1
|
Chen Y, Ding K, Zheng S, Gao S, Xu X, Wu H, Zhou F, Wang Y, Xu J, Wang C, Ling C, Xu J, Wang L, Wu Q, Giamas G, Chen G, Zhang J, Yi C, Ji J. Post-translational modifications in DNA damage repair: mechanisms underlying temozolomide resistance in glioblastoma. Oncogene 2025:10.1038/s41388-025-03454-5. [PMID: 40419791 DOI: 10.1038/s41388-025-03454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/04/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025]
Abstract
Temozolomide (TMZ) resistance is one of the critical factors contributing to the poor prognosis of glioblastoma (GBM). As a first-line chemotherapeutic agent for GBM, TMZ exerts its cytotoxic effects through DNA alkylation. However, its therapeutic efficacy is significantly compromised by enhanced DNA damage repair (DDR) mechanisms in GBM cells. Although several DDR-targeting drugs have been developed, their clinical outcomes remain suboptimal. Post-translational modifications (PTMs) in GBM cells play a pivotal role in maintaining the genomic stability of DDR mechanisms, including methylguanine-DNA methyltransferase-mediated repair, DNA mismatch repair dysfunction, base excision repair, and double-strand break repair. This review focuses on elucidating the regulatory roles of PTMs in the intrinsic mechanisms underlying TMZ resistance in GBM. Furthermore, we explore the feasibility of enhancing TMZ-induced cytotoxicity by targeting PTM-related enzymatic to disrupt key steps in PTM-mediated DDR pathways. By integrating current preclinical insights and clinical challenges, this work highlights the potential of modulating PTM-driven networks as a novel therapeutic strategy to overcome TMZ resistance and improve treatment outcomes for GBM patients.
Collapse
Affiliation(s)
- Yike Chen
- Department of Plastic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kaikai Ding
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuyu Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Songting Gao
- Guali Branch of the First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Xiaohui Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Haijian Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Fengqi Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Yongjie Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jinfang Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Chun Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Chenhan Ling
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jing Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Lin Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Qun Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, UK
- International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University, Oncology Department of the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration Zhejiang University, Hangzhou, Zhejiang, China.
| | - Chenggang Yi
- Department of Plastic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jianxiong Ji
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Xu M, Wang W, Lu S, Xiong M, Zhao T, Yu Y, Song C, Yang J, Zhang N, Cao L, Sun G, Chen S, Wang P. The advances in acetylation modification in senescence and aging-related diseases. Front Physiol 2025; 16:1553646. [PMID: 40421455 PMCID: PMC12104306 DOI: 10.3389/fphys.2025.1553646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/28/2025] [Indexed: 05/28/2025] Open
Abstract
Aging is a process in which organisms or cells undergo a decline in their functions. Epigenetic modification changes have been recognized as a senescence hallmark in both natural aging and stimulation-induced senescence. An acetylation modification is a dynamic process, which plays a crucial role in the senescence process through DNA stability, metabolism, and signaling pathways. We summarized the role and regulatory pathways of acetylation modifications in senescence. Various cell fate-determining proteins regulate multiple cellular processes through acetylation modifications. These processes interact and coordinate with each other, forming an integrated regulatory network framework that collectively drives cellular senescence via multiple systemic mechanisms. Based on these findings, we proposed the "acetylation-network regulation-cellular senescence" model, to elaborate how acetylation contributes to senescence. We believe this insight could provide new directions and intervention strategies for senescence and aging-related diseases.
Collapse
Affiliation(s)
- Maiqi Xu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wenbin Wang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Saien Lu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mengyao Xiong
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Tong Zhao
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yao Yu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jinjing Yang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Liu Cao
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Sichong Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Pengbo Wang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
3
|
Li L, Zeng Y, Cheng G, Yang H. Acetylation and deacetylation dynamics in stress response to cancer and infections. Semin Immunol 2025; 78:101957. [PMID: 40288003 DOI: 10.1016/j.smim.2025.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
In response to stress stimuli, cells have evolved various mechanisms to integrate internal and external signals to achieve dynamic homeostasis. Lysine acetyltransferase (KATs) and deacetyltransferase (KDACs) are the key modulators of epigenetic modifications, enabling cells to modulate cellular responses through the acetylation and deacetylation of both histone and nonhistone proteins. Understanding the signaling pathways involved in cellular stress response, along with the roles of KATs and KDACs may pave the way for the development of novel therapeutic strategies. This review discusses the molecular mechanisms of acetylation and deacetylation in stress responses related to tumorigenesis, viral and bacterial infections. In tumorigenesis section, we focused on the tumor cells' intrinsic and external molecules and signaling pathways regulated by acetylation and deacetylation modification. In viral and bacterial infections, we summarized the update research on acetylation and deacetylation modification in viral and bacterial infections, which systematical introduction on this topic is not too much. Additionally, we provide an overview of current therapeutic interventions and clinical trials involving KAT and KDAC inhibitors in the treatment of cancer, as well as viral and bacterial infection-related diseases.
Collapse
Affiliation(s)
- Lili Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China; Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Yanqiong Zeng
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Genhong Cheng
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Heng Yang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| |
Collapse
|
4
|
Liu Z, Hong JJ, Zhang X, Sayers CM, Fang W, Xu M, Loria S, Maskal S, Lei H, Wu H, Swenson R, Meier JL, Shern JF, Thiele CJ. MYCN and KAT2A form a feedforward loop to drive an oncogenic transcriptional program in neuroblastoma. Oncogenesis 2025; 14:13. [PMID: 40274766 PMCID: PMC12022051 DOI: 10.1038/s41389-025-00557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
The oncoprotein MYCN drives malignancy in various cancer types, including neuroblastoma (NB). However, our understanding of the mechanisms underlying its transcriptional activity and oncogenic function, as well as effective strategies to target it, remains limited. We discovered that MYCN interacts with the transcriptional coactivator KAT2A, and this interaction significantly contributes to MYCN's activity in NB. Our genome-wide analyses indicate MYCN recruits KAT2A to bind to DNA, thereby transcriptionally regulating genes associated with ribosome biogenesis and RNA processing. Moreover, we identified that MYCN directly activates KAT2A transcription, while KAT2A acetylates MYCN, increasing MYCN protein stability. Consequently, MYCN and KAT2A establish a feedforward loop that effectively regulates global gene expression, governing the malignant NB phenotype. Treatment of NB cells with a KAT2A Proteolysis Targeting Chimera (PROTAC) degrader reduces MYCN protein levels, antagonizes MYCN-mediated gene transcription regulation and suppresses cell proliferation. This study highlights the potential of transcriptional cofactors as viable targets for developing anti-MYCN therapies.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA.
| | - Jason J Hong
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Xiyuan Zhang
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Carly M Sayers
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Wendy Fang
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Man Xu
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Sydney Loria
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Sakereh Maskal
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Haiyan Lei
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Haitao Wu
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Rolf Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Jack F Shern
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Carol J Thiele
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
5
|
Lin Z, Liang F, Hong G, Jiang X, Zhang Q, Wang M. TACC3 enhances glycolysis in bladder cancer cells through inducing acetylation of c-Myc. Cell Death Dis 2025; 16:311. [PMID: 40246827 PMCID: PMC12006502 DOI: 10.1038/s41419-025-07645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
The proliferation of bladder cancer (BC) cells is driven by metabolic reprogramming, marked by a glycolytic dependency to sustain uncontrolled growth. While Transforming Acidic Coiled-Coil Containing Protein 3 (TACC3) is known to promote BC progression and correlate with poor prognosis, the mechanisms underlying its upregulation and role in aerobic glycolysis remain unclear. Here, we identify E2F3 as a direct transcriptional activator of TACC3, with its amplification in BC driving elevated TACC3 expression. TACC3 overexpression enhances glycolysis, increasing glucose consumption, lactate production, and expression of glycolytic enzymes (e.g., GLUT1, HK2, PFKFB3), while its knockdown suppresses these effects. Pharmacological inhibition of glycolysis abrogates TACC3-driven tumor growth in vitro and in vivo. Mechanistically, TACC3 interacts with c-Myc, promoting its acetylation at lysine 323 (K323) by recruiting the acetyltransferase PCAF and antagonizing the deacetylase SIRT1. This acetylation stabilizes c-Myc, amplifying its transcriptional activation of glycolytic targets. Our findings establish TACC3 as a critical regulator of c-Myc-driven metabolic reprogramming in BC, highlighting its potential as a therapeutic target to disrupt glycolysis and oncogenic c-Myc signaling.
Collapse
Affiliation(s)
- Zhirui Lin
- Institute of Medical Research, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, People's Republic of China.
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| | - Falian Liang
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510245, Guangdong Province, People's Republic of China
| | - Gengde Hong
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510245, Guangdong Province, People's Republic of China
| | - Xizhen Jiang
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510245, Guangdong Province, People's Republic of China
| | - Qingling Zhang
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| | - Mengyao Wang
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510245, Guangdong Province, People's Republic of China.
| |
Collapse
|
6
|
Benhassoun R, Morel AP, Jacquot V, Puisieux A, Ouzounova M. The epipliancy journey: Tumor initiation at the mercy of identity crisis and epigenetic drift. Biochim Biophys Acta Rev Cancer 2025; 1880:189307. [PMID: 40174706 DOI: 10.1016/j.bbcan.2025.189307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/05/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Cellular pliancy refers to the unique disposition of different stages of cellular differentiation to transform when exposed to specific oncogenic insults. This concept highlights a strong interconnection between cellular identity and tumorigenesis, and implies overcoming of epigenetic barriers defining cellular states. Emerging evidence suggests that the cell-type-specific response to intrinsic and extrinsic stresses is modulated by accessibility to certain areas of the genome. Understanding the interplay between epigenetic mechanisms, cellular differentiation, and oncogenic insults is crucial for deciphering the complex nature of tumorigenesis and developing targeted therapies. Hence, cellular pliancy relies on a dynamic cooperation between the cellular identity and the cellular context through epigenetic control, including the reactivation of cellular mechanisms, such as epithelial-to-mesenchymal transition (EMT). Such mechanisms and pathways confer plasticity to the cell allowing it to adapt to a hostile environment in a context of tumor initiation, thus changing its cellular identity. Indeed, growing evidence suggests that cancer is a disease of cell identity crisis, whereby differentiated cells lose their defined identity and gain progenitor characteristics. The loss of cell fate commitment is a central feature of tumorigenesis and appears to be a prerequisite for neoplastic transformation. In this context, EMT-inducing transcription factors (EMT-TFs) cooperate with mitogenic oncoproteins to foster malignant transformation. The aberrant activation of EMT-TFs plays an active role in tumor initiation by alleviating key oncosuppressive mechanisms and by endowing cancer cells with stem cell-like properties, including the ability to self-renew, thus changing the course of tumorigenesis. This highly dynamic phenotypic change occurs concomitantly to major epigenome reorganization, a key component of cell differentiation and cancer cell plasticity regulation. The concept of pliancy was initially proposed to address a fundamental question in cancer biology: why are some cells more likely to become cancerous in response to specific oncogenic events at particular developmental stages? We propose the concept of epipliancy, whereby a difference in epigenetic configuration leads to malignant transformation following an oncogenic insult. Here, we present recent studies furthering our understanding of how the epigenetic landscape may impact the modulation of cellular pliancy during early stages of cancer initiation.
