1
|
De Novo ACTG1 Variant Expands the Phenotype and Genotype of Partial Deafness and Baraitser-Winter Syndrome. Int J Mol Sci 2022; 23:ijms23020692. [PMID: 35054877 PMCID: PMC8776155 DOI: 10.3390/ijms23020692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Actin molecules are fundamental for embryonic structural and functional differentiation; γ-actin is specifically required for the maintenance and function of cytoskeletal structures in the ear, resulting in hearing. Baraitser–Winter Syndrome (B-WS, OMIM #243310, #614583) is a rare, multiple-anomaly genetic disorder caused by mutations in either cytoplasmically expressed actin gene, ACTB (β-actin) or ACTG1 (γ-actin). The resulting actinopathies cause characteristic cerebrofrontofacial and developmental traits, including progressive sensorineural deafness. Both ACTG1-related non-syndromic A20/A26 deafness and B-WS diagnoses are characterized by hypervariable penetrance in phenotype. Here, we identify a 28th patient worldwide carrying a mutated γ-actin ACTG1 allele, with mildly manifested cerebrofrontofacial B-WS traits, hypervariable penetrance of developmental traits and sensorineural hearing loss. This patient also displays brachycephaly and a complete absence of speech faculty, previously unreported for ACTG1-related B-WS or DFNA20/26 deafness, representing phenotypic expansion. The patient’s exome sequence analyses (ES) confirms a de novo ACTG1 variant previously unlinked to the pathology. Additional microarray analysis uncover no further mutational basis for dual molecular diagnosis in our patient. We conclude that γ-actin c.542C > T, p.Ala181Val is a dominant pathogenic variant, associated with mildly manifested facial and cerebral traits typical of B-WS, hypervariable penetrance of developmental traits and sensorineural deafness. We further posit and present argument and evidence suggesting ACTG1-related non-syndromic DFNA20/A26 deafness is a manifestation of undiagnosed ACTG1-related B-WS.
Collapse
|
2
|
Glyakina AV, Galzitskaya OV. Bioinformatics Analysis of Actin Molecules: Why Quantity Does Not Translate Into Quality? Front Genet 2020; 11:617763. [PMID: 33362870 PMCID: PMC7758494 DOI: 10.3389/fgene.2020.617763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
It is time to review all the available data and find the distinctive characteristics of actin that make it such an important cell molecule. The presented double-stranded organization of filamentous actin cannot explain the strong polymorphism of actin fibrils. In this work, we performed bioinformatics analysis of a set of 296 amino acid actin sequences from representatives of different classes of the Chordate type. Based on the results of the analysis, the degree of conservatism of the primary structure of this protein in representatives of the Chordate type was determined. In addition, 155 structures of rabbit actin obtained using X-ray diffraction analysis and electron microscopy have been analyzed over the past 30 years. From pairwise alignments and the calculation of root-mean-square deviations (RMSDs) for these structures, it follows that they are very similar to each other without correlation with the structure resolution and the reconstruction method: the RMSDs for 11,781 pairs did not exceed 3 Å. It turned out that in rabbit actin most of the charged amino acid residues are located inside the protein, which is not typical for the protein structure. We found that two of six exon regions correspond to structural subdomains. To test the double-stranded organization of the actin structure, it is necessary to use new approaches and new techniques, taking into account our new data obtained from the structural analysis of actin.
Collapse
Affiliation(s)
- Anna V Glyakina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Institute of Mathematical Problems of Biology RAS, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Russia
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
3
|
Kashina AS. Regulation of actin isoforms in cellular and developmental processes. Semin Cell Dev Biol 2020; 102:113-121. [PMID: 32001148 DOI: 10.1016/j.semcdb.2019.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
Actin is one of the most abundant and essential intracellular proteins that mediates nearly every form of cellular movement and underlies such key processes as embryogenesis, tissue integrity, cell division and contractility of all types of muscle and non-muscle cells. In mammals, actin is represented by six isoforms, which are encoded by different genes but produce proteins that are 95-99 % identical to each other. The six actin genes have vastly different functions in vivo, and the small amino acid differences between the proteins they encode are rigorously maintained through evolution, but the underlying differences behind this distinction, as well as the importance of specific amino acid sequences for each actin isoform, are not well understood. This review summarizes different levels of actin isoform-specific regulation in cellular and developmental processes, starting with the nuclear actin's role in transcription, and covering the gene-level, mRNA-level, and protein-level regulation, with a special focus on mammalian actins in non-muscle cells.
Collapse
Affiliation(s)
- Anna S Kashina
- University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
4
|
Rodriguez A, Kashina A. Posttranscriptional and Posttranslational Regulation of Actin. Anat Rec (Hoboken) 2018; 301:1991-1998. [PMID: 30312009 DOI: 10.1002/ar.23958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 12/14/2022]
Abstract
Actin is one of the most abundant intracellular proteins, essential in every eukaryotic cell type. Actin plays key roles in tissue morphogenesis, cell adhesion, muscle contraction, and developmental reprogramming. Most actin studies have focused on its regulation at the protein level, either directly or through differential interactions with over a hundred intracellular binding partners. However, numerous studies emerging in recent years demonstrate specific types of nucleotide-level regulation that strongly affect non-muscle actins during cell migration and adhesion and are potentially applicable to other members of the actin family. This regulation involves zipcode-mediated actin mRNA targeting to the cell periphery, proposed to mediate local synthesis of actin at the cell leading edge, as well as the recently discovered N-terminal arginylation that specifically targets non-muscle β-actin via a nucleotide-dependent mechanism. Moreover, a study published this year suggests that actin's essential roles at the organismal level may be entirely nucleotide-dependent. This review summarizes the emerging data on actin's nucleotide-level regulation. Anat Rec, 301:1991-1998, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexis Rodriguez
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Anna Kashina
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Vedula P, Kashina A. The makings of the 'actin code': regulation of actin's biological function at the amino acid and nucleotide level. J Cell Sci 2018; 131:131/9/jcs215509. [PMID: 29739859 DOI: 10.1242/jcs.215509] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The actin cytoskeleton plays key roles in every eukaryotic cell and is essential for cell adhesion, migration, mechanosensing, and contractility in muscle and non-muscle tissues. In higher vertebrates, from birds through to mammals, actin is represented by a family of six conserved genes. Although these genes have evolved independently for more than 100 million years, they encode proteins with ≥94% sequence identity, which are differentially expressed in different tissues, and tightly regulated throughout embryogenesis and adulthood. It has been previously suggested that the existence of such similar actin genes is a fail-safe mechanism to preserve the essential function of actin through redundancy. However, knockout studies in mice and other organisms demonstrate that the different actins have distinct biological roles. The mechanisms maintaining this distinction have been debated in the literature for decades. This Review summarizes data on the functional regulation of different actin isoforms, and the mechanisms that lead to their different biological roles in vivo We focus here on recent studies demonstrating that at least some actin functions are regulated beyond the amino acid level at the level of the actin nucleotide sequence.
