1
|
van Loghem J. Calcium Hydroxylapatite in Regenerative Aesthetics: Mechanistic Insights and Mode of Action. Aesthet Surg J 2025; 45:393-403. [PMID: 39365034 DOI: 10.1093/asj/sjae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024] Open
Abstract
Calcium hydroxylapatite-carboxymethylcellulose (CaHA-CMC) is a widely utilized soft tissue filler known for its compatibility with human tissue and for its effective volumizing properties. The biodegradable CaHA microspheres function as a scaffold for the formation of new tissue by stimulating a variety of cellular responses leading to the production of collagen, elastin, vasculature, and proteoglycans and thereby enhance skin quality. Despite the promising regenerative effects of CaHA-CMC, substantial gaps remain in understanding its precise underlying mechanisms, and addressing these gaps is crucial to optimizing its clinical applications. A literature search was conducted with PubMed, Google Scholar, and Web of Science for keywords, including "calcium hydroxylapatite," "tissue regeneration," "macrophages," "fibroblasts," and "calcium." This review elucidates the novel mechanisms of CaHA-CMC action within aesthetic medicine, with a focus on the dynamic interactions between macrophages and fibroblasts. The key role of calcium ions as critical biological cues in directing skin regeneration pathways is explored alongside an examination of the distinct physicochemical properties of CaHA-CMC. CaHA-CMC helps in tissue regeneration by providing calcium ions that act as key biological cues, promoting fibroblast activity and collagen production.
Collapse
|
2
|
Wang Q, Ji C, Smith P, McCulloch CA. Impact of TRP Channels on Extracellular Matrix Remodeling: Focus on TRPV4 and Collagen. Int J Mol Sci 2024; 25:3566. [PMID: 38612378 PMCID: PMC11012046 DOI: 10.3390/ijms25073566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Disturbed remodeling of the extracellular matrix (ECM) is frequently observed in several high-prevalence pathologies that include fibrotic diseases of organs such as the heart, lung, periodontium, liver, and the stiffening of the ECM surrounding invasive cancers. In many of these lesions, matrix remodeling mediated by fibroblasts is dysregulated, in part by alterations to the regulatory and effector systems that synthesize and degrade collagen, and by alterations to the functions of the integrin-based adhesions that normally mediate mechanical remodeling of collagen fibrils. Cell-matrix adhesions containing collagen-binding integrins are enriched with regulatory and effector systems that initiate localized remodeling of pericellular collagen fibrils to maintain ECM homeostasis. A large cadre of regulatory molecules is enriched in cell-matrix adhesions that affect ECM remodeling through synthesis, degradation, and contraction of collagen fibrils. One of these regulatory molecules is Transient Receptor Potential Vanilloid-type 4 (TRPV4), a mechanically sensitive, Ca2+-permeable plasma membrane channel that regulates collagen remodeling. The gating of Ca2+ across the plasma membrane by TRPV4 and the consequent generation of intracellular Ca2+ signals affect several processes that determine the structural and mechanical properties of collagen-rich ECM. These processes include the synthesis of new collagen fibrils, tractional remodeling by contractile forces, and collagenolysis. While the specific mechanisms by which TRPV4 contributes to matrix remodeling are not well-defined, it is known that TRPV4 is activated by mechanical forces transmitted through collagen adhesion receptors. Here, we consider how TRPV4 expression and function contribute to physiological and pathological collagen remodeling and are associated with collagen adhesions. Over the long-term, an improved understanding of how TRPV4 regulates collagen remodeling could pave the way for new approaches to manage fibrotic lesions.
Collapse
Affiliation(s)
- Qin Wang
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
| | - Chenfan Ji
- Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Patricio Smith
- Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8320165, Chile;
| | | |
Collapse
|
3
|
Podolsky MJ, Kheyfets B, Pandey M, Beigh AH, Yang CD, Lizama CO, Datta R, Lin LL, Wang Z, Wolters PJ, McManus MT, Qi L, Atabai K. Genome-wide screens identify SEL1L as an intracellular rheostat controlling collagen turnover. Nat Commun 2024; 15:1531. [PMID: 38378719 PMCID: PMC10879544 DOI: 10.1038/s41467-024-45817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Accumulating evidence has implicated impaired extracellular matrix (ECM) clearance as a key factor in fibrotic disease. Despite decades of research elucidating the effectors of ECM clearance, relatively little is understood regarding the upstream regulation of this process. Collagen is the most abundant constituent of normal and fibrotic ECM in mammalian tissues. Its catabolism occurs through extracellular proteolysis and cell-mediated uptake of collagen fragments for intracellular degradation. Given the paucity of information regarding the regulation of this latter process, here we execute unbiased genome-wide screens to understand the molecular underpinnings of cell-mediated collagen clearance. Using this approach, we discover a mechanism through which collagen biosynthesis is sensed by cells internally and directly regulates clearance of extracellular collagen. The sensing mechanism appears to be dependent on endoplasmic reticulum-resident protein SEL1L and occurs via a noncanonical function of this protein. This pathway functions as a homeostatic negative feedback loop that limits collagen accumulation in tissues. In human fibrotic lung disease, the induction of this collagen clearance pathway by collagen synthesis is impaired, thereby contributing to the pathological accumulation of collagen in lung tissue. Thus, we describe cell-autonomous, rheostatic collagen clearance as an important pathway of tissue homeostasis.
Collapse
Affiliation(s)
- Michael J Podolsky
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Benjamin Kheyfets
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Monika Pandey
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Afaq H Beigh
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Christopher D Yang
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Carlos O Lizama
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Ritwik Datta
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Liangguang L Lin
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Zhihong Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Michael T McManus
- Department of Microbiology and Immunology and UCSF Diabetes Center, University of California, San Francisco, CA, USA
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kamran Atabai
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, CA, USA.
- Lung Biology Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
4
|
Podolsky MJ, Kheyfets B, Pandey M, Beigh AH, Yang CD, Lizama Valenzuela C, Datta R, Wolters PJ, McManus M, Qi L, Atabai K. Genome-wide screens identify SEL1L as an intracellular rheostat controlling collagen turnover. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523943. [PMID: 36711851 PMCID: PMC9882208 DOI: 10.1101/2023.01.13.523943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Accumulating evidence has implicated impaired extracellular matrix (ECM) clearance as a key factor in fibrotic disease. Despite decades of research elucidating the effectors of ECM clearance, relatively little is understood regarding the upstream regulation of this process. Collagen is the most abundant constituent of normal and fibrotic ECM in mammalian tissues. Its catabolism occurs through extracellular proteolysis and cell-mediated uptake of collagen fragments for intracellular degradation. Given the paucity of information regarding the regulation of this latter process, we executed unbiased genome-wide screens to understand the molecular underpinnings of cell-mediated collagen clearance. Using this approach, we discovered a previously unappreciated mechanism through which collagen biosynthesis is sensed by cells internally and directly regulates clearance of extracellular collagen. The sensing mechanism is dependent on endoplasmic reticulum-resident protein SEL1L and occurs via a noncanonical function of SEL1L. This pathway functions as a homeostatic negative feedback loop that limits collagen accumulation in tissues. In human fibrotic lung disease, the induction of this collagen clearance pathway by collagen synthesis is impaired, thereby contributing to the pathological accumulation of collagen in lung tissue. Thus cell-autonomous, rheostatic collagen clearance is a previously unidentified pathway of tissue homeostasis.
Collapse
|
5
|
Jung M, Zimmermann R. Quantitative Mass Spectrometry Characterizes Client Spectra of Components for Targeting of Membrane Proteins to and Their Insertion into the Membrane of the Human ER. Int J Mol Sci 2023; 24:14166. [PMID: 37762469 PMCID: PMC10532041 DOI: 10.3390/ijms241814166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
To elucidate the redundancy in the components for the targeting of membrane proteins to the endoplasmic reticulum (ER) and/or their insertion into the ER membrane under physiological conditions, we previously analyzed different human cells by label-free quantitative mass spectrometry. The HeLa and HEK293 cells had been depleted of a certain component by siRNA or CRISPR/Cas9 treatment or were deficient patient fibroblasts and compared to the respective control cells by differential protein abundance analysis. In addition to clients of the SRP and Sec61 complex, we identified membrane protein clients of components of the TRC/GET, SND, and PEX3 pathways for ER targeting, and Sec62, Sec63, TRAM1, and TRAP as putative auxiliary components of the Sec61 complex. Here, a comprehensive evaluation of these previously described differential protein abundance analyses, as well as similar analyses on the Sec61-co-operating EMC and the characteristics of the topogenic sequences of the various membrane protein clients, i.e., the client spectra of the components, are reported. As expected, the analysis characterized membrane protein precursors with cleavable amino-terminal signal peptides or amino-terminal transmembrane helices as predominant clients of SRP, as well as the Sec61 complex, while precursors with more central or even carboxy-terminal ones were found to dominate the client spectra of the SND and TRC/GET pathways for membrane targeting. For membrane protein insertion, the auxiliary Sec61 channel components indeed share the client spectra of the Sec61 complex to a large extent. However, we also detected some unexpected differences, particularly related to EMC, TRAP, and TRAM1. The possible mechanistic implications for membrane protein biogenesis at the human ER are discussed and can be expected to eventually advance our understanding of the mechanisms that are involved in the so-called Sec61-channelopathies, resulting from deficient ER protein import.
Collapse
Affiliation(s)
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany;
| |
Collapse
|
6
|
Zanini F, Che X, Knutsen C, Liu M, Suresh NE, Domingo-Gonzalez R, Dou SH, Zhang D, Pryhuber GS, Jones RC, Quake SR, Cornfield DN, Alvira CM. Developmental diversity and unique sensitivity to injury of lung endothelial subtypes during postnatal growth. iScience 2023; 26:106097. [PMID: 36879800 PMCID: PMC9984561 DOI: 10.1016/j.isci.2023.106097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
At birth, the lung is still immature, heightening susceptibility to injury but enhancing regenerative capacity. Angiogenesis drives postnatal lung development. Therefore, we profiled the transcriptional ontogeny and sensitivity to injury of pulmonary endothelial cells (EC) during early postnatal life. Although subtype speciation was evident at birth, immature lung EC exhibited transcriptomes distinct from mature counterparts, which progressed dynamically over time. Gradual, temporal changes in aerocyte capillary EC (CAP2) contrasted with more marked alterations in general capillary EC (CAP1) phenotype, including distinct CAP1 present only in the early alveolar lung expressing Peg3, a paternally imprinted transcription factor. Hyperoxia, an injury that impairs angiogenesis induced both common and unique endothelial gene signatures, dysregulated capillary EC crosstalk, and suppressed CAP1 proliferation while stimulating venous EC proliferation. These data highlight the diversity, transcriptomic evolution, and pleiotropic responses to injury of immature lung EC, possessing broad implications for lung development and injury across the lifespan.