Collapse
Affiliation(s)
- Rahma Benhassoun
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, France; LabEx DEVweCAN, Université de Lyon, France
| | - Anne-Pierre Morel
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, France; LabEx DEVweCAN, Université de Lyon, France
| | - Victoria Jacquot
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, France
| | - Alain Puisieux
- Equipe labellisée Ligue contre le cancer, U1339 Inserm - UMR3666 CNRS, Paris, France; Institut Curie, PSL Research University, Paris, France
| | - Maria Ouzounova
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, France; LabEx DEVweCAN, Université de Lyon, France.
| |
Collapse
|
7
|
Gupta H, Singh A, Gupta A. Cancer-associated mutation at glycine 400 in TIP60 disrupt its phase separation property and catalytic activity resulting in compromised DNA damage repair function of the cell. Biochem Biophys Res Commun 2025; 753:151457. [PMID: 39965267 DOI: 10.1016/j.bbrc.2025.151457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025]
Abstract
TIP60 is a tumor suppressor with histone acetyltransferase (HAT) activity, playing a crucial role in regulating chromatin architecture by acetylating histones to enhance accessibility for other regulatory factors. Its function is vital for several key cellular processes, including DNA damage repair, apoptosis, and autophagy. While the downregulation of TIP60 has been associated with various cancers, the effects of naturally occurring mutations in TIP60 on its function in malignancies remain poorly understood. In this study, we explored how cancer-related mutations in TIP60 impact its structure and function. Several deleterious and destabilizing missense mutations were identified and analyzed for structural changes. Molecular dynamics simulations revealed alterations in protein conformational stability and radius of gyration due to these mutations, supported by significant changes in TIP60's solvent accessibility and intramolecular hydrogen bonding. Biochemical assays with recombinant proteins showed a loss of catalytic activity in the G400W mutant. Live cell imaging indicated abnormal localization of the G400W mutant within the nucleus. Additionally, we observed aberrant phase separation of TIP60 caused by the G400W mutation. Notably, the G400W mutation impairs TIP60's catalytic function, preventing effective DNA repair and leaving the genome vulnerable to further mutations. Our findings highlight cancer-associated mutations in TIP60 that may contribute to the molecular mechanisms underlying cancer initiation and progression.
Collapse
Affiliation(s)
- Himanshu Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Delhi-NCR, Uttar Pradesh, India, 201314
| | - Ashutosh Singh
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Delhi-NCR, Uttar Pradesh, India, 201314
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Delhi-NCR, Uttar Pradesh, India, 201314.
| |
Collapse
|
8
|
Chen J, Zhang S, Huang X, Wang Q, Xu W, Huang J, Su Y, Sun Q, Du X, Xing B, Qiu X. Sialylated IgG-activated integrin β4-Src-Erk axis stabilizes c-Myc in a p300 lysine acetyltransferase-dependent manner to promote colorectal cancer liver metastasis. Neoplasia 2025; 61:101140. [PMID: 40010102 PMCID: PMC11908626 DOI: 10.1016/j.neo.2025.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Liver metastasis is a leading cause of colorectal cancer mortality. Therefore, the underlying mechanism and potential therapeutic target of colorectal cancer liver metastasis urge to be found. Mounting evidence indicates that cancer-derived sialylated IgG promotes tumor formation and progression. However, the role of sialylated IgG in colorectal cancer liver metastasis remains undefined. MATERIALS AND METHODS Analysis of sialylated IgG in paired tumor tissues and adjacent normal tissues from 65 colorectal cancer patients was performed using immunohistochemical staining. Functional assays of sialylated IgG were explored in vitro and in vivo. The downstream target of sialylated IgG was investigated by performing gene-set enrichment analysis, ubiquitination assay, cycloheximide chase assay, acetylation assay and co-immunoprecipitation. RESULTS Here, our investigation reveals that sialylated IgG is significantly upregulated in colorectal cancer and that the increase of IgG is positively associated with liver metastasis and poor overall survival in colorectal cancer patients. Sialylated IgG promotes colorectal cancer cell migration, invasion and liver metastasis. Notably, anti-sialylated IgG antibody effectively blocks colorectal cancer liver metastasis in mouse models. Mechanistically, sialylated IgG upregulates c-Myc protein level by decreasing c-Myc ubiquitination. Moreover, we find that p300/CBP can stabilize c-Myc by reducing c-Myc ubiquitination. Overexpression of p300/CBP protects c-Myc protein level from sialylated IgG-knockdown in a lysine acetyltransferase activity-dependent manner. Furthermore, sialylated IgG upregulates p300 protein level through integrin β4-FAK-Src-Erk signaling. CONCLUSION Collectively, these results indicate that a novel sialylated IgG-integrin β4-FAK-Src-Erk-p300-c-Myc signaling pathway promotes colorectal cancer liver metastasis, thus providing potential therapeutic targets for colorectal cancer liver metastasis.
Collapse
Affiliation(s)
- Jing Chen
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Shenghua Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China
| | - Xinmei Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China
| | - Qianqian Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China
| | - Weiyan Xu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China
| | - Yuming Su
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Qinkun Sun
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Baocai Xing
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China.
| |
Collapse
|
9
|
Sheng P, Chen Z, Wen J, Tong C, Wang J, Du Z. MG149 suppresses anaplastic thyroid cancer progression by inhibition of lysine acetyltransferase KAT5-mediated c-Myc acetylation. Bull Cancer 2025; 112:122-134. [PMID: 39743475 DOI: 10.1016/j.bulcan.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Anaplastic thyroid cancer (ATC) is a highly lethal form of thyroid cancer. lysine acetyltransferase 5 (KAT5) has been found to promote ATC development via c-Myc stabilization by previous study. We thus designed experiments to confirm the anti-tumor effect of a KAT5 inhibitor (MG149) in ATC. METHODS Western blotting assessed the level of KAT5, c-Myc, and epithelial-mesenchymal transition (EMT)-related proteins in ATC cells and xenograft tumor tissues. Cell counting kit-8, flow cytometry, wound healing, and transwell assays revealed the effect of MG149 on cell proliferation, apoptosis, migration, and invasion in ATC cell lines. Immunofluorescence detected the level of E-cadherin and N-cadherin in ATC cell lines. The effect of MG149 on KAT5-mediated c-Myc stabilization was detected using co-immunoprecipitation assay. Tumor volume and tumor weight in ATC xenograft models were evaluated. H&E staining showed the effect of MG149 on lung metastasis in vivo. We further investigated whether MG149 can enhance the sensitivity of ATC to cisplatin (CDDP). RESULTS MG149 inhibited cell proliferation and increased the apoptosis of cells. MG149 suppressed the migratory and invasive ability of ATC cells. The EMT in CAL-62 and 8505C cells was significantly inhibited by MG149. MG149 suppressed the KAT5-mediated c-Myc acetylation. MG149 inhibited tumor growth and lung metastasis in vivo. Additionally, MG149 potentiated the sensitivity to CDDP in ATC cells in vitro and in vivo. CONCLUSION MG149 suppresses ATC progression and metastasis by inhibiting the acetylation of c-Myc mediated by KAT5.
Collapse
Affiliation(s)
- Pan Sheng
- Department of General Surgery, People's Hospital of Dongxihu District, Wuhan 430040, Hubei, China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430040, Hubei, China
| | - Junjun Wen
- Department of General Surgery, People's Hospital of Dongxihu District, Wuhan 430040, Hubei, China
| | - Chuanming Tong
- Department of General Surgery, People's Hospital of Dongxihu District, Wuhan 430040, Hubei, China
| | - Ju Wang
- Department of General Surgery, People's Hospital of Dongxihu District, Wuhan 430040, Hubei, China
| | - Zhengwen Du
- Department of General Surgery, People's Hospital of Dongxihu District, Wuhan 430040, Hubei, China.
| |
Collapse
|
10
|
Keller MA, Nakamura M. Acetyltransferase in cardiovascular disease and aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:10.20517/jca.2024.21. [PMID: 39958699 PMCID: PMC11827898 DOI: 10.20517/jca.2024.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Acetyltransferases are enzymes that catalyze the transfer of an acetyl group to a substrate, a modification referred to as acetylation. Loss-of-function variants in genes encoding acetyltransferases can lead to congenital disorders, often characterized by intellectual disability and heart and muscle defects. Their activity is influenced by dietary nutrients that alter acetyl coenzyme A levels, a key cofactor. Cardiovascular diseases, including ischemic, hypertensive, and diabetic heart diseases - leading causes of mortality in the elderly - are largely attributed to prolonged lifespan and the growing prevalence of metabolic syndrome. Acetyltransferases thus serve as a crucial link between lifestyle modifications, cardiometabolic disease, and aging through both epigenomic and non-epigenomic mechanisms. In this review, we discuss the roles and relevance of acetyltransferases. While the sirtuin family of deacetylases has been extensively studied in longevity, particularly through fasting-mediated NAD+ metabolism, recent research has brought attention to the essential roles of acetyltransferases in health and aging-related pathways, including cell proliferation, DNA damage response, mitochondrial function, inflammation, and senescence. We begin with an overview of acetyltransferases, classifying them by domain structure, including canonical and non-canonical lysine acetyltransferases, N-terminal acetyltransferases, and sialic acid O-acetyltransferases. We then discuss recent advances in understanding acetyltransferase-related pathologies, particularly focusing on cardiovascular disease and aging, and explore their potential therapeutic applications for promoting health in older individuals.
Collapse
Affiliation(s)
- Mariko Aoyagi Keller
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
11
|
Li Y, Xu Y, Li R, Huang S, Wu Q, Yan J, Jiang Z, Wu X, Li F, Wang Y, Li Y, Fan X, Yuan W. Transcriptomic and Metabolomic Analysis Reveals Multifaceted Impact of Gcn5 Knockdown in Drosophila Development. Metabolites 2024; 14:680. [PMID: 39728461 DOI: 10.3390/metabo14120680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Background: General control nonderepressible 5 (Gcn5) is a lysine acetyltransferase (KAT) that is evolutionarily conserved across eukaryotes, with two homologs (Kat2a and Kat2b) identified in humans and one (Gcn5) in Drosophila. Gcn5 contains a P300/CBP-associated factor (PCAF) domain, a Gcn5-N-acetyltransferase (GNAT) domain, and a Bromodomain, allowing it to regulate gene expression through the acetylation of both histone and non-histone proteins. In Drosophila, Gcn5 is crucial for embryonic development, with maternal Gcn5 supporting early development. However, the functional mechanisms of Gcn5 after the depletion of maternal deposits remain unclear. Methods: Our study employed the Gal4/UAS-RNAi system to achieve whole-body or heart-specific Gcn5 knockdown in Drosophila and selected 96-hour-old surviving larvae for transcriptomic and metabolomic analyses. Results: Omics results revealed that Gcn5 knockdown significantly impacts various metabolic pathways, as well as lysosomes, non-homologous end-joining, Toll and Imd signaling pathways, and circadian rhythms, among others. Furthermore, defects in chitin synthesis may be associated with impaired pupation. Additionally, heart-specific Gcn5 knockdown affected cardiac physiology but appeared to have a potential protective effect against age-related cardiac decline. Conclusions: These findings deepen our understanding of Gcn5's roles in Drosophila development and provide valuable insights for developing Gcn5-targeted therapies, particularly considering its involvement in various human diseases.