Collapse
Affiliation(s)
- Pavan Vedula
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna Kashina
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Skruber K, Read TA, Vitriol EA. Reconsidering an active role for G-actin in cytoskeletal regulation. J Cell Sci 2018; 131:131/1/jcs203760. [PMID: 29321224 DOI: 10.1242/jcs.203760] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Globular (G)-actin, the actin monomer, assembles into polarized filaments that form networks that can provide structural support, generate force and organize the cell. Many of these structures are highly dynamic and to maintain them, the cell relies on a large reserve of monomers. Classically, the G-actin pool has been thought of as homogenous. However, recent work has shown that actin monomers can exist in distinct groups that can be targeted to specific networks, where they drive and modify filament assembly in ways that can have profound effects on cellular behavior. This Review focuses on the potential factors that could create functionally distinct pools of actin monomers in the cell, including differences between the actin isoforms and the regulation of G-actin by monomer binding proteins, such as profilin and thymosin β4. Owing to difficulties in studying and visualizing G-actin, our knowledge over the precise role that specific actin monomer pools play in regulating cellular actin dynamics remains incomplete. Here, we discuss some of these unanswered questions and also provide a summary of the methodologies currently available for the imaging of G-actin.
Collapse
Affiliation(s)
- Kristen Skruber
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Tracy-Ann Read
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Eric A Vitriol
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Wang L, Miao J, Li L, Wu D, Zhang Y, Peng Z, Zhang L, Yuan Z, Sun K. Identification of an FHL1 protein complex containing gamma-actin and non-muscle myosin IIB by analysis of protein-protein interactions. PLoS One 2013; 8:e79551. [PMID: 24265776 PMCID: PMC3827166 DOI: 10.1371/journal.pone.0079551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 09/24/2013] [Indexed: 12/24/2022] Open
Abstract
FHL1 is multifunctional and serves as a modular protein binding interface to mediate protein-protein interactions. In skeletal muscle, FHL1 is involved in sarcomere assembly, differentiation, growth, and biomechanical stress. Muscle abnormalities may play a major role in congenital clubfoot (CCF) deformity during fetal development. Thus, identifying the interactions of FHL1 could provide important new insights into its functional role in both skeletal muscle development and CCF pathogenesis. Using proteins derived from rat L6GNR4 myoblastocytes, we detected FHL1 interacting proteins by immunoprecipitation. Samples were analyzed by liquid chromatography mass spectrometry (LC-MS). Dynamic gene expression of FHL1 was studied. Additionally, the expression of the possible interacting proteins gamma-actin and non-muscle myosin IIB, which were isolated from the lower limbs of E14, E15, E17, E18, E20 rat embryos or from adult skeletal muscle was analyzed. Potential interacting proteins isolated from E17 lower limbs were verified by immunoprecipitation, and co-localization in adult gastrocnemius muscle was visualized by fluorescence microscopy. FHL1 expression was associated with skeletal muscle differentiation. E17 was found to be the critical time-point for skeletal muscle differentiation in the lower limbs of rat embryos. We also identified gamma-actin and non-muscle myosin IIB as potential binding partners of FHL1, and both were expressed in adult skeletal muscle. We then demonstrated that FHL1 exists as part of a complex, which binds gamma-actin and non-muscle myosin IIB.
Collapse
Affiliation(s)
- Lili Wang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
- * E-mail:
| | - Jianing Miao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lianyong Li
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Di Wu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yi Zhang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhaohong Peng
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lijun Zhang
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Kailai Sun
- Department of Medical Genetics, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Jaeger MA, Sonnemann KJ, Fitzsimons DP, Prins KW, Ervasti JM. Context-dependent functional substitution of alpha-skeletal actin by gamma-cytoplasmic actin. FASEB J 2009; 23:2205-14. [PMID: 19279140 DOI: 10.1096/fj.09-129783] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We generated transgenic mice that overexpressed gamma-(cyto) actin 2000-fold above wild-type levels in skeletal muscle. gamma-(cyto) actin comprised 40% of total actin in transgenic skeletal muscle, with a concomitant 40% decrease in alpha-actin. Surprisingly, transgenic muscle was histologically and ultrastructurally identical to wild-type muscle despite near-stoichiometric incorporation of gamma-(cyto) actin into sarcomeric thin filaments. Furthermore, several parameters of muscle physiological performance in the transgenic animals were not different from wild type. Given these surprising results, we tested whether overexpression of gamma-(cyto) actin could rescue the early postnatal lethality in alpha-(sk) actin-null mice (Acta1(-/-)). By quantitative Western blot analysis, we found total actin levels were decreased by 35% in Acta1(-/-) muscle. Although transgenic overexpression of gamma-(cyto) actin on the Acta1(-/-) background restored total actin levels to wild type, resulting in thin filaments composed of 60% gamma-(cyto) actin and a 40% mixture of cardiac and vascular actin, the life span of transgenic Acta1(-/-) mice was not extended. These results indicate that sarcomeric thin filaments can accommodate substantial incorporation of gamma-(cyto) actin without functional consequences, yet gamma-(cyto) actin cannot fully substitute for alpha-(sk) actin.
Collapse
Affiliation(s)
- Michele A Jaeger
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
9
|
Böhl M, Tietze S, Sokoll A, Madathil S, Pfennig F, Apostolakis J, Fahmy K, Gutzeit HO. Flavonoids affect actin functions in cytoplasm and nucleus. Biophys J 2007; 93:2767-80. [PMID: 17573428 PMCID: PMC1989700 DOI: 10.1529/biophysj.107.107813] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Based on the identification of actin as a target protein for the flavonol quercetin, the binding affinities of quercetin and structurally related flavonoids were determined by flavonoid-dependent quenching of tryptophan fluorescence from actin. Irrespective of differences in the hydroxyl pattern, similar Kd values in the 20 microM range were observed for six flavonoids encompassing members of the flavonol, isoflavone, flavanone, and flavane group. The potential biological relevance of the flavonoid/actin interaction in the cytoplasm and the nucleus was addressed using an actin polymerization and a transcription assay, respectively. In contrast to the similar binding affinities, the flavonoids exert distinct and partially opposing biological effects: although flavonols inhibit actin functions, the structurally related flavane epigallocatechin promotes actin activity in both test systems. Infrared spectroscopic evidence reveals flavonoid-specific conformational changes in actin which may mediate the different biological effects. Docking studies provide models of flavonoid binding to the known small molecule-binding sites in actin. Among these, the mostly hydrophobic tetramethylrhodamine-binding site is a prime candidate for flavonoid binding and rationalizes the high efficiency of quenching of the two closely located fluorescent tryptophans. The experimental and theoretical data consistently indicate the importance of hydrophobic, rather than H-bond-mediated, actin-flavonoid interactions. Depending on the rigidity of the flavonoid structures, different functionally relevant conformational changes are evoked through an induced fit.