Collapse
Affiliation(s)
- Fabio Zanini
- Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, Kensington, NSW 2052, Australia
| | - Xibing Che
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carsten Knutsen
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Min Liu
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nina E. Suresh
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Racquel Domingo-Gonzalez
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steve H. Dou
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daoqin Zhang
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gloria S. Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Robert C. Jones
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Stephen R. Quake
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - David N. Cornfield
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cristina M. Alvira
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Xu F, Yan J, Peng Z, Liu J, Li Z. Comprehensive analysis of a glycolysis and cholesterol synthesis-related genes signature for predicting prognosis and immune landscape in osteosarcoma. Front Immunol 2022; 13:1096009. [PMID: 36618348 PMCID: PMC9822727 DOI: 10.3389/fimmu.2022.1096009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background Glycolysis and cholesterol synthesis are crucial in cancer metabolic reprogramming. The aim of this study was to identify a glycolysis and cholesterol synthesis-related genes (GCSRGs) signature for effective prognostic assessments of osteosarcoma patients. Methods Gene expression data and clinical information were obtained from GSE21257 and TARGET-OS datasets. Consistent clustering method was used to identify the GCSRGs-related subtypes. Univariate Cox regression and LASSO Cox regression analyses were used to construct the GCSRGs signature. The ssGSEA method was used to analyze the differences in immune cells infiltration. The pRRophetic R package was utilized to assess the drug sensitivity of different groups. Western blotting, cell viability assay, scratch assay and Transwell assay were used to perform cytological validation. Results Through bioinformatics analysis, patients diagnosed with osteosarcoma were classified into one of 4 subtypes (quiescent, glycolysis, cholesterol, and mixed subtypes), which differed significantly in terms of prognosis and tumor microenvironment. Weighted gene co-expression network analysis revealed that the modules strongly correlated with glycolysis and cholesterol synthesis were the midnight blue and the yellow modules, respectively. Both univariate and LASSO Cox regression analyses were conducted on screened module genes to identify 5 GCSRGs (RPS28, MCAM, EN1, TRAM2, and VEGFA) constituting a prognostic signature for osteosarcoma patients. The signature was an effective prognostic predictor, independent of clinical characteristics, as verified further via Kaplan-Meier analysis, ROC curve analysis, univariate and multivariate Cox regression analysis. Additionally, GCSRGs signature had strong correlation with drug sensitivity, immune checkpoints and immune cells infiltration. In cytological experiments, we selected TRAM2 as a representative gene to validate the validity of GCSRGs signature, which found that TRAM2 promoted the progression of osteosarcoma cells. Finally, at the pan-cancer level, TRAM2 had been correlated with overall survival, progression free survival, disease specific survival, tumor mutational burden, microsatellite instability, immune checkpoints and immune cells infiltration. Conclusion Therefore, we constructed a GCSRGs signature that efficiently predicted osteosarcoma patient prognosis and guided therapy.
Collapse
Affiliation(s)
- Fangxing Xu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinglong Yan
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China,*Correspondence: Jinglong Yan,
| | - Zhibin Peng
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingsong Liu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zecheng Li
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Zani ALS, Gouveia MH, Aquino MM, Quevedo R, Menezes RL, Rotimi C, Lwande GO, Ouma C, Mekonnen E, Fagundes NJR. Genetic differentiation in East African ethnicities and its relationship with endurance running success. PLoS One 2022; 17:e0265625. [PMID: 35588128 PMCID: PMC9119534 DOI: 10.1371/journal.pone.0265625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/04/2022] [Indexed: 12/02/2022] Open
Abstract
Since the 1960s, East African athletes, mainly from Kenya and Ethiopia, have dominated long-distance running events in both the male and female categories. Further demographic studies have shown that two ethnic groups are overrepresented among elite endurance runners in each of these countries: the Kalenjin, from Kenya, and the Oromo, from Ethiopia, raising the possibility that this dominance results from genetic or/and cultural factors. However, looking at the life history of these athletes or at loci previously associated with endurance athletic performance, no compelling explanation has emerged. Here, we used a population approach to identify peaks of genetic differentiation for these two ethnicities and compared the list of genes close to these regions with a list, manually curated by us, of genes that have been associated with traits possibly relevant to endurance running in GWAS studies, and found a significant enrichment in both populations (Kalenjin, P = 0.048, and Oromo, P = 1.6x10-5). Those traits are mainly related to anthropometry, circulatory and respiratory systems, energy metabolism, and calcium homeostasis. Our results reinforce the notion that endurance running is a systemic activity with a complex genetic architecture, and indicate new candidate genes for future studies. Finally, we argue that a deterministic relationship between genetics and sports must be avoided, as it is both scientifically incorrect and prone to reinforcing population (racial) stereotyping.
Collapse
Affiliation(s)
- André L. S. Zani
- Postgraduate Program in Genetics and Molecular Biology, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mateus H. Gouveia
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marla M. Aquino
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Quevedo
- School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo L. Menezes
- School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Charles Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gerald O. Lwande
- Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Ephrem Mekonnen
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Nelson J. R. Fagundes
- Postgraduate Program in Genetics and Molecular Biology, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Postgraduate Program in Animal Biology, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- * E-mail:
| |
Collapse
|
9
|
Morin C, Moyret-Lalle C, Mertani HC, Diaz JJ, Marcel V. Heterogeneity and dynamic of EMT through the plasticity of ribosome and mRNA translation. Biochim Biophys Acta Rev Cancer 2022; 1877:188718. [PMID: 35304296 DOI: 10.1016/j.bbcan.2022.188718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
Abstract
Growing evidence exposes translation and its translational machinery as key players in establishing and maintaining physiological and pathological biological processes. Examining translation may not only provide new biological insight but also identify novel innovative therapeutic targets in several fields of biology, including that of epithelial-to-mesenchymal transition (EMT). EMT is currently considered as a dynamic and reversible transdifferentiation process sustaining the transition from an epithelial to mesenchymal phenotype, known to be mainly driven by transcriptional reprogramming. However, it seems that the characterization of EMT plasticity is challenging, relying exclusively on transcriptomic and epigenetic approaches. Indeed, heterogeneity in EMT programs was reported to depend on the biological context. Here, by reviewing the involvement of translational control, translational machinery and ribosome biogenesis characterizing the different types of EMT, from embryonic and adult physiological to pathological contexts, we discuss the added value of integrating translational control and its machinery to depict the heterogeneity and dynamics of EMT programs.
Collapse
Affiliation(s)
- Chloé Morin
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France
| | - Caroline Moyret-Lalle
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France
| | - Hichem C Mertani
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France
| | - Jean-Jacques Diaz
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France
| | - Virginie Marcel
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France.
| |
Collapse
|
10
|
Gao X, Jiang W, Ke Z, Huang Q, Chen L, Zhang G, Li C, Yu X. TRAM2 promotes the malignant progression of glioma through PI3K/AKT/mTOR pathway. Biochem Biophys Res Commun 2022; 586:34-41. [PMID: 34826698 DOI: 10.1016/j.bbrc.2021.11.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023]
Abstract
Molecular biomarkers play an important guidance role in the diagnosis and treatment of glioma. It has been found that TRAM2 (translocation associated membrane protein 2) drives human cancers development. Here we report that TRAM2 activity is required for malignancy properties of glioma. In this study, we demonstrated that TRAM2 is over-expressed in glioma and cell lines, particularly in the mesenchymal subtype, and glioma patients with high expression of TRAM2 is associated with poorer survival. Silencing of TRAM2 significantly suppresses glioma cell proliferation, invasion, migration and EMT in vitro, and inhibits tumorigenicity of glioma cell in vivo. We further identify that TRAM2 is positively associated with activation of the PI3K/AKT/mTOR signaling in glioma. 740Y-P, a PI3K activator, reversed the effects of TRAM2 silencing on glioma cell proliferation, invasion, migration and EMT process. Taken together, these findings establish that TRAM2/PI3K/AKT/mTOR signaling drives malignancy properties of glioma and indicate that TRAM2 may act as a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Neurosurgery, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China.
| | - Wenqu Jiang
- Department of Neurosurgery, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China
| | - Zunliang Ke
- Department of Neurosurgery, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China
| | - Qiwei Huang
- Department of Neurosurgery, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China
| | - Liang Chen
- Department of Neurosurgery, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China
| | - Guobin Zhang
- Department of Neurosurgery, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China
| | - Chao Li
- Department of Neurosurgery, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China
| | - Xiaojun Yu
- Department of Neurosurgery, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China
| |
Collapse
|
11
|
Tang Q, Lu B, He J, Chen X, Fu Q, Han H, Luo C, Yin H, Qin Z, Lyu D, Zhang L, Zhou M, Yao K. Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration. Biomaterials 2021; 280:121320. [PMID: 34923312 DOI: 10.1016/j.biomaterials.2021.121320] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022]
Abstract
Corneal damage forms scar tissue and manifests as permanent corneal opacity, which is the main cause of visual impairment caused by corneal diseases. To treat these diseases, herein, we developed a novel approach based on the exosome derived from induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) combined with a thermosensitive hydrogel, which reduces scar formation and accelerates the healing process. We found that a thermosensitive chitosan-based hydrogels (CHI hydrogel) sustained-release iPSC-MSC exosomes can effectively promote the repair of damaged corneal epithelium and stromal layer, downregulating mRNA expression coding for the three most enriched collagens (collagen type I alpha 1, collagen type V alpha 1 and collagen type V alpha 2) in corneal stroma and reducing scar formation in vivo. Furthermore, iPSC-MSCs secrete exosomes that contain miR-432-5p, which suppresses translocation-associated membrane protein 2 (TRAM2), a vital modulator of the collagen biosynthesis in the corneal stromal stem cells to avert the deposition of extracellular matrix (ECM). Our findings indicate that iPSC-MSCs secrete miRNA-containing exosomes to promote corneal epithelium and stroma regeneration, and that miR-432-5p can prevent ECM deposition via a mechanism most probably linked to direct repression of its target gene TRAM2. Overall, our exosomes-based thermosensitive CHI hydrogel, is a promising technology for clinical therapy of various corneal diseases.
Collapse
Affiliation(s)
- Qiaomei Tang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Bing Lu
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Jian He
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Qiuli Fu
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Chenqi Luo
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Houfa Yin
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Zhenwei Qin
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Danni Lyu
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Lifang Zhang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China.
| |
Collapse
|
12
|
Zhang J, Ji Y, Jiang S, Shi M, Cai W, Miron RJ, Zhang Y. Calcium-Collagen Coupling is Vital for Biomineralization Schedule. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100363. [PMID: 34047068 PMCID: PMC8336496 DOI: 10.1002/advs.202100363] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Indexed: 05/08/2023]
Abstract
Biomineralization is a chemical reaction that occurs in organisms in which collagen initiates and guides the growth and crystallization of matched apatite minerals. However, there is little known about the demand pattern for calcium salts and collagen needed by biomineralization. In this study, natural bone biomineralization is analyzed, and a novel interplay between calcium concentration and collagen production is observed. Any quantitative change in one of the entities causes a corresponding change in the other. Translocation-associated membrane protein 2 (TRAM2) is identified as an intermediate factor whose silencing disrupts this relationship and causes poor mineralization. TRAM2 directly interacts with the sarcoplasmic/endoplasmic reticulum calcium ATPase 2b (SERCA2b) and modulates SERCA2b activity to couple calcium enrichment with collagen biosynthesis. Collectively, these findings indicate that osteoblasts can independently and directly regulate the process of biomineralization via this coupling. This knowledge has significant implications for the developmentally inspired design of biomaterials for bone regenerative applications.
