1
|
Uttley K, Papanastasiou AS, Lahne M, Brisbane JM, MacDonald RB, Bickmore WA, Bhatia S. Unique activities of two overlapping PAX6 retinal enhancers. Life Sci Alliance 2023; 6:e202302126. [PMID: 37643867 PMCID: PMC10465922 DOI: 10.26508/lsa.202302126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Enhancers play a critical role in development by precisely modulating spatial, temporal, and cell type-specific gene expression. Sequence variants in enhancers have been implicated in diseases; however, establishing the functional consequences of these variants is challenging because of a lack of understanding of precise cell types and developmental stages where the enhancers are normally active. PAX6 is the master regulator of eye development, with a regulatory landscape containing multiple enhancers driving the expression in the eye. Whether these enhancers perform additive, redundant or distinct functions is unknown. Here, we describe the precise cell types and regulatory activity of two PAX6 retinal enhancers, HS5 and NRE. Using a unique combination of live imaging and single-cell RNA sequencing in dual enhancer-reporter zebrafish embryos, we uncover differences in the spatiotemporal activity of these enhancers. Our results show that although overlapping, these enhancers have distinct activities in different cell types and therefore likely nonredundant functions. This work demonstrates that unique cell type-specific activities can be uncovered for apparently similar enhancers when investigated at high resolution in vivo.
Collapse
Affiliation(s)
- Kirsty Uttley
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Andrew S Papanastasiou
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Manuela Lahne
- UCL Institute of Ophthalmology, University College London, Greater London, UK
| | - Jennifer M Brisbane
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Ryan B MacDonald
- UCL Institute of Ophthalmology, University College London, Greater London, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Shipra Bhatia
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Daruich A, Duncan M, Robert MP, Lagali N, Semina EV, Aberdam D, Ferrari S, Romano V, des Roziers CB, Benkortebi R, De Vergnes N, Polak M, Chiambaretta F, Nischal KK, Behar-Cohen F, Valleix S, Bremond-Gignac D. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog Retin Eye Res 2023; 95:101133. [PMID: 36280537 PMCID: PMC11062406 DOI: 10.1016/j.preteyeres.2022.101133] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Congenital PAX6-aniridia, initially characterized by the absence of the iris, has progressively been shown to be associated with other developmental ocular abnormalities and systemic features making congenital aniridia a complex syndromic disorder rather than a simple isolated disease of the iris. Moreover, foveal hypoplasia is now recognized as a more frequent feature than complete iris hypoplasia and a major visual prognosis determinant, reversing the classical clinical picture of this disease. Conversely, iris malformation is also a feature of various anterior segment dysgenesis disorders caused by PAX6-related developmental genes, adding a level of genetic complexity for accurate molecular diagnosis of aniridia. Therefore, the clinical recognition and differential genetic diagnosis of PAX6-related aniridia has been revealed to be much more challenging than initially thought, and still remains under-investigated. Here, we update specific clinical features of aniridia, with emphasis on their genotype correlations, as well as provide new knowledge regarding the PAX6 gene and its mutational spectrum, and highlight the beneficial utility of clinically implementing targeted Next-Generation Sequencing combined with Whole-Genome Sequencing to increase the genetic diagnostic yield of aniridia. We also present new molecular mechanisms underlying aniridia and aniridia-like phenotypes. Finally, we discuss the appropriate medical and surgical management of aniridic eyes, as well as innovative therapeutic options. Altogether, these combined clinical-genetic approaches will help to accelerate time to diagnosis, provide better determination of the disease prognosis and management, and confirm eligibility for future clinical trials or genetic-specific therapies.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Melinda Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Elena V Semina
- Department of Pediatrics, Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, 53226, USA
| | - Daniel Aberdam
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, Venice, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiolological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Cyril Burin des Roziers
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Rabia Benkortebi
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nathalie De Vergnes
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris Cité University, INSERM U1016, Institut IMAGINE, France
| | | | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Sophie Valleix
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
3
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
4
|
Mejia-Vergara AJ, Karanjia R, Sadun AA. OCT parameters of the optic nerve head and the retina as surrogate markers of brain volume in a normal population, a pilot study. J Neurol Sci 2020; 420:117213. [PMID: 33271374 DOI: 10.1016/j.jns.2020.117213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 12/26/2022]
Abstract
The relationship between optical coherence tomography (OCT) measurements of the retinal structures has been described for various neurological diseases including Multiple Sclerosis (MS), Alzheimer's disease (AD) and Parkinson's disease (PD). Brain volume changes, both globally and by area, are associated with some of these same diseases, yet the correlation of OCT and disease is not fully elucidated. Our study looked at normal subjects, at the correlation of OCT measurements and brain volumes, both globally and for specific regions including the pericalcarine grey matter, entorhinal grey matter, and cerebellar volume using a retrospective, cross-sectional cohort study design. Thickness of the retinal nerve fiber layer (RNFL) as measured by OCT, correlated with volume of the pericalcarine grey matter, when adjusted for age and gender. Similarly, thickness of the ganglion cell layer-inner plexiform layer complex may be associated with both entorhinal grey matter volumes and total cerebellar volumes, although our pilot study did not reach statistical significance. This suggests that both eye and brain volumes follow a similar trajectory and understanding the inter-relationship of these structures will aid in the analysis of changes seen in disease. Further studies are needed to longitudinally demonstrate these relationships.
Collapse
Affiliation(s)
- Alvaro J Mejia-Vergara
- Doheny Eye Centers, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America; Doheny Eye Institute, Los Angeles, California, United States of America; Department of Neuro-ophthalmology, Oftlamo-Sanitas Eye Institute, School of Medicine, Fundación Universitaria Sanitas, Bogotá, Colombia.
| | - Rustum Karanjia
- Doheny Eye Centers, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America; Doheny Eye Institute, Los Angeles, California, United States of America; Department of Ophthalmology, University of Ottawa, Ottawa, Ontario, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Alfredo A Sadun
- Doheny Eye Centers, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America; Doheny Eye Institute, Los Angeles, California, United States of America
| |
Collapse
|
5
|
Yu F, Zhang W, Yan C, Yan D, Zhou M, Chen J, Zhao X, Zhu A, Zhou J, Liu H, Sun H, Fu Y. PAX6, modified by SUMOylation, plays a protective role in corneal endothelial injury. Cell Death Dis 2020; 11:683. [PMID: 32826860 PMCID: PMC7442823 DOI: 10.1038/s41419-020-02848-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022]
Abstract
Treating corneal endothelial diseases tends to be challenging as human corneal endothelial cells (CECs) do not proliferate in vivo. The pathogenesis or mechanisms underlying injured CECs need further studies. The abnormal expression of PAX6, which is an essential transcription factor for corneal homeostasis, exhibits corneal endothelial defects. However, the effects of PAX6 protein involved in corneal endothelial wound process are still unknown. Here, we found the upregulated protein levels of PAX6 in human corneal endothelial monolayer after injury; the expression of PAX6 also increased in murine and rat corneal endothelium injury models. Enforced PAX6 expression could alleviate the damages to CECs via regulating permeability by prompting cellular tight junction. In addition, SUMOylation mainly happened on both K53 and K89 residues of 48-kD PAX6 (the longest and main isoform expressed in cornea), and de-SUMOylation promoted the stability of PAX6 protein in vitro. In CECs of SENP1+/− mice, increased SUMOylation levels leading to instability and low expression of PAX6, delayed the repair of CECs after injury. Furthermore, overexpression of PAX6 accelerated the rate of corneal endothelial repair of SENP1+/− mice. Our findings indicate that SENP1-mediated de-SUMOylation improving the stability of PAX6, amplifies the protective effects of PAX6 on corneal endothelial injuries, highlighting potentials of PAX6 and/or SUMOylation to be used as a treatment target for corneal endothelial disorders.
Collapse
Affiliation(s)
- Fei Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Weijie Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Chenxi Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Dan Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Meng Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Junzhao Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Xiangteng Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Aoxue Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huiqing Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Pediatric Neurosurgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
6
|
Lampreys, the jawless vertebrates, contain three Pax6 genes with distinct expression in eye, brain and pancreas. Sci Rep 2019; 9:19559. [PMID: 31863055 PMCID: PMC6925180 DOI: 10.1038/s41598-019-56085-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor Pax6 is crucial for the development of the central nervous system, eye, olfactory system and pancreas, and is implicated in human disease. While a single Pax6 gene exists in human and chicken, Pax6 occurs as a gene family in other vertebrates, with two members in elephant shark, Xenopus tropicalis and Anolis lizard and three members in teleost fish such as stickleback and medaka. However, the complement of Pax6 genes in jawless vertebrates (cyclostomes), the sister group of jawed vertebrates (gnathostomes), is unknown. Using a combination of BAC sequencing and genome analysis, we discovered three Pax6 genes in lampreys. Unlike the paired-less Pax6 present in some gnathostomes, all three lamprey Pax6 have a highly conserved full-length paired domain. All three Pax6 genes are expressed in the eye and brain, with variable expression in other tissues. Notably, lamprey Pax6α transcripts are found in the pancreas, a vertebrate-specific organ, indicating the involvement of Pax6 in development of the pancreas in the vertebrate ancestor. Multi-species sequence comparisons revealed only a single conserved non-coding element, in the lamprey Pax6β locus, with similarity to the PAX6 neuroretina enhancer. Using a transgenic zebrafish enhancer assay we demonstrate functional conservation of this element over 500 million years of vertebrate evolution.
