1
|
Du Y, Yang Y, Zheng B, Zhang Q, Zhou S, Zhao L. Finding a needle in a haystack: functional screening for novel targets in cancer immunology and immunotherapies. Oncogene 2025; 44:409-426. [PMID: 39863748 PMCID: PMC11810799 DOI: 10.1038/s41388-025-03273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Genome-wide functional genetic screening has been widely used in the biomedicine field, which makes it possible to find a needle in a haystack at the genetic level. In cancer research, gene mutations are closely related to tumor development, metastasis, and recurrence, and the use of state-of-the-art powerful screening technologies, such as clustered regularly interspaced short palindromic repeat (CRISPR), to search for the most critical genes or coding products provides us with a new possibility to further refine the cancer mapping and provide new possibilities for the treatment of cancer patients. The use of CRISPR screening for the most critical genes or coding products has further refined the cancer atlas and provided new possibilities for the treatment of cancer patients. Immunotherapy, as a highly promising cancer treatment method, has been widely validated in the clinic, but it could only meet the needs of a small proportion of cancer patients. Finding new immunotherapy targets is the key to the future of tumor immunotherapy. Here, we revisit the application of functional screening in cancer immunology from different perspectives, from the selection of diverse in vitro and in vivo screening models to the screening of potential immune checkpoints and potentiating genes for CAR-T cells. The data will offer fresh therapeutic clues for cancer patients.
Collapse
Affiliation(s)
- Yi Du
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Yang Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| |
Collapse
|
2
|
Exploring liver cancer biology through functional genetic screens. Nat Rev Gastroenterol Hepatol 2021; 18:690-704. [PMID: 34163045 DOI: 10.1038/s41575-021-00465-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
As the fourth leading cause of cancer-related death in the world, liver cancer poses a major threat to human health. Although a growing number of therapies have been approved for the treatment of hepatocellular carcinoma in the past few years, most of them only provide a limited survival benefit. Therefore, an urgent need exists to identify novel targetable vulnerabilities and powerful drug combinations for the treatment of liver cancer. The advent of functional genetic screening has contributed to the advancement of liver cancer biology, uncovering many novel genes involved in tumorigenesis and cancer progression in a high-throughput manner. In addition, this unbiased screening platform also provides an efficient tool for the exploration of the mechanisms involved in therapy resistance as well as identifying potential targets for therapy. In this Review, we describe how functional screens can help to deepen our understanding of liver cancer and guide the development of new therapeutic strategies.
Collapse
|
3
|
Weber J, Braun CJ, Saur D, Rad R. In vivo functional screening for systems-level integrative cancer genomics. Nat Rev Cancer 2020; 20:573-593. [PMID: 32636489 DOI: 10.1038/s41568-020-0275-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
With the genetic portraits of all major human malignancies now available, we next face the challenge of characterizing the function of mutated genes, their downstream targets, interactions and molecular networks. Moreover, poorly understood at the functional level are also non-mutated but dysregulated genomes, epigenomes or transcriptomes. Breakthroughs in manipulative mouse genetics offer new opportunities to probe the interplay of molecules, cells and systemic signals underlying disease pathogenesis in higher organisms. Herein, we review functional screening strategies in mice using genetic perturbation and chemical mutagenesis. We outline the spectrum of genetic tools that exist, such as transposons, CRISPR and RNAi and describe discoveries emerging from their use. Genome-wide or targeted screens are being used to uncover genomic and regulatory landscapes in oncogenesis, metastasis or drug resistance. Versatile screening systems support experimentation in diverse genetic and spatio-temporal settings to integrate molecular, cellular or environmental context-dependencies. We also review the combination of in vivo screening and barcoding strategies to study genetic interactions and quantitative cancer dynamics during tumour evolution. These scalable functional genomics approaches are transforming our ability to interrogate complex biological systems.
Collapse
Affiliation(s)
- Julia Weber
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
| | - Christian J Braun
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
- Institute of Translational Cancer Research and Experimental Cancer Therapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany.
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Jaafar L, Chamseddine Z, El-Sibai M. StarD13: a potential star target for tumor therapeutics. Hum Cell 2020; 33:437-443. [PMID: 32274657 DOI: 10.1007/s13577-020-00358-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
Abstract
StarD13 is a tumor suppressor and a GTPase activating protein (GAP) for Rho GTPases. Thus, StarD13 regulates cell survival pathways and induces apoptosis in a p53-dependent and independent manners. In tumors, StarD13 is either downregulated or completely inhibited, depending on the tumor type. As such, and through the dysregulation of Rho GTPases, this affects adhesion dynamics, actin dynamics, and leads to an increase or a decrease in tumor metastasis depending on the tumor grade and type. Being a key regulatory protein, StarD13 is a potential promising candidate for therapeutic approaches. This paper reviews the key characteristics of this protein and its role in tumor malignancies.
Collapse
Affiliation(s)
- Leila Jaafar
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Chouran, P.O. Box 13-5053, 1102 2801, Beirut, Lebanon
| | - Zeinab Chamseddine
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Chouran, P.O. Box 13-5053, 1102 2801, Beirut, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Chouran, P.O. Box 13-5053, 1102 2801, Beirut, Lebanon.
| |
Collapse
|
5
|
Abstract
Cancer is a complex disease that originates from genetic changes leading to multiple phenotypic manifestations that ultimately result in suffering and death from cancer. Attempts have been made to define the phenotypic and genetic "hallmarks" of cancer, but many of these "hallmarks" remain descriptive, while the underlying mechanisms responsible for these hallmarks remain elusive. For decades, cancer researchers have been methodically identifying the molecular mechanisms that result in tumor initiation, growth, metastases, and resistance to therapy. Great strides forward have been made and we are entering an era of "precision medicine" with the goal of treating each cancer based on its unique etiology. Increasingly, the decision to use targeted therapies and immunotherapies in the clinic is based on the genotype of the cancer being treated. For example, specific tyrosine kinase inhibitors are only prescribed to patients that express the tyrosine kinase protein on their cancer cells. Likewise, a genetically unstable cancer is predictive for successful immunotherapy. Knowledge of the specific genetic changes that result in overproduction of oncogenes and reduced production of tumor suppressors is crucial for advancing therapeutic options for cancer. The first chapter of this book presents a brief history of cancer gene discovery. In the remaining chapters of this book, we present protocols using in silico, in vitro, and in vivo techniques for identifying genetic drivers of cancer, in the hope that these protocols will be used to increase our knowledge of the molecular mechanisms driving cancer.
Collapse
|
6
|
Covic L, Kuliopulos A. Protease-Activated Receptor 1 as Therapeutic Target in Breast, Lung, and Ovarian Cancer: Pepducin Approach. Int J Mol Sci 2018; 19:ijms19082237. [PMID: 30065181 PMCID: PMC6121574 DOI: 10.3390/ijms19082237] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
The G-protein coupled receptors (GPCRs) belong to a large family of diverse receptors that are well recognized as pharmacological targets. However, very few of these receptors have been pursued as oncology drug targets. The Protease-activated receptor 1 (PAR1), which is a G-protein coupled receptor, has been shown to act as an oncogene and is an emerging anti-cancer drug target. In this paper, we provide an overview of PAR1’s biased signaling role in metastatic cancers of the breast, lungs, and ovaries and describe the development of PAR1 inhibitors that are currently in clinical use to treat acute coronary syndromes. PAR1 inhibitor PZ-128 is in a Phase II clinical trial and is being developed to prevent ischemic and thrombotic complication of patients undergoing cardiac catheterization. PZ-128 belongs to a new class of cell-penetrating, membrane-tethered peptides named pepducins that are based on the intracellular loops of receptors targeting the receptor G-protein interface. Application of PZ-128 as an anti-metastatic and anti-angiogenic therapeutic agent in breast, lung, and ovarian cancer is being reviewed.
Collapse
Affiliation(s)
- Lidija Covic
- Division of Hematology/Oncology, Tufts Medical Center, Boston, MA 02111, USA.
- Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA.
- Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA 02111, USA.
| | - Athan Kuliopulos
- Division of Hematology/Oncology, Tufts Medical Center, Boston, MA 02111, USA.
- Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA.
- Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA 02111, USA.
| |
Collapse
|
7
|
Flaumenhaft R, De Ceunynck K. Targeting PAR1: Now What? Trends Pharmacol Sci 2017; 38:701-716. [PMID: 28558960 PMCID: PMC5580498 DOI: 10.1016/j.tips.2017.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/30/2022]
Abstract
Protease-activated receptors (PARs) are a ubiquitously expressed class of G-protein-coupled receptors (GPCRs) that enable cells to respond to proteases in the extracellular environment in a nuanced and dynamic manner. PAR1 is the archetypal family member and has been the object of large-scale drug development programs since the 1990s. Vorapaxar and drotrecogin-alfa are approved PAR1-targeted therapeutics, but safety concerns have limited the clinical use of vorapaxar and questions regarding the efficacy of drotrecogin-alfa led to its withdrawal from the market. New understanding of mechanisms of PAR1 function, discovery of improved strategies for modifying PAR1 function, and identification of novel indications for PAR1 modulators have provided new opportunities for therapies targeting PAR1. In this review, we critically evaluate prospects for the next generation of PAR1-targeted therapeutics.