Collapse
Affiliation(s)
- Youfeng Li
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yue Xu
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Ruike Li
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Sirui Huang
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Qiong Wu
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Jing Yan
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zhigang Jiang
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Xiushan Wu
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Fang Li
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yuequn Wang
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yongqing Li
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Xiongwei Fan
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Wuzhou Yuan
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
12
|
Hira A, Zhang J, Kadakia MP. TIP60 enhances cisplatin resistance via regulating ΔNp63α acetylation in SCC. Cell Death Dis 2024; 15:877. [PMID: 39627186 PMCID: PMC11615348 DOI: 10.1038/s41419-024-07265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Non-melanoma skin cancer, including basal and squamous cell carcinoma, is the most common form of cancer worldwide, with approximately 5.4 million new cases diagnosed each year in the United States. While the chemotherapeutic drug cisplatin is often used to treat squamous cell carcinoma (SCC) patients, low response rates and disease recurrence are common. In this study, we show that TIP60 and ΔNp63α levels correlate with cisplatin resistance in SCC cell lines, suggesting that TIP60 contributes to the failure of platinum-based drugs in SCC by regulating the stability and transcriptional activity of ΔNp63α. Depletion of endogenous TIP60 or pharmacological inhibition of TIP60 led to a decrease in ΔNp63α protein and acetylation levels in multiple SCC cell lines. We showed that TIP60 upregulates ΔNp63α protein levels in cisplatin-resistant SCC cell lines by protecting it from cisplatin-mediated degradation and increasing its protein stability. Stable expression of TIP60 or ΔNp63α individually promoted resistance to cisplatin and reduced cell death, while loss of either TIP60 or ΔNp63α induced G2/M arrest, increased cell death, and sensitized cells to cisplatin. Moreover, pharmacological inhibition of TIP60 reduced acetylation of ΔNp63α and sensitized resistant cells to cisplatin. Taken together, our study indicates that TIP60-mediated stabilization of ΔNp63α increases cisplatin resistance and provides critical insights into the mechanisms by which ΔNp63α confers cisplatin resistance by promoting cell proliferation and inhibiting apoptosis. Furthermore, our data suggests that inhibition of TIP60 may be therapeutically advantageous in overcoming cisplatin resistance in SCC and other epithelial cancers.
Collapse
Affiliation(s)
- Akshay Hira
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Jin Zhang
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Madhavi P Kadakia
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA.
| |
Collapse
|
13
|
Khaitin AM, Guzenko VV, Bachurin SS, Demyanenko SV. c-Myc and FOXO3a-The Everlasting Decision Between Neural Regeneration and Degeneration. Int J Mol Sci 2024; 25:12621. [PMID: 39684331 DOI: 10.3390/ijms252312621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The transcription factors c-Myc and FoxO3a play significant roles in neurodegenerative processes, yet their interaction in neurological disorders remains largely unexplored. In contrast, much of the available information about their relationship comes from cancer research. While it is well-established that FoxO3a inhibits c-Myc activity, this interaction represents only a basic understanding of a far more complex dynamic, which includes exceptions under specific conditions and the involvement of additional regulatory factors. Given the critical need to address this gap for the treatment and prevention of neurodegenerative disorders, this review consolidates current knowledge on the joint roles of these two factors in neuropathology. It also highlights their conformational flexibility, post-translational modifications, and outlines potential directions for future research.
Collapse
Affiliation(s)
- Andrey M Khaitin
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| | - Valeria V Guzenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| | - Stanislav S Bachurin
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| | - Svetlana V Demyanenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don 344090, Russia
| |
Collapse
|
14
|
Guerrieri AN, Hattinger CM, Marchesini F, Melloni M, Serra M, Ibrahim T, Penzo M. The Interplay Between the MYC Oncogene and Ribosomal Proteins in Osteosarcoma Onset and Progression: Potential Mechanisms and Indication of Candidate Therapeutic Targets. Int J Mol Sci 2024; 25:12031. [PMID: 39596100 PMCID: PMC11593864 DOI: 10.3390/ijms252212031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
High-grade osteosarcoma (OS) is the most common primary bone tumor mainly affecting children and young adults. First-line treatment consists of neo-adjuvant chemotherapy with doxorubicin, cisplatin, and methotrexate and surgery. The mean long-term survival rate for localized disease at diagnosis is 65-70%, dropping down to 20% when metastases are present at diagnosis. Therefore, curing OS is a clinical challenge, particularly for patients that do not respond to standard treatments. MYC has frequently been reported to be involved in the pathogenesis of OS and its high expression may be associated with drug resistance and patients' worse prognosis. Moreover, MYC is a master regulator of ribosomal proteins (RPs) synthesis and ribosome biogenesis (RiBi), which is often up-regulated in human tumors. In recent years, RPs have been recognized not only for their traditional role in ribosome assembly but also for their extra-ribosomal functions, many of which are linked to the onset and progression of cancer. In this review we focus on the role and possible interplay of MYC and RPs expression in association with drug resistance and worse prognosis in OS and discuss therapeutic options that target de-regulated MYC, RiBi, or RPs, which are already clinically available or under evaluation in clinical trials.
Collapse
Affiliation(s)
- Ania Naila Guerrieri
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.N.G.); (M.S.); (T.I.)
| | - Claudia Maria Hattinger
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.N.G.); (M.S.); (T.I.)
| | - Federica Marchesini
- Center for Applied Biomedical Research (CRBA), Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (M.M.)
| | - Martina Melloni
- Center for Applied Biomedical Research (CRBA), Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (M.M.)
| | - Massimo Serra
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.N.G.); (M.S.); (T.I.)
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.N.G.); (M.S.); (T.I.)
| | - Marianna Penzo
- Center for Applied Biomedical Research (CRBA), Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (M.M.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
15
|
Chung DJ, Wang CH, Liu PJ, Ng SK, Luo CK, Jwo SH, Li CT, Hsu DY, Fan CC, Wei TT. Targeting CREB-binding protein (CBP) abrogates colorectal cancer stemness through epigenetic regulation of C-MYC. Cancer Gene Ther 2024; 31:1734-1748. [PMID: 39358564 DOI: 10.1038/s41417-024-00838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Colorectal cancer (CRC) is a common cancer worldwide with an increasing annual incidence. Cancer stem cells (CSCs) play important roles in the occurrence, development, recurrence, and metastasis of CRC. The molecular mechanism regulating the development of colorectal CSCs remains unclear. The discovery of human induced pluripotent stem cells (hiPSCs) through somatic cell reprogramming has revolutionized the fields of stem cell biology and translational medicine. In the present study, we converted hiPSCs into cancer stem-like cells by culture with conditioned medium (CM) from CRC cells. These transformed cells, termed hiPSC-CSCs, displayed cancer stem-like properties, including a spheroid morphology and the expression of both pluripotency and CSC markers. HiPSC-CSCs showed tumorigenic and metastatic abilities in mouse models. The epithelial-mesenchymal transition phenotype was observed in hiPSC-CSCs, which promoted their migration and angiogenesis. Interestingly, upregulation of C-MYC was observed during the differentiation of hiPSC-CSCs. Mechanistically, CREB binding protein (CBP) bound to the C-MYC promoter, while histone deacetylase 1 and 3 (HDAC1/3) dissociated from the promoter, ultimately leading to an increase in histone acetylation and C-MYC transcriptional activation during the differentiation of hiPSC-CSCs. Pharmacological treatment with a CBP inhibitor or abrogation of CBP expression with a CRISPR/Cas9-based strategy reduced the stemness of hiPSC-CSCs. This study demonstrates for the first time that colorectal CSCs can be generated from hiPSCs. The upregulation of C-MYC via histone acetylation plays a crucial role during the conversion process. Inhibition of CBP is a potential strategy for attenuating the stemness of colorectal CSCs.
Collapse
Affiliation(s)
- Dai-Jung Chung
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chun-Hao Wang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Pin-Jung Liu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shang-Kok Ng
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Cong-Kai Luo
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Si-Han Jwo
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chin-Tzu Li
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Dai-Yi Hsu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chia-Chu Fan
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Tzu-Tang Wei
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program in Chemical Biology and Molecular Biophysics (TIGP-CBMB), Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
16
|
Dent SYR. KAT tales: Functions of Gcn5 and PCAF lysine acetyltransferases in SAGA and ATAC. J Biol Chem 2024; 300:107744. [PMID: 39222683 PMCID: PMC11439848 DOI: 10.1016/j.jbc.2024.107744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/07/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
The Allis group identified Gcn5 as the first transcription-related lysine acetyltransferase in 1996, providing a molecular "missing link" between chromatin organization and gene regulation. This review will focus on functions subsequently identified for Gcn5 and the closely related PCAF protein, in the context of two major complexes, SAGA and ATAC, and how the study of these enzymes informs long standing questions regarding the importance of lysine acetylation.
Collapse
Affiliation(s)
- Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer, Center for Cancer Epigenetics, University of Texas M.D. Anderson/UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA.
| |
Collapse
|
17
|
Wang H, Wen H, Shi X. The MYC-MAF-SAGA axis drives oncogenic gene expression in multiple myeloma. Genes Dev 2024; 38:693-694. [PMID: 39168637 PMCID: PMC11444177 DOI: 10.1101/gad.352186.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The SAGA complex is an evolutionarily conserved histone acetyltransferase complex and transcription coactivator essential for development and disease. Dysregulation of SAGA is implicated in various human diseases, including cancer. In this issue of Genes & Development, Chen et al. (doi:10.1101/gad.351789.124) uncover a critical role for SAGA in multiple myeloma wherein SAGA's ADA2B component is required for the expression of mTORC1 pathway genes and targets of the MYC, E2F, and MAF (musculoaponeurotic fibrosarcoma) transcription factors. SAGA cooperates with MYC and MAF to sustain oncogenic gene expression programs vital for multiple myeloma survival and thus may serve as a therapeutic target for future cancer therapies.
Collapse
Affiliation(s)
- Hongkuan Wang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan 49503, USA
| | - Hong Wen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan 49503, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan 49503, USA
| |
Collapse
|
18
|
Chen YJC, Bhaskara GB, Lu Y, Lin K, Dent SYR. The SAGA acetyltransferase module is required for the maintenance of MAF and MYC oncogenic gene expression programs in multiple myeloma. Genes Dev 2024; 38:738-754. [PMID: 39168636 PMCID: PMC11444170 DOI: 10.1101/gad.351789.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Despite recent advances in therapeutic treatments, multiple myeloma (MM) remains an incurable malignancy. Epigenetic factors contribute to the initiation, progression, relapse, and clonal heterogeneity in MM, but our knowledge on epigenetic mechanisms underlying MM development is far from complete. The SAGA complex serves as a coactivator in transcription and catalyzes acetylation and deubiquitylation. Analyses of data sets in the Cancer Dependency Map Project revealed that many SAGA components are selective dependencies in MM. To define SAGA-specific functions, we focused on ADA2B, the only subunit in the lysine acetyltransferase (KAT) module that specifically functions in SAGA. Integration of RNA sequencing (RNA-seq), assay for transposase-accessible chromatin with sequencing (ATAC-seq), and cleavage under targets and release using nuclease assay (CUT&RUN) results identified pathways directly regulated by ADA2B including MTORC1 signaling and oncogenic programs driven by MYC, E2F, and MM-specific MAF. We discovered that ADA2B is recruited to MAF and MYC gene targets, and that MAF shares a majority of its targets with MYC in MM cells. Furthermore, we found that the SANT domain of ADA2B is required for interaction with both GCN5 and PCAF acetyltransferases, incorporation into SAGA, and ADA2B protein stability. Our findings uncover previously unknown SAGA KAT module-dependent mechanisms controlling MM cell growth, revealing a vulnerability that might be exploited for future development of MM therapy.