Collapse
|
7
|
Lima Cunha D, Arno G, Corton M, Moosajee M. The Spectrum of PAX6 Mutations and Genotype-Phenotype Correlations in the Eye. Genes (Basel) 2019; 10:genes10121050. [PMID: 31861090 PMCID: PMC6947179 DOI: 10.3390/genes10121050] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
The transcription factor PAX6 is essential in ocular development in vertebrates, being considered the master regulator of the eye. During eye development, it is essential for the correct patterning and formation of the multi-layered optic cup and it is involved in the developing lens and corneal epithelium. In adulthood, it is mostly expressed in cornea, iris, and lens. PAX6 is a dosage-sensitive gene and it is highly regulated by several elements located upstream, downstream, and within the gene. There are more than 500 different mutations described to affect PAX6 and its regulatory regions, the majority of which lead to PAX6 haploinsufficiency, causing several ocular and systemic abnormalities. Aniridia is an autosomal dominant disorder that is marked by the complete or partial absence of the iris, foveal hypoplasia, and nystagmus, and is caused by heterozygous PAX6 mutations. Other ocular abnormalities have also been associated with PAX6 changes, and genotype-phenotype correlations are emerging. This review will cover recent advancements in PAX6 regulation, particularly the role of several enhancers that are known to regulate PAX6 during eye development and disease. We will also present an updated overview of the mutation spectrum, where an increasing number of mutations in the non-coding regions have been reported. Novel genotype-phenotype correlations will also be discussed.
Collapse
Affiliation(s)
| | - Gavin Arno
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital—Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Mariya Moosajee
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- Correspondence:
| |
Collapse
|
8
|
Lacomme M, Medevielle F, Bourbon HM, Thierion E, Kleinjan DJ, Roussat M, Pituello F, Bel-Vialar S. A long range distal enhancer controls temporal fine-tuning of PAX6 expression in neuronal precursors. Dev Biol 2018; 436:94-107. [PMID: 29486153 DOI: 10.1016/j.ydbio.2018.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Proper embryonic development relies on a tight control of spatial and temporal gene expression profiles in a highly regulated manner. One good example is the ON/OFF switching of the transcription factor PAX6 that governs important steps of neurogenesis. In the neural tube PAX6 expression is initiated in neural progenitors through the positive action of retinoic acid signaling and downregulated in neuronal precursors by the bHLH transcription factor NEUROG2. How these two regulatory inputs are integrated at the molecular level to properly fine tune temporal PAX6 expression is not known. In this study we identified and characterized a 940-bp long distal cis-regulatory module (CRM), located far away from the PAX6 transcription unit and which conveys positive input from RA signaling pathway and indirect repressive signal(s) from NEUROG2. These opposing regulatory signals are integrated through HOMZ, a 94 bp core region within E940 which is evolutionarily conserved in distant organisms such as the zebrafish. We show that within HOMZ, NEUROG2 and RA exert their opposite temporal activities through a short 60 bp region containing a functional RA-responsive element (RARE). We propose a model in which retinoic acid receptors (RARs) and NEUROG2 repressive target(s) compete on the same DNA motif to fine tune temporal PAX6 expression during the course of spinal neurogenesis.
Collapse
Affiliation(s)
- Marine Lacomme
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France; Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal, Québec, Canada
| | - François Medevielle
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Henri-Marc Bourbon
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Elodie Thierion
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Dirk-Jan Kleinjan
- 1UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Mélanie Roussat
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Fabienne Pituello
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Sophie Bel-Vialar
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
9
|
Kim Y, Lim S, Ha T, Song YH, Sohn YI, Park DJ, Paik SS, Kim-Kaneyama JR, Song MR, Leung A, Levine EM, Kim IB, Goo YS, Lee SH, Kang KH, Kim JW. The LIM protein complex establishes a retinal circuitry of visual adaptation by regulating Pax6 α-enhancer activity. eLife 2017; 6. [PMID: 28139974 PMCID: PMC5308899 DOI: 10.7554/elife.21303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/23/2017] [Indexed: 01/05/2023] Open
Abstract
The visual responses of vertebrates are sensitive to the overall composition of retinal interneurons including amacrine cells, which tune the activity of the retinal circuitry. The expression of Paired-homeobox 6 (PAX6) is regulated by multiple cis-DNA elements including the intronic α-enhancer, which is active in GABAergic amacrine cell subsets. Here, we report that the transforming growth factor ß1-induced transcript 1 protein (Tgfb1i1) interacts with the LIM domain transcription factors Lhx3 and Isl1 to inhibit the α-enhancer in the post-natal mouse retina. Tgfb1i1-/- mice show elevated α-enhancer activity leading to overproduction of Pax6ΔPD isoform that supports the GABAergic amacrine cell fate maintenance. Consequently, the Tgfb1i1-/- mouse retinas show a sustained light response, which becomes more transient in mice with the auto-stimulation-defective Pax6ΔPBS/ΔPBS mutation. Together, we show the antagonistic regulation of the α-enhancer activity by Pax6 and the LIM protein complex is necessary for the establishment of an inner retinal circuitry, which controls visual adaptation. DOI:http://dx.doi.org/10.7554/eLife.21303.001 The retina is a light-sensitive layer of tissue that lines the inside of the eye. This tissue is highly organized and comprises a variety of different nerve cells, including amacrine cells. Together, these cells process incoming light and then trigger electrical signals that travel to the brain, where they are translated into an image. Changes in the nerve cell composition of the retina, or in how the cells connect to each other, can alter the visual information that travels to the brain. The nerve cells of the retina are formed before a young animal opens its eyes for the first time. Proteins called transcription factors – which regulate the expression of genes – tightly control how the retina develops. For example, a transcription factor called Pax6 drives the development of amacrine cells. Several other transcription factors control the production of Pax6 by binding to a section of DNA known as the “α-enhancer”. However, it is not clear how regulating Pax6 production influences the development of specific sets of amacrine cells. Kim et al. reveal that a protein known as Tgfb1i1 interacts with two transcription factors to form a “complex” that binds to the α-enhancer and blocks the production of a particular form of Pax6. In experiments performed in mice, the loss of Tgfb1i1 led to increased production of this form of Pax6, which resulted in the retina containing more of a certain type of amacrine cell that produce a molecule called GABA. Mice lacking Tgfb1i1 show a stronger response to light and are therefore comparable to people who are too sensitive to light. On the other hand, mice with a missing a section of the α-enhancer DNA have fewer amacrine cells releasing GABA and become less sensitive to light and are comparable to people who have difficulty detecting weaker light signals. The findings of Kim et al. suggest that an individual’s sensitivity to light is related, at least in part, to the mixture of amacrine cells found in their retina, which is determined by certain transcription factors that target the α-enhancer. DOI:http://dx.doi.org/10.7554/eLife.21303.002
Collapse
Affiliation(s)
- Yeha Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Soyeon Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Taejeong Ha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - You-Hyang Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Young-In Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Dae-Jin Park
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Sun-Sook Paik
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Joo-Ri Kim-Kaneyama
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Mi-Ryoung Song
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Amanda Leung
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, United States
| | - Edward M Levine
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, United States
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Seung-Hee Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | | | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
10
|
Cvekl A, Callaerts P. PAX6: 25th anniversary and more to learn. Exp Eye Res 2016; 156:10-21. [PMID: 27126352 DOI: 10.1016/j.exer.2016.04.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/12/2016] [Accepted: 04/22/2016] [Indexed: 01/29/2023]
Abstract
The DNA-binding transcription factor PAX6 was cloned 25 years ago by multiple teams pursuing identification of human and mouse eye disease causing genes, cloning vertebrate homologues of pattern-forming regulatory genes identified in Drosophila, or abundant eye-specific transcripts. Since its discovery in 1991, genetic, cellular, molecular and evolutionary studies on Pax6 mushroomed in the mid 1990s leading to the transformative thinking regarding the genetic program orchestrating both early and late stages of eye morphogenesis as well as the origin and evolution of diverse visual systems. Since Pax6 is also expressed outside of the eye, namely in the central nervous system and pancreas, a number of important insights into the development and function of these organs have been amassed. In most recent years, genome-wide technologies utilizing massively parallel DNA sequencing have begun to provide unbiased insights into the regulatory hierarchies of specification, determination and differentiation of ocular cells and neurogenesis in general. This review is focused on major advancements in studies on mammalian eye development driven by studies of Pax6 genes in model organisms and future challenges to harness the technology-driven opportunities to reconstruct, step-by-step, the transition from naïve ectoderm, neuroepithelium and periocular mesenchyme/neural crest cells into the three-dimensional architecture of the eye.
