1
|
Kübelbeck T, Wichmann NO, Raj T, Raj C, Ohnmacht C, Hövelmeyer N, Kramer D, Heissmeyer V. Regulation and Function of the Atypical IκBs-Bcl-3, IκB NS, and IκBζ-in Lymphocytes and Autoimmunity. Eur J Immunol 2025; 55:e202451273. [PMID: 40359334 PMCID: PMC12074568 DOI: 10.1002/eji.202451273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025]
Abstract
Signaling pathways involving NF-κB transcription factors have essential roles in inflammation, immunity, cell proliferation, differentiation, and survival. Classical IκB proteins, such as IκBα and IκBβ, bind to NF-κB via ankyrin repeats to sequester NF-κB in the cytoplasm and thus suppress NF-κB activity. Unlike these constitutively expressed classical IκBs, the expression of the atypical IκBs Bcl-3, IκBNS, and IκBζ is induced in immune cells after recognition of antigens, pathogen-associated molecular patterns (PAMPs) or cytokines, upon which they localize to the nucleus and form complexes with transcription factors and regulators on the DNA. Atypical, nuclear IκBs have been proposed to modulate NF-κB activity in a context-dependent manner as they can either inhibit or increase gene expression of a subset of NF-κB target genes. This complexity may be related to the molecular function of atypical IκBs, which bind to different transcription factor complexes and form a bridge to different cofactors or epigenetic modifiers. Recent research has identified novel target genes of atypical IκBs that include chemokines, cytokines, and master regulators of lymphocyte differentiation, underscoring prominent roles in adaptive immune and autoimmune responses. Here, we summarize our current understanding of atypical IκBs in lymphocytes with a focus on their emerging role in autoimmunity.
Collapse
Affiliation(s)
- Tanja Kübelbeck
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg‐University of MainzMainzGermany
| | - Nina Olivera Wichmann
- Center of Allergy and Environment (ZAUM)Technical University and Helmholtz Zentrum MünchenMunichGermany
| | - Timsse Raj
- Institute for Immunology, Biomedical Center (BMC), Faculty of MedicineLudwig‐Maximilians‐Universität in MunichPlanegg‐MartinsriedGermany
| | - Cynthia Raj
- Institute for Molecular Medicine MainzUniversity Medical Center of the Johannes Gutenberg‐University MainzMainzGermany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM)Technical University and Helmholtz Zentrum MünchenMunichGermany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine MainzUniversity Medical Center of the Johannes Gutenberg‐University MainzMainzGermany
- Research Centre for Immunotherapy (FZI)University Medical Center of the Johannes Gutenberg‐University MainzMainzGermany
| | - Daniela Kramer
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg‐University of MainzMainzGermany
- Research Centre for Immunotherapy (FZI)University Medical Center of the Johannes Gutenberg‐University MainzMainzGermany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center (BMC), Faculty of MedicineLudwig‐Maximilians‐Universität in MunichPlanegg‐MartinsriedGermany
- Research Unit Molecular Immune RegulationMolecular Targets and Therapeutics CenterHelmholtz Zentrum MünchenMunichGermany
| |
Collapse
|
2
|
Meng Y, Yang Z, Quan Y, Zhao S, Zhang L, Yang L. Regulation of IkappaB Protein Expression by Early Gestation in the Thymus of Ewes. Vet Sci 2023; 10:462. [PMID: 37505866 PMCID: PMC10384501 DOI: 10.3390/vetsci10070462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
The thymus is an essential component of maternal immune systems that play key roles in recognizing the placenta as immunologically foreign. The inhibitor of the NF-κB (IκB) family has essential effects on the NF-κB pathway; however, it is unclear whether early pregnancy modulates the expression of the IκB family in the thymus. In this study, maternal thymuses were sampled on day 16 of nonpregnancy and different gestation stages in the ovine, and the expression of IκB proteins was analyzed. The data showed that B cell leukemia-3 and IκBβ increased; however, IκBα, IκBε, and IKKγ deceased during gestation. Furthermore, there was an increase in IκBNS and IκBζ expression values on day 13 of pregnancy; however, this decreased on day 25 of gestation. In summary, the expression of the IκB family was modulated in the thymus during early gestation, suggesting that the maternal thymus can be associated with maternal immunologic tolerance and pregnancy establishment in ewes.
Collapse
Affiliation(s)
- Yao Meng
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Zhen Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yaodong Quan
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Shuxin Zhao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| |
Collapse
|
3
|
Liu H, Zeng L, Yang Y, Guo C, Wang H. Bcl-3: A Double-Edged Sword in Immune Cells and Inflammation. Front Immunol 2022; 13:847699. [PMID: 35355979 PMCID: PMC8959985 DOI: 10.3389/fimmu.2022.847699] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
The NF-κB transcription factor family controls the transcription of many genes and regulates a number of pivotal biological processes. Its activity is regulated by the IκB family of proteins. Bcl-3 is an atypical member of the IκB protein family that regulates the activity of nuclear factor NF-κB. It can promote or inhibit the expression of NF-κB target genes according to the received cell type and stimulation, impacting various cell functions, such as proliferation and differentiation, induction of apoptosis and immune response. Bcl-3 is also regarded as an environment-dependent cell response regulator that has dual roles in the development of B cells and the differentiation, survival and proliferation of Th cells. Moreover, it also showed a contradictory role in inflammation. At present, in addition to the work aimed at studying the molecular mechanism of Bcl-3, an increasing number of studies have focused on the effects of Bcl-3 on inflammation, immunity and malignant tumors in vivo. In this review, we focus on the latest progress of Bcl-3 in the regulation of the NF-κB pathway and its extensive physiological role in inflammation and immune cells, which may help to provide new ideas and targets for the early diagnosis or targeted treatment of various inflammatory diseases, immunodeficiency diseases and malignant tumors.
Collapse
Affiliation(s)
- Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lin Zeng
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunlei Guo
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
4
|
Kron NS, Fieber LA. Aplysia Neurons as a Model of Alzheimer's Disease: Shared Genes and Differential Expression. J Mol Neurosci 2021; 72:287-302. [PMID: 34664226 PMCID: PMC8840921 DOI: 10.1007/s12031-021-01918-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022]
Abstract
Although Alzheimer’s disease (AD) is the most common form of dementia in the United States, development of therapeutics has proven difficult. Invertebrate alternatives to current mammalian AD models have been successfully employed to study the etiology of the molecular hallmarks of AD. The marine snail Aplysia californica offers a unique and underutilized system in which to study the physiological, behavioral, and molecular impacts of AD. Mapping of the Aplysia proteome to humans and cross-referencing with two databases of genes of interest in AD research identified 898 potential orthologs of interest in Aplysia. Included among these orthologs were alpha, beta and gamma secretases, amyloid-beta, and tau. Comparison of age-associated differential expression in Aplysia sensory neurons with that of late-onset AD in the frontal lobe identified 59 ortholog with concordant differential expression across data sets. The 21 concordantly upregulated genes suggested increased cellular stress and protein dyshomeostasis. The 47 concordantly downregulated genes included important components of diverse neuronal processes, including energy metabolism, mitochondrial homeostasis, synaptic signaling, Ca++ regulation, and cellular cargo transport. Compromised functions in these processes are known hallmarks of both human aging and AD, the ramifications of which are suggested to underpin cognitive declines in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| |
Collapse
|
5
|
Gómez-Chávez F, Correa D, Navarrete-Meneses P, Cancino-Diaz JC, Cancino-Diaz ME, Rodríguez-Martínez S. NF-κB and Its Regulators During Pregnancy. Front Immunol 2021; 12:679106. [PMID: 34025678 PMCID: PMC8131829 DOI: 10.3389/fimmu.2021.679106] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptional factor NF-κB is a nuclear factor involved in both physiological and pathological processes. This factor can control the transcription of more than 400 genes, including cytokines, chemokines, and their modulators, immune and non-immune receptors, proteins involved in antigen presentation and cell adhesion, acute phase and stress response proteins, regulators of apoptosis, growth factors, other transcription factors and their regulators, as well as different enzymes; all these molecules control several biological processes. NF-κB is a tightly regulated molecule that has also been related to apoptosis, cell proliferation, inflammation, and the control of innate and adaptive immune responses during onset of labor, in which it has a crucial role; thus, early activation of this factor may have an adverse effect, by inducing premature termination of pregnancy, with bad outcomes for the mother and the fetus, including product loss. Reviews compiling the different activities of NF-κB have been reported. However, an update regarding NF-κB regulation during pregnancy is lacking. In this work, we aimed to describe the state of the art around NF-κB activity, its regulatory role in pregnancy, and the effect of its dysregulation due to invasion by pathogens like Trichomonas vaginalis and Toxoplasma gondii as examples.