Collapse
Affiliation(s)
- Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Karen De Ceunynck
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Nguyen CH, Senfter D, Basilio J, Holzner S, Stadler S, Krieger S, Huttary N, Milovanovic D, Viola K, Simonitsch-Klupp I, Jäger W, de Martin R, Krupitza G. NF-κB contributes to MMP1 expression in breast cancer spheroids causing paracrine PAR1 activation and disintegrations in the lymph endothelial barrier in vitro. Oncotarget 2016; 6:39262-75. [PMID: 26513020 PMCID: PMC4770771 DOI: 10.18632/oncotarget.5741] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
Abstract
RELA, RELB, CREL, NFKB1 and NFKB2, and the upstream regulators NEMO and NIK were knocked-down in lymph endothelial cells (LECs) and in MDA-MB231 breast cancer spheroids to study the contribution of NF-κB in vascular barrier breaching. Suppression of RELA, NFKB1 and NEMO inhibited “circular chemo-repellent induced defects” (CCIDs), which form when cancer cells cross the lymphatic vasculature, by ~20–30%. Suppression of RELB, NFKB2 and NIK inhibited CCIDs by only ~10–15%. In MDA-MB231 cells RELA and NFKB1 constituted MMP1 expression, which caused the activation of PAR1 in adjacent LECs. The knock-down of MMP1 in MDA-MB231 spheroids and pharmacological inhibition of PAR1 in LECs inhibited CCID formation by ~30%. Intracellular Ca2+ release in LECs, which was induced by recombinant MMP1, was suppressed by the PAR1 inhibitor SCH79797, thereby confirming a functional intercellular axis: RELA/NFKB1 – MMP1 (MDA-MB231) – PAR1 (LEC). Recombinant MMP1 induced PAR1-dependent phosphorylation of MLC2 and FAK in LECs, which is indicative for their activity and for directional cell migration such as observed during CCID formation. The combined knock-down of the NF-κB pathways in LECs and MDA-MB231 spheroids inhibited CCIDs significantly stronger than knock-down in either cell type alone. Also the knock-down of ICAM-1 in LECs (a NF-κB endpoint with relevance for CCID formation) and knock-down of MMP1 in MDA-MB231 augmented CCID inhibition. This evidences that in both cell types NF-κB significantly and independently contributes to tumour-mediated breaching of the lymphatic barrier. Hence, inflamed tumour tissue and/or vasculature pose an additional threat to cancer progression.
Collapse
Affiliation(s)
- Chi Huu Nguyen
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria.,Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Daniel Senfter
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Jose Basilio
- Department of Vascular Biology and Thrombosis Research, Center of Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Silvio Holzner
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Serena Stadler
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sigurd Krieger
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Nicole Huttary
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Daniela Milovanovic
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Katharina Viola
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Rainer de Martin
- Department of Vascular Biology and Thrombosis Research, Center of Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Georg Krupitza
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
G Protein-Coupled Receptors in Cancer. Int J Mol Sci 2016; 17:ijms17081320. [PMID: 27529230 PMCID: PMC5000717 DOI: 10.3390/ijms17081320] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/21/2016] [Accepted: 08/08/2016] [Indexed: 12/12/2022] Open
Abstract
Despite the fact that G protein-coupled receptors (GPCRs) are the largest signal-conveying receptor family and mediate many physiological processes, their role in tumor biology is underappreciated. Numerous lines of evidence now associate GPCRs and their downstream signaling targets in cancer growth and development. Indeed, GPCRs control many features of tumorigenesis, including immune cell-mediated functions, proliferation, invasion and survival at the secondary site. Technological advances have further substantiated GPCR modifications in human tumors. Among these are point mutations, gene overexpression, GPCR silencing by promoter methylation and the number of gene copies. At this point, it is imperative to elucidate specific signaling pathways of “cancer driver” GPCRs. Emerging data on GPCR biology point to functional selectivity and “biased agonism”; hence, there is a diminishing enthusiasm for the concept of “one drug per GPCR target” and increasing interest in the identification of several drug options. Therefore, determining the appropriate context-dependent conformation of a functional GPCR as well as the contribution of GPCR alterations to cancer development remain significant challenges for the discovery of dominant cancer genes and the development of targeted therapeutics.
Collapse
|
10
|
Yang E, Cisowski J, Nguyen N, O'Callaghan K, Xu J, Agarwal A, Kuliopulos A, Covic L. Dysregulated protease activated receptor 1 (PAR1) promotes metastatic phenotype in breast cancer through HMGA2. Oncogene 2015; 35:1529-40. [PMID: 26165842 DOI: 10.1038/onc.2015.217] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 12/24/2022]
Abstract
As the majority of patients with basal-like breast carcinoma present with invasive, metastatic disease that do not respond to available therapies, it is essential to identify new therapeutic targets that impact invasion and metastasis. Protease-activated receptor 1 (PAR1), a G-protein coupled receptor has been shown to act as an oncogene, but underlying mechanisms are not well understood. Here, we show that ectopic expression of functionally active PAR1 in MCF-7 cells induced a hormone-refractory, invasive phenotype representative of advanced basal-like breast carcinoma that readily formed metastatic lesions in lungs of mice. PAR1 was found to globally upregulate mesenchymal markers, including vimentin, a direct target of PAR1, and downregulate the epithelial markers including E-cadherin, as well as estrogen receptor. In contrast, non-signaling PAR1 mutant receptor did not lead to an invasive, hormone refractory phenotype. PAR1 expression increased spheroid formation and the level of stemness markers and self-renewal capacity in human breast cancer cells. We identified HMGA2 (high mobility group A2) as an important regulator of PAR1-mediated invasion. Inhibition of PAR1 signaling suppresses HMGA2-driven invasion in breast cancer cells. HMGA2 gene and protein are highly expressed in metastatic breast cancer cells. Overall, our results show that PAR1/HMGA2 pathway may present a novel therapeutic target.
Collapse
Affiliation(s)
- E Yang
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA.,Department of Biochemistry and Tufts Medical Center, Boston, MA, USA
| | - J Cisowski
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - N Nguyen
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - K O'Callaghan
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - J Xu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - A Agarwal
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - A Kuliopulos
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA.,Department of Biochemistry and Tufts Medical Center, Boston, MA, USA.,Division of Hematology/Oncology, Tufts Medical Center, Boston, MA, USA.,Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - L Covic
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA.,Department of Biochemistry and Tufts Medical Center, Boston, MA, USA.,Division of Hematology/Oncology, Tufts Medical Center, Boston, MA, USA.,Department of Medicine, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
11
|
Fan HX, Chen Y, Ni BX, Wang S, Sun M, Chen D, Zheng JH. Expression of MMP-1/PAR-1 and patterns of invasion in oral squamous cell carcinoma as potential prognostic markers. Onco Targets Ther 2015; 8:1619-26. [PMID: 26170698 PMCID: PMC4498722 DOI: 10.2147/ott.s84561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Matrix metalloproteinase (MMP)-1 degrades type I collagen of the extracellular matrix and also activates protease activated receptor (PAR)-1 to induce angiogenesis. The aims of this study were to evaluate microvessel density (MVD) and the expression of PAR-1 and MMP-1 in oral squamous cell carcinoma (SCC) specimens with different patterns of invasion (POI) and to evaluate their association with clinical outcomes. Methods Seventy-four surgically obtained oral SCC samples were classified by POI according to hematoxylin-eosin staining. MVD and the localization and intensity of PAR-1 and MMP-1 expression were detected by immunohistochemistry. Results Of the 74 oral SCC samples, 18, 5, 34, and 17 showed type I, II, III, and IV POI, respectively. MVD and expression levels of MMP-1 and PAR-1 differed between POI types I–II and POI types III–IV. Patients with low tumor expression of MMP-1 and PAR-1 and low MVD had a longer survival time than those with high tumor expression of MMP-1 and PAR-1. Moreover, the survival time of patients with POI types III–IV was shorter than that of patients with POI types I–II. Conclusion POI combined with expression levels of MMP-1 and PAR-1 may be a valuable tool for assessing the clinical prognosis of patients with oral SCC.
