro interactions between specific MAP kinase components. These cascades have been tested in planta following expression of epitope-tagged kinases in protoplasts. It is known that signaling for cell division and stress responses in plants are mediated through MAP kinases and even auxin, ABA and possibly ethylene and cytokinin also utilize a MAP kinase pathway. Most of the biotic (pathogens and pathogen-derived elicitors) including wounding and abiotic stresses (salinity, cold, drought, and oxidative) can induce defense responses in plants through MAP kinase pathways. In this article we have covered the historical background, biochemical assay, activation/inactivation, and targets of MAP kinases with emphasis on plant MAP kinases and the responses regulated by them. The cross-talk between plant MAP kinases is also discussed to bring out the complexity within this three-component module.
Collapse
Affiliation(s)
- Neeti Sanan Mishra
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
48
|
Honma N, Genda T, Matsuda Y, Yamagiwa S, Takamura M, Ichida T, Aoyagi Y. MEK/ERK signaling is a critical mediator for integrin-induced cell scattering in highly metastatic hepatocellular carcinoma cells. J Transl Med 2006; 86:687-96. [PMID: 16636681 DOI: 10.1038/labinvest.3700427] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The human hepatocellular carcinoma (HCC)-derived cell line KYN-2 is thought to provide a good model for studying the molecular basis of invasion and metastasis of human HCC, because it often shows cell scattering in vitro and intrahepatic metastasis in vivo. We previously found that integrin-mediated extracellular signals inactivated E-cadherin in KYN-2, and caused loss of cell-cell contact with gain of cell motility, which is considered to be a critical step in the process of cancer cell invasion and metastasis. To further understand molecular mechanisms involved in biological aggressiveness of HCC, we investigated intracellular signaling involved in integrin-mediated scattering of KYN-2 cells. Cultured KYN-2 cells formed trabecular aggregates in suspension, but when adhering to integrin-stimulating substrata, they scattered according to phosphorylation of extracellular signal-regulated kinase (ERK). Upon treatment with ERK kinase (MEK) inhibitor PD98059, adhered KYN-2 cell scattering was inhibited, tight cell-to-cell contact was recovered, and both E-cadherin and actin filaments accumulated in the area of intercellular contact zone. In contrast, constitutively active MEK1-transfected KYN-2 cells showed reduced E-cadherin and actin filaments in the intercellular contact zone, showing a flattened phenotype with broad lamellipodia. Enforced signaling of MEK-ERK pathway in KYN-2 cells suppressed cadherin-mediated homotypic adhesion and increased the potential of cell motility. An antibody-based protein microarray analysis revealed that the cytoplasmic protein c-Cbl was significantly downregulated in MEK1-transfected KYN-2 cells, suggesting that c-Cbl might be a candidate downstream mediator of integrin/MEK/ERK-mediated cell scattering. In conclusion, cell scattering of the highly metastatic cell line KYN-2 is regulated through the integrin-MEK-ERK signaling cascade, suggesting that this molecular pathway may be critical in intrahepatic metastasis of human HCC.
Collapse
Affiliation(s)
- Nobuyuki Honma
- Division of Gastroenterology and Hepatology, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Science, Niigata City, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Olive DM. Quantitative methods for the analysis of protein phosphorylation in drug development. Expert Rev Proteomics 2006; 1:327-41. [PMID: 15966829 DOI: 10.1586/14789450.1.3.327] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most signal transduction and cell signaling pathways are mediated by protein kinases. Protein kinases have emerged as important cellular regulatory proteins in many aspects of neoplasia. Protein kinase inhibitors offer the opportunity to target diseases such as cancer with chemotherapeutic agents specific for the causative molecular defect. In order to identify possible targets and assess kinase inhibitors, quantitative methods for analyzing protein phosphorylation have been developed. This review examines some of the current formats used for quantifying kinase function for drug development.
Collapse
Affiliation(s)
- D Michael Olive
- Research & Development, LI-COR Biosciences, 4308 Progressive Ave., Lincoln, NE 68504, USA.
| |
Collapse
|
50
|
Pouponnot C, Sii-Felice K, Hmitou I, Rocques N, Lecoin L, Druillennec S, Felder-Schmittbuhl MP, Eychène A. Cell context reveals a dual role for Maf in oncogenesis. Oncogene 2006; 25:1299-310. [PMID: 16247450 DOI: 10.1038/sj.onc.1209171] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Maf b-Zip transcription factors are involved in both terminal differentiation and oncogenesis. To investigate this apparent contradiction, we used two different primary cell types and performed an extensive analysis of transformation parameters induced by Maf proteins. We show that MafA and c-Maf are potent oncogenes in chicken embryo fibroblasts, while MafB appears weaker. We also provide the first evidence that MafA can confer growth factor independence and promote cell division at low density. Moreover, using MafA as a model, we identified several parameters that are critical for Maf transforming activities. Indeed, MafA ability to induce anchorage-independent cell growth was sensitive to culture conditions. In addition, the transforming activity of MafA was dependent on its phosphorylation state, since mutation on Ser65 impaired its ability to induce growth at low density and anchorage-independent growth. We next examined transforming activity of large Maf proteins in embryonic neuroretina cells, where they are known to induce differentiation. Unlike v-Jun, MafA, MafB and c-Maf did not show oncogenic activity in these cells. Moreover, they counteracted transformation induced by constitutive activation of the Ras/Raf/MEK pathway. Taken together, our results show that Maf proteins could display antagonistic functions in oncogenesis depending on the cellular context, and support a dual role for Maf as both oncogenes and tumor suppressor-like proteins.
Collapse
Affiliation(s)
- C Pouponnot
- Institut Curie, CNRS UMR 146, Centre Universitaire, Laboratoire 110, Orsay Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|