Collapse
Affiliation(s)
- Ying-Jiun C Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA;
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Govinal Badiger Bhaskara
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA;
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| |
Collapse
|
19
|
Ramberger E, Sapozhnikova V, Ng YLD, Dolnik A, Ziehm M, Popp O, Sträng E, Kull M, Grünschläger F, Krüger J, Benary M, Müller S, Gao X, Murgai A, Haji M, Schmidt A, Lutz R, Nogai A, Braune J, Laue D, Langer C, Khandanpour C, Bassermann F, Döhner H, Engelhardt M, Straka C, Hundemer M, Beule D, Haas S, Keller U, Einsele H, Bullinger L, Knop S, Mertins P, Krönke J. The proteogenomic landscape of multiple myeloma reveals insights into disease biology and therapeutic opportunities. NATURE CANCER 2024; 5:1267-1284. [PMID: 38942927 PMCID: PMC11358022 DOI: 10.1038/s43018-024-00784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/15/2024] [Indexed: 06/30/2024]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy of the bone marrow. Despite therapeutic advances, MM remains incurable, and better risk stratification as well as new therapies are therefore highly needed. The proteome of MM has not been systematically assessed before and holds the potential to uncover insight into disease biology and improved prognostication in addition to genetic and transcriptomic studies. Here we provide a comprehensive multiomics analysis including deep tandem mass tag-based quantitative global (phospho)proteomics, RNA sequencing, and nanopore DNA sequencing of 138 primary patient-derived plasma cell malignancies encompassing treatment-naive MM, plasma cell leukemia and the premalignancy monoclonal gammopathy of undetermined significance, as well as healthy controls. We found that the (phospho)proteome of malignant plasma cells are highly deregulated as compared with healthy plasma cells and is both defined by chromosomal alterations as well as posttranscriptional regulation. A prognostic protein signature was identified that is associated with aggressive disease independent of established risk factors in MM. Integration with functional genetics and single-cell RNA sequencing revealed general and genetic subtype-specific deregulated proteins and pathways in plasma cell malignancies that include potential targets for (immuno)therapies. Our study demonstrates the potential of proteogenomics in cancer and provides an easily accessible resource for investigating protein regulation and new therapeutic approaches in MM.
Collapse
Affiliation(s)
- Evelyn Ramberger
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Valeriia Sapozhnikova
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Yuen Lam Dora Ng
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anna Dolnik
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Ziehm
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Oliver Popp
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Eric Sträng
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Miriam Kull
- Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Florian Grünschläger
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Josefine Krüger
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Sina Müller
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Xiang Gao
- Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Arunima Murgai
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mohamed Haji
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Annika Schmidt
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Raphael Lutz
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Axel Nogai
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Braune
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominik Laue
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Florian Bassermann
- Department of Medicine III, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Hartmut Döhner
- Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | | | | | - Michael Hundemer
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Simon Haas
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
| | - Ulrich Keller
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Lars Bullinger
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Knop
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.
- Nuremberg General Hospital, Nuremberg, Germany.
- Paracelsus Medical School, Nuremberg, Germany.
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
- Berlin Institute of Health, Berlin, Germany.
| | - Jan Krönke
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
20
|
Malone CF, Mabe NW, Forman AB, Alexe G, Engel KL, Chen YJC, Soeung M, Salhotra S, Basanthakumar A, Liu B, Dent SYR, Stegmaier K. The KAT module of the SAGA complex maintains the oncogenic gene expression program in MYCN-amplified neuroblastoma. SCIENCE ADVANCES 2024; 10:eadm9449. [PMID: 38820154 PMCID: PMC11141635 DOI: 10.1126/sciadv.adm9449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
Pediatric cancers are frequently driven by genomic alterations that result in aberrant transcription factor activity. Here, we used functional genomic screens to identify multiple genes within the transcriptional coactivator Spt-Ada-Gcn5-acetyltransferase (SAGA) complex as selective dependencies for MYCN-amplified neuroblastoma, a disease of dysregulated development driven by an aberrant oncogenic transcriptional program. We characterized the DNA recruitment sites of the SAGA complex in neuroblastoma and the consequences of loss of SAGA complex lysine acetyltransferase (KAT) activity on histone acetylation and gene expression. We demonstrate that loss of SAGA complex KAT activity is associated with reduced MYCN binding on chromatin, suppression of MYC/MYCN gene expression programs, and impaired cell cycle progression. Further, we showed that the SAGA complex is pharmacologically targetable in vitro and in vivo with a KAT2A/KAT2B proteolysis targeting chimeric. Our findings expand our understanding of the histone-modifying complexes that maintain the oncogenic transcriptional state in this disease and suggest therapeutic potential for inhibitors of SAGA KAT activity in MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- Clare F. Malone
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nathaniel W. Mabe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alexandra B. Forman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kathleen L. Engel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ying-Jiun C. Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melinda Soeung
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Silvi Salhotra
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Allen Basanthakumar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharon Y. R. Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
21
|
Chen YJC, Bhaskara GB, Lu Y, Lin K, Dent SYR. The SAGA acetyltransferase module is required for the maintenance of MAF and MYC oncogenic gene expression programs in multiple myeloma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586811. [PMID: 38585845 PMCID: PMC10996596 DOI: 10.1101/2024.03.26.586811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Despite recent advances in therapeutic treatments, multiple myeloma (MM) remains an incurable malignancy. Epigenetic factors contribute to the initiation, progression, relapse, and clonal heterogeneity in MM, but our knowledge on epigenetic mechanisms underlying MM development is far from complete. The SAGA complex serves as a coactivator in transcription and catalyzes acetylation and deubiquitylation. Analyses of datasets in the Cancer Dependency Map Project revealed many SAGA components are selective dependencies in MM. To define SAGA-specific functions, we focused on ADA2B, the only subunit in the lysine acetyltransferase (KAT) module that specifically functions in SAGA. Integration of RNA-seq, ATAC-seq, and CUT&RUN results identified pathways directly regulated by ADA2B include MTORC1 signaling, MYC, E2F, and MM-specific MAF oncogenic programs. We discovered that ADA2B is recruited to MAF and MYC gene targets, and that MAF shares a majority of its targets with MYC in MM cells. Furthermore, we found the SANT domain of ADA2B is required for interaction with both GCN5 and PCAF acetyltransferases, incorporation into SAGA, and ADA2B protein stability. Our findings uncover previously unknown SAGA KAT module-dependent mechanisms controlling MM cell growth, revealing a vulnerability that might be exploited for future development of MM therapy.
Collapse
Affiliation(s)
- Ying-Jiun C. Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Govinal Badiger Bhaskara
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharon Y. R. Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Guzenko VV, Bachurin SS, Dzreyan VA, Khaitin AM, Kalyuzhnaya YN, Demyanenko SV. Acetylation of c-Myc at Lysine 148 Protects Neurons After Ischemia. Neuromolecular Med 2024; 26:8. [PMID: 38546874 DOI: 10.1007/s12017-024-08777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024]
Abstract
This study focuses on understanding the role of c-Myc, a cancer-associated transcription factor, in the penumbra following ischemic stroke. While its involvement in cell death and survival is recognized, its post-translational modifications, particularly acetylation, remain understudied in ischemia models. Investigating these modifications could have significant clinical implications for controlling c-Myc activity in the central nervous system. Although previous studies on c-Myc acetylation have been limited to non-neuronal cells, our research examines its expression in perifocal cells during stroke recovery to explore regulatory mechanisms via acetylation. We found that in peri-infarct neurons, c-Myc is upregulated with acetylation at K148 but not K323 during the acute phase of stroke, with SIRT2 deacetylase primarily affecting K148 acetylation. Molecular dynamics simulations suggest that lysine 148 plays a crucial role in stabilizing c-Myc spatial structure. Increased acetylation at K148 reduces c-Myc compaction, potentially limiting its nuclear penetration, promoting calpain-mediated cleavage, and decreasing nuclear localization. Additionally, cytoplasmic acetylation at K148 may alter c-Myc's interaction with unidentified proteins, potentially influencing its pro-apoptotic effects and promoting cytoplasmic accumulation. Targeting SIRT2 with selective inhibitors could be a promising avenue for future stroke therapy strategies.
Collapse
Affiliation(s)
- V V Guzenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don, 344090, Russia
| | - S S Bachurin
- Department of General and Clinical Biochemistry No.2, Rostov State Medical University, 29 Nakhichevansky Lane, Rostov-on-Don, 344022, Russia
| | - V A Dzreyan
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don, 344090, Russia
| | - A M Khaitin
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don, 344090, Russia
| | - Y N Kalyuzhnaya
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don, 344090, Russia
| | - S V Demyanenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don, 344090, Russia.
| |
Collapse
|
23
|
Paniri A, Hosseini MM, Akhavan-Niaki H. Alzheimer's Disease-Related Epigenetic Changes: Novel Therapeutic Targets. Mol Neurobiol 2024; 61:1282-1317. [PMID: 37700216 DOI: 10.1007/s12035-023-03626-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Aging is a significant risk factor for Alzheimer's disease (AD), although the precise mechanism and molecular basis of AD are not yet fully understood. Epigenetic mechanisms, such as DNA methylation and hydroxymethylation, mitochondrial DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), play a role in regulating gene expression related to neuron plasticity and integrity, which are closely associated with learning and memory development. This review describes the impact of dynamic and reversible epigenetic modifications and factors on memory and plasticity throughout life, emphasizing their potential as target for therapeutic intervention in AD. Additionally, we present insight from postmortem and animal studies on abnormal epigenetics regulation in AD, as well as current strategies aiming at targeting these factors in the context of AD therapy.
