1
|
Samarakoon Y, Yelland T, Garcia-Gonzalez E, da Silva Justo Junior A, Mahmood M, Manoharan A, Patterson S, Serafin V, Gammage PA, Marmiroli S, Halsey C, Ismail S, Roberts EW. UNC119 regulates T-cell receptor signalling in primary T cells and T acute lymphocytic leukaemia. Life Sci Alliance 2025; 8:e202403066. [PMID: 39814552 PMCID: PMC11735834 DOI: 10.26508/lsa.202403066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/18/2025] Open
Abstract
T-cell receptor recognition of cognate peptide-MHC leads to the formation of signalling domains and the immunological synapse. Because of the close membrane apposition, there is rapid exclusion of CD45, and therefore LCK activation. Much less is known about whether spatial regulation of the intracellular face dictates LCK activity and TCR signal transduction. Moreover, as LCK is a driver in T acute lymphocytic leukaemia, it is important to understand its regulation. Here, we demonstrate a direct role of the ciliary protein UNC119 in trafficking LCK to the immunological synapse. Inhibiting UNC119 reduces localisation of LCK without impairing LCK phosphorylation and reduces T-cell receptor signal transduction. Although important for initial LCK reorganisation, activated CD8+ T cells retained their ability to kill target tumour cells when UNC119 was inhibited. UNC119 was also needed to sustain proliferation in patient-derived T-ALL cells. UNC119 may therefore represent a novel therapeutic target in T acute lymphocytic leukaemia, which alters the subcellular localisation of LCK in T acute lymphocytic leukaemia cells but preserves the function of existing cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Youhani Samarakoon
- CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Scotland, UK
| | | | - Esther Garcia-Gonzalez
- Central Laser Facility, Science & Technology Facility Council, The Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Oxfordshire, UK
| | | | - Mahnoor Mahmood
- CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Scotland, UK
| | - Anand Manoharan
- School of Cancer Sciences, University of Glasgow, Scotland, UK
| | - Shaun Patterson
- School of Cancer Sciences, University of Glasgow, Scotland, UK
| | - Valentina Serafin
- Department of Biomedical, Metabolic and Neural Sciences, Cellular Signalling Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Payam A Gammage
- CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Scotland, UK
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, Cellular Signalling Unit, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Shehab Ismail
- Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Edward W Roberts
- CRUK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Scotland, UK
| |
Collapse
|
2
|
Moroi AJ, Newman PJ. The LAT Rheostat as a Regulator of Megakaryocyte Activation. Thromb Haemost 2024; 124:937-947. [PMID: 38788774 DOI: 10.1055/a-2332-6321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
BACKGROUND Specifically positioned negatively charged residues within the cytoplasmic domain of the adaptor protein, linker for the activation of T cells (LAT), have been shown to be important for efficient phosphorylation of tyrosine residues that function to recruit cytosolic proteins downstream of immunoreceptor tyrosine-based activation motif (ITAM) receptor signaling. LAT tyrosine 132-the binding site for PLC-γ2-is a notable exception, preceded instead by a glycine, making it a relatively poor substrate for phosphorylation. Mutating Gly131 to an acidic residue has been shown in T cells to enhance ITAM-linked receptor-mediated signaling. Whether this is generally true in other cell types is not known. METHODS To examine whether LAT Gly131 restricts ITAM signaling in cells of the megakaryocyte lineage, we introduced an aspartic acid at this position in human induced pluripotent stem cells (iPSCs), differentiated them into megakaryocytes, and examined its functional consequences. RESULTS iPSCs expressing G131D LAT differentiated and matured into megakaryocytes normally, but exhibited markedly enhanced reactivity to glycoprotein VI (GPVI)-agonist stimulation. The rate and extent of LAT Tyr132 and PLC-γ2 phosphorylation, and proplatelet formation on GPVI-reactive substrates, were also enhanced. CONCLUSION These data demonstrate that a glycine residue at the -1 position of LAT Tyr132 functions as a kinetic bottleneck to restrain Tyr132 phosphorylation and signaling downstream of ITAM receptor engagement in the megakaryocyte lineage. These findings may have translational applications in the burgeoning field of in vitro platelet bioengineering.
Collapse
Affiliation(s)
- Alyssa J Moroi
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin, United States
| | - Peter J Newman
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology and, Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
3
|
Zhang W, Chen L, Lu X, Dong X, Feng M, Tu Y, Wang Z. EFHD2 regulates T cell receptor signaling and modulates T helper cell activation in early sepsis. Int Immunopharmacol 2024; 133:112087. [PMID: 38669951 DOI: 10.1016/j.intimp.2024.112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
EFHD2 (EF-hand domain family, member D2) has been identified as a calcium-binding protein with immunomodulatory effects. In this study, we characterized the phenotype of Efhd2-deficient mice in sepsis and examined the biological functions of EFHD2 in peripheral T cell activation and T helper (Th) cell differentiation. Increased levels of EFHD2 expression accompanied peripheral CD4+ T cell activation in the early stages of sepsis. Transcriptomic analysis indicated that immune response activation was impaired in Efhd2-deficient CD4+ T cells. Further, Efhd2-deficient CD4+ T cells isolated from the spleen of septic mice showed impaired T cell receptor (TCR)-induced Th differentiation, especially Th1 and Th17 differentiation. In vitro data also showed that Efhd2-deficient CD4+ T cells exhibit impaired Th1 and Th17 differentiation. In the CD4+ T cells and macrophages co-culture model for antigen presentation, the deficiency of Efhd2 in CD4+ T cells resulted in impaired formation of immunological synapses. In addition, Efhd2-deficient CD4+ T cells exhibited reduced levels of phospho-LCK and phospho-ZAP70, and downstream transcription factors including Nfat, Nfκb and Nur77 following TCR engagement. In summary, EFHD2 may promote TCR-mediated T cell activation subsequent Th1 and Th17 differentiation in the early stages of sepsis by regulating the intensity of TCR complex formation.
Collapse
Affiliation(s)
- Wenzhao Zhang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Linlin Chen
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Xin Lu
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Xiaohui Dong
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Meixia Feng
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Ye Tu
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Zhibin Wang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
4
|
Yang ML, Lam TT, Kanyo J, Kang I, Zhou ZS, Clarke SG, Mamula MJ. Natural isoaspartyl protein modification of ZAP70 alters T cell responses in lupus. Autoimmunity 2023; 56:2282945. [PMID: 37994408 PMCID: PMC10897934 DOI: 10.1080/08916934.2023.2282945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Protein posttranslational modifications (PTMs) arise in a number of normal cellular biological pathways and in response to pathology caused by inflammation and/or infection. Indeed, a number of PTMs have been identified and linked to specific autoimmune responses and metabolic pathways. One particular PTM, termed isoaspartyl (isoAsp or isoD) modification, is among the most common spontaneous PTM occurring at physiological pH and temperature. Herein, we demonstrate that isoAsp modifications arise within the ZAP70 protein tyrosine kinase upon T-cell antigen receptor (TCR) engagement. The enzyme protein L-isoaspartate O-methyltransferase (PCMT1, or PIMT, EC 2.1.1.77) evolved to repair isoaspartyl modifications in cells. In this regard, we observe that increased levels of isoAsp modification that arise under oxidative stress are correlated with reduced PIMT activity in patients with systemic lupus erythematosus (SLE). PIMT deficiency leads to T cell hyper-proliferation and hyper-phosphorylation through ZAP70 signaling. We demonstrate that inducing the overexpression of PIMT can correct the hyper-responsive phenotype in lupus T cells. Our studies reveal a phenotypic role of isoAsp modification and phosphorylation of ZAP70 in lupus T cell autoimmunity and provide a potential therapeutic target through the repair of isoAsp modification.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - TuKiet T. Lam
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
- Department of Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Insoo Kang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Gil Montoya DC, Ornelas-Guevara R, Diercks BP, Guse AH, Dupont G. T cell Ca 2+ microdomains through the lens of computational modeling. Front Immunol 2023; 14:1235737. [PMID: 37860008 PMCID: PMC10582754 DOI: 10.3389/fimmu.2023.1235737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Cellular Ca2+ signaling is highly organized in time and space. Locally restricted and short-lived regions of Ca2+ increase, called Ca2+ microdomains, constitute building blocks that are differentially arranged to create cellular Ca2+ signatures controlling physiological responses. Here, we focus on Ca2+ microdomains occurring in restricted cytosolic spaces between the plasma membrane and the endoplasmic reticulum, called endoplasmic reticulum-plasma membrane junctions. In T cells, these microdomains have been finely characterized. Enough quantitative data are thus available to develop detailed computational models of junctional Ca2+ dynamics. Simulations are able to predict the characteristics of Ca2+ increases at the level of single channels and in junctions of different spatial configurations, in response to various signaling molecules. Thanks to the synergy between experimental observations and computational modeling, a unified description of the molecular mechanisms that create Ca2+ microdomains in the first seconds of T cell stimulation is emerging.
Collapse
Affiliation(s)
- Diana C. Gil Montoya
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roberto Ornelas-Guevara
- Unit of Theoretical Chronobiology, Faculté des Sciences CP231, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Björn-Philipp Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H. Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Geneviève Dupont
- Unit of Theoretical Chronobiology, Faculté des Sciences CP231, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
6
|
Mongellaz C, Vicente R, Noroski LM, Noraz N, Courgnaud V, Chinen J, Faria E, Zimmermann VS, Taylor N. Combined immunodeficiency caused by pathogenic variants in the ZAP70 C-terminal SH2 domain. Front Immunol 2023; 14:1155883. [PMID: 37313400 PMCID: PMC10258307 DOI: 10.3389/fimmu.2023.1155883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction ZAP-70, a protein tyrosine kinase recruited to the T cell receptor (TCR), initiates a TCR signaling cascade upon antigen stimulation. Mutations in the ZAP70 gene cause a combined immunodeficiency characterized by low or absent CD8+ T cells and nonfunctional CD4+ T cells. Most deleterious missense ZAP70 mutations in patients are located in the kinase domain but the impact of mutations in the SH2 domains, regulating ZAP-70 recruitment to the TCR, are not well understood. Methods Genetic analyses were performed on four patients with CD8 lymphopenia and a high resolution melting screening for ZAP70 mutations was developed. The impact of SH2 domain mutations was evaluated by biochemical and functional analyses as well as by protein modeling. Results and discussion Genetic characterization of an infant who presented with pneumocystis pneumonia, mycobacterial infection, and an absence of CD8 T cells revealed a novel homozygous mutation in the C-terminal SH2 domain (SH2-C) of the ZAP70 gene (c.C343T, p.R170C). A distantly related second patient was found to be compound heterozygous for the R170C variant and a 13bp deletion in the ZAP70 kinase domain. While the R170C mutant was highly expressed, there was an absence of TCR-induced proliferation, associated with significantly attenuated TCR-induced ZAP-70 phosphorylation and a lack of binding of ZAP-70 to TCR-ζ. Moreover, a homozygous ZAP-70 R192W variant was identified in 2 siblings with combined immunodeficiency and CD8 lymphopenia, confirming the pathogenicity of this mutation. Structural modeling of this region revealed the critical nature of the arginines at positions 170 and 192, in concert with R190, forming a binding pocket for the phosphorylated TCR-ζ chain. Deleterious mutations in the SH2-C domain result in attenuated ZAP-70 function and clinical manifestations of immunodeficiency.