Collapse
Affiliation(s)
- Ales Cvekl
- The Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; The Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, K.U. Leuven, VIB, 3000, Leuven, Belgium.
| |
Collapse
|
11
|
A survey of ancient conserved non-coding elements in the PAX6 locus reveals a landscape of interdigitated cis-regulatory archipelagos. Dev Biol 2014; 387:214-28. [PMID: 24440152 DOI: 10.1016/j.ydbio.2014.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/29/2013] [Accepted: 01/11/2014] [Indexed: 11/22/2022]
Abstract
Biological differences between cell types and developmental processes are characterised by differences in gene expression profiles. Gene-distal enhancers are key components of the regulatory networks that specify the tissue-specific expression patterns driving embryonic development and cell fate decisions, and variations in their sequences are a major contributor to genetic disease and disease susceptibility. Despite advances in the methods for discovery of putative cis-regulatory sequences, characterisation of their spatio-temporal enhancer activities in a mammalian model system remains a major bottle-neck. We employed a strategy that combines gnathostome sequence conservation with transgenic mouse and zebrafish reporter assays to survey the genomic locus of the developmental control gene PAX6 for the presence of novel cis-regulatory elements. Sequence comparison between human and the cartilaginous elephant shark (Callorhinchus milii) revealed several ancient gnathostome conserved non-coding elements (agCNEs) dispersed widely throughout the PAX6 locus, extending the range of the known PAX6 cis-regulatory landscape to contain the full upstream PAX6-RCN1 intergenic region. Our data indicates that ancient conserved regulatory sequences can be tested effectively in transgenic zebrafish even when not conserved in zebrafish themselves. The strategy also allows efficient dissection of compound regulatory regions previously assessed in transgenic mice. Remarkable overlap in expression patterns driven by sets of agCNEs indicates that PAX6 resides in a landscape of multiple tissue-specific regulatory archipelagos.
Collapse
|
12
|
Bhatia S, Bengani H, Fish M, Brown A, Divizia M, de Marco R, Damante G, Grainger R, van Heyningen V, Kleinjan D. Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. Am J Hum Genet 2013; 93:1126-34. [PMID: 24290376 DOI: 10.1016/j.ajhg.2013.10.028] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/19/2013] [Accepted: 10/30/2013] [Indexed: 02/07/2023] Open
Abstract
The strictly regulated expression of most pleiotropic developmental control genes is critically dependent on the activity of long-range cis-regulatory elements. This was revealed by the identification of individuals with a genetic condition lacking coding-region mutations in the gene commonly associated with the disease but having a variety of nearby chromosomal abnormalities, collectively described as cis-ruption disease cases. The congenital eye malformation aniridia is caused by haploinsufficiency of the developmental regulator PAX6. We discovered a de novo point mutation in an ultraconserved cis-element located 150 kb downstream from PAX6 in an affected individual with intact coding region and chromosomal locus. The element SIMO acts as a strong enhancer in developing ocular structures. The mutation disrupts an autoregulatory PAX6 binding site, causing loss of enhancer activity, resulting in defective maintenance of PAX6 expression. These findings reveal a distinct regulatory mechanism for genetic disease by disruption of an autoregulatory feedback loop critical for maintenance of gene expression through development.
Collapse
|
13
|
Lin SL, Cheng YH, Wen CM, Chen SN. Characterization of a novel cell line from the caudal fin of koi carp Cyprinus carpio. JOURNAL OF FISH BIOLOGY 2013; 82:1888-1903. [PMID: 23731143 DOI: 10.1111/jfb.12116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 02/20/2013] [Indexed: 06/02/2023]
Abstract
A continuous cell line (KF-101) derived from the caudal fin of the koi carp Cyprinus carpio was established and characterized. The KF-101 cell line multiplied abundantly in Leibovitz's L-15 medium containing 10% foetal bovine serum at 25° C, and was subcultured for >90 passages over a period of 3 years. Immunocytochemistry revealed that the KF-101 cells contain keratin, junction proteins connexin-43 and occludin, and ectodermal stem-cell marker Pax-6, but not vimentin. Furthermore, the KF-101 cells reacted with anti-human DARPP-32 and anti-human GATA-4 antibodies, and the labelling was regulated according to the cell cycle. The labels of the DARPP-32 and GATA-4 antibodies in the KF-101 cells were the suggested phosphatase-1 inhibitor-1 and GATA-3, respectively. In addition, the KF-101 cells were susceptible to koi herpesvirus but were resistant to eel herpesvirus, iridovirus, grouper nodavirus and chum salmon (Oncorhynchus keta) virus. The results indicate that the KF-101 cells are suitable materials for investigating biological and virological development.
Collapse
Affiliation(s)
- S-L Lin
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan, China
| | | | | | | |
Collapse
|
14
|
Ravi V, Bhatia S, Gautier P, Loosli F, Tay BH, Tay A, Murdoch E, Coutinho P, van Heyningen V, Brenner S, Venkatesh B, Kleinjan DA. Sequencing of Pax6 loci from the elephant shark reveals a family of Pax6 genes in vertebrate genomes, forged by ancient duplications and divergences. PLoS Genet 2013; 9:e1003177. [PMID: 23359656 PMCID: PMC3554528 DOI: 10.1371/journal.pgen.1003177] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
Pax6 is a developmental control gene essential for eye development throughout the animal kingdom. In addition, Pax6 plays key roles in other parts of the CNS, olfactory system, and pancreas. In mammals a single Pax6 gene encoding multiple isoforms delivers these pleiotropic functions. Here we provide evidence that the genomes of many other vertebrate species contain multiple Pax6 loci. We sequenced Pax6-containing BACs from the cartilaginous elephant shark (Callorhinchus milii) and found two distinct Pax6 loci. Pax6.1 is highly similar to mammalian Pax6, while Pax6.2 encodes a paired-less Pax6. Using synteny relationships, we identify homologs of this novel paired-less Pax6.2 gene in lizard and in frog, as well as in zebrafish and in other teleosts. In zebrafish two full-length Pax6 duplicates were known previously, originating from the fish-specific genome duplication (FSGD) and expressed in divergent patterns due to paralog-specific loss of cis-elements. We show that teleosts other than zebrafish also maintain duplicate full-length Pax6 loci, but differences in gene and regulatory domain structure suggest that these Pax6 paralogs originate from a more ancient duplication event and are hence renamed as Pax6.3. Sequence comparisons between mammalian and elephant shark Pax6.1 loci highlight the presence of short- and long-range conserved noncoding elements (CNEs). Functional analysis demonstrates the ancient role of long-range enhancers for Pax6 transcription. We show that the paired-less Pax6.2 ortholog in zebrafish is expressed specifically in the developing retina. Transgenic analysis of elephant shark and zebrafish Pax6.2 CNEs with homology to the mouse NRE/Pα internal promoter revealed highly specific retinal expression. Finally, morpholino depletion of zebrafish Pax6.2 resulted in a "small eye" phenotype, supporting a role in retinal development. In summary, our study reveals that the pleiotropic functions of Pax6 in vertebrates are served by a divergent family of Pax6 genes, forged by ancient duplication events and by independent, lineage-specific gene losses.
Collapse
Affiliation(s)
- Vydianathan Ravi
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Shipra Bhatia
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Philippe Gautier
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Felix Loosli
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Boon-Hui Tay
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Alice Tay
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Emma Murdoch
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Pedro Coutinho
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Veronica van Heyningen
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sydney Brenner
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore, Singapore
- * E-mail: (DA Kleinjan); (B Venkatesh)
| | - Dirk A. Kleinjan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (DA Kleinjan); (B Venkatesh)
| |
Collapse
|
15
|
Shaham O, Menuchin Y, Farhy C, Ashery-Padan R. Pax6: a multi-level regulator of ocular development. Prog Retin Eye Res 2012; 31:351-76. [PMID: 22561546 DOI: 10.1016/j.preteyeres.2012.04.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 02/08/2023]
Abstract
Eye development has been a paradigm for the study of organogenesis, from the demonstration of lens induction through epithelial tissue morphogenesis, to neuronal specification and differentiation. The transcription factor Pax6 has been shown to play a key role in each of these processes. Pax6 is required for initiation of developmental pathways, patterning of epithelial tissues, activation of tissue-specific genes and interaction with other regulatory pathways. Herein we examine the data accumulated over the last few decades from extensive analyses of biochemical modules and genetic manipulation of the Pax6 gene. Specifically, we describe the regulation of Pax6's expression pattern, the protein's DNA-binding properties, and its specific roles and mechanisms of action at all stages of lens and retinal development. Pax6 functions at multiple levels to integrate extracellular information and execute cell-intrinsic differentiation programs that culminate in the specification and differentiation of a distinct ocular lineage.
