1
|
Bigliardi E, Shetty AV, Low WC, Steer CJ. Interspecies Blastocyst Complementation and the Genesis of Chimeric Solid Human Organs. Genes (Basel) 2025; 16:215. [PMID: 40004544 PMCID: PMC11854981 DOI: 10.3390/genes16020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Solid organ transplantation remains a life-saving treatment for patients worldwide. Unfortunately, the supply of donor organs cannot meet the current need, making the search for alternative sources even more essential. Xenotransplantation using sophisticated genetic engineering techniques to delete and overexpress specific genes in the donor animal has been investigated as a possible option. However, the use of exogenous tissue presents another host of obstacles, particularly regarding organ rejection. Given these limitations, interspecies blastocyst complementation in combination with precise gene knockouts presents a unique, promising pathway for the transplant organ shortage. In recent years, great advancements have been made in the field, with encouraging results in producing a donor-derived organ in a chimeric host. That said, one of the major barriers to successful interspecies chimerism is the mismatch in the developmental stages of the donor and the host cells in the chimeric embryo. Another major barrier to successful chimerism is the mismatch in the developmental speeds between the donor and host cells in the chimeric embryos. This review outlines 19 studies in which blastocyst complementation was used to generate solid organs. In particular, the genesis of the liver, lung, kidney, pancreas, heart, thyroid, thymus and parathyroids was investigated. Of the 19 studies, 7 included an interspecies model. Of the 7, one was completed using human donor cells in a pig host, and all others were rat-mouse chimeras. While very promising results have been demonstrated, with great advancements in the field, several challenges continue to persist. In particular, successful chimerism, organ generation and donor contribution, synchronized donor-host development, as well as ethical concerns regarding human-animal chimeras remain important aspects that will need to be addressed in future research.
Collapse
Affiliation(s)
- Elena Bigliardi
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Anala V. Shetty
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA;
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clifford J. Steer
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Piñeiro-Sabarís R, MacGrogan D, de la Pompa JL. Intricate MIB1-NOTCH-GATA6 Interactions in Cardiac Valvular and Septal Development. J Cardiovasc Dev Dis 2024; 11:223. [PMID: 39057643 PMCID: PMC11277162 DOI: 10.3390/jcdd11070223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Genome-wide association studies and experimental mouse models implicate the MIB1 and GATA6 genes in congenital heart disease (CHD). Their close physical proximity and conserved synteny suggest that these two genes might be involved in analogous cardiac developmental processes. Heterozygous Gata6 loss-of-function mutations alone or humanized Mib1 mutations in a NOTCH1-sensitized genetic background cause bicuspid aortic valve (BAV) and a membranous ventricular septal defect (VSD), consistent with MIB1 and NOTCH1 functioning in the same pathway. To determine if MIB1-NOTCH and GATA6 interact in valvular and septal development, we generated compound heterozygote mice carrying different Mib1 missense (Mib1K735R and Mib1V943F) or nonsense (Mib1R530X) mutations with the Gata6STOP/+ heterozygous null mutation. Combining Mib1R530X/+ or Mib1K735R/+ with Gata6STOP/+ does not affect Gata6STOP/+ single mutant phenotypes. In contrast, combining Mib1V943F/+ with Gata6STOP/+ decreases the incidence of BAV and VSD by 50%, suggesting a suppressive effect of Mib1V943F/+ on Gata6STOP/+. Transcriptomic and functional analyses revealed that while the EMT pathway term is depleted in the Gata6STOP/+ mutant, introducing the Mib1V943F variant robustly enriches this term, consistent with the Mib1V943F/+ phenotypic suppression of Gata6STOP/+. Interestingly, combined Notch1 and Gata6 insufficiency led to a nearly fully penetrant VSD but did not affect the BAV phenotype, underscoring the complex functional relationship between MIB1, NOTCH, and GATA6 in valvular and septal development.
Collapse
Affiliation(s)
- Rebeca Piñeiro-Sabarís
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain;
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Donal MacGrogan
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain;
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain;
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
3
|
简 远, 王 菲, 尹 宁, 周 若, 王 军. [Developmental toxicity of Cry1Ab protein in the embryonic stem-cell model]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2024; 56:213-222. [PMID: 38595236 PMCID: PMC11004948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To evaluate the developmental toxicity of Cry1Ab protein by studying its effects on cell proliferation and differentiation ability using a developmental toxicity assessment model based on embryonic stem-cell. METHODS Cry1Ab protein was tested in seven dose groups (31.25, 62.50, 125.00, 250.00, 320.00, 1 000.00, and 2 000.00 μg/L) on mouse embryonic stem cells D3 (ES-D3) and 3T3 mouse fibroblast cells, with 5-fluorouracil (5-FU) used as the positive control and phosphate buffer saline (PBS) as the solvent control. Cell viability was detected by CCK-8 assay to calculate the 50% inhibitory concentration (IC50) of the test substance for different cells. Additionally, Cry1Ab protein was tested in five dose groups (125.00, 250.00, 320.00, 1 000.00, and 2 000.00 μg/L) on ES-D3 cells, with PBS as the solvent control and 5-FU used for model validation. After cell treatment, cardiac differentiation was induced using the embryonic bodies (EBs) culture method. The growth of EBs was observed under a microscope, and their diameters on the third and fifth days were measured. The proportion of EBs differentiating into beating cardiomyocytes was recorded, and the 50% inhibition concentration of differentiation (ID50) was calculated. Based on a developmental toxicity discrimination function, the developmental toxicity of the test substances was classified. Furthermore, at the end of the culture period, mRNA expression levels of cardiac differentiation-related markers (Oct3/4, GATA-4, Nkx2.5, and β-MHC) were quantitatively detected using real-time quantitative polymerase chain reaction (qPCR) in the collected EBs samples. RESULTS The IC50 of 5-FU was determined as 46.37 μg/L in 3T3 cells and 32.67 μg/L in ES-D3 cells, while the ID50 in ES-D3 cells was 21.28 μg/L. According to the discrimination function results, 5-FU was classified as a strong embryotoxic substance. There were no statistically significant differences in cell viability between different concentrations of Cry1Ab protein treatment groups and the control group in both 3T3 cells and ES-D3 cells (P>0.05). Moreover, there were no statistically significant differences in the diameter of EBs on the third and fifth days, as well as their morphology, between the Cry1Ab protein treatment groups and the control group (P>0.05). The cardiac differentiation rate showed no statistically significant differences between different concentrations of Cry1Ab protein treatment groups and the control group (P>0.05). 5-FU significantly reduced the mRNA expression levels of β-MHC, Nkx2.5, and GATA-4 (P < 0.05), showing a dose-dependent trend (P < 0.05), while the mRNA expression levels of the pluripotency-associated marker Oct3/4 exhibited an increasing trend (P < 0.05). However, there were no statistically significant differences in the mRNA expression levels of mature cardiac marker β-MHC, early cardiac differentiation marker Nkx2.5 and GATA-4, and pluripotency-associated marker Oct3/4 between the Cry1Ab protein treatment groups and the control group (P>0.05). CONCLUSION No developmental toxicity of Cry1Ab protein at concentrations ranging from 31.25 to 2 000.00 μg/L was observed in this experimental model.
Collapse
Affiliation(s)
- 远志 简
- 北京大学公共卫生学院营养与食品卫生学系, 北京 100191Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - 菲 王
- 北京大学公共卫生学院营养与食品卫生学系, 北京 100191Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - 宁 尹
- 北京大学公共卫生学院营养与食品卫生学系, 北京 100191Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - 若宇 周
- 北京大学公共卫生学院营养与食品卫生学系, 北京 100191Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - 军波 王
- 北京大学公共卫生学院营养与食品卫生学系, 北京 100191Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- 食品安全毒理学研究与评价北京市重点实验室,北京 100191Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| |
Collapse
|
4
|
Abhinav P, Li YJ, Huang RT, Liu XY, Gu JN, Yang CX, Xu YJ, Wang J, Yang YQ. Somatic GATA4 mutation contributes to tetralogy of Fallot. Exp Ther Med 2024; 27:91. [PMID: 38274337 PMCID: PMC10809308 DOI: 10.3892/etm.2024.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
Tetralogy of Fallot (TOF) is the most prevalent cyanotic congenital heart pathology and causes infant morbidity and mortality worldwide. GATA-binding protein 4 (GATA4) serves as a pivotal transcriptional factor for embryonic cardiogenesis and germline GATA4 mutations are causally linked to TOF. However, the effects of somatic GATA4 mutations on the pathogenesis of TOF remain to be ascertained. In the present study, sequencing assay of GATA4 was performed utilizing genomic DNA derived from resected heart tissue specimens as well as matched peripheral blood specimens of 62 patients with non-familial TOF who underwent surgical treatment for TOF. Sequencing of GATA4 was also performed using the heart tissue specimens as well as matched peripheral venous blood samples of 68 sporadic cases who underwent heart valve displacement because of rheumatic heart disorder and the peripheral venous whole blood samples of 216 healthy subjects. The function of the mutant was explored by dual-luciferase activity analysis. Consequently, a new GATA4 mutation, NM_002052.5:c.708T>G;p.(Tyr236*), was found in the heart tissue of one patient with TOF. No mutation was detected in the heart tissue of the 68 cases suffering from rheumatic heart disorder or in the venous blood samples of all 346 individuals. GATA4 mutant failed to transactivate its target gene, myosin heavy chain 6. Additionally, this mutation nullified the synergistic transactivation between GATA4 and T-box transcription factor 5 or NK2 homeobox 5, two genes causative for TOF. Somatic GATA4 mutation predisposes TOF, highlighting the significant contribution of somatic variations to the molecular pathogenesis underpinning TOF.
Collapse
Affiliation(s)
- Pradhan Abhinav
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yan-Jie Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Juan Wang
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
- Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
- Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
5
|
Liu H, Zhao Y, Zhao G, Deng Y, Chen YE, Zhang J. SWI/SNF Complex in Vascular Smooth Muscle Cells and Its Implications in Cardiovascular Pathologies. Cells 2024; 13:168. [PMID: 38247859 PMCID: PMC10814623 DOI: 10.3390/cells13020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Mature vascular smooth muscle cells (VSMC) exhibit a remarkable degree of plasticity, a characteristic that has intrigued cardiovascular researchers for decades. Recently, it has become increasingly evident that the chromatin remodeler SWItch/Sucrose Non-Fermentable (SWI/SNF) complex plays a pivotal role in orchestrating chromatin conformation, which is critical for gene regulation. In this review, we provide a summary of research related to the involvement of the SWI/SNF complexes in VSMC and cardiovascular diseases (CVD), integrating these discoveries into the current landscape of epigenetic and transcriptional regulation in VSMC. These novel discoveries shed light on our understanding of VSMC biology and pave the way for developing innovative therapeutic strategies in CVD treatment.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
- Department of Molecular & Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yang Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| | - Guizhen Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| | - Yongjie Deng
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| | - Y. Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| |
Collapse
|
6
|
Yamagishi H. Human Genetics of Truncus Arteriosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:841-852. [PMID: 38884753 DOI: 10.1007/978-3-031-44087-8_51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Integrated human genetics and molecular/developmental biology studies have revealed that truncus arteriosus is highly associated with 22q11.2 deletion syndrome. Other congenital malformation syndromes and variants in genes encoding TBX, GATA, and NKX transcription factors and some signaling proteins have also been reported as its etiology.
Collapse
Affiliation(s)
- Hiroyuki Yamagishi
- Division of Pediatric Cardiology, Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
7
|
Nakhaei-Rad S, Haghighi F, Bazgir F, Dahlmann J, Busley AV, Buchholzer M, Kleemann K, Schänzer A, Borchardt A, Hahn A, Kötter S, Schanze D, Anand R, Funk F, Kronenbitter AV, Scheller J, Piekorz RP, Reichert AS, Volleth M, Wolf MJ, Cirstea IC, Gelb BD, Tartaglia M, Schmitt JP, Krüger M, Kutschka I, Cyganek L, Zenker M, Kensah G, Ahmadian MR. Molecular and cellular evidence for the impact of a hypertrophic cardiomyopathy-associated RAF1 variant on the structure and function of contractile machinery in bioartificial cardiac tissues. Commun Biol 2023; 6:657. [PMID: 37344639 PMCID: PMC10284840 DOI: 10.1038/s42003-023-05013-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
Noonan syndrome (NS), the most common among RASopathies, is caused by germline variants in genes encoding components of the RAS-MAPK pathway. Distinct variants, including the recurrent Ser257Leu substitution in RAF1, are associated with severe hypertrophic cardiomyopathy (HCM). Here, we investigated the elusive mechanistic link between NS-associated RAF1S257L and HCM using three-dimensional cardiac bodies and bioartificial cardiac tissues generated from patient-derived induced pluripotent stem cells (iPSCs) harboring the pathogenic RAF1 c.770 C > T missense change. We characterize the molecular, structural, and functional consequences of aberrant RAF1-associated signaling on the cardiac models. Ultrastructural assessment of the sarcomere revealed a shortening of the I-bands along the Z disc area in both iPSC-derived RAF1S257L cardiomyocytes and myocardial tissue biopsies. The aforementioned changes correlated with the isoform shift of titin from a longer (N2BA) to a shorter isoform (N2B) that also affected the active force generation and contractile tensions. The genotype-phenotype correlation was confirmed using cardiomyocyte progeny of an isogenic gene-corrected RAF1S257L-iPSC line and was mainly reversed by MEK inhibition. Collectively, our findings uncovered a direct link between a RASopathy gene variant and the abnormal sarcomere structure resulting in a cardiac dysfunction that remarkably recapitulates the human disease.