Collapse
Affiliation(s)
- Markus Böhl
- Institute of Zoology, Technical University Dresden, D-01062 Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Hanft LM, Rybakova IN, Patel JR, Rafael-Fortney JA, Ervasti JM. Cytoplasmic gamma-actin contributes to a compensatory remodeling response in dystrophin-deficient muscle. Proc Natl Acad Sci U S A 2006; 103:5385-90. [PMID: 16565216 PMCID: PMC1459364 DOI: 10.1073/pnas.0600980103] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dystrophin mechanically links the costameric cytoskeleton and sarcolemma, yet dystrophin-deficient muscle exhibits abnormalities in cell signaling, gene expression, and contractile function that are not clearly understood. We generated new antibodies specific for cytoplasmic gamma-actin and confirmed that gamma-actin most predominantly localized to the sarcolemma and in a faint reticular lattice within normal muscle cells. However, we observed that gamma-actin levels were increased 10-fold at the sarcolemma and within the cytoplasm of striated muscle cells from dystrophin-deficient mdx mice. Transgenic overexpression of the dystrophin homologue utrophin, or functional dystrophin constructs in mdx muscle, restored gamma-actin to normal levels, whereas gamma-actin remained elevated in mdx muscle expressing nonfunctional dystrophin constructs. We conclude that increased cytoplasmic gamma-actin in dystrophin-deficient muscle may be a compensatory response to fortify the weakened costameric lattice through recruitment of parallel mechanical linkages. However, the presence of excessive myoplasmic gamma-actin may also contribute to altered cell signaling or gene expression in dystrophin-deficient muscle.
Collapse
Affiliation(s)
- Laurin M. Hanft
- *Department of Physiology, University of Wisconsin, Madison, WI 53706; and
| | - Inna N. Rybakova
- *Department of Physiology, University of Wisconsin, Madison, WI 53706; and
| | | | - Jill A. Rafael-Fortney
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210
| | - James M. Ervasti
- *Department of Physiology, University of Wisconsin, Madison, WI 53706; and
- To whom correspondence should be addressed at:
Department of Physiology, University of Wisconsin, 127 Service Memorial Institute, 1300 University Avenue, Madison, WI 53706. E-mail:
| |
Collapse
|
11
|
Sun Q, Chen G, Streb JW, Long X, Yang Y, Stoeckert CJ, Miano JM. Defining the mammalian CArGome. Genes Dev 2006; 16:197-207. [PMID: 16365378 PMCID: PMC1361715 DOI: 10.1101/gr.4108706] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 11/01/2005] [Indexed: 11/24/2022]
Abstract
Serum response factor (SRF) binds a 1216-fold degenerate cis element known as the CArG box. CArG boxes are found primarily in muscle- and growth-factor-associated genes although the full spectrum of functional CArG elements in the genome (the CArGome) has yet to be defined. Here we describe a genome-wide screen to further define the functional mammalian CArGome. A computational approach involving comparative genomic analyses of human and mouse orthologous genes uncovered >100 hypothetical SRF-dependent genes, including 10 previously identified SRF targets, harboring a conserved CArG element within 4000 bp of the annotated transcription start site (TSS). We PCR-cloned 89 hypothetical SRF targets and subjected each of them to at least two of several validations including luciferase reporter, gel shift, chromatin immunoprecipitation, and mRNA expression following RNAi knockdown of SRF; 60/89 (67%) of the targets were validated. Interestingly, 26 of the validated SRF target genes encode for cytoskeletal/contractile or adhesion proteins. RNAi knockdown of SRF diminishes expression of several SRF-dependent cytoskeletal genes and elicits an attending perturbation in the cytoarchitecture of both human and rodent cells. These data illustrate the power of integrating existing algorithms to interrogate the genome in a relatively unbiased fashion for cis-regulatory element discovery. In this manner, we have further expanded the mammalian CArGome with the discovery of an array of cyto-contractile genes that coordinate normal cytoskeletal homeostasis. We suggest one function of SRF is that of an ancient master regulator of the actin cytoskeleton.
Collapse
Affiliation(s)
- Qiang Sun
- Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
van Wijk E, Krieger E, Kemperman MH, De Leenheer EMR, Huygen PLM, Cremers CWRJ, Cremers FPM, Kremer H. A mutation in the gamma actin 1 (ACTG1) gene causes autosomal dominant hearing loss (DFNA20/26). J Med Genet 2004; 40:879-84. [PMID: 14684684 PMCID: PMC1735337 DOI: 10.1136/jmg.40.12.879] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Linkage analysis in a multigenerational family with autosomal dominant hearing loss yielded a chromosomal localisation of the underlying genetic defect in the DFNA20/26 locus at 17q25-qter. The 6-cM critical region harboured the gamma-1-actin (ACTG1) gene, which was considered an attractive candidate gene because actins are important structural elements of the inner ear hair cells. In this study, a Thr278Ile mutation was identified in helix 9 of the modelled protein structure. The alteration of residue Thr278 is predicted to have a small but significant effect on the gamma 1 actin structure owing to its close proximity to a methionine residue at position 313 in helix 11. Met313 has no space in the structure to move away. Moreover, the Thr278 residue is highly conserved throughout eukaryotic evolution. Using a known actin structure the mutation could be predicted to impair actin polymerisation. These findings strongly suggest that the Thr278Ile mutation in ACTG1 represents the first disease causing germline mutation in a cytoplasmic actin isoform.