Collapse
Affiliation(s)
- Ohad Shaham
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
16
|
Delporte FM, Pasque V, Devos N, Manfroid I, Voz ML, Motte P, Biemar F, Martial JA, Peers B. Expression of zebrafish pax6b in pancreas is regulated by two enhancers containing highly conserved cis-elements bound by PDX1, PBX and PREP factors. BMC DEVELOPMENTAL BIOLOGY 2008; 8:53. [PMID: 18485195 PMCID: PMC2409314 DOI: 10.1186/1471-213x-8-53] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 05/16/2008] [Indexed: 02/04/2023]
Abstract
Background PAX6 is a transcription factor playing a crucial role in the development of the eye and in the differentiation of the pancreatic endocrine cells as well as of enteroendocrine cells. Studies on the mouse Pax6 gene have shown that sequences upstream from the P0 promoter are required for expression in the lens and the pancreas; but there remain discrepancies regarding the precise location of the pancreatic regulatory elements. Results Due to genome duplication in the evolution of ray-finned fishes, zebrafish has two pax6 genes, pax6a and pax6b. While both zebrafish pax6 genes are expressed in the developing eye and nervous system, only pax6b is expressed in the endocrine cells of the pancreas. To investigate the cause of this differential expression, we used a combination of in silico, in vivo and in vitro approaches. We show that the pax6b P0 promoter targets expression to endocrine pancreatic cells and also to enteroendocrine cells, retinal neurons and the telencephalon of transgenic zebrafish. Deletion analyses indicate that strong pancreatic expression of the pax6b gene relies on the combined action of two conserved regulatory enhancers, called regions A and C. By means of gel shift assays, we detected binding of the homeoproteins PDX1, PBX and PREP to several cis-elements of these regions. In constrast, regions A and C of the zebrafish pax6a gene are not active in the pancreas, this difference being attributable to sequence divergences within two cis-elements binding the pancreatic homeoprotein PDX1. Conclusion Our data indicate a conserved role of enhancers A and C in the pancreatic expression of pax6b and emphasize the importance of the homeoproteins PBX and PREP cooperating with PDX1, in activating pax6b expression in endocrine pancreatic cells. This study also provides a striking example of how adaptative evolution of gene regulatory sequences upon gene duplication progressively leads to subfunctionalization of the paralogous gene pair.
Collapse
Affiliation(s)
- François M Delporte
- Unit of Molecular Biology and Genetic Engineering, University of Liège, Giga-R, B34, Avenue de l'hôpital, 1, B-4000 Liège, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kleinjan DA, Bancewicz RM, Gautier P, Dahm R, Schonthaler HB, Damante G, Seawright A, Hever AM, Yeyati PL, van Heyningen V, Coutinho P. Subfunctionalization of duplicated zebrafish pax6 genes by cis-regulatory divergence. PLoS Genet 2008; 4:e29. [PMID: 18282108 PMCID: PMC2242813 DOI: 10.1371/journal.pgen.0040029] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 12/21/2007] [Indexed: 01/22/2023] Open
Abstract
Gene duplication is a major driver of evolutionary divergence. In most vertebrates a single PAX6 gene encodes a transcription factor required for eye, brain, olfactory system, and pancreas development. In zebrafish, following a postulated whole-genome duplication event in an ancestral teleost, duplicates pax6a and pax6b jointly fulfill these roles. Mapping of the homozygously viable eye mutant sunrise identified a homeodomain missense change in pax6b, leading to loss of target binding. The mild phenotype emphasizes role-sharing between the co-orthologues. Meticulous mapping of isolated BACs identified perturbed synteny relationships around the duplicates. This highlights the functional conservation of pax6 downstream (3') control sequences, which in most vertebrates reside within the introns of a ubiquitously expressed neighbour gene, ELP4, whose pax6a-linked exons have been lost in zebrafish. Reporter transgenic studies in both mouse and zebrafish, combined with analysis of vertebrate sequence conservation, reveal loss and retention of specific cis-regulatory elements, correlating strongly with the diverged expression of co-orthologues, and providing clear evidence for evolution by subfunctionalization.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Base Sequence
- Chromosomes, Artificial, Bacterial/genetics
- Computational Biology
- DNA Primers/genetics
- Enhancer Elements, Genetic
- Evolution, Molecular
- Eye Abnormalities/embryology
- Eye Abnormalities/genetics
- Eye Proteins/genetics
- Gene Duplication
- Gene Expression Regulation, Developmental
- Genes, Homeobox
- Genes, Reporter
- Genetic Complementation Test
- Genetic Linkage
- Homeodomain Proteins/genetics
- Mice
- Mice, Transgenic
- Models, Genetic
- Molecular Sequence Data
- Mutation, Missense
- PAX6 Transcription Factor
- Paired Box Transcription Factors/genetics
- Phenotype
- Repressor Proteins/genetics
- Sequence Homology, Nucleic Acid
- Zebrafish/abnormalities
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish Proteins/genetics
Collapse
Affiliation(s)
- Dirk A Kleinjan
- Medical Research Council (MRC) Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Ruth M Bancewicz
- Medical Research Council (MRC) Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Philippe Gautier
- Medical Research Council (MRC) Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Ralf Dahm
- Department of Genetics, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Helia B Schonthaler
- Department of Genetics, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Giuseppe Damante
- Department of Science and Biomedical Technology, University of Udine, Udine, Italy
| | - Anne Seawright
- Medical Research Council (MRC) Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Ann M Hever
- Medical Research Council (MRC) Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Patricia L Yeyati
- Medical Research Council (MRC) Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Veronica van Heyningen
- Medical Research Council (MRC) Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Pedro Coutinho
- Medical Research Council (MRC) Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Functional characterization of the GDEP promoter and three enhancer elements in retinoblastoma and prostate cell lines. Med Oncol 2007; 25:40-9. [DOI: 10.1007/s12032-007-0038-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 05/21/2007] [Indexed: 11/26/2022]
|
19
|
Lakowski J, Majumder A, Lauderdale JD. Mechanisms controlling Pax6 isoform expression in the retina have been conserved between teleosts and mammals. Dev Biol 2007; 307:498-520. [PMID: 17509554 DOI: 10.1016/j.ydbio.2007.04.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 03/16/2007] [Accepted: 04/12/2007] [Indexed: 11/26/2022]
Abstract
The Pax6 gene plays several roles in retinal development, including control of cell proliferation, maintenance of the retinogenic potential of progenitor cells, and cell fate specification. Emerging evidence suggests that these different aspects of Pax6 gene function are mediated by different isoforms of the Pax6 protein; however, relatively little is known about the spatiotemporal expression of Pax6 isoforms in the vertebrate retina. Using bacterial artificial chromosome (BAC) technology, we modified a zebrafish Pax6a BAC such that we could distinguish paired-containing Pax6a transcripts from paired-less Pax6a transcripts. In the zebrafish, the spatial and temporal onset of expression of these transcripts suggests that the paired-less isoform is involved in the cell fate decision leading to the generation of amacrine cells; however, because of limitations associated with transient transgenic analysis, it was not feasible to establish whether this promoter was active in all amacrine cells or in a specific population of amacrine cells. By making mice transgenic for the zebrafish Pax6a BAC reporter transgene, we were able to show that paired-containing and paired-less Pax6a transcripts were differentially expressed in amacrine subpopulations. Our study also directly demonstrates the functional conservation of the regulatory mechanisms governing Pax6 transcription in teleosts and mammals.
Collapse
Affiliation(s)
- Jörn Lakowski
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
20
|
Kleinjan DA, Seawright A, Mella S, Carr CB, Tyas DA, Simpson TI, Mason JO, Price DJ, van Heyningen V. Long-range downstream enhancers are essential for Pax6 expression. Dev Biol 2006; 299:563-81. [PMID: 17014839 PMCID: PMC2386664 DOI: 10.1016/j.ydbio.2006.08.060] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 08/21/2006] [Accepted: 08/25/2006] [Indexed: 01/29/2023]
Abstract
Pax6 is a developmental control gene with an essential role in development of the eye, brain and pancreas. Pax6, as many other developmental regulators, depends on a substantial number of cis-regulatory elements in addition to its promoters for correct spatiotemporal and quantitative expression. Here we report on our analysis of a set of mice transgenic for a modified yeast artificial chromosome carrying the human PAX6 locus. In this 420 kb YAC a tauGFP-IRES-Neomycin reporter cassette has been inserted into the PAX6 translational start site in exon 4. The YAC has been further engineered to insert LoxP sites flanking a 35 kb long, distant downstream regulatory region (DRR) containing previously described DNaseI hypersensitive sites, to allow direct comparison between the presence or absence of this region in the same genomic context. Five independent transgenic lines were obtained that vary in the extent of downstream PAX6 locus that has integrated. Analysis of transgenic embryos carrying full-length and truncated versions of the YAC indicates the location and putative function of several novel tissue-specific enhancers. Absence of these distal regulatory elements abolishes expression in specific tissues despite the presence of more proximal enhancers with overlapping specificity, strongly suggesting interaction between these control elements. Using plasmid-based reporter transgenic analysis we provide detailed characterization of one of these enhancers in isolation. Furthermore, we show that overexpression of a short PAX6 isoform derived from an internal promoter in a multicopy YAC transgenic line results in a microphthalmia phenotype. Finally, direct comparison of a single-copy line with the floxed DRR before and after Cre-mediated deletion demonstrates unequivocally the essential role of these long-range control elements for PAX6 expression.