Collapse
Affiliation(s)
- Fernando Gómez-Chávez
- Secretaría de Salud, Cátedras CONACyT-Instituto Nacional de Pediatría, Mexico City, Mexico
- Secretaría de Salud, Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
- Departamento de Formación Básica Disciplinaria, Escuela Nacional de Medicina y Homeopatía-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dolores Correa
- Dirección de Investigación, Universidad Anáhuac, Huixquilucan, Mexico
| | - Pilar Navarrete-Meneses
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Secretaría de Salud Mexico City, Mexico City, Mexico
| | - Juan Carlos Cancino-Diaz
- Laboratorio de Inmunomicrobiología, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mario Eugenio Cancino-Diaz
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, ENCB-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sandra Rodríguez-Martínez
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, ENCB-Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
6
|
Legge DN, Chambers AC, Parker CT, Timms P, Collard TJ, Williams AC. The role of B-Cell Lymphoma-3 (BCL-3) in enabling the hallmarks of cancer: implications for the treatment of colorectal carcinogenesis. Carcinogenesis 2020; 41:249-256. [PMID: 31930327 PMCID: PMC7221501 DOI: 10.1093/carcin/bgaa003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/29/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
With its identification as a proto-oncogene in chronic lymphocytic leukaemia and central role in regulating NF-κB signalling, it is perhaps not surprising that there have been an increasing number of studies in recent years investigating the role of BCL-3 (B-Cell Chronic Lymphocytic Leukaemia/Lymphoma-3) in a wide range of human cancers. Importantly, this work has begun to shed light on our mechanistic understanding of the function of BCL-3 in tumour promotion and progression. Here, we summarize the current understanding of BCL-3 function in relation to the characteristics or traits associated with tumourigenesis, termed ‘Hallmarks of Cancer’. With the focus on colorectal cancer, a major cause of cancer related mortality in the UK, we describe the evidence that potentially explains why increased BCL-3 expression is associated with poor prognosis in colorectal cancer. As well as promoting tumour cell proliferation, survival, invasion and metastasis, a key emerging function of this proto-oncogene is the regulation of the tumour response to inflammation. We suggest that BCL-3 represents an exciting new route for targeting the Hallmarks of Cancer; in particular by limiting the impact of the enabling hallmarks of tumour promoting inflammation and cell plasticity. As BCL-3 has been reported to promote the stem-like potential of cancer cells, we suggest that targeting BCL-3 could increase the tumour response to conventional treatment, reduce the chance of relapse and hence improve the prognosis for cancer patients.
Collapse
Affiliation(s)
- Danny N Legge
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Adam C Chambers
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Christopher T Parker
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Penny Timms
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Tracey J Collard
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Ann C Williams
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| |
Collapse
|
7
|
Wang VYF, Li Y, Kim D, Zhong X, Du Q, Ghassemian M, Ghosh G. Bcl3 Phosphorylation by Akt, Erk2, and IKK Is Required for Its Transcriptional Activity. Mol Cell 2017; 67:484-497.e5. [PMID: 28689659 DOI: 10.1016/j.molcel.2017.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/13/2017] [Accepted: 06/09/2017] [Indexed: 01/02/2023]
Abstract
Unlike prototypical IκB proteins, which are inhibitors of NF-κB RelA, cRel, and RelB dimers, the atypical IκB protein Bcl3 is primarily a transcriptional coregulator of p52 and p50 homodimers. Bcl3 exists as phospho-protein in many cancer cells. Unphosphorylated Bcl3 acts as a classical IκB-like inhibitor and removes p50 and p52 from bound DNA. Neither the phosphorylation site(s) nor the kinase(s) phosphorylating Bcl3 is known. Here we show that Akt, Erk2, and IKK1/2 phosphorylate Bcl3. Phosphorylation of Ser33 by Akt induces switching of K48 ubiquitination to K63 ubiquitination and thus promotes nuclear localization and stabilization of Bcl3. Phosphorylation by Erk2 and IKK1/2 of Ser114 and Ser446 converts Bcl3 into a transcriptional coregulator by facilitating its recruitment to DNA. Cells expressing the S114A/S446A mutant have cellular proliferation and migration defects. This work links Akt and MAPK pathways to NF-κB through Bcl3 and provides mechanistic insight into how Bcl3 functions as an oncoprotein through collaboration with IKK1/2, Akt, and Erk2.
Collapse
Affiliation(s)
- Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China; Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Yidan Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Daniel Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Xiangyang Zhong
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Qian Du
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| |
Collapse
|
8
|
Urban BC, Collard TJ, Eagle CJ, Southern SL, Greenhough A, Hamdollah-Zadeh M, Ghosh A, Poulsom R, Paraskeva C, Silver A, Williams AC. BCL-3 expression promotes colorectal tumorigenesis through activation of AKT signalling. Gut 2016; 65:1151-64. [PMID: 26033966 PMCID: PMC4941180 DOI: 10.1136/gutjnl-2014-308270] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 03/21/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Colorectal cancer remains the fourth most common cause of cancer-related mortality worldwide. Here we investigate the role of nuclear factor-κB (NF-κB) co-factor B-cell CLL/lymphoma 3 (BCL-3) in promoting colorectal tumour cell survival. DESIGN Immunohistochemistry was carried out on 47 tumour samples and normal tissue from resection margins. The role of BCL-3/NF-κB complexes on cell growth was studied in vivo and in vitro using an siRNA approach and exogenous BCL-3 expression in colorectal adenoma and carcinoma cells. The question whether BCL-3 activated the AKT/protein kinase B (PKB) pathway in colorectal tumour cells was addressed by western blotting and confocal microscopy, and the ability of 5-aminosalicylic acid (5-ASA) to suppress BCL-3 expression was also investigated. RESULTS We report increased BCL-3 expression in human colorectal cancers and demonstrate that BCL-3 expression promotes tumour cell survival in vitro and tumour growth in mouse xenografts in vivo, dependent on interaction with NF-κB p50 or p52 homodimers. We show that BCL-3 promotes cell survival under conditions relevant to the tumour microenvironment, protecting both colorectal adenoma and carcinoma cells from apoptosis via activation of the AKT survival pathway: AKT activation is mediated via both PI3K and mammalian target of rapamycin (mTOR) pathways, leading to phosphorylation of downstream targets GSK-3β and FoxO1/3a. Treatment with 5-ASA suppressed BCL-3 expression in colorectal cancer cells. CONCLUSIONS Our study helps to unravel the mechanism by which BCL-3 is linked to poor prognosis in colorectal cancer; we suggest that targeting BCL-3 activity represents an exciting therapeutic opportunity potentially increasing the sensitivity of tumour cells to conventional therapy.
Collapse
Affiliation(s)
- Bettina C Urban
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Tracey J Collard
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Catherine J Eagle
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | | | | | | | - Anil Ghosh
- Centre for Digestive Diseases, National Centre for Bowel Research and Surgical Intervention, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, UK
| | - Richard Poulsom
- Centre for Digestive Diseases, National Centre for Bowel Research and Surgical Intervention, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, UK
| | - Christos Paraskeva
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Andrew Silver
- Centre for Digestive Diseases, National Centre for Bowel Research and Surgical Intervention, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, UK
| | - Ann C Williams
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
9
|
Regulation of the Adaptive Immune Response by the IκB Family Protein Bcl-3. Cells 2016; 5:cells5020014. [PMID: 27023613 PMCID: PMC4931663 DOI: 10.3390/cells5020014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 01/14/2023] Open
Abstract
Bcl-3 is a member of the IκB family of proteins and an important regulator of Nuclear Factor (NF)-κB activity. The ability of Bcl-3 to bind and regulate specific NF-κB dimers has been studied in great depth, but its physiological roles in vivo are still not fully understood. It is, however, becoming clear that Bcl-3 is essential for the proper development, survival and activity of adaptive immune cells. Bcl-3 dysregulation can be observed in a number of autoimmune pathologies, and Bcl3-deficient animals are more susceptible to bacterial and parasitic infection. This review will describe our current understanding of the roles played by Bcl-3 in the development and regulation of the adaptive immune response, including lymphoid organogenesis, immune tolerance, lymphocyte function and dendritic cell biology.
Collapse
|
10
|
Atypical IκB proteins in immune cell differentiation and function. Immunol Lett 2016; 171:26-35. [DOI: 10.1016/j.imlet.2016.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
|
11
|
Shionome T, Endo S, Omagari D, Asano M, Toyoma H, Ishigami T, Komiyama K. Nickel ion inhibits nuclear factor-kappa B activity in human oral squamous cell carcinoma. PLoS One 2013; 8:e68257. [PMID: 23844176 PMCID: PMC3700988 DOI: 10.1371/journal.pone.0068257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/27/2013] [Indexed: 11/22/2022] Open
Abstract
Background The spontaneous IL-8 secretion observed in OSCC is partially dependent on the disregulated activity of transcription factor NF-κB. Nickel compounds are well established human carcinogens, however, little is known about the influence of nickel on the spontaneous secretion of IL-8 in oral squamous cell carcinoma (OSCC) cells. The aim of the present study was to investigate whether Ni2+ ions can influence on IL-8 secretion by OSCC. Methods and Results The IL-8 secretion was measured by ELISA. The expression of IL-8 mRNA was examined by real-time PCR. The NF-κB activity was measured by luciferase assay. The phosphorylation status and nuclear localization of NF-κB subunits were examined by Western blotting or Transfactor kit and immunofluorescence staining, respectively. The interaction of NF-κB p50 subunit and Ni2+ ions was examined by Ni2+-column pull down assay. The site-directed mutagenesis was used to generate a series of p50 mutants. Scratch motility assay was used to monitor the cell mobility. Our results demonstrated that, on the contrary to our expectations, Ni2+ ions inhibited the spontaneous secretion of IL-8. As IL-8 reduction was observed in a transcriptional level, we performed the luciferase assay and the data indicated that Ni2+ ions reduced the NF-κB activity. Measurement of p50 subunit in the nucleus and the immunofluorescence staining revealed that the inhibitory effect of Ni2+ ions was attributed to the prevention of p50 subunit accumulation to the nucleus. By Ni2+-column pull down assay, Ni2+ ions were shown to interact directly with His cluster in the N-terminus of p50 subunit. The inhibitory effect of Ni2+ ions was reverted in the transfectant expressing the His cluster-deleted p50 mutant. Moreover, Ni2+ ions inhibited the OSCC mobility in a dose dependent fashion. Conclusions Taken together, inhibition of NF-κB activity by Ni2+ ion might be a novel therapeutic strategy for the treatment of oral cancer.