Collapse
Affiliation(s)
- E van Wijk
- Department of Otorhinolaryngology, University Medical Centre, Nijmegen, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Parseghian MH, Newcomb RL, Winokur ST, Hamkalo BA. The distribution of somatic H1 subtypes is non-random on active vs. inactive chromatin: distribution in human fetal fibroblasts. Chromosome Res 2001; 8:405-24. [PMID: 10997781 DOI: 10.1023/a:1009262819961] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chromatin immunoprecipitation was employed to determine whether or not the previously reported depletion of histone H1 on actively transcribed sequences was selective with respect to H1 subtypes. DNA of immunofractionated chromatin was analyzed by slot-blots for repetitive sequences and PCR for single and low-copy sequences. Based on the analysis of a diverse set of sequences, we report distinct differences in subtype distributions. Actively transcribed chromatin, as well as chromatin poised for transcription, is characterized by a relative depletion of somatic H1 subtypes 2 and 4 (H1s-2 and H1s-4),whereas facultative and constitutive heterochromatin contain all four somatic subtypes. These results support a model in which subtypes are selectively depleted upon gene expression. In turn, the data also support the possibility that the somatic subtypes have different functional roles based on their selective depletion from different classes of DNA sequences.
Collapse
Affiliation(s)
- M H Parseghian
- Research and Development, Techniclone Corporation, Tustin, CA 92780, USA
| | | | | | | |
Collapse
|
14
|
Moraes CT, Kenyon L, Hao H. Mechanisms of human mitochondrial DNA maintenance: the determining role of primary sequence and length over function. Mol Biol Cell 1999; 10:3345-56. [PMID: 10512871 PMCID: PMC25601 DOI: 10.1091/mbc.10.10.3345] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although the regulation of mitochondrial DNA (mtDNA) copy number is performed by nuclear-coded factors, very little is known about the mechanisms controlling this process. We attempted to introduce nonhuman ape mtDNA into human cells harboring either no mtDNA or mutated mtDNAs (partial deletion and tRNA gene point mutation). Unexpectedly, only cells containing no mtDNA could be repopulated with nonhuman ape mtDNA. Cells containing a defective human mtDNA did not incorporate or maintain ape mtDNA and therefore died under selection for oxidative phosphorylation function. On the other hand, foreign human mtDNA was readily incorporated and maintained in these cells. The suicidal preference for self-mtDNA showed that functional parameters associated with oxidative phosphorylation are less relevant to mtDNA maintenance and copy number control than recognition of mtDNA self-determinants. Non-self-mtDNA could not be maintained into cells with mtDNA even if no selection for oxidative phosphorylation was applied. The repopulation kinetics of several mtDNA forms after severe depletion by ethidium bromide treatment showed that replication and maintenance of mtDNA in human cells are highly dependent on molecular features, because partially deleted mtDNA molecules repopulated cells significantly faster than full-length mtDNA. Taken together, our results suggest that mtDNA copy number may be controlled by competition for limiting levels of trans-acting factors that recognize primarily mtDNA molecular features. In agreement with this hypothesis, marked variations in mtDNA levels did not affect the transcription of nuclear-coded factors involved in mtDNA replication.
Collapse
Affiliation(s)
- C T Moraes
- Department of Neurology, University of Miami, School of Medicine, Miami, Florida 33136, USA.
| | | | | |
Collapse
|
15
|
Parsons GG, Spencer CA. Mitotic repression of RNA polymerase II transcription is accompanied by release of transcription elongation complexes. Mol Cell Biol 1997; 17:5791-802. [PMID: 9315637 PMCID: PMC232427 DOI: 10.1128/mcb.17.10.5791] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nuclear RNA synthesis is repressed during the mitotic phase of each cell cycle. Although total RNA synthesis remains low throughout mitosis, the degree of RNA polymerase II transcription repression on specific genes has not been examined. In addition, it is not known whether mitotic repression of RNA polymerase II transcription is due to polymerase pausing or ejection of transcription elongation complexes from mitotic chromosomes. In this study, we show that RNA polymerase II transcription is repressed in mammalian cells on a number of specific gene regions during mitosis. We also show that the majority of RNA polymerase II transcription elongation complexes are physically excluded from mitotic chromosomes between late prophase and late telophase. Despite generalized transcription repression and stripping of RNA polymerase II complexes from DNA, arrested RNA polymerase II ternary complexes appear to remain on some gene regions during mitosis. The cyclic repression of transcription and ejection of RNA polymerase II transcription elongation complexes may help regulate the transcriptional events that control cell cycle progression and differentiation.
Collapse
Affiliation(s)
- G G Parsons
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
16
|
Hao H, Manfredi G, Moraes CT. Functional and structural features of a tandem duplication of the human mtDNA promoter region. Am J Hum Genet 1997; 60:1363-72. [PMID: 9199557 PMCID: PMC1716123 DOI: 10.1086/515474] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An approximately 260-bp tandem duplication of the human mtDNA regulatory region has been identified in patients with mitochondrial disorders and in a specific Caucasian haplogroup. The functional significance of this mtDNA duplication was difficult to assess, because it was present at very low levels in human tissues. We have isolated several transmitochondrial cybrid lines harboring this mutation, one of which (clone CA17.1) was essentially homoplasmic for the duplication. Oxidative-phosphorylation function was not impaired in clone CA17.1, suggesting that this mtDNA alteration is not pathogenic. mtDNA copy number and steady-state levels of heavy- and light-strand transcripts were unaltered in clone CA 17.1. The steady-state levels of RNAs made from the two promoters (either from the heavy-strand or from the light-strand) were also similar, indicating that oppositely oriented promoters did not interfere with each other.
Collapse
Affiliation(s)
- H Hao
- Department of Neurology, University of Miami, FL, USA
| | | | | |
Collapse
|
17
|
Hecht JH, Weiner JA, Post SR, Chun J. Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J Cell Biol 1996; 135:1071-83. [PMID: 8922387 PMCID: PMC2133395 DOI: 10.1083/jcb.135.4.1071] [Citation(s) in RCA: 585] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Neocortical neuroblast cell lines were used to clone G-protein-coupled receptor (GPCR) genes to study signaling mechanisms regulating cortical neurogenesis. One putative GPCR gene displayed an in situ expression pattern enriched in cortical neurogenic regions and was therefore named ventricular zone gene-1 (vzg-1). The vzg-1 cDNA hybridized to a 3.8-kb mRNA transcript and encoded a protein with a predicted molecular mass of 41-42 kD, confirmed by Western blot analysis. To assess its function, vzg-1 was overexpressed in a cell line from which it was cloned, inducing serum-dependent "cell rounding." Lysophosphatidic acid (LPA), a bioactive lipid present in high concentrations in serum, reproduced the effect seen with serum alone. Morphological responses to other related phospholipids or to thrombin, another agent that induces cell rounding through a GPCR, were not observed in vzg-1 overexpressing cells. Vzg-1 overexpression decreased the EC50 of both cell rounding and Gi activation in response to LPA. Pertussis toxin treatment inhibited vzg-1-dependent LPA-mediated Gi activation, but had no effect on cell rounding. Membrane binding studies indicated that vzg-1 overexpression increased specific LPA binding. These analyses identify the vzg-1 gene product as a receptor for LPA, suggesting the operation of LPA signaling mechanisms in cortical neurogenesis. Vzg-1 therefore provides a link between extracellular LPA and the activation of LPA-mediated signaling pathways through a single receptor and will allow new investigations into LPA signaling both in neural and nonneural systems.