Collapse
Affiliation(s)
- Dirk A Kleinjan
- MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hever AM, Williamson KA, van Heyningen V. Developmental malformations of the eye: the role of PAX6, SOX2 and OTX2. Clin Genet 2006; 69:459-70. [PMID: 16712695 DOI: 10.1111/j.1399-0004.2006.00619.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Eye development initiates as an evagination of the early neural plate, before the closure of the neural tube. Structural malformations of the eye such as anophthalmia and microphthalmia arise very early in development. It is not surprising therefore that three of the genes currently identified to play a significant role in these developmental eye anomalies are also major players in brain development and regionalization. However, as has been emerging for a high proportion of transcriptional regulators studied, these genes have evolved to play multiple roles throughout development, and perhaps even in adult tissue maintenance. This complex spatiotemporal expression pattern requires elaborate regulatory systems which we are beginning to unravel. A major component of these complex regulatory networks is a series of cis-acting elements, highly conserved through evolution, which spread large distances from the coding region of each gene. We describe how cross regulation for PAX6, SOX2 and perhaps OTX2 has now been uncovered, pointing to the mechanisms that can fine-tune the expression of such essential developmental components. These interactions also help us understand why there is significant phenotypic overlap between mutations at these three loci.
Collapse
Affiliation(s)
- A M Hever
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK
| | | | | |
Collapse
|
22
|
Davis-Silberman N, Kalich T, Oron-Karni V, Marquardt T, Kroeber M, Tamm ER, Ashery-Padan R. Genetic dissection of Pax6 dosage requirements in the developing mouse eye. Hum Mol Genet 2005; 14:2265-76. [PMID: 15987699 DOI: 10.1093/hmg/ddi231] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Haploinsufficiency of the transcription factor Pax6/PAX6 has been implicated in a number of congenital eye disorders in humans and mice, such as aniridia and Small-eye, which affect the development and function of the lens, cornea, anterior eye segment and neuroretina. However, the widespread distribution of Pax6/PAX6 protein within the developing and adult eye preclude the identification and direct study of the ocular tissues affected by a reduction in Pax6/PAX6 dosage. Here, we employed Cre/loxP-mediated inactivation of a single Pax6 allele in either the lens/cornea or the distal optic cup to dissect the tissue-specific sensitivity to Pax6 haploinsufficiency. Exclusive inactivation of a single Pax6 allele in the lens recapitulates the Small-eye lens and corneal defects, while only mildly affects iris morphology in a non-cell-autonomous fashion. Conversely, selective inactivation of a single Pax6 allele in the distal optic cup revealed primarily cell-autonomous dosage requirements for proper iris differentiation, with no affects on either lens or corneal morphology. Pax6 dosage within the distal optic cup is found here to influence the number of progenitors destined for the anterior ocular structures, the timing of iris muscle-cell differentiation and iris stroma development. Taken together, we genetically dissected the complex mouse Small-eye phenotype, thereby pinpointing the underlying Pax6/PAX6 haploinsufficiency to autonomous dosage requirements within the developing iris and lens/cornea tissues.
Collapse
Affiliation(s)
- Noa Davis-Silberman
- Sackler Faculty of Medicine, Department of Human Genetics and Molecular Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The vertebrate retina and optic nerve are strikingly different in terms of their size, organization, and cellular diversity, yet these two structures develop from the same embryonic neuroepithelium. Precursor cells in the most ventral domain of this epithelium give rise only to the astrocytes of the optic nerve, whereas immediately adjacent, more dorsal precursors give rise to the myriad cell types of the retina. We provide genetic evidence that two closely related, ventrally expressed homeodomain proteins-Vax1 and Vax2-control this neuroepithelial segregation. In the absence of both proteins, we find that the optic nerve is transformed in its entirety into fully differentiated retina. We demonstrate that this transformation results from the loss of ventralizing activity in the developing eye field, and that ventralization is mediated, at least in part, via Vax repression of the Pax6 gene, a potent inducer of retinal development.
Collapse
Affiliation(s)
- Stina H Mui
- Molecular Neurobiology Laboratory, The Salk Institute La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
24
|
Uchikawa M, Takemoto T, Kamachi Y, Kondoh H. Efficient identification of regulatory sequences in the chicken genome by a powerful combination of embryo electroporation and genome comparison. Mech Dev 2005; 121:1145-58. [PMID: 15296978 DOI: 10.1016/j.mod.2004.05.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 05/15/2004] [Accepted: 05/17/2004] [Indexed: 11/26/2022]
Abstract
Recently expanded knowledge of gene regulation clearly indicates that the regulatory sequences of a gene, usually identified as enhancers, are widely distributed in the gene locus, revising the classical view that they are clustered in the vicinity of genes. To identify regulatory sequences for Sox2 expression governing early neurogenesis, we scanned the 50-kb region of the chicken Sox2 locus for enhancer activity utilizing embryo electroporation, resulting in identification of a number of enhancers scattered throughout the analyzed genomic span. The 'pan-neural' Sox2 expression in early embryos is actually brought about by the composite activities of five separate enhancers with distinct spatio-temporal specificities. These and other functionally defined enhancers exactly correspond to extragenic sequence blocks that are conspicuously conserved between the chicken and mammalian genomes and that are embedded in sequences with a wide range of sequence conservation between humans and mice. The sequences conserved between amniotes and teleosts correspond to subregions of the enhancer subsets which presumably represent core motifs of the enhancers, and the limited conservation partly reflects divergent expression patterns of the gene. The phylogenic distance between the chicken and mammals appears optimal for identifying a battery of genetic regulatory elements as conserved sequence blocks, and chicken embryo electroporation facilitates functional characterization of these elements.
Collapse
Affiliation(s)
- Masanori Uchikawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
25
|
Meng F, Zolova O, Kokorina NA, Dobretsova A, Wight PA. Characterization of an intronic enhancer that regulates myelin proteolipid protein (Plp) gene expression in oligodendrocytes. J Neurosci Res 2005; 82:346-56. [PMID: 16155935 DOI: 10.1002/jnr.20640] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The myelin proteolipid protein (Plp) gene is expressed in oligodendrocytes and encodes the most abundant protein (approximately 50%) present in mature myelin from the central nervous system (CNS). Plp gene activity is low to nonexistent early in development but sharply increases, concurrently with the active myelination period of CNS development. Work from our laboratory suggests that the temporal regulation of Plp gene expression in mice is mediated by a positive regulatory element located within Plp intron 1 DNA. We have termed this regulatory element/region ASE (for antisilencer/enhancer). The ASE is situated approximately 1 kb downstream of exon 1 DNA and encompasses nearly 100 bp. To understand the mechanisms by which the ASE augments Plp gene expression in oligodendrocytes, Plp-lacZ constructs were generated and transfected into a mouse oligodendroglial cell line (N20.1). Results presented here demonstrate that upstream regulatory elements in the Plp promoter/5'-flanking DNA are not required for ASE activity; the ASE worked perfectly well when the thymidine kinase (TK) promoter was substituted for the Plp promoter. However, the relative location of the ASE appears to be important. When placed upstream of 2.4 kb of Plp 5'-flanking DNA, or downstream of the lacZ expression cassette, the ASE was no longer effective. Thus, the ASE might have to be in the context of the intron in order to function. To begin to identify the crucial nucleotides within the ASE, orthologous sequences from rat, human, cow, and pig Plp genes were swapped for the mouse sequence. Results presented here demonstrate that the orthologous sequence from rat can substitute for the mouse ASE, unlike those from human, cow, or pig.
Collapse
Affiliation(s)
- Fanxue Meng
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
26
|
Leconte L, Lecoin L, Martin P, Saule S. Pax6 Interacts with cVax and Tbx5 to Establish the Dorsoventral Boundary of the Developing Eye. J Biol Chem 2004; 279:47272-7. [PMID: 15322073 DOI: 10.1074/jbc.m406624200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dorsoventral pattern formation of the optic cup is essential for vertebrate eye morphogenesis and retinotectal topographic mapping. Dorsal and ventral aspects of the eye are distinct at early stages of development; cVax homeodomain protein expression is confined to the ventral optic cup, whereas Tbx5 (T-box transcription factor) expression domain becomes restricted to the dorsal region. Misexpression of cVax or Tbx5 induces profound defects in eye morphology and abnormal visual projections. In the Pax6-/- mutant Tbx5 fails to be expressed, and Vax1 and -2 are abnormally present in the entire optic vesicle. During eye development Pax6 becomes expressed in a gradient at the optic cup stage due to the specific activation of a highly conserved intronic alpha enhancer in the Pax6 locus. We observed that the highest level of Pax6 in the optic cup corresponds to the boundary between non-overlapping cVax and Tbx5 territories. To further investigate how these transcription factors control the patterning of the eye, we overexpressed Pax6 in the chick optic cup (E2) using in ovo electroporation. We observed that overexpression of Pax6 extends the Tbx5 and Bmp4 domains but reduces the cVax expression domains in the E3 chick eye. This results in an abnormal eye phenotype at E4. In addition, we showed that cVax and Tbx5 interact with Pax6 and modulate in an opposite manner the activity of the Pax6 alpha enhancer. Moreover, the Pax6/cVax interaction inhibits the transactivation properties of Pax6. These results demonstrate that Pax6 together with cVax and Tbx5 mediate dorsoventral patterning of the eye.