Collapse
Affiliation(s)
- Alireza Paniri
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran
| | | | - Haleh Akhavan-Niaki
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran.
| |
Collapse
|
24
|
Uba AI, Zengin G. In the quest for histone deacetylase inhibitors: current trends in the application of multilayered computational methods. Amino Acids 2023; 55:1709-1726. [PMID: 37367966 DOI: 10.1007/s00726-023-03297-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Histone deacetylase (HDAC) inhibitors have gained attention over the past three decades because of their potential in the treatment of different diseases including various forms of cancers, neurodegenerative disorders, autoimmune, inflammatory diseases, and other metabolic disorders. To date, 5 HDAC inhibitor drugs are marketed for the treatment of hematological malignancies and several drug-candidate HDAC inhibitors are at different stages of clinical trials. However, due to the toxic side effects of these drugs resulting from the lack of target selectivity, active studies are ongoing to design and develop either class-selective or isoform-selective inhibitors. Computational methods have aided the discovery of HDAC inhibitors with the desired potency and/or selectivity. These methods include ligand-based approaches such as scaffold hopping, pharmacophore modeling, three-dimensional quantitative structure-activity relationships (3D-QSAR); and structure-based virtual screening (molecular docking). The current trends involve the application of the combination of these methods and incorporating molecular dynamics simulations coupled with Poisson-Boltzmann/molecular mechanics generalized Born surface area (MM-PBSA/MM-GBSA) to improve the prediction of ligand binding affinity. This review aimed at understanding the current trends in applying these multilayered strategies and their contribution to the design/identification of HDAC inhibitors.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey.
| |
Collapse
|
25
|
Jiao D, Sun R, Ren X, Wang Y, Tian P, Wang Y, Yuan D, Yue X, Wu Z, Li C, Gao L, Ma C, Liang X. Lipid accumulation-mediated histone hypoacetylation drives persistent NK cell dysfunction in anti-tumor immunity. Cell Rep 2023; 42:113211. [PMID: 37792534 DOI: 10.1016/j.celrep.2023.113211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/04/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
Hyperlipidemia impairs anti-tumor immune responses and is closely associated with increased human cancer incidence and mortality. However, the underlying mechanisms are not well understood. In the present study, we show that natural killer (NK) cells isolated from high-fat-diet mice or treated with oleic acid (OA) in vitro exhibit sustainable functional defects even after removal from hyperlipidemic milieu. This is accompanied by reduced chromatin accessibility in the promoter region of NK cell effector molecules. Mechanistically, OA exposure blunts P300-mediated c-Myc acetylation and shortens its protein half-life in NK cells, which in turn reduces P300 accumulation and H3K27 acetylation and leads to persistent NK cell dysfunction. NK cells engineered with hyperacetylated c-Myc mutants surmount the suppressive effect of hyperlipidemia and display superior anti-tumor activity. Our findings reveal the persistent dysfunction of NK cells in dyslipidemia milieu and extend engineered NK cells as a promising strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Deyan Jiao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Renhui Sun
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Xiaolei Ren
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Panpan Tian
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Yuzhen Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xuetian Yue
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China.
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China.
| |
Collapse
|
26
|
Hurd M, Pino J, Jang K, Allevato MM, Vorontchikhina M, Ichikawa W, Zhao Y, Gates R, Villalpando E, Hamilton MJ, Faiola F, Pan S, Qi Y, Hung YW, Girke T, Ann D, Seewaldt V, Martinez E. MYC acetylated lysine residues drive oncogenic cell transformation and regulate select genetic programs for cell adhesion-independent growth and survival. Genes Dev 2023; 37:865-882. [PMID: 37852796 PMCID: PMC10691474 DOI: 10.1101/gad.350736.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
The MYC oncogenic transcription factor is acetylated by the p300 and GCN5 histone acetyltransferases. The significance of MYC acetylation and the functions of specific acetylated lysine (AcK) residues have remained unclear. Here, we show that the major p300-acetylated K148(149) and K157(158) sites in human (or mouse) MYC and the main GCN5-acetylated K323 residue are reversibly acetylated in various malignant and nonmalignant cells. Oncogenic overexpression of MYC enhances its acetylation and alters the regulation of site-specific acetylation by proteasome and deacetylase inhibitors. Acetylation of MYC at different K residues differentially affects its stability in a cell type-dependent manner. Lysine-to-arginine substitutions indicate that although none of the AcK residues is required for MYC stimulation of adherent cell proliferation, individual AcK sites have gene-specific functions controlling select MYC-regulated processes in cell adhesion, contact inhibition, apoptosis, and/or metabolism and are required for the malignant cell transformation activity of MYC. Each AcK site is required for anchorage-independent growth of MYC-overexpressing cells in vitro, and both the AcK148(149) and AcK157(158) residues are also important for the tumorigenic activity of MYC transformed cells in vivo. The MYC AcK site-specific signaling pathways identified may offer new avenues for selective therapeutic targeting of MYC oncogenic activities.
Collapse
Affiliation(s)
- Matthew Hurd
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Jeffrey Pino
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Kay Jang
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Michael M Allevato
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Marina Vorontchikhina
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Wataru Ichikawa
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Yifan Zhao
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Ryan Gates
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Emily Villalpando
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Michael J Hamilton
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Francesco Faiola
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
| | - Songqin Pan
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, California 92521, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California 92521, USA
| | - Yue Qi
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Comprehensive Cancer Center, City of Hope, Duarte, California 91010, USA
| | - Yu-Wen Hung
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Comprehensive Cancer Center, City of Hope, Duarte, California 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, Comprehensive Cancer Center, City of Hope, Duarte, California 91010, USA
| | - Thomas Girke
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, California 92521, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California 92521, USA
| | - David Ann
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Comprehensive Cancer Center, City of Hope, Duarte, California 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, Comprehensive Cancer Center, City of Hope, Duarte, California 91010, USA
| | - Victoria Seewaldt
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, Comprehensive Cancer Center, City of Hope, Duarte, California 91010, USA
- Department of Population Sciences, Beckman Research Institute, Comprehensive Cancer Center, City of Hope, Duarte, California 91010, USA
| | - Ernest Martinez
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA;
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, California 92521, USA
| |
Collapse
|
27
|
Yayli G, Bernardini A, Mendoza Sanchez PK, Scheer E, Damilot M, Essabri K, Morlet B, Negroni L, Vincent SD, Timmers HTM, Tora L. ATAC and SAGA co-activator complexes utilize co-translational assembly, but their cellular localization properties and functions are distinct. Cell Rep 2023; 42:113099. [PMID: 37682711 PMCID: PMC10591836 DOI: 10.1016/j.celrep.2023.113099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
To understand the function of multisubunit complexes, it is of key importance to uncover the precise mechanisms that guide their assembly. Nascent proteins can find and bind their interaction partners during their translation, leading to co-translational assembly. Here, we demonstrate that the core modules of ATAC (ADA-two-A-containing) and SAGA (Spt-Ada-Gcn5-acetyltransferase), two lysine acetyl transferase-containing transcription co-activator complexes, assemble co-translationally in the cytoplasm of mammalian cells. In addition, a SAGA complex containing all of its modules forms in the cytoplasm and acetylates non-histone proteins. In contrast, ATAC complex subunits cannot be detected in the cytoplasm of mammalian cells. However, an endogenous ATAC complex containing two functional modules forms and functions in the nucleus. Thus, the two related co-activators, ATAC and SAGA, assemble using co-translational pathways, but their subcellular localization, cytoplasmic abundance, and functions are distinct.
Collapse
Affiliation(s)
- Gizem Yayli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Andrea Bernardini
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Paulina Karen Mendoza Sanchez
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Freiburg, Germany; Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Mylène Damilot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Karim Essabri
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Luc Negroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Stéphane D Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - H T Marc Timmers
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Freiburg, Germany; Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
28
|
Wang F, Gao Y, Xue S, Zhao L, Jiang H, Zhang T, Li Y, Zhao C, Wu F, Siqin T, Liu Y, Wu J, Yan Y, Yuan J, Jiang JD, Li K. SCARB2 drives hepatocellular carcinoma tumor initiating cells via enhanced MYC transcriptional activity. Nat Commun 2023; 14:5917. [PMID: 37739936 PMCID: PMC10517016 DOI: 10.1038/s41467-023-41593-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
CSCs (Cancer stem cells) with distinct metabolic features are considered to cause HCC (hepatocellular carcinoma) initiation, metastasis and therapeutic resistance. Here, we perform a metabolic gene CRISPR/Cas9 knockout library screen in tumorspheres derived from HCC cells and find that deletion of SCARB2 suppresses the cancer stem cell-like properties of HCC cells. Knockout of Scarb2 in hepatocytes attenuates HCC initiation and progression in both MYC-driven and DEN (diethylnitrosamine)-induced HCC mouse models. Mechanistically, binding of SCARB2 with MYC promotes MYC acetylation by interfering with HDCA3-mediated MYC deacetylation on lysine 148 and subsequently enhances MYC transcriptional activity. Screening of a database of FDA (Food and Drug Administration)-approved drugs shows Polymyxin B displays high binding affinity for SCARB2 protein, disrupts the SCARB2-MYC interaction, decreases MYC activity, and reduces the tumor burden. Our study identifies SCARB2 as a functional driver of HCC and suggests Polymyxin B-based treatment as a targeted therapeutic option for HCC.
Collapse
Affiliation(s)
- Feng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Yang Gao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Situ Xue
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Luyao Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Huimin Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Tingting Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Yunxuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Chenxi Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Fan Wu
- Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100021, Beijing, China
| | - Tana Siqin
- Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100021, Beijing, China
| | - Ying Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Jie Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Yechao Yan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China.
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
29
|
Ayala-Zambrano C, Yuste M, Frias S, Garcia-de-Teresa B, Mendoza L, Azpeitia E, Rodríguez A, Torres L. A Boolean network model of the double-strand break repair pathway choice. J Theor Biol 2023; 573:111608. [PMID: 37595867 DOI: 10.1016/j.jtbi.2023.111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023]
Abstract
Double strand break (DSB) repair is critical to maintaining the integrity of the genome. DSB repair deficiency underlies multiple pathologies, including cancer, chromosome instability syndromes, and, potentially, neurodevelopmental defects. DSB repair is mainly handled by two pathways: highly accurate homologous recombination (HR), which requires a sister chromatid for template-based repair, limited to S/G2 phases of the cell cycle, and canonical non-homologous end joining (c-NHEJ), available throughout the cell cycle in which minimum homology is sufficient for highly efficient yet error-prone repair. Some circumstances, such as cancer, require alternative highly mutagenic DSB repair pathways like microhomology-mediated end-joining (MMEJ) and single-strand annealing (SSA), which are triggered to attend to DNA damage. These non-canonical repair alternatives are emerging as prominent drivers of resistance in drug-based tumor therapies. Multiple DSB repair options require tight inter-pathway regulation to prevent unscheduled activities. In addition to this complexity, epigenetic modifications of the histones surrounding the DSB region are emerging as critical regulators of the DSB repair pathway choice. Modeling approaches to understanding DSBs repair pathway choice are advantageous to perform simulations and generate predictions on previously uncharacterized aspects of DSBs response. In this work, we present a Boolean network model of the DSB repair pathway choice that incorporates the knowledge, into a dynamic system, of the inter-pathways regulation involved in DSB repair, i.e., HR, c-NHEJ, SSA, and MMEJ. Our model recapitulates the well-characterized HR activity observed in wild-type cells in response to DSBs. It also recovers clinically relevant behaviors of BRCA1/FANCS mutants, and their corresponding drug resistance mechanisms ascribed to DNA repair gain-of-function pathogenic variants. Since epigenetic modifiers are dynamic and possible druggable targets, we incorporated them into our model to better characterize their involvement in DSB repair. Our model predicted that loss of the TIP60 complex and its corresponding histone acetylation activity leads to activation of SSA in response to DSBs. Our experimental validation showed that TIP60 effectively prevents activation of RAD52, a key SSA executor, and confirms the suitable use of Boolean network modeling for understanding DNA DSB repair.