Collapse
Affiliation(s)
- Cédric Mongellaz
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Rita Vicente
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Lenora M. Noroski
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Nelly Noraz
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Valérie Courgnaud
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Javier Chinen
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Emilia Faria
- Immunoallergy Department, Coimbra Hospital and University Centre (CHUC), Coimbra, Portugal
| | - Valérie S. Zimmermann
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
7
|
Shu P, Liang H, Zhang J, Lin Y, Chen W, Zhang D. Reactive oxygen species formation and its effect on CD4 + T cell-mediated inflammation. Front Immunol 2023; 14:1199233. [PMID: 37304262 PMCID: PMC10249013 DOI: 10.3389/fimmu.2023.1199233] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Reactive oxygen species (ROS) are produced both enzymatically and non-enzymatically in vivo. Physiological concentrations of ROS act as signaling molecules that participate in various physiological and pathophysiological activities and play an important role in basic metabolic functions. Diseases related to metabolic disorders may be affected by changes in redox balance. This review details the common generation pathways of intracellular ROS and discusses the damage to physiological functions when the ROS concentration is too high to reach an oxidative stress state. We also summarize the main features and energy metabolism of CD4+ T-cell activation and differentiation and the effects of ROS produced during the oxidative metabolism of CD4+ T cells. Because the current treatment for autoimmune diseases damages other immune responses and functional cells in the body, inhibiting the activation and differentiation of autoreactive T cells by targeting oxidative metabolism or ROS production without damaging systemic immune function is a promising treatment option. Therefore, exploring the relationship between T-cell energy metabolism and ROS and the T-cell differentiation process provides theoretical support for discovering effective treatments for T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Li S, Liu C, Tang Y. Role of Fyn in hematological malignancies. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04608-2. [PMID: 36754870 DOI: 10.1007/s00432-023-04608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Tyrosine kinase Fyn is a member of the Src family of kinases. In addition to the wild type, three mRNA splice isoforms of Fyn have been identified; Fyn-B, Fyn-T, and Fyn-C. Fyn-T is highly expressed in T lymphocytes, and its expression level is significantly higher in mature T cells than in immature T cells. The abnormal expression of Fyn is closely related to the metabolism, proliferation, and migration of tumor cells. Recent studies have shown that Fyn is expressed in a variety of tumor tissues, and its expression and function vary among different tumors. In some tumors, Fyn acts as a pro-oncogene to promote tumor proliferation and metastasis. Moreover, Fyn mutations have been detected in many hematological tumors in recent years, suggesting a critical regulatory role of Fyn in the development of malignancies. METHODS This review analyzed the relevant literature in PubMed and other databases. PURPOSE The aim of this study was to systemically review recent research findings on various aspects of Fyn in the pathogenesis and treatment of different types of hematological malignancies and suggests possible future research directions for targeted tumor therapy. CONCLUSION Fyn could be a novel prognostic marker and therapeutic target. Treatment option targeting Fyn might be beneficial for future studies.
Collapse
Affiliation(s)
- Shan Li
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Changqing Liu
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yunlian Tang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
9
|
A Cysteine Residue within the Kinase Domain of Zap70 Regulates Lck Activity and Proximal TCR Signaling. Cells 2022; 11:cells11172723. [PMID: 36078131 PMCID: PMC9455082 DOI: 10.3390/cells11172723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations in both the expression and function of the non-receptor tyrosine kinase Zap70 are associated with numerous human diseases including immunodeficiency, autoimmunity, and leukemia. Zap70 propagates the TCR signal by phosphorylating two important adaptor molecules, LAT and SLP76, which orchestrate the assembly of the signaling complex, leading to the activation of PLCγ1 and further downstream pathways. These events are crucial to drive T-cell development and T-cell activation. Recently, it has been proposed that C564, located in the kinase domain of Zap70, is palmitoylated. A non-palmitoylable C564R Zap70 mutant, which has been reported in a patient suffering from immunodeficiency, is incapable of propagating TCR signaling and activating T cells. The lack of palmitoylation was suggested as the cause of this human disease. Here, we confirm that Zap70C564R is signaling defective, but surprisingly, the defective Zap70 function does not appear to be due to a loss in palmitoylation. We engineered a C564A mutant of Zap70 which, similarly to Zap70C564R, is non-palmitoylatable. However, this mutant was capable of propagating TCR signaling. Moreover, Zap70C564A enhanced the activity of Lck and increased its proximity to the TCR. Accordingly, Zap70-deficient P116 T cells expressing Zap70C564A displayed the hyperphosphorylation of TCR-ζ and Zap70 (Y319), two well-known Lck substrates. Collectively, these data indicate that C564 is important for the regulation of Lck activity and proximal TCR signaling, but not for the palmitoylation of Zap70.
Collapse
|
10
|
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 2021; 6:412. [PMID: 34897277 PMCID: PMC8666445 DOI: 10.1038/s41392-021-00823-w] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Interaction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein-protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Amr Al-Haidari
- Clinical Genetics and Pathology, Skåne University Hospital, Region Skåne, Lund, Sweden
- Clinical Sciences Department, Surgery Research Unit, Lund University, Malmö, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
11
|
Kent A, Longino NV, Christians A, Davila E. Naturally Occurring Genetic Alterations in Proximal TCR Signaling and Implications for Cancer Immunotherapy. Front Immunol 2021; 12:658611. [PMID: 34012443 PMCID: PMC8126620 DOI: 10.3389/fimmu.2021.658611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
T cell-based immunotherapies including genetically engineered T cells, adoptive transfer of tumor-infiltrating lymphocytes, and immune checkpoint blockade highlight the impressive anti-tumor effects of T cells. These successes have provided new hope to many cancer patients with otherwise poor prognoses. However, only a fraction of patients demonstrates durable responses to these forms of therapies and many develop significant immune-mediated toxicity. These heterogeneous clinical responses suggest that underlying nuances in T cell genetics, phenotypes, and activation states likely modulate the therapeutic impact of these approaches. To better characterize known genetic variations that may impact T cell function, we 1) review the function of early T cell receptor-specific signaling mediators, 2) offer a synopsis of known mutations and genetic alterations within the associated molecules, 3) discuss the link between these mutations and human disease and 4) review therapeutic strategies under development or in clinical testing that target each of these molecules for enhancing anti-tumor T cell activity. Finally, we discuss novel engineering approaches that could be designed based on our understanding of the function of these molecules in health and disease.
Collapse
Affiliation(s)
- Andrew Kent
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
| | - Natalie V. Longino
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Allison Christians
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
| | - Eduardo Davila
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
12
|
van der Donk LEH, Ates LS, van der Spek J, Tukker LM, Geijtenbeek TBH, van Heijst JWJ. Separate signaling events control TCR downregulation and T cell activation in primary human T cells. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:223-238. [PMID: 33350598 PMCID: PMC7860602 DOI: 10.1002/iid3.383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 12/02/2022]
Abstract
Introduction T‐cell antigen receptor (TCR) interaction with cognate peptide:MHC complexes trigger clustering of TCR:CD3 complexes and signal transduction. Triggered TCR:CD3 complexes are rapidly internalized and degraded in a process called ligand‐induced TCR downregulation. Classic studies in immortalized T‐cell lines have revealed a major role for the Src family kinase Lck in TCR downregulation. However, to what extent a similar mechanism operates in primary human T cells remains unclear. Methods Here, we developed an anti‐CD3‐mediated TCR downregulation assay, in which T‐cell gene expression in primary human T cells can be knocked down by microRNA constructs. In parallel, we used CRISPR/Cas9‐mediated knockout in Jurkat cells for validation experiments. Results We efficiently knocked down the expression of tyrosine kinases Lck, Fyn, and ZAP70, and found that, whereas this impaired T cell activation and effector function, TCR downregulation was not affected. Although TCR downregulation was marginally inhibited by the simultaneous knockdown of Lck and Fyn, its full abrogation required broad‐acting tyrosine kinase inhibitors. Conclusions These data suggest that there is substantial redundancy in the contribution of individual tyrosine kinases to TCR downregulation in primary human T cells. Our results highlight that TCR downregulation and T cell activation are controlled by different signaling events and illustrate the need for further research to untangle these processes.
Collapse
Affiliation(s)
- Lieve E H van der Donk
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Louis S Ates
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jet van der Spek
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura M Tukker
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen W J van Heijst
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Neogene Therapeutics, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Borna S, Fabisik M, Ilievova K, Dvoracek T, Brdicka T. Mechanisms determining a differential threshold for sensing Src family kinase activity by B and T cell antigen receptors. J Biol Chem 2020; 295:12935-12945. [PMID: 32665402 DOI: 10.1074/jbc.ra120.013552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Although signal transduction by immunoreceptors such as the T cell antigen receptor (TCR), B cell antigen receptor (BCR), and Fc receptors uses the same schematic and similar molecules, the threshold and the fine-tuning are set differently for each receptor. One manifestation of these differences is that inhibition of Src family kinases (SFK) blocks TCR but not BCR signaling. SFKs are key kinases phosphorylating immunoreceptor tyrosine-based activation motifs (ITAM) in both these receptors. However, it has been proposed that in B cells, downstream kinase SYK can phosphorylate ITAM sequences independently of SFK, allowing it to compensate for the loss of SFK activity, whereas its T cell paralog ZAP-70 is not capable of this compensation. To test this proposal, we examined signaling in SYK- and ZAP-70-deficient B and T cell lines expressing SYK or ZAP-70. We also analyzed signal transduction in T cells expressing BCR or B cells expressing part of the TCR complex. We show that when compared with ZAP-70, SYK lowered the threshold for SFK activity necessary to initiate antigen receptor signaling in both T and B cells. However, neither SYK nor ZAP-70 were able to initiate signaling independently of SFK. We further found that additional important factors are involved in setting this threshold. These include differences between the antigen receptor complexes themselves and the spatial separation of the key transmembrane adaptor protein LAT from the TCR. Thus, immunoreceptor sensing of SFK activity is a complex process regulated at multiple levels.