Collapse
Affiliation(s)
- Takashi Shionome
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Shigeki Endo
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Daisuke Omagari
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan
- * E-mail:
| | - Hitoshi Toyoma
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Tomohiko Ishigami
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Kazuo Komiyama
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
12
|
Bcl-3 suppresses Tax-induced NF-κB activation through p65 nuclear translocation blockage in HTLV-1-infected cells. Int J Oncol 2012; 42:269-76. [PMID: 23135533 DOI: 10.3892/ijo.2012.1685] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/16/2012] [Indexed: 11/05/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) Tax-induced persistent activation of the NF-κB pathway is perceived as the primary cause of adult T cell leukemia (ATL), an aggressive leukemia caused by HTLV-1. Although elevated oncoprotein Bcl-3 levels are found in many HTLV-1-infected T cell lines and ATL cells, the role of Bcl-3 in the malignant progression caused by HTLV-1 retrovirus remains poorly understood. We confirmed, in the present study, that the Tax-induced NF-κB activation involves the regulation of Bcl-3. Both knockdown and overexpression of Bcl-3 inhibit the Tax-induced NF-κB activation. Similarly, excessive Bcl-3 inhibits the NF-κB/DNA binding activity and significantly decreases Tax-induced p65 nuclear translocation. The present results demonstrate the pleiotropic roles of Bcl-3 in Tax-induced NF-κB activation and indicate that a balance in the aberrant Bcl-3 expression may be established to play an important role in the maintenance of proliferation and inhibition of apoptosis in HTLV-1-infected and ATL cells.
Collapse
|
13
|
Hayden MS, Ghosh S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 2012; 26:203-34. [PMID: 22302935 DOI: 10.1101/gad.183434.111] [Citation(s) in RCA: 1350] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to sense and adjust to the environment is crucial to life. For multicellular organisms, the ability to respond to external changes is essential not only for survival but also for normal development and physiology. Although signaling events can directly modify cellular function, typically signaling acts to alter transcriptional responses to generate both transient and sustained changes. Rapid, but transient, changes in gene expression are mediated by inducible transcription factors such as NF-κB. For the past 25 years, NF-κB has served as a paradigm for inducible transcription factors and has provided numerous insights into how signaling events influence gene expression and physiology. Since its discovery as a regulator of expression of the κ light chain gene in B cells, research on NF-κB continues to yield new insights into fundamental cellular processes. Advances in understanding the mechanisms that regulate NF-κB have been accompanied by progress in elucidating the biological significance of this transcription factor in various physiological processes. NF-κB likely plays the most prominent role in the development and function of the immune system and, not surprisingly, when dysregulated, contributes to the pathophysiology of inflammatory disease. As our appreciation of the fundamental role of inflammation in disease pathogenesis has increased, so too has the importance of NF-κB as a key regulatory molecule gained progressively greater significance. However, despite the tremendous progress that has been made in understanding the regulation of NF-κB, there is much that remains to be understood. In this review, we highlight both the progress that has been made and the fundamental questions that remain unanswered after 25 years of study.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
14
|
Maldonado V, Melendez-Zajgla J. Role of Bcl-3 in solid tumors. Mol Cancer 2011; 10:152. [PMID: 22195643 PMCID: PMC3258214 DOI: 10.1186/1476-4598-10-152] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/23/2011] [Indexed: 12/19/2022] Open
Abstract
Bcl-3 is an established oncogene in hematologic malignancies, such as B-cell chronic lymphocytic leukemias. Nevertheless, recent research has shown that it also participates in progression of diverse solid tumors. The present review summarizes the current knowledge of Bcl3 role in solid tumors progression, including some new insights in its possible molecular mechanisms of action.
Collapse
|
15
|
Serine protease inhibitor, 4-(2-aminoethyl)-benzene sulfonyl fluoride, impairs IL-12-induced activation of pSTAT4β, NFκB, and select pro-inflammatory mediators from estrogen-treated mice. Immunobiology 2011; 216:1264-73. [DOI: 10.1016/j.imbio.2011.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 07/03/2011] [Indexed: 11/23/2022]
|
16
|
Molinero LL, Alegre ML. Role of T cell-nuclear factor κB in transplantation. Transplant Rev (Orlando) 2011; 26:189-200. [PMID: 22074783 DOI: 10.1016/j.trre.2011.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/17/2011] [Accepted: 07/12/2011] [Indexed: 11/30/2022]
Abstract
Nuclear factor (NF) κB is a pleiotropic transcription factor that is ubiquitously expressed. After transplantation of solid organs, NF-κB in the graft is activated within a few hours as a consequence of ischemia/reperfusion and then again after a few days in intragraft infiltrating cells during the process of acute allograft rejection. In the present article, we review the components of the NF-κB pathway, their mechanisms of activation, and their role in T cell and antigen-presenting cell activation and differentiation and in solid organ allograft rejection. Targeted inhibition of NF-κB in selected cell types may promote graft survival with fewer adverse effects compared with global immunosuppressive therapies.
Collapse
Affiliation(s)
- Luciana L Molinero
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
17
|
C/EBPα and C/EBPα oncoproteins regulate nfkb1 and displace histone deacetylases from NF-κB p50 homodimers to induce NF-κB target genes. Blood 2011; 117:4085-94. [PMID: 21346255 DOI: 10.1182/blood-2010-07-294470] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mutated CEBPA defines a subgroup of acute myeloid leukemia (AML). We have previously shown that C/EBPα or its AML mutants synergize with NF-κB p50 to activate antiapoptotic genes, including BCL2 and FLIP. Furthermore, p50 binds and activates the CEBPA gene in myeloid cells. We now report that C/EBPα or C/EBPα leucine zipper AML mutants bind in vivo to the nfkb1 (p50) promoter and induce its expression even in the presence of cycloheximide. Induction of p50 by C/EBPα depends on 2 conserved κB sites in the nfkb1 promoter. C/EBPα did not induce p65 expression. Thus, C/EBPα and p50 reciprocally regulate each other's expression, establishing a positive feedback relationship. Although p50 homodimers inhibit transcription, C/EBPα and p50 synergistically activate antiapoptotic genes. ChIP analysis showed that C/EBPα diminishes the occupation of histone deacetylase 1 (HDAC1) or HDAC3 on the endogenous FLIP promoter but not in mice lacking p50. Coimmunoprecipitation confirmed that C/EBPα, its AML variants, or C/EBPβ disrupt interaction between p50 and HDACs dependent on the C/EBP basic region. These findings suggest that C/EBPs displace HDACs from p50 homodimers bound to antiapoptotic genes, contributing to NF-κB dysregulation in leukemia, and that the C/EBPα:p50 complex is a potential therapeutic target.
Collapse
|
18
|
Wu CL, Kandarian SC, Jackman RW. Identification of genes that elicit disuse muscle atrophy via the transcription factors p50 and Bcl-3. PLoS One 2011; 6:e16171. [PMID: 21249144 PMCID: PMC3020958 DOI: 10.1371/journal.pone.0016171] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 12/09/2010] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle atrophy is a debilitating condition associated with weakness, fatigue, and reduced functional capacity. Nuclear factor-kappaB (NF-κB) transcription factors play a critical role in atrophy. Knockout of genes encoding p50 or the NF-κB co-transactivator, Bcl-3, abolish disuse atrophy and thus they are NF-κB factors required for disuse atrophy. We do not know however, the genes targeted by NF-κB that produce the atrophied phenotype. Here we identify the genes required to produce disuse atrophy using gene expression profiling in wild type compared to Nfkb1 (gene encodes p50) and Bcl-3 deficient mice. There were 185 and 240 genes upregulated in wild type mice due to unloading, that were not upregulated in Nfkb1−/− and Bcl-3−/− mice, respectively, and so these genes were considered direct or indirect targets of p50 and Bcl-3. All of the p50 gene targets were contained in the Bcl-3 gene target list. Most genes were involved with protein degradation, signaling, translation, transcription, and transport. To identify direct targets of p50 and Bcl-3 we performed chromatin immunoprecipitation of selected genes previously shown to have roles in atrophy. Trim63 (MuRF1), Fbxo32 (MAFbx), Ubc, Ctsl, Runx1, Tnfrsf12a (Tweak receptor), and Cxcl10 (IP-10) showed increased Bcl-3 binding to κB sites in unloaded muscle and thus were direct targets of Bcl-3. p50 binding to the same sites on these genes either did not change or increased, supporting the idea of p50:Bcl-3 binding complexes. p65 binding to κB sites showed decreased or no binding to these genes with unloading. Fbxo9, Psma6, Psmc4, Psmg4, Foxo3, Ankrd1 (CARP), and Eif4ebp1 did not show changes in p65, p50, or Bcl-3 binding to κB sites, and so were considered indirect targets of p50 and Bcl-3. This work represents the first study to use a global approach to identify genes required to produce the atrophied phenotype with disuse.