Collapse
Affiliation(s)
- Jinglun Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Yaoting Ji
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Shuting Jiang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Miusi Shi
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Wenjin Cai
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Richard J. Miron
- Centre for Collaborative ResearchNova Southeastern UniversityCell Therapy InstituteFort LauderdaleFL33314‐7796USA
- Department of PeriodontologyCollege of Dental MedicineNova Southeastern UniversityFort LauderdaleFL33314‐7796USA
- Department of Periodontics and Oral SurgeryUniversity of Ann ArborAnn ArborMI48109USA
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| |
Collapse
|
13
|
Claeys L, Storoni S, Eekhoff M, Elting M, Wisse L, Pals G, Bravenboer N, Maugeri A, Micha D. Collagen transport and related pathways in Osteogenesis Imperfecta. Hum Genet 2021; 140:1121-1141. [PMID: 34169326 PMCID: PMC8263409 DOI: 10.1007/s00439-021-02302-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022]
Abstract
Osteogenesis Imperfecta (OI) comprises a heterogeneous group of patients who share bone fragility and deformities as the main characteristics, albeit with different degrees of severity. Phenotypic variation also exists in other connective tissue aspects of the disease, complicating disease classification and disease course prediction. Although collagen type I defects are long established as the primary cause of the bone pathology, we are still far from comprehending the complete mechanism. In the last years, the advent of next generation sequencing has triggered the discovery of many new genetic causes for OI, helping to draw its molecular landscape. It has become clear that, in addition to collagen type I genes, OI can be caused by multiple proteins connected to different parts of collagen biosynthesis. The production of collagen entails a complex process, starting from the production of the collagen Iα1 and collagen Iα2 chains in the endoplasmic reticulum, during and after which procollagen is subjected to a plethora of posttranslational modifications by chaperones. After reaching the Golgi organelle, procollagen is destined to the extracellular matrix where it forms collagen fibrils. Recently discovered mutations in components of the retrograde transport of chaperones highlight its emerging role as critical contributor of OI development. This review offers an overview of collagen regulation in the context of recent gene discoveries, emphasizing the significance of transport disruptions in the OI mechanism. We aim to motivate exploration of skeletal fragility in OI from the perspective of these pathways to identify regulatory points which can hint to therapeutic targets.
Collapse
Affiliation(s)
- Lauria Claeys
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Silvia Storoni
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marelise Eekhoff
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mariet Elting
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lisanne Wisse
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gerard Pals
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam /UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alessandra Maugeri
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dimitra Micha
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Klein MC, Lerner M, Nguyen D, Pfeffer S, Dudek J, Förster F, Helms V, Lang S, Zimmermann R. TRAM1 protein may support ER protein import by modulating the phospholipid bilayer near the lateral gate of the Sec61-channel. Channels (Austin) 2021; 14:28-44. [PMID: 32013668 PMCID: PMC7039644 DOI: 10.1080/19336950.2020.1724759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In mammalian cells, one-third of all polypeptides is transported into or through the ER-membrane via the Sec61-channel. While the Sec61-complex facilitates the transport of all polypeptides with amino-terminal signal peptides (SP) or SP-equivalent transmembrane helices (TMH), the translocating chain-associated membrane protein (now termed TRAM1) was proposed to support transport of a subset of precursors. To identify possible determinants of TRAM1 substrate specificity, we systematically identified TRAM1-dependent precursors by analyzing cellular protein abundance changes upon TRAM1 depletion in HeLa cells using quantitative label-free proteomics. In contrast to previous analysis after TRAP depletion, SP and TMH analysis of TRAM1 clients did not reveal any distinguishing features that could explain its putative substrate specificity. To further address the TRAM1 mechanism, live-cell calcium imaging was carried out after TRAM1 depletion in HeLa cells. In additional contrast to previous analysis after TRAP depletion, TRAM1 depletion did not affect calcium leakage from the ER. Thus, TRAM1 does not appear to act as SP- or TMH-receptor on the ER-membrane’s cytosolic face and does not appear to affect the open probability of the Sec61-channel. It may rather play a supportive role in protein transport, such as making the phospholipid bilayer conducive for accepting SP and TMH in the vicinity of the lateral gate of the Sec61-channel. Abbreviations: ER, endoplasmic reticulum; OST, oligosaccharyltransferase; RAMP, ribosome-associated membrane protein; SP, signal peptide; SR, SRP-receptor; SRP, signal recognition particle; TMH, signal peptide-equivalent transmembrane helix; TRAM, translocating chain-associated membrane protein; TRAP, translocon-associated protein.
Collapse
Affiliation(s)
| | - Monika Lerner
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Duy Nguyen
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | | | - Johanna Dudek
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Friedrich Förster
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Sven Lang
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
15
|
Sicking M, Lang S, Bochen F, Roos A, Drenth JPH, Zakaria M, Zimmermann R, Linxweiler M. Complexity and Specificity of Sec61-Channelopathies: Human Diseases Affecting Gating of the Sec61 Complex. Cells 2021; 10:1036. [PMID: 33925740 PMCID: PMC8147068 DOI: 10.3390/cells10051036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022] Open
Abstract
The rough endoplasmic reticulum (ER) of nucleated human cells has crucial functions in protein biogenesis, calcium (Ca2+) homeostasis, and signal transduction. Among the roughly one hundred components, which are involved in protein import and protein folding or assembly, two components stand out: The Sec61 complex and BiP. The Sec61 complex in the ER membrane represents the major entry point for precursor polypeptides into the membrane or lumen of the ER and provides a conduit for Ca2+ ions from the ER lumen to the cytosol. The second component, the Hsp70-type molecular chaperone immunoglobulin heavy chain binding protein, short BiP, plays central roles in protein folding and assembly (hence its name), protein import, cellular Ca2+ homeostasis, and various intracellular signal transduction pathways. For the purpose of this review, we focus on these two components, their relevant allosteric effectors and on the question of how their respective functional cycles are linked in order to reconcile the apparently contradictory features of the ER membrane, selective permeability for precursor polypeptides, and impermeability for Ca2+. The key issues are that the Sec61 complex exists in two conformations: An open and a closed state that are in a dynamic equilibrium with each other, and that BiP contributes to its gating in both directions in cooperation with different co-chaperones. While the open Sec61 complex forms an aqueous polypeptide-conducting- and transiently Ca2+-permeable channel, the closed complex is impermeable even to Ca2+. Therefore, we discuss the human hereditary and tumor diseases that are linked to Sec61 channel gating, termed Sec61-channelopathies, as disturbances of selective polypeptide-impermeability and/or aberrant Ca2+-permeability.
Collapse
Affiliation(s)
- Mark Sicking
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Sven Lang
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Florian Bochen
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, D-66421 Homburg, Germany; (F.B.); (M.L.)
| | - Andreas Roos
- Department of Neuropediatrics, Essen University Hospital, D-45147 Essen, Germany;
| | - Joost P. H. Drenth
- Department of Molecular Gastroenterology and Hepatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Muhammad Zakaria
- Department of Genetics, Hazara University, Mansehra 21300, Pakistan;
| | - Richard Zimmermann
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Maximilian Linxweiler
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, D-66421 Homburg, Germany; (F.B.); (M.L.)
| |
Collapse
|
16
|
Stefanovic B, Michaels HA, Nefzi A. Discovery of a Lead Compound for Specific Inhibition of Type I Collagen Production in Fibrosis. ACS Med Chem Lett 2021; 12:477-484. [PMID: 33738075 DOI: 10.1021/acsmedchemlett.1c00006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is a major medical problem caused by excessive synthesis of the extracellular matrix, composed predominantly of type I collagen, in various tissues. There are no approved antifibrotic drugs, and the major obstacle in finding clinically relevant compounds is the lack of specificity of current experimental drugs for type I collagen. Here we describe the discovery of a lead compound that specifically inhibited secretion of type I collagen by fibroblasts in culture at IC50 = 4.5 μM. The inhibition was specific for type I collagen, because secretion of fibronectin was not affected. In vitro, the compound inhibited binding of LARP6, the master regulator of translation of type I collagen mRNAs, to the 5' stem-loop sequence element which regulates their translation. Because binding of LARP6 to collagen mRNAs is crucial for the development of fibrosis, this inhibitor represents a promising lead for optimization into specific antifibrotic drugs.
Collapse
Affiliation(s)
- Branko Stefanovic
- Florida State University, 1115 West Call Street, Tallahassee, Florida 32306, United States
| | | | - Adel Nefzi
- Florida International University, Port Saint Lucie, Florida 34987, United States
| |
Collapse
|
17
|
Li L, Ugalde AP, Scheele CLGJ, Dieter SM, Nagel R, Ma J, Pataskar A, Korkmaz G, Elkon R, Chien MP, You L, Su PR, Bleijerveld OB, Altelaar M, Momchev L, Manber Z, Han R, van Breugel PC, Lopes R, ten Dijke P, van Rheenen J, Agami R. A comprehensive enhancer screen identifies TRAM2 as a key and novel mediator of YAP oncogenesis. Genome Biol 2021; 22:54. [PMID: 33514403 PMCID: PMC7845134 DOI: 10.1186/s13059-021-02272-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Frequent activation of the co-transcriptional factor YAP is observed in a large number of solid tumors. Activated YAP associates with enhancer loci via TEAD4-DNA-binding protein and stimulates cancer aggressiveness. Although thousands of YAP/TEAD4 binding-sites are annotated, their functional importance is unknown. Here, we aim at further identification of enhancer elements that are required for YAP functions. RESULTS We first apply genome-wide ChIP profiling of YAP to systematically identify enhancers that are bound by YAP/TEAD4. Next, we implement a genetic approach to uncover functions of YAP/TEAD4-associated enhancers, demonstrate its robustness, and use it to reveal a network of enhancers required for YAP-mediated proliferation. We focus on EnhancerTRAM2, as its target gene TRAM2 shows the strongest expression-correlation with YAP activity in nearly all tumor types. Interestingly, TRAM2 phenocopies the YAP-induced cell proliferation, migration, and invasion phenotypes and correlates with poor patient survival. Mechanistically, we identify FSTL-1 as a major direct client of TRAM2 that is involved in these phenotypes. Thus, TRAM2 is a key novel mediator of YAP-induced oncogenic proliferation and cellular invasiveness. CONCLUSIONS YAP is a transcription co-factor that binds to thousands of enhancer loci and stimulates tumor aggressiveness. Using unbiased functional approaches, we dissect YAP enhancer network and characterize TRAM2 as a novel mediator of cellular proliferation, migration, and invasion. Our findings elucidate how YAP induces cancer aggressiveness and may assist diagnosis of cancer metastasis.
Collapse
Affiliation(s)
- Li Li
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Alejandro P. Ugalde
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Colinda L. G. J. Scheele
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Sebastian M. Dieter
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Remco Nagel
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Jin Ma
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Gozde Korkmaz
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Miao-Ping Chien
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Li You
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pin-Rui Su
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Onno B. Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvt Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Lyubomir Momchev
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Zohar Manber
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruiqi Han
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Pieter C. van Breugel
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Rui Lopes
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Peter ten Dijke
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Reuven Agami
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
- Erasmus MC, Rotterdam University, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Ji C, McCulloch CA. TRPV4 integrates matrix mechanosensing with Ca 2+ signaling to regulate extracellular matrix remodeling. FEBS J 2020; 288:5867-5887. [PMID: 33300268 DOI: 10.1111/febs.15665] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022]
Abstract
In healthy connective tissues, mechanosensors trigger the generation of Ca2+ signals, which enable cells to maintain the structure of the fibrillar collagen matrix through actomyosin contractile forces. Transient receptor potential vanilloid type 4 (TRPV4) is a mechanosensitive Ca2+ -permeable channel that, when expressed in cell-matrix adhesions of the plasma membrane, regulates extracellular matrix (ECM) remodeling. In high prevalence disorders such as fibrosis and tumor metastasis, dysregulated matrix remodeling is associated with disruptions of Ca2+ homeostasis and TRPV4 function. Here, we consider that ECM polymers transmit cell-activating mechanical signals to TRPV4 in cell adhesions. When activated, TRPV4 regulates fibrillar collagen remodeling, thereby altering the mechanical properties of the ECM. In this review, we integrate functionally connected processes of matrix remodeling to highlight how TRPV4 in cell adhesions and matrix mechanics are reciprocally regulated through Ca2+ signaling.