Collapse
Affiliation(s)
- Cecilia Ayala-Zambrano
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Mariana Yuste
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Sara Frias
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Ciudad de México 04510, Mexico
| | | | - Luis Mendoza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Ciudad de México 04510, Mexico
| | - Eugenio Azpeitia
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Alfredo Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Ciudad de México 04510, Mexico; Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
| | - Leda Torres
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
| |
Collapse
|
30
|
Xiao HT, Jin J, Zheng ZG. Emerging role of GCN5 in human diseases and its therapeutic potential. Biomed Pharmacother 2023; 165:114835. [PMID: 37352700 DOI: 10.1016/j.biopha.2023.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 06/25/2023] Open
Abstract
As the first histone acetyltransferase to be cloned and identified in yeast, general control non-depressible 5 (GCN5) plays a crucial role in epigenetic and chromatin modifications. It has been extensively studied for its essential role in regulating and causing various diseases. There is mounting evidence to suggest that GCN5 plays an emerging role in human diseases and its therapeutic potential is promising. In this paper, we begin by providing an introduction GCN5 including its structure, catalytic mechanism, and regulation, followed by a review of the current research progress on the role of GCN5 in regulating various diseases, such as cancer, diabetes, osteoporosis. Thus, we delve into the various aspects of GCN5 inhibitors, including their types, characteristics, means of discovery, activities, and limitations from a medicinal chemistry perspective. Our analysis highlights the importance of identifying and creating inhibitors that are both highly selective and effective inhibitors, for the future development of novel therapeutic agents aimed at treating GCN5-related diseases.
Collapse
Affiliation(s)
- Hai-Tao Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Jing Jin
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China.
| |
Collapse
|
31
|
Yayli G, Bernardini A, Sanchez PKM, Scheer E, Damilot M, Essabri K, Morlet B, Negroni L, Vincent SD, Timmers HTM, Tora L. ATAC and SAGA coactivator complexes utilize co-translational assembly, but their cellular localization properties and functions are distinct. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551787. [PMID: 37577620 PMCID: PMC10418265 DOI: 10.1101/2023.08.03.551787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
To understand the function of multisubunit complexes it is of key importance to uncover the precise mechanisms that guide their assembly. Nascent proteins can find and bind their interaction partners during their translation, leading to co-translational assembly. Here we demonstrate that the core modules of ATAC (ADA-Two-A-Containing) and SAGA (Spt-Ada-Gcn5-acetyltransferase), two lysine acetyl transferase-containing transcription coactivator complexes, assemble co-translationally in the cytoplasm of mammalian cells. In addition, SAGA complex containing all of its modules forms in the cytoplasm and acetylates non-histones proteins. In contrast, fully assembled ATAC complex cannot be detected in the cytoplasm of mammalian cells. However, endogenous ATAC complex containing two functional modules forms and functions in the nucleus. Thus, the two related coactivators, ATAC and SAGA, assemble by using co-translational pathways, but their subcellular localization, cytoplasmic abundance and functions are distinct.
Collapse
Affiliation(s)
- Gizem Yayli
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Andrea Bernardini
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Paulina Karen Mendoza Sanchez
- German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Research, Center (DKFZ) and Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Mylène Damilot
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Karim Essabri
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Luc Negroni
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Stéphane D. Vincent
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - HT Marc Timmers
- German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Research, Center (DKFZ) and Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - László Tora
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| |
Collapse
|
32
|
Yapindi L, Bowley T, Kurtaneck N, Bergeson RL, James K, Wilbourne J, Harrod CK, Hernandez BY, Emerling BM, Yates C, Harrod R. Activation of p53-regulated pro-survival signals and hypoxia-independent mitochondrial targeting of TIGAR by human papillomavirus E6 oncoproteins. Virology 2023; 585:1-20. [PMID: 37257253 PMCID: PMC10527176 DOI: 10.1016/j.virol.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
The high-risk subtype human papillomaviruses (hrHPVs) infect and oncogenically transform basal epidermal stem cells associated with the development of squamous-cell epithelial cancers. The viral E6 oncoprotein destabilizes the p53 tumor suppressor, inhibits p53 K120-acetylation by the Tat-interacting protein of 60 kDa (TIP60, or Kat5), and prevents p53-dependent apoptosis. Intriguingly, the p53 gene is infrequently mutated in HPV + cervical cancer clinical isolates which suggests a possible paradoxical role for this gatekeeper in viral carcinogenesis. Here, we demonstrate that E6 activates the TP53-induced glycolysis and apoptosis regulator (TIGAR) and protects cells against oncogene-induced oxidative genotoxicity. The E6 oncoprotein induces a Warburg-like stress response and activates PI3K/PI5P4K/AKT-signaling that phosphorylates the TIGAR on serine residues and induces its hypoxia-independent mitochondrial targeting in hrHPV-transformed cells. Primary HPV + cervical cancer tissues contain high levels of TIGAR, p53, and c-Myc and our xenograft studies have further shown that lentiviral-siRNA-knockdown of TIGAR expression inhibits hrHPV-induced tumorigenesis in vivo. These findings suggest the modulation of p53 pro-survival signals and the antioxidant functions of TIGAR could have key ancillary roles during HPV carcinogenesis.
Collapse
Affiliation(s)
- Lacin Yapindi
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Tetiana Bowley
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Nick Kurtaneck
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Rachel L Bergeson
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Kylie James
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Jillian Wilbourne
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Carolyn K Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Brenda Y Hernandez
- Hawaii Tumor Registry, University of Hawaii Cancer Center, Honolulu, HI, 96813, United States
| | | | - Courtney Yates
- Laboratory Animal Resource Center, Southern Methodist University, Dallas, TX, 75275, United States
| | - Robert Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States.
| |
Collapse
|
33
|
Fan W, Li X. The SIRT1-c-Myc axis in regulation of stem cells. Front Cell Dev Biol 2023; 11:1236968. [PMID: 37554307 PMCID: PMC10405831 DOI: 10.3389/fcell.2023.1236968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
SIRT1 is the most conserved mammalian NAD+-dependent protein deacetylase. Through deacetylation of transcriptional factors and co-factors, this protein modification enzyme is critically involved in metabolic and epigenetic regulation of stem cells, which is functionally important in maintaining their pluripotency and regulating their differentiation. C-Myc, a key member of Myc proton-oncogene family, is a pivotal factor for transcriptional regulation of genes that control acquisition and maintenance of stemness. Previous cancer research has revealed an intriguing positive feedback loop between SIRT1 and c-Myc that is crucial in tumorigenesis. Recent literature has uncovered important functions of this axis in regulation of maintenance and differentiation of stem cells, including pluripotent stem cells and cancer stem cells. This review highlights recent advances of the SIRT1-c-Myc axis in stem cells.
Collapse
Affiliation(s)
- Wei Fan
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| |
Collapse
|
34
|
The "Superoncogene" Myc at the Crossroad between Metabolism and Gene Expression in Glioblastoma Multiforme. Int J Mol Sci 2023; 24:ijms24044217. [PMID: 36835628 PMCID: PMC9966483 DOI: 10.3390/ijms24044217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of the Myc (c-myc, n-myc, l-myc) oncogene as a canonical, DNA-bound transcription factor has consistently changed over the past few years. Indeed, Myc controls gene expression programs at multiple levels: directly binding chromatin and recruiting transcriptional coregulators; modulating the activity of RNA polymerases (RNAPs); and drawing chromatin topology. Therefore, it is evident that Myc deregulation in cancer is a dramatic event. Glioblastoma multiforme (GBM) is the most lethal, still incurable, brain cancer in adults, and it is characterized in most cases by Myc deregulation. Metabolic rewiring typically occurs in cancer cells, and GBM undergoes profound metabolic changes to supply increased energy demand. In nontransformed cells, Myc tightly controls metabolic pathways to maintain cellular homeostasis. Consistently, in Myc-overexpressing cancer cells, including GBM cells, these highly controlled metabolic routes are affected by enhanced Myc activity and show substantial alterations. On the other hand, deregulated cancer metabolism impacts Myc expression and function, placing Myc at the intersection between metabolic pathway activation and gene expression. In this review paper, we summarize the available information on GBM metabolism with a specific focus on the control of the Myc oncogene that, in turn, rules the activation of metabolic signals, ensuring GBM growth.
Collapse
|
35
|
Abstract
Post-translational modifications (PTMs) can occur on specific amino acids localized within regulatory domains of target proteins, which control a protein's stability. These regions, called degrons, are often controlled by PTMs, which act as signals to expedite protein degradation (PTM-activated degrons) or to forestall degradation and stabilize a protein (PTM-inactivated degrons). We summarize current knowledge of the regulation of protein stability by various PTMs. We aim to display the variety and breadth of known mechanisms of regulation as well as highlight common themes in PTM-regulated degrons to enhance potential for identifying novel drug targets where druggable targets are currently lacking.
Collapse
|
36
|
Metformin Induces Apoptosis in Human Pancreatic Cancer (PC) Cells Accompanied by Changes in the Levels of Histone Acetyltransferases (Particularly, p300/CBP-Associated Factor (PCAF) Protein Levels). Pharmaceuticals (Basel) 2023; 16:ph16010115. [PMID: 36678613 PMCID: PMC9863441 DOI: 10.3390/ph16010115] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidence (mainly from experimental research) suggests that metformin possesses anticancer properties through the induction of apoptosis and inhibition of the growth and proliferation of cancer cells. However, its effect on the enzymes responsible for histone acetylation status, which plays a key role in carcinogenesis, remains unclear. Therefore, the aim of our study was to evaluate the impact of metformin on histone acetyltransferases (HATs) (i.e., p300/CBP-associated factor (PCAF), p300, and CBP) and on histone deacetylases (HDACs) (i.e., SIRT-1 in human pancreatic cancer (PC) cell lines, 1.2B4, and PANC-1). The cells were exposed to metformin, an HAT inhibitor (HATi), or a combination of an HATi with metformin for 24, 48, or 72 h. Cell viability was determined using an MTT assay, and the percentage of early apoptotic cells was determined with an Annexin V-Cy3 Apoptosis Detection Assay Kit. Caspase-9 activity was also assessed. SIRT-1, PCAF, p300, and CBP expression were determined at the mRNA and protein levels using RT-PCR and Western blotting methods, respectively. Our results reveal an increase in caspase-9 in response to the metformin, indicating that it induced the apoptotic death of both 1.2B4 and PANC-1 cells. The number of cells in early apoptosis and the activity of caspase-9 decreased when treated with an HATi alone or a combination of an HATi with metformin, as compared to metformin alone. Moreover, metformin, an HATi, and a combination of an HATi with metformin also modified the mRNA expression of SIRT-1, PCAF, CBP, and p300. However, metformin did not change the expression of the studied genes in 1.2B4 cells. The results of the Western blot analysis showed that metformin diminished the protein expression of PCAF in both the 1.2B4 and PANC-1 cells. Hence, it appears possible that PCAF may be involved in the metformin-mediated apoptosis of PC cells.