Collapse
Affiliation(s)
- Chia-Ling Wu
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Susan C. Kandarian
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Robert W. Jackman
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Manavalan B, Basith S, Choi YM, Lee G, Choi S. Structure-function relationship of cytoplasmic and nuclear IκB proteins: an in silico analysis. PLoS One 2010; 5:e15782. [PMID: 21203422 PMCID: PMC3009747 DOI: 10.1371/journal.pone.0015782] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/23/2010] [Indexed: 12/31/2022] Open
Abstract
Cytoplasmic IκB proteins are primary regulators that interact with NF-κB subunits in the cytoplasm of unstimulated cells. Upon stimulation, these IκB proteins are rapidly degraded, thus allowing NF-κB to translocate into the nucleus and activate the transcription of genes encoding various immune mediators. Subsequent to translocation, nuclear IκB proteins play an important role in the regulation of NF-κB transcriptional activity by acting either as activators or inhibitors. To date, molecular basis for the binding of IκBα, IκBβ and IκBζ along with their partners is known; however, the activation and inhibition mechanism of the remaining IκB (IκBNS, IκBε and Bcl-3) proteins remains elusive. Moreover, even though IκB proteins are structurally similar, it is difficult to determine the exact specificities of IκB proteins towards their respective binding partners. The three-dimensional structures of IκBNS, IκBζ and IκBε were modeled. Subsequently, we used an explicit solvent method to perform detailed molecular dynamic simulations of these proteins along with their known crystal structures (IκBα, IκBβ and Bcl-3) in order to investigate the flexibility of the ankyrin repeat domains (ARDs). Furthermore, the refined models of IκBNS, IκBε and Bcl-3 were used for multiple protein-protein docking studies for the identification of IκBNS-p50/p50, IκBε-p50/p65 and Bcl-3-p50/p50 complexes in order to study the structural basis of their activation and inhibition. The docking experiments revealed that IκBε masked the nuclear localization signal (NLS) of the p50/p65 subunits, thereby preventing its translocation into the nucleus. For the Bcl-3- and IκBNS-p50/p50 complexes, the results show that Bcl-3 mediated transcription through its transactivation domain (TAD) while IκBNS inhibited transcription due to its lack of a TAD, which is consistent with biochemical studies. Additionally, the numbers of identified flexible residues were equal in number among all IκB proteins, although they were not conserved. This could be the primary reason for their binding partner specificities.
Collapse
Affiliation(s)
- Balachandran Manavalan
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Shaherin Basith
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Yong-Min Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- Institute for Medical Sciences, School of Medicine, Ajou University, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- * E-mail:
| |
Collapse
|
20
|
Kabuta T, Hakuno F, Cho Y, Yamanaka D, Chida K, Asano T, Wada K, Takahashi SI. Insulin receptor substrate-3, interacting with Bcl-3, enhances p50 NF-κB activity. Biochem Biophys Res Commun 2010; 394:697-702. [DOI: 10.1016/j.bbrc.2010.03.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 03/09/2010] [Indexed: 01/20/2023]
|
21
|
Raices RM, Kannan Y, Bellamkonda-Athmaram V, Seshadri S, Wang H, Guttridge DC, Wewers MD. A novel role for IkappaBzeta in the regulation of IFNgamma production. PLoS One 2009; 4:e6776. [PMID: 19707556 PMCID: PMC2727951 DOI: 10.1371/journal.pone.0006776] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 07/16/2009] [Indexed: 11/23/2022] Open
Abstract
IkappaBzeta is a novel member of the IkappaB family of NFkappaB regulators, which modulates NFkappaB activity in the nucleus, rather than controlling its nuclear translocation. IkappaBzeta is specifically induced by IL-1beta and several TLR ligands and positively regulates NFkappaB-mediated transcription of genes such as IL-6 and NGAL as an NFkappaB binding co-factor. We recently reported that the IL-1 family cytokines, IL-1beta and IL-18, strongly synergize with TNFalpha for IFNgamma production in KG-1 cells, whereas the same cytokines alone have minimal effects on IFNgamma production. Given the striking similarities between the IL-1R and IL-18R signaling pathways we hypothesized that a common signaling event or gene product downstream of these receptors is responsible for the observed synergy. We investigated IkappaBzeta protein expression in KG-1 cells upon stimulation with IL-1beta, IL-18 and TNFalpha. Our results demonstrated that IL-18, as well as IL-1beta, induced moderate IkappaBzeta expression in KG-1 cells. However, TNFalpha synergized with IL-1beta and IL-18, whereas by itself it had a minimal effect on IkappaBzeta expression. NFkappaB inhibition resulted in decreased IL-1beta/IL-18/TNFalpha-stimulated IFNgamma release. Moreover, silencing of IkappaBzeta expression led to a specific decrease in IFNgamma production. Overall, our data suggests that IkappaBzeta positively regulates NFkappaB-mediated IFNgamma production in KG-1 cells.
Collapse
Affiliation(s)
- Raquel M. Raices
- The Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| | - Yashaswini Kannan
- The Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| | | | - Sudarshan Seshadri
- The Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| | - Huating Wang
- The Ohio State University, Department of Molecular Virology, Immunology & Medical Genetics, Columbus, Ohio, United States of America
| | - Denis C. Guttridge
- The Ohio State University, Department of Molecular Virology, Immunology & Medical Genetics, Columbus, Ohio, United States of America
| | - Mark D. Wewers
- The Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| |
Collapse
|
22
|
Abstract
Nuclear factor κB (NF-κB) is an inducible transcription factor that tightly regulates the expression of a large cohort of genes. As a key component of the cellular machinery NF-κB is involved in a wide range of biological processes including innate and adaptive immunity, inflammation, cellular stress responses, cell adhesion, apoptosis and proliferation. Appropriate regulation of NF-κB is critical for the proper function and survival of the cell. Aberrant NF-κB activity has now been implicated in the pathogenesis of several diseases ranging from inflammatory bowel disease to autoimmune conditions such as rheumatoid arthritis. Systems governing NF-κB activity are complex and there is an increased understanding of the importance of nuclear events in regulating NF-κB's activities as a transcription factor. A number of novel nuclear regulators of NF-κB such as IκB-ζ and PDZ and LIM domain 2 (PDLIM2) have now been identified, adding another layer to the mechanics of NF-κB regulation. Further insight into the functions of these molecules raises the prospect for better understanding and rational design of therapeutics for several important diseases.
Collapse
Affiliation(s)
- Arun K Mankan
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity College, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
23
|
Dagvadorj J, Naiki Y, Tumurkhuu G, Noman ASM, Iftekar-E-Khuda I, Koide N, Komatsu T, Yoshida T, Yokochi T. Interleukin (IL)-10 attenuates lipopolysaccharide-induced IL-6 production via inhibition of IkappaB-zeta activity by Bcl-3. Innate Immun 2009; 15:217-24. [PMID: 19586995 DOI: 10.1177/1753425909103738] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The inhibitory effect of interleukin-10 (IL-10), an anti-inflammatory cytokine, on lipopolysaccharide (LPS)-induced IL-6 production was characterized by simultaneous stimulation of RAW 264.7 cells with LPS and IL-10. The presence of IL-10 significantly inhibited LPS-induced IL-6 production at a transcriptional level. The expression of IkappaB-zeta, which promotes IL-6 production, was induced in response to LPS and it was definitely suppressed in the presence of IL-10. Further, IL-10 inhibited LPS-induced NF-kappaB activation. A pharmacological inhibitor of NF-kappaB prevented LPS-induced IkappaB-zeta expression, suggesting that IL-10 might inhibit LPS-induced IkappaB-zeta expression via the inactivation of NF-kappaB. In LPS- and IL-10-stimulated cells, the expression of Bcl-3 that inhibits NF-kappaB activation was significantly augmented. Introduction of Bcl-3 siRNA abolished IL-10-mediated IkappaB-zeta inhibition. In the presence of Bcl-3, siRNA IL-10 failed to inhibit LPS-induced IL-6 production. Therefore, it was suggested that Bcl-3 induced by IL-10 might reduce LPS-induced IkappaB-zeta activity via inactivation of NF-kappaB and that reduced IkappaB-zeta activity failed to promote LPS-induced IL-6 production.
Collapse
Affiliation(s)
- Jargalsaikhan Dagvadorj
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 2009; 27:693-733. [PMID: 19302050 DOI: 10.1146/annurev.immunol.021908.132641] [Citation(s) in RCA: 2096] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mammalian Rel/NF-kappaB family of transcription factors, including RelA, c-Rel, RelB, NF-kappaB1 (p50 and its precursor p105), and NF-kappaB2 (p52 and its precursor p100), plays a central role in the immune system by regulating several processes ranging from the development and survival of lymphocytes and lymphoid organs to the control of immune responses and malignant transformation. The five members of the NF-kappaB family are normally kept inactive in the cytoplasm by interaction with inhibitors called IkappaBs or the unprocessed forms of NF-kappaB1 and NF-kappaB2. A wide variety of signals emanating from antigen receptors, pattern-recognition receptors, receptors for the members of TNF and IL-1 cytokine families, and others induce differential activation of NF-kappaB heterodimers. Although work over the past two decades has shed significant light on the regulation of NF-kappaB transcription factors and their functions, much progress has been made in the past two years revealing new insights into the regulation and functions of NF-kappaB. This recent progress is covered in this review.
Collapse
Affiliation(s)
- Sivakumar Vallabhapurapu
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, Cancer Center, University of California, San Diego, California 93093, USA
| | | |
Collapse
|
25
|
Abstract
The transcription factor, NF-kappaB (nuclear factor-kappaB) and associated regulatory factors make up a multi-component signaling pathway that regulates a wide range of biological processes, including cell survival, proliferation, differentiation, stress response, and death, as well as immunity and inflammation. Aberrant NF-kappaB pathway activity is known to be associated with a host of diseases, including immune deficiencies, inflammatory disorders, and cancer. Recent advances in our understanding of the inner workings of the NF-kappaB pathway have led to the development of new therapeutic strategies for the treatment of these diseases. In this review, we focus on the regulation of the NF-kappaB pathway by Bcl-3 (B cell leukemia-3), a nuclear member of the IkappaB (inhibitor of NF-kappaB) family. Both the regulation and the function of Bcl-3 will be discussed.