Collapse
Affiliation(s)
- Hai-Xia Fan
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, People's Republic of China
| | - Yan Chen
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, People's Republic of China
| | - Bo-Xiong Ni
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, People's Republic of China
| | - Shan Wang
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, People's Republic of China
| | - Miao Sun
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Dong Chen
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Jin-Hua Zheng
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
12
|
Tung PY, Varlakhanova NV, Knoepfler PS. Identification of DPPA4 and DPPA2 as a novel family of pluripotency-related oncogenes. Stem Cells 2014; 31:2330-42. [PMID: 23963736 DOI: 10.1002/stem.1526] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 07/07/2013] [Accepted: 07/07/2013] [Indexed: 11/07/2022]
Abstract
In order to identify novel pluripotency-related oncogenes, an expression screen for oncogenic foci-inducing genes within a retroviral human embryonic stem cell cDNA library was conducted. From this screen, we identified not only known oncogenes but also intriguingly the key pluripotency factor, DPPA4 (developmental pluripotency-associated four) that encodes a DNA binding SAP domain-containing protein. DPPA4 has not been previously identified as an oncogene but is highly expressed in embryonal carcinomas, pluripotent germ cell tumors, and other cancers. DPPA4 is also mutated in some cancers. In direct transformation assays, we validated that DPPA4 is an oncogene in both mouse 3T3 cells and immortalized human dermal fibroblasts. Overexpression of DPPA4 generates oncogenic foci (sarcoma cells) and causes anchorage-independent growth. The in vitro transformed cells also give rise to tumors in immunodeficient mice. Furthermore, functional analyses indicate that both the DNA-binding SAP domain and the histone-binding C-terminal domain are critical for the oncogenic transformation activity of DPPA4. Downregulation of DPPA4 in E14 mouse embryonic stem cells and P19 mouse embryonic carcinoma cells causes decreased cell proliferation in each case. In addition, DPPA4 overexpression induces cell proliferation through genes related to regulation of G1/S transition. Interestingly, we observed similar findings for family member DPPA2. Thus, we have identified a new family of pluripotency-related oncogenes consisting of DPPA2 and DPPA4. Our findings have important implications for stem cell biology and tumorigenesis.
Collapse
Affiliation(s)
- Po-Yuan Tung
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California, USA; University of California Davis Genome Center, University of California Davis, Davis, California, USA; UC Davis Comprehensive Cancer Center, Shriners Hospital For Children Northern California, Sacramento, California, USA; Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, California, USA
| | | | | |
Collapse
|
13
|
Abstract
Several studies have suggested a role for blood coagulation proteins in tumour progression. Herein, we discuss (1) the activation of the blood clotting cascade in the tumour microenvironment and its impact on primary tumour growth; (2) the intravascular activation of blood coagulation and its impact on tumour metastasis and cancer-associated thrombosis; and (3) antitumour therapies that target blood-coagulation-associated proteins. Expression levels of the clotting initiator protein TF (tissue factor) have been correlated with tumour cell aggressiveness. Simultaneous TF expression and PS (phosphatidylserine) exposure by tumour cells promote the extravascular activation of blood coagulation. The generation of blood coagulation enzymes in the tumour microenvironment may trigger the activation of PARs (protease-activated receptors). In particular, PAR1 and PAR2 have been associated with many aspects of tumour biology. The procoagulant activity of circulating tumour cells favours metastasis, whereas the release of TF-bearing MVs (microvesicles) into the circulation has been correlated with cancer-associated thrombosis. Given the role of coagulation proteins in tumour progression, it has been proposed that they could be targets for the development of new antitumour therapies.
Collapse
|
14
|
Chen CL, Tsukamoto H, Liu JC, Kashiwabara C, Feldman D, Sher L, Dooley S, French SW, Mishra L, Petrovic L, Jeong JH, Machida K. Reciprocal regulation by TLR4 and TGF-β in tumor-initiating stem-like cells. J Clin Invest 2013; 123:2832-49. [PMID: 23921128 PMCID: PMC3696549 DOI: 10.1172/jci65859] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 04/08/2013] [Indexed: 12/17/2022] Open
Abstract
Tumor-initiating stem-like cells (TICs) are resistant to chemotherapy and associated with hepatocellular carcinoma (HCC) caused by HCV and/or alcohol-related chronic liver injury. Using HCV Tg mouse models and patients with HCC, we isolated CD133(+) TICs and identified the pluripotency marker NANOG as a direct target of TLR4, which drives the tumor-initiating activity of TICs. These TLR4/NANOG-dependent TICs were defective in the TGF-β tumor suppressor pathway. Functional oncogene screening of a TIC cDNA library identified Yap1 and Igf2bp3 as NANOG-dependent genes that inactivate TGF-β signaling. Mechanistically, we determined that YAP1 mediates cytoplasmic retention of phosphorylated SMAD3 and suppresses SMAD3 phosphorylation/activation by the IGF2BP3/AKT/mTOR pathway. Silencing of both YAP1 and IGF2BP3 restored TGF-β signaling, inhibited pluripotency genes and tumorigenesis, and abrogated chemoresistance of TICs. Mice with defective TGF-β signaling (Spnb2(+/-) mice) exhibited enhanced liver TLR4 expression and developed HCC in a TLR4-dependent manner. Taken together, these results suggest that the activated TLR4/NANOG oncogenic pathway is linked to suppression of cytostatic TGF-β signaling and could potentially serve as a therapeutic target for HCV-related HCC.
Collapse
MESH Headings
- AC133 Antigen
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antigens, CD/metabolism
- Antineoplastic Agents/pharmacology
- Base Sequence
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Separation
- Drug Resistance, Neoplasm
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Glycoproteins/metabolism
- Homeodomain Proteins/metabolism
- Humans
- Inhibitory Concentration 50
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Nanog Homeobox Protein
- Neoplastic Stem Cells/metabolism
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Oncogenes
- Peptides/metabolism
- Phenylurea Compounds/pharmacology
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- RNA, Small Interfering/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Signal Transduction
- Sirolimus/pharmacology
- Smad Proteins/metabolism
- Sorafenib
- Spheroids, Cellular/metabolism
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/metabolism
- Transcription Factors
- Transcriptional Activation
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- Tumor Burden
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Chia-Lin Chen
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hidekazu Tsukamoto
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian-Chang Liu
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Claudine Kashiwabara
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Douglas Feldman
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Linda Sher
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven Dooley
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samuel W. French
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lopa Mishra
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lydia Petrovic
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joseph H. Jeong
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
McGee SF, O'Connor DP, Gallagher WM. Functional interrogation of breast cancer: from models to drugs. Expert Opin Drug Discov 2013; 1:569-84. [PMID: 23506067 DOI: 10.1517/174604441.1.6.569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Functional genomics allows for the activity of the whole genome to be surveyed at once. Using this technology for the identification of novel targets and their validation in disease-specific contexts has profound implications for the future of drug discovery. Now researchers have the technological means to gather comprehensive data on basic biological phenomena and disease mechanisms, while monitoring the effect of drug candidates on a molecular level. Pathway analysis can facilitate the genetic profiling of patients and, in turn, predict individual responses to treatment regimes. Functional interrogation of a disease-specific phenotype at a whole genome level (through, for example, the use of whole genome RNAi libraries) allows for the identification of critical regulators in complex biological systems, and the detection of putative targets for future therapeutic intervention. The authors describe the applications of functional genomics in models of breast cancer and the integration of these disparate technologies, specifically in the context of the search for novel therapeutic targets.
Collapse
Affiliation(s)
- Sharon F McGee
- UCD Conway Institute, UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | |
Collapse
|
16
|
Foley CJ, Luo C, O'Callaghan K, Hinds PW, Covic L, Kuliopulos A. Matrix metalloprotease-1a promotes tumorigenesis and metastasis. J Biol Chem 2012; 287:24330-8. [PMID: 22573325 DOI: 10.1074/jbc.m112.356303] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Matrix metalloprotease-1 (MMP1), a collagenase and activator of the G protein-coupled protease activated receptor-1 (PAR1), is an emerging new target implicated in oncogenesis and metastasis in diverse cancers. However, the functional mouse homologue of MMP1 in cancer models has not yet been clearly defined. We report here that Mmp1a is a functional MMP1 homologue that promotes invasion and metastatic progression of mouse lung cancer and melanoma. LLC1 (Lewis lung carcinoma) and primary mouse melanoma cells harboring active BRAF express high levels of endogenous Mmp1a, which is required for invasion through collagen. Silencing of either Mmp1a or PAR1 suppressed invasive stellate growth of lung cancer cells in three-dimensional matrices. Conversely, ectopic expression of Mmp1a conferred an invasive phenotype in epithelial cells that do not express endogenous Mmp1a. Consistent with Mmp1a acting as a PAR1 agonist in an autocrine loop, inhibition or silencing of PAR1 resulted in a loss of the Mmp1a-driven invasive phenotype. Knockdown of Mmp1a on tumor cells resulted in significantly decreased tumorigenesis, invasion, and metastasis in xenograft models. Together, these data demonstrate that cancer cell-derived Mmp1a acts as a robust functional homologue of MMP1 by conferring protumorigenic and metastatic behavior to cells.
Collapse
Affiliation(s)
- Caitlin J Foley
- Molecular Oncology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
17
|
Titov DV, Liu JO. Identification and validation of protein targets of bioactive small molecules. Bioorg Med Chem 2011; 20:1902-9. [PMID: 22226983 DOI: 10.1016/j.bmc.2011.11.070] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/22/2011] [Accepted: 11/30/2011] [Indexed: 12/22/2022]
Abstract
Identification and validation of protein targets of bioactive small molecules is an important problem in chemical biology and drug discovery. Currently, no single method is satisfactory for this task. Here, we provide an overview of common methods for target identification and validation that historically were most successful. We have classified for the first time the existing methods into two distinct and complementary types, the 'top-down' and 'bottom-up' approaches. In a typical top-down approach, the cellular phenotype is used as a starting point and the molecular target is approached through systematic narrowing down of possibilities by taking advantage of the detailed existing knowledge of cellular pathways and processes. In contrast, the bottom-up approach entails the direct detection and identification of the molecular targets using affinity-based or genetic methods. A special emphasis is placed on target validation, including correlation analysis and genetic methods, as this area is often ignored despite its importance.