Collapse
|
37
|
Abstract
Deregulation of transcription factors is critical to hallmarks of cancer. Genetic mutations, gene fusions, amplifications or deletions, epigenetic alternations, and aberrant post-transcriptional modification of transcription factors are involved in the regulation of various stages of carcinogenesis, including cancer initiation, progression, and metastasis. Thus, targeting the dysfunctional transcription factors may lead to new cancer therapeutic strategies. However, transcription factors are conventionally considered as "undruggable." Here, we summarize the recent progresses in understanding the regulation of transcription factors in cancers and strategies to target transcription factors and co-factors for preclinical and clinical drug development, particularly focusing on c-Myc, YAP/TAZ, and β-catenin due to their significance and interplays in cancer.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
38
|
Winkler R, Piskor EM, Kosan C. Lessons from Using Genetically Engineered Mouse Models of MYC-Induced Lymphoma. Cells 2022; 12:37. [PMID: 36611833 PMCID: PMC9818924 DOI: 10.3390/cells12010037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Oncogenic overexpression of MYC leads to the fatal deregulation of signaling pathways, cellular metabolism, and cell growth. MYC rearrangements are found frequently among non-Hodgkin B-cell lymphomas enforcing MYC overexpression. Genetically engineered mouse models (GEMMs) were developed to understand MYC-induced B-cell lymphomagenesis. Here, we highlight the advantages of using Eµ-Myc transgenic mice. We thoroughly compiled the available literature to discuss common challenges when using such mouse models. Furthermore, we give an overview of pathways affected by MYC based on knowledge gained from the use of GEMMs. We identified top regulators of MYC-induced lymphomagenesis, including some candidates that are not pharmacologically targeted yet.
Collapse
Affiliation(s)
| | | | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, 07745 Jena, Germany
| |
Collapse
|
39
|
Pieroni S, Castelli M, Piobbico D, Ferracchiato S, Scopetti D, Di-Iacovo N, Della-Fazia MA, Servillo G. The Four Homeostasis Knights: In Balance upon Post-Translational Modifications. Int J Mol Sci 2022; 23:14480. [PMID: 36430960 PMCID: PMC9696182 DOI: 10.3390/ijms232214480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
A cancer outcome is a multifactorial event that comes from both exogenous injuries and an endogenous predisposing background. The healthy state is guaranteed by the fine-tuning of genes controlling cell proliferation, differentiation, and development, whose alteration induces cellular behavioral changes finally leading to cancer. The function of proteins in cells and tissues is controlled at both the transcriptional and translational level, and the mechanism allowing them to carry out their functions is not only a matter of level. A major challenge to the cell is to guarantee that proteins are made, folded, assembled and delivered to function properly, like and even more than other proteins when referring to oncogenes and onco-suppressors products. Over genetic, epigenetic, transcriptional, and translational control, protein synthesis depends on additional steps of regulation. Post-translational modifications are reversible and dynamic processes that allow the cell to rapidly modulate protein amounts and function. Among them, ubiquitination and ubiquitin-like modifications modulate the stability and control the activity of most of the proteins that manage cell cycle, immune responses, apoptosis, and senescence. The crosstalk between ubiquitination and ubiquitin-like modifications and post-translational modifications is a keystone to quickly update the activation state of many proteins responsible for the orchestration of cell metabolism. In this light, the correct activity of post-translational machinery is essential to prevent the development of cancer. Here we summarize the main post-translational modifications engaged in controlling the activity of the principal oncogenes and tumor suppressors genes involved in the development of most human cancers.
Collapse
|
40
|
Dang F, Wei W. Targeting the acetylation signaling pathway in cancer therapy. Semin Cancer Biol 2022; 85:209-218. [PMID: 33705871 PMCID: PMC8423867 DOI: 10.1016/j.semcancer.2021.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Acetylation represents one of the major post-translational protein modifications, which introduces an acetyl functional group into amino acids such as the lysine residue to yield an acetate ester bond, neutralizing its positive charge. Regulation of protein functions by acetylation occurs in multiple ways, such as affecting protein stability, activity, localization, and interaction with other proteins or DNA. It has been well documented that the recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to the transcriptional machinery can modulate histone acetylation status, which is directly involved in the dynamic regulation of genes controlling cell proliferation and division. Dysregulation of gene expression is involved in tumorigenesis and aberrant activation of histone deacetylases has been reported in several types of cancer. Moreover, there is growing body of evidence showing that acetylation is widely involved in non-histone proteins to impact their roles in various cellular processes including tumorigenesis. As such, small molecular compounds inhibiting HAT or HDAC enzymatic activities have been developed and investigated for therapeutic purpose. Here we review the recent progress in our understanding of protein acetylation and discuss the therapeutic potential of targeting the acetylation signaling pathway in cancer.
Collapse
Affiliation(s)
- Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
41
|
Liu Y, Vandekeere A, Xu M, Fendt SM, Altea-Manzano P. Metabolite-derived protein modifications modulating oncogenic signaling. Front Oncol 2022; 12:988626. [PMID: 36226054 PMCID: PMC9549695 DOI: 10.3389/fonc.2022.988626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Malignant growth is defined by multiple aberrant cellular features, including metabolic rewiring, inactivation of tumor suppressors and the activation of oncogenes. Even though these features have been described as separate hallmarks, many studies have shown an extensive mutual regulatory relationship amongst them. On one hand, the change in expression or activity of tumor suppressors and oncogenes has extensive direct and indirect effects on cellular metabolism, activating metabolic pathways required for malignant growth. On the other hand, the tumor microenvironment and tumor intrinsic metabolic alterations result in changes in intracellular metabolite levels, which directly modulate the protein modification of oncogenes and tumor suppressors at both epigenetic and post-translational levels. In this mini-review, we summarize the crosstalk between tumor suppressors/oncogenes and metabolism-induced protein modifications at both levels and explore the impact of metabolic (micro)environments in shaping these.
Collapse
Affiliation(s)
- Yawen Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- Laboratory of Cellular Metabolism and Metaboli Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Anke Vandekeere
- Laboratory of Cellular Metabolism and Metaboli Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metaboli Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- *Correspondence: Sarah-Maria Fendt, ; Patricia Altea-Manzano,
| | - Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metaboli Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- *Correspondence: Sarah-Maria Fendt, ; Patricia Altea-Manzano,
| |
Collapse
|
42
|
Huang J, Zhang F, Hu G, Pan Y, Sun W, Jiang L, Wang P, Qiu J, Ding X. SIRT1 suppresses pituitary tumor progression by downregulating PTTG1 expression. Oncol Rep 2022; 48:143. [PMID: 35730625 DOI: 10.3892/or.2022.8354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/03/2022] [Indexed: 11/06/2022] Open
Abstract
Although pituitary tumors are among the most common types of brain tumor, the underlying molecular mechanism of this disease remains obscure. To this end, the role of sirtuin 1 (SIRT1) in pituitary tumors was reported. The results of reverse transcription‑quantitative PCR and immunohistochemistry revealed that sirtuin 1 (SIRT1) expression was downregulated in the tumor tissues of patients with pituitary tumors. In vitro experiments of the present study demonstrated that SIRT1 upregulation suppressed pituitary tumor cell line growth, while SIRT1 downregulation demonstrated the opposite effect. Additionally, it was determined that the enzymatic activity of SIRT1 was required for its cellular function. A mechanistic experiment determined that SIRT1 negatively regulated pituitary tumor‑transforming gene 1 (PTTG1) expression through the deacetylation of histone (H)3 lysine (K)9ac at the promoter region of PTTG1. Moreover, H3K9ac levels at the PTTG1 promoter were determined to be an essential regulatory element for PTTG1 expression. Thus, it was concluded that the SIRT1/H3K9ac/PTTG1 axis contributed to pituitary tumor formation and may represent a potential therapeutic strategy.
Collapse
Affiliation(s)
- Jinxiang Huang
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Fenglin Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Guohan Hu
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yuan Pan
- Department of Neurosurgery, No. 971 Hospital of People's Liberation Army Navy, Qingdao, Shandong 266071, P.R. China
| | - Wei Sun
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Lei Jiang
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Peng Wang
- Department of Radiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jiting Qiu
- Department of Neurosurgery, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai 201803, P.R. China
| | - Xuehua Ding
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
43
|
Wichmann J, Pitt C, Eccles S, Garnham AL, Li-Wai-Suen CSN, May R, Allan E, Wilcox S, Herold MJ, Smyth GK, Monahan BJ, Thomas T, Voss AK. Loss of TIP60 (KAT5) abolishes H2AZ lysine 7 acetylation and causes p53, INK4A, and ARF-independent cell cycle arrest. Cell Death Dis 2022; 13:627. [PMID: 35853868 PMCID: PMC9296491 DOI: 10.1038/s41419-022-05055-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 01/21/2023]
Abstract
Histone acetylation is essential for initiating and maintaining a permissive chromatin conformation and gene transcription. Dysregulation of histone acetylation can contribute to tumorigenesis and metastasis. Using inducible cre-recombinase and CRISPR/Cas9-mediated deletion, we investigated the roles of the histone lysine acetyltransferase TIP60 (KAT5/HTATIP) in human cells, mouse cells, and mouse embryos. We found that loss of TIP60 caused complete cell growth arrest. In the absence of TIP60, chromosomes failed to align in a metaphase plate during mitosis. In some TIP60 deleted cells, endoreplication occurred instead. In contrast, cell survival was not affected. Remarkably, the cell growth arrest caused by loss of TIP60 was independent of the tumor suppressors p53, INK4A and ARF. TIP60 was found to be essential for the acetylation of H2AZ, specifically at lysine 7. The mRNA levels of 6236 human and 8238 mouse genes, including many metabolism genes, were dependent on TIP60. Among the top 50 differentially expressed genes, over 90% were downregulated in cells lacking TIP60, supporting a role for TIP60 as a key co-activator of transcription. We propose a primary role of TIP60 in H2AZ lysine 7 acetylation and transcriptional activation, and that this fundamental role is essential for cell proliferation. Growth arrest independent of major tumor suppressors suggests TIP60 as a potential anti-cancer drug target.