Collapse
|
26
|
Brenne AT, Fagerli UM, Shaughnessy JD, Våtsveen TK, Rø TB, Hella H, Zhan F, Barlogie B, Sundan A, Børset M, Waage A. High expression of BCL3 in human myeloma cells is associated with increased proliferation and inferior prognosis. Eur J Haematol 2009; 82:354-63. [PMID: 19191868 PMCID: PMC2704939 DOI: 10.1111/j.1600-0609.2009.01225.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND BCL3 is a putative oncogene encoding for a protein belonging to the inhibitory kappaB-family. We experienced that this putative oncogene was a common target gene for growth-promoting cytokines in myeloma cell lines. METHODS Gene expression of BCL3 was studied in 351 newly diagnosed myeloma patients, 12 patients with smouldering myeloma, 44 patients with monoclonal gammopathy of undetermined significance and 22 healthy individuals. Smaller material of samples was included for mRNA detection by RT-PCR, protein detection by Western blot and immunohistochemistry, and for cytogenetic studies. A total of eight different myeloma cell lines were studied. RESULTS Bcl-3 was induced in myeloma cell lines by interleukin (IL)-6, IL-21, IL-15, tumor necrosis factor-alpha and IGF-1, and its upregulation was associated with increased proliferation of the cells. In a population of 351 patients, expression levels of BCL3 above 75th percentile were associated with shorter 5-yr survival. When this patient population was divided into subgroups based on molecular classification, BCL3 was significantly increased in a poor risk subgroup characterized by overexpression of cell cycle and proliferation related genes. Intracellular localization of Bcl-3 was dependent on type of stimulus given to the cell. CONCLUSION BCL3 is a common target gene for several growth-promoting cytokines in myeloma cells and high expression of BCL3 at the time of diagnosis is associated with poor prognosis of patients with multiple myeloma (MM). These data may indicate a potential oncogenic role for Bcl-3 in MM.
Collapse
Affiliation(s)
- Anne-Tove Brenne
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Research on the biological function of nuclear factor-kappaB (NF-kappaB), a key mediator of inducible transcription in the immune system, has traditionally focused on its role in the initiation of innate and adaptive immune responses. These studies have largely concentrated on the mechanisms of signalling that lead to NF-kappaB activation and on the positive role of NF-kappaB in both physiological immunity and pathological inflammation. More recently, there has been growing interest in the mechanisms that directly regulate the NF-kappaB transcriptional programmes. As a result, several new NF-kappaB regulatory components have been identified and some of the known components have been assigned new roles. In this Review, we discuss these new insights into the regulation of NF-kappaB.
Collapse
|
28
|
Carmody RJ, Ruan Q, Palmer S, Hilliard B, Chen YH. Negative regulation of toll-like receptor signaling by NF-kappaB p50 ubiquitination blockade. Science 2007; 317:675-8. [PMID: 17673665 DOI: 10.1126/science.1142953] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Toll-like receptors (TLRs) trigger the production of inflammatory cytokines and shape adaptive and innate immunity to pathogens. We report the identification of B cell leukemia (Bcl)-3 as an essential negative regulator of TLR signaling. By blocking ubiquitination of p50, a member of the nuclear factor (NF)-kappaB family, Bcl-3 stabilizes a p50 complex that inhibits gene transcription. As a consequence, Bcl-3-deficient mice and cells were found to be hypersensitive to TLR activation and unable to control responses to lipopolysaccharides. Thus, p50 ubiquitination blockade by Bcl-3 limits the strength of TLR responses and maintains innate immune homeostasis. These findings indicate that the p50 ubiquitination pathway can be selectively targeted to control deleterious inflammatory diseases.
Collapse
Affiliation(s)
- Ruaidhrí J Carmody
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
29
|
Nadella MVP, Dirksen WP, Nadella KS, Shu S, Cheng AS, Morgenstern JA, Richard V, Fernandez SA, Huang TH, Guttridge D, Rosol TJ. Transcriptional regulation of parathyroid hormone-related protein promoter P2 by NF-kappaB in adult T-cell leukemia/lymphoma. Leukemia 2007; 21:1752-62. [PMID: 17554373 PMCID: PMC2676796 DOI: 10.1038/sj.leu.2404798] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 04/11/2007] [Accepted: 05/04/2007] [Indexed: 11/09/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) plays a primary role in the development of humoral hypercalcemia of malignancy (HHM) that occurs in the majority of patients with adult T-cell leukemia/lymphoma (ATLL) due to human T-cell lymphotropic virus type-1 (HTLV-1) infection. We previously showed that ATLL cells constitutively express high levels of PTHrP via activation of promoters P2 and P3, resulting in HHM. In this study, we characterized a nuclear factor-kappaB (NF-kappaB) binding site in the P2 promoter of human PTHrP. Using electrophoretic mobility shift assays, we detected a specific complex in Tax-expressing human T cells composed of p50/c-Rel, and two distinct complexes in ATLL cells consisting of p50/p50 homodimers and a second unidentified protein(s). Chromatin immunoprecipitation assays confirmed in vivo binding of p50 and c-Rel on the PTHrP P2 promoter. Using transient co-transfection with NF-kappaB expression plasmids and PTHrP P2 luciferase reporter-plasmid, we showed that NF-kappaB p50/p50 alone and p50/c-Rel or p50/Bcl-3 cooperatively upregulated the PTHrP P2 promoter. Furthermore, inhibition of NF-kappaB activity by Bay 11-7082 reduced PTHrP P2 promoter-initiated transcripts in HTLV-1-infected T cells. In summary, the data demonstrated that transcriptional regulation of PTHrP in ATLL cells can be controlled by NF-kappaB activation and also suggest a Tax-independent mechanism of activation of PTHrP in ATLL.
Collapse
MESH Headings
- Adult
- Animals
- Blotting, Western
- Cell Line, Tumor
- Chloramphenicol O-Acetyltransferase
- Chromatin Immunoprecipitation
- Electrophoretic Mobility Shift Assay
- Gene Expression Regulation, Neoplastic
- HTLV-I Infections/metabolism
- HTLV-I Infections/virology
- Humans
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mutagenesis, Site-Directed
- NF-kappa B/physiology
- Parathyroid Hormone-Related Protein/genetics
- Parathyroid Hormone-Related Protein/metabolism
- Plasmids
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- MVP Nadella
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - WP Dirksen
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - KS Nadella
- Human Cancer Genetics, The Ohio State University, Columbus, OH, USA
| | - S Shu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - AS Cheng
- Human Cancer Genetics, The Ohio State University, Columbus, OH, USA
| | - JA Morgenstern
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - V Richard
- Pfizer, Sandwich Laboratories, Kent, UK
| | - SA Fernandez
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - TH Huang
- Human Cancer Genetics, The Ohio State University, Columbus, OH, USA
| | - D Guttridge
- Human Cancer Genetics, The Ohio State University, Columbus, OH, USA
| | - TJ Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
30
|
Abstract
Nuclear factor-kappaBeta (NF-kappaB) binds specifically to NF-kappaB-binding sites (kappaB sites, 5'-GGGRNNYYCC-3'; R, purine; Y, pyrimidine; N, any nucleotide) present in enhancer regions of various genes. Binding of various cytokines, growth factors and pathogen-associated molecular patterns to specific receptors activates NF-kappaB and expression of genes that play critical roles in inflammation, innate and acquired immunity, bone remodeling and generation of skin appendices. Activation of NF-kappaB is also involved in cancer development and progression. NF-kappaB is activated in cells that become malignant tumors and in cells that are recruited to and constitute the tumor microenvironment. In the latter scenario, the TLR-TRAF6-NF-kB pathways seem to play major roles, and NF-kappaB activation results in production of cytokines, which in turn induce NF-kappaB activation in premalignant cells, leading to expression of genes involved abnormal growth and malignancy. Furthermore, NF-kappaB activation is involved in bone metastasis. Osteoclasts, whose generation requires the RANK-TRAF6-NF-kappaB pathways, release various growth factors stored in bone, which results in creation of microenvironment suitable for proliferation and colonization of cancer cells. Therefore, NF-kappaB and molecules involved its activation, such as TRAF6, are attractive targets for therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Jun-Ichiro Inoue
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | |
Collapse
|
31
|
Abstract
Nuclear factor kappaB (NF-kappaB), a transcription factor, plays an important role in carcinogenesis as well as in the regulation of immune and inflammatory responses. NF-kappaB induces the expression of diverse target genes that promote cell proliferation, regulate apoptosis, facilitate angiogenesis and stimulate invasion and metastasis. Furthermore, many cancer cells show aberrant or constitutive NF-kappaB activation which mediates resistance to chemo- and radio-therapy. Therefore, the inhibition of NF-kappaB activation and its signaling pathway offers a potential cancer therapy strategy. In addition, recent studies have shown that NF-kappaB can also play a tumor suppressor role in certain settings. In this review, we focus on the role of NF-kappaB in carcinogenesis and the therapeutic potential of targeting NF-kappaB in cancer therapy.
Collapse
Affiliation(s)
- Chae Hyeong Lee
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
32
|
Abstract
One of the primary physiological roles of nuclear factor-kappa B (NF-kappaB) is in the immune system. In particular, NF-kappaB family members control the transcription of cytokines and antimicrobial effectors as well as genes that regulate cellular differentiation, survival and proliferation, thereby regulating various aspects of innate and adaptive immune responses. In addition, NF-kappaB also contributes to the development and survival of the cells and tissues that carry out immune responses in mammals. This review, therefore, describes the role of the NF-kappaB pathway in the development and functioning of the immune system.