Collapse
Affiliation(s)
- Denis V Titov
- Department of Pharmacology, Johns Hopkins University School of Medicine, MD, USA
| | | |
Collapse
|
18
|
Targeting protease-activated receptor-1 with cell-penetrating pepducins in lung cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:513-23. [PMID: 21703428 DOI: 10.1016/j.ajpath.2011.03.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 03/10/2011] [Accepted: 03/21/2011] [Indexed: 01/15/2023]
Abstract
Protease-activated receptors (PARs) are G-protein-coupled receptors that are activated by proteolytic cleavage and generation of a tethered ligand. High PAR1 expression has been documented in a variety of invasive cancers of epithelial origin. In the present study, we investigated the contribution of the four PAR family members to motility of lung carcinomas and primary tumor samples from patients. We found that of the four PARs, only PAR1 expression was highly increased in the lung cancer cell lines. Primary lung cancer cells isolated from patient lung tumors migrated at a 10- to 40-fold higher rate than epithelial cells isolated from nonmalignant lung tissue. Cell-penetrating pepducin inhibitors were generated against the first (i1) and third (i3) intracellular loops of PAR1 and tested for their ability to inhibit PAR1-driven migration and extracellular regulated kinase (ERK)1/2 activity. The PAR1 pepducins showed significant inhibition of cell migration in both primary and established cell lines similar to silencing of PAR1 expression with short hairpin RNA (shRNA). Unlike i1 pepducins, the i3 loop pepducins were effective inhibitors of PAR1-mediated ERK activation and tumor growth. Comparable in efficacy with Bevacizumab, monotherapy with the PAR1 i3 loop pepducin P1pal-7 provided significant 75% inhibition of lung tumor growth in nude mice. We identify the PAR1-ERK1/2 pathway as a feasible target for therapy in lung cancer.
Collapse
|
19
|
Veiga CDS, Carneiro-Lobo TC, Coelho CJ, Carvalho SM, Maia RC, Vasconcelos FC, Abdelhay E, Mencalha AL, Ferreira AF, Castro FA, Monteiro RQ. Increased expression of protease-activated receptor 1 (PAR-1) in human leukemias. Blood Cells Mol Dis 2011; 46:230-4. [DOI: 10.1016/j.bcmd.2010.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
|
20
|
Zahedi B, Goo HJ, Beaulieu N, Tazmini G, Kay RJ, Cornell RB. Phosphoinositide 3-kinase regulates plasma membrane targeting of the Ras-specific exchange factor RasGRP1. J Biol Chem 2011; 286:12712-23. [PMID: 21285350 DOI: 10.1074/jbc.m110.189605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor-induced targeting of exchange factors to specific cellular membranes is the predominant mechanism for initiating and compartmentalizing signal transduction by Ras GTPases. The exchange factor RasGRP1 has a C1 domain that binds the lipid diacylglycerol and thus can potentially mediate membrane localization in response to receptors that are coupled to diacylglycerol-generating phospholipase Cs. However, the C1 domain is insufficient for targeting RasGRP1 to the plasma membrane. We found that a basic/hydrophobic cluster of amino acids within the plasma membrane-targeting domain of RasGRP1 is instead responsible for plasma membrane targeting. This basic/hydrophobic cluster binds directly to phospholipid vesicles containing phosphoinositides via electrostatic interactions with polyanionic phosphoinositide headgroups and insertion of a tryptophan into the lipid bilayer. B cell antigen receptor ligation and other stimuli induce plasma membrane targeting of RasGRP1 by activating the phosphoinositide 3-kinase signaling pathway, which generates phosphoinositides within the plasma membrane. Direct detection of phosphoinositides by the basic/hydrophobic cluster of RasGRP1 provides a novel mechanism for coupling and co-compartmentalizing phosphoinositide 3-kinase and Ras signaling and, in coordination with diacylglycerol detection by the C1 domain, gives RasGRP1 the potential to serve as an integrator of converging signals from the phosphoinositide 3-kinase and phospholipase C pathways.
Collapse
Affiliation(s)
- Bari Zahedi
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3
| | | | | | | | | | | |
Collapse
|
21
|
Pharmacology, biodistribution, and efficacy of GPCR-based pepducins in disease models. Methods Mol Biol 2011; 683:259-75. [PMID: 21053136 DOI: 10.1007/978-1-60761-919-2_19] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
G protein-coupled receptors (GPCR) are a superfamily of receptors that are vital in a wide array of physiological processes. Modulation of GPCR signaling has been an intensive area of therapeutic study, mainly due to the diverse pathophysiological significance of GPCRs. Pepducins are cell-penetrating lipidated peptides designed to target the intracellular loops of the GPCR of interest. Pepducins can function as agonists or antagonists of their cognate receptor, making them highly useful compounds for the study of GPCR signaling. Pepducins have been used to control platelet-dependent hemostasis and thrombosis, tumor growth, invasion, and angiogenesis, as well as to improve sepsis outcomes in mice. Pepducins have been successfully designed against a wide variety of GPCRs including the protease-activated receptors (PAR1, 2, 4), the chemokine receptors (CXCR1, 2, 4), the sphingosine-1-phosphate receptor (S1P3), the adrenergic receptor (ADRA1B), and have the potential to help reveal the functions of intractable GPCRs. Pharmacokinetic, pharmacodynamic, and biodistribution studies have showed that pepducins are widely distributed throughout the body except the brain and possess appropriate drug-like properties for use in vivo. Here, we discuss the delivery, pharmacology, and biodistribution of pepducins, as well as the effects of pepducins in models of inflammation, cardiovascular disease, cancer, and angiogenesis.
Collapse
|
22
|
Vigil D, Cherfils J, Rossman KL, Der CJ. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer 2010; 10:842-57. [PMID: 21102635 PMCID: PMC3124093 DOI: 10.1038/nrc2960] [Citation(s) in RCA: 622] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is now considerable and increasing evidence for a causal role for aberrant activity of the Ras superfamily of small GTPases in human cancers. These GTPases function as GDP-GTP-regulated binary switches that control many fundamental cellular processes. A common mechanism of GTPase deregulation in cancer is the deregulated expression and/or activity of their regulatory proteins, guanine nucleotide exchange factors (GEFs) that promote formation of the active GTP-bound state and GTPase-activating proteins (GAPs) that return the GTPase to its GDP-bound inactive state. In this Review, we assess the association of GEFs and GAPs with cancer and their druggability for cancer therapeutics.
Collapse
Affiliation(s)
- Dominico Vigil
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Department of Pharmacology, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
23
|
Liu F, Li Y, Yu Y, Fu S, Li P. Cloning of novel tumor metastasis-related genes from the highly metastatic human lung adenocarcinoma cell line Anip973. J Genet Genomics 2009; 34:189-95. [PMID: 17498616 DOI: 10.1016/s1673-8527(07)60020-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 06/02/2006] [Indexed: 11/18/2022]
Abstract
A cDNA library was successfully constructed from Anip973, a human lung adenocarcinoma cell line with high metastatic potential. NIH3T3 cells were stably transfected using this cDNA library and screened for morphological changes in a soft agar assay. Genomic DNA was isolated from putative clones and the integrated sequence was retrieved by PCR and sequencing. Three known genes, ribosomal protein L23, hypothetical protein FLJ22104, and serine protease inhibitor, kazal type 6 and a number of 5'-terminally truncated sequences were identified. Furthermore, cells transfected with ribosomal protein L23 was highly invasive compared with the empty vector as control (P<0.02). These results indicate that the expression cloning of cDNA libraries in NIH3T3 cells and subsequent screening for loss of contact inhibition in soft agar is a viable tool for identifying tumor-related genes and ribosomal protein L23 gene plays a role in cell movement and metastasis.