Collapse
Affiliation(s)
- Simon Borna
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Matej Fabisik
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Kristyna Ilievova
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Dvoracek
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Brdicka
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
14
|
Ma Y, Lim YJ, Benda A, Lou J, Goyette J, Gaus K. Clustering of the ζ-Chain Can Initiate T Cell Receptor Signaling. Int J Mol Sci 2020; 21:ijms21103498. [PMID: 32429097 PMCID: PMC7279048 DOI: 10.3390/ijms21103498] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
T cell activation is initiated when ligand binding to the T cell receptor (TCR) triggers intracellular phosphorylation of the TCR-CD3 complex. However, it remains unknown how biophysical properties of TCR engagement result in biochemical phosphorylation events. Here, we constructed an optogenetic tool that induces spatial clustering of ζ-chain in a light controlled manner. We showed that spatial clustering of the ζ-chain intracellular tail alone was sufficient to initialize T cell triggering including phosphorylation of ζ-chain, Zap70, PLCγ, ERK and initiated Ca2+ flux. In reconstituted COS-7 cells, only Lck expression was required to initiate ζ-chain phosphorylation upon ζ-chain clustering, which leads to the recruitment of tandem SH2 domain of Zap70 from cell cytosol to the newly formed ζ-chain clusters at the plasma membrane. Taken together, our data demonstrated the biophysical relevance of receptor clustering in TCR signaling.
Collapse
Affiliation(s)
- Yuanqing Ma
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, The University of New South Wales, 2052 Sydney, Australia; (J.L.); (J.G.)
- ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, 2052 Sydney, Australia
- Correspondence: (Y.M.); (K.G.)
| | - Yean J. Lim
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, 2601 Canberra, Australia;
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, 31 North Road, 2601 Canberra, Australia
| | - Aleš Benda
- IMCF at BIOCEV, Faculty of Science, Charles University, Průmyslová 595, 25250 Vestec, Czech Republic;
| | - Jieqiong Lou
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, The University of New South Wales, 2052 Sydney, Australia; (J.L.); (J.G.)
- ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, 2052 Sydney, Australia
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, The University of New South Wales, 2052 Sydney, Australia; (J.L.); (J.G.)
- ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, 2052 Sydney, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, The University of New South Wales, 2052 Sydney, Australia; (J.L.); (J.G.)
- ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, 2052 Sydney, Australia
- Correspondence: (Y.M.); (K.G.)
| |
Collapse
|
15
|
Batcha MM, Ahamed AS, Peng CF. Identification of a new type of haematopoietic progenitor kinase-interacting protein (HIP-55) in Aedes aegypti mosquito haemocytes and its involvement in immunity-like functions in mosquito: a molecular study. Parasitol Res 2019; 118:2509-2521. [PMID: 31377908 DOI: 10.1007/s00436-019-06408-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/25/2019] [Indexed: 11/26/2022]
Abstract
In this study, we characterize the HIP-55 protein in the mosquito Aedes aegypti for the first time. HIP-55 is a 55-kDa HPK1-interacting protein that is also called SH3P7. HIP-55 constitutively binds HPK1 'via' an HPK1 proline-rich motif 2(PR2) through its C-terminal SH3 domain. HIP-55 critically interacts with ZAP-70, and this interaction was induced by TCR signalling. ZAP-70 phosphorylated HIP-55 at Tyr-334 and Tyr-344 in vitro and in vivo. In our previous findings, AaZAP gene expression strongly proved that AaZAP-70 was involved in immunity-like functions in mosquito. Northern blot analysis of HIP-55 mRNA expression confirmed that it is only expressed in the abdomen and haemocyte tissues; this prediction correlates 100% and a polyclonal antibody also confirmed its localization in haemocytes and the abdomen. We prepared extracts to show the cytoplasmic expression (CE) of this protein. Previous results had proven that this protein is secreted from the cytoplasm; thus, we confirmed here that the protein is a cytoplasmic adaptor protein in mosquitoes and mammalian systems. Furthermore, our polyclonal antibody against HIP-55 also demonstrated that this protein is found in haemocytes and abdomen tissues, which assumes that the protein may be involved in phagocytic-like functions. RNAi (siRNA) silencing studies were used to degrade mosquito HIP-55; however, silencing only slightly affected the HIP-55 sequence and the gene transcriptional level. To characterize this protein, we cloned 609 bp from the 1.6-kb full-length cDNA using a pET28 vector for polyclonal antibody production. Graphical abstract.
Collapse
Affiliation(s)
- M Mohiadeen Batcha
- Department of Zoology, HKRH College, Uthamapalayam, Theni District, Tamil Nadu, India.
- Post Doctoral Scientist, Institute of Tropical Medicine, National Yang Ming University, Shihpai, Taipei-112, Taiwan, Republic of China.
| | - A Sajith Ahamed
- Department of Microbiology, HKRH College, Uthamapalayam, Theni District, Tamil Nadu, India
| | - Chiung Fang Peng
- Fuga Biotechnology, Chongqing S. Rd, Zhongzheng Dist, Taipei - 100, Taiwan
| |
Collapse
|
16
|
Jun JE, Kulhanek KR, Chen H, Chakraborty A, Roose JP. Alternative ZAP70-p38 signals prime a classical p38 pathway through LAT and SOS to support regulatory T cell differentiation. Sci Signal 2019; 12:12/591/eaao0736. [PMID: 31337738 DOI: 10.1126/scisignal.aao0736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
T cell receptor (TCR) stimulation activates diverse kinase pathways, which include the mitogen-activated protein kinases (MAPKs) ERK and p38, the phosphoinositide 3-kinases (PI3Ks), and the kinase mTOR. Although TCR stimulation activates the p38 pathway through a "classical" MAPK cascade that is mediated by the adaptor protein LAT, it also stimulates an "alternative" pathway in which p38 is activated by the kinase ZAP70. Here, we used dual-parameter, phosphoflow cytometry and in silico computation to investigate how both classical and alternative p38 pathways contribute to T cell activation. We found that basal ZAP70 activation in resting T cell lines reduced the threshold ("primed") TCR-stimulated activation of the classical p38 pathway. Classical p38 signals were reduced after T cell-specific deletion of the guanine nucleotide exchange factors Sos1 and Sos2, which are essential LAT signalosome components. As a consequence of Sos1/2 deficiency, production of the cytokine IL-2 was impaired, differentiation into regulatory T cells was reduced, and the autoimmune disease EAE was exacerbated in mice. These data suggest that the classical and alternative p38 activation pathways exist to generate immune balance.
Collapse
Affiliation(s)
- Jesse E Jun
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kayla R Kulhanek
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hang Chen
- Departments of Chemical Engineering, Chemistry, and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Arup Chakraborty
- Departments of Chemical Engineering, Chemistry, and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
17
|
Hörner M, Eble J, Yousefi OS, Schwarz J, Warscheid B, Weber W, Schamel WWA. Light-Controlled Affinity Purification of Protein Complexes Exemplified by the Resting ZAP70 Interactome. Front Immunol 2019; 10:226. [PMID: 30863395 PMCID: PMC6399385 DOI: 10.3389/fimmu.2019.00226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Multiprotein complexes control the behavior of cells, such as of lymphocytes of the immune system. Methods to affinity purify protein complexes and to determine their interactome by mass spectrometry are thus widely used. One drawback of these methods is the presence of false positives. In fact, the elution of the protein of interest (POI) is achieved by changing the biochemical properties of the buffer, so that unspecifically bound proteins (the false positives) may also elute. Here, we developed an optogenetics-derived and light-controlled affinity purification method based on the light-regulated reversible protein interaction between phytochrome B (PhyB) and its phytochrome interacting factor 6 (PIF6). We engineered a truncated variant of PIF6 comprising only 22 amino acids that can be genetically fused to the POI as an affinity tag. Thereby the POI can be purified with PhyB-functionalized resin material using 660 nm light for binding and washing, and 740 nm light for elution. Far-red light-induced elution is effective but very mild as the same buffer is used for the wash and elution. As proof-of-concept, we expressed PIF-tagged variants of the tyrosine kinase ZAP70 in ZAP70-deficient Jurkat T cells, purified ZAP70 and associating proteins using our light-controlled system, and identified the interaction partners by quantitative mass spectrometry. Using unstimulated T cells, we were able to detect the known interaction partners, and could filter out all other proteins.
Collapse
Affiliation(s)
- Maximilian Hörner
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Eble
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - O Sascha Yousefi
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Jennifer Schwarz
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang W A Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.,Centre for Chronic Immunodeficiency CCI, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Hu J, Luo T, Xi D, Guo K, Hu L, Zhao J, Chen S, Guo Z. Silencing ZAP70 prevents HSP65-induced reverse cholesterol transport and NF-κB activation in T cells. Biomed Pharmacother 2018; 102:271-277. [DOI: 10.1016/j.biopha.2018.03.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 11/30/2022] Open
|
19
|
Gioia L, Siddique A, Head SR, Salomon DR, Su AI. A genome-wide survey of mutations in the Jurkat cell line. BMC Genomics 2018; 19:334. [PMID: 29739316 PMCID: PMC5941560 DOI: 10.1186/s12864-018-4718-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 04/24/2018] [Indexed: 01/08/2023] Open
Abstract
Background The Jurkat cell line has an extensive history as a model of T cell signaling. But at the turn of the 21st century, some expression irregularities were observed, raising doubts about how closely the cell line paralleled normal human T cells. While numerous expression deficiencies have been described in Jurkat, genetic explanations have only been provided for a handful of defects. Results Here, we report a comprehensive catolog of genomic variation in the Jurkat cell line based on whole-genome sequencing. With this list of all detectable, non-reference sequences, we prioritize potentially damaging mutations by mining public databases for functional effects. We confirm documented mutations in Jurkat and propose links from detrimental gene variants to observed expression abnormalities in the cell line. Conclusions The Jurkat cell line harbors many mutations that are associated with cancer and contribute to Jurkat’s unique characteristics. Genes with damaging mutations in the Jurkat cell line are involved in T-cell receptor signaling (PTEN, INPP5D, CTLA4, and SYK), maintenance of genome stability (TP53, BAX, and MSH2), and O-linked glycosylation (C1GALT1C1). This work ties together decades of molecular experiments and serves as a resource that will streamline both the interpretation of past research and the design of future Jurkat studies. Electronic supplementary material The online version of this article (10.1186/s12864-018-4718-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louis Gioia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, 92037, USA.