Collapse
Affiliation(s)
- M S Hayden
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
33
|
Riemann M, Endres R, Liptay S, Pfeffer K, Schmid RM. The IκB Protein Bcl-3 Negatively Regulates Transcription of theIL-10Gene in Macrophages. THE JOURNAL OF IMMUNOLOGY 2005; 175:3560-8. [PMID: 16148099 DOI: 10.4049/jimmunol.175.6.3560] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
NF-kappaB/Rel transcription factors, implicated in inflammatory and immune responses against pathogens, are regulated by IkappaB proteins. The physiological and molecular function of the IkappaB family member Bcl-3 is understood only poorly. In this study, the role of Bcl-3 in an innate immune response was examined by gene targeting. We demonstrate that Bcl-3(-/-) mice are highly susceptible to Listeria monocytogenes infection. This correlates with diminished production of IL-12 p70 and IFN-gamma in vivo, which is mainly due to elevated synthesis of IL-10. Isolated peritoneal macrophages from Bcl-3(-/-) mice also produce elevated amounts of IL-10, which inhibit IL-12 p70 synthesis in an autocrine fashion. Thus, these data establish Bcl-3 as an inhibitor of IL-10 expression in macrophages. Furthermore, we show that Bcl-3 is not implicated in IL-10 mRNA stabilization but regulates the initiation of IL-10 transcription. Taken together, our results show that an essential function of Bcl-3 during an innate immune response against bacteria is to inhibit transcription of the IL-10 gene in macrophages.
Collapse
Affiliation(s)
- Marc Riemann
- Department of Internal Medicine II, Technical University of Munich, Munich, Germany
| | | | | | | | | |
Collapse
|
34
|
Nishikori M, Ohno H, Haga H, Uchiyama T. Stimulation of CD30 in anaplastic large cell lymphoma leads to production of nuclear factor-kappaB p52, which is associated with hyperphosphorylated Bcl-3. Cancer Sci 2005; 96:487-97. [PMID: 16108830 PMCID: PMC11159099 DOI: 10.1111/j.1349-7006.2005.00078.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Anaplastic large cell lymphoma (ALCL) and Hodgkin lymphoma (HL) express CD30 at high levels, but stimulation of this molecule has been reported to induce contradictory effects. To elucidate the molecular mechanism of CD30-mediated apoptosis of ALCL, we compared the gene expression profiles of t(2;5)(p23;q35)-positive ALCL with those of HL altered by CD30 agonistic stimulation. The results showed that BCL3, the high-level expression of which in ALCL was previously reported, was further upregulated in response to CD30 stimulation, along with several pro-apoptotic genes. Bcl-3 protein was present as an intermediate phospho-form in the resting-state ALCL, becoming hyperphosphorylated (Bcl-3P) upon stimulation. We next found that the stimulation promoted de novo synthesis of the nuclear factor (NF)-kappaB2/p100 precursor as well as processing to p52, and a series of immunoprecipitation and western blotting analyses consistently showed association of Bcl-3P with p52 in CD30-stimulated ALCL. An electrophoretic mobility shift assay revealed the induction of kappaB binding activity of the p52 homodimer, and nuclear colocalization of Bcl-3 and p52 was demonstrated in anaplastic lymphoma kinase-positive ALCL tumor tissues by immunohistochemistry. As Bcl-3 can act as an anti-repressor or transactivator or both, we propose that the (p52)2/Bcl-3P ternary complex, which is specifically induced in CD30-stimulated ALCL, can modulate expression of apoptosis-related genes regulated by NF-kappaB, thereby accounting for CD30-mediated apoptosis of ALCL.
Collapse
MESH Headings
- B-Cell Lymphoma 3 Protein
- Carcinoma/genetics
- Carcinoma/pathology
- Cell Line, Tumor
- Chromosomes, Human, Pair 2
- Chromosomes, Human, Pair 5
- Humans
- Ki-1 Antigen/genetics
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- NF-kappa B/genetics
- NF-kappa B p52 Subunit
- Phosphorylation
- Proto-Oncogene Proteins/metabolism
- Transcription Factors
- Translocation, Genetic
Collapse
Affiliation(s)
- Momoko Nishikori
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawara-cho, Japan.
| | | | | | | |
Collapse
|
35
|
Dolcet X, Llobet D, Pallares J, Matias-Guiu X. NF-kB in development and progression of human cancer. Virchows Arch 2005; 446:475-82. [PMID: 15856292 DOI: 10.1007/s00428-005-1264-9] [Citation(s) in RCA: 872] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 03/30/2005] [Indexed: 02/07/2023]
Abstract
The nuclear factor kB (NF-kB) comprises a family of transcription factors involved in the regulation of a wide variety of biological responses. NF-kB plays a well-known function in the regulation of immune responses and inflammation, but growing evidences support a major role in oncogenesis. NF-kB regulates the expression of genes involved in many processes that play a key role in the development and progression of cancer such as proliferation, migration and apoptosis. Aberrant or constitutive NF-kB activation has been detected in many human malignancies. In recent years, numerous studies have focused on elucidating the functional consequences of NF-kB activation as well as its signaling mechanisms. NF-kB has turned out to be an interesting therapeutic target for treatment of cancer.
Collapse
Affiliation(s)
- Xavier Dolcet
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, Av Alcalde Rovira Roure 80, 25198, Lleida, Spain
| | | | | | | |
Collapse
|
36
|
Hunter RB, Kandarian SC. Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. J Clin Invest 2004. [DOI: 10.1172/jci200421696] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
Abstract
The transcription factor NF-kappaB has been the focus of intense investigation for nearly two decades. Over this period, considerable progress has been made in determining the function and regulation of NF-kappaB, although there are nuances in this important signaling pathway that still remain to be understood. The challenge now is to reconcile the regulatory complexity in this pathway with the complexity of responses in which NF-kappaB family members play important roles. In this review, we provide an overview of established NF-kappaB signaling pathways with focus on the current state of research into the mechanisms that regulate IKK activation and NF-kappaB transcriptional activity.
Collapse
Affiliation(s)
- Matthew S Hayden
- Section of Immunobiology and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
38
|
Hunter RB, Kandarian SC. Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. J Clin Invest 2004; 114:1504-11. [PMID: 15546001 PMCID: PMC525738 DOI: 10.1172/jci21696] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 09/21/2004] [Indexed: 11/17/2022] Open
Abstract
The intracellular signals that mediate skeletal muscle protein loss and functional deficits due to muscular disuse are just beginning to be elucidated. Previously we showed that the activity of an NF-kappaB-dependent reporter gene was markedly increased in unloaded muscles, and p50 and Bcl-3 proteins were implicated in this induction. In the present study, mice with a knockout of the p105/p50 (Nfkb1) gene are shown to be resistant to the decrease in soleus fiber cross-sectional area that results from 10 days of hindlimb unloading. Furthermore, the marked unloading-induced activation of the NF-kappaB reporter gene in soleus muscles from WT mice was completely abolished in soleus muscles from Nfkb1 knockout mice. Knockout of the B cell lymphoma 3 (Bcl3) gene also showed an inhibition of fiber atrophy and an abolition of NF-kappaB reporter activity. With unloading, fast fibers from WT mice atrophied to a greater extent than slow fibers. Resistance to atrophy in both strains of knockout mice was demonstrated clearly in fast fibers, while slow fibers from only the Bcl3(-/-) mice showed atrophy inhibition. The slow-to-fast shift in myosin isoform expression due to unloading was also abolished in both Nfkb1 and Bcl3 knockout mice. Like the soleus muscles, plantaris muscles from Nfkb1(-/-) and Bcl3(-/-) mice also showed inhibition of atrophy with unloading. Thus both the Nfkb1 and the Bcl3 genes are necessary for unloading-induced atrophy and the associated phenotype transition.
Collapse
Affiliation(s)
- R Bridge Hunter
- Department of Health Sciences, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
39
|
Wessells J, Baer M, Young HA, Claudio E, Brown K, Siebenlist U, Johnson PF. BCL-3 and NF-kappaB p50 attenuate lipopolysaccharide-induced inflammatory responses in macrophages. J Biol Chem 2004; 279:49995-50003. [PMID: 15465827 DOI: 10.1074/jbc.m404246200] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipopolysaccharide (LPS) induces expression of tumor necrosis factor alpha (TNFalpha) and other pro-inflammatory cytokines in macrophages. Following its induction, TNFalpha gene transcription is rapidly attenuated, in part due to the accumulation of NF-kappaB p50 homodimers that bind to three kappaB sites in the TNFalpha promoter. Here we have investigated the inhibitory role of BCL-3, an IkappaB-like protein that interacts exclusively with p50 and p52 homodimers. BCL-3 was induced by LPS with delayed kinetics and was associated with p50 in the nucleus. Forced expression of BCL-3 suppressed LPS-induced transcription from the TNFalpha promoter and inhibited two artificial promoters composed of TNFalphakappaB sites that preferentially bind p50 dimers. BCL-3-mediated repression was reversed by trichostatin A and was enhanced by overexpression of HDAC-1, indicating that transcriptional attenuation involves recruitment of histone deacetylase. Analysis of macrophages from p50 and BCL-3 knock-out mice revealed that both transcription factors negatively regulate TNFalpha expression and that BCL-3 inhibits IL-1alpha and IL-1beta. In contrast, induction of the anti-inflammatory cytokine IL-10 was reduced in BCL-3 null macrophages. BCL-3 was not required for the production of p50 homodimers but BCL-3 expression was severely diminished in p50-deficient cells. Together, these findings indicate that p50 and BCL-3 function as anti-inflammatory regulators in macrophages by attenuating transcription of pro-inflammatory cytokines and activating IL-10 expression.