Collapse
Affiliation(s)
- Chenfan Ji
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, ON, Canada
| | | |
Collapse
|
19
|
Expression of ArfGAP3 in Vaginal Anterior Wall of Patients With Pelvic Floor Organ Prolapse in Pelvic Organ Prolapse and Non-Pelvic Organ Prolapse Patients. Female Pelvic Med Reconstr Surg 2020; 27:e64-e69. [PMID: 31868832 PMCID: PMC7774809 DOI: 10.1097/spv.0000000000000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to study the expression of adenosine diphosphate ribosylation factor GTPase-activating protein 3 (ArfGAP3) in the anterior vaginal wall of patients with pelvic organ prolapse (POP).
Collapse
|
20
|
Xie H, Su D, Zhang J, Ji D, Mao J, Hao M, Wang Q, Yu M, Mao C, Lu T. Raw and vinegar processed Curcuma wenyujin regulates hepatic fibrosis via bloking TGF-β/Smad signaling pathways and up-regulation of MMP-2/TIMP-1 ratio. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:111768. [PMID: 30849507 DOI: 10.1016/j.jep.2019.01.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcuma wenyujin Y.H. (CW), a variety of Curumae Rhizoma, which documented in China Pharmacopeia, has long been used as plant medicine for its traditional effect on promoting Qi, activating blood stagnation and expelling blood stasis. Nowadays, it is often used in clinic for extraordinary effect on liver diseases. It is worthy to be noted that CW processed with vinegar has been applied in clinic for 1500 years which started in the northern and southern dynasties. AIM OF STUDY Liver fibrosis is a worldwide clinical issue. It is worth developing a multi-target and multicellular approach which is high efficiency and low side effects for the treatment of hepatic fibrosis. The anti-hepatic fibrosis molecular mechanisms of CW and vinegar Curcuma wenyujin (VCW) need to be explored and elucidated. Furthermore, the study aimed to discuss the efficiency and mechanism differences between CW and VCW in hepatic fibrosis. METHODS AND RESULTS Biochemical assays and histopathology were adopted to evaluate the anti-hepatic fibrosis effect of CW and VCW. The TGF-β/Smad signaling involving TGF-β1, TGF-βRⅠ, TGF-βRⅡ and Smad2, Smad3, Smad7 in fibrosis is examined, which is a critical step towards the evaluation of anti-hepatic fibrosis agents. Meanwhile, the MMP/TIMP balance is a potential therapy target by modulating extracellular matrix, which is also examined. Both CW and VCW inhibit the activation and proliferation of hepatic stellate cells and induce apoptosis via blocking TGF-β/Smad signaling pathways. Additionally, the level of MMP-2/TIMP-1 regulated significantly, which suggest CW and VCW participate in the degradation process, and maintain the formation and production of extracellular matrix. CONCLUSION Raw and vinegar processed Curcuma wenyujin regulates hepatic fibrosis via bloking TGF-β/Smad signaling pathways and up-regulation of MMP-2/TIMP-1 ratio. And VCW has more exhibition than CW.
Collapse
Affiliation(s)
- Hui Xie
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, China
| | - Dan Su
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Ji Zhang
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, China
| | - De Ji
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, China
| | - Jing Mao
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, China
| | - Min Hao
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, China
| | - Qiaohan Wang
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, China
| | - Mengting Yu
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, China; School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Chunqin Mao
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, China.
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
21
|
Host-Targeted Therapeutics against Multidrug Resistant Intracellular Staphylococcus aureus. Antibiotics (Basel) 2019; 8:antibiotics8040241. [PMID: 31795127 PMCID: PMC6963206 DOI: 10.3390/antibiotics8040241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a facultative intracellular pathogen that invades and replicates within many types of human cells. S. aureus has shown to rapidly overcome traditional antibiotherapy by developing multidrug resistance. Furthermore, intracellular S. aureus is protected from the last-resort antibiotics—vancomycin, daptomycin, and linezolid—as they are unable to achieve plasma concentrations sufficient for intracellular killing. Therefore, there is an urgent need to develop novel anti-infective therapies against S. aureus infections. Here, we review the current state of the field and highlight the exploitation of host-directed approaches as a promising strategy going forward.
Collapse
|
22
|
Bravo-Santano N, Capilla-Lasheras P, Mateos LM, Calle Y, Behrends V, Letek M. Identification of novel targets for host-directed therapeutics against intracellular Staphylococcus aureus. Sci Rep 2019; 9:15435. [PMID: 31659191 PMCID: PMC6817851 DOI: 10.1038/s41598-019-51894-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/09/2019] [Indexed: 01/26/2023] Open
Abstract
During patient colonization, Staphylococcus aureus is able to invade and proliferate within human cells to evade the immune system and last resort drugs such as vancomycin. Hijacking specific host molecular factors and/or pathways is necessary for pathogens to successfully establish an intracellular infection. In this study, we employed an unbiased shRNA screening coupled with ultra-fast sequencing to screen 16,000 human genes during S. aureus infection and we identified several host genes important for this intracellular pathogen. In addition, we interrogated our screening results to find novel host-targeted therapeutics against intracellular S. aureus. We found that silencing the human gene TRAM2 resulted in a significant reduction of intracellular bacterial load while host cell viability was restored, showing its importance during intracellular infection. Furthermore, TRAM2 is an interactive partner of the endoplasmic reticulum SERCA pumps and treatment with the SERCA-inhibitor Thapsigargin halted intracellular MRSA survival. Our results suggest that Thapsigargin could be repurposed to tackle S. aureus host cell infection in combination with conventional antibiotics.
Collapse
Affiliation(s)
| | | | - Luis M Mateos
- Department of Molecular Biology, Area of Microbiology, University of León, León, Spain
| | - Yolanda Calle
- Health Sciences Research Centre, University of Roehampton, London, UK
| | - Volker Behrends
- Health Sciences Research Centre, University of Roehampton, London, UK.
| | - Michal Letek
- Health Sciences Research Centre, University of Roehampton, London, UK.
| |
Collapse
|
23
|
Stefanovic L, Stefanovic B. Technology for Discovery of Antifibrotic Drugs: Phenotypic Screening for LARP6 Inhibitors Using Inverted Yeast Three Hybrid System. Assay Drug Dev Technol 2019; 17:116-127. [PMID: 30901265 DOI: 10.1089/adt.2018.904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is defined by excessive production of type I collagen in various organs. Excessive type I collagen production in fibrosis is stimulated by binding of RNA protein LARP6 to the structural element of collagen mRNAs, the 5' stem loop (5'SL). The LARP6-dependent regulation is specific for type I collagen and critical for fibrosis development. Inhibitors of LARP6 binding have potential to be specific antifibrotic drugs, as evidenced by the discovery of one such inhibitor. To create technology for phenotypic screening of additional compounds we developed an inverted yeast three hybrid system. The system is based on expression of human LARP6 and a short RNA containing the 5'SL of human collagen α1(I) mRNA in Saccharomyces cerevisiae cells. The cells were engineered in such a way that when LARP6 is bound to 5'SL RNA they fail to grow in a specific synthetic medium. Dissociation of LARP6 from 5'SL RNA permits the cell growth, allowing identification of the inhibitors of LARP6 binding. The assay simply involves measuring optical density of cells growing in multiwall plates and is pertinent for high throughput applications. We describe the specificity of the system and its characteristics for high throughput screening. As a proof of principle, the result of one screen using collection of FDA approved drugs is also presented. This screen demonstrates that using this technology discovery of novel LARP6 inhibitors is possible.
Collapse
Affiliation(s)
- Lela Stefanovic
- 1 Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida
| | - Branko Stefanovic
- 1 Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida
| |
Collapse
|
24
|
Stefanovic B, Manojlovic Z, Vied C, Badger CD, Stefanovic L. Discovery and evaluation of inhibitor of LARP6 as specific antifibrotic compound. Sci Rep 2019; 9:326. [PMID: 30674965 PMCID: PMC6344531 DOI: 10.1038/s41598-018-36841-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/27/2018] [Indexed: 01/17/2023] Open
Abstract
Fibrosis is characterized by excessive production of type I collagen. Biosynthesis of type I collagen in fibrosis is augmented by binding of protein LARP6 to the 5' stem-loop structure (5'SL), which is found exclusively in type I collagen mRNAs. A high throughput screen was performed to discover inhibitors of LARP6 binding to 5'SL, as potential antifibrotic drugs. The screen yielded one compound (C9) which was able to dissociate LARP6 from 5' SL RNA in vitro and to inactivate the binding of endogenous LARP6 in cells. Treatment of hepatic stellate cells (liver cells responsible for fibrosis) with nM concentrations of C9 reduced secretion of type I collagen. In precision cut liver slices, as an ex vivo model of hepatic fibrosis, C9 attenuated the profibrotic response at 1 μM. In prophylactic and therapeutic animal models of hepatic fibrosis C9 prevented development of fibrosis or hindered the progression of ongoing fibrosis when administered at 1 mg/kg. Toxicogenetics analysis revealed that only 42 liver genes changed expression after administration of C9 for 4 weeks, suggesting minimal off target effects. Based on these results, C9 represents the first LARP6 inhibitor with significant antifibrotic activity.
Collapse
Affiliation(s)
- Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA.
| | - Zarko Manojlovic
- Keck School of Medicine of University of Southern California, 1450 Biggy Street, NRT 4510, Los Angeles, CA, 90033, USA
| | - Cynthia Vied
- Translational Science Laboratory, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA
| | - Crystal-Dawn Badger
- Translational Science Laboratory, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA
- Proteomics and Metabolomics Facility, Colorado State University, 401 West Pitkin Street, Fort Collins, CO, 80521, USA
| | - Lela Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA
| |
Collapse
|
25
|
Navarro-Requena C, Pérez-Amodio S, Castaño O, Engel E. Wound healing-promoting effects stimulated by extracellular calcium and calcium-releasing nanoparticles on dermal fibroblasts. NANOTECHNOLOGY 2018; 29:395102. [PMID: 30039802 DOI: 10.1088/1361-6528/aad01f] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Extracellular calcium has been proved to influence the healing process of injuries and could be used as a novel therapy for skin wound healing. However, a better understanding of its effect, together with a system to obtain a controlled release is needed. In this study, we examined whether the ionic dissolution of the calcium-phosphate-based ormoglass nanoparticles coded SG5 may produce a similar stimulating effect as extracellular calcium (from CaCl2) on rat dermal fibroblast in vitro. Cells were cultured in the presence of medium containing different calcium concentrations, normally ranging from 0.1 to 3.5 mM Ca2+. A concentration of 3.5 mM of CaCl2 increased metabolic activity, in vitro wound closure, matrix metalloproteinases (MMP) activity, collagen synthesis and cytokine expression, and reduced cell contraction capacity. Interestingly, the levels of migration and contraction capacity measured followed a dose-dependent behavior. In addition, media conditioned with SG5 stimulated the same activities as media conditioned with CaCl2, but undesired effects in chronic wound healing such as inflammatory factor expression and MMP activity were reduced compared to the equivalent CaCl2 concentration. In summary, calcium-releasing particles such as SG5 are potential biological-free biostimulators to be applied in dressings for chronic wound healing.