Collapse
Affiliation(s)
- Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Stem Cell Biology and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fereshteh Haghighi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Dahlmann
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Institute of Human Genetics, University Hospital, Otto von Guericke-University, Magdeburg, Germany
| | - Alexandra Viktoria Busley
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells", University of Göttingen, Göttingen, Germany
| | - Marcel Buchholzer
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karolin Kleemann
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Borchardt
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Sebastian Kötter
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Denny Schanze
- Institute of Human Genetics, University Hospital, Otto von Guericke-University, Magdeburg, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Florian Funk
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annette Vera Kronenbitter
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marianne Volleth
- Institute of Human Genetics, University Hospital, Otto von Guericke-University, Magdeburg, Germany
| | - Matthew J Wolf
- Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ion Cristian Cirstea
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Joachim P Schmitt
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martina Krüger
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ingo Kutschka
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Lukas Cyganek
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells", University of Göttingen, Göttingen, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital, Otto von Guericke-University, Magdeburg, Germany.
| | - George Kensah
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany.
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
8
|
Functional characterization of GATA6 genetic variants associated with mild congenital heart defects. Biochem Biophys Res Commun 2023; 641:77-83. [PMID: 36525927 DOI: 10.1016/j.bbrc.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
Damaging GATA6 variants can cause moderate congenital heart defects. With the application of next-generation sequencing approaches, various novel GATA6 variants with unknown significance have been identified from a broad spectrum of congenital heart defects. However, functional assessment for distinct GATA6 variants from different severity of congenital heart defects, especially from mild defects, is lacking, which hinders our understanding of the genotype-phenotype correlations and underlying mechanisms. Here, we assessed the functional consequences of nine rare GATA6 variants, which had been implicated as the most significant variants associated with mild congenital heart defects using the largest case and control cohort. We examined the effects of these variants on subcellular localization, transcriptional activity, and protein interactions in 293T or AC16 cells and their ability to rescue heart malformation in gata6 zebrafish mutant. We found that two of these nine variants, Q120X and S424I, significantly decreased transcriptional activity. Additionally, Q120X altered subcellular localization. Consistent with the in vitro results, the in vivo results showed that Q120X and S424I lost their potency to rescue ventricular malformation in gata6 -/- embryos. The results indicated that Q120X and S424I are pathogenic in mild congenital heart defects. Further, the inconsistence of severely impaired Q120X function and mild CHDs phenotype suggested the complexity of the genotype-phenotype correlation between the GATA6 variant and heart phenotype, which may help to inform prenatal genetic counseling and pre-implantation genotyping for congenital heart defects.
Collapse
|
9
|
Afouda BA. Towards Understanding the Gene-Specific Roles of GATA Factors in Heart Development: Does GATA4 Lead the Way? Int J Mol Sci 2022; 23:5255. [PMID: 35563646 PMCID: PMC9099915 DOI: 10.3390/ijms23095255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Transcription factors play crucial roles in the regulation of heart induction, formation, growth and morphogenesis. Zinc finger GATA transcription factors are among the critical regulators of these processes. GATA4, 5 and 6 genes are expressed in a partially overlapping manner in developing hearts, and GATA4 and 6 continue their expression in adult cardiac myocytes. Using different experimental models, GATA4, 5 and 6 were shown to work together not only to ensure specification of cardiac cells but also during subsequent heart development. The complex involvement of these related gene family members in those processes is demonstrated through the redundancy among them and crossregulation of each other. Our recent identification at the genome-wide level of genes specifically regulated by each of the three family members and our earlier discovery that gata4 and gata6 function upstream, while gata5 functions downstream of noncanonical Wnt signalling during cardiac differentiation, clearly demonstrate the functional differences among the cardiogenic GATA factors. Such suspected functional differences are worth exploring more widely. It appears that in the past few years, significant advances have indeed been made in providing a deeper understanding of the mechanisms by which each of these molecules function during heart development. In this review, I will therefore discuss current evidence of the role of individual cardiogenic GATA factors in the process of heart development and emphasize the emerging central role of GATA4.
Collapse
Affiliation(s)
- Boni A Afouda
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
10
|
Wang Z, Schwartz RJ, Liu J, Sun F, Li Q, Ma Y. Smyd1 Orchestrates Early Heart Development Through Positive and Negative Gene Regulation. Front Cell Dev Biol 2021; 9:654682. [PMID: 33869215 PMCID: PMC8047137 DOI: 10.3389/fcell.2021.654682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/17/2021] [Indexed: 01/09/2023] Open
Abstract
SET and MYND domain-containing protein 1 (Smyd1) is a striated muscle-specific histone methyltransferase. Our previous work demonstrated that deletion of Smyd1 in either cardiomyocytes or the outflow tract (OFT) resulted in embryonic lethality at E9.5, with cardiac structural defects such as truncation of the OFT and right ventricle and impaired expansion and proliferation of the second heart field (SHF). The cardiac phenotype was accompanied by the downregulation of ISL LIM Homeobox 1 (Isl1) and upregulation of atrial natriuretic factor (ANF). However, the mechanisms of Smyd1 regulating Isl1 and ANF during embryonic heart development remain to be elucidated. Here, we employed various biochemical and molecular biological approaches including chromatin immunoprecipitation polymerase chain reaction (ChIP-PCR), pGL3 fluorescence reporter system, and co-immunoprecipitation (CoIP) and found that Smyd1 interacted with absent small homeotic-2-like protein (ASH2L) and activated the promoter of Isl1 by trimethylating H3K4. We also found that Smyd1 associated with HDAC to repress ANF expression using trichostatin A (TSA), a deacetylase inhibitor. In conclusion, Smyd1 participates in early heart development by upregulating the expression of Isl1 and downregulating the expression of ANF.
Collapse
Affiliation(s)
- Zhen Wang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.,Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Jing Liu
- Department of Reproductive Medicine Center, Zhengzhou University, Zhengzhou, China
| | - Fei Sun
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.,Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.,Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.,Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| |
Collapse
|
11
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
12
|
Wang Z, Mao K, Du W, Cai M, Zhang Z, Li X. Diluted concentrations of methamphetamine in surface water induce behavior disorder, transgenerational toxicity, and ecosystem-level consequences of fish. WATER RESEARCH 2020; 184:116164. [PMID: 32688152 DOI: 10.1016/j.watres.2020.116164] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/16/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Methamphetamine (METH) has been recognized as an emerging organic contaminant as it was widely detected in the aquatic environment via wastewater effluent discharge. However, the ecological hazard posed by METH at environmentally relevant concentrations was remained unclear. In this study, adult medaka fish were exposed to METH at environmental levels (0.05, 0.2, 0.5, 5 μg L-1) and high level (25 and 100 μg L-1) for 90 days to investigate its effect on ecologically behavioral functions, histopathology, bioconcentration, and transgenerational toxicity. The significant increase of locomotion activity, total distance, and max velocity of adult medaka were observed at low METH levels (0.2-0.5 μg L-1), while it markedly decreased at high levels (25-100 μg L-1). This effect may increase the predation risk of the fish. The significant alteration on the relative expressions of the genes (cacna1c, oxtr, erk1, and c-fos), as well as the contents of the proteins (oxytocin (OXT) and protein kinase A (PKA)) involved in Voltage Dependent Calcium Channel (VDCC) and Mitogen-Activated Protein Kinase (MAPK) signaling channel induced by METH could partly elucidate the underlying mechanisms of the changes of the behavioral traits. METH could induce obvious minimal gliosis, neuronal loss, and necrotic in brain tissues. Additionally, the significant increase of hepatic-somatic index (HSI) of male medaka at 0.2-5 μg L-1 groups, and the decrease of female medaka at 100 μg L-1 group indicated male fish was more susceptible to METH. Nephric-somatic index (NSI) of medaka markedly declined induced by METH at 0.05-100 μg L-1. The bioconcentration factor (BCF) (0.4-5.8) in medaka fish revealed the bioconcentration potential of METH in fish. This study for the first time demonstrated METH could induced the development defects of larvae in F1 generation at environmentally relevant concentrations, thereby resulting in a significant decrease in the capacity of fish to produce offspring. Meanwhile, the RQ values (>1) of METH in river in China, USA, and Australia showed a high teratogenic risk level, suggesting the ecosystem-levels consequence posed by METH should be concerned.
Collapse
Affiliation(s)
- Zhenglu Wang
- Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, Jiangsu 210098, PR China; College of Oceanography, Hohai University, Nanjing, Jiangsu 210098, PR China; Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Wei Du
- School of Geographical Sciences, East China Normal University, Shanghai 200241, PR China
| | - Min Cai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Zhaobin Zhang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xiqing Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
13
|
Peng L, Qian M, Liu Z, Tang X, Sun J, Jiang Y, Sun S, Cao X, Pang Q, Liu B. Deacetylase-independent function of SIRT6 couples GATA4 transcription factor and epigenetic activation against cardiomyocyte apoptosis. Nucleic Acids Res 2020; 48:4992-5005. [PMID: 32239217 PMCID: PMC7229816 DOI: 10.1093/nar/gkaa214] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/21/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
SIRT6 deacetylase activity improves stress resistance via gene silencing and genome maintenance. Here, we reveal a deacetylase-independent function of SIRT6, which promotes anti-apoptotic gene expression via the transcription factor GATA4. SIRT6 recruits TIP60 acetyltransferase to acetylate GATA4 at K328/330, thus enhancing its chromatin binding capacity. In turn, GATA4 inhibits the deacetylase activity of SIRT6, thus ensuring the local chromatin accessibility via TIP60-promoted H3K9 acetylation. Significantly, the treatment of doxorubicin (DOX), an anti-cancer chemotherapeutic, impairs the SIRT6-TIP60-GATA4 trimeric complex, blocking GATA4 acetylation and causing cardiomyocyte apoptosis. While GATA4 hyperacetylation-mimic retains the protective effect against DOX, the hypoacetylation-mimic loses such ability. Thus, the data reveal a novel SIRT6-TIP60-GATA4 axis, which promotes the anti-apoptotic pathway to prevent DOX toxicity. Targeting the trimeric complex constitutes a new strategy to improve the safety of DOX chemotherapy in clinical application.
Collapse
Affiliation(s)
- Linyuan Peng
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Minxian Qian
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Zuojun Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Xiaolong Tang
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Jie Sun
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Yue Jiang
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Shimin Sun
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Xinyue Cao
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China.,Carson International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
14
|
The transcriptional factor GATA-4 negatively regulates Hsp70 transcription in Crassostrea hongkongensis. Mol Biol Rep 2020; 47:7107-7114. [PMID: 32880831 DOI: 10.1007/s11033-020-05778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
To better explore the application potential of heat shock protein Hsp70s in diverse areas including biomonitoring, a further investigation of the details of the regulatory mechanism governing Hsp70 transcription is required. A transcriptional factor ChGATA-4 that displayed affinity to the ChHsp70 promoter of Crassostrea hongkongensis was isolated and identified by DNA affinity purification as well as mass spectrometry analysis. The ChGATA-4 cDNA is 2162 bp in length and the open reading frame encodes a polypeptide containing 482 amino acids with a conserved zinc finger domain. The over-expression of ChGATA-4 significantly inhibited the expression of ChHsp70 promoter in heterologous HEK293T cells. However, the depletion of ChGATA-4 mRNA by RNAi technique resulted in significant increase of ChHsp70 transcription in oyster hemocytes. The RT-PCR results demonstrated that the transcription of both ChHsp70 and ChGATA-4 were induced by heat, Cd, or NP (Nonyl phenol) stress. This suggested a potential correlation between ChHsp70 and ChGATA-4 in the stress-mediated genetic regulatory cascade. This study demonstrated that ChGATA-4 acts in a negative manner in controlling ChHsp70 transcription in C. hongkongensis and promotes to further understand the mechanisms leading Hsp70 transcription.