Collapse
Affiliation(s)
- Johannes Wichmann
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Catherine Pitt
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Samantha Eccles
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Alexandra L. Garnham
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Connie S. N. Li-Wai-Suen
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Rose May
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Elizabeth Allan
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Cancer Therapeutics CRC, Parkville, VIC Australia
| | - Stephen Wilcox
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Marco J. Herold
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Gordon K. Smyth
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSchool of Mathematics and Statistics, University of Melbourne, Parkville, VIC Australia
| | - Brendon J. Monahan
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia ,Cancer Therapeutics CRC, Parkville, VIC Australia
| | - Tim Thomas
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Anne K. Voss
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| |
Collapse
|
44
|
Hill MD, Fang H, Norris D, Delucca GV, Huang H, DeBenedetto M, Quesnelle C, Schmitz WD, Tokarski JS, Sheriff S, Yan C, Fanslau C, Haarhoff Z, Huang C, Kramer M, Madari S, Menard K, Monereau L, Morrison J, Raghavan N, Shields EE, Simmermacher-Mayer J, Sinz M, Tye CK, Westhouse R, Xie C, Zhang H, Zhang L, Zvyaga T, Lee F, Gavai AV, Degnan AP. Development of BET Inhibitors as Potential Treatments for Cancer: Optimization of Pharmacokinetic Properties. ACS Med Chem Lett 2022; 13:1165-1171. [DOI: 10.1021/acsmedchemlett.2c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Matthew D. Hill
- Research & Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Haiquan Fang
- Research & Development, Bristol Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Derek Norris
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - George V. Delucca
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Hong Huang
- Research & Development, Bristol Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Mikkel DeBenedetto
- Research & Development, Bristol Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Claude Quesnelle
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - William D. Schmitz
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - John S. Tokarski
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Steven Sheriff
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Chunhong Yan
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Caroline Fanslau
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Zuzana Haarhoff
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Christine Huang
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Melissa Kramer
- Research & Development, Bristol Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Shilpa Madari
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Krista Menard
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Laura Monereau
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - John Morrison
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Nirmala Raghavan
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Eric E. Shields
- Research & Development, Bristol Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Jean Simmermacher-Mayer
- Research & Development, Bristol Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Michael Sinz
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Ching Kim Tye
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Richard Westhouse
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Chunshan Xie
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Haiying Zhang
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Lisa Zhang
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Tatyana Zvyaga
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Francis Lee
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Ashvinikumar V. Gavai
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Andrew P. Degnan
- Research & Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543, United States
| |
Collapse
|
45
|
Dijkwel Y, Tremethick DJ. The Role of the Histone Variant H2A.Z in Metazoan Development. J Dev Biol 2022; 10:jdb10030028. [PMID: 35893123 PMCID: PMC9326617 DOI: 10.3390/jdb10030028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
During the emergence and radiation of complex multicellular eukaryotes from unicellular ancestors, transcriptional systems evolved by becoming more complex to provide the basis for this morphological diversity. The way eukaryotic genomes are packaged into a highly complex structure, known as chromatin, underpins this evolution of transcriptional regulation. Chromatin structure is controlled by a variety of different epigenetic mechanisms, including the major mechanism for altering the biochemical makeup of the nucleosome by replacing core histones with their variant forms. The histone H2A variant H2A.Z is particularly important in early metazoan development because, without it, embryos cease to develop and die. However, H2A.Z is also required for many differentiation steps beyond the stage that H2A.Z-knockout embryos die. H2A.Z can facilitate the activation and repression of genes that are important for pluripotency and differentiation, and acts through a variety of different molecular mechanisms that depend upon its modification status, its interaction with histone and nonhistone partners, and where it is deposited within the genome. In this review, we discuss the current knowledge about the different mechanisms by which H2A.Z regulates chromatin function at various developmental stages and the chromatin remodeling complexes that determine when and where H2A.Z is deposited.
Collapse
|
46
|
Sukocheva OA, Lukina E, Friedemann M, Menschikowski M, Hagelgans A, Aliev G. The crucial role of epigenetic regulation in breast cancer anti-estrogen resistance: Current findings and future perspectives. Semin Cancer Biol 2022; 82:35-59. [PMID: 33301860 DOI: 10.1016/j.semcancer.2020.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) cell de-sensitization to Tamoxifen (TAM) or other selective estrogen receptor (ER) modulators (SERM) is a complex process associated with BC heterogeneity and the transformation of ER signalling. The most influential resistance-related mechanisms include modifications in ER expression and gene regulation patterns. During TAM/SERM treatment, epigenetic mechanisms can effectively silence ER expression and facilitate the development of endocrine resistance. ER status is efficiently regulated by specific epigenetic tools including hypermethylation of CpG islands within ER promoters, increased histone deacetylase activity in the ER promoter, and/or translational repression by miRNAs. Over-methylation of the ER α gene (ESR1) promoter by DNA methyltransferases was associated with poor prognosis and indicated the development of resistance. Moreover, BC progression and spreading were marked by transformed chromatin remodelling, post-translational histone modifications, and expression of specific miRNAs and/or long non-coding RNAs. Therefore, targeted inhibition of histone acetyltransferases (e.g. MYST3), deacetylases (e.g. HDAC1), and/or demethylases (e.g. lysine-specific demethylase LSD1) was shown to recover and increase BC sensitivity to anti-estrogens. Indicated as a powerful molecular instrument, the administration of epigenetic drugs can regain ER expression along with the activation of tumour suppressor genes, which can in turn prevent selection of resistant cells and cancer stem cell survival. This review examines recent advances in the epigenetic regulation of endocrine drug resistance and evaluates novel anti-resistance strategies. Underlying molecular mechanisms of epigenetic regulation will be discussed, emphasising the utilization of epigenetic enzymes and their inhibitors to re-program irresponsive BCs.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Elena Lukina
- Discipline of Biology, College of Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation; GALLY International Research Institute, San Antonio, TX, 78229, USA.
| |
Collapse
|
47
|
Ding P, Ma Z, Liu D, Pan M, Li H, Feng Y, Zhang Y, Shao C, Jiang M, Lu D, Han J, Wang J, Yan X. Lysine Acetylation/Deacetylation Modification of Immune-Related Molecules in Cancer Immunotherapy. Front Immunol 2022; 13:865975. [PMID: 35585975 PMCID: PMC9108232 DOI: 10.3389/fimmu.2022.865975] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
As major post-translational modifications (PTMs), acetylation and deacetylation are significant factors in signal transmission and cellular metabolism, and are modulated by a dynamic process via two pivotal categories of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). In previous studies, dysregulation of lysine acetylation and deacetylation has been reported to be associated with the genesis and development of malignancy. Scientists have recently explored acetylation/deacetylation patterns and prospective cancer therapy techniques, and the FDA has approved four HDAC inhibitors (HDACi) to be used in clinical treatment. In the present review, the most recent developments in the area of lysine acetylation/deacetylation alteration in cancer immunotherapy were investigated. Firstly, a brief explanation of the acetylation/deacetylation process and relevant indispensable enzymes that participate therein is provided. Subsequently, a multitude of specific immune-related molecules involved in the lysine acetylation/deacetylation process are listed in the context of cancer, in addition to several therapeutic strategies associated with lysine acetylation/deacetylation modification in cancer immunotherapy. Finally, a number of prospective research fields related to cancer immunotherapy concepts are offered with detailed analysis. Overall, the present review may provide a reference for researchers in the relevant field of study, with the aim of being instructive and meaningful to further research as well as the selection of potential targets and effective measures for future cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Dong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Huizi Li
- Department of Outpatient, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yingtong Feng
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Menglong Jiang
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Di Lu
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| | - Jinliang Wang
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| |
Collapse
|
48
|
Yu B, Su J, Shi Q, Liu Q, Ma J, Ru G, Zhang L, Zhang J, Hu X, Tang J. KMT5A-methylated SNIP1 promotes triple-negative breast cancer metastasis by activating YAP signaling. Nat Commun 2022; 13:2192. [PMID: 35449131 PMCID: PMC9023492 DOI: 10.1038/s41467-022-29899-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 04/01/2022] [Indexed: 12/15/2022] Open
Abstract
Smad nuclear-interacting protein 1 (SNIP1) is a transcription repressor related to the TGF-β signaling pathway and associates with c-MYC, a key regulator of cell proliferation and tumor development. Currently, the mechanism by which SNIP1 regulates tumorigenesis and cancer metastasis is unknown. Here, we identify that SNIP1 is a non-histone substrate of lysine methyltransferase KMT5A, which undergoes KMT5A-mediated mono-methylation to promote breast cancer cell growth, invasion and lung metastasis. Mechanistically, we show KMT5A-mediated K301 methylation of SNIP1 represents a sensing signal to release histone acetyltransferase KAT2A and promotes the interaction of c-MYC and KAT2A, and the recruitment of c-MYC/KAT2A complex to promoter of c-MYC targets. This event ultimately inhibits the Hippo kinase cascade to enhance triple-negative breast cancer (TNBC) metastasis by transcriptionally activating MARK4. Co-inhibition of KMT5A catalytic activity and YAP in TNBC xenograft-bearing animals attenuates breast cancer metastasis and increases survival. Collectively, this study presents an KMT5A methylation-dependent regulatory mechanism governing oncogenic function of SNIP1. SNIP1 methylation initiates its oncogenic functions. Here, the authors show that SNIP1 is methylated by KMT5A and this leads to downstream signalling that activates the YAP pathway, resulting in tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Bo Yu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Jun Su
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025, P. R. China
| | - Qiqi Shi
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Qing Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Jun Ma
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Guoqing Ru
- Department of Pathology, Zhejiang Provincial People's Hospital, People' s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P. R. China
| | - Lei Zhang
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China. .,Department of Phase I Clinical Trial Center, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| | - Jianming Tang
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| |
Collapse
|
49
|
Pan S, Chen R. Pathological implication of protein post-translational modifications in cancer. Mol Aspects Med 2022; 86:101097. [PMID: 35400524 PMCID: PMC9378605 DOI: 10.1016/j.mam.2022.101097] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Protein post-translational modifications (PTMs) profoundly influence protein functions and play crucial roles in essentially all cell biological processes. The diverse realm of PTMs and their crosstalk is linked to many critical signaling events involved in neoplastic transformation, carcinogenesis and metastasis. The pathological roles of various PTMs are implicated in all aspects of cancer hallmark functions, cancer metabolism and regulation of tumor microenvironment. Study of PTMs has become an important area in cancer research to understand cancer biology and discover novel biomarkers and therapeutic targets. With a limited scope, this review attempts to discuss some PTMs of high frequency with recognized importance in cancer biology, including phosphorylation, acetylation, glycosylation, palmitoylation and ubiquitination, as well as their implications in clinical applications. These protein modifications are among the most abundant PTMs and profoundly implicated in carcinogenesis.
Collapse
|
50
|
Addicks GC, Zhang H, Ryu D, Vasam G, Green AE, Marshall PL, Patel S, Kang BE, Kim D, Katsyuba E, Williams EG, Renaud JM, Auwerx J, Menzies KJ. GCN5 maintains muscle integrity by acetylating YY1 to promote dystrophin expression. J Cell Biol 2022; 221:e202104022. [PMID: 35024765 PMCID: PMC8931935 DOI: 10.1083/jcb.202104022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/04/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Protein lysine acetylation is a post-translational modification that regulates protein structure and function. It is targeted to proteins by lysine acetyltransferases (KATs) or removed by lysine deacetylases. This work identifies a role for the KAT enzyme general control of amino acid synthesis protein 5 (GCN5; KAT2A) in regulating muscle integrity by inhibiting DNA binding of the transcription factor/repressor Yin Yang 1 (YY1). Here we report that a muscle-specific mouse knockout of GCN5 (Gcn5skm-/-) reduces the expression of key structural muscle proteins, including dystrophin, resulting in myopathy. GCN5 was found to acetylate YY1 at two residues (K392 and K393), disrupting the interaction between the YY1 zinc finger region and DNA. These findings were supported by human data, including an observed negative correlation between YY1 gene expression and muscle fiber diameter. Collectively, GCN5 positively regulates muscle integrity through maintenance of structural protein expression via acetylation-dependent inhibition of YY1. This work implicates the role of protein acetylation in the regulation of muscle health and for consideration in the design of novel therapeutic strategies to support healthy muscle during myopathy or aging.
Collapse
Affiliation(s)
- Gregory C Addicks
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexander E Green
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology and the Éric Poulin Centre for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Philip L Marshall
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Sonia Patel
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Baeki E Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Doyoun Kim
- Division of Therapeutics and Biotechnology, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Elena Katsyuba
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Evan G Williams
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology and the Éric Poulin Centre for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|