Collapse
Affiliation(s)
- Claudia Navarro-Requena
- Biomaterials for Regenerative Therapies. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, E-08028 Barcelona Spain. Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) E-28029 Madrid, Spain. Materials Science and Metallurgical Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), C/ Eduard Maristany 10-14, 08019 Barcelona, Spain
| | | | | | | |
Collapse
|
26
|
Fukushima R, Kasamatsu A, Nakashima D, Higo M, Fushimi K, Kasama H, Endo-Sakamoto Y, Shiiba M, Tanzawa H, Uzawa K. Overexpression of Translocation Associated Membrane Protein 2 Leading to Cancer-Associated Matrix Metalloproteinase Activation as a Putative Metastatic Factor for Human Oral Cancer. J Cancer 2018; 9:3326-3333. [PMID: 30271493 PMCID: PMC6160669 DOI: 10.7150/jca.25666] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
Translocation associated membrane protein 2 (TRAM2) has been characterized as a component of the translocon that is a gated channel at the endoplasmic reticulum (ER) membrane. TRAM2 is expressed in a wide variety of human organs. To date, no information is available regarding TRAM2 function in the genesis of human cancer. The purpose of this study was to investigate the status of the TRAM2 gene in oral squamous cell carcinoma (OSCC) cells and clinical OSCC samples. Using real-time quantitative reverse transcriptase-polymerase chain reaction, Western blotting analysis, and immunohistochemistry, we detected accelerated TRAM2 mRNA and protein expression levels both in OSCC-derived cell lines and primary tumors. Moreover, TRAM2-positive OSCC tissues were correlated closely (P<0.05) with metastasis to regional lymph nodes and vascular invasiveness. Of note, knockdown of TRAM2 inhibited metastatic phenotypes, including siTRAM2 cellular migration, invasiveness, and transendothelial migration activities with a significant (P<0.05) decrease in protein kinase RNA(PKR) - like ER kinase (PERK) and matrix metalloproteinases (MMPs) (MT1-MMP, MMP2, and MMP9). Taken together, our results suggested that TRAM2 might play a pivotal role in OSCC cellular metastasis by controlling major MMPs. This molecule might be a putative therapeutic target for OSCC.
Collapse
Affiliation(s)
- Reo Fukushima
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Dai Nakashima
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Morihiro Higo
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kazuaki Fushimi
- Department of Dentistry and Oral-Maxillofacial Surgery, Eastern Chiba Medical Center, 3-6-2 Okayamadai, Togane, Chiba 283-8686, Japan
| | - Hiroki Kasama
- Department of Dentistry and Oral-Maxillofacial Surgery, Eastern Chiba Medical Center, 3-6-2 Okayamadai, Togane, Chiba 283-8686, Japan
| | - Yosuke Endo-Sakamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masashi Shiiba
- Department of Clinical Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
27
|
Liu H, Zhang Z, Hu H, Zhang C, Niu M, Li R, Wang J, Bai Z, Xiao X. Protective effects of Liuweiwuling tablets on carbon tetrachloride-induced hepatic fibrosis in rats. Altern Ther Health Med 2018; 18:212. [PMID: 29986685 PMCID: PMC6038198 DOI: 10.1186/s12906-018-2276-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 06/28/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Liuweiwuling tablets (LWWL) are an herbal product that exerts remarkable effects on liver protection and aminotransferase levels, and they have been approved by the Chinese State Food and Drug Administration (CFDA). Clinical studies have found that LWWL can inhibit collagen production and reduce the levels of liver fibrosis markers in the serum. Thus, LWWL is expected to have beneficial effects in the treatment of liver fibrosis. The purpose of this study was to evaluate the pharmacological effects of LWWL. METHODS Hepatic fibrosis was induced in rats via carbon tetrachloride (CCl4) treatment. The rats were treated twice weekly for 8 weeks with either 2 mL·kg- 1 body weight of a 50% solution of CCl4 in olive oil or olive oil alone by oral gavage. A subset of rats received daily intraperitoneal injections of either colchicine (0.2 mg/kg per day), LWWL (0.4, 1.6, or 6.4 g/kg per day), or vehicle (N = 12 for all groups) during weeks 9-12. The rats were sacrificed after 12 weeks. Pathological changes in hepatic tissue were examined using hematoxylin and eosin (H&E) and Sirius Red staining. Immunohistochemistry was performed to observe α-smooth muscle actin (α-SMA) and collagen type I (collagen I) protein expression. Western blotting was also used to detect α-SMA protein expression. Real-time quantitative reverse-transcription polymerase chain reaction (RT-qPCR) was used to detect transforming growth factor-1 (TGF-β1), platelet-derived growth factor (PDGF), tissue inhibitor of metalloproteinase-1 (TIMP1), and tissue inhibitor of metalloproteinase-2 (TIMP2) mRNA expression. RESULTS LWWL significantly reversed histological fibrosis and liver injury, reduced the hydroxyproline content in liver tissue, and decreased α-SMA and collagen I expression. LWWL also suppressed hepatic stellate cell (HSC) activation by reducing the expression of the profibrogenic factors TGF-β1 and PDGF. The expression levels of TIMP1 and TIMP2, which regulate extracellular matrix (ECM) degradation, were decreased after CCl4 injury in LWWL-treated rats. CONCLUSIONS These data suggest that LWWL may serve as a promising therapeutic agent to reduce fibrogenesis.
Collapse
|
28
|
Carignano HA, Roldan DL, Beribe MJ, Raschia MA, Amadio A, Nani JP, Gutierrez G, Alvarez I, Trono K, Poli MA, Miretti MM. Genome-wide scan for commons SNPs affecting bovine leukemia virus infection level in dairy cattle. BMC Genomics 2018; 19:142. [PMID: 29439661 PMCID: PMC5812220 DOI: 10.1186/s12864-018-4523-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV) infection is omnipresent in dairy herds causing direct economic losses due to trade restrictions and lymphosarcoma-related deaths. Milk production drops and increase in the culling rate are also relevant and usually neglected. The BLV provirus persists throughout a lifetime and an inter-individual variation is observed in the level of infection (LI) in vivo. High LI is strongly correlated with disease progression and BLV transmission among herd mates. In a context of high prevalence, classical control strategies are economically prohibitive. Alternatively, host genomics studies aiming to dissect loci associated with LI are potentially useful tools for genetic selection programs tending to abrogate the viral spreading. The LI was measured through the proviral load (PVL) set-point and white blood cells (WBC) counts. The goals of this work were to gain insight into the contribution of SNPs (bovine 50KSNP panel) on LI variability and to identify genomics regions underlying this trait. RESULTS We quantified anti-p24 response and total leukocytes count in peripheral blood from 1800 cows and used these to select 800 individuals with extreme phenotypes in WBCs and PVL. Two case-control genomic association studies using linear mixed models (LMMs) considering population stratification were performed. The proportion of the variance captured by all QC-passed SNPs represented 0.63 (SE ± 0.14) of the phenotypic variance for PVL and 0.56 (SE ± 0.15) for WBCs. Overall, significant associations (Bonferroni's corrected -log10p > 5.94) were shared for both phenotypes by 24 SNPs within the Bovine MHC. Founder haplotypes were used to measure the linkage disequilibrium (LD) extent (r2 = 0.22 ± 0.27 at inter-SNP distance of 25-50 kb). The SNPs and LD blocks indicated genes potentially associated with LI in infected cows: i.e. relevant immune response related genes (DQA1, DRB3, BOLA-A, LTA, LTB, TNF, IER3, GRP111, CRISP1), several genes involved in cell cytoskeletal reorganization (CD2AP, PKHD1, FLOT1, TUBB5) and modelling of the extracellular matrix (TRAM2, TNXB). Host transcription factors (TFs) were also highlighted (TFAP2D; ABT1, GCM1, PRRC2A). CONCLUSIONS Data obtained represent a step forward to understand the biology of BLV-bovine interaction, and provide genetic information potentially applicable to selective breeding programs.
Collapse
Affiliation(s)
- Hugo A. Carignano
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - Dana L. Roldan
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - María J. Beribe
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino, B2700 Pergamino, Argentina
| | - María A. Raschia
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - Ariel Amadio
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela, S2300, Rafaela, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan P. Nani
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela, S2300, Rafaela, Argentina
| | - Gerónimo Gutierrez
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Virología, B686 Hurlingham, Argentina
| | - Irene Alvarez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Virología, B686 Hurlingham, Argentina
| | - Karina Trono
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Virología, B686 Hurlingham, Argentina
| | - Mario A. Poli
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - Marcos M. Miretti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
- Grupo de Investigación en Genética Aplicada, Instituto de Biología Subtropical (GIGA - IBS), Universidad Nacional de Misiones, N3300 Posadas, Argentina
| |
Collapse
|
29
|
Chen Z, Farrell AP, Matala A, Narum SR. Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments. Mol Ecol 2018; 27:659-674. [PMID: 29290103 DOI: 10.1111/mec.14475] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/26/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023]
Abstract
Heterogeneous and ever-changing thermal environments drive the evolution of populations and species, especially when extreme conditions increase selection pressure for traits influencing fitness. However, projections of biological diversity under scenarios of climate change rarely consider evolutionary adaptive potential of natural species. In this study, we tested for mechanistic evidence of evolutionary thermal adaptation among ecologically divergent redband trout populations (Oncorhynchus mykiss gairdneri) in cardiorespiratory function, cellular response and genomic variation. In a common garden environment, fish from an extreme desert climate had significantly higher critical thermal maximum (p < .05) and broader optimum thermal window for aerobic scope (>3°C) than fish from cooler montane climate. In addition, the desert population had the highest maximum heart rate during warming (20% greater than montane populations), indicating improved capacity to deliver oxygen to internal tissues. In response to acute heat stress, distinct sets of cardiac genes were induced among ecotypes, which helps to explain the differences in cardiorespiratory function. Candidate genomic markers and genes underlying these physiological adaptations were also pinpointed, such as genes involved in stress response and metabolic activity (hsp40, ldh-b and camkk2). These markers were developed into a multivariate model that not only accurately predicted critical thermal maxima, but also evolutionary limit of thermal adaptation in these specific redband trout populations relative to the expected limit for the species. This study demonstrates mechanisms and limitations of an aquatic species to evolve under changing environments that can be incorporated into advanced models to predict ecological consequences of climate change for natural organisms.
Collapse
Affiliation(s)
- Zhongqi Chen
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Anthony P Farrell
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada.,Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Amanda Matala
- Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA
| | - Shawn R Narum
- Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA
| |
Collapse
|
30
|
Shen W, Heeley JM, Carlston CM, Acuna-Hidalgo R, Nillesen WM, Dent KM, Douglas GV, Levine KL, Bayrak-Toydemir P, Marcelis CL, Shinawi M, Carey JC. The spectrum of DNMT3A variants in Tatton-Brown-Rahman syndrome overlaps with that in hematologic malignancies. Am J Med Genet A 2017; 173:3022-3028. [PMID: 28941052 DOI: 10.1002/ajmg.a.38485] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022]
Abstract
De novo, germline variants in DNMT3A cause Tatton-Brown-Rahman syndrome (TBRS). This condition is characterized by overgrowth, distinctive facial appearance, and intellectual disability. Somatic DNMT3A variants frequently occur in hematologic malignances, particularly acute myeloid leukemia. The Arg882 residue is the most common site of somatic DNMT3A variants, and has also been altered in patients with TBRS. Here we present three additional patients with this disorder attributed to DNMT3A germline variants that disrupt the Arg882 codon, suggesting that this codon may be a germline mutation hotspot in this disorder. Furthermore, based on the investigation of previously reported variants in patients with TBRS, we found overlap in the spectrum of DNMT3A variants observed in this disorder and somatic variants in hematological malignancies.