Collapse
Affiliation(s)
- J H Hecht
- Department of Biology, University of California, San Diego, La Jolla 92093-0636, USA
| | | | | | | |
Collapse
|
18
|
Suk K, Das S, Sun W, Jwang B, Barthold SW, Flavell RA, Fikrig E. Borrelia burgdorferi genes selectively expressed in the infected host. Proc Natl Acad Sci U S A 1995; 92:4269-73. [PMID: 7753795 PMCID: PMC41925 DOI: 10.1073/pnas.92.10.4269] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
An immunological screening strategy was used to select microbial genes expressed only in the host. Differential screening of a Borrelia burgdorferi (the Lyme disease agent) expression library identified a gene (p21) encoding a 20.7-kDa antigen that reacted with antibodies in serum from actively infected mice but not serum from mice immunized with heat-killed B. burgdorferi. Selective expression of p21 in the infected host was confirmed by Northern blot analysis and RNA PCR. Further differential screening of the expression library identified at least five additional B. burgdorferi genes are selectively expressed in vivo. This screening method can be used to identify genes induced in vivo in a wide variety of pathogenic microorganisms for which a gene transfer system is not currently available.
Collapse
Affiliation(s)
- K Suk
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8031, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Seyama K, Nukiwa T, Takahashi K, Takahashi H, Kira S. Amylase mRNA transcripts in normal tissues and neoplasms: the implication of different expressions of amylase isogenes. J Cancer Res Clin Oncol 1994; 120:213-20. [PMID: 7507116 DOI: 10.1007/bf01372559] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To understand the cellular origin and mechanism of gene expression in amylase-producing cancers, the phenotyping of amylase isogenes by the polymerase chain reaction and restriction-fragment-length polymorphism using restriction endonucleases TaqI, DdeI, HinfI, and AfaI were performed for 3 amylase-producing lung adenocarcinomas, 16 lung cancers without hyperamylasemia, other human malignant neoplasms, cultured cell lines, and normal tissues. In addition, amylase mRNA transcripts were semi-quantified by the limited polymerase chain reaction. Amylase mRNA transcripts were detected in all of the tissues examined. The AMY1 gene (salivary type) was exclusively and highly expressed in the salivary glands and the amylase-producing lung adenocarcinomas. Coexpression of the AMY1 gene and AMY2 gene (pancreatic type) was observed in most of the lung cancers without hyperamylasemia, lung tissue, and cells scraped from the tracheal epithelium, thyroid, and female genital tract (ovary, fallopian tube, and uterus cervix), while minimal levels of mRNA transcripts of the AMY2 gene were detected in other malignant neoplasms, various normal tissues, and the cultured cell lines. All mRNA transcripts identified as being those of the AMY2 gene were further identified as being from the AMY2B gene except for the transcripts from the pancreas, in which the AMY2A gene and AMY2B gene were coexpressed. On the basis of these results, the clinical occurrence of amylase-producing cancer likely relates to the tissues expressing the AMY1 gene, while the AMY2B gene, which evolutionarily is the oldest gene among human amylase isogenes, is constitutively expressed in various tissues.
Collapse
Affiliation(s)
- K Seyama
- Department of Respiratory Medicine, Juntendo University, School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
20
|
Hill MA, Gunning P. Beta and gamma actin mRNAs are differentially located within myoblasts. J Biophys Biochem Cytol 1993; 122:825-32. [PMID: 8349732 PMCID: PMC2119594 DOI: 10.1083/jcb.122.4.825] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Actin is of fundamental importance to all eukaryotic cells. Of the six mammalian actins, beta (beta) and gamma (gamma) cytoplasmic are the isoforms found in all nonmuscle cells and differ by only four amino acids at the amino-terminal region. Both genes are regulated temporally and spatially, though no differences in protein function have been described. Using fluorescent double in situ hybridization we describe the simultaneous intracellular localization of both beta and gamma actin mRNA. This study shows that myoblasts differentially segregate the beta and gamma actin mRNAs. The distribution of gamma actin mRNA, only to perinuclear and nearby cytoplasm, suggests a distribution based on diffusion or restriction to nearby cytoplasm. The distribution of beta actin mRNA, perinuclear and at the cell periphery, implicates a peripheral localizing signal which is unique to the beta isoform. The peripheral beta actin mRNA corresponded to cellular morphologies, extending processes, and ruffling edges that reflect cell movement. Total actin and gamma actin protein steady-state distributions were identified by specific antibodies. gamma actin protein was found in both stress fibers and at the cell plasma membrane and does not correspond to its mRNA distribution. We suggest that localized protein synthesis rather than steady-state distribution functionally differentiates between the actin isoforms.
Collapse
Affiliation(s)
- M A Hill
- Cell Biology Unit, Children's Medical Research Institute, Wentworthville, New South Wales, Australia
| | | |
Collapse
|
21
|
Lloyd C, Gunning P. Noncoding regions of the gamma-actin gene influence the impact of the gene on myoblast morphology. J Cell Biol 1993; 121:73-82. [PMID: 8458874 PMCID: PMC2119773 DOI: 10.1083/jcb.121.1.73] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have addressed the question of whether two highly conserved noncoding regions of the gamma-actin gene are of functional importance. Human gamma-actin gene constructs deleted for either the entire 3' untranslated region (UTR) and 3' flank or intron III sequences were transfected into mouse myoblasts and the resulting clones were analyzed for cell morphology and actin protein expression. Transfectants carrying the gamma-actin gene deleted for the 3' end (gamma 22) exhibited numerous long pseudopods and increased surface area. In contrast, transfectants expressing the gamma-actin gene deleted for intron III (gamma 156) were rounded with blebs over the cell surface and showed decreased surface area. The relative expression of beta- to gamma-actin protein decreased for both transfectant types. The total actin protein levels remained constant for the gamma 22 cells but decreased for the gamma 156 cells. The results indicate that alterations to transfectant cell morphology can be influenced by the presence or absence of different noncoding regions in the transfected gamma-actin gene. The mechanisms by which noncoding regions of the gamma-actin gene influence the impact of the gene are unknown. Nevertheless, these noncoding regions are isoform specific and highly conserved in evolution. We propose that the functional significance of the different actin isoforms may involve the properties of these noncoding regions in addition to the differences in protein sequence.