Collapse
|
15
|
Garcia AM, Beatty JT, Nakano SJ. Heart failure in single right ventricle congenital heart disease: physiological and molecular considerations. Am J Physiol Heart Circ Physiol 2020; 318:H947-H965. [PMID: 32108525 PMCID: PMC7191494 DOI: 10.1152/ajpheart.00518.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/27/2022]
Abstract
Because of remarkable surgical and medical advances over the past several decades, there are growing numbers of infants and children living with single ventricle congenital heart disease (SV), where there is only one functional cardiac pumping chamber. Nevertheless, cardiac dysfunction (and ultimately heart failure) is a common complication in the SV population, and pharmacological heart failure therapies have largely been ineffective in mitigating the need for heart transplantation. Given that there are several inherent risk factors for ventricular dysfunction in the setting of SV in addition to probable differences in molecular adaptations to heart failure between children and adults, it is perhaps not surprising that extrapolated adult heart failure medications have had limited benefit in children with SV heart failure. Further investigations into the molecular mechanisms involved in pediatric SV heart failure may assist with risk stratification as well as development of targeted, efficacious therapies specific to this patient population. In this review, we present a brief overview of SV anatomy and physiology, with a focus on patients with a single morphological right ventricle requiring staged surgical palliation. Additionally, we discuss outcomes in the current era, risk factors associated with the progression to heart failure, present state of knowledge regarding molecular alterations in end-stage SV heart failure, and current therapeutic interventions. Potential avenues for improving SV outcomes, including identification of biomarkers of heart failure progression, implications of personalized medicine and stem cell-derived therapies, and applications of novel models of SV disease, are proposed as future directions.
Collapse
Affiliation(s)
- Anastacia M Garcia
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Jonathan-Thomas Beatty
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Stephanie J Nakano
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
16
|
Jurado Acosta A, Rysä J, Szabo Z, Moilanen AM, Serpi R, Ruskoaho H. Phosphorylation of GATA4 at serine 105 is required for left ventricular remodelling process in angiotensin II-induced hypertension in rats. Basic Clin Pharmacol Toxicol 2020; 127:178-195. [PMID: 32060996 PMCID: PMC7496669 DOI: 10.1111/bcpt.13398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/25/2022]
Abstract
In this study, we investigated whether local intramyocardial GATA4 overexpression affects the left ventricular (LV) remodelling process and the importance of phosphorylation at serine 105 (S105) for the actions of GATA4 in an angiotensin II (AngII)‐induced hypertension rat model. Adenoviral constructs overexpressing wild‐type GATA4 or GATA4 mutated at S105 were delivered into the anterior LV free wall. AngII (33.3 µg/kg/h) was administered via subcutaneously implanted minipumps. Cardiac function and structure were examined by echocardiography, followed by histological immunostainings of LV sections and gene expression measurements by RT‐qPCR. The effects of GATA4 on cultured neonatal rat ventricular fibroblasts were evaluated. In AngII‐induced hypertension, GATA4 overexpression repressed fibrotic gene expression, reversed the hypertrophic adult‐to‐foetal isoform switch of myofibrillar genes and prevented apoptosis, whereas histological fibrosis was not affected. Overexpression of GATA4 mutated at S105 resulted in LV chamber dilatation, cardiac dysfunction and had minor effects on expression of myocardial remodelling genes. Fibrotic gene expression in cardiac fibroblasts was differently affected by overexpression of wild‐type or mutated GATA4. Our results indicate that GATA4 reduces AngII‐induced responses by interfering with pro‐fibrotic and hypertrophic gene expressions. GATA4 actions on LV remodelling and fibroblasts are dependent on phosphorylation site S105.
Collapse
Affiliation(s)
- Alicia Jurado Acosta
- Pharmacology and Toxicology, Biomedicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Zoltan Szabo
- Pharmacology and Toxicology, Biomedicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Anne-Mari Moilanen
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Heikki Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Chia CY, Madrigal P, Denil SLIJ, Martinez I, Garcia-Bernardo J, El-Khairi R, Chhatriwala M, Shepherd MH, Hattersley AT, Dunn NR, Vallier L. GATA6 Cooperates with EOMES/SMAD2/3 to Deploy the Gene Regulatory Network Governing Human Definitive Endoderm and Pancreas Formation. Stem Cell Reports 2020; 12:57-70. [PMID: 30629940 PMCID: PMC6335596 DOI: 10.1016/j.stemcr.2018.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
Heterozygous de novo mutations in GATA6 are the most frequent cause of pancreatic agenesis in humans. In mice, however, a similar phenotype requires the biallelic loss of Gata6 and its paralog Gata4. To elaborate the human-specific requirements for GATA6, we chose to model GATA6 loss in vitro by combining both gene-edited and patient-derived pluripotent stem cells (hPSCs) and directed differentiation toward β-like cells. We find that GATA6 heterozygous hPSCs show a modest reduction in definitive endoderm (DE) formation, while GATA6-null hPSCs fail to enter the DE lineage. Consistent with these results, genome-wide studies show that GATA6 binds and cooperates with EOMES/SMAD2/3 to regulate the expression of cardinal endoderm genes. The early deficit in DE is accompanied by a significant reduction in PDX1+ pancreatic progenitors and C-PEPTIDE+ β-like cells. Taken together, our data position GATA6 as a gatekeeper to early human, but not murine, pancreatic ontogeny.
Collapse
Affiliation(s)
- Crystal Y Chia
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK; Institute of Medical Biology, A(∗)STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Pedro Madrigal
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, UK, and Department of Surgery, University of Cambridge, Cambridge, UK
| | - Simon L I J Denil
- Institute of Medical Biology, A(∗)STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Iker Martinez
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | | | | | - Maggie H Shepherd
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Level 3 RILD Building, Barrack Road, Exeter EX25DW, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Level 3 RILD Building, Barrack Road, Exeter EX25DW, UK
| | - N Ray Dunn
- Institute of Medical Biology, A(∗)STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
| | - Ludovic Vallier
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, UK, and Department of Surgery, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Whitcomb J, Gharibeh L, Nemer M. From embryogenesis to adulthood: Critical role for GATA factors in heart development and function. IUBMB Life 2019; 72:53-67. [PMID: 31520462 DOI: 10.1002/iub.2163] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/25/2019] [Indexed: 12/21/2022]
Abstract
Cardiac development is governed by a complex network of transcription factors (TFs) that regulate cell fates in a spatiotemporal manner. Among these, the GATA family of zinc finger TFs plays prominent roles in regulating the development of the myocardium, endocardium, and outflow tract. This family comprises six members three of which, GATA4, 5, and 6, are predominantly expressed in cardiac cells where they activate specific downstream gene targets via interactions with one another and with other TFs and signaling molecules. Their critical function in heart formation is evidenced by the phenotypes of animal models lacking these factors and by the broad spectrum of human congenital heart diseases associated with mutations in their genes. Similarly, in the postnatal heart, these proteins play significant and nonredundant roles in cardiac function, regulating adaptive stress responses including cardiomyocyte hypertrophy and survival, as well as endothelial homeostasis and angiogenesis. As such, decreased expression of either GATA4, 5, or 6 results in impaired cardiovascular homeostasis and increased risk of premature and serious cardiovascular events such as hypertension, arrhythmia, aortopathy, and heart failure. Although a great deal of progress has been made in understanding GATA-dependent regulatory processes in the heart, the molecular mechanisms underlying the specificity of GATA factors and their upstream regulation remain incompletely understood. The knowledge and tools developed since their discovery 25 years ago should accelerate progress toward further elucidation of their mechanisms of action in health and disease. This in turn will greatly improve diagnosis and care for the millions of individuals affected by congenital and acquired cardiac disease worldwide.
Collapse
Affiliation(s)
- Jamieson Whitcomb
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lara Gharibeh
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mona Nemer
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Yee J, Kim W, Chang BC, Chung JE, Lee KE, Gwak HS. Genetic variations in the transcription factors GATA4 and GATA6 and bleeding complications in patients receiving warfarin therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1717-1727. [PMID: 31190750 PMCID: PMC6529806 DOI: 10.2147/dddt.s198018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Purpose: GATA4 and GATA6 are known to have potential roles in vascular regulation by affecting vascular smooth muscle cell differentiation and atrial natriuretic peptide levels. The aim of this retrospective study was to investigate the associations between GATA4 and GATA6 polymorphisms and bleeding complication risk at a therapeutic international normalized ratio (INR) in patients with mechanical heart valves. Patients and methods: Study patients were included from the Ewha-Severance Treatment (EAST) Group of Warfarin. It consisted of 229 patients who received warfarin therapy after undergoing mechanical heart valve replacement and maintained a stable INR (INR of 2.0–3.0 for at least three consecutive times). Twenty single-nucleotide polymorphisms including VKORC1, CYP2C9, GATA4, and GATA6 were analyzed. Multivariate logistic regression analysis was employed to investigate the independent risk factors for bleeding complications. To evaluate the potential clinical value of genotyping for preventing bleeding complications in patients with high-risk genotype, the number needed to genotype (NNG) was also calculated. Results: One hundred forty-two patients were included in this study, 21 of whom had bleeding complications. After adjusting covariates, TT genotype carriers of rs13273672 in GATA4 and CC genotype carriers of rs10454095 in GATA6 showed 5.0- (95% CI, 1.6–15.7) and 3.1-fold (95% CI, 1.1–8.7) higher bleeding complications than carriers of C allele and T allele, respectively. NNG for preventing one patient from experiencing bleeding complications in patients with TT genotype of rs13273672 and CC genotype of rs10454095 was 22.2 and 17.5, respectively. Patients with both TT genotype in rs13273672 and CC genotype in rs10454095 showed 8.7-fold (95% CI, 1.7–46.1) higher bleeding complications than those with other genotypes. NNG in patients having both TT genotype in rs13273672 and CC genotype in rs10454095 was calculated to be 40.0. Conclusions: This study showed that GATA4 and GATA6 gene polymorphisms could affect bleeding complications during warfarin treatment in patients with mechanical heart valves.
Collapse
Affiliation(s)
- Jeong Yee
- College of Pharmacy & Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Woorim Kim
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Korea
| | - Byung Chul Chang
- Department of Thoracic and Cardiovascular Surgery, Bundang CHA Medical Center, CHA University, Seongnam, Gyeonggi-do, Korea.,Department of Thoracic & Cardiovascular Surgery, Yonsei University Medical Center, Seoul 03722, Korea
| | - Jee Eun Chung
- College of Pharmacy, Hanyang University, Ansan 15588, Korea
| | - Kyung Eun Lee
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Korea
| | - Hye Sun Gwak
- College of Pharmacy & Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
20
|
Tamura S, Marunouchi T, Tanonaka K. Heat-shock protein 90 modulates cardiac ventricular hypertrophy via activation of MAPK pathway. J Mol Cell Cardiol 2018; 127:134-142. [PMID: 30582930 DOI: 10.1016/j.yjmcc.2018.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
The Raf/MAPK/ERK kinase (Mek)/extracellular signal-regulated kinases (Erk) pathway is activated in cardiac hypertrophy after a myocardial infarction. Although heat-shock protein 90 (Hsp90) may regulate the Raf/Mek/Erk signal pathway, the role of Hsp90 in pathophysiological cardiac hypertrophy remains unclear. In this study, we examined the role of Hsp90 in this pathway in cardiac hypertrophy under in vivo and in vitro experimental conditions. Cultured rat cardiomyocytes were treated with the Hsp90 inhibitor 17-(allylamino)-17-dimethoxy-geldanamycin (17-AAG) and proteasome inhibitor MG-132, and then incubated with endothelin-1 (ET) to induce hypertrophy of the cells. The ET-induced increase in the cell size was attenuated by 17-AAG pretreatment. Immunoblot analysis revealed that the c-Raf content of ET-treated cardiomyocytes was decreased in the presence of 17-AAG. An increase in phosphorylation levels of Erk1/2 and GATA4 in ET-treated cardiomyocytes was also attenuated by the 17-AAG pretreatment. Myocardial infarction was produced by ligation of the left ventricular coronary artery in rats, and then 17-AAG was intraperitoneally administered to the animals starting from the 2ndweek after coronary artery ligation (CAL). CAL-induced increases in the heart weight and cross-sectional area were attenuated by 17-AAG treatment. CAL rats showed signs of chronic heart failure with cardiac hypertrophy, whereas cardiac function in CAL rats treated with 17-AAG was not reduced. Treatment of CAL rats with 17-AAG caused a decrease in the c-Raf content and Erk1/2 and GATA4 phosphorylation levels. These findings suggest that Hsp90 is involved in the activation of the Raf/Mek/Erk pathway via stabilization of c-Raf in cardiomyocytes, resulting in the development of cardiac hypertrophy following myocardial infarction.