Collapse
Affiliation(s)
- Fangli Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150086, China
| | | | | | | | | |
Collapse
|
24
|
Elzer KL, Heitzman DA, Chernin MI, Novak JF. Differential effects of serine proteases on the migration of normal and tumor cells: implications for tumor microenvironment. Integr Cancer Ther 2009; 7:282-94. [PMID: 19116224 DOI: 10.1177/1534735408327250] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The supporting role of proteases in tumor progression and invasion is well known; however, the use of proteases as therapeutic agents has also been demonstrated. In this article, the authors report on the differential effects of exogenous serine proteases on the motility of tumor and normal cells. The treatment of normal and tumor cells with a single dose of pancreatic serine proteases, trypsin (TR) and chymotrypsin (CH), leads to a concentration-dependent response by cells, first accelerating and then slowing mobility. Tumor cells are 10 to 20 times more sensitive to exogenous TR/CH, suggesting that a single dose of proteases may cause discordant movements of normal and tumor cells within the tumor environment. The inhibitory effects of TR on cell motility are contradicted by thrombin (TH), particularly in the regulation of normal cells' migration. The purpose of this investigation was to ascertain the role of protease-activated receptors (PARs) in terms of normal and tumor cell motility. Duplicate treatments with proteases resulted in diminished mobility of both normal and tumor cells. Repeated application of TR and TH in 1-hour treatment intervals initially desensitizes cell surface PARs. However, cell surface PARs reappear regardless of subsequent protease treatments in both normal and tumor cells. The resensitization process is retarded in tumor cells when compared with normal cells. This is evidenced by lower expression of PARs as well as by their relocalization at the tumor cell surfaces. Under these conditions, normal cells remain responsive to exogenous proteases in terms of cell motility. Exogenous proteases do not modulate motility of repeatedly stimulated tumor cells, and consequently, the migration of tumor cells appears disconnected from the PAR signaling pathways. The use of activating peptides in lieu of the cognate proteases for a given PAR system indicated that proteases may act through additional targets not regulated by PAR signaling. We hypothesize that the divergent migration patterns of normal and tumor cells due to exposure to proteases is in part mediated by PARs. Thus, treatment with exogenous proteases may cause rearrangement of the tumor and stromal cells within the tumor microenvironment. Such topographical effects may lead to the inhibition of tumor progression and metastasis development.
Collapse
Affiliation(s)
- Kirsten L Elzer
- Department of Pharmacology, Cornell University, Ithaca, New York, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Genetic screens have been proven powerful for the identification of components of various signaling pathways. For mammalian cells, methods for genetic screens are limited. We have developed the ERM (enhanced retroviral mutagen) mutagenesis approach that has been shown to be efficient and amenable to genomewide genetic screens in mammalian cells without the need of cDNA library construction. The ERM method offers several advantages, including conditional gene expression and the flexibility to tag endogenous genes with different epitope-tag and marker sequences. This chapter will discuss general design, procedures, and applications of the ERM strategy.
Collapse
|
26
|
Kurita R, Oikawa T, Okada M, Yokoo T, Kurihara Y, Honda Y, Kageyama R, Suehiro Y, Okazaki T, Iga M, Miyoshi H, Tani K. Construction of a high-performance human fetal liver-derived lentiviral cDNA library. Mol Cell Biochem 2008; 319:181-7. [DOI: 10.1007/s11010-008-9891-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Accepted: 07/24/2008] [Indexed: 12/16/2022]
|
27
|
Tchivilev I, Madamanchi NR, Vendrov AE, Niu XL, Runge MS. Identification of a protective role for protein phosphatase 1cgamma1 against oxidative stress-induced vascular smooth muscle cell apoptosis. J Biol Chem 2008; 283:22193-205. [PMID: 18540044 DOI: 10.1074/jbc.m803452200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The development of therapeutic strategies to inhibit reactive oxygen species (ROS)-mediated damage in blood vessels has been limited by a lack of specific targets for intervention. Targeting ROS-mediated events in the vessel wall is of interest, because ROS play important roles throughout atherogenesis. In early atherosclerosis, ROS stimulate vascular smooth muscle cell (VSMC) growth, whereas in late stages of lesion development, ROS induce VSMC apoptosis, causing atherosclerotic plaque instability. To identify putative protective genes against oxidative stress, mouse aortic VSMC were infected with a retroviral human heart cDNA expression library, and apoptosis was induced in virus-infected cells by 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) treatment. A total of 17 different, complete cDNAs were identified from the DMNQ-resistant VSMC clones by PCR amplification and sequencing. The cDNA encoding PP1cgamma1 (catalytic subunit of protein phosphatase 1) was present in several independent DMNQ-resistant VSMC clones. DMNQ increased mitochondrial ROS production, caspase-3/7 activity, DNA fragmentation, and decreased mitochondrial transmembrane potential in VSMC while decreasing PP1cgamma1 activity and expression. Depletion of PP1cgamma1 expression by short hairpin RNA significantly enhanced basal as well as DMNQ-induced VSMC apoptosis. PP1cgamma1 overexpression abrogated DMNQ-induced JNK1 activity, p53 Ser(15) phosphorylation, and Bax expression and protected VSMC against DMNQ-induced apoptosis. In addition, PP1cgamma1 overexpression attenuated DMNQ-induced caspase-3/7 activation and DNA fragmentation. Inhibition of p53 protein expression using small interfering RNA abrogated DMNQ-induced Bax expression and significantly attenuated VSMC apoptosis. Together, these data indicate that PP1cgamma1 overexpression promotes VSMC survival by interfering with JNK1 and p53 phosphorylation cascades involved in apoptosis.
Collapse
Affiliation(s)
- Igor Tchivilev
- Department of Medicine, Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, North Carolina 27599-7126, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
There are many applications in which retrovirus vectors are used as transduction agents. In some cases, the vector carries a gene that one wishes to express in a target cell in order to study the function of that gene. In other cases, the virus is used to introduce a histochemical marker gene into cells in order to follow their fate. Retrovirus vectors can also be used in a variety of cells type to investigate regulatory sequences in which a reporter gene and regulatory sequences are carried by the vector and to immortalize or transform primary cells by transduction of oncogenes. For each application, the infection protocol may vary and must often be optimized. Guidelines for infection of cells in some typical in vivo and in vitro experiments are presented in this overview.
Collapse
Affiliation(s)
- C Cepko
- Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
29
|
Buvinic S, Bravo-Zehnder M, Boyer JL, Huidobro-Toro JP, González A. Nucleotide P2Y1 receptor regulates EGF receptor mitogenic signaling and expression in epithelial cells. J Cell Sci 2008; 120:4289-301. [PMID: 18057028 DOI: 10.1242/jcs.03490] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) function is transregulated by a variety of stimuli, including agonists of certain G-protein-coupled receptors (GPCRs). One of the most ubiquitous GPCRs is the P2Y(1) receptor (P2RY1, hereafter referred to as P2Y(1)R) for extracellular nucleotides, mainly ADP. Here, we show in tumoral HeLa cells and normal FRT epithelial cells that P2Y(1)R broadcasts mitogenic signals by transactivating the EGFR. The pathway involves PKC, Src and cell surface metalloproteases. Stimulation of P2Y(1)R for as little as 15-60 minutes triggers mitogenesis, mirroring the half-life of extracellular ADP. Apyrase degradation of extracellular nucleotides and drug inhibition of P2Y(1)R, both reduced basal cell proliferation of HeLa and FRT cells, but not MDCK cells, which do not express P2Y(1)R. Thus, cell-released nucleotides constitute strong mitogenic stimuli, which act via P2Y(1)R. Strikingly, MDCK cells ectopically expressing P2Y(1)R display a highly proliferative phenotype that depends on EGFR activity associated with an increased level of EGFR, thus disclosing a novel aspect of GPCR-mediated regulation of EGFR function. These results highlight a role of P2Y(1)R in EGFR-dependent epithelial cell proliferation. P2Y(1)R could potentially mediate both trophic stimuli of basally released nucleotides and first-line mitogenic stimulation upon tissue damage. It could also contribute to carcinogenesis and serve as target for antitumor therapies.
Collapse
Affiliation(s)
- Sonja Buvinic
- Centro de Regulación Celular y Patología JV Luco, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330033, Santiago, Chile
| | | | | | | | | |
Collapse
|
30
|
Abstract
Bovine viral diarrhea virus (BVDV) is a positive-strand RNA virus and a member of the genus Pestivirus in the family Flaviviridae. To identify and characterize essential factors required for BVDV replication, a library expressing random fragments of the BVDV genome was screened for sequences that act as transdominant inhibitors of viral replication by conferring resistance to cytopathic BVDV-induced cell death. We isolated a BVDV-nonpermissive MDBK cell clone that harbored a 1.2-kb insertion spanning the carboxy terminus of the envelope glycoprotein 1 (E1), the envelope glycoprotein E2, and the amino terminus of p7. Confirming the resistance phenotype conferred by this library clone, naïve MDBK cells expressing this fragment were found to be 100- to 1,000-fold less permissive to both cytopathic and noncytopathic BVDV infection compared to parental MDBK cells, although these cells remained fully permissive to vesicular stomatitis virus. This restriction could be overcome by electroporation of BVDV RNA, indicating a block at one or more steps in viral entry prior to translation of the viral RNA. We determined that the E2 ectodomain was responsible for the inhibition to BVDV entry and that this block occurred downstream from BVDV interaction with the cellular receptor CD46 and virus binding, suggesting interference with a yet-unidentified BVDV entry factor.