Collapse
Affiliation(s)
- C Lloyd
- Cell Biology Unit, Children's Medical Research Institute, Wentworthville, N.S.W., Australia
| | | |
Collapse
|
22
|
Downregulation of Ke 6, a novel gene encoded within the major histocompatibility complex, in murine polycystic kidney disease. Mol Cell Biol 1993. [PMID: 8441417 DOI: 10.1128/mcb.13.3.1847] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polycystic kidney disease (PKD) is characterized by progressive enlargement of the kidneys due to numerous expanding cysts ultimately leading to renal failure. We have identified a gene, Ke 6, located within the H-2K/tw5 region on mouse chromosome 17, which is downregulated in two distinct murine models of heritable PKD. Ke 6 is a member of the short-chain alcohol dehydrogenase family and possess remarkable amino acid sequence conservation with several bacterial proteins with oxidoreductase function. The Ke 6 gene gives rise to two transcripts--a 1-kb Ke 6a mRNA which is abundant in kidney and liver tissue and a 1.4-kb Ke 6b mRNA which is found at a moderate level in spleen tissue. We report here the complete nucleotide sequence of Ke 6a cDNA and the expression of the Ke 6 gene in murine models of PKD. The Ke 6 gene may be intimately involved in the manifestation of these cystic kidney diseases.
Collapse
|
23
|
Aziz N, Maxwell MM, St Jacques B, Brenner BM. Downregulation of Ke 6, a novel gene encoded within the major histocompatibility complex, in murine polycystic kidney disease. Mol Cell Biol 1993; 13:1847-53. [PMID: 8441417 PMCID: PMC359497 DOI: 10.1128/mcb.13.3.1847-1853.1993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Polycystic kidney disease (PKD) is characterized by progressive enlargement of the kidneys due to numerous expanding cysts ultimately leading to renal failure. We have identified a gene, Ke 6, located within the H-2K/tw5 region on mouse chromosome 17, which is downregulated in two distinct murine models of heritable PKD. Ke 6 is a member of the short-chain alcohol dehydrogenase family and possess remarkable amino acid sequence conservation with several bacterial proteins with oxidoreductase function. The Ke 6 gene gives rise to two transcripts--a 1-kb Ke 6a mRNA which is abundant in kidney and liver tissue and a 1.4-kb Ke 6b mRNA which is found at a moderate level in spleen tissue. We report here the complete nucleotide sequence of Ke 6a cDNA and the expression of the Ke 6 gene in murine models of PKD. The Ke 6 gene may be intimately involved in the manifestation of these cystic kidney diseases.
Collapse
Affiliation(s)
- N Aziz
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | | |
Collapse
|
24
|
Abstract
Total RNA extracted from both white and gray matter of brain tissue from multiple sclerosis (MS) patients and controls was analyzed using a reverse transcription-polymerase chain reaction for the presence of the nucleic acid of human coronavirus (HCV) 229E and OC43, the two strains characterized to date and associated with respiratory infections. HCV-229E viral RNA was detectable in the central nervous system tissue of 4 of 11 MS patients and in none of 6 neurological and 5 normal controls. No HCV-OC43 nucleic acid was detected in any of the specimens. These results suggest a neurotropism on the part of the 229E strain of human coronavirus and underline the importance of further studies on its tissue distribution. The fact that it was detected only in tissue from MS patients illustrates the need for continued studies on the possible role of coronaviruses in the etiology of MS.
Collapse
Affiliation(s)
- J N Stewart
- Virology Research Center, Institut Armand-Frappier, Université du Québec, Laval, Canada
| | | | | |
Collapse
|
25
|
Schevzov G, Lloyd C, Gunning P. High level expression of transfected beta- and gamma-actin genes differentially impacts on myoblast cytoarchitecture. J Cell Biol 1992; 117:775-85. [PMID: 1577857 PMCID: PMC2289463 DOI: 10.1083/jcb.117.4.775] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The impact of the human beta- and gamma-actin genes on myoblast cytoarchitecture was examined by their stable transfection into mouse C2 myoblasts. Transfectant C2 clones expressing high levels of human beta-actin displayed increases in cell surface area. In contrast, C2 clones with high levels of human gamma-actin expression showed decreases in cell surface area. The changes in cell morphology were accompanied by changes in actin stress-fiber organization. The beta-actin transfectants displayed well-defined filamentous organization of actin; whereas the gamma-actin transfectants displayed a more diffuse organization of the actin cables. The role of the beta-actin protein in generating the enlarged cell phenotype was examined by transfecting a mutant form of the human beta-actin gene. Transfectant cells were shown to incorporate the aberrant actin protein into stress-fiber-like structures. High level expression of the mutant beta-actin produced decreases in cell surface area and disruption of the actin microfilament network similar to that seen with transfection of the gamma-actin gene. In contrast, transfection of another mutant form of the beta-actin gene which encodes an unstable protein had no impact on cell morphology or cytoarchitecture. These results strongly suggest that it is the nature of the encoded protein that determines the morphological response of the cell. We conclude that the relative gene expression of beta- and gamma-actin is of relevance to the control of myoblast cytoarchitecture. In particular, we conclude that the beta- and gamma-actin genes encode functionally distinct cytoarchitectural information.
Collapse
Affiliation(s)
- G Schevzov
- Cell Biology Unit, Children's Medical Research Foundation, Camperdown N.S.W., Australia
| | | | | |
Collapse
|
26
|
Lloyd C, Schevzov G, Gunning P. Transfection of nonmuscle beta- and gamma-actin genes into myoblasts elicits different feedback regulatory responses from endogenous actin genes. J Cell Biol 1992; 117:787-97. [PMID: 1577858 PMCID: PMC2289461 DOI: 10.1083/jcb.117.4.787] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have examined the role of feedback-regulation in the expression of the nonmuscle actin genes. C2 mouse myoblasts were transfected with the human beta- and gamma-actin genes. In gamma-actin transfectants we found that the total actin mRNA and protein pools remained unchanged. Increasing levels of human gamma-actin expression resulted in a progressive down-regulation of mouse beta- and gamma-actin mRNAs. Transfection of the beta-actin gene resulted in an increase in the total actin mRNA and protein pools and induced an increase in the levels of mouse beta-actin mRNA. In contrast, transfection of a beta-actin gene carrying a single-point mutation (beta sm) produced a feedback-regulatory response similar to that of the gamma-actin gene. Expression of a beta-actin gene encoding an unstable actin protein had no impact on the endogenous mouse actin genes. This suggests that the nature of the encoded actin protein determines the feedback-regulatory response of the mouse genes. The role of the actin cytoskeleton in mediating this feedback-regulation was evaluated by disruption of the actin network with Cytochalasin D. We found that treatment with Cytochalasin D abolished the down-regulation of mouse gamma-actin in both the gamma- and beta sm-actin transfectants. In contrast, a similar level of increase was observed for the mouse beta-actin mRNA in both control and transfected cells. These experiments suggest that the down-regulation of mouse gamma-actin mRNA is dependent on the organization of the actin cytoskeleton. In addition, the mechanism responsible for the down-regulation of beta-actin may be distinct from that governing gamma-actin. We conclude that actin feedback-regulation provides a biochemical assay for differences between the two nonmuscle actin genes.