Collapse
Affiliation(s)
- Shoko Tamura
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 1920392, Japan
| | - Tetsuro Marunouchi
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 1920392, Japan
| | - Kouichi Tanonaka
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 1920392, Japan.
| |
Collapse
|
21
|
Liu L, Wang Q, Zhang X, Liu J, Zhang Y, Pan H. Ssams2, a Gene Encoding GATA Transcription Factor, Is Required for Appressoria Formation and Chromosome Segregation in Sclerotinia sclerotiorum. Front Microbiol 2018; 9:3031. [PMID: 30574138 PMCID: PMC6291475 DOI: 10.3389/fmicb.2018.03031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/23/2018] [Indexed: 12/25/2022] Open
Abstract
AMS2, amulticopy suppressor for the cpn1 (SpCENP-A) mutant, functions to specifically regulate histone genes transcription and chromosome segregation. As a cell-cycle-regulated GATA transcription factor in eukaryotic organisms, little research has been done on the role of AMS2 protein in pathogenic fungi. In Sclerotinia sclerotiorum, Ssams2 (SS1G_03252) encodes a protein which has been predicted to contain GATA-box domain. Here, Ssams2-silenced strains with significantly reduced Ssams2 gene expression levels exhibited defect in hyphal growth, hyphal branching patterns, compound appressoria differentiation and the oxalic acid production compared to the wild-type (WT) strain. By common bean leaves infection assays, we identified the role of Ssams2 in full virulence. Furthermore, the numbers of cell nucleus in the same length of mycelium in Ssams2-silenced transformants were significantly less than that in the WT strain. The expression levels of histone genes and cell cycle genes in transformants were down-regulated significantly in the RNAi strains. Taken together, our work suggests that the TF SsAMS2 is required for growth, appressoria formation, virulence, and chromosome segregation in S. sclerotiorum.
Collapse
Affiliation(s)
- Ling Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Qiaochu Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
22
|
Abuzenadah A, Al-Saedi S, Karim S, Al-Qahtani M. Role of Overexpressed Transcription Factor FOXO1 in Fatal Cardiovascular Septal Defects in Patau Syndrome: Molecular and Therapeutic Strategies. Int J Mol Sci 2018; 19:ijms19113547. [PMID: 30423812 PMCID: PMC6274780 DOI: 10.3390/ijms19113547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
Patau Syndrome (PS), characterized as a lethal disease, allows less than 15% survival over the first year of life. Most deaths owe to brain and heart disorders, more so due to septal defects because of altered gene regulations. We ascertained the cytogenetic basis of PS first, followed by molecular analysis and docking studies. Thirty-seven PS cases were referred from the Department of Pediatrics, King Abdulaziz University Hospital to the Center of Excellence in Genomic Medicine Research, Jeddah during 2008 to 2018. Cytogenetic analyses were performed by standard G-band method and trisomy13 were found in all the PS cases. Studies have suggested that genes of chromosome 13 and other chromosomes are associated with PS. We, therefore, did molecular pathway analysis, gene interaction, and ontology studies to identify their associations. Genomic analysis revealed important chr13 genes such as FOXO1, Col4A1, HMGBB1, FLT1, EFNB2, EDNRB, GAS6, TNFSF1, STARD13, TRPC4, TUBA3C, and TUBA3D, and their regulatory partners on other chromosomes associated with cardiovascular disorders, atrial and ventricular septal defects. There is strong indication of involving FOXO1 (Forkhead Box O1) gene-a strong transcription factor present on chr13, interacting with many septal defects link genes. The study was extended using molecular docking to find a potential drug lead for overexpressed FOXO1 inhibition. The phenothiazine and trifluoperazine showed efficiency to inhibit overexpressed FOXO1 protein, and could be potential drugs for PS/trisomy13 after validation.
Collapse
Affiliation(s)
- Adel Abuzenadah
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| | - Saad Al-Saedi
- Department of Pediatric, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, P.O. Box 80215, Jeddah 21589, Saudi Arabia.
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
23
|
Liu L, Wang Q, Sun Y, Zhang Y, Zhang X, Liu J, Yu G, Pan H. Sssfh1, a Gene Encoding a Putative Component of the RSC Chromatin Remodeling Complex, Is Involved in Hyphal Growth, Reactive Oxygen Species Accumulation, and Pathogenicity in Sclerotinia sclerotiorum. Front Microbiol 2018; 9:1828. [PMID: 30131794 PMCID: PMC6090059 DOI: 10.3389/fmicb.2018.01828] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
SFH1 (for Snf5 homolog) protein, comprised in the RSC (Remodels Structure of Chromatin) chromatin remodeling complex, functions as a transcription factor (TF) to specifically regulate gene transcription and chromatin remodeling. As one of the well-conserved TFs in eukaryotic organisms, little is known about the roles of SFH1 protein in the filamentous fungi. In Sclerotinia sclerotiorum, one of the notorious plant fungal pathogens, there are nine proteins predicted to contain GATA-box domain according to GATA family TF classification, among which Sssfh1 (SS1G_01151) encodes a protein including a GATA-box domain and a SNF5 domain. Here, we characterized the roles of Sssfh1 in the developmental process and fungal pathogenicity by using RNA interference (RNAi)-based gene silencing in S. sclerotiorum. RNA-silenced strains with significantly reduced Sssfh1 RNA levels exhibited slower hyphal growth and decreased reactive oxygen species (ROS) accumulation in hyphae compared to the wild-type (WT) strain. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays demonstrated that SsSFH1 interacts with SsMSG5, a MAPK phosphatase in S. sclerotiorum. Furthermore, Sssfh1-silenced strains exhibited enhanced tolerance to NaCl and H2O2. Results of infection assays on soybean and common bean (Phaseolus vulgaris) leaves indicated that Sssfh1 is required for full virulence of S. sclerotiorum during infection in the susceptible host plants. Collectively, our results suggest that the TF SsSFH1 is involved in growth, ROS accumulation and virulence in S. sclerotiorum.
Collapse
Affiliation(s)
- Ling Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Qiaochu Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Ying Sun
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Gang Yu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
24
|
Abstract
There are multiple intrinsic mechanisms for diastolic dysfunction ranging from molecular to structural derangements in ventricular myocardium. The molecular mechanisms regulating the progression from normal diastolic function to severe dysfunction still remain poorly understood. Recent studies suggest a potentially important role of core cardio-enriched transcription factors (TFs) in the control of cardiac diastolic function in health and disease through their ability to regulate the expression of target genes involved in the process of adaptive and maladaptive cardiac remodeling. The current relevant findings on the role of a variety of such TFs (TBX5, GATA-4/6, SRF, MYOCD, NRF2, and PITX2) in cardiac diastolic dysfunction and failure are updated, emphasizing their potential as promising targets for novel treatment strategies. In turn, the new animal models described here will be key tools in determining the underlying molecular mechanisms of disease. Since diastolic dysfunction is regulated by various TFs, which are also involved in cross talk with each other, there is a need for more in-depth research from a biomedical perspective in order to establish efficient therapeutic strategies.
Collapse
|
25
|
Santhekadur PK, Kumar DP, Seneshaw M, Mirshahi F, Sanyal AJ. The multifaceted role of natriuretic peptides in metabolic syndrome. Biomed Pharmacother 2017; 92:826-835. [PMID: 28599248 PMCID: PMC5737745 DOI: 10.1016/j.biopha.2017.05.136] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 12/19/2022] Open
Abstract
Due to globalization and sophisticated western and sedentary lifestyle, metabolic syndrome has emerged as a serious public health challenge. Obesity is significantly increasing worldwide because of increased high calorie food intake and decreased physical activity leading to hypertension, dyslipidemia, atherosclerosis, and insulin resistance. Thus, metabolic syndrome constitutes cardiovascular disease, type 2 diabetes, obesity, and nonalcoholic fatty liver disease (NAFLD) and recently some cancers are also considered to be associated with this syndrome. There is increasing evidence of the involvement of natriuretic peptides (NP) in the pathophysiology of metabolic diseases. The natriuretic peptides are cardiac hormones, which are produced in the cardiac atrium, ventricles of the heart and the endothelium. These peptides are involved in the homeostatic control of body water, sodium intake, potassium transport, lipolysis in adipocytes and regulates blood pressure. The three known natriuretic peptide hormones present in the natriuretic system are atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and c-type natriuretic peptide (CNP). These three peptides primarily function as endogenous ligands and mainly act via their membrane receptors such as natriuretic peptide receptor A (NPR-A), natriuretic peptide receptor B (NPR-B) and natriuretic peptide receptor C (NPR-C) and regulate various physiological and metabolic functions. This review will shed light on the structure and function of natriuretic peptides and their receptors and their role in the metabolic syndrome.
Collapse
Affiliation(s)
- Prasanna K Santhekadur
- McGuire Research Institute, McGuire Veterans Affairs Medical Center, Richmond, VA, USA; Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Divya P Kumar
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mulugeta Seneshaw
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Faridoddin Mirshahi
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Arun J Sanyal
- McGuire Research Institute, McGuire Veterans Affairs Medical Center, Richmond, VA, USA; Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
26
|
Verjans R, van Bilsen M, Schroen B. MiRNA Deregulation in Cardiac Aging and Associated Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:207-263. [PMID: 28838539 DOI: 10.1016/bs.ircmb.2017.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prevalence of age-related diseases is increasing dramatically, among which cardiac disease represents the leading cause of death. Aging of the heart is characterized by various molecular and cellular hallmarks impairing both cardiomyocytes and noncardiomyocytes, and resulting in functional deteriorations of the cardiac system. The aging process includes desensitization of β-adrenergic receptor (βAR)-signaling and decreased calcium handling, altered growth signaling and cardiac hypertrophy, mitochondrial dysfunction and impaired autophagy, increased programmed cell death, low-grade inflammation of noncanonical inflammatory cells, and increased ECM deposition. MiRNAs play a fundamental role in regulating the processes underlying these detrimental changes in the cardiac system, indicating that MiRNAs are crucially involved in aging. Among others, MiR-34, MiR-146a, and members of the MiR-17-92 cluster, are deregulated during senescence and drive cardiac aging processes. It is therefore suggested that MiRNAs form possible therapeutic targets to stabilize the aged failing myocardium.
Collapse
Affiliation(s)
- Robin Verjans
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marc van Bilsen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Blanche Schroen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
27
|
Alonso-Montes C, Rodríguez-Reguero J, Martín M, Gómez J, Coto E, Naves-Díaz M, Morís C, Cannata-Andía JB, Rodríguez I. Rare genetic variants in GATA transcription factors in patients with hypertrophic cardiomyopathy. J Investig Med 2017; 65:926-934. [PMID: 28381408 DOI: 10.1136/jim-2016-000364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 11/03/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a very heterogeneous disease. Although primarily caused by mutations in genes encoding sarcomeric proteins, other genes might explain that heterogeneity. Potential candidate genes are GATA transcription factors that regulate the expression of proteins associated with HCM. Exons of GATA2, GATA4, and GATA6 genes were sequenced in 212 patients with unrelated HCM previously analyzed for genes encoding the most frequently mutated sarcomeric proteins. Functional effects of variants were predicted by in silico analyses. 3 potentially pathogenic variants were identified: c.-77G>A in GATA2, p.Ala343Thr (rs370588269) in GATA4, and p.Pro555Ala (rs146243018) in GATA6 Multivariate analyses showed that angina was more frequent in patients carrying sarcomeric and GATA rare variants (55% vs 23.2% in non-carriers of GATA rare variants, OR (95% CI) 7.12 (1.23 to 41.27), p=0.029). Among patients without a known causal mutation, GATA rare variants were associated with a greater maximum posterior wall thickness (16.4±4.4 vs 14.0±3.1 mm in non-carriers, p=0.021). Thus, variants having a putative effect on GATA genes would alter the expression of their target genes and could modify the hypertrophic response. Therefore, although relatively infrequent in patients with HCM, they may represent a novel insight into the molecular mechanisms related to the pathogenesis of HCM.