Collapse
Affiliation(s)
- Wei Shen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,ARUP Laboratories, Salt Lake City, Utah
| | | | - Colleen M Carlston
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,ARUP Laboratories, Salt Lake City, Utah
| | - Rocio Acuna-Hidalgo
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Willy M Nillesen
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Karin M Dent
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | | | | | - Pinar Bayrak-Toydemir
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,ARUP Laboratories, Salt Lake City, Utah
| | - Carlo L Marcelis
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Marwan Shinawi
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - John C Carey
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
31
|
Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta. PLoS Genet 2016; 12:e1006156. [PMID: 27441836 PMCID: PMC4956114 DOI: 10.1371/journal.pgen.1006156] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022] Open
Abstract
Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50–70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes. Osteogenesis imperfecta (OI) is a heritable disorder of connective tissues characterized by fracture susceptibility and growth deficiency. Most OI cases are caused by autosomal dominant mutations in the genes encoding type I collagen, COL1A1 and COL1A2. Delineation of novel gene defects causing dominant and recessive forms of OI has led to the understanding that the bone pathology results not only from abnormalities in type I collagen quantity and primary structure, but also from defects in post-translational modification, folding, intracellular transport and extracellular matrix incorporation. Recently, mutations in TMEM38B, which encodes the integral ER membrane K+ channel TRIC-B, have been identified as causative for the OI phenotype. However, the mechanism by which absence of TRIC-B causes OI has not been reported. Using cell lines established from three independent probands, we have demonstrated that absence of TRIC-B leads to abnormal ER Ca2+ flux and store-operated calcium entry (SOCE), although ER steady state Ca2+ is normal. Disruption of intracellular calcium dynamics alters the expression and activity of multiple collagen interacting chaperones and modifying enzymes within the ER. Thus TRIC-B deficiency causes OI by dysregulation of collagen synthesis, through the impairment of calcium-dependent gene expression and protein-protein interactions within the ER.
Collapse
|
32
|
Zhang Y, Stefanovic B. LARP6 Meets Collagen mRNA: Specific Regulation of Type I Collagen Expression. Int J Mol Sci 2016; 17:419. [PMID: 27011170 PMCID: PMC4813270 DOI: 10.3390/ijms17030419] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 01/15/2023] Open
Abstract
Type I collagen is the most abundant structural protein in all vertebrates, but its constitutive rate of synthesis is low due to long half-life of the protein (60-70 days). However, several hundred fold increased production of type I collagen is often seen in reparative or reactive fibrosis. The mechanism which is responsible for this dramatic upregulation is complex, including multiple levels of regulation. However, posttranscriptional regulation evidently plays a predominant role. Posttranscriptional regulation comprises processing, transport, stabilization and translation of mRNAs and is executed by RNA binding proteins. There are about 800 RNA binding proteins, but only one, La ribonucleoprotein domain family member 6 (LARP6), is specifically involved in type I collagen regulation. In the 5'untranslated region (5'UTR) of mRNAs encoding for type I and type III collagens there is an evolutionally conserved stem-loop (SL) structure; this structure is not found in any other mRNA, including any other collagen mRNA. LARP6 binds to the 5'SL in sequence specific manner to regulate stability of collagen mRNAs and their translatability. Here, we will review current understanding of how is LARP6 involved in posttranscriptional regulation of collagen mRNAs. We will also discuss how other proteins recruited by LARP6, including nonmuscle myosin, vimentin, serine threonine kinase receptor associated protein (STRAP), 25 kD FK506 binding protein (FKBP25) and RNA helicase A (RHA), contribute to this process.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA.
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
33
|
Artlett CM, Thacker JD. Molecular activation of the NLRP3 Inflammasome in fibrosis: common threads linking divergent fibrogenic diseases. Antioxid Redox Signal 2015; 22:1162-75. [PMID: 25329971 DOI: 10.1089/ars.2014.6148] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Over the past 10 years, there has been a plethora of investigations centering on the NLRP3 inflammasome and its role in fibrosis and other disease pathologies. To date, the signaling pathways from the inflammasome to myofibroblast differentiation and chronic collagen synthesis have not been fully elucidated, and many questions are left to be answered. RECENT ADVANCES Recent studies have demonstrated the significant and critical role of reactive oxygen species (ROS) and calcium signaling in the assembly of the inflammasome, and this may result in autocrine signaling maintaining the myofibroblast phenotype, leading to fibrotic disease. CRITICAL ISSUES Traditionally, myofibroblasts under tight regulation aid in wound healing and then, once the wound has closed, undergo apoptosis and the collagen in the wound remodels. During fibrosis, however, the myofibroblast maintains an activated state via a chronically activated inflammasome, leading to the continual synthesis of collagens and other extracellular matrix proteins that result in damage to the tissue or organ. The mechanism that is driving this abnormality has not been fully elucidated. FUTURE DIRECTIONS However, studies have been conducted to suggest that modulating the calcium or the ROS axis may be of therapeutic value in regulating inflammasome activation. A number of novel drugs are currently being developed that may prove beneficial to patients suffering from fibrotic diseases.
Collapse
Affiliation(s)
- Carol M Artlett
- 1 Department of Microbiology and Immunology, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | | |
Collapse
|
34
|
Humeres C, Montenegro J, Varela M, Ayala P, Vivar R, Letelier A, Olmedo I, Catalán M, Rivas C, Baeza P, Muñoz C, García L, Lavandero S, Díaz-Araya G. 4-Phenylbutyric acid prevent cytotoxicity induced by thapsigargin in rat cardiac fibroblast. Toxicol In Vitro 2014; 28:1443-8. [DOI: 10.1016/j.tiv.2014.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 12/27/2022]
|
35
|
Wang H, Stefanovic B. Role of LARP6 and nonmuscle myosin in partitioning of collagen mRNAs to the ER membrane. PLoS One 2014; 9:e108870. [PMID: 25271881 PMCID: PMC4182744 DOI: 10.1371/journal.pone.0108870] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/01/2014] [Indexed: 02/07/2023] Open
Abstract
Type I collagen is extracellular matrix protein composed of two α1(I) and one α2(I) polypeptides that fold into triple helix. Collagen polypeptides are translated in coordination to synchronize the rate of triple helix folding to the rate of posttranslational modifications of individual polypeptides. This is especially important in conditions of high collagen production, like fibrosis. It has been assumed that collagen mRNAs are targeted to the membrane of the endoplasmic reticulum (ER) after translation of the signal peptide and by signal peptide recognition particle (SRP). Here we show that collagen mRNAs associate with the ER membrane even when translation is inhibited. Knock down of LARP6, an RNA binding protein which binds 5' stem-loop of collagen mRNAs, releases a small amount of collagen mRNAs from the membrane. Depolimerization of nonmuscle myosin filaments has a similar, but stronger effect. In the absence of LARP6 or nonmuscle myosin filaments collagen polypeptides become hypermodified, are poorly secreted and accumulate in the cytosol. This indicates lack of coordination of their synthesis and retro-translocation due to hypermodifications and misfolding. Depolimerization of nonmuscle myosin does not alter the secretory pathway through ER and Golgi, suggesting that the role of nonmuscle myosin is primarily to partition collagen mRNAs to the ER membrane. We postulate that collagen mRNAs directly partition to the ER membrane prior to synthesis of the signal peptide and that LARP6 and nonmuscle myosin filaments mediate this process. This allows coordinated initiation of translation on the membrane bound collagen α1(I) and α2(I) mRNAs, a necessary step for proper synthesis of type I collagen.
Collapse
Affiliation(s)
- Hao Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
36
|
Stefanovic L, Longo L, Zhang Y, Stefanovic B. Characterization of binding of LARP6 to the 5' stem-loop of collagen mRNAs: implications for synthesis of type I collagen. RNA Biol 2014; 11:1386-401. [PMID: 25692237 PMCID: PMC4615758 DOI: 10.1080/15476286.2014.996467] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 01/11/2023] Open
Abstract
Type I collagen is composed of 2 polypeptides, α1(I) and α2(I), which fold into triple helix. Collagen α1(I) and α2(I) mRNAs have a conserved stem-loop structure in their 5' UTRs, the 5'SL. LARP6 binds the 5'SL to regulate type I collagen expression. We show that 5 nucleotides within the single stranded regions of 5'SL contribute to the high affinity of LARP6 binding. Mutation of individual nucleotides abolishes the binding in gel mobility shift assay. LARP6 binding to 5'SL of collagen α2(I) mRNA is more stable than the binding to 5'SL of α1(I) mRNA, although the equilibrium binding constants are similar. The more stable binding to α2(I) mRNA may favor synthesis of the heterotrimeric type I collagen. LARP6 needs 2 domains to contact 5'SL, the La domain and the RRM. T133 in the La domain is critical for folding of the protein, while loop 3 in the RRM is critical for binding 5'SL. Loop 3 is also involved in the interaction of LARP6 and protein translocation channel SEC61. This interaction is essential for type I collagen synthesis, because LARP6 mutant which binds 5'SL but which does not interact with SEC61, suppresses collagen synthesis in a dominant negative manner. We postulate that LARP6 directly targets collagen mRNAs to the SEC61 translocons to facilitate coordinated translation of the 2 collagen mRNAs. The unique sequences of LARP6 identified in this work may have evolved to enable its role in type I collagen biosynthesis.
Collapse
Affiliation(s)
- Lela Stefanovic
- Department of Biomedical Sciences; College of Medicine; Florida State University; Tallahassee, FL USA
- Current affiliation: Molecular Biophysics; Florida State University; Tallahassee, FL USA
| | - Liam Longo
- Current affiliation: Molecular Biophysics; Florida State University; Tallahassee, FL USA
| | - Yujie Zhang
- Department of Biomedical Sciences; College of Medicine; Florida State University; Tallahassee, FL USA
- Current affiliation: Molecular Biophysics; Florida State University; Tallahassee, FL USA
| | | |
Collapse
|
37
|
Dynamic changes in mucus thickness and ion secretion during Citrobacter rodentium infection and clearance. PLoS One 2013; 8:e84430. [PMID: 24386378 PMCID: PMC3875541 DOI: 10.1371/journal.pone.0084430] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/22/2013] [Indexed: 11/19/2022] Open
Abstract
Citrobacter rodentium is an attaching and effacing pathogen used as a murine model for enteropathogenic Escherichia coli. The mucus layers are a complex matrix of molecules, and mucus swelling, hydration and permeability are affected by many factors, including ion composition. Here, we used the C. rodentium model to investigate mucus dynamics during infection. By measuring the mucus layer thickness in tissue explants during infection, we demonstrated that the thickness changes dynamically during the course of infection and that its thickest stage coincides with the start of a decrease of bacterial density at day 14 after infection. Although quantitative PCR analysis demonstrated that mucin mRNA increases during early infection, the increased mucus layer thickness late in infection was not explained by increased mRNA levels. Proteomic analysis of mucus did not demonstrate the appearance of additional mucins, but revealed an increased number of proteins involved in defense responses. Ussing chamber-based electrical measurements demonstrated that ion secretion was dynamically altered during the infection phases. Furthermore, the bicarbonate ion channel Bestrophin-2 mRNA nominally increased, whereas the Cftr mRNA decreased during the late infection clearance phase. Microscopy of Muc2 immunostained tissues suggested that the inner striated mucus layer present in the healthy colon was scarce during the time point of most severe infection (10 days post infection), but then expanded, albeit with a less structured appearance, during the expulsion phase. Together with previously published literature, the data implies a model for clearance where a change in secretion allows reformation of the mucus layer, displacing the pathogen to the outer mucus layer, where it is then outcompeted by the returning commensal flora. In conclusion, mucus and ion secretion are dynamically altered during the C. rodentium infection cycle.