Collapse
Affiliation(s)
- C Lloyd
- Cell Biology Unit, Children's Medical Research Foundation, Camperdown, N.S.W., Australia
| | | | | |
Collapse
|
27
|
Ohmori H, Toyama S, Toyama S. Direct proof that the primary site of action of cytochalasin on cell motility processes is actin. J Biophys Biochem Cytol 1992; 116:933-41. [PMID: 1734024 PMCID: PMC2289332 DOI: 10.1083/jcb.116.4.933] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have previously described the isolation of a mutant KB cell (Cyt 1 mutant) resistant to the cytotoxic effect of cytochalasin B (CB). The Cyt 1 mutant carries an altered form of beta-actin (beta'-actin) and lacks normal beta-actin (Toyama, S., and S. Toyama. 1984. Cell. 37:609-614). Increased resistance of the Cyt 1 mutant to CB in vivo is reflected in altered properties of beta'-actin in vitro (Toyama, S., and S. Toyama. 1988. J. Cell Biol. 107:1499-1504). Here, we show that the mutation in beta-actin is solely responsible for the cytochalasin-resistant phenotype of the Cyt mutant. We have isolated a cDNA clone encoding beta'-actin from Cyt 1 cells. Sequence analysis reveals two mutations in the coding region that substitute two amino acid residues (Val139----Met and Ala295----Asp). Expression of the beta'-actin cDNA confers cytochalasin resistance upon transformed cytochalasin-sensitive KB cells. Levels of resistance to CB in the transformed cell clones correlate well with amounts of beta'-actin polypeptide. Both of the two mutations in beta'-actin are necessary for the high level expression of cytochalasin resistance. Overall, we conclude that the primary site of action of cytochalasin on cell motility processes in vivo is actin.
Collapse
Affiliation(s)
- H Ohmori
- Institute for Virus Research, Kyoto University, Japan
| | | | | |
Collapse
|
28
|
Affiliation(s)
- R W Elliott
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | |
Collapse
|
29
|
Danilition SL, Frederickson RM, Taylor CY, Miyamoto NG. Transcription factor binding and spacing constraints in the human beta-actin proximal promoter. Nucleic Acids Res 1991; 19:6913-22. [PMID: 1762920 PMCID: PMC329328 DOI: 10.1093/nar/19.24.6913] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The human beta-actin promoter, including its 5' flanking region and 5' untranslated region, is ubiquitously active in mammalian cells in culture. In this report we investigated the transcriptional activity of, and the protein-DNA interactions that occur within, the proximal region of the human beta-actin promoter. Efficient beta-actin promoter activity in transfected human HeLa cells requires only 114bp of 5' flanking sequences. Two of the cis-actin regulatory elements within this region of the beta-actin promoter, the CCAAT box and proximal CCArGG box, are specific in vitro binding sites for the transcription factors, nuclear factor Y (NF-Y) and serum response factor (p67SRF), respectively. These two elements are required together to stimulate in vivo transcription from the homologous as well as a heterologous promoter. Finally, a particular spatial alignment between the CCAAT box and proximal CCArGG box is required for trans-activation in vivo. The above provides strong evidence for a functional interaction between NF-Y and p67SRF when bound to their respective binding sites in the beta-actin promoter.
Collapse
Affiliation(s)
- S L Danilition
- Division of Cellular and Molecular Biology, Ontario Cancer Institute/Princess Margaret Hospital, Toronto, Canada
| | | | | | | |
Collapse
|
30
|
Adolff CH, Golden JA, Kennedy PW, Goetzl EJ, Turck CW. Polymerase chain reaction amplification of messages for growth factors in cells from human bronchoalveolar lavage fluids. Inflammation 1991; 15:259-68. [PMID: 1769730 DOI: 10.1007/bf00917311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Genetic messages for polypeptide growth factors were assessed in human alveolar macrophages, obtained by bronchoalveolar lavage (BAL) from normal subjects (N = 3) and from patients with pneumonia (N = 3), pulmonary lymphoma (N = 3), and idiopathic pulmonary fibrosis (N = 3). Complementary DNAs (cDNAs) were prepared by reverse transcription of the RNA extracted from alveolar macrophages before and after culture on a plastic surface. The cDNAs encoding 10 different growth factors were amplified for electrophoretic analysis by polymerase chain reaction with a pair of 3' and 5' primers specific for each factor. Alveolar macrophages from all normal subjects and patients expressed the messages for interleukin-1 beta and transforming growth factor-beta. Alveolar macrophages from some normal subjects also contained message for insulin-like growth factor-1. Alveolar macrophages from six of nine patients with lung diseases also expressed messages for one or more additional growth factors, including epidermal growth factor, transforming growth factor-alpha, interleukin-1 alpha, and platelet-derived growth factor. The polymerase chain reaction technique thus permits determination of the profile of growth factors contributed to pulmonary reactions by alveolar macrophages, which may be important in pulmonary healing and fibrosis.