Collapse
Affiliation(s)
- Jennifer Wessells
- Laboratory of Protein Dynamics and Signaling, NCI-Frederick, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Panwalkar A, Verstovsek S, Giles F. Nuclear factor-kappaB modulation as a therapeutic approach in hematologic malignancies. Cancer 2004; 100:1578-89. [PMID: 15073843 DOI: 10.1002/cncr.20182] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a collective term that refers to a small class of dimeric transcription factors for a number of genes, including growth factors, angiogenesis modulators, cell-adhesion molecules, and antiapoptotic factors. Although most NF-kappaB proteins promote transcription, some act as inactivating or repressive complexes. The most common p50-RelA (p65) dimer known "specifically" as NF-kappaB, is relatively abundant, controls the expression of numerous genes, and exists as an inactive cytoplasmic complex bound to inhibitory proteins of the NF-kappaB inhibitor (IkappaB) family. The inactive NF-kappaB-IkappaB complex is activated by a variety of stimuli, including proinflammatory cytokines, mitogens, growth factors, and stress-inducing agents. The release of NF-kappaB facilitates its translocation to the nucleus, where it promotes cell survival by initiating the transcription of genes encoding stress-response enzymes, cell-adhesion molecules, proinflammatory cytokines, and antiapoptotic proteins. Constitutive activation of NF-kappaB in the nucleus is observed in some hematologic disorders. With the recent approval of bortezomib for patients with advanced multiple myeloma, NF-kappaB modulation is likely to be a therapeutic endeavor of increasing interest in coming years.
Collapse
Affiliation(s)
- Amit Panwalkar
- Section of Developmental Therapeutics, Department of Leukemia, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
41
|
Grundström S, Anderson P, Scheipers P, Sundstedt A. Bcl-3 and NFκB p50-p50 Homodimers Act as Transcriptional Repressors in Tolerant CD4+ T Cells. J Biol Chem 2004; 279:8460-8. [PMID: 14668329 DOI: 10.1074/jbc.m312398200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional events that control T cell tolerance are still poorly understood. To investigate why tolerant T cells fail to produce interleukin (IL)-2, we analyzed the regulation of NFkappaB-mediated transcription in CD4(+) T cells after tolerance induction in vivo. We demonstrate that a predominance of p50-p50 homodimers binding to the IL-2 promoter kappaB site in tolerant T cells correlated with repression of NFkappaB-driven transcription. Impaired translocation of the p65 subunit in tolerant T cells was a result from reduced activation of IkappaB kinase and poor phosphorylation and degradation of cytosolic IkappaBs. Moreover, tolerant T cells expressed high amounts of the p50 protein. However, the increased expression of p50 could not be explained by activation-induced de novo synthesis of the precursor p105, which was constitutively expressed in tolerant T cells. We also demonstrate the exclusive induction of the IkappaB protein B cell lymphoma 3 (Bcl-3) in tolerant T cells as well as its specific binding to the NFkappaB site. These results suggest that the cellular ratio of NFkappaB dimers, and thus the repression of NFkappaB activity and IL-2 production, are regulated at several levels in tolerant CD4(+) T cells in vivo.
Collapse
MESH Headings
- Animals
- B-Cell Lymphoma 3 Protein
- Binding Sites
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- DNA/metabolism
- Dimerization
- Enzyme Activation
- Gene Expression
- I-kappa B Kinase
- I-kappa B Proteins/metabolism
- Immune Tolerance/genetics
- Interleukin-2/genetics
- Mice
- Mice, Transgenic
- NF-KappaB Inhibitor alpha
- NF-kappa B/chemistry
- NF-kappa B/genetics
- NF-kappa B/physiology
- NF-kappa B p50 Subunit
- Promoter Regions, Genetic/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Subunits/chemistry
- Protein Subunits/metabolism
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- RNA, Messenger/analysis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Repressor Proteins/physiology
- Transcription Factor RelA
- Transcription Factors
- Transcription, Genetic
Collapse
|
42
|
Eliopoulos AG, Caamano JH, Flavell J, Reynolds GM, Murray PG, Poyet JL, Young LS. Epstein-Barr virus-encoded latent infection membrane protein 1 regulates the processing of p100 NF-kappaB2 to p52 via an IKKgamma/NEMO-independent signalling pathway. Oncogene 2003; 22:7557-69. [PMID: 14576817 DOI: 10.1038/sj.onc.1207120] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The oncogenic Epstein-Barr virus (EBV)-encoded latent infection membrane protein 1 (LMP1) constitutively activates the 'canonical' NF-kappaB pathway that involves the phosphorylation and degradation of IkappaBalpha downstream of the IkappaB kinases (IKKs). In this study, we show that LMP1 also promotes the proteasome-mediated proteolysis of p100 NF-kappaB2 resulting in the generation of active p52, which translocates to the nucleus in complex with the p65 and RelB NF-kappaB subunits. LMP1-induced NF-kappaB transactivation is reduced in nf-kb2(-/-) mouse embryo fibroblasts, suggesting that p100 processing contributes to LMP1-mediated NF-kappaB transcriptional effects. This pathway is likely to operate in vivo, as the expression of LMP1 in primary EBV-positive Hodgkin's lymphoma and nasopharyngeal carcinoma biopsies correlates with the nuclear accumulation of p52. Interestingly, while the ability of LMP1 to activate the canonical NF-kappaB pathway is impaired in cells lacking IKKgamma/NEMO, the regulatory subunit of the IKK complex, p100 processing remains unaffected. As a result, nuclear translocation of p52, but not p65, occurs in the absence of IKKgamma. These data point to the existence of a novel signalling pathway that regulates NF-kappaB in LMP1-expressing cells, and may thereby play a role in both oncogenic transformation and the establishment of persistent EBV infection.
Collapse
Affiliation(s)
- Aristides G Eliopoulos
- Cancer Research UK Institute for Cancer Studies, The University of Birmingham Medical School, Birmingham B15 2TA, UK.
| | | | | | | | | | | | | |
Collapse
|
43
|
Kurland JF, Voehringer DW, Meyn RE. The MEK/ERK pathway acts upstream of NF kappa B1 (p50) homodimer activity and Bcl-2 expression in a murine B-cell lymphoma cell line. MEK inhibition restores radiation-induced apoptosis. J Biol Chem 2003; 278:32465-70. [PMID: 12801933 DOI: 10.1074/jbc.m212919200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a previously published report (Kurland, J. F., Kodym, R., Story, M. D., Spurgers, K. B., McDonnell, T. J., and Meyn, R. E. (2001) J. Biol. Chem. 276, 45380-45386), we described the NF kappa B status for two murine B-cell lymphoma cell lines, LY-as (apoptosis-sensitive) and LY-ar (apoptosis-refractory) and provided evidence that NF kappa B1 (p50) homodimers contribute to the expression of Bcl-2 in the LY-ar line. In the present study, we investigated the upstream signals leading to p50 homodimer activation and Bcl-2 expression. We found that in LY-ar cells, ERK1 and ERK2 were constitutively phosphorylated, whereas LY-as cells had no detectable ERK1 or ERK2 phosphorylation. Treatment of LY-ar cells with the MEK inhibitors PD 98059, U0126, and PD 184352 led to a loss of phosphorylated ERK1 and ERK2, a reversal of nuclear p50 homodimer DNA binding, and a decrease in Bcl-2 protein expression. Similarly, activation of the MEK/ERK pathway in LY-as cells by phorbol ester led to Bcl-2 expression that could be blocked by PD 98059. Furthermore, treatment of LY-ar cells with tumor necrosis factor-alpha, an I kappa B kinase activator, did not alter the suppressive effect of PD 98059 on p50 homodimer activity, suggesting an I kappa B kinase-independent pathway for p50 homodimer activation. Lastly, all three MEK inhibitors sensitized LY-ar cells to radiation-induced apoptosis. We conclude that the MEK/ERK pathway acts upstream of p50 homodimer activity and Bcl-2 expression in this B-cell lymphoma cell system and suggest that the use of MEK inhibitors could be useful clinically in combination with ionizing radiation to treat lymphoid malignancies.
Collapse
Affiliation(s)
- John F Kurland
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
44
|
Watanabe N, Wachi S, Fujita T. Identification and characterization of BCL-3-binding protein: implications for transcription and DNA repair or recombination. J Biol Chem 2003; 278:26102-10. [PMID: 12730195 DOI: 10.1074/jbc.m303518200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A putative oncogene bcl-3 was originally identified and cloned at the breakpoint in the recurring chromosome translocation t(14;19) found in some cases of B cell chronic lymphocytic leukemia. Studies of bcl-3-deficient mice demonstrated a critical role for bcl-3 in the development of a normal immune response and the formation of germinal centers in secondary lymphoid organs. However, the molecular mechanism that underlies B cell leukemogenesis and the knockout mouse phenotype remains unclear. Here we have identified and characterized BCL-3-binding protein (B3BP) as a protein interacting specifically with the bcl-3 gene product (BCL-3) by a yeast two-hybrid screen. We found that B3BP associates with not only BCL-3 but also p300/CBP histone acetyltransferases. The N-terminal region of B3BP that contains the ATP-binding site is important for the interaction with BCL-3 and p300/CBP. Homology searches indicate that the ATP-binding region of B3BP, which contains a typical Walker-type ATP-binding P-loop, most resembles that of 2',3'-cyclic nucleotide 3'-phosphodiesterase of mammals and polynucleotide kinase of T4 bacteriophage. In fact B3BP shows intrinsic ATP binding and hydrolyzing activity. Furthermore, we demonstrated that B3BP is a 5'-polynucleotide kinase. We also found a small MutS-related domain, which is thought to be involved in the DNA repair or recombination reaction, in the C-terminal region of B3BP, and it shows nicking endonuclease activity. These observations might help to gain new insights into the function of BCL-3 and p300/CBP, especially the coupling of transcription with repair or recombination.