Collapse
|
31
|
Arora P, Ricks TK, Trejo J. Protease-activated receptor signalling, endocytic sorting and dysregulation in cancer. J Cell Sci 2007; 120:921-8. [PMID: 17344429 DOI: 10.1242/jcs.03409] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Protease-activated receptors (PARs) are G-protein-coupled receptors (GPCRs) that are activated by a unique proteolytic mechanism. PARs play crucial roles in hemostasis and thrombosis, as well as in inflammation and vascular development. Coagulant proteases, which are generated at sites of vascular injury, act mainly through PARs to elicit signalling in a variety of cell types. Since PARs are irreversibly activated signalling must be tightly regulated. Desensitization and trafficking of proteolytically activated PARs control the magnitude, duration and spatial aspects of receptor signalling. Recent studies have revealed novel endocytic sorting mechanisms that regulate PAR signalling. PARs have also been implicated in tumor progression. PARs are overexpressed in several types of malignant cancer, transmit signals in response to tumor-generated proteases and promote tumor growth, invasion and metastasis. Recent work also indicates that matrix metalloprotease 1 (MMP-1) signals through PAR1 to promote tumor growth and invasion. In addition to PAR overexpression, tumor cells display aberrant PAR1 trafficking, which causes persistent signalling and cellular invasion. Thus, a novel type of gain-of-function in GPCR signalling in cancer can be acquired through dysregulation of receptor trafficking.
Collapse
Affiliation(s)
- Puneeta Arora
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | | | | |
Collapse
|
32
|
Kim SS, Shago M, Kaustov L, Boutros PC, Clendening JW, Sheng Y, Trentin GA, Barsyte-Lovejoy D, Mao DY, Kay R, Jurisica I, Arrowsmith CH, Penn LZ. CUL7 Is a Novel Antiapoptotic Oncogene. Cancer Res 2007; 67:9616-22. [DOI: 10.1158/0008-5472.can-07-0644] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Hillgenberg M, Hofmann C, Stadler H, Löser P. High-efficiency system for the construction of adenovirus vectors and its application to the generation of representative adenovirus-based cDNA expression libraries. J Virol 2007; 80:5435-50. [PMID: 16699024 PMCID: PMC1472155 DOI: 10.1128/jvi.00218-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We here describe a convenient system for the production of recombinant adenovirus vectors and its use for the construction of a representative adenovirus-based cDNA expression library. The system is based on direct site-specific insertion of transgene cassettes into a replicating donor virus. The transgene is inserted into a donor plasmid containing the viral 5' inverted terminal repeat, the complete viral packaging signal, and a single loxP site. The plasmid is then transfected into a Cre recombinase-expressing packaging cell line that has been infected with a donor virus containing a partially deleted packaging signal flanked by loxP sites. Cre recombinase, by two steps of action, sequentially catalyzes the generation of a nonpackageable donor virus acceptor substrate and the generation of the desired recombinant adenovirus vector. Due to its growth impairment, residual donor virus can efficiently be counterselected during amplification of the recombinant adenovirus vector. By using this adenovirus construction system, a plasmid-based human liver cDNA library was converted by a single step into an adenovirus-based cDNA expression library with about 10(6) independent adenovirus clones. The high-titer purified library was shown to contain about 44% of full-length cDNAs with an average insert size of 1.3 kb. cDNAs of a gene expressed at a high level (human alpha(1)-antitrypsin) and a gene expressed at a relatively low level (human coagulation factor IX) in human liver were isolated from the adenovirus-based library using an enzyme-linked immunosorbent assay-based screening procedure.
Collapse
|
34
|
Chuykin IA, Lianguzova MS, Pospelov VA. Signaling pathways regulating proliferation of mouse embryonic stem cells. ACTA ACUST UNITED AC 2007. [DOI: 10.1134/s1990519x07030017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Kim SO, Ha SD, Lee S, Stanton S, Beutler B, Han J. Mutagenesis by retroviral insertion in chemical mutagen-generated quasi-haploid mammalian cells. Biotechniques 2007; 42:493-501. [PMID: 17489237 DOI: 10.2144/000112390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Diploidy is a major obstacle to the mutagenic analysis of function in cultured mammalian cells. Here, we show that 6–8 rounds of chemical mutagenesis generates quasi-haploid cells that can be used as targets for insertional mutagenesis using a specially designed retroviral vector that permits rapid identification of disrupted genes in each cell that bears a phenotype of interest. The utility of combined chemical and insertional mutagenesis is illustrated by the identification of novel host genes that are required for macrophage sensitivity to anthrax lethal factor.
Collapse
Affiliation(s)
- Sung O Kim
- Department of Microbiology, University of Western Ontario, London, ON, Canada.
| | | | | | | | | | | |
Collapse
|
36
|
Tellez CS, Davis DW, Prieto VG, Gershenwald JE, Johnson MM, McCarty MF, Bar-Eli M. Quantitative Analysis of Melanocytic Tissue Array Reveals Inverse Correlation between Activator Protein-2α and Protease-Activated Receptor-1 Expression during Melanoma Progression. J Invest Dermatol 2007; 127:387-93. [PMID: 16946713 DOI: 10.1038/sj.jid.5700539] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The identification of molecular markers of melanoma progression is needed to more accurately stage and identify treatments for patients with malignant melanoma. Previously, we demonstrated that loss of the activator protein-2alpha (AP-2alpha) expression results in overexpression of the protease-activated receptor-1 (PAR-1) in human melanoma cell lines. Here, we used a tissue microarray platform that consisted of 64 melanocytic lesions, including dysplastic nevi (N=21), primary melanoma (N=20), and metastatic melanoma (N=23). We analyzed the expression of AP-2 and PAR-1 simultaneously by immunofluorescent microscopy with an automated quantification laser scanning cytometer. AP-2 was highly expressed in normal cutaneous melanocytes and dysplastic nevi but not in melanoma metastases. We observed a significantly higher number of AP-2-positive cells in the dysplastic nevi (P=0.0013) and primary melanoma (P=0.0023) compared to the metastatic melanoma. In contrast, we observed a significantly higher percentage of PAR-1-positive cells in the metastatic melanoma compared to dysplastic nevi (P=0.0072) and primary melanoma (P=0.0138). Increased expression of PAR-1 in metastatic melanomas contributes to tumor progression by modulating expression of genes, such as IL-8, matrix metalloproteinase-2, vascular endothelial growth factor, platelet-derived growth factor, and integrins. These findings support our hypothesis that loss of AP-2 is a crucial event in the progression of human melanoma and contributes to the acquisition of the metastatic phenotype via upregulation of PAR-1.
Collapse
Affiliation(s)
- Carmen S Tellez
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Spiegelberg BD, Hamm HE. Roles of G-protein-coupled receptor signaling in cancer biology and gene transcription. Curr Opin Genet Dev 2007; 17:40-4. [PMID: 17188489 DOI: 10.1016/j.gde.2006.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 12/11/2006] [Indexed: 11/29/2022]
Abstract
G-protein-coupled receptors (GPCRs) are ubiquitous mediators of signal transduction across mammalian cell membranes. Among other roles, GPCRs are known to regulate cellular motility, growth and differentiation, and gene transcription, three factors central to the biology of cancer. Because GPCRs are tractable drug targets, mechanisms by which receptors and their associated proteins impact cellular transformation and metastasis might lead to novel cancer therapies. Recent work has elucidated mechanisms explaining correlations between cancer progression and the expression of GPCRs, such as a protease-activated receptor (PAR1), and G-proteins, such as Galpha(12/13). Of special interest, the discovery of novel nuclear roles for heterotrimeric G-proteins expands the direct impact of G-protein signaling on processes fundamental to the pathology of cancer.
Collapse
|
38
|
Tochitani S, Hayashizaki Y. Functional screening revisited in the postgenomic era. MOLECULAR BIOSYSTEMS 2007; 3:195-207. [PMID: 17308666 DOI: 10.1039/b614882b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Functional screening can reveal a hidden function of a gene. cDNA library-based functional screening has flourished in various fields of biology so far, such as cancer biology, developmental biology and neuroscience. In the postgenomic era, however, various sequence database and public full-length cDNA resources are available, which now allow us to perform more straightforward, gene-oriented screening. Furthermore, the advent of RNA interference techniques has made it possible to perform effective loss-of-function screening. Gene-based functional screening is able to bridge the gap between genes and biological phenomena and raise important biological questions which should be tackled by integration of 'omic' datasets. These possible roles of functional screening will become more and more important in modern molecular biology moving toward the system level understanding of living organisms.