Collapse
Affiliation(s)
- C H Adolff
- Department of Medicine, University of California Medical Center, San Francisco
| | | | | | | | | |
Collapse
|
31
|
Structure, chromosome location, and expression of the human smooth muscle (enteric type) gamma-actin gene: evolution of six human actin genes. Mol Cell Biol 1991. [PMID: 1710027 DOI: 10.1128/mcb.11.6.3296] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant phages that carry the human smooth muscle (enteric type) gamma-actin gene were isolated from human genomic DNA libraries. The amino acid sequence deduced from the nucleotide sequence matches those of cDNAs but differs from the protein sequence previously reported at one amino acid position, codon 359. The gene containing one 5' untranslated exon and eight coding exons extends for 27 kb on human chromosome 2. The intron between codons 84 and 85 (site 3) is unique to the two smooth muscle actin genes. In the 5' flanking region, there are several CArG boxes and E boxes, which are regulatory elements in some muscle-specific genes. Hybridization with the 3' untranslated region, which is specific for the human smooth muscle gamma-actin gene, suggests the single gene in the human genome and specific expressions in enteric and aortic tissues. From characterized molecular structures of the six human actin isoform genes, we propose a hypothesis of evolutionary pathway of the actin gene family. A presumed ancestral actin gene had introns at least sites 1, 2, and 4 through 8. Cytoplasmic actin genes may have directly evolved from it through loss of introns at sites 5 and 6. However, through duplication of the ancestral actin gene with substitutions of many amino acids, a prototype of muscle actin genes had been created. Subsequently, striated muscle actin and smooth muscle actin genes may have evolved from this prototype by loss of an intron at site 4 and acquisition of a new intron at site 3, respectively.
Collapse
|
32
|
Abstract
The Epstein-Barr virus BZLF1 gene product (ZEBRA) is a transcriptional activator whose expression in latently infected B cells is sufficient to induce the viral lytic cycle. Since there is no transcription of BZLF1 during latency, we carried out experiments to determine whether cis-acting negative elements in the BZLF1 promoter contribute to the lack of expression during this phase of the virus cycle. A series of deletion plasmids encompassing positions -551 to +14 of the BZLF1 promoter region were constructed and tested for the ability to drive chloramphenicol acetyltransferase (CAT) gene expression in the absence of inducing agents such as 12-O-tetradecanoylphorbol-13-acetate (TPA) and anti-immunoglobulin. Expression from the intact 551-bp region was very weak in most of the cell lines tested, but deletion of 165 bp from the 5' end caused a sevenfold increase in expression of CAT. Within these 165 bp, a minimal 48-bp region was sufficient to down regulate the expression of a simian virus 40/CAT fusion plasmid. The 48-bp negative element consists of 7-bp dyad symmetry elements separated by 27 bp. The rightmost half of the dyad symmetry element partially overlaps a region which has a 14-of-15-bp homology to the human cytoskeletal gamma-actin promoter.
Collapse
Affiliation(s)
- E A Montalvo
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014
| | | | | | | |
Collapse
|
33
|
Miwa T, Manabe Y, Kurokawa K, Kamada S, Kanda N, Bruns G, Ueyama H, Kakunaga T. Structure, chromosome location, and expression of the human smooth muscle (enteric type) gamma-actin gene: evolution of six human actin genes. Mol Cell Biol 1991; 11:3296-306. [PMID: 1710027 PMCID: PMC360182 DOI: 10.1128/mcb.11.6.3296-3306.1991] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recombinant phages that carry the human smooth muscle (enteric type) gamma-actin gene were isolated from human genomic DNA libraries. The amino acid sequence deduced from the nucleotide sequence matches those of cDNAs but differs from the protein sequence previously reported at one amino acid position, codon 359. The gene containing one 5' untranslated exon and eight coding exons extends for 27 kb on human chromosome 2. The intron between codons 84 and 85 (site 3) is unique to the two smooth muscle actin genes. In the 5' flanking region, there are several CArG boxes and E boxes, which are regulatory elements in some muscle-specific genes. Hybridization with the 3' untranslated region, which is specific for the human smooth muscle gamma-actin gene, suggests the single gene in the human genome and specific expressions in enteric and aortic tissues. From characterized molecular structures of the six human actin isoform genes, we propose a hypothesis of evolutionary pathway of the actin gene family. A presumed ancestral actin gene had introns at least sites 1, 2, and 4 through 8. Cytoplasmic actin genes may have directly evolved from it through loss of introns at sites 5 and 6. However, through duplication of the ancestral actin gene with substitutions of many amino acids, a prototype of muscle actin genes had been created. Subsequently, striated muscle actin and smooth muscle actin genes may have evolved from this prototype by loss of an intron at site 4 and acquisition of a new intron at site 3, respectively.
Collapse
Affiliation(s)
- T Miwa
- Department of Oncogene Research, Osaka University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lebeau MC, Alvarez-Bolado G, Braissant O, Wahli W, Catsicas S. Ribosomal protein L27 is identical in chick and rat. Nucleic Acids Res 1991; 19:1337. [PMID: 1709488 PMCID: PMC333862 DOI: 10.1093/nar/19.6.1337] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- M C Lebeau
- Institut de Biologie Animale, Université de Lausanne, Lausanne-Dorigny, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Leroy P, Krust A, Zelent A, Mendelsohn C, Garnier JM, Kastner P, Dierich A, Chambon P. Multiple isoforms of the mouse retinoic acid receptor alpha are generated by alternative splicing and differential induction by retinoic acid. EMBO J 1991; 10:59-69. [PMID: 1846598 PMCID: PMC452611 DOI: 10.1002/j.1460-2075.1991.tb07921.x] [Citation(s) in RCA: 243] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Together with the previously described mouse retinoic acid receptor alpha-1 (mRAR-alpha 1, formerly mRAR-alpha 0), we have isolated and characterized here a total of seven mRAR-alpha cDNA isoforms (mRAR-alpha 1 to alpha 7). These isoforms are generated from mRAR-alpha primary transcript(s) of a single gene by alternative splicing of at least eight different exons with the exon which encodes the amino acid sequence of their common B region. All of these isoforms differ in their 5'-untranslated regions (5'-UTRs) and, in the case of mRAR-alpha 1 and alpha 2, also in the sequences encoding the N-terminal A region which is known to be important for differential trans-activation by other members of the nuclear receptor superfamily. In addition, the sequences encoding the open reading frames (ORFs) of mRAR-alpha 3 and alpha 4 cDNA isoforms remain open to their very 5' ends, which suggests that these two isoforms may also encode RAR-alpha s with unique A region amino acid sequences. The two predominant isoforms, mRAR-alpha 1 and alpha 2, were found to be differentially expressed in mouse adult and fetal tissues, as well as in P19 and F9 embryonal carcinoma (EC) cell lines. Interestingly, the expression of mRAR-alpha 2, in contrast to that of the mRAR-alpha 1 isoform, was induced by retinoic acid (RA) in EC cells, thus suggesting the presence of two promoters in the 5' region of the mRAR-alpha gene, which differ in their response to RA. The conservation between mouse and human RAR-alpha 1 and alpha 2 cDNA isoform sequences, as seen by cross-hybridization in Southern blots or by DNA sequence analysis, together with their differential patterns