Collapse
Affiliation(s)
- Nobumasa Watanabe
- Department of Tumor Cell Biology, The Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | | | | |
Collapse
|
45
|
Witcher M, Ross DT, Rousseau C, Deluca L, Miller WH. Synergy between all-trans retinoic acid and tumor necrosis factor pathways in acute leukemia cells. Blood 2003; 102:237-45. [PMID: 12586626 DOI: 10.1182/blood-2002-09-2725] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nuclear receptor ligand all-trans retinoic acid (ATRA) causes dramatic terminal differentiation of acute promyelocytic leukemia (APL) cells in vitro and in patients, but it is less active in other malignancies. However, downstream mediators of the effects of ATRA are not well understood. We used a cDNA microarray to search for ATRA-regulated genes in the APL cell line NB4 and found that ATRA regulated several members of the tumor necrosis factor (TNF) pathway. Here we show that TNF can synergize with ATRA to induce differentiation, showing monocytic characteristics more typical of differentiation mediated by TNF than by ATRA. ATRA and TNF can also induce differentiation of the non-APL cell line U937. Underlying this response was an increase in TNF-induced nuclear factor-kappaB (NF-kappaB) DNA binding within 2 hours in the presence of ATRA and activation of NF-kappaB DNA binding and transcriptional activity in response to ATRA alone within 48 hours of ATRA treatment. Furthermore, we found a synergistic induction of the NF-kappaB target genes BCL-3, Dif-2, and TNF receptor 2 (TNFR2) in response to the combination of TNF and ATRA. These genes have been previously shown to play a role in TNF signaling, and amplification of such genes may represent a mechanism whereby TNF and ATRA can act synergistically. We propose that ATRA can prime cancer cells for differentiation triggered by TNF and suggest that targeting the TNF pathway in combination with ATRA may represent a novel route to treat leukemias.
Collapse
Affiliation(s)
- Michael Witcher
- Lady Davis Institute for Medical Research and SMBD Jewish General Hospital, McGill University, Montreal H3T1E2, Quebec, Canada
| | | | | | | | | |
Collapse
|
46
|
Ma XY, Wang H, Ding B, Zhong H, Ghosh S, Lengyel P. The interferon-inducible p202a protein modulates NF-kappaB activity by inhibiting the binding to DNA of p50/p65 heterodimers and p65 homodimers while enhancing the binding of p50 homodimers. J Biol Chem 2003; 278:23008-19. [PMID: 12676938 DOI: 10.1074/jbc.m302105200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p202a is a member of the interferon-inducible murine p200 family of proteins. These proteins share 1 or 2 partially conserved 200 amino acid segments of the a or the b type. The known biological activities of p202a include among others the regulation of muscle differentiation, cell proliferation, and apoptosis. These biological activities of p202a can be correlated with the inhibition of the activity of several transcription factors. Thus, the binding of p202a results in the inhibition of the sequence-specific binding to DNA of the c-Fos, c-Jun, E2F1, E2F4, MyoD, myogenin, and c-Myc transcription factors. This study concerns the mechanisms by which p202a inhibits the activity of NF-kappaB, a transcription factor involved among others in host defense, inflammation, immunity, and the apoptotic response. NF-kappaB consists of p50 and p65 subunits. We demonstrate that p202a can inhibit in vitro and in vivo the binding to DNA of p65 homodimers and p50/65 heterodimers, whereas it increases the binding of p50 homodimers. Thus p202a can impair NF-kappaB activity both by inhibiting the binding to DNA of the transcriptionally active p65 homodimers and p50/p65 heterodimers and by boosting the binding of the repressive p50 homodimers. p202a can bind p50 and p65 in vitro and in vivo, and p202a can be part of the p50 homodimer complex bound to DNA. p50 binds in p202a to the a type segment, whereas p65 binds to the b type segment. Transfected ectopic p202a increases the apoptotic effect of tumor necrosis factor (at least in part) by inhibiting NF-kappaB and its antiapoptotic activity.
Collapse
Affiliation(s)
- Xian-Yong Ma
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
47
|
Yu Z, Cheng G, Wen X, Wu GD, Lee WT, Pleasure D. Tumor necrosis factor alpha increases neuronal vulnerability to excitotoxic necrosis by inducing expression of the AMPA-glutamate receptor subunit GluR1 via an acid sphingomyelinase- and NF-kappaB-dependent mechanism. Neurobiol Dis 2002; 11:199-213. [PMID: 12460558 DOI: 10.1006/nbdi.2002.0530] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acid sphingomyelinase (ASMase) and NF-kappaB participate in tumor necrosis factor alpha (TNFalpha) signal transduction. Mice in which the genes encoding ASMase or the p50 subunit of NF-kappaB are disrupted have been reported to be less vulnerable than wild-type mice to focal brain ischemia. We now demonstrate selective diminution in expression of GluR1, an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-type glutamate receptor (AMPA-GluR) protein subunit, in these two groups of knockout mice. To confirm that neuronal GluR1 expression is regulated by ASMase and NF-kappaB, and to learn whether this regulation has pathophysiological significance, we treated cultured human NT2-N neurons with TNFalpha. This induced GluR1 expression and increased susceptibility of the neurons to kainate necrosis. Both induction of GluR1 and heightened vulnerability to kainate were blocked by inhibiting ASMase or by antisense knockdown of NF-kappaB p50. We conclude that TNFalpha can sensitize neurons to excitotoxic necrosis by inducing expression of GluR1 via an ASMase- and NF-kappaB-dependent mechanism. TNFalpha levels are frequently elevated during ischemia and other CNS diseases in which excitotoxicity contributes to neuronal loss. Our results suggest that inhibiting TNFalpha signal transduction will diminish neuronal necrosis in these diseases.
Collapse
Affiliation(s)
- ZaiFang Yu
- Department of Neurology Research, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Nuclear factor of kappaB (NF-kappaB) is a sequence-specific transcription factor that is known to be involved in the inflammatory and innate immune responses. Although the importance of NF-KB in immunity is undisputed, recent evidence indicates that NF-kappaB and the signalling pathways that are involved in its activation are also important for tumour development. NF-kappaB should therefore receive as much attention from cancer researchers as it has already from immunologists.
Collapse
Affiliation(s)
- Michael Karin
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla 92093, USA.
| | | | | | | |
Collapse
|
49
|
Hunter RB, Stevenson E, Koncarevic A, Mitchell-Felton H, Essig DA, Kandarian SC. Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse atrophy. FASEB J 2002; 16:529-38. [PMID: 11919155 DOI: 10.1096/fj.01-0866com] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although cytokine-induced nuclear factor kappaB (NF-kappaB) pathways are involved in muscle wasting subsequent to disease, their potential role in disuse muscle atrophy has not been characterized. Seven days of hind limb unloading led to a 10-fold activation of an NF-kappaB-dependent reporter in rat soleus muscle but not the atrophy-resistant extensor digitorum longus muscle. Nuclear levels of p50 were markedly up-regulated, c-Rel was moderately up-regulated, Rel B was down-regulated, and p52 and p65 were unchanged in unloaded solei. The nuclear IkappaB protein Bcl-3 was increased. There was increased binding to an NF-kappaB consensus oligonucleotide, and this complex bound antibodies to p50, c-Rel, and Bcl-3 but not other NF-kappaB family members. Tumor necrosis factor alpha (TNF-alpha) and TNF receptor-associated factor 2 protein were moderately down-regulated. There was no difference in p38, c-Jun NH(2)-terminal kinase or Akt activity, nor were activator protein 1 or nuclear factor of activated T cell-dependent reporters activated. Thus, whereas several NF-kappaB family members are up-regulated, the prototypical markers of cytokine-induced activation of NF-kappaB seen with disease-related wasting are not evident during disuse atrophy. Levels of an anti-apoptotic NF-kappaB target, Bcl-2, were increased fourfold whereas proapoptotic proteins Bax and Bak decreased. The evidence presented here suggests that disuse muscle atrophy is associated with activation of an alternative NF-kappaB pathway that involves the activation of p50 but not p65.
Collapse
Affiliation(s)
- R Bridge Hunter
- Boston University, Department of Health Sciences, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
50
|
Bottex-Gauthier C, Pollet S, Favier A, Vidal DR. [The Rel/NF-kappa-B transcription factors: complex role in cell regulation]. PATHOLOGIE-BIOLOGIE 2002; 50:204-11. [PMID: 11980335 DOI: 10.1016/s0369-8114(02)00289-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The transcription factor NF-kappa B has attracted widespread attention among researchers. NF-kappa B displays some original characteristics including rapid regulation, the wide range of genes that it controls and its probable involvement in several diseases. In resting cells, NF-kappa B is kept in an inactive form in the cytoplasm where it is bound to a member of the I kappa B family of inhibitory proteins. NF-kappa B can be activated by exposure of cells to physiological as well as non physiological stimuli. Upon cell activation, the inhibitors are modified through site specific phosphorylations which target them for subsequent ubiquitination and proteolytic degradation by the proteasome. Removal of the inhibitor unmasks the nuclear localization signals on subunits of NF-kappa B. Free NF-kappa B moves to the nucleus where it binds to target DNA elements and activate transcription of genes encoding proteins involved in immune responses, inflammation or cell proliferation. NF-kappa B could be considered as a co-ordinating element in the body's responses to situations of stress, infection or inflammation. A tight regulation of NF-kappa B seems to be crucial since a dysfunction could promote pathogenic processes including AIDS (acquired immunodeficiency syndrome), rheumatoid arthritis and cancer. Additionally, it will be important to understand the exact roles for NF-kappa B in regulating apoptosis. NF-kappa B is now regarded as a good therapeutic target and the development of specific inhibitors should lead in the next future to novel therapeutics.
Collapse
Affiliation(s)
- C Bottex-Gauthier
- Centre de recherches du service de santé des armées Emile Pardé, département de biologie des agents transmissibles, unité de microbiologie, 38702 La Tronche, France.
| | | | | | | |
Collapse
|