Collapse
Affiliation(s)
- Cristina Alonso-Montes
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.,Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain
| | - Julián Rodríguez-Reguero
- Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Cardiology Department, Fundación Asturcor, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - María Martín
- Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Cardiology Department, Fundación Asturcor, Hospital Universitario Central de Asturias, Oviedo, Spain.,Molecular Genetics Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan Gómez
- Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Universidad de Oviedo, Oviedo, Spain
| | - Eliecer Coto
- Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Molecular Genetics Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.,Universidad de Oviedo, Oviedo, Spain
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.,Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain
| | - César Morís
- Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Cardiology Department, Fundación Asturcor, Hospital Universitario Central de Asturias, Oviedo, Spain.,Molecular Genetics Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Jorge B Cannata-Andía
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.,Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Molecular Genetics Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Isabel Rodríguez
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.,Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain
| |
Collapse
|
28
|
Tucker NR, Mahida S, Ye J, Abraham EJ, Mina JA, Parsons VA, McLellan MA, Shea MA, Hanley A, Benjamin EJ, Milan DJ, Lin H, Ellinor PT. Gain-of-function mutations in GATA6 lead to atrial fibrillation. Heart Rhythm 2017; 14:284-291. [PMID: 27756709 DOI: 10.1016/j.hrthm.2016.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND The genetic basis of atrial fibrillation (AF) and congenital heart disease remains incompletely understood. OBJECTIVE We sought to determine the causative mutation in a family with AF, atrial septal defects, and ventricular septal defects. METHODS We evaluated a pedigree with 16 family members, 1 with an atrial septal defect, 1 with a ventricular septal defect, and 3 with AF; we performed whole exome sequencing in 3 affected family members. Given that early-onset AF was prominent in the family, we then screened individuals with early-onset AF, defined as an age of onset <66 years, for mutations in GATA6. Variants were functionally characterized using reporter assays in a mammalian cell line. RESULTS Exome sequencing in 3 affected individuals identified a conserved mutation, R585L, in the transcription factor gene GATA6. In the Massachusetts General Hospital Atrial Fibrillation (MGH AF) Study, the mean age of AF onset was 47.1 ± 10.9 years; 79% of the participants were men; and there was no evidence of structural heart disease. We identified 3 GATA6 variants (P91S, A177T, and A543G). Using wild-type and mutant GATA6 constructs driving atrial natriuretic peptide promoter reporter, we found that 3 of the 4 variants had a marked upregulation of luciferase activity (R585L: 4.1-fold, P < .0001; P91S: 2.5-fold, P = .0002; A177T; 1.7-fold, P = .03). In addition, when co-overexpressed with GATA4 and MEF2C, GATA6 variants exhibited upregulation of the alpha myosin heavy chain and atrial natriuretic peptide reporter activity. CONCLUSION Overall, we found gain-of-function mutations in GATA6 in both a family with early-onset AF and atrioventricular septal defects as well as in a family with sporadic, early-onset AF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marisa A Shea
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Emelia J Benjamin
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, Massachusetts; Preventive Medicine and Cardiovascular Medicine Sections, Department of Medicine; Cardiology Division, Department of Medicine
| | - David J Milan
- Cardiovascular Research Center and; Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts
| | - Honghuang Lin
- Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Patrick T Ellinor
- Cardiovascular Research Center and; Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
29
|
Tarradas A, Pinsach-Abuin ML, Mackintosh C, Llorà-Batlle O, Pérez-Serra A, Batlle M, Pérez-Villa F, Zimmer T, Garcia-Bassets I, Brugada R, Beltran-Alvarez P, Pagans S. Transcriptional regulation of the sodium channel gene (SCN5A) by GATA4 in human heart. J Mol Cell Cardiol 2016; 102:74-82. [PMID: 27894866 DOI: 10.1016/j.yjmcc.2016.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/07/2016] [Accepted: 10/24/2016] [Indexed: 01/12/2023]
Abstract
Aberrant expression of the sodium channel gene (SCN5A) has been proposed to disrupt cardiac action potential and cause human cardiac arrhythmias, but the mechanisms of SCN5A gene regulation and dysregulation still remain largely unexplored. To gain insight into the transcriptional regulatory networks of SCN5A, we surveyed the promoter and first intronic regions of the SCN5A gene, predicting the presence of several binding sites for GATA transcription factors (TFs). Consistent with this prediction, chromatin immunoprecipitation (ChIP) and sequential ChIP (Re-ChIP) assays show co-occupancy of cardiac GATA TFs GATA4 and GATA5 on promoter and intron 1 SCN5A regions in fresh-frozen human left ventricle samples. Gene reporter experiments show GATA4 and GATA5 synergism in the activation of the SCN5A promoter, and its dependence on predicted GATA binding sites. GATA4 and GATA6 mRNAs are robustly expressed in fresh-frozen human left ventricle samples as measured by highly sensitive droplet digital PCR (ddPCR). GATA5 mRNA is marginally but still clearly detected in the same samples. Importantly, GATA4 mRNA levels are strongly and positively correlated with SCN5A transcript levels in the human heart. Together, our findings uncover a novel mechanism of GATA TFs in the regulation of the SCN5A gene in human heart tissue. Our studies suggest that GATA5 but especially GATA4 are main contributors to SCN5A gene expression, thus providing a new paradigm of SCN5A expression regulation that may shed new light into the understanding of cardiac disease.
Collapse
Affiliation(s)
- Anna Tarradas
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain
| | - Mel Lina Pinsach-Abuin
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain; School of Medicine, University of California San Diego, La Jolla, CA 92093-0648, USA
| | - Carlos Mackintosh
- School of Medicine, University of California San Diego, La Jolla, CA 92093-0648, USA
| | - Oriol Llorà-Batlle
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain
| | - Alexandra Pérez-Serra
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain
| | - Montserrat Batlle
- Thorax Institute, Cardiology Department, Hospital Clínic, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer, 08036 Barcelona, Spain
| | - Félix Pérez-Villa
- Thorax Institute, Cardiology Department, Hospital Clínic, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer, 08036 Barcelona, Spain
| | - Thomas Zimmer
- Institute for Physiology II, University Hospital, 07743 Jena, Germany
| | - Ivan Garcia-Bassets
- School of Medicine, University of California San Diego, La Jolla, CA 92093-0648, USA
| | - Ramon Brugada
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain; Hospital Universitari Dr. Josep Trueta, 17001 Girona, Spain
| | - Pedro Beltran-Alvarez
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain; School of Biological, Biomedical, and Environmental Sciences, University of Hull, HU6 7RX, Hull, UK.
| | - Sara Pagans
- Medical Sciences Department, School of Medicine, University of Girona, 17071 Girona, Spain; Institut d'Investigació Biomèdica de Girona, 17190 Salt, Spain.
| |
Collapse
|
30
|
Pasipoularides A. Calcific Aortic Valve Disease: Part 2-Morphomechanical Abnormalities, Gene Reexpression, and Gender Effects on Ventricular Hypertrophy and Its Reversibility. J Cardiovasc Transl Res 2016; 9:374-99. [PMID: 27184804 PMCID: PMC4992466 DOI: 10.1007/s12265-016-9695-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
In part 1, we considered cytomolecular mechanisms underlying calcific aortic valve disease (CAVD), hemodynamics, and adaptive feedbacks controlling pathological left ventricular hypertrophy provoked by ensuing aortic valvular stenosis (AVS). In part 2, we survey diverse signal transduction pathways that precede cellular/molecular mechanisms controlling hypertrophic gene expression by activation of specific transcription factors that induce sarcomere replication in-parallel. Such signaling pathways represent potential targets for therapeutic intervention and prevention of decompensation/failure. Hypertrophy provoking signals, in the form of dynamic stresses and ligand/effector molecules that bind to specific receptors to initiate the hypertrophy, are transcribed across the sarcolemma by several second messengers. They comprise intricate feedback mechanisms involving gene network cascades, specific signaling molecules encompassing G protein-coupled receptors and mechanotransducers, and myocardial stresses. Future multidisciplinary studies will characterize the adaptive/maladaptive nature of the AVS-induced hypertrophy, its gender- and individual patient-dependent peculiarities, and its response to surgical/medical interventions. They will herald more effective, precision medicine treatments.
Collapse
Affiliation(s)
- Ares Pasipoularides
- Duke University School of Medicine, Durham, NC, USA.
- Duke/NSF Research Center for Emerging Cardiovascular Technologies, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
31
|
Liu Y, Wang Z, Xiao W. MicroRNA-26a protects against cardiac hypertrophy via inhibiting GATA4 in rat model and cultured cardiomyocytes. Mol Med Rep 2016; 14:2860-6. [PMID: 27485101 DOI: 10.3892/mmr.2016.5574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 07/12/2016] [Indexed: 11/05/2022] Open
Abstract
Pathological cardiac hypertrophy is characterized by deleterious changes developed in cardiovascular diseases, whereas microRNAs (miRNAs) are involved in the mediation of cardiac hypertrophy. To investigate the role of microRNA-26a (miR-26a) in regulating cardiac hypertrophy and its functioning mechanisms, overexpression and suppression of miR‑26a via its mimic and inhibitor in a transverse abdominal aortic constriction (TAAC)-induced rat model and in angiotensin II (Ang II)-induced cardiomyocytes (CMs) was performed. In the rat model, the heart weight (HW) compared with the body weight (BW), the CM area, and expression of the hypertrophy‑associated factors, atrial natriuretic factor (ANF) and β‑myosin heavy chain (β‑MHC), were assessed. In CMs, the protein synthesis rate was determined using a leucine incorporation assay. Mutation of the GATA‑binding protein 4 (GATA4) 3'‑untranslated region (UTR) and overexpression of GATA4 were performed to confirm whether GATA4 is the target of miR‑26a. The results indicated that miR-26a was significantly downregulated in the heart tissue of the rat model, as well as in Ang II‑induced CMs (P<0.05). The TAAC-induced rat model exhibited a higher HW/BW ratio, a larger CM area, and higher expression levels of ANF and β‑MHC. CMs, upon Ang II treatment, also demonstrated a larger CM area, higher levels of ANF and β‑MHC, as well as accelerated protein synthesis. miR‑26a was not able to regulate GATA4 with mutations in the 3'‑UTR, indicating that GATA4 was the direct target of miR‑26a. Overexpression of GATA4 abrogated the inhibitory functions of miR‑26a in cardiac hypertrophy. Taken together, the present study suggested an anti‑hypertrophic role of miR‑26a in cardiac hypertrophy, possibly via inhibition of GATA4. These findings may be useful in terms of facilitating cardiac treatment, with potential therapeutic targets and strategies.
Collapse
Affiliation(s)
- Yan Liu
- Department of Cardiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhiqian Wang
- Department of Cardiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Wenliang Xiao
- Department of Cardiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
32
|
Liu M, Zhao L, Yuan J. Establishment of Relational Model of Congenital Heart Disease Markers and GO Functional Analysis of the Association between Its Serum Markers and Susceptibility Genes. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:9506829. [PMID: 27118988 PMCID: PMC4812235 DOI: 10.1155/2016/9506829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/24/2015] [Accepted: 10/01/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE The purpose of present study was to construct the best screening model of congenital heart disease serum markers and to provide reference for further prevention and treatment of the disease. METHODS Documents from 2006 to 2014 were collected and meta-analysis was used for screening susceptibility genes and serum markers closely related to the diagnosis of congenital heart disease. Data of serum markers were extracted from 80 congenital heart disease patients and 80 healthy controls, respectively, and then logistic regression analysis and support vector machine were utilized to establish prediction models of serum markers and Gene Ontology (GO) functional annotation. RESULTS Results showed that NKX2.5, GATA4, and FOG2 were susceptibility genes of congenital heart disease. CRP, BNP, and cTnI were risk factors of congenital heart disease (p < 0.05); cTnI, hs-CRP, BNP, and Lp(a) were significantly close to congenital heart disease (p < 0.01). ROC curve indicated that the accuracy rate of Lp(a) and cTnI, Lp(a) and BNP, and BNP and cTnI joint prediction was 93.4%, 87.1%, and 97.2%, respectively. But the detection accuracy rate of the markers' relational model established by support vector machine was only 85%. GO analysis suggested that NKX2.5, GATA4, and FOG2 were functionally related to Lp(a) and BNP. CONCLUSIONS The combined markers model of BNP and cTnI had the highest accuracy rate, providing a theoretical basis for the diagnosis of congenital heart disease.