| | - Azeem Siddique
- Next Generation Sequencing Core, The Scripps Research Institute, La Jolla, California, 92037, USA
| | - Steven R Head
- Next Generation Sequencing Core, The Scripps Research Institute, La Jolla, California, 92037, USA
| | - Daniel R Salomon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, 92037, USA
| | - Andrew I Su
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, 92037, USA
| |
Collapse
|
20
|
Cong BB, Gao MH, Li B, Wang B, Zhang B, Wang LN, Zhang SC, Li HQ, Wang Z, Han SY. Overexpression of Csk-binding protein/phosphoprotein associated with glycosphingolipid-enriched microdomains induces cluster of differentiation 59-mediated apoptosis in Jurkat cells. Exp Ther Med 2018; 15:4139-4148. [PMID: 29725363 PMCID: PMC5920370 DOI: 10.3892/etm.2018.5940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 10/25/2017] [Indexed: 11/17/2022] Open
Abstract
Csk-binding protein/phosphoprotein associated with glycosphingolipid-enriched microdomains (CBP/PAG) is a membrane-bound adaptor protein that downregulates the activation of Src family kinases present in lipid rafts. To elucidate the role of CBP/PAG in human T cell activation, a cell line overexpressing CBP/PAG was constructed and the function of CBP/PAG in Jurkat cells was examined. The present study revealed that increased CBP/PAG expression in T cells significantly enhanced their apoptosis and reduced cellular activation and proliferation. Overexpression of CBP/PAG suppressed the growth of Jurkat cells by recruiting c-Src and its negative regulator, C-terminal Src kinase (CSK), to lipid rafts. The negative regulation of CBP/PAG was enhanced in the presence of anti-cluster of differentiation (CD)59 monoclonal antibodies. In addition, a significant association was revealed between the location of CBP/PAG and CD59, which were co-expressed in the same region of the cell membrane, implicating a potential overlap of the elicited signaling pathways. These results indicate that CBP/PAG functions as a negative regulator of cell signal transduction and suggest that CD59 may strengthen the role of negative feedback regulation.
Collapse
Affiliation(s)
- Bei-Bei Cong
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Mei-Hua Gao
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Bing Li
- Department of Genetics, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Bing Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Li-Na Wang
- Department of Blood Transfusion, Shandong Qilu Hospital, Qingdao, Shandong 266071, P.R. China
| | - Shu-Chao Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hua-Qiao Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zhong Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Shu-Yi Han
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
21
|
Barreira M, Rodríguez-Fdez S, Bustelo XR. New insights into the Vav1 activation cycle in lymphocytes. Cell Signal 2018; 45:132-144. [PMID: 29410283 PMCID: PMC7615736 DOI: 10.1016/j.cellsig.2018.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 10/18/2022]
Abstract
Vav1 is a hematopoietic-specific Rho GDP/GTP exchange factor and signaling adaptor. Although these activities are known to be stimulated by direct Vav1 phosphorylation, little information still exists regarding the regulatory layers that influence the overall Vav1 activation cycle. Using a collection of cell models and activation-mimetic Vav1 mutants, we show here that the dephosphorylated state of Vav1 in nonstimulated T cells requires the presence of a noncatalytic, phospholipase Cγ1-Slp76-mediated inhibitory pathway. Upon T cell stimulation, Vav1 becomes rapidly phosphorylated via the engagement of Lck and, to a much lesser extent, other Src family kinases and Zap70. In this process, Lck, Zap70 and the adaptor protein Lat contribute differently to the dynamics and amplitude of the Vav1 phosphorylated pool. Consistent with a multiphosphosite activation mechanism, the optimal stimulation of Vav1 can only be recapitulated by the combination of several activation-mimetic phosphosite mutants. The analysis of these mutants has also unveiled the presence of different Vav1 signaling competent states that are influenced by phosphosites present in the N- and C-terminal domains of the protein.
Collapse
Affiliation(s)
- María Barreira
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain; Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain
| | - Sonia Rodríguez-Fdez
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain; Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain; Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
22
|
Abstract
![]()
T cells
expressing tumor-specific T cell receptors are promising cancer therapeutic
agents, but safety control switches are needed to manage potential
side effects arising from overactivity. Here, we present the first
dual small molecule-gated ZAP70 signaling switch for the regulation
of T cell activity. We show that when an analogue-sensitive ZAP70
allele is fused to the engineered ligand binding domain of the estrogen
receptor, ERT2, its activity can be upregulated to an extent
by a metabolite of an FDA-approved tamoxifen, 4-hydroxy-tamoxifen,
and downregulated by an ATP analogue, 3-MB-PP1. The strength of early
T cell signaling can also be modulated by varying the concentrations
of activator and inhibitor, and the switch exhibits temporal control
on the time scale of minutes. Interestingly, the switch has the ability
to control CD69 and calcium levels in T cells but has limited capabilities
in the regulation of downstream cytokine release, suggesting further
investigation is needed before it can be implemented in adoptive T
cell therapy.
Collapse
Affiliation(s)
- Nicole M. L. Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
| | - Wilson W. Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
23
|
Thurm C, Poltorak MP, Reimer E, Brinkmann MM, Leichert L, Schraven B, Simeoni L. A highly conserved redox-active Mx(2)CWx(6)R motif regulates Zap70 stability and activity. Oncotarget 2018; 8:30805-30816. [PMID: 28415650 PMCID: PMC5458169 DOI: 10.18632/oncotarget.16486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/16/2017] [Indexed: 11/25/2022] Open
Abstract
ζ-associated protein of 70 kDa (Zap70) is crucial for T-cell receptor (TCR) signaling. Loss of Zap70 in both humans and mice results in severe immunodeficiency. On the other hand, the expression of Zap70 in B-cell malignancies correlates with the severity of the disease. Because of its role in immune-related disorders, Zap70 has become a therapeutic target for the treatment of human diseases. It is well-established that the activity/expression of Zap70 is regulated by post-translational modifications of crucial amino acids including the phosphorylation of tyrosines and the ubiquitination of lysines. Here, we have investigated whether also oxidation of cysteine residues regulates Zap70 functions. We have identified C575 as a major sulfenylation site of Zap70. A C575A substitution results in protein instability, reduced activity, and increased dependency on the Hsp90/Cdc37 chaperone system. Indeed, Cdc37 overexpression reconstituted partially the expression but fully the function of Zap70C575A. C575 lies within a Mx(2)CWx(6)R motif which is highly conserved among almost all human tyrosine kinases. Mutation of any of the conserved amino acids, but not of a non-conserved residue preceding the cysteine, also results in Zap70 instability. Collectively, we have identified a new redox-active motif which is crucial for the regulation of Zap70 stability/activity. We believe that this motif has the potential to become a novel target for the development of therapeutic tools to modulate the expression/activity of kinases.
Collapse
Affiliation(s)
- Christoph Thurm
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation, Otto von Guericke University, Magdeburg, Germany
| | - Mateusz P Poltorak
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation, Otto von Guericke University, Magdeburg, Germany.,Current address: Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Elisa Reimer
- Viral Immune Modulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Melanie M Brinkmann
- Viral Immune Modulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lars Leichert
- Institute for Biochemistry and Pathobiochemistry, Ruhr University, Bochum, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation, Otto von Guericke University, Magdeburg, Germany.,Department of Immune Control, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luca Simeoni
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
24
|
Unperturbed Immune Function despite Mutation of C-Terminal Tyrosines in Syk Previously Implicated in Signaling and Activity Regulation. Mol Cell Biol 2017; 37:MCB.00216-17. [PMID: 28760774 DOI: 10.1128/mcb.00216-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/26/2017] [Indexed: 11/20/2022] Open
Abstract
The nonreceptor tyrosine kinase Syk, a central regulator of immune cell differentiation and activation, is a promising drug target for treatment of leukemia and allergic and inflammatory diseases. The clinical failure of Syk inhibitors underscores the importance of understanding the regulation of Syk function and activity. A series of previous studies emphasized the importance of three C-terminal tyrosines in Syk for kinase activity regulation, as docking sites for downstream effector molecules, and for Ca2+ mobilization. Here, we investigated the roles of these C-terminal tyrosines in the mouse. Surprisingly, expression of a triple tyrosine-to-phenylalanine human Syk mutant, SYK(Y3F), was not associated with discernible signaling defects either in reconstituted DT40 cells or in B or mast cells from mice expressing SYK(Y3F) instead of wild-type Syk. Remarkably, lymphocyte differentiation, calcium mobilization, and 2,4,6-trinitrophenyl (TNP)-specific immune responses were unperturbed in SYK(Y3F) mice. These results emphasize the capacity of immune cells to compensate for specific molecular defects, likely using redundant intermolecular interactions, and highlight the importance of in vivo analyses for understanding cellular signaling mechanisms.