Collapse
Affiliation(s)
- Laurence Leconte
- CNRS UMR 146, Institut Curie Section de Recherche, Bātiment 110, Centre Universitaire, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
27
|
Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, Haussler D. Ultraconserved elements in the human genome. Science 2004; 304:1321-5. [PMID: 15131266 DOI: 10.1126/science.1098119] [Citation(s) in RCA: 1222] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
There are 481 segments longer than 200 base pairs (bp) that are absolutely conserved (100% identity with no insertions or deletions) between orthologous regions of the human, rat, and mouse genomes. Nearly all of these segments are also conserved in the chicken and dog genomes, with an average of 95 and 99% identity, respectively. Many are also significantly conserved in fish. These ultraconserved elements of the human genome are most often located either overlapping exons in genes involved in RNA processing or in introns or nearby genes involved in the regulation of transcription and development. Along with more than 5000 sequences of over 100 bp that are absolutely conserved among the three sequenced mammals, these represent a class of genetic elements whose functions and evolutionary origins are yet to be determined, but which are more highly conserved between these species than are proteins and appear to be essential for the ontogeny of mammals and other vertebrates.
Collapse
Affiliation(s)
- Gill Bejerano
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Cvekl A, Tamm ER. Anterior eye development and ocular mesenchyme: new insights from mouse models and human diseases. Bioessays 2004; 26:374-86. [PMID: 15057935 PMCID: PMC2094210 DOI: 10.1002/bies.20009] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During development of the anterior eye segment, cells that originate from the surface epithelium or the neuroepithelium need to interact with mesenchymal cells, which predominantly originate from the neural crest. Failures of proper interaction result in a complex of developmental disorders such Peters' anomaly, Axenfeld-Rieger's syndrome or aniridia. Here we review the role of transcription factors that have been identified to be involved in the coordination of anterior eye development. Among these factors is PAX6, which is active in both epithelial and mesenchymal cells during ocular development, albeit at different doses and times. We propose that PAX6 is a key element that synchronizes the complex interaction of cell types of different origin, which are all needed for proper morphogenesis of the anterior eye. We discuss several molecular mechanisms that might explain the effects of haploinsufficiency of PAX6 and other transcription factors, and the broad variation of the resulting phenotypes.
Collapse
Affiliation(s)
- Ales Cvekl
- The Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | |
Collapse
|
29
|
Kleinjan DA, Seawright A, Childs AJ, van Heyningen V. Conserved elements in Pax6 intron 7 involved in (auto)regulation and alternative transcription. Dev Biol 2004; 265:462-77. [PMID: 14732405 DOI: 10.1016/j.ydbio.2003.09.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pax6 is a transcription factor with an essential role in eye, central nervous system, and pancreas development. Its expression pattern is restricted to these specific domains within the developing embryo. Here four conserved elements are identified in Pax6 intron 7, showing a high level of sequence conservation between human, mouse, pufferfish, and zebrafish. Three of these are shown to act as cis-regulatory elements, directing expression of a reporter gene to distinct subsets of the Pax6 expression domain. CE1 regulates gene expression in late eye development, CE2 drives expression in the diencephalon and in the developing heart tube where Pax6 is not normally expressed, while CE3 directs expression in rhombencephalon. CE2 is shown to be autoregulated in the diencephalon, responding to absence of Pax6. We identify a highly conserved Pax6 recognition site and demonstrate its ability to bind Pax6 specifically. CE1 is embedded in a CpG island, and we identify a novel Pax6 transcript which initiates from this region. Functional analysis of evolutionary conserved sequences pinpoints novel cis-acting elements that govern the regulation of the complex spatio-temporal and quantitative expression of Pax6.
Collapse
Affiliation(s)
- Dirk A Kleinjan
- MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK.
| | | | | | | |
Collapse
|
30
|
Kay JN, Roeser T, Mumm JS, Godinho L, Mrejeru A, Wong ROL, Baier H. Transient requirement for ganglion cells during assembly of retinal synaptic layers. Development 2004; 131:1331-42. [PMID: 14973290 DOI: 10.1242/dev.01040] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The inner plexiform layer (IPL) of the vertebrate retina comprises functionally specialized sublaminae, representing connections between bipolar, amacrine and ganglion cells with distinct visual functions. Developmental mechanisms that target neurites to the correct synaptic sublaminae are largely unknown. Using transgenic zebrafish expressing GFP in subsets of amacrine cells, we imaged IPL formation and sublamination in vivo and asked whether the major postsynaptic cells in this circuit, the ganglion cells, organize the presynaptic inputs. We found that in the lak/ath5 mutant retina, where ganglion cells are never born, formation of the IPL is delayed, with initial neurite outgrowth ectopically located and grossly disorganized. Over time, the majority of early neurite projection errors are corrected, and major ON and OFF sublaminae do form. However, focal regions of disarray persist where sublaminae do not form properly. Bipolar axons, which arrive later, are targeted correctly, except at places where amacrine stratification is disrupted. The lak mutant phenotype reveals that ganglion cells have a transient role organizing the earliest amacrine projections to the IPL. However, it also suggests that amacrine cells interact with each other during IPL formation; these interactions alone appear sufficient to form the IPL. Furthermore, our results suggest that amacrines may guide IPL sublamination by providing stratification cues for other cell types.
Collapse
Affiliation(s)
- Jeremy N Kay
- Program in Neuroscience and Department of Physiology, University of California, San Francisco, 513 Parnassus Avenue Box 0444, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The PAX6 gene is a paradigm for our understanding of the molecular genetics of mammalian eye development. Twelve years after its identification it is one of the most intensively studied genes, both in terms of its diverse and complex functions during oculogenesis and its role in an ever-increasing variety of human congenital eye malformations. The PAX6 field has benefited greatly from the continued input of clinicians, human geneticists and developmental biologists. This review summarizes the latest data on the PAX6 mutation spectrum and recent insights into Pax6 function from the mouse.
Collapse
Affiliation(s)
- Isabel M Hanson
- Medical Genetics Section, University of Edinburgh, Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, United Kingdom.
| |
Collapse
|
32
|
Zhang X, Heaney S, Maas RL. Cre-loxp fate-mapping of Pax6 enhancer active retinal and pancreatic progenitors. Genesis 2003; 35:22-30. [PMID: 12481295 DOI: 10.1002/gene.10160] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pax6 plays important roles in the control of ocular and pancreatic development. We identified a 450 bp Pax6 enhancer that contains two interacting sequences: a 274 bp fragment sufficient for expression in retinal progenitors and an adjacent 156 bp fragment required for expression in pancreatic progenitors. Since this enhancer is only transiently expressed during embryogenesis, a Cre-loxP fate-mapping strategy was used to investigate the developmental potential of these progenitors. Surprisingly, the labeled retinal precursors predominantly gave rise to horizontal cells, indicating a cell lineage role in horizontal cell differentiation. In the pancreas, all enhancer-specific cells were restricted to endocrine and ductal cell lineages. This result lends support to a model whereby Pax6-expressing progenitors contribute to the adult pancreatic islets and ducts. The progenitor cell-specificity of this enhancer will be useful in studies that require either cell-specific expression or conditional gene inactivation in these cell populations.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
33
|
Griffin C, Kleinjan DA, Doe B, van Heyningen V. New 3' elements control Pax6 expression in the developing pretectum, neural retina and olfactory region. Mech Dev 2002; 112:89-100. [PMID: 11850181 DOI: 10.1016/s0925-4773(01)00646-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pax6 is a key transcriptional regulator in eye, olfactory system, forebrain, pituitary cerebellum, spinal cord and pancreas development. Alternative splicing, promoter usage and multiple enhancers regulate the complex Pax6 spatio-temporal expression pattern. Chromosomal rearrangements which abolish PAX6 gene expression have been characterised downstream of the coding region. Through evolutionary sequence comparison and transgenic reporter studies, we have identified a new Pax6 3' cis-regulatory region. This region, C1170 Box 123, contains three distinct modules of human-mouse sequence conservation, while only Box 1 is conserved to Fugu. Both the human and the orthologous Fugu sequence direct similar reporter gene expression in the developing pretectum, neural retina and olfactory region, indicating evolutionary conservation of Pax6 regulatory mechanisms despite the low level of overall sequence conservation.
Collapse
Affiliation(s)
- Caroline Griffin
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | |
Collapse
|
34
|
Lefebvre T, Planque N, Leleu D, Bailly M, Caillet-Boudin ML, Saule S, Michalski JC. O-glycosylation of the nuclear forms of Pax-6 products in quail neuroretina cells. J Cell Biochem 2002. [DOI: 10.1002/jcb.10119] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Kay JN, Finger-Baier KC, Roeser T, Staub W, Baier H. Retinal ganglion cell genesis requires lakritz, a Zebrafish atonal Homolog. Neuron 2001; 30:725-36. [PMID: 11430806 DOI: 10.1016/s0896-6273(01)00312-9] [Citation(s) in RCA: 326] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mutation of the zebrafish lakritz (lak) locus completely eliminates the earliest-born retinal cells, the ganglion cells (RGCs). Instead, excess amacrine, bipolar, and Müller glial cells are generated in the mutant. The extra amacrines are found at ectopic locations in the ganglion cell layer. Cone photoreceptors appear unaffected by the mutation. Molecular analysis reveals that lak encodes Ath5, the zebrafish eye-specific ortholog of the Drosophila basic helix-loop-helix transcription factor Atonal. A combined birth-dating and cell marker analysis demonstrates that lak/ath5 is essential for RGC determination during the first wave of neurogenesis in the retina. Our results suggest that this wave is skipped in the mutant, leading to an accumulation of progenitors for inner nuclear layer cells.