Collapse
Affiliation(s)
- Min Liu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou 450052, China
- Department of Cardiovascular Medicine, Zhengzhou Central Hospital, Zhengzhou University, No. 195 Tongbai Road, Zhengzhou 450007, China
| | - Luosha Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou 450052, China
| | - Jiaying Yuan
- Department of Ultrasound Diagnosis, Directly under Hospital of Henan Military Region, No. 18 Jinshui Road, Zhengzhou 450000, China
| |
Collapse
|
33
|
PKG-1α mediates GATA4 transcriptional activity. Cell Signal 2016; 28:585-94. [PMID: 26946174 DOI: 10.1016/j.cellsig.2016.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022]
Abstract
GATA4, a zinc-finger transcription factor, is central for cardiac development and diseases. Here we show that GATA4 transcriptional activity is mediated by cell signaling via cGMP dependent PKG-1α activity. Protein kinase G (PKG), a serine/tyrosine specific kinase is the major effector of cGMP signaling. We observed enhanced transcriptional activity elicited by co-expressed GATA4 and PKG-1α. Phosphorylation of GATA4 by PKG-1α was detected on serine 261 (S261), while the C-terminal activation domain of GATA4 associated with PKG-1α. GATA4's DNA binding activity was enhanced by PKG-1α via by both phosphorylation and physical association. More importantly, a number of human disease-linked GATA4 mutants exhibited impaired S261 phosphorylation, pointing to defective S261 phosphorylation in the elaboration of human heart diseases. We showed S261 phosphorylation was favored by PKG-1α but not by PKA, and several other kinase signaling pathways such as MAPK and PKC. Our observations demonstrate that cGMP-PKG signaling mediates transcriptional activity of GATA4 and links defective GATA4 and PKG-1α mutations to the development of human heart disease.
Collapse
|
34
|
Affiliation(s)
- Mona Nemer
- From the Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Lara Gharibeh
- From the Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
35
|
Ekhteraei-Tousi S, Mohammad-Soltani B, Sadeghizadeh M, Mowla SJ, Parsi S, Soleimani M. Inhibitory effect of hsa-miR-590-5p on cardiosphere-derived stem cells differentiation through downregulation of TGFB signaling. J Cell Biochem 2016; 116:179-91. [PMID: 25163461 DOI: 10.1002/jcb.24957] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 08/22/2014] [Indexed: 11/08/2022]
Abstract
The cardiac cells generation via stem cells differentiation is a promising approach to restore the myocardial infarction. Promoted by our primary bioinformatics analysis as well as some previously published data on potential role of hsa-miR-590-3p in cardiogenesis, we have tried to decipher the role of miR-590-5p during the course of differentiation of cardiosphere-derived cells (CDCs). The differentiation induction of CDCs by TGFB1 was confirmed by real-time PCR, ICC, and flow cytometry. The expression pattern of hsa-miR-590-5p and some related genes were examined during the differentiation process. In order to study the role of miR-590-5p in cardiac differentiation, the effect of miR-590 overexpression in CDCs was studied. Evaluating the expression patterns of miR-590 and its potential targets (TGFBRs) during the course of differentiation, demonstrated a significant downregulation of miR-590 and an upregulation of TGFBR2, following the treatment of CDCs with TGFB1. Therefore, we proposed a model in which TGFB1 exerts its differentiation induction via downregulation of miR-590, and hence the higher transcriptional expression level of TGFBR2. In accordance with our proposed model, transfection of CDCs by a pLenti-III-hsa-mir-590-GFP expression vector before or after the first TGFB1 treatment caused a significant alteration in the expression levels of TGFBRs. Moreover, our data revealed that overexpression of miR-590 before TGFB1 induction was able to attenuate the CDCs differentiation probably via the reduction of TGFBR2 expression level. Altogether, our data suggest an inhibitory role of miR-590 during the cardiac differentiation of CDCs which its suppression might elevate the rate of differentiation.
Collapse
Affiliation(s)
- Samaneh Ekhteraei-Tousi
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
36
|
Maharsy W, Aries A, Mansour O, Komati H, Nemer M. Ageing is a risk factor in imatinib mesylate cardiotoxicity. Eur J Heart Fail 2015; 16:367-76. [PMID: 24504921 PMCID: PMC4238824 DOI: 10.1002/ejhf.58] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/24/2013] [Accepted: 01/03/2014] [Indexed: 01/27/2023] Open
Abstract
AIMS Chemotherapy-induced heart failure is increasingly recognized as a major clinical challenge. Cardiotoxicity of imatinib mesylate, a highly selective and effective anticancer drug belonging to the new class of tyrosine kinase inhibitors, is being reported in patients, some progressing to congestive heart failure. This represents an unanticipated challenge that could limit effective drug use. Understanding the mechanisms and risk factors of imatinib mesylate cardiotoxicity is crucial for prevention of cardiovascular complications in cancer patients. METHODS AND RESULTS We used genetically engineered mice and primary rat neonatal cardiomyocytes to analyse the action of imatinib on the heart. We found that treatment with imatinib (200 mg/kg/day for 5 weeks) leads to mitochondrial-dependent myocyte loss and cardiac dysfunction, as confirmed by electron microscopy, RNA analysis, and echocardiography. Imatinib cardiotoxicity was more severe in older mice, in part due to an age-dependent increase in oxidative stress. Mechanistically, depletion of the transcription factor GATA4 resulting in decreased levels of its prosurvival targets Bcl-2 and Bcl-XL was an underlying cause of imatinib toxicity. Consistent with this, GATA4 haploinsufficient mice were more susceptible to imatinib, and myocyte-specific up-regulation of GATA4 or Bcl-2 protected against drug-induced cardiotoxicity. CONCLUSION The results indicate that imatinib action on the heart targets cardiomyocytes and involves mitochondrial impairment and cell death that can be further aggravated by oxidative stress. This in turn offers a possible explanation for the current conflicting data regarding imatinib cardiotoxicity in cancer patients and suggests that cardiac monitoring of older patients receiving imatinib therapy may be especially warranted.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Benzamides/toxicity
- Cardiotoxicity
- Echocardiography
- GATA4 Transcription Factor/metabolism
- Imatinib Mesylate
- In Situ Nick-End Labeling
- Mice
- Mice, Transgenic
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/ultrastructure
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Oxidative Stress/drug effects
- Piperazines/toxicity
- Protein Kinase Inhibitors/toxicity
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Pyrimidines/toxicity
- Rats
- Risk Factors
- Ventricular Dysfunction, Left/chemically induced
- Ventricular Dysfunction, Left/diagnostic imaging
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Wael Maharsy
- Molecular Genetics and Cardiac Regeneration Laboratory,
University of Ottawa, Department of Biochemistry, Microbiology and ImmunologyOttawa, Canada
| | - Anne Aries
- Institut de recherches cliniques de Montréal
(IRCM)Montreal, Canada
- Institut de Recherche en Hématologie et
Transplantation (IRHT)Mulhouse, France
| | - Omar Mansour
- Molecular Genetics and Cardiac Regeneration Laboratory,
University of Ottawa, Department of Biochemistry, Microbiology and ImmunologyOttawa, Canada
| | - Hiba Komati
- Molecular Genetics and Cardiac Regeneration Laboratory,
University of Ottawa, Department of Biochemistry, Microbiology and ImmunologyOttawa, Canada
| | - Mona Nemer
- Molecular Genetics and Cardiac Regeneration Laboratory,
University of Ottawa, Department of Biochemistry, Microbiology and ImmunologyOttawa, Canada
- Institut de recherches cliniques de Montréal
(IRCM)Montreal, Canada
- Corresponding author. Molecular Genetics and Cardiac Regeneration Laboratory,
University of Ottawa Department of Biochemistry, Microbiology and Immunology, 550 Cumberland (246),
Ottawa, Ontario, Canada, K1N 6N5. Tel: +1 613 562 5270, Fax: +1 613 562 5271,
| |
Collapse
|
37
|
Miyamoto T, Furusawa C, Kaneko K. Pluripotency, Differentiation, and Reprogramming: A Gene Expression Dynamics Model with Epigenetic Feedback Regulation. PLoS Comput Biol 2015; 11:e1004476. [PMID: 26308610 PMCID: PMC4550282 DOI: 10.1371/journal.pcbi.1004476] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/22/2015] [Indexed: 11/18/2022] Open
Abstract
Embryonic stem cells exhibit pluripotency: they can differentiate into all types of somatic cells. Pluripotent genes such as Oct4 and Nanog are activated in the pluripotent state, and their expression decreases during cell differentiation. Inversely, expression of differentiation genes such as Gata6 and Gata4 is promoted during differentiation. The gene regulatory network controlling the expression of these genes has been described, and slower-scale epigenetic modifications have been uncovered. Although the differentiation of pluripotent stem cells is normally irreversible, reprogramming of cells can be experimentally manipulated to regain pluripotency via overexpression of certain genes. Despite these experimental advances, the dynamics and mechanisms of differentiation and reprogramming are not yet fully understood. Based on recent experimental findings, we constructed a simple gene regulatory network including pluripotent and differentiation genes, and we demonstrated the existence of pluripotent and differentiated states from the resultant dynamical-systems model. Two differentiation mechanisms, interaction-induced switching from an expression oscillatory state and noise-assisted transition between bistable stationary states, were tested in the model. The former was found to be relevant to the differentiation process. We also introduced variables representing epigenetic modifications, which controlled the threshold for gene expression. By assuming positive feedback between expression levels and the epigenetic variables, we observed differentiation in expression dynamics. Additionally, with numerical reprogramming experiments for differentiated cells, we showed that pluripotency was recovered in cells by imposing overexpression of two pluripotent genes and external factors to control expression of differentiation genes. Interestingly, these factors were consistent with the four Yamanaka factors, Oct4, Sox2, Klf4, and Myc, which were necessary for the establishment of induced pluripotent stem cells. These results, based on a gene regulatory network and expression dynamics, contribute to our wider understanding of pluripotency, differentiation, and reprogramming of cells, and they provide a fresh viewpoint on robustness and control during development. Characterization of pluripotent states, in which cells can both self-renew and differentiate, and the irreversible loss of pluripotency are important research areas in developmental biology. In particular, an understanding of these processes is essential to the reprogramming of cells for biomedical applications, i.e., the experimental recovery of pluripotency in differentiated cells. Based on recent advances in dynamical-systems theory for gene expression, we propose a gene-regulatory-network model consisting of several pluripotent and differentiation genes. Our results show that cellular-state transition to differentiated cell types occurs as the number of cells increases, beginning with the pluripotent state and oscillatory expression of pluripotent genes. Cell-cell signaling mediates the differentiation process with robustness to noise, while epigenetic modifications affecting gene expression dynamics fix the cellular state. These modifications ensure the cellular state to be protected against external perturbation, but they also work as an epigenetic barrier to recovery of pluripotency. We show that overexpression of several genes leads to the reprogramming of cells, consistent with the methods for establishing induced pluripotent stem cells. Our model, which involves the inter-relationship between gene expression dynamics and epigenetic modifications, improves our basic understanding of cell differentiation and reprogramming.
Collapse
Affiliation(s)
- Tadashi Miyamoto
- Department of Basic Science, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | | | - Kunihiko Kaneko
- Department of Basic Science, The University of Tokyo, Meguro-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
38
|
Prendiville TW, Guo H, Lin Z, Zhou P, Stevens SM, He A, VanDusen N, Chen J, Zhong L, Wang DZ, Gao G, Pu WT. Novel Roles of GATA4/6 in the Postnatal Heart Identified through Temporally Controlled, Cardiomyocyte-Specific Gene Inactivation by Adeno-Associated Virus Delivery of Cre Recombinase. PLoS One 2015; 10:e0128105. [PMID: 26023924 PMCID: PMC4449121 DOI: 10.1371/journal.pone.0128105] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/23/2015] [Indexed: 12/23/2022] Open
Abstract
GATA4 and GATA6 are central cardiac transcriptional regulators. The postnatal, stage-specific function of the cardiac transcription factors GATA4 and GATA6 have not been evaluated. In part, this is because current Cre-loxP approaches to cardiac gene inactivation require time consuming and costly breeding of Cre-expressing and “floxed” mouse lines, often with limited control of the extent or timing of gene inactivation. We investigated the stage-specific functions of GATA4 and GATA6 in the postnatal heart by using adeno-associated virus serotype 9 to control the timing and extent of gene inactivation by Cre. Systemic delivery of recombinant, adeno-associated virus 9 (AAV9) expressing Cre from the cardiac specific Tnnt2 promoter was well tolerated and selectively and efficiently recombined floxed target genes in cardiomyocytes. AAV9:Tnnt2-Cre efficiently inactivated Gata4 and Gata6. Neonatal Gata4/6 inactivation caused severe, rapidly lethal systolic heart failure. In contrast, Gata4/6 inactivation in adult heart caused only mild systolic dysfunction but severe diastolic dysfunction. Reducing the dose of AAV9:Tnnt2-Cre generated mosaics in which scattered cardiomyocytes lacked Gata4/6. This mosaic knockout revealed that Gata4/6 are required cell autonomously for physiological cardiomyocyte growth. Our results define novel roles of GATA4 and GATA6 in the neonatal and adult heart. Furthermore, our data demonstrate that evaluation of gene function hinges on controlling the timing and extent of gene inactivation. AAV9:Tnnt2-Cre is a powerful tool for controlling these parameters.