Collapse
|
25
|
Llamas-Guillén BA, Pastor N, López-Herrera G, González-Serrano ME, Valenzuela-Vázquez L, Bravo-Adame ME, Villanueva-Cabello TM, Gaytán P, Yañez J, Martinez-Duncker I, Ruiz-Fernández M, Veillette A, Espinosa-Padilla SE, Cruz-Munoz ME. Two novel mutations in ZAP70 gene that result in human immunodeficiency. Clin Immunol 2017; 183:278-284. [PMID: 28912049 DOI: 10.1016/j.clim.2017.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/23/2017] [Accepted: 09/09/2017] [Indexed: 11/28/2022]
Affiliation(s)
| | - Nina Pastor
- Cell Dynamics Research Center-IICBA, Autonomous University of Morelos State, Mexico
| | | | | | | | | | | | - Paul Gaytán
- Biotechnology Institute, Autonomous National University of México, Mexico
| | - Jorge Yañez
- Biotechnology Institute, Autonomous National University of México, Mexico
| | | | | | | | | | - Mario Ernesto Cruz-Munoz
- School of Medicine, Autonomous University of Morelos State, Mexico; Diagnostic and Molecular Medicine Unit "Dr. Ruy Pérez Tamayo", Morelos Children Hospital, Mexico.
| |
Collapse
|
26
|
Taylor MJ, Husain K, Gartner ZJ, Mayor S, Vale RD. A DNA-Based T Cell Receptor Reveals a Role for Receptor Clustering in Ligand Discrimination. Cell 2017; 169:108-119.e20. [PMID: 28340336 DOI: 10.1016/j.cell.2017.03.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/02/2017] [Accepted: 03/03/2017] [Indexed: 12/18/2022]
Abstract
A T cell mounts an immune response by measuring the binding strength of its T cell receptor (TCR) for peptide-loaded MHCs (pMHC) on an antigen-presenting cell. How T cells convert the lifetime of the extracellular TCR-pMHC interaction into an intracellular signal remains unknown. Here, we developed a synthetic signaling system in which the extracellular domains of the TCR and pMHC were replaced with short hybridizing strands of DNA. Remarkably, T cells can discriminate between DNA ligands differing by a single base pair. Single-molecule imaging reveals that signaling is initiated when single ligand-bound receptors are converted into clusters, a time-dependent process requiring ligands with longer bound times. A computation model reveals that receptor clustering serves a kinetic proofreading function, enabling ligands with longer bound times to have disproportionally greater signaling outputs. These results suggest that spatial reorganization of receptors plays an important role in ligand discrimination in T cell signaling.
Collapse
Affiliation(s)
- Marcus J Taylor
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA; National Centre for Biological Sciences, Bangalore 560065, India; HHMI Summer Institute, Woods Hole, MA 02543, USA
| | - Kabir Husain
- National Centre for Biological Sciences, Bangalore 560065, India; The Simons Centre for the Study of Living Machines, Bangalore 560065, India
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94143, USA
| | - Satyajit Mayor
- National Centre for Biological Sciences, Bangalore 560065, India; HHMI Summer Institute, Woods Hole, MA 02543, USA.
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143, USA; HHMI Summer Institute, Woods Hole, MA 02543, USA.
| |
Collapse
|
27
|
Dong G, Kalifa R, Nath PR, Gelkop S, Isakov N. TCR crosslinking promotes Crk adaptor protein binding to tyrosine-phosphorylated CD3ζ chain. Biochem Biophys Res Commun 2017; 488:541-546. [PMID: 28526413 DOI: 10.1016/j.bbrc.2017.05.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/15/2017] [Indexed: 11/25/2022]
Abstract
T cell antigen receptor (TCR) binding of a peptide antigen presented by antigen-presenting cells (APCs) in the context of surface MHC molecules initiates signaling events that regulate T cell activation, proliferation and differentiation. A key event in the activation process is the phosphorylation of the conserved tyrosine residues within the CD3 chain immunoreceptor tyrosine-based activation motifs (ITAMs), which operate as docking sites for SH2 domain-containing effector proteins. Phosphorylation of the CD3ζ ITAMs renders the CD3 chain capable of binding the ζ-chain associated protein 70 kDa (ZAP70), a protein tyrosine kinase that is essential for T cell activation. We found that TCR/CD3 crosslinking in Jurkat T cells promotes the association of Crk adaptor proteins with the transiently phosphorylated CD3ζ chain. Pull down assays using bead-immobilized GST fusion proteins revealed that the Crk-SH2 domain mediates binding of phospho-CD3ζ. Phospho-CD3ζ binding is selective and is mediated by the three types of Crk, including CrkI, CrkII, and CrkL, but not by other SH2 domain-containing adaptor proteins, such as Grb2, GRAP and Nck. Crk interaction with phospho-CD3ζ is rapid and transient, peaking 1 min post TCR/CD3 crosslinking. The results suggest the involvement of Crk adaptor proteins in the early stages of T cell activation in which Crk might help recruiting effector proteins to the vicinity of the phospho-CD3ζ and contribute to the fine-tuning of the TCR/CD3-coupled signal transduction pathways.
Collapse
Affiliation(s)
- Guangyu Dong
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.
| | - Rachel Kalifa
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.
| | - Pulak Ranjan Nath
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.
| | - Sigal Gelkop
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.
| |
Collapse
|
28
|
Crk adaptor proteins regulate CD3ζ chain phosphorylation and TCR/CD3 down-modulation in activated T cells. Cell Signal 2017; 36:117-126. [PMID: 28465009 DOI: 10.1016/j.cellsig.2017.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/15/2017] [Accepted: 04/26/2017] [Indexed: 01/06/2023]
Abstract
T cell receptor (TCR) recognition of a peptide antigen in the context of MHC molecules initiates positive and negative cascades that regulate T cell activation, proliferation and differentiation, and culminate in the acquisition of effector T cell functions. These processes are a prerequisite for the induction of specific T cell-mediated adaptive immune responses. A key event in the activation of TCR-coupled signaling pathways is the phosphorylation of tyrosine residues within the cytoplasmic tails of the CD3 subunits, predominantly CD3ζ. These transiently formed phosphotyrosyl epitopes serve as docking sites for SH2-domain containing effector molecules, predominantly the ZAP70 protein tyrosine kinase, which is critical for signal propagation. We found that CrkI and CrkII adaptor proteins also interact with CD3ζ in TCR activated-, but not in resting-, T cells. Crk binding to CD3ζ was independent of ZAP70 and also occurred in ZAP70-deficient T cells. Binding was mediated by Crk-SH2 domain interaction with phosphotyrosine-containing motifs on CD3ζ, via a direct physical interaction, as demonstrated by Far-Western blot. CrkII binding to CD3ζ could also be demonstrated in a heterologous system, where coexpression of a catalytically active Lck was used to phosphorylate the CD3ζ chain. TCR activation-induced Crk binding to CD3ζ resulted in increased and prolonged phosphorylation of CD3ζ, as well as ZAP70 and LAT, suggesting a positive role for CrkI/II binding to CD3ζ in regulation of TCR-coupled signaling pathways. Furthermore, Crk-dependent increased phosphorylation of CD3ζ coincided with inhibition of TCR downmodulation, supporting a positive role for Crk adaptor proteins in TCR-mediated signal amplification.
Collapse
|
29
|
Starling S, Jolly C. LFA-1 Engagement Triggers T Cell Polarization at the HIV-1 Virological Synapse. J Virol 2016; 90:9841-9854. [PMID: 27558417 PMCID: PMC5068534 DOI: 10.1128/jvi.01152-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/15/2016] [Indexed: 12/01/2022] Open
Abstract
HIV-1 efficiently disseminates by cell-cell spread at intercellular contacts called virological synapses (VS), where the virus preferentially assembles and buds. Cell-cell contact triggers active polarization of organelles and viral proteins within infected cells to the contact site to support efficient VS formation and HIV-1 spread; critically, however, which cell surface protein triggers contact-induced polarization at the VS remains unclear. Additionally, the mechanism by which the HIV-1 envelope glycoprotein (Env) is recruited to the VS remains ill defined. Here, we use a reductionist bead-coupled antibody assay as a model of the VS and show that cross-linking the integrin LFA-1 alone is sufficient to induce active T cell polarization and recruitment of the microtubule organizing center (MTOC) in HIV-1-infected cells. Mutant cell lines coupled with inhibitors demonstrated that LFA-1-induced polarization was dependent on the T cell kinase ZAP70. Notably, immunofluorescent staining of viral proteins revealed an accumulation of surface Env at sites of LFA-1 engagement, with intracellular Env localized to a Golgi compartment proximal to the polarized MTOC. Furthermore, blocking LFA-1-induced MTOC polarization through ZAP70 inhibition prevented intracellular Env polarization. Taken together, these data reveal that LFA-1 is a key determinant in inducing dynamic T cell remodeling to the VS and suggest a model in which LFA-1 engagement triggers active polarization of the MTOC and the associated Env-containing secretory apparatus to sites of cell-cell contact to support polarized viral assembly and egress for efficient cell-cell spread. IMPORTANCE HIV-1 causes AIDS by spreading within immune cells and depletion of CD4 T lymphocytes. Rapid spread between these cells occurs by highly efficient cell-cell transmission that takes place at virological synapses (VS). VS are characterized by striking T cell remodeling that is spatially associated with polarized virus assembly and budding at sites of cell contact. Here, we show that the integrin LFA-1 triggers organelle polarization and viral protein recruitment, facilitating formation of the VS, and that this requires the T cell kinase ZAP70. Taken together, these data suggest a mechanism by which HIV-1-infected T cells sense and respond to cell contact to polarize viral egress and promote cell-cell spread. Understanding how cell-cell spread is regulated may help reveal therapeutic targets to specifically block this mode of HIV-1 dissemination.
Collapse
Affiliation(s)
- Shimona Starling
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
30
|
Shah NH, Wang Q, Yan Q, Karandur D, Kadlecek TA, Fallahee IR, Russ WP, Ranganathan R, Weiss A, Kuriyan J. An electrostatic selection mechanism controls sequential kinase signaling downstream of the T cell receptor. eLife 2016; 5:e20105. [PMID: 27700984 PMCID: PMC5089863 DOI: 10.7554/elife.20105] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/03/2016] [Indexed: 12/15/2022] Open
Abstract
The sequence of events that initiates T cell signaling is dictated by the specificities and order of activation of the tyrosine kinases that signal downstream of the T cell receptor. Using a platform that combines exhaustive point-mutagenesis of peptide substrates, bacterial surface-display, cell sorting, and deep sequencing, we have defined the specificities of the first two kinases in this pathway, Lck and ZAP-70, for the T cell receptor ζ chain and the scaffold proteins LAT and SLP-76. We find that ZAP-70 selects its substrates by utilizing an electrostatic mechanism that excludes substrates with positively-charged residues and favors LAT and SLP-76 phosphosites that are surrounded by negatively-charged residues. This mechanism prevents ZAP-70 from phosphorylating its own activation loop, thereby enforcing its strict dependence on Lck for activation. The sequence features in ZAP-70, LAT, and SLP-76 that underlie electrostatic selectivity likely contribute to the specific response of T cells to foreign antigens.