Collapse
Affiliation(s)
- Shiro Tochitani
- RNA Resource Exploration Laboratory, Functional RNA Research Program, Frontier Research System, RIKEN, Yokohama, Kanagawa, Japan.
| | | |
Collapse
|
39
|
Abstract
Metastasis is the spread of tumor cells from a primary site to distant organs. It is the major cause of cancer morbidity and death. In the last few decades, significant advances have been made in surgical techniques, radiation therapy delivery, and chemotherapy including the development of combination regimens and agents inhibiting newly characterized biological targets. Treatment of metastasis, however, remains the most challenging task in cancer therapy because metastatic growth relies on complex interactions between tumor cells and the host and is often resistant to all therapeutic modalities. Management of metastasis in bone is especially challenging given the difficulty of access for therapeutic agents. Contemporary research seeks to explain the striking organ specificity observed in metastasis. In this article, we will examine historic perspectives on site-specific metastasis and review cellular and molecular evidence pertinent to the mechanisms of organ specificity. We will discuss a number of studies that aim to identify gene signatures correlating with organ-selective metastasis using microarray technology. Lastly, we will discuss potential areas of future research including microRNAs, proteomics, and the development of diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Charlotte Y Dai
- Department of Radiation Oncology, UCSF Comprehensive Cancer Center, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
40
|
Kostenko EV, Olabisi OO, Sahay S, Rodriguez PL, Whitehead IP. Ccpg1, a novel scaffold protein that regulates the activity of the Rho guanine nucleotide exchange factor Dbs. Mol Cell Biol 2006; 26:8964-75. [PMID: 17000758 PMCID: PMC1636807 DOI: 10.1128/mcb.00670-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dbs is a Rho-specific guanine nucleotide exchange factor (RhoGEF) with in vitro exchange activity specific for RhoA and Cdc42. Like many RhoGEF family members, the in vivo exchange activity of Dbs is restricted in a cell-specific manner. Here we report the characterization of a novel scaffold protein (designated cell cycle progression protein 1 [Ccpg1]) that interacts with Dbs and modulates its in vivo exchange specificity. When coexpressed in mammalian cells, Ccpg1 binds to the Dbl homology/pleckstrin homology domain tandem motif of Dbs and inhibits its exchange activity toward RhoA, but not Cdc42. Expression of Ccpg1 correlates with the ability of Dbs to activate endogenous RhoA in cultured cells, and suppression of endogenous Ccpg1 expression potentiates Dbs exchange activity toward RhoA. The isolated Dbs binding domain of Ccpg1 is not sufficient to suppress Dbs exchange activity on RhoA, thus suggesting a regulatory interaction. Ccpg1 mediates recruitment of endogenous Src kinase into Dbs-containing complexes and interacts with the Rho family member Cdc42. Collectively, our studies suggest that Ccpg1 represents a new class of regulatory scaffold protein that can function as both an assembly platform for Rho protein signaling complexes and a regulatory protein which can restrict the substrate utilization of a promiscuous RhoGEF family member.
Collapse
Affiliation(s)
- Elena V Kostenko
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark, NJ 07101-1709, USA
| | | | | | | | | |
Collapse
|
41
|
Darbro BW, Lee KM, Nguyen NK, Domann FE, Klingelhutz AJ. Methylation of the p16(INK4a) promoter region in telomerase immortalized human keratinocytes co-cultured with feeder cells. Oncogene 2006; 25:7421-33. [PMID: 16767161 PMCID: PMC1894570 DOI: 10.1038/sj.onc.1209729] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human keratinocytes grown in co-culture with fibroblast feeder cells have an extended in vitro lifespan and delayed accumulation of the tumor suppressor protein p16(INK4a) when compared to the same cells grown on tissue culture plastic alone. Previous studies have indicated that human keratinocytes can be immortalized by telomerase activity alone when grown in co-culture with feeder cells, suggesting that loss of the p16(INK4a)/Rb pathway is not required for immortalization. Using two independent human keratinocyte cell strains, we found that exogenous telomerase expression and co-culture with feeder cells results in efficient extension of lifespan without an apparent crisis. However, when these cells were transferred from the co-culture environment to plastic alone they experienced only a brief period of slowed growth before continuing to proliferate indefinitely. Examination of immortal cell lines demonstrated p16(INK4a) promoter methylation had occurred in both the absence and presence of feeder cells. Reintroduction of p16(INK4a) into immortal cell lines resulted in rapid growth arrest. Our results suggest that p16(INK4a)/Rb-induced telomere-independent senescence, although delayed in the presence of feeders, still provides a proliferation barrier to human keratinocytes in this culture system and that extended culture of telomerase-transduced keratinocytes on feeders can lead to the methylation of p16(INK4a).
Collapse
Affiliation(s)
- BW Darbro
- Interdisciplinary Program in Molecular Biology and Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - KM Lee
- Department of Microbiology and Holden Cancer Center, University of Iowa, Iowa City, IA, USA
| | - NK Nguyen
- Department of Microbiology and Holden Cancer Center, University of Iowa, Iowa City, IA, USA
| | - FE Domann
- Department of Radiation Oncology and the Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, USA
| | - AJ Klingelhutz
- Department of Microbiology and Holden Cancer Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
42
|
Nguyen N, Kuliopulos A, Graham RA, Covic L. Tumor-derived Cyr61(CCN1) promotes stromal matrix metalloproteinase-1 production and protease-activated receptor 1-dependent migration of breast cancer cells. Cancer Res 2006; 66:2658-65. [PMID: 16510585 DOI: 10.1158/0008-5472.can-05-2082] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Matrix metalloproteinases (MMPs) play a central role in remodeling the tumor-stromal microenvironment. We recently determined that stromal-derived MMP-1 also acts as a signaling molecule by cleaving protease-activated receptor 1 (PAR1) to cause breast cancer cell migration and invasion. Here, we show that ectopic PAR1 expression induces expression of the angiogenic factor Cyr61(CCN1) in breast cancer cells. The tumor-derived Cyr61 acts as an invasogenic signaling molecule that induces MMP-1 expression in adjacent stromal fibroblasts. Gene silencing of Cyr61 in breast cancer cells suppresses MMP-1 induction in stromal fibroblasts resulting in a major loss in migration of the cancer cells toward the fibroblasts. Cyr61-dependent loss of migration was complemented by exogenous MMP-1 and required the presence of the functional PAR1 receptor on the breast cancer cells. These results suggest that interrupting tumor-stromal cell communication by targeting Cyr61 may provide an alternative therapeutic approach for the treatment of invasive breast cancer.
Collapse
Affiliation(s)
- Nga Nguyen
- Division of Hematology/Oncology, Molecular Oncology Research Institute, New England Medical Center, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
43
|
Morris DR, Ding Y, Ricks TK, Gullapalli A, Wolfe BL, Trejo J. Protease-activated receptor-2 is essential for factor VIIa and Xa-induced signaling, migration, and invasion of breast cancer cells. Cancer Res 2006; 66:307-14. [PMID: 16397244 DOI: 10.1158/0008-5472.can-05-1735] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protease-activated receptors (PAR) are G protein-coupled receptors that function as cell-surface sensors for coagulant proteases, as well as other proteases associated with the tumor microenvironment. PAR1 is activated by thrombin whereas the upstream coagulant protease VIIa bound to tissue factor and Xa can activate both PAR1 and PAR2. PAR1 has been implicated in tumor cell growth, migration, and invasion whereas the function of PAR2 in these processes is largely unknown. Towards defining the functional importance of PAR2 in cancer cells, we used small interfering RNAs to deplete highly invasive breast cancer cells of endogenous PAR proteins. Our findings strongly suggest that PAR2 is critical for MDA-MB-231 and BT549 breast cancer cell migration and invasion towards NIH 3T3 fibroblast conditioned medium. To define the relative importance of PAR1 versus PAR2 in mediating factor VIIa and Xa responses, we assessed signaling in cancer cells lacking either endogenous PAR1 or PAR2 proteins. Strikingly, in MDA-MB-231 cells depleted of PAR2, we observed a marked inhibition of VIIa and Xa signaling to phosphoinositide hydrolysis and extracellular signal-regulated kinase 1/2 activation whereas signaling by VIIa and Xa remained intact in PAR1-deficient cells. Factor VIIa and Xa-induced cellular migration was also impaired in MDA-MB-231 cells deficient in PAR2 but not in cells lacking PAR1. Together, these studies reveal the novel findings that PAR2, a second protease-activated G protein-coupled receptor, has a critical role in breast cancer cell migration and invasion and functions as the endogenous receptor for coagulant proteases VIIa and Xa in these cells.
Collapse
Affiliation(s)
- Dionne R Morris
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, USA
| | | | | | | | | | | |
Collapse
|
44
|
Marín YE, Namkoong J, Shin SS, Raines J, Degenhardt K, White E, Chen S. Grm5 expression is not required for the oncogenic role of Grm1 in melanocytes. Neuropharmacology 2005; 49 Suppl 1:70-9. [PMID: 16040064 DOI: 10.1016/j.neuropharm.2005.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 05/13/2005] [Accepted: 05/26/2005] [Indexed: 11/18/2022]
Abstract
Melanoma is the aberrant proliferation of melanocytes, the cells in the skin responsible for pigment (melanin) production. In its early stages, melanoma can be surgically removed with great success, however, advanced stages of melanoma have a high mortality rate due to the lack of responsiveness to currently available therapies. We have previously characterized a mouse melanoma model, TG-3, which has implicated the ectopic expression of metabotropic glutamate receptor 1 (Grm1, formerly mGluR1), in melanomagenesis and metastasis [Pollock et al., 2003. Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia. Nat Genet. 34, 108-112.]. Here we report the characterization of several in vitro cell lines derived from independent mouse melanoma tumors. These cell lines show characteristic phenotypes of transformed melanocytes, and express Grm1, and Grm5 (another metabotropic glutamate receptor), as well as melanocyte-specific protein markers. To investigate the possible role of Grm5 in vivo during melanoma development in our mice, we have crossed Grm5 null mice with TG-3, generating a new line of transgenic mice, TGM. TGMs, which are homozygote knockouts for Grm5 and carry the TG transgene, develop tumors with onset, progression, and metastasis very similar to that described for TG-3. Taken together, these results indicate that Grm1 can act as an oncogene in melanocytes independently of Grm5 expression.