Collapse
Affiliation(s)
- Terence W. Prendiville
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Haidong Guo
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiqiang Lin
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Pingzhu Zhou
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Sean M. Stevens
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Aibin He
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Nathan VanDusen
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Jinghai Chen
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Li Zhong
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, 1350 Massachusetts Ave, Cambridge, Massachusetts, United States of America
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
39
|
Liu F, Lu MM, Patel NN, Schillinger KJ, Wang T, Patel VV. GATA-Binding Factor 6 Contributes to Atrioventricular Node Development and Function. ACTA ACUST UNITED AC 2015; 8:284-93. [PMID: 25613430 DOI: 10.1161/circgenetics.113.000587] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/08/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND Several transcription factors regulate cardiac conduction system (CCS) development and function but the role of each in specifying distinct CCS components remains unclear. GATA-binding factor 6 (GATA6) is a zinc-finger transcription factor that is critical for patterning the cardiovascular system. However, the role of GATA6 in the embryonic heart and CCS has never been shown. METHODS AND RESULTS We report that Gata6 is expressed abundantly in the proximal CCS during midgestation in mice. Myocardial-specific deletion of the carboxyl zinc-finger of Gata6 induces loss of hyperpolarizing cyclic nucleotide-gated channel, subtype 4 staining in the compact atrioventricular node with some retention of hyperpolarizing cyclic nucleotide-gated channel, subtype 4 staining in the atrioventricular bundle, but has no significant effect on the connexin-40-positive bundle branches. Furthermore, myocardial-specific deletion of the carboxyl zinc-finger of Gata6 alters atrioventricular conduction in postnatal life as assessed by surface and invasive electrophysiological evaluation, as well as decreasing the number of ventricular myocytes and inducing compensatory myocyte hypertrophy. Myocardial-specific deletion of the carboxyl zinc-finger of Gata6 is also associated with downregulation of the transcriptional repressor ID2 and the cardiac sodium-calcium exchanger NCX1 in the proximal CCS, where GATA6 transactivates both of these factors. Finally, carboxyl zinc-finger deletion of Gata6 reduces cell-cycle exit of TBX3+ myocytes in the developing atrioventricular bundle during the period of atrioventricular node specification, which results in fewer TBX3+ cells in the proximal CCS of mature mutant mice. CONCLUSIONS GATA6 contributes to the development and postnatal function of the murine atrioventricular node by promoting cell-cycle exit of specified cardiomyocytes toward a conduction system lineage.
Collapse
Affiliation(s)
- Fang Liu
- From the Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia (F.L., M.M.L., N.N.P., K.J.S., T.W.); and Department of Physiology, Section of Clinical Cardiac Electrophysiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (V.V.P.)
| | - Min Min Lu
- From the Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia (F.L., M.M.L., N.N.P., K.J.S., T.W.); and Department of Physiology, Section of Clinical Cardiac Electrophysiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (V.V.P.)
| | - Neil N Patel
- From the Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia (F.L., M.M.L., N.N.P., K.J.S., T.W.); and Department of Physiology, Section of Clinical Cardiac Electrophysiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (V.V.P.)
| | - Kurt J Schillinger
- From the Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia (F.L., M.M.L., N.N.P., K.J.S., T.W.); and Department of Physiology, Section of Clinical Cardiac Electrophysiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (V.V.P.)
| | - Tao Wang
- From the Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia (F.L., M.M.L., N.N.P., K.J.S., T.W.); and Department of Physiology, Section of Clinical Cardiac Electrophysiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (V.V.P.)
| | - Vickas V Patel
- From the Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia (F.L., M.M.L., N.N.P., K.J.S., T.W.); and Department of Physiology, Section of Clinical Cardiac Electrophysiology & Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (V.V.P.).
| |
Collapse
|
40
|
Caspase-1 cleavage of transcription factor GATA4 and regulation of cardiac cell fate. Cell Death Dis 2014; 5:e1566. [PMID: 25501827 PMCID: PMC4649840 DOI: 10.1038/cddis.2014.524] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 11/26/2022]
Abstract
Caspase-1 or interleukin-1β (IL-1β) converting enzyme is a pro-inflammatory member of the caspase family. An IL-1β-independent role for caspase-1 in cardiomyocyte cell death and heart failure has emerged but the mechanisms underlying these effects are incompletely understood. Here, we report that transcription factor GATA4, a key regulator of cardiomyocyte survival and adaptive stress response is an in vivo and in vitro substrate for caspase-1. Caspase-1 mediated cleavage of GATA4 generates a truncated protein that retains the ability to bind DNA but lacks transcriptional activation domains and acts as a dominant negative regulator of GATA4. We show that caspase-1 is rapidly activated in cardiomyocyte nuclei treated with the cell death inducing drug Doxorubicin. We also find that inhibition of caspase-1 alone is as effective as complete caspase inhibition at rescuing GATA4 degradation and myocyte cell death. Caspase-1 inhibition of GATA4 transcriptional activity is rescued by HSP70, which binds directly to GATA4 and masks the caspase recognition motif. The data identify a caspase-1 nuclear substrate and suggest a direct role for caspase-1 in transcriptional regulation. This mechanism may underlie the inflammation-independent action of caspase-1 in other organs.
Collapse
|
41
|
Takada K, Obayashi K, Ohashi K, Ohashi-Kobayashi A, Nakanishi-Matsui M, Maeda M. Amino-terminal extension of 146 residues of L-type GATA-6 is required for transcriptional activation but not for self-association. Biochem Biophys Res Commun 2014; 452:962-6. [PMID: 25234600 DOI: 10.1016/j.bbrc.2014.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/05/2014] [Indexed: 11/25/2022]
Abstract
Transcription factor GATA-6 plays essential roles in developmental processes and tissue specific functions through regulation of gene expression. GATA-6 mRNA utilizes two Met-codons in frame as translational initiation codons. Deletion of the nucleotide sequence encoding the PEST sequence (Glu(31)-Cys(46)) between the two initiation codons unusually reduced the protein molecular size on SDS-polyacrylamide gel-electrophoresis, and re-introduction of this sequence reversed this change. The long-type (L-type) GATA-6 containing this PEST sequence self-associated similarly to the short-type (S-type) GATA-6, as determined on co-immunoprecipitation of Myc-tagged GATA-6 with HA-tagged GATA-6. The L-type and S-type GATA-6 also interacted mutually. The L-type GATA-6 without the PEST sequence also self-associated and interacted with the S-type GATA-6. The transcriptional activation potential of L-type GATA-6 is higher than that of S-type GATA-6. When the PEST sequence (Glu(31)-Cys(46)) was inserted into the L-type GATA-6 without Arg(13)-Gly(101), the resultant recombinant protein showed significantly higher transcriptional activity, while the construct with an unrelated sequence exhibited lower activity. These results suggest that the Glu(31)-Cys(46) segment plays an important role in the transcriptional activation, although it does not participate in the self-association.
Collapse
Affiliation(s)
- Kayoko Takada
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kanako Obayashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuaki Ohashi
- Department of Medical Biochemistry, School of Pharmacy, Iwate Medical University, Nishitokuta 2-1-1, Shiwa, Iwate 028-3694, Japan
| | - Ayako Ohashi-Kobayashi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, Nishitokuta 2-1-1, Shiwa, Iwate 028-3694, Japan
| | - Mayumi Nakanishi-Matsui
- Department of Biochemistry, School of Pharmacy, Iwate Medical University, Nishitokuta 2-1-1, Shiwa, Iwate 028-3694, Japan
| | - Masatomo Maeda
- Department of Molecular Biology, School of Pharmacy, Iwate Medical University, Nishitokuta 2-1-1, Shiwa, Iwate 028-3694, Japan.
| |
Collapse
|
42
|
Fahed AC, Roberts AE, Mital S, Lakdawala NK. Heart failure in congenital heart disease: a confluence of acquired and congenital. Heart Fail Clin 2014; 10:219-27. [PMID: 24275306 DOI: 10.1016/j.hfc.2013.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heart failure (HF) is a common cause of morbidity and mortality in congenital heart disease (CHD), with increasing prevalence because of improved treatment options and outcomes. Genetic factors and acquired postnatal factors in CHD might play a major role in the progression to HF. This article proposes 3 routes that lead to HF in CHD: rare monogenic entities that cause both CHD and HF; severe CHD lesions in which acquired hemodynamic effects of CHD or surgery result in HF; and, most commonly, a combined effect of complex genetics in overlapping pathways and acquired stressors caused by the primary lesion.
Collapse
Affiliation(s)
- Akl C Fahed
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
43
|
Novel and functional DNA sequence variants within the GATA6 gene promoter in ventricular septal defects. Int J Mol Sci 2014; 15:12677-87. [PMID: 25036032 PMCID: PMC4139867 DOI: 10.3390/ijms150712677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/16/2014] [Accepted: 07/08/2014] [Indexed: 01/12/2023] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect in humans. Genetic causes and underlying molecular mechanisms for isolated CHD remain largely unknown. Studies have demonstrated that GATA transcription factor 6 (GATA6) plays an essential role in the heart development. Mutations in GATA6 gene have been associated with diverse types of CHD. As GATA6 functions in a dosage-dependent manner, we speculated that changed GATA6 levels, resulting from DNA sequence variants (DSVs) within the gene regulatory regions, may mediate the CHD development. In the present study, GATA6 gene promoter was genetically and functionally analyzed in large groups of patients with ventricular septal defect (VSD) (n = 359) and ethnic-matched healthy controls (n = 365). In total, 11 DSVs, including four SNPs, were identified in VSD patients and controls. Two novel and heterozygous DSVs, g.22169190A>T and g.22169311C>G, were identified in two VSD patients, but in none of controls. In cultured cardiomyocytes, the activities of the GATA6 gene promoter were significantly reduced by the DSVs g.22169190A>T and g.22169311C>G. Therefore, our findings suggested that the DSVs within the GATA6 gene promoter identified in VSD patients may change GATA6 levels, contributing to the VSD development as a risk factor.
Collapse
|
44
|
Carter DR, Buckle AD, Tanaka K, Perdomo J, Chong BH. Art27 interacts with GATA4, FOG2 and NKX2.5 and is a novel co-repressor of cardiac genes. PLoS One 2014; 9:e95253. [PMID: 24743694 PMCID: PMC3990687 DOI: 10.1371/journal.pone.0095253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 03/25/2014] [Indexed: 11/20/2022] Open
Abstract
Transcription factors play a crucial role in regulation of cardiac biology. FOG-2 is indispensable in this setting, predominantly functioning through a physical interaction with GATA-4. This study aimed to identify novel co-regulators of FOG-2 to further elaborate on its inhibitory activity on GATA-4. The Art27 transcription factor was identified by a yeast-2-hybrid library screen to be a novel FOG-2 protein partner. Characterisation revealed that Art27 is co-expressed with FOG-2 and GATA-4 throughout cardiac myocyte differentiation and in multiple structures of the adult heart. Art27 physically interacts with GATA-4, FOG-2 and other cardiac transcription factors and by this means, down-regulates their activity on cardiac specific promoters α-myosin heavy chain, atrial natriuretic peptide and B-type natriuretic peptide. Regulation of endogenous cardiac genes by Art27 was shown using microarray analysis of P19CL6-Mlc2v-GFP cardiomyocytes. Together these results suggest that Art27 is a novel transcription factor that is involved in downregulation of cardiac specific genes by physically interacting and inhibiting the activity of crucial transcriptions factors involved in cardiac biology.