Collapse
Affiliation(s)
- Neel H Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Qi Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Qingrong Yan
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Deepti Karandur
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Theresa A Kadlecek
- Rosalind Russell/Ephraim P Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, United States
- Howard Hughes Medical Institute, University of California, San Francisco, United States
| | - Ian R Fallahee
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - William P Russ
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rama Ranganathan
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Arthur Weiss
- Rosalind Russell/Ephraim P Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, United States
- Howard Hughes Medical Institute, University of California, San Francisco, United States
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
31
|
Bacchelli C, Moretti FA, Carmo M, Adams S, Stanescu HC, Pearce K, Madkaikar M, Gilmour KC, Nicholas AK, Woods CG, Kleta R, Beales PL, Qasim W, Gaspar HB. Mutations in linker for activation of T cells (LAT) lead to a novel form of severe combined immunodeficiency. J Allergy Clin Immunol 2016; 139:634-642.e5. [PMID: 27522155 DOI: 10.1016/j.jaci.2016.05.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/17/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Signaling through the T-cell receptor (TCR) is critical for T-cell development and function. Linker for activation of T cells (LAT) is a transmembrane adaptor signaling molecule that is part of the TCR complex and essential for T-cell development, as demonstrated by LAT-deficient mice, which show a complete lack of peripheral T cells. OBJECTIVE We describe a pedigree affected by a severe combined immunodeficiency phenotype with absent T cells and normal B-cell and natural killer cell numbers. A novel homozygous frameshift mutation in the gene encoding for LAT was identified in this kindred. METHODS Genetic, molecular, and functional analyses were used to identify and characterize the LAT defect. Clinical and immunologic analysis of patients was also performed and reported. RESULTS Homozygosity mapping was used to identify potential defective genes. Sanger sequencing of the LAT gene showed a mutation that resulted in a premature stop codon and protein truncation leading to complete loss of function and loss of expression of LAT in the affected family members. We also demonstrate loss of LAT expression and lack of TCR signaling restoration in LAT-deficient cell lines reconstituted with a synthetic LAT gene bearing this severe combined immunodeficiency mutation. CONCLUSION For the first time, the results of this study show that inherited LAT deficiency should be considered in patients with combined immunodeficiency with T-cell abnormalities.
Collapse
Affiliation(s)
- Chiara Bacchelli
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Federico A Moretti
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Marlene Carmo
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Stuart Adams
- Bone Marrow Transplantation, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Horia C Stanescu
- Centre for Nephrology, University College London Royal Free Hospital, London, United Kingdom
| | - Kerra Pearce
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Manisha Madkaikar
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom; Department of Pediatric Immunology and Leukocyte Biology, National Institute of Immunohematology, ICMR, Mumbai, India
| | - Kimberly C Gilmour
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom; Department of Clinical Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Adeline K Nicholas
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - C Geoffrey Woods
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Robert Kleta
- Centre for Nephrology, University College London Royal Free Hospital, London, United Kingdom
| | - Phil L Beales
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, United Kingdom
| | - Waseem Qasim
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom; Department of Clinical Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - H Bobby Gaspar
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, United Kingdom; Department of Clinical Immunology, Great Ormond Street Hospital NHS Trust, London, United Kingdom.
| |
Collapse
|
32
|
Negative regulation of TCR signaling by ubiquitination of Zap-70 Lys-217. Mol Immunol 2016; 73:19-28. [PMID: 27032069 DOI: 10.1016/j.molimm.2016.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/26/2016] [Accepted: 03/15/2016] [Indexed: 02/08/2023]
Abstract
The tyrosine kinase Zap-70 is a key regulator of T cell receptor (TCR) signaling downstream of antigen presentation, with coordinated regulation of Zap-70 kinase activity critical for proper T cell proliferation, differentiation, and effector function during an immune response. Zap-70 is cytosolic in unstimulated T cells, but is rapidly recruited to the TCR complex following receptor stimulation. Its activity is regulated both by binding to subunits of the TCR and by phosphorylation on multiple tyrosine residues. Zap-70 also has been reported to be ubiquitinated following TCR stimulation. Herein, we confirm the ubiquitination of Zap-70 in T cell lines and in primary human and mouse T cells, and report the identification of nine novel Zap-70 ubiquitination sites. Three sites, including Lys-193, Lys-217, and Lys-376, displayed greater than 20-fold increase in modification levels following TCR stimulation. Abrogation of Lys-217 ubiquitination results in increased kinase activation, enhanced activation of downstream signaling pathways, and elevated IL-2 production following TCR stimulation. These data suggest that Zap-70 ubiquitination contributes to the regulation of Zap-70 signaling following TCR stimulation.
Collapse
|
33
|
Hu H, Wang H, Xiao Y, Jin J, Chang JH, Zou Q, Xie X, Cheng X, Sun SC. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med 2016; 213:399-414. [PMID: 26903241 PMCID: PMC4813674 DOI: 10.1084/jem.20151426] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/25/2016] [Indexed: 02/05/2023] Open
Abstract
Signal transduction from the T cell receptor (TCR) is crucial for T cell-mediated immune responses and, when deregulated, also contributes to the development of autoimmunity. How TCR signaling is regulated is incompletely understood. In this study, we demonstrate a ubiquitin-dependent mechanism in which the deubiquitinase Otud7b has a crucial role in facilitating TCR signaling. Upon TCR ligation, Otud7b is rapidly recruited to the tyrosine kinase Zap70, a central mediator of TCR-proximal signaling. Otud7b deficiency attenuates the activation of Zap70 and its downstream pathways and impairs T cell activation and differentiation, rendering mice refractory to T cell-mediated autoimmune and inflammatory responses. Otud7b facilitated Zap70 activation by deubiquitinating Zap70, thus preventing the association of Zap70 with the negative-regulatory phosphatases Sts1 and Sts2. These findings establish Otud7b as a positive regulator of TCR-proximal signaling and T cell activation, highlighting the importance of deubiquitination in regulating Zap70 function.
Collapse
Affiliation(s)
- Hongbo Hu
- Department of Rheumatology and Immunology, State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Hui Wang
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030 Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Yichuan Xiao
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030 Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Jin Jin
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030 Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jae-Hoon Chang
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030 College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Qiang Zou
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Xiaoping Xie
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Xuhong Cheng
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Shao-Cong Sun
- Department of Immunology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030 Graduate School of Biomedical Sciences, University of Texas, Houston, TX 77030
| |
Collapse
|
34
|
A CRISPR-Based Toolbox for Studying T Cell Signal Transduction. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5052369. [PMID: 27057542 PMCID: PMC4753324 DOI: 10.1155/2016/5052369] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/18/2015] [Accepted: 12/28/2015] [Indexed: 11/21/2022]
Abstract
CRISPR/Cas9 system is a powerful technology to perform genome editing in a variety of cell types. To facilitate the application of Cas9 in mapping T cell signaling pathways, we generated a toolbox for large-scale genetic screens in human Jurkat T cells. The toolbox has three different Jurkat cell lines expressing distinct Cas9 variants, including wild-type Cas9, dCas9-KRAB, and sunCas9. We demonstrated that the toolbox allows us to rapidly disrupt endogenous gene expression at the DNA level and to efficiently repress or activate gene expression at the transcriptional level. The toolbox, in combination with multiple currently existing genome-wide sgRNA libraries, will be useful to systematically investigate T cell signal transduction using both loss-of-function and gain-of-function genetic screens.
Collapse
|
35
|
Chan AY, Punwani D, Kadlecek TA, Cowan MJ, Olson JL, Mathes EF, Sunderam U, Fu SM, Srinivasan R, Kuriyan J, Brenner SE, Weiss A, Puck JM. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70. J Exp Med 2016; 213:155-65. [PMID: 26783323 PMCID: PMC4749924 DOI: 10.1084/jem.20150888] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022] Open
Abstract
Chan et al. describe a combination of alleles with hypomorphic and activating mutations in the T cell signaling molecule ZAP-70 in a patient with autoimmunity. A brother and sister developed a previously undescribed constellation of autoimmune manifestations within their first year of life, with uncontrollable bullous pemphigoid, colitis, and proteinuria. The boy had hemophilia due to a factor VIII autoantibody and nephrotic syndrome. Both children required allogeneic hematopoietic cell transplantation (HCT), which resolved their autoimmunity. The early onset, severity, and distinctive findings suggested a single gene disorder underlying the phenotype. Whole-exome sequencing performed on five family members revealed the affected siblings to be compound heterozygous for two unique missense mutations in the 70-kD T cell receptor ζ-chain associated protein (ZAP-70). Healthy relatives were heterozygous mutation carriers. Although pre-HCT patient T cells were not available, mutation effects were determined using transfected cell lines and peripheral blood from carriers and controls. Mutation R192W in the C-SH2 domain exhibited reduced binding to phosphorylated ζ-chain, whereas mutation R360P in the N lobe of the catalytic domain disrupted an autoinhibitory mechanism, producing a weakly hyperactive ZAP-70 protein. Although human ZAP-70 deficiency can have dysregulated T cells, and autoreactive mouse thymocytes with weak Zap-70 signaling can escape tolerance, our patients’ combination of hypomorphic and activating mutations suggested a new disease mechanism and produced previously undescribed human ZAP-70–associated autoimmune disease.
Collapse
Affiliation(s)
- Alice Y Chan
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA 94143
| | - Divya Punwani
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA 94143
| | - Theresa A Kadlecek
- Department of Medicine, Rosalind Russell and Ephraim Engleman Rheumatology Research Center and Howard Hughes Medical Institute, University of California San Francisco School of Medicine, San Francisco, CA 94143
| | - Morton J Cowan
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA 94143
| | - Jean L Olson
- Department of Pathology, University of California San Francisco School of Medicine, San Francisco, CA 94143
| | - Erin F Mathes
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA 94143 Department of Dermatology, University of California San Francisco School of Medicine, San Francisco, CA 94143
| | - Uma Sunderam
- Innovation Labs, Tata Consulting Services, Hyderabad 50019, Telangana, India
| | - Shu Man Fu
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Rajgopal Srinivasan
- Innovation Labs, Tata Consulting Services, Hyderabad 50019, Telangana, India
| | - John Kuriyan
- Department of Molecular and Cell Biology and Department of Chemistry, California Institute of Quantitative Biosciences and Howard Hughes Medical Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720
| | - Steven E Brenner
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Arthur Weiss
- Department of Medicine, Rosalind Russell and Ephraim Engleman Rheumatology Research Center and Howard Hughes Medical Institute, University of California San Francisco School of Medicine, San Francisco, CA 94143
| | - Jennifer M Puck
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA 94143
| |
Collapse
|
36
|
Balagopalan L, Kortum RL, Coussens NP, Barr VA, Samelson LE. The linker for activation of T cells (LAT) signaling hub: from signaling complexes to microclusters. J Biol Chem 2015; 290:26422-9. [PMID: 26354432 DOI: 10.1074/jbc.r115.665869] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the cloning of the critical adapter, LAT (linker for activation of T cells), more than 15 years ago, a combination of multiple scientific approaches and techniques continues to provide valuable insights into the formation, composition, regulation, dynamics, and function of LAT-based signaling complexes. In this review, we will summarize current views on the assembly of signaling complexes nucleated by LAT. LAT forms numerous interactions with other signaling molecules, leading to cooperativity in the system. Furthermore, oligomerization of LAT by adapter complexes enhances intracellular signaling and is physiologically relevant. These results will be related to data from super-resolution microscopy studies that have revealed the smallest LAT-based signaling units and nanostructure.