Collapse
MESH Headings
- Animals
- Blotting, Western/methods
- Ear Neoplasms/metabolism
- Ear Neoplasms/pathology
- Fluorescent Antibody Technique/methods
- Gene Expression Regulation, Neoplastic/physiology
- Humans
- Melanocytes/metabolism
- Melanoma/metabolism
- Melanoma/pathology
- Melanoma, Experimental/metabolism
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Transgenic
- Oxidoreductases/metabolism
- RNA, Messenger/metabolism
- Receptor, Metabotropic Glutamate 5
- Receptors, Metabotropic Glutamate/deficiency
- Receptors, Metabotropic Glutamate/metabolism
- Receptors, Metabotropic Glutamate/physiology
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Tetrazolium Salts
- Thiazoles
- Time Factors
- Transfection/methods
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Yarí E Marín
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, 213, Ernest Mario School of Pharmacy, Rutgers University, 164 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 2005; 120:303-13. [PMID: 15707890 DOI: 10.1016/j.cell.2004.12.018] [Citation(s) in RCA: 660] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 11/09/2004] [Accepted: 12/06/2004] [Indexed: 12/25/2022]
Abstract
Protease-activated receptors (PARs) are a unique class of G protein-coupled receptors that play critical roles in thrombosis, inflammation, and vascular biology. PAR1 is proposed to be involved in the invasive and metastatic processes of various cancers. However, the protease responsible for activating the proinvasive functions of PAR1 remains to be identified. Here, we show that expression of PAR1 is both required and sufficient to promote growth and invasion of breast carcinoma cells in a xenograft model. Further, we show that the matrix metalloprotease, MMP-1, functions as a protease agonist of PAR1 cleaving the receptor at the proper site to generate PAR1-dependent Ca2+ signals and migration. MMP-1 activity is derived from fibroblasts and is absent from the breast cancer cells. These results demonstrate that MMP-1 in the stromal-tumor microenvironment can alter the behavior of cancer cells through PAR1 to promote cell migration and invasion.
Collapse
Affiliation(s)
- Adrienne Boire
- Molecular Oncology Research Institute, Tufts-New England Medical Center, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
46
|
Mourtada-Maarabouni M, Kirkham L, Farzaneh F, Williams GT. Regulation of apoptosis by fau revealed by functional expression cloning and antisense expression. Oncogene 2005; 23:9419-26. [PMID: 15543234 DOI: 10.1038/sj.onc.1208048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional expression cloning is a powerful strategy for identifying critical steps in biological pathways independently of prior assumptions. It is particularly suitable for the identification of molecules crucial to the control of apoptosis. Our screen for sequences suppressing T-cell apoptosis isolated a sequence antisense to fau (Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV)-associated ubiquitously expressed gene). The fox gene in FBR murine osteosarcoma virus is also antisense to fau and several reports have indicated that fau displays tumour suppressor and oncogenic properties in different contexts. Our observations indicate that the fau antisense sequence suppresses expression of endogenous fau mRNA and produces resistance to apoptosis induced both by the glucocorticoid analogue dexamethasone' by ultraviolet radiation, and by the anticancer drug cisplatin. In all cases, colony-forming ability is protected, indicating that fau affects the critical events prior to commitment to cell death. Overexpression of fau in the sense orientation induces cell death, which is inhibited both by Bcl-2 and by inhibition of caspases, in line with its proposed role in apoptosis.
Collapse
|
47
|
Abstract
Matrix metalloproteinases, or MMPs, have been implicated in tumor invasion and metastasis by virtue of their ability to degrade the extracellular matrix (ECM) barrier. However, MMPs are also capable of cleaving non-ECM molecules. The protease-activated receptors (PARs) are the latest MMP targets. The thrombin receptor PAR1 has now been shown to be cleaved and activated on the tumor cell surface by stromal-derived MMP1. The resulting PAR1 activates intracellular G proteins to turn on the migratory and invasive program in tumor cells. This MMP-PAR axis may represent a novel signaling pathway communicating between tumor and stromal cells during tumor progression.
Collapse
Affiliation(s)
- Duanqing Pei
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
48
|
Horvath AJ, Forsyth SL, Coughlin PB. Expression patterns of murine antichymotrypsin-like genes reflect evolutionary divergence at the Serpina3 locus. J Mol Evol 2005; 59:488-97. [PMID: 15638460 DOI: 10.1007/s00239-004-2640-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Members of the serpin (serine protease inhibitor) superfamily of genes are well represented in both human and murine genomes. In many cases it is possible to identify a definite ortholog on the basis of sequence similarity and by examining the surrounding genes at syntenic loci. We have recently examined the murine serpin locus at 12F1 and observed that the single human alpha1-antichymotrypsin gene is represented by 14 paralogs. It is also known that the single human alpha1-antitrypsin gene has five paralogs in the mouse. The forces driving this gene multiplication are unknown and there are no data describing the function of the various serpin gene products at the alpha1-antichymotrypsin multigene locus. Examination of the predicted amino acid sequences shows that the serpins are likely to be functional protease inhibitors but with differing target protease specificities. In order to begin to address the question of the problem presented by the murine alpha1-antichymotrypsins, we have used RT-PCR to examine the expression pattern of these serpin genes. Our data show that the divergent reactive center loop sequence, and predictably variable target protease specificity, is reflected in tissue-specific expression for many of the family members. These observations add weight to the hypothesis that the antichymotrypsin-like serpins have an evolutionary importance which has led to their expansion and diversification in multiple species.
Collapse
Affiliation(s)
- Anita J Horvath
- Australian Centre for Blood Diseases, Alfred Medical Research Precinct, Monash University, Prahran 3181, Australia
| | | | | |
Collapse
|
49
|
Kostenko EV, Mahon GM, Cheng L, Whitehead IP. The Sec14 Homology Domain Regulates the Cellular Distribution and Transforming Activity of the Rho-specific Guanine Nucleotide Exchange Factor Dbs. J Biol Chem 2005; 280:2807-17. [PMID: 15531584 DOI: 10.1074/jbc.m411139200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dbs is a Rho-specific guanine nucleotide exchange factor that was identified in a screen for proteins whose overexpression cause deregulated growth in murine fibroblasts. Dbs contains multiple recognizable motifs including a centrally located Rho-specific guanine nucleotide exchange factor domain, a COOH-terminal Src homology 3 domain, two spectrin-like repeats, and a recently identified NH(2)-terminal Sec14 homology domain. The transforming potential of Dbs is substantially activated by the removal of inhibitory sequences that lie outside of the core catalytic sequences, and in this current study we mapped this inhibition to the Sec14 domain. Surprisingly removal of the NH(2) terminus did not alter the catalytic activity of Dbs in vivo but rather altered its subcellular distribution. Whereas full-length Dbs was distributed primarily in a perinuclear structure that coincides with a marker for the Golgi apparatus, removal of the Sec14 domain was associated with translocation of Dbs to the cell periphery where it accumulated within membrane ruffles and lamellipodia. However, translocation of Dbs and the concomitant changes in the actin cytoskeleton were not sufficient to fully activate Dbs transformation. The Sec14 domain also forms intramolecular contacts with the pleckstrin homology domain, and these contacts must also be relieved to achieve full transforming activity. Collectively these observations suggest that the Sec14 domain regulates Dbs transformation through at least two distinct mechanisms, neither of which appears to directly influence the in vivo exchange activity of the protein.
Collapse
Affiliation(s)
- Elena V Kostenko
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
50
|
Marín YE, Chen S. Involvement of metabotropic glutamate receptor�1, a G protein coupled receptor, in melanoma development. J Mol Med (Berl) 2004; 82:735-49. [PMID: 15322701 DOI: 10.1007/s00109-004-0566-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 05/18/2004] [Indexed: 01/02/2023]
Abstract
Melanoma is the aberrant proliferation of melanocytes, the cells in the skin responsible for pigment production. In the United States the current lifetime risk of melanoma development is 1 in 57 in males and 1 in 81 in females. In its early stages melanoma can be surgically removed with great success; however, advanced stages of melanoma have a high mortality rate due to the lack of responsiveness to currently available therapies. The development of animal models to be used in the studies of melanoma will provide the means for developing improved and targeted treatments for this disease. This review focuses on the recent report of a mouse melanoma model, TG-3, which has implicated the ectopic expression of the metabotropic glutamate receptor 1 (Grm1), a G protein coupled receptor (GPCR), in melanomagenesis and metastasis. The involvement of other GPCRs in cellular transformation, particularly GPCRs in melanoma biology, and signaling of Grm1 are also discussed.
Collapse
Affiliation(s)
- Yarí E Marín
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, 164 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | | |
Collapse
|