Collapse
Affiliation(s)
- Daniel R. Carter
- Centre for Vascular Research, Department of Medicine, St. George Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew D. Buckle
- Centre for Vascular Research, Department of Medicine, St. George Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Kumiko Tanaka
- Centre for Vascular Research, Department of Medicine, St. George Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Jose Perdomo
- Centre for Vascular Research, Department of Medicine, St. George Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| | - Beng H. Chong
- Centre for Vascular Research, Department of Medicine, St. George Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- Haematology Department, St George and Sutherland Hospitals, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
45
|
Kee HJ, Park S, Kang W, Lim KS, Kim JH, Ahn Y, Jeong MH. Piceatannol attenuates cardiac hypertrophy in an animal model through regulation of the expression and binding of the transcription factor GATA binding factor 6. FEBS Lett 2014; 588:1529-36. [PMID: 24662306 DOI: 10.1016/j.febslet.2014.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/07/2014] [Indexed: 12/01/2022]
Abstract
Piceatannol is found in grapes, passion fruit, and Japanese knotweed. Piceatannol pretreatment suppresses cardiac hypertrophy induced by isoproterenol as assessed by heart weight/body weight ratio, cross-sectional area, and expression of hypertrophic markers. The anti-hypertrophic effect of piceatannol in rat neonatal cardiomyocytes is the same as that in vivo. Piceatannol inhibits lentiviral-GATA6-induced cardiomyocyte hypertrophy. Furthermore, piceatannol reduces the interaction between GATA4 and GATA6 as well as the DNA-binding activity of endogenous GATA6 in the ANP promoter. Our results suggest that piceatannol may be a novel therapeutic agent for the prevention of cardiac hypertrophy.
Collapse
Affiliation(s)
- Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea.
| | - Sangha Park
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea
| | - Wanseok Kang
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea
| | - Kyung Seob Lim
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea
| | - Jung Ha Kim
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea
| | - Youngkeun Ahn
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju 501-757, South Korea.
| |
Collapse
|
46
|
van Berlo JH, Aronow BJ, Molkentin JD. Parsing the roles of the transcription factors GATA-4 and GATA-6 in the adult cardiac hypertrophic response. PLoS One 2013; 8:e84591. [PMID: 24391969 PMCID: PMC3877334 DOI: 10.1371/journal.pone.0084591] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/24/2013] [Indexed: 12/31/2022] Open
Abstract
The transcriptional code that programs cardiac hypertrophy involves the zinc finger-containing DNA binding factors GATA-4 and GATA-6, both of which are required to mount a hypertrophic response of the adult heart. Here we performed conditional gene deletion of Gata4 or Gata6 in the mouse heart in conjunction with reciprocal gene replacement using a transgene encoding either GATA-4 or GATA-6 in the heart as a means of parsing dosage effects of GATA-4 and GATA-6 versus unique functional roles. We determined that GATA-4 and GATA-6 play a redundant and dosage-sensitive role in programming the hypertrophic growth response of the heart following pressure overload stimulation. However, non-redundant functions were identified in allowing the heart to compensate and resist heart failure after pressure overload stimulation, as neither Gata4 nor Gata6 deletion was fully rescued by expression of the reciprocal transgene. For example, only Gata4 heart-specific deletion blocked the neoangiogenic response to pressure overload stimulation. Gene expression profiling from hearts of these gene-deleted mice showed both overlapping and unique transcriptional codes, which is presented. These results indicate that GATA-4 and GATA-6 play a dosage-dependent and redundant role in programming cardiac hypertrophy, but that each has a more complex role in maintaining cardiac homeostasis and resistance to heart failure following injury that cannot be compensated by the other.
Collapse
Affiliation(s)
- Jop H. van Berlo
- From the Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Ohio, United States of America
| | - Bruce J. Aronow
- From the Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Ohio, United States of America
| | - Jeffery D. Molkentin
- From the Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Ohio, United States of America
- Howard Hughes Medical Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
47
|
Schunke KJ, Coyle L, Merrill GF, Denhardt DT. Acetaminophen attenuates doxorubicin-induced cardiac fibrosis via osteopontin and GATA4 regulation: reduction of oxidant levels. J Cell Physiol 2013; 228:2006-14. [PMID: 23526585 PMCID: PMC3739938 DOI: 10.1002/jcp.24367] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/14/2013] [Indexed: 01/07/2023]
Abstract
It is well documented in animal and human studies that therapy with the anti-cancer drug doxorubicin (DOX) induces fibrosis, cardiac dysfunction, and cell death. The most widely accepted mechanism of cardiac injury is through production of reactive oxygen species (ROS), which cause mitochondrial damage, sarcomere structural alterations, and altered gene expression in myocytes and fibroblasts. Here we investigated the effects of acetaminophen (APAP, N-acetyl-para-aminophenol) on DOX-induced cardiac injury and fibrosis in the presence or absence of osteopontin (OPN). H9c2 rat heart-derived embryonic myoblasts were exposed to increasing concentrations of DOX ± APAP; cell viability, oxidative stress, and OPN transcript levels were analyzed. We found a dose-dependent decrease in cell viability and a corresponding increase in intracellular oxidants at the tested concentrations of DOX. These effects were attenuated in the presence of APAP. RT-PCR analysis revealed a small increase in OPN transcript levels in response to DOX, which was suppressed by APAP. When male 10-12-week-old mice (OPN(+/+) or OPN(-/-)) were given weekly injections of DOX ± APAP for 4 weeks there was substantial cardiac fibrosis in OPN(+/+) and, to a lesser extent, in OPN(-/-) mice. In both groups, APAP decreased fibrosis to near baseline levels. Activity of the pro-survival GATA4 transcription factor was diminished by DOX in both mouse genotypes, but retained baseline activity in the presence of APAP. These effects were mediated, in part, by the ability of APAP, acting as an anti-inflammatory agent, to decrease intracellular ROS levels, consequently diminishing the injury-induced increase in OPN levels.
Collapse
Affiliation(s)
- Kathryn J Schunke
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | | | | | | |
Collapse
|
48
|
Pedram A, Razandi M, Korach KS, Narayanan R, Dalton JT, Levin ER. ERβ selective agonist inhibits angiotensin-induced cardiovascular pathology in female mice. Endocrinology 2013; 154:4352-64. [PMID: 23970786 PMCID: PMC5398592 DOI: 10.1210/en.2013-1358] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiac hypertrophy in humans can progress to cardiac failure if the underlying impetus is poorly controlled. An important direct stimulator of hypertrophy and its progression is the angiotensin II (AngII) peptide. AngII also causes hypertension that indirectly contributes to cardiac hypertrophy. Others and we have shown that estrogens acting through the estrogen receptor (ER)-β can inhibit AngII-induced or other forms of cardiac hypertrophy in mice. However, the proliferative effects of estrogen in breast and uterus that promote the development of malignancy preclude using the steroid to prevent cardiac disease progression. We therefore tested whether an ERβ selective agonist, β-LGND2, can prevent hypertension and cardiac pathology in female mice. AngII infusion over 3 weeks significantly stimulated systolic and diastolic hypertension, cardiac hypertrophy, and cardiac fibrosis, all significantly prevented by β-LGND2 in wild-type but not in ERβ genetically deleted mice. AngII stimulated the Akt kinase to phosphorylate and inhibit the glycogen synthase kinase-3β kinase, leading to GATA4 transcription factor activation and hypertrophic mRNA expression. As a novel mechanism, all these actions were opposed by estradiol and β-LGND2. Our findings provide additional understanding of the antihypertrophic effects of ERβ and serve as an impetus to test specific receptor agonists in humans to prevent the worsening of cardiovascular disease.
Collapse
Affiliation(s)
- Ali Pedram
- MD, Medical Service (111-I), Long Beach Veterans Affairs Medical Center, 5901 East Seventh Street, Long Beach, California 90822.
| | | | | | | | | | | |
Collapse
|
49
|
Poon E, Yan B, Zhang S, Rushing S, Keung W, Ren L, Lieu DK, Geng L, Kong CW, Wang J, Wong HS, Boheler KR, Li RA. Transcriptome-guided functional analyses reveal novel biological properties and regulatory hierarchy of human embryonic stem cell-derived ventricular cardiomyocytes crucial for maturation. PLoS One 2013; 8:e77784. [PMID: 24204964 PMCID: PMC3804624 DOI: 10.1371/journal.pone.0077784] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/12/2013] [Indexed: 12/26/2022] Open
Abstract
Human (h) embryonic stem cells (ESC) represent an unlimited source of cardiomyocytes (CMs); however, these differentiated cells are immature. Thus far, gene profiling studies have been performed with non-purified or non-chamber specific CMs. Here we took a combinatorial approach of using systems biology to guide functional discoveries of novel biological properties of purified hESC-derived ventricular (V) CMs. We profiled the transcriptomes of hESCs, hESC-, fetal (hF) and adult (hA) VCMs, and showed that hESC-VCMs displayed a unique transcriptomic signature. Not only did a detailed comparison between hESC-VCMs and hF-VCMs confirm known expression changes in metabolic and contractile genes, it further revealed novel differences in genes associated with reactive oxygen species (ROS) metabolism, migration and cell cycle, as well as potassium and calcium ion transport. Following these guides, we functionally confirmed that hESC-VCMs expressed IKATP with immature properties, and were accordingly vulnerable to hypoxia/reoxygenation-induced apoptosis. For mechanistic insights, our coexpression and promoter analyses uncovered a novel transcriptional hierarchy involving select transcription factors (GATA4, HAND1, NKX2.5, PPARGC1A and TCF8), and genes involved in contraction, calcium homeostasis and metabolism. These data highlight novel expression and functional differences between hESC-VCMs and their fetal counterparts, and offer insights into the underlying cell developmental state. These findings may lead to mechanism-based methods for in vitro driven maturation.
Collapse
Affiliation(s)
- Ellen Poon
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Bin Yan
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong, China
| | - Shaohong Zhang
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, Guangzhou University, Guangzhou, China
| | - Stephanie Rushing
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York,
New York, United States of America
| | - Wendy Keung
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
| | - Lihuan Ren
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
| | - Deborah K. Lieu
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York,
New York, United States of America
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California Davis, Davis, California, United States of America
| | - Lin Geng
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
| | - Chi-Wing Kong
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
| | - Jiaxian Wang
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York,
New York, United States of America
| | - Hau San Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Kenneth R. Boheler
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ronald A. Li
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, China
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York,
New York, United States of America
- * E-mail:
| |
Collapse
|
50
|
Li R, Yan G, Zhang Q, Jiang Y, Sun H, Hu Y, Sun J, Xu B. miR-145 inhibits isoproterenol-induced cardiomyocyte hypertrophy by targeting the expression and localization of GATA6. FEBS Lett 2013; 587:1754-61. [PMID: 23624080 PMCID: PMC4183134 DOI: 10.1016/j.febslet.2013.04.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 01/20/2023]
Abstract
Excessive βAR stimulation is an independent factor in inducing pathological cardiac hypertrophy. Here, we report miR-145 regulates both expression and localization of GATA6, thereby protecting the heart against cardiomyocyte hypertrophy induced by isoproterenol (ISO). The protective activity of miR-145 was associated with down-regulation of ANF, BNP and β-MHC expression, a decreased rate of protein synthesis, inhibited cardiomyocyte growth and the modulation of several signaling pathways including ERK1/2, JNK and Akt-GSK3β. The anti-hypertrophic effect was abrogated by exogenous over-expression of transcription factor GATA6 which was further identified as a direct target of miR-145. In addition, GSK3β antagonists, LiCl and TDZD8, restored the nuclear accumulation of GATA6, which was attenuated by miR-145 Finally, we observed a dynamic pattern of miR-145 expression in ISO-treated NRCMs and in the hearts of TAC mice. Together, our results identify miR-145 as an important regulator in cardiac hypertrophy.
Collapse
Affiliation(s)
| | | | - Qun Zhang
- Department of Cardiology, The Affiliated Drum Tower Hospital of Nanjing, University Medical School, Nanjing, People’s Republic of China; Center for Translational Medicine (J. S.), Thomas Jefferson University, Philadelphia, PA
| | - Yue Jiang
- Department of Cardiology, The Affiliated Drum Tower Hospital of Nanjing, University Medical School, Nanjing, People’s Republic of China; Center for Translational Medicine (J. S.), Thomas Jefferson University, Philadelphia, PA
| | - Haixiang Sun
- Department of Cardiology, The Affiliated Drum Tower Hospital of Nanjing, University Medical School, Nanjing, People’s Republic of China; Center for Translational Medicine (J. S.), Thomas Jefferson University, Philadelphia, PA
| | - Yali Hu
- Department of Cardiology, The Affiliated Drum Tower Hospital of Nanjing, University Medical School, Nanjing, People’s Republic of China; Center for Translational Medicine (J. S.), Thomas Jefferson University, Philadelphia, PA
| | - Jianxin Sun
- Department of Cardiology, The Affiliated Drum Tower Hospital of Nanjing, University Medical School, Nanjing, People’s Republic of China; Center for Translational Medicine (J. S.), Thomas Jefferson University, Philadelphia, PA
| | - Biao Xu
- Department of Cardiology, The Affiliated Drum Tower Hospital of Nanjing, University Medical School, Nanjing, People’s Republic of China; Center for Translational Medicine (J. S.), Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|