Collapse
Affiliation(s)
- Lakshmi Balagopalan
- From the Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Robert L Kortum
- the Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, and
| | - Nathan P Coussens
- the Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Valarie A Barr
- From the Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Lawrence E Samelson
- From the Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256,
| |
Collapse
|
37
|
Granum S, Sundvold-Gjerstad V, Gopalakrishnan RP, Berge T, Koll L, Abrahamsen G, Sorlie M, Spurkland A. The kinase Itk and the adaptor TSAd change the specificity of the kinase Lck in T cells by promoting the phosphorylation of Tyr192. Sci Signal 2014; 7:ra118. [DOI: 10.1126/scisignal.2005384] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Roncagalli R, Hauri S, Fiore F, Liang Y, Chen Z, Sansoni A, Kanduri K, Joly R, Malzac A, Lähdesmäki H, Lahesmaa R, Yamasaki S, Saito T, Malissen M, Aebersold R, Gstaiger M, Malissen B. Quantitative proteomics analysis of signalosome dynamics in primary T cells identifies the surface receptor CD6 as a Lat adaptor-independent TCR signaling hub. Nat Immunol 2014; 15:384-392. [PMID: 24584089 DOI: 10.1038/ni.2843] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/03/2014] [Indexed: 02/08/2023]
Abstract
T cell antigen receptor (TCR)-mediated activation of T cells requires the interaction of dozens of proteins. Here we used quantitative mass spectrometry and activated primary CD4(+) T cells from mice in which a tag for affinity purification was knocked into several genes to determine the composition and dynamics of multiprotein complexes that formed around the kinase Zap70 and the adaptors Lat and SLP-76. Most of the 112 high-confidence time-resolved protein interactions we observed were previously unknown. The surface receptor CD6 was able to initiate its own signaling pathway by recruiting SLP-76 and the guanine nucleotide-exchange factor Vav1 regardless of the presence of Lat. Our findings provide a more complete model of TCR signaling in which CD6 constitutes a signaling hub that contributes to the diversification of TCR signaling.
Collapse
Affiliation(s)
- Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France
| | - Simon Hauri
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Switzerland
| | - Fréderic Fiore
- Centre d'Immunophénomique, UM2 Aix-Marseille Université, Marseille, France.,INSERM US012, Marseille, France.,CNRS UMS3367, Marseille, France
| | - Yinming Liang
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France
| | - Zhi Chen
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Amandine Sansoni
- Centre d'Immunophénomique, UM2 Aix-Marseille Université, Marseille, France.,INSERM US012, Marseille, France.,CNRS UMS3367, Marseille, France
| | - Kartiek Kanduri
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Rachel Joly
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France
| | - Aurélie Malzac
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France
| | - Harri Lähdesmäki
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland.,Department of Information and Computer Science, Aalto University, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takashi Saito
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Switzerland
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Marseille, France.,INSERM U1104, Marseille, France.,CNRS UMR7280, Marseille, France.,Centre d'Immunophénomique, UM2 Aix-Marseille Université, Marseille, France.,INSERM US012, Marseille, France.,CNRS UMS3367, Marseille, France
| |
Collapse
|
39
|
Kim J, Shapiro MJ, Bamidele AO, Gurel P, Thapa P, Higgs HN, Hedin KE, Shapiro VS, Billadeau DD. Coactosin-like 1 antagonizes cofilin to promote lamellipodial protrusion at the immune synapse. PLoS One 2014; 9:e85090. [PMID: 24454796 PMCID: PMC3890291 DOI: 10.1371/journal.pone.0085090] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/22/2013] [Indexed: 11/19/2022] Open
Abstract
Actin depolymerizing factor-homology (ADF-H) family proteins regulate actin filament dynamics at multiple cellular locations. Herein, we have investigated the function of the ADF-H family member coactosin-like 1 (COTL1) in the regulation of actin dynamics at the T cell immune synapse (IS). We initially identified COTL1 in a genetic screen to identify novel regulators of T cell activation, and subsequently found that it associates with F-actin and localizes at the IS in response to TCR+CD28 stimulation. Live cell microscopy showed that depletion of COTL1 protein impaired T cell spreading in response to TCR ligation and abrogated lamellipodial protrusion at the T cell – B cell contact site, producing only a band of F-actin. Significantly, re-expression of wild type COTL1, but not a mutant deficient in F-actin binding could rescue these defects. In addition, COTL1 depletion reduced T cell migration. In vitro studies showed that COTL1 and cofilin compete with each other for binding to F-actin, and COTL1 protects F-actin from cofilin-mediated depolymerization. While depletion of cofilin enhanced F-actin assembly and lamellipodial protrusion at the IS, concurrent depletion of both COTL1 and cofilin restored lamellipodia formation. Taken together, our results suggest that COTL1 regulates lamellipodia dynamics in part by protecting F-actin from cofilin-mediated disassembly.
Collapse
Affiliation(s)
- Joanna Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael J. Shapiro
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Adebowale O. Bamidele
- Department of Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Pinar Gurel
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Puspa Thapa
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Henry N. Higgs
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Karen E. Hedin
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Virginia S. Shapiro
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (DDB); (VSS)
| | - Daniel D. Billadeau
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (DDB); (VSS)
| |
Collapse
|
40
|
Pede V, Rombout A, Vermeire J, Naessens E, Vanderstraeten H, Philippé J, Verhasselt B. Expression of ZAP70 in chronic lymphocytic leukaemia activates NF-κB signalling. Br J Haematol 2013; 163:621-30. [DOI: 10.1111/bjh.12588] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 08/28/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Valerie Pede
- Department of Clinical Chemistry, Microbiology and Immunology; Ghent University; Ghent Belgium
| | - Ans Rombout
- Department of Clinical Chemistry, Microbiology and Immunology; Ghent University; Ghent Belgium
| | - Jolien Vermeire
- Department of Clinical Chemistry, Microbiology and Immunology; Ghent University; Ghent Belgium
| | - Evelien Naessens
- Department of Clinical Chemistry, Microbiology and Immunology; Ghent University; Ghent Belgium
| | - Hanne Vanderstraeten
- Department of Clinical Chemistry, Microbiology and Immunology; Ghent University; Ghent Belgium
| | - Jan Philippé
- Department of Clinical Chemistry, Microbiology and Immunology; Ghent University; Ghent Belgium
| | - Bruno Verhasselt
- Department of Clinical Chemistry, Microbiology and Immunology; Ghent University; Ghent Belgium
| |
Collapse
|
41
|
Joseph N, Reicher B, Barda-Saad M. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:557-68. [PMID: 23860253 DOI: 10.1016/j.bbamem.2013.07.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/30/2013] [Accepted: 07/08/2013] [Indexed: 12/31/2022]
Abstract
During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
42
|
Irwin ME, Rivera-Del Valle N, Chandra J. Redox control of leukemia: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2013; 18:1349-83. [PMID: 22900756 PMCID: PMC3584825 DOI: 10.1089/ars.2011.4258] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) play both positive and negative roles in the proliferation and survival of a cell. This dual nature has been exploited by leukemia cells to promote growth, survival, and genomic instability-some of the hallmarks of the cancer phenotype. In addition to altered ROS levels, many antioxidants are dysregulated in leukemia cells. Together, the production of ROS and the expression and activity of antioxidant enzymes make up the primary redox control of leukemia cells. By manipulating this system, leukemia cells gain proliferative and survival advantages, even in the face of therapeutic insults. Standard treatment options have improved leukemia patient survival rates in recent years, although relapse and the development of resistance are persistent challenges. Therapies targeting the redox environment show promise for these cases. This review highlights the molecular mechanisms that control the redox milieu of leukemia cells. In particular, ROS production by the mitochondrial electron transport chain, NADPH oxidase, xanthine oxidoreductase, and cytochrome P450 will be addressed. Expression and activation of antioxidant enzymes such as superoxide dismutase, catalase, heme oxygenase, glutathione, thioredoxin, and peroxiredoxin are perturbed in leukemia cells, and the functional consequences of these molecular alterations will be described. Lastly, we delve into how these pathways can be potentially exploited therapeutically to improve treatment regimens and promote better outcomes for leukemia patients.
Collapse
Affiliation(s)
- Mary E Irwin
- Department of Pediatrics Research, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
43
|
Xie JJ, Liang JQ, Diao LH, Altman A, Li Y. TNFR-associated factor 6 regulates TCR signaling via interaction with and modification of LAT adapter. THE JOURNAL OF IMMUNOLOGY 2013; 190:4027-36. [PMID: 23514740 DOI: 10.4049/jimmunol.1202742] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TNFR-associated factor (TRAF)6 is an essential ubiquitin E3 ligase in immune responses, but its function in adaptive immunity is not well understood. In this study, we show that TRAF6 is recruited to the peripheral ring of the T cell immunological synapse in Jurkat T cells or human primary CD4(+) T cells conjugated with staphylococcal enterotoxin E-pulsed B cells. This recruitment depends on TRAF6 interacting with linker for activation of T cells (LAT) via its TRAF domain. Although LAT was indispensable for TCR/CD28-induced TRAF6 ubiquitination and its ligase activity, RNA interference-induced TRAF6 knockdown in T cells decreased TCR/CD28-induced LAT ubiquitination, tyrosine phosphorylation, and association with tyrosine kinase ZAP70. Overexpression of TRAF6 or its catalytically inactive form C70A promoted and decreased, respectively, LAT tyrosine phosphorylation upon stimulation. Moreover, LAT was ubiquitinated at Lys(88) by TRAF6 via K63-linked chain. In addition, TRAF6 was required for and synergized with LAT to promote the TCR/CD28-induced activation of NFAT. These results reveal a novel function and mechanism of TRAF6 action in the TCR-LAT signaling pathway distinct from its role in TCR-induced NF-κB activation, indicating that LAT also plays an adapter role in TCR/CD28-induced activation of TRAF6.