Collapse
Affiliation(s)
- J N Kay
- Department of Physiology, University of California, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
36
|
Wawersik S, Purcell P, Maas RL. Pax6 and the genetic control of early eye development. Results Probl Cell Differ 2001; 31:15-36. [PMID: 10929399 DOI: 10.1007/978-3-540-46826-4_2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- S Wawersik
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
37
|
Abstract
Mutations in PAX6 are responsible for human aniridia and have also been found in patients with Peter's anomaly, with congenital cataracts, with autosomal dominant keratitis, and with isolated foveal hypoplasia. No locus other than chromosome 11p13 has been implicated in aniridia, and PAX6 is clearly the major, if not only, gene responsible. Twenty-eight percent of identified PAX6 mutations are C-T changes at CpG dinucleotides, 20% are splicing errors, and more than 30% are deletion or insertion events. There is a noticeably elevated level of mutation in the paired domain compared with the rest of the gene. Increased mutation in the homeodomain is accounted for by the hypermutable CpG dinucleotide in codon 240. Very nearly all mutations appear to cause loss of function of the mutant allele, and more than 80% of exonic substitutions result in nonsense codons. In a gene with such extraordinarily high sequence conservation throughout evolution, there are presumed undiscovered missense mutations, these are hypothesized to exist in as-yet unidentified phenotypes.
Collapse
Affiliation(s)
- J Prosser
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK
| | | |
Collapse
|
38
|
Abstract
PAX6, a member of the family of highly conserved paired-box and homeobox genes, is highly conserved at both the protein and DNA levels. A conserved 216-bp Pax6 intron 4 sequence was found in human, mouse, and quail. Our transgenic mice experiments indicated that when under control of the human PAX6 promoter, the human 216-bp conserved sequence (ele4H) functioned as a spinal cord-specific enhancer. This enhancer can drive lacZ expression at the thoracic and lumbar levels of the spinal cord only when linked to a functional PAX6 promoter. These studies also suggested that PAX6 was not only conserved at the functional level, but at the transcriptional level as well.
Collapse
Affiliation(s)
- Z P Xu
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | |
Collapse
|
39
|
Plaza S, Hennemann H, Möröy T, Saule S, Dozier C. Evidence that POU factor Brn-3B regulates expression of Pax-6 in neuroretina cells. JOURNAL OF NEUROBIOLOGY 1999; 41:349-58. [PMID: 10526314 DOI: 10.1002/(sici)1097-4695(19991115)41:3<349::aid-neu4>3.0.co;2-f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Pax-6 gene encodes a transcriptional master regulator involved in the development of the eye. The quail Pax-6 gene is expressed in the neuroretina from two promoters, P0 and P1, and is regulated by an intragenic neuroretina-specific enhancer (EP enhancer). The activity of this enhancer is restricted to the P0 promoter, which is activated at the onset of neuronal differentiation. In this article, we show that the POU domain transcription factor Brn-3b, which is expressed in various regions of the brain including retina and sensory neurons, is one of the factors interacting with the EP enhancer. Brn-3b strongly activates the EP enhancer in neuroretina cells but not in other cell types. Interestingly, this activation appears to be specific for Brn-3b, as the closely related POU factors Brn-3a and Brn-3c do not show activation of the EP enhancer. Our results identify the Pax-6 gene as a new potential downstream effector of the POU transcription factor Brn-3b.
Collapse
Affiliation(s)
- S Plaza
- CNRS EP 560/Institut Pasteur, Institut de Biologie, 1 Rue Calmette, BP 447, 59021 Lille Cedex, France
| | | | | | | | | |
Collapse
|
40
|
Abstract
Positional cloning is a powerful method for the identification of genes. Using genetic and physical mapping methods the genomic region within which a particular gene is located can relatively easily be narrowed down to a comparatively small area contained within cosmid, PAC or BAC clones. It is then a matter of identifying genes within these clones. Here we describe the appli-cation of a technique, which has been successfully used for the bulk purification of CpG islands from whole genomes, to the isolation of CpG island sequences from such clones. As CpG islands overlap transcription units they can be used to isolate full-length cDNAs for associated genes, either by probing cDNA libraries or by searching databases. CpG islands are linked with approximately 60% of human genes and because their isolation is independent of the expression profile of these genes this approach would complement other expression-based methods of gene identification. By applying this technique to a cosmid clone known to contain the PAX6 gene we successfully isolated the CpG island for this gene along with other CpG island-like sequences. Closer examination revealed that an extensive genomic region around the 5'-end of PAX6 is unusual with regard to methylation and GC content. CpG island sequences were also successfully isolated from a PAC clone carrying the MBD1 gene. These included the complete CpG island containing the first exon and regulatory sequences from MBD1.
Collapse
Affiliation(s)
- S H Cross
- Institute of Cell and Molecular Biology, University of Edinburgh, Darwin Building, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK.
| | | | | |
Collapse
|
41
|
Plaza S, Aumercier M, Bailly M, Dozier C, Saule S. Involvement of poly (ADP-ribose)-polymerase in the Pax-6 gene regulation in neuroretina. Oncogene 1999; 18:1041-51. [PMID: 10023680 DOI: 10.1038/sj.onc.1202406] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The quail Pax-6 gene is expressed from two promoters named P0 and P1. P0 promoter is under the control of a neuroretina-specific enhancer (EP). This enhancer activates the P0 promoter specifically in neuroretina cells and in a developmental stage-dependent manner. The EP enhancer binds efficiently, as revealed by southwestern experiments, to a 110 kDa protein present in neuroretina cells but not in Quail Embryos Cells and Retinal Pigmented Epithelium which do not express the P0-initiated mRNAs. To study the role of p110 in Pax-6 regulation, we have purified the p110 from neuroretina cells extracts. Based on the peptide sequence of the purified protein, we have identified the p110 as the poly(ADP-ribose) polymerase (PARP). Using bandshift experiments and footprinting studies, we present evidence that PARP is a component of protein complexes bound to the EP enhancer that increases the on rate of the protein complex formation to DNA. Using PARP inhibitors (3AB and 6.5 Hphe), we show that these products are able to inhibit EP enhancer activity in neuroretina cells. Finally, we demonstrate that these inhibitors are able to decrease the expression of the P0-initiated mRNA in the MC29-infected RPE cells which, in contrast to the RPE cells, accumulated the PARP in response to v-myc expression. Our results suggest that PARP is involved in the Pax-6 regulation.
Collapse
Affiliation(s)
- S Plaza
- CNRS EP 560/Institut Pasteur, Institut de Biologie, Lille, France
| | | | | | | | | |
Collapse
|
42
|
Xu PX, Zhang X, Heaney S, Yoon A, Michelson AM, Maas RL. Regulation of Pax6 expression is conserved between mice and flies. Development 1999; 126:383-95. [PMID: 9847251 DOI: 10.1242/dev.126.2.383] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pax6 plays a key role in visual system development throughout the metazoa and the function of Pax6 is evolutionarily conserved. However, the regulation of Pax6 expression during eye development is largely unknown. We have identified two physically distinct promoters in mouse Pax6, P0 and P1, that direct differential Pax6 expression in the developing eye. P0-initiated transcripts predominate in lens placode and corneal and conjunctival epithelia, whereas P1-initiated transcripts are expressed in lens placode, optic vesicle and CNS, and only weakly in corneal and conjunctival epithelia. To further investigate their tissue-specific expression, a series of constructs for each promoter were examined in transgenic mice. We identified three different regulatory regions which direct distinct domains of Pax6 expression in the eye. A regulatory element upstream of the Pax6 P0 promoter is required for expression in a subpopulation of retinal progenitors and in the developing pancreas, while a second regulatory element upstream of the Pax6 P1 promoter is sufficient to direct expression in a subset of post-mitotic, non-terminally differentiated photoreceptors. A third element in Pax6 intron 4, when combined with either the P0 or P1 promoter, accurately directs expression in amacrine cells, ciliary body and iris. These results indicate that the complex expression pattern of Pax6 is differentially regulated by two promoters acting in combination with multiple cis-acting elements. We have also tested whether the regulatory mechanisms that direct Pax6 ocular expression are conserved between mice and flies. Remarkably, when inserted upstream of either the mouse Pax6 P1 or P0 promoter, an eye-enhancer region of the Drosophila eyeless gene, a Pax6 homolog, directs eye- and CNS-specific expression in transgenic mice that accurately reproduces features of endogenous Pax6 expression. These results suggest that in addition to conservation of Pax6 function, the upstream regulation of Pax6 has also been conserved during evolution.