Collapse
|
38
|
Vukmirovic M, Manojlovic Z, Stefanovic B. Serine-threonine kinase receptor-associated protein (STRAP) regulates translation of type I collagen mRNAs. Mol Cell Biol 2013; 33:3893-906. [PMID: 23918805 PMCID: PMC3811873 DOI: 10.1128/mcb.00195-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/08/2013] [Indexed: 11/20/2022] Open
Abstract
Type I collagen is the most abundant protein in the human body and is composed of two α1(I) and one α2(I) polypeptides which assemble into a triple helix. For the proper assembly of the collagen triple helix, the individual polypeptides must be translated in coordination. Here, we show that serine-threonine kinase receptor-associated protein (STRAP) is tethered to collagen mRNAs by interaction with LARP6. LARP6 is a protein which directly binds the 5' stem-loop (5'SL) present in collagen α1(I) and α2(I) mRNAs, but it interacts with STRAP with its C-terminal domain, which is not involved in binding 5'SL. Being tethered to collagen mRNAs, STRAP prevents unrestricted translation, primarily that of collagen α2(I) mRNAs, by interacting with eukaryotic translation initiation factor 4A (eIF4A). In the absence of STRAP, more collagen α2(I) mRNA can be pulled down with eIF4A, and collagen α2(I) mRNA is unrestrictedly loaded onto the polysomes. This results in an imbalance of synthesis of α1(I) and α2(I) polypeptides, in hypermodifications of α1(I) polypeptide, and in inefficient assembly of the polypeptides into a collagen trimer and their secretion as monomers. These defects can be partially restored by supplementing STRAP. Thus, we discovered STRAP as a novel regulator of the coordinated translation of collagen mRNAs.
Collapse
Affiliation(s)
- Milica Vukmirovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | | | | |
Collapse
|
39
|
Hinz B. Matrix mechanics and regulation of the fibroblast phenotype. Periodontol 2000 2013; 63:14-28. [DOI: 10.1111/prd.12030] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2012] [Indexed: 01/17/2023]
|
40
|
Park KS, Sin PJ, Lee DH, Cha SK, Kim MJ, Kim NH, Baik SK, Jeong SW, Kong ID. Switching-on of serotonergic calcium signaling in activated hepatic stellate cells. World J Gastroenterol 2011; 17:164-73. [PMID: 21245988 PMCID: PMC3020369 DOI: 10.3748/wjg.v17.i2.164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/11/2010] [Accepted: 10/18/2010] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate serotonergic Ca²+ signaling and the expression of 5-hydroxytryptamine (5-HT) receptors, as well as Ca²+ transporting proteins, in hepatic stellate cells (HSCs). METHODS The intracellular Ca²+ concentration [Ca²+](i) of isolated rat HSCs was measured with a fluorescence microscopic imaging system. Quantitative PCR was performed to determine the transcriptional levels of 5-HT receptors and endoplasmic reticulum (ER) proteins involved in Ca²+ storage and release in cultured rat HSCs. RESULTS Distinct from quiescent cells, activated HSCs exhibited [Ca²+](i) transients following treatment with 5-HT, which was abolished by U-73122, a phospholipase C inhibitor. Upregulation of 5-HT(2A) and 5-HT(2B) receptors, but not 5-HT₃, was prominent during trans-differentiation of HSCs. Pretreatment with ritanserin, a 5-HT₂ antagonist, inhibited [Ca²+](i) changes upon application of 5-HT. Expression of type 1 inositol-5'-triphosphate receptor and type 2 sarcoplasmic/endoplasmic reticulum Ca²+ ATPase were also increased during activation of HSCs and serve as the major isotypes for ER Ca²+ storage and release in activated HSCs. Ca²+ binding chaperone proteins of the ER, including calreticulin, calnexin and calsequestrin, were up-regulated following activation of HSCs. CONCLUSION The appearance of 5-HT-induced [Ca²+](i) response accompanied by upregulation of metabotropic 5-HT₂ receptors and Ca²+ transporting/chaperone ER proteins may participate in the activating process of HSCs.
Collapse
|
41
|
Hasegawa D, Fujii R, Yagishita N, Matsumoto N, Aratani S, Izumi T, Azakami K, Nakazawa M, Fujita H, Sato T, Araya N, Koike J, Tadokoro M, Suzuki N, Nagata K, Senoo H, Friedman SL, Nishioka K, Yamano Y, Itoh F, Nakajima T. E3 ubiquitin ligase synoviolin is involved in liver fibrogenesis. PLoS One 2010; 5:e13590. [PMID: 21049091 PMCID: PMC2963597 DOI: 10.1371/journal.pone.0013590] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 10/04/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIM Chronic hepatic damage leads to liver fibrosis, which is characterized by the accumulation of collagen-rich extracellular matrix. However, the mechanism by which E3 ubiquitin ligase is involved in collagen synthesis in liver fibrosis is incompletely understood. This study aimed to explore the involvement of the E3 ubiquitin ligase synoviolin (Syno) in liver fibrosis. METHODS The expression and localization of synoviolin in the liver were analyzed in CCl(4)-induced hepatic injury models and human cirrhosis tissues. The degree of liver fibrosis and the number of activated hepatic stellate cells (HSCs) was compared between wild type (wt) and Syno(+/-) mice in the chronic hepatic injury model. We compared the ratio of apoptosis in activated HSCs between wt and Syno(+/-) mice. We also analyzed the effect of synoviolin on collagen synthesis in the cell line from HSCs (LX-2) using siRNA-synoviolin and a mutant synoviolin in which E3 ligase activity was abolished. Furthermore, we compared collagen synthesis between wt and Syno(-/-) mice embryonic fibroblasts (MEF) using quantitative RT-PCR, western blotting, and collagen assay; then, we immunohistochemically analyzed the localization of collagen in Syno(-/-) MEF cells. RESULTS In the hepatic injury model as well as in cirrhosis, synoviolin was upregulated in the activated HSCs, while Syno(+/-) mice developed significantly less liver fibrosis than in wt mice. The number of activated HSCs was decreased in Syno(+/-) mice, and some of these cells showed apoptosis. Furthermore, collagen expression in LX-2 cells was upregulated by synoviolin overexpression, while synoviolin knockdown led to reduced collagen expression. Moreover, in Syno(-/-) MEF cells, the amounts of intracellular and secreted mature collagen were significantly decreased, and procollagen was abnormally accumulated in the endoplasmic reticulum. CONCLUSION Our findings demonstrate the importance of the E3 ubiquitin ligase synoviolin in liver fibrosis.
Collapse
Affiliation(s)
- Daisuke Hasegawa
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ryoji Fujii
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Naoko Yagishita
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Nobuyuki Matsumoto
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Satoko Aratani
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Toshihiko Izumi
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kazuko Azakami
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Minako Nakazawa
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hidetoshi Fujita
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Tomoo Sato
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Natsumi Araya
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Junki Koike
- Department of Pathology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Mamoru Tadokoro
- Department of Pathology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Noboru Suzuki
- Departments of Immunology and Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kazuhiro Nagata
- Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Haruki Senoo
- Department of Cell Biology and Histology, Akita University School of Medicine, Hondo, Japan
| | - Scott L. Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Kusuki Nishioka
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yoshihisa Yamano
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Fumio Itoh
- Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Toshihiro Nakajima
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
- Choju Medical Institute Fukushimura Hospital, Toyohasi, Japan
- Misato Marine Hospital, Kochi, Japan
- * E-mail:
| |
Collapse
|
42
|
Cai L, Fritz D, Stefanovic L, Stefanovic B. Nonmuscle myosin-dependent synthesis of type I collagen. J Mol Biol 2010; 401:564-78. [PMID: 20603131 DOI: 10.1016/j.jmb.2010.06.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/09/2010] [Accepted: 06/25/2010] [Indexed: 01/15/2023]
Abstract
Type I collagen, synthesized in all tissues as the heterotrimer of two alpha1(I) polypeptides and one alpha2(I) polypeptide, is the most abundant protein in the human body. Here we show that intact nonmuscle myosin filaments are required for the synthesis of heterotrimeric type I collagen. Conserved 5' stem-loop in collagen alpha1(I) and alpha2(I) mRNAs binds the RNA-binding protein LARP6. LARP6 interacts with nonmuscle myosin through its C-terminal domain and associates collagen mRNAs with the filaments. Dissociation of nonmuscle myosin filaments results in secretion of collagen alpha1(I) homotrimer, diminished intracellular colocalization of collagen alpha1(I) and alpha2(I) polypeptides (required for folding of the heterotrimer), and their increased intracellular degradation. Inhibition of the motor function of myosin has similar collagen-specific effects, while disruption of actin filaments has a general effect on protein secretion. Nonmuscle myosin copurifies with polysomes, and there is a subset of polysomes involved in myosin-dependent translation of collagen mRNAs. These results indicate that association of collagen mRNAs with nonmuscle myosin filaments is necessary to coordinately synthesize collagen alpha1(I) and alpha2(I) polypeptides. We postulate that LARP6/myosin-dependent mechanism regulates the synthesis of heterotrimeric type I collagen by coordinating the translation of collagen mRNAs.
Collapse
Affiliation(s)
- Le Cai
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
43
|
Tuusa JT, Leskelä TT, Petäjä-Repo UE. Human delta opioid receptor biogenesis is regulated via interactions with SERCA2b and calnexin. FEBS J 2010; 277:2815-29. [PMID: 20528919 DOI: 10.1111/j.1742-4658.2010.07699.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sarco(endo)plasmic reticulum calcium ATPase (SERCA)2b maintains the cellular Ca(2+) homeostasis by transferring Ca(2+) from the cytosol to the lumen of the endoplasmic reticulum (ER). Recently, SERCA2b has also been shown to be involved in the biosynthesis of secreted and membrane proteins via direct protein-protein interactions, involving components of the ER folding and quality-control machinery, as well as newly synthesized G protein-coupled receptors. Here we demonstrate that the human delta opioid receptor (hdeltaOR) exists in a ternary complex with SERCA2b and the ER molecular chaperone calnexin. The interaction between SERCA2b and hdeltaOR in vivo did not require calnexin as it was independent of the C-terminal calnexin-interacting domain of SERCA2b. However, the receptor was able to mediate co-immunoprecipitation of calnexin with the C-terminally truncated SERCA2b. The association of SERCA2b with hdeltaOR was regulated in vitro by Ca(2+) and ATP in a manner that was opposite to the calnexin-hdeltaOR interaction. Importantly, co-expression of the catalytically inactive SERCA2b(D351A) or calnexin binding-compromised SERCA2bDeltaC mutants with the receptor decreased the expression of mature receptors in a manner that did not directly relate to changes in the ER Ca(2+) concentration. We conclude that dynamic interactions among SERCA2b, calnexin and the hdeltaOR precursor orchestrate receptor biogenesis and are regulated by Ca(2+) and ATP. We further hypothesize that the primary role of SERCA2b in this process is to act as a Ca(2+) sensor in the vicinity of active translocons, integrating protein folding with local fluctuations of ER Ca(2+) levels.
Collapse
Affiliation(s)
- Jussi T Tuusa
- Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | | | | |
Collapse
|
44
|
Regulation of myofibroblast activities: calcium pulls some strings behind the scene. Exp Cell Res 2010; 316:2390-401. [PMID: 20451515 DOI: 10.1016/j.yexcr.2010.04.033] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/27/2010] [Accepted: 04/30/2010] [Indexed: 12/23/2022]
Abstract
Myofibroblast-induced remodeling of collagenous extracellular matrix is a key component of our body's strategy to rapidly and efficiently repair damaged tissues; thus myofibroblast activity is considered crucial in assuring the mechanical integrity of vital organs and tissues after injury. Typical examples of beneficial myofibroblast activities are scarring after myocardial infarct and repair of damaged connective tissues including dermis, tendon, bone, and cartilage. However, deregulation of myofibroblast contraction causes the tissue deformities that characterize hypertrophic scars as well as organ fibrosis that ultimately leads to heart, lung, liver and kidney failure. The phenotypic features of the myofibroblast, within a spectrum going from the fibroblast to the smooth muscle cell, raise the question as to whether it regulates contraction in a fibroblast- or muscle-like fashion. In this review, we attempt to elucidate this point with a particular focus on the role of calcium signaling. We suggest that calcium plays a central role in myofibroblast biological activity not only in regulating contraction but also in mediating intracellular and extracellular mechanical signals, structurally organizing the contractile actin-myosin cytoskeleton, and establishing lines of intercellular communication.
Collapse
|
45
|
Ng CL, Oresic K, Tortorella D. TRAM1 is involved in disposal of ER membrane degradation substrates. Exp Cell Res 2010; 316:2113-22. [PMID: 20430023 DOI: 10.1016/j.yexcr.2010.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 03/12/2010] [Accepted: 04/12/2010] [Indexed: 11/28/2022]
Abstract
ER quality control consists of monitoring protein folding and targeting misfolded proteins for proteasomal degradation. ER stress results in an unfolded protein response (UPR) that selectively upregulates proteins involved in protein degradation, ER expansion, and protein folding. Given the efficiency in which misfolded proteins are degraded, there likely exist cellular factors that enhance the export of proteins across the ER membrane. We have reported that translocating chain-associated membrane protein 1 (TRAM1), an ER-resident membrane protein, participates in HCMV US2- and US11-mediated dislocation of MHC class I heavy chains (Oresic, K., Ng, C.L., and Tortorella, D. 2009). Consistent with the hypothesis that TRAM1 is involved in the disposal of misfolded ER proteins, cells lacking TRAM1 experienced a heightened UPR upon acute ER stress, as evidenced by increased activation of unfolded protein response elements (UPRE) and elevated levels of NF-kappaB activity. We have also extended the involvement of TRAM1 in the selective degradation of misfolded ER membrane proteins Cln6(M241T) and US2, but not the soluble degradation substrate alpha(1)-antitrypsin null(HK). These degradation model systems support the paradigm that TRAM1 is a selective factor that can enhance the dislocation of ER membrane proteins.
Collapse
Affiliation(s)
- Caroline L Ng
- One Gustave L. Levy Place, Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | |
Collapse
|
46
|
Van Duyn Graham L, Sweetwyne MT, Pallero MA, Murphy-Ullrich JE. Intracellular calreticulin regulates multiple steps in fibrillar collagen expression, trafficking, and processing into the extracellular matrix. J Biol Chem 2010; 285:7067-78. [PMID: 20044481 PMCID: PMC2844156 DOI: 10.1074/jbc.m109.006841] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 12/29/2009] [Indexed: 12/19/2022] Open
Abstract
Calreticulin (CRT), a chaperone and Ca(2+) regulator, enhances wound healing, and its expression correlates with fibrosis in animal models, suggesting that CRT regulates production of the extracellular matrix. However, direct regulation of collagen matrix by CRT has not been previously demonstrated. We investigated the role of CRT in the regulation of fibrillar collagen expression, secretion, processing, and deposition in the extracellular matrix by fibroblasts. Mouse embryonic fibroblasts deficient in CRT (CRT(-/-) MEFs) have reduced transcript levels of fibrillar collagen I and III and less soluble collagen as compared with wild type MEFs. Correspondingly, fibroblasts engineered to overexpress CRT have increased collagen type I transcript and protein. Collagen expression appears to be regulated by endoplasmic reticulum (ER) calcium levels and intracellular CRT, because thapsigargin treatment reduced collagen expression, whereas addition of exogenous recombinant CRT had no effect. CRT(-/-) MEFs exhibited increased ER retention of collagen, and collagen and CRT were co-immunoprecipitated from isolated cell lysates, suggesting that CRT is important for trafficking of collagen through the ER. CRT(-/-) MEFs also have reduced type I procollagen processing and deposition into the extracellular matrix. The reduced collagen matrix deposition is partly a consequence of reduced fibronectin matrix formation in the CRT-deficient cells. Together, these data show that CRT complexes with collagen in cells and that CRT plays critical roles at multiple stages of collagen expression and processing. These data identify CRT as an important regulator of collagen and suggest that intracellular CRT signaling plays an important role in tissue remodeling and fibrosis.
Collapse
Affiliation(s)
| | - Mariya T. Sweetwyne
- Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
| | | | | |
Collapse
|
47
|
Cai L, Fritz D, Stefanovic L, Stefanovic B. Binding of LARP6 to the conserved 5' stem-loop regulates translation of mRNAs encoding type I collagen. J Mol Biol 2010; 395:309-26. [PMID: 19917293 PMCID: PMC2826804 DOI: 10.1016/j.jmb.2009.11.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 11/05/2009] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
Abstract
Type I collagen is the most abundant protein in the human body, produced by folding of two alpha1(I) polypeptides and one alpha2(I) polypeptide into the triple helix. A conserved stem-loop structure is found in the 5' untranslated region of collagen mRNAs, encompassing the translation start codon. We cloned La ribonucleoprotein domain family member 6 (LARP6) as the protein that binds the collagen 5' stem-loop in a sequence-specific manner. LARP6 has a distinctive bipartite RNA binding domain not found in other members of the La superfamily. LARP6 interacts with the two single-stranded regions of the 5' stem-loop. The K(d) for binding of LARP6 to the 5' stem-loop is 1.4 nM. LARP6 binds the 5' stem-loop in both the nucleus and the cytoplasm. In the cytoplasm, LARP6 does not associate with polysomes; however, overexpression of LARP6 blocks ribosomal loading on collagen mRNAs. Knocking down LARP6 by small interfering RNA also decreased polysomal loading of collagen mRNAs, suggesting that it regulates translation. Collagen protein is synthesized at discrete regions of the endoplasmic reticulum. Using collagen-GFP (green fluorescent protein) reporter protein, we could reproduce this focal pattern of synthesis, but only when the reporter was encoded by mRNA with the 5' stem-loop and in the presence of LARP6. When the reporter was encoded by mRNA without the 5' stem-loop, or in the absence of LARP6, it accumulated diffusely throughout the endoplasmic reticulum. This indicates that LARP6 activity is needed for focal synthesis of collagen polypeptides. We postulate that the LARP6-dependent mechanism increases local concentration of collagen polypeptides for more efficient folding of the collagen heterotrimer.
Collapse
Affiliation(s)
- Le Cai
- Department of Biomedical Sciences, College of Medicine, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
48
|
Bobe R, Bredoux R, Corvazier E, Lacabaratz-Porret C, Martin V, Kovács T, Enouf J. How many Ca2+ATPase isoforms are expressed in a cell type? A growing family of membrane proteins illustrated by studies in platelets. Platelets 2009; 16:133-50. [PMID: 16011958 DOI: 10.1080/09537100400016847] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ca(2+) signaling plays a key role in normal and abnormal platelet functions. Understanding platelet Ca(2+) signaling requires the knowledge of proteins involved in this process. Among these proteins are Ca(2+)ATPases or Ca(2+) pumps that deplete the cytosol of Ca(2+) ions. Here, we will particularly focus on two Ca(2+) pump families: the plasma membrane Ca(2+)ATPases (PMCAs) that extrude cytosolic Ca(2+) towards the extracellular medium and the sarco/endoplasmic reticulum Ca(2+)ATPases (SERCAs) that pump Ca(2+) into the endoplasmic reticulum (ER). In the present review, we will summarize data on platelet Ca(2+)ATPases including their identification and biogenesis. First of all, we will present the Ca(2+)ATPase genes and their isoforms expressed in platelets. We will especially focus on a member of the SERCA family, SERCA3, recently found to give rise to a number of species-specific isoforms. Next, we will describe the differences in Ca(2+)ATPase patterns observed in human and rat platelets. Last, we will analyze how the expression of Ca(2+)ATPase isoforms changes during megakaryocytic maturation and show that megakaryocytopoiesis is associated with a profound reorganization of the expression and/or activity of Ca(2+)ATPases. Taken together, these data provide new aspects of investigations to better understand normal and abnormal platelet Ca(2+) signaling.
Collapse
Affiliation(s)
- R Bobe
- INSERM U.689 E6, IFR139 Lariboisière, Hôpital Lariboisière, 8 Rue Guy Patin, 75475 Paris Cedex 10, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Fernandez L, Marchuk DA, Moran JL, Beier DR, Rockman HA. An N-ethyl-N-nitrosourea mutagenesis recessive screen identifies two candidate regions for murine cardiomyopathy that map to chromosomes 1 and 15. Mamm Genome 2009; 20:296-304. [PMID: 19387734 PMCID: PMC2743897 DOI: 10.1007/s00335-009-9184-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 03/18/2009] [Indexed: 10/20/2022]
Abstract
N-ethyl-N-nitrosourea (ENU) mutagenesis screens have been successful for identifying genes that affect important biological processes and diseases. However, for heart-related phenotypes, these screens have been employed exclusively for developmental phenotypes, and to date no adult cardiomyopathy-causing genes have been discovered through a mutagenesis screen. To identify novel disease-causing and disease-modifying genes for cardiomyopathy, we performed an ENU recessive mutagenesis screen in adult mice. Using noninvasive echocardiography to screen for abnormalities in cardiac function, we identified a heritable cardiomyopathic phenotype in two families. To identify the chromosomal regions where the mutations are localized, we used a single nucleotide polymorphism (SNP) panel for genetic mapping of mouse mutations. This panel provided whole-genome linkage information and identified the mutagenized candidate regions at the proximal end of chromosome 1 (family EN1), and at the distal end of chromosome 15 (family EN25). We have identified 94 affected mice in family EN1 and have narrowed the candidate interval to 1 Mb. We have identified 20 affected mice in family EN25 and have narrowed the candidate interval to 12 Mb. The identification of the genes responsible for the observed phenotype in these families will be strong candidates for disease-causing or disease-modifying genes in patients with heart failure.
Collapse
Affiliation(s)
- Liliana Fernandez
- Department of Medicine, Duke University Medical Center, DUMC 3104, 226 CARL Building, Research Drive, Durham, NC 27710, USA
| | - Douglas A. Marchuk
- Department Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Jennifer L. Moran
- Genetic Analysis Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David R. Beier
- Division of Genetics, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Howard A. Rockman
- Department of Medicine, Duke University Medical Center, DUMC 3104, 226 CARL Building, Research Drive, Durham, NC 27710, USA
- Department Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
50
|
Abstract
Sustained progress in defining the molecular pathophysiology of hepatic fibrosis has led to a comprehensive framework for developing antifibrotic therapies. Indeed, the single greatest limitation in bringing new drugs to the clinical setting is a lack of clarity regarding clinical trial and treatment end points, not a lack of promising agents. A range of treatments, including those developed for other indications, as well as those specifically developed for hepatic fibrosis, are nearing or in clinical trials. Most are focused on attacking features of either hepatic injury and/or activated stellate cells and myofibroblasts, which are the primary sources of extracellular matrix (scar) proteins. Thus, features of injury and stellate cell activation provide a useful template for classifying these emerging agents and point to a new class of therapies for patients with fibrosing liver disease.
Collapse
Affiliation(s)
- Zahra Ghiassi-Nejad
- Division of Liver Diseases, Box 1123, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA.
| | | |
Collapse
|