Collapse
Affiliation(s)
- Ji-Ji Xie
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | | | | | | | | |
Collapse
|
44
|
ZAP-70 tyrosines 315 and 492 transmit non-genomic glucocorticoid (GC) effects in T cells. Mol Immunol 2013; 53:111-7. [DOI: 10.1016/j.molimm.2012.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/20/2012] [Accepted: 07/21/2012] [Indexed: 01/16/2023]
|
45
|
Hughes CE, Sinha U, Pandey A, Eble JA, O'Callaghan CA, Watson SP. Critical Role for an acidic amino acid region in platelet signaling by the HemITAM (hemi-immunoreceptor tyrosine-based activation motif) containing receptor CLEC-2 (C-type lectin receptor-2). J Biol Chem 2012; 288:5127-35. [PMID: 23264619 PMCID: PMC3576117 DOI: 10.1074/jbc.m112.411462] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CLEC-2 is a member of new family of C-type lectin receptors characterized by a cytosolic YXXL downstream of three acidic amino acids in a sequence known as a hemITAM (hemi-immunoreceptor tyrosine-based activation motif). Dimerization of two phosphorylated CLEC-2 molecules leads to recruitment of the tyrosine kinase Syk via its tandem SH2 domains and initiation of a downstream signaling cascade. Using Syk-deficient and Zap-70-deficient cell lines we show that hemITAM signaling is restricted to Syk and that the upstream triacidic amino acid sequence is required for signaling. Using surface plasmon resonance and phosphorylation studies, we demonstrate that the triacidic amino acids are required for phosphorylation of the YXXL. These results further emphasize the distinct nature of the proximal events in signaling by hemITAM relative to ITAM receptors.
Collapse
Affiliation(s)
- Craig E Hughes
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, The College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
46
|
Gorman JA, Babich A, Dick CJ, Schoon RA, Koenig A, Gomez TS, Burkhardt JK, Billadeau DD. The cytoskeletal adaptor protein IQGAP1 regulates TCR-mediated signaling and filamentous actin dynamics. THE JOURNAL OF IMMUNOLOGY 2012; 188:6135-44. [PMID: 22573807 DOI: 10.4049/jimmunol.1103487] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Ras GTPase-activating-like protein IQGAP1 is a multimodular scaffold that controls signaling and cytoskeletal regulation in fibroblasts and epithelial cells. However, the functional role of IQGAP1 in T cell development, activation, and cytoskeletal regulation has not been investigated. In this study, we show that IQGAP1 is dispensable for thymocyte development as well as microtubule organizing center polarization and cytolytic function in CD8(+) T cells. However, IQGAP1-deficient CD8(+) T cells as well as Jurkat T cells suppressed for IQGAP1 were hyperresponsive, displaying increased IL-2 and IFN-γ production, heightened LCK activation, and augmented global phosphorylation kinetics after TCR ligation. In addition, IQGAP1-deficient T cells exhibited increased TCR-mediated F-actin assembly and amplified F-actin velocities during spreading. Moreover, we found that discrete regions of IQGAP1 regulated cellular activation and F-actin accumulation. Taken together, our data suggest that IQGAP1 acts as a dual negative regulator in T cells, limiting both TCR-mediated activation kinetics and F-actin dynamics via distinct mechanisms.
Collapse
Affiliation(s)
- Jacquelyn A Gorman
- Department of Immunology, Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN 55901, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Functional requirements for inhibitory signal transmission by the immunomodulatory receptor CD300a. BMC Immunol 2012; 13:23. [PMID: 22537350 PMCID: PMC3418551 DOI: 10.1186/1471-2172-13-23] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 04/26/2012] [Indexed: 01/27/2023] Open
Abstract
Background Activation signals can be negatively regulated by cell surface receptors bearing immunoreceptor tyrosine-based inhibitory motifs (ITIMs). CD300a, an ITIM bearing type I transmembrane protein, is expressed on many hematopoietic cells, including subsets of lymphocytes. Results We have taken two approaches to further define the mechanism by which CD300a acts as an inhibitor of immune cell receptor signaling. First, we have expressed in Jurkat T cells a chimeric receptor consisting of the extracellular domains of killer-cell immunoglobulin-like receptor (KIR)2DL2 fused to the transmembrane and cytoplasmic segments of CD300a (KIR-CD300a) to explore surrogate ligand-stimulated inhibition of superantigen stimulated T cell receptor (TCR) mediated cell signaling. We found that intact CD300a ITIMs were essential for inhibition and that the tyrosine phosphorylation of these ITIMs required the src tyrosine kinase Lck. Tyrosine phosphorylation of the CD300a ITIMs created docking sites for both src homology 2 domain containing protein tyrosine phosphatase (SHP)-1 and SHP-2. Suppression of SHP-1 and SHP-2 expression in KIR-CD300a Jurkat T cells with siRNA and the use of DT40 chicken B cell lines expressing CD300a and deficient in several phosphatases revealed that SHP-1, but not SHP-2 or the src homology 2 domain containing inositol 5’ phosphatase SHIP, was utilized by CD300a for its inhibitory activity. Conclusion These studies provide new insights into the function of CD300a in tuning T and B cell responses.
Collapse
|
48
|
Wang K, Diao LH, Gong Y, Liu X, Li Y. NEMO differentially regulates TCR and TNF-α induced NF-κB pathways and has an inhibitory role in TCR-induced NF-κB activation. Cell Signal 2012; 24:1556-64. [PMID: 22513115 DOI: 10.1016/j.cellsig.2012.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 03/30/2012] [Accepted: 03/30/2012] [Indexed: 11/29/2022]
Abstract
NF-κB essential modulator (NEMO), the regulatory subunit of the IκB kinase (IKK) complex, is an essential adaptor both for inflammation stimuli and TCR-induced NF-κB activation. However, the exact mechanism of its function has not been fully understood. Here, we report that knockdown of NEMO by RNA interference in Jurkat E6.1 cells enhanced TCR-induced NF-κB report gene activity and IL-2 production by promotion of IκBα degradation and p65 nuclear translocation, whereas inhibited TNF-α and LPS-induced IκBα degradation without influencing the phosphorylation of MAPKs. In human primary T and Jurkat E6.1 cells, both CD3/CD28 and PMA/Ionomycin induced NF-κB activation showed a para-curve correlation with the dosage of small interfering RNA targeting NEMO (siNEMO): the NF-κB report gene activity was increased along with ascending doses of transfected siNEMO and reached the highest activity when knockdown about 70% of NEMO, then turned to decline and gradually be blocked once almost thoroughly knockdown of NEMO. Meanwhile, TNF-α induced NF-κB was always inhibited no matter how much NEMO was knockdown. Subcellular fractionation results suggested that upon CD3/CD28 costimulation, NEMO and IKKβ may not cotranslocate to cytoskeleton fraction as a conventional NEMO/IKK complex with a static stoichiometric ratio, instead the ratio of NEMO: IKKβ continuously shift from high to low. Depletion of NEMO accelerated TCR-induced cytoskeleton translocation of IKKβ. Altogether, this study suggests that NEMO may function as a rheostat exerting a negative action on TCR-induced NF-κB activation and differentially regulates TNF-α and TCR-induced NF-κB pathways.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
49
|
Nag A, Monine M, Perelson AS, Goldstein B. Modeling and simulation of aggregation of membrane protein LAT with molecular variability in the number of binding sites for cytosolic Grb2-SOS1-Grb2. PLoS One 2012; 7:e28758. [PMID: 22396725 PMCID: PMC3291652 DOI: 10.1371/journal.pone.0028758] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 11/14/2011] [Indexed: 01/08/2023] Open
Abstract
The linker for activation of T cells (LAT), the linker for activation of B cells (LAB), and the linker for activation of X cells (LAX) form a family of transmembrane adaptor proteins widely expressed in lymphocytes. These scaffolding proteins have multiple binding motifs that, when phosphorylated, bind the SH2 domain of the cytosolic adaptor Grb2. Thus, the valence of LAT, LAB and LAX for Grb2 is variable, depending on the strength of receptor activation that initiates phosphorylation. During signaling, the LAT population will exhibit a time-varying distribution of Grb2 valences from zero to three. In the cytosol, Grb2 forms 1∶1 and 2∶1 complexes with the guanine nucleotide exchange factor SOS1. The 2∶1 complex can bridge two LAT molecules when each Grb2, through their SH2 domains, binds to a phosphorylated site on a separate LAT. In T cells and mast cells, after receptor engagement, receptor phosphoyrlation is rapidly followed by LAT phosphorylation and aggregation. In mast cells, aggregates containing more than one hundred LAT molecules have been detected. Previously we considered a homogeneous population of trivalent LAT molecules and showed that for a range of Grb2, SOS1 and LAT concentrations, an equilibrium theory for LAT aggregation predicts the formation of a gel-like phase comprising a very large aggregate (superaggregate). We now extend this theory to investigate the effects of a distribution of Grb2 valence in the LAT population on the formation of LAT aggregates and superaggregate and use stochastic simulations to calculate the fraction of the total LAT population in the superaggregate.
Collapse
Affiliation(s)
- Ambarish Nag
- Theoretical Biololgy and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
| | | | | | | |
Collapse
|
50
|
Schoenborn JR, Tan YX, Zhang C, Shokat KM, Weiss A. Feedback circuits monitor and adjust basal Lck-dependent events in T cell receptor signaling. Sci Signal 2012; 4:ra59. [PMID: 21917715 DOI: 10.1126/scisignal.2001893] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Src family kinase Lck is crucial for the initiation of TCR signaling. The activity of Lck is tightly controlled to prevent erroneous immune activation, yet it enables rapid cellular responses over a range of sensitivities to antigens. Here, in experiments with an analog-sensitive variant of the tyrosine kinase Csk, we report that Lck in T cells is dynamically controlled by an equilibrium between Csk and the tyrosine phosphatase CD45. By rapidly inhibiting Csk, we showed that changes in this equilibrium were sufficient to activate canonical TCR signaling pathways independently of ligand binding to the TCR. The activated signaling pathways showed sustained and enhanced phosphorylation compared to that in TCR-stimulated cells, revealing a feedback circuit that was sensitive to the basal signaling machinery. We identified the inhibitory adaptor molecule Dok-1 (downstream of kinase 1) as a candidate that may respond to alterations in basal signaling activity. Our results also suggest a role for Csk in the termination or dampening of TCR signals.
Collapse
Affiliation(s)
- Jamie R Schoenborn
- Rosalind Russell Medical Research Center for Arthritis, Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|