Collapse
Affiliation(s)
- P X Xu
- Division of Genetics, Department of Medicine and Howard Hughes Medical Institute, Brigham and Women's Hospital and Harvard Medical School, Boston MA 02115, USA
| | | | | | | | | | | |
Collapse
|
43
|
Kammandel B, Chowdhury K, Stoykova A, Aparicio S, Brenner S, Gruss P. Distinct cis-essential modules direct the time-space pattern of the Pax6 gene activity. Dev Biol 1999; 205:79-97. [PMID: 9882499 DOI: 10.1006/dbio.1998.9128] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pax6 is a regulatory gene with restricted expression and essential functions in the developing eye and pancreas and distinct domains of the CNS. In this study we report the identification of three conserved transcription start sites (P0, P1, alpha) in the murine Pax6 locus. Furthermore, using transgenic mouse technology we localized independent cis-regulatory elements controlling the tissue-specific expression of Pax6. Specifically, a 107-bp enhancer and a 1.1-kb sequence within the 4.6-kb untranslated region upstream of exon 0 are required to mediate Pax6 expression in the lens, cornea, lacrimal gland, conjunctiva, or pancreas, respectively. Another 530-bp enhancer fragment located downstream of the Pax6 translational start site is required for expression in the neural retina, the pigment layer of the retina, and the iris. Finally, a 5-kb fragment located between the promoters P0 and P1 can mediate expression into the dorsal telencephalon, the hindbrain, and the spinal cord. The identified Pax6/cis-essential elements are highly conserved in pufferfish, mouse, and human DNA and contain binding sites for several transcription factors indicative of the cascade of control events. Corresponding regulatory elements from pufferfish are able to mimic the reporter expression in transgenic mice. Thus, the results indicate a structural and functional conservation of the Pax6 regulatory elements in the vertebrate genome.
Collapse
Affiliation(s)
- B Kammandel
- Department of Molecular Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg, Göttingen, D-37077, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Miles C, Elgar G, Coles E, Kleinjan DJ, van Heyningen V, Hastie N. Complete sequencing of the Fugu WAGR region from WT1 to PAX6: dramatic compaction and conservation of synteny with human chromosome 11p13. Proc Natl Acad Sci U S A 1998; 95:13068-72. [PMID: 9789042 PMCID: PMC23712 DOI: 10.1073/pnas.95.22.13068] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pufferfish Fugu rubripes has a genome approximately 7.5 times smaller than that of mammals but with a similar number of genes. Although conserved synteny has been demonstrated between pufferfish and mammals across some regions of the genome, there is some controversy as to what extent Fugu will be a useful model for the human genome, e.g., [Gilley, J., Armes, N. & Fried, M. (1997) Nature (London) 385, 305-306]. We report extensive conservation of synteny between a 1.5-Mb region of human chromosome 11 and <100 kb of the Fugu genome in three overlapping cosmids. Our findings support the idea that the majority of DNA in the region of human chromosome 11p13 is intergenic. Comparative analysis of three unrelated genes with quite different roles, WT1, RCN1, and PAX6, has revealed differences in their structural evolution. Whereas the human WT1 gene can generate 16 protein isoforms via a combination of alternative splicing, RNA editing, and alternative start site usage, our data predict that Fugu WT1 is capable of generating only two isoforms. This raises the question of the extent to which the evolution of WT1 isoforms is related to the evolution of the mammalian genitourinary system. In addition, this region of the Fugu genome shows a much greater overall compaction than usual but with significant noncoding homology observed at the PAX6 locus, implying that comparative genomics has identified regulatory elements associated with this gene.
Collapse
Affiliation(s)
- C Miles
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | | | | | | | | | | |
Collapse
|
45
|
Seo HC, Drivenes, Ellingsen S, Fjose A. Expression of two zebrafish homologues of the murine Six3 gene demarcates the initial eye primordia. Mech Dev 1998; 73:45-57. [PMID: 9545529 DOI: 10.1016/s0925-4773(98)00028-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The murine homeobox gene Six3 and its Drosophila homologue sine oculis both have regulatory functions in eye development. We report the isolation and characterization of two zebrafish genes, six3 and six6, that are closely related to the murine Six3 gene. Zebrafish six3 may be the structural orthologue, while the six6 gene is more similar with respect to embryonic expression. Transcripts of both zebrafish six genes are first detected in involuting axial mesendoderm and, subsequently, in the overlying anterior neural plate from which the optic vesicles and the forebrain will develop. Direct correspondence between six3/six6 expression boundaries and the optic vesicles indicate essential roles in defining the eye primordia. During later stages only the six6 gene displays similar features of expression in the eyes and rostral brain as reported previously for murine Six3.
Collapse
Affiliation(s)
- H C Seo
- Department of Molecular Biology, University of Bergen, HIB-Biobuilding, N-5020, Bergen, Norway
| | | | | | | |
Collapse
|
46
|
|
47
|
Abstract
Several genes involved in the regulation of eye development in different species have been identified. Structural and functional conservation have been found between some of these genes in organisms as diverse as Drosophila and mouse. One notable example is the relationship between the mouse Pax6 gene and eyeless of Drosophila. Ectopic expression of eyeless or mouse Pax6 in Drosophila results in the formation of additional eyes. Recently, another homeobox gene, Six3, was found to promote ectopic lens formation in fish embryos. The next step will be to unravel the associated regulatory pathways of these genes and assess the degree to which they display evolutionary conservation. This will be important in order to assimilate these findings with current anatomical and embryological models. It seems reasonable to believe that in the near future the characterization of the whole framework required for vertebrate eye development will be accomplished.
Collapse
Affiliation(s)
- G Oliver
- Dept of Genetics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
48
|
Axton R, Hanson I, Danes S, Sellar G, van Heyningen V, Prosser J. The incidence of PAX6 mutation in patients with simple aniridia: an evaluation of mutation detection in 12 cases. J Med Genet 1997; 34:279-86. [PMID: 9138149 PMCID: PMC1050912 DOI: 10.1136/jmg.34.4.279] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Twelve aniridia patients, five with a family history and seven presumed to be sporadic, were exhaustively screened in order to test what proportion of people with aniridia, uncomplicated by associated anomalies, carry mutations in the human PAX6 gene. Mutations were detected in 90% of the cases. Three mutation detection techniques were used to determine if one method was superior for this gene. The protein truncation test (PTT) was used on RT-PCR products, SSCP on genomic PCR amplifications, and chemical cleavage of mismatch on both RT-PCR and genomic amplifications. For RT-PCR products, only the translated portion of the gene was screened. On genomic products exons 1 to 13 (including 740 bp of the 3' untranslated sequence and all intron/exon boundaries) were screened, as was a neuroretina specific enhancer in intron 4. Ten of the possible 12 mutations in the five familial cases and five of the sporadic patients were found, all of which conformed to a functional outcome of haploinsufficiency. Five were splice site mutations (one in the donor site of intron 4, two in the donor site of intron 6, one in each of the acceptor sites of introns 8 and 9) and five were nonsense mutations in exons 8, 9, 10, 11, and 12. SSCP analysis of individually amplified exons, with which nine of the 10 mutations were seen, was the most useful detection method for PAX6.
Collapse
Affiliation(s)
- R Axton
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Pax-6 is a member of the Pax gene class and encodes a protein containing a paired domain and a homeodomain. The molecular characterization of Pax-6 genes from species of different animal phyla and the analysis of Pax-6 function in the developing eyes and central nervous system of vertebrates, Drosophila melanogaster, and Caenorhabditis elegans suggest that Pax-6 homologues share conserved functions. In this review, we present recent data on the structural and functional characterization of Pax-6 homologues from species of different animal phyla. We discuss the implications of these findings for our understanding of the development and evolution of eyes and nervous systems.
Collapse
Affiliation(s)
- P Callaerts
- Department of Cell Biology, Biozentrum, University of Basel, Switzerland
| | | | | |
Collapse
|
50
|
Freund C, Horsford DJ, McInnes RR. Transcription factor genes and the developing eye: a genetic perspective. Hum Mol Genet 1996; 5 Spec No:1471-88. [PMID: 8875254 DOI: 10.1093/hmg/5.supplement_1.1471] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We review the current knowledge of transcription factors in mammallan eye development. The 14 transcription factors presently known to be required for eye formation are examined in some detail, incorporating data from both humans and rodents. Aspects of the biochemistry, expression patterns, genetics, mutant phenotypes, and biological insights acquired from the examination of loss-of-function mutations are summarized. The other 32 tissue-restricted transcription factors that are currently known to be expressed in the developing or mature mammallan eye are tabulated, together with the timing and site of their ocular expression; the requirement for most of these genes in the eye is unknown. Contributions to mammallan eye development from the study of the genetics of the Drosophila eye are discussed briefly. Identification of the entire cohort of transcription factors required for eye development is an essential first step towards understanding the mechanisms underlying eye morphogenesis and differentiation, and the molecular basis of inherited eye abnormalities in humans.
Collapse
Affiliation(s)
- C Freund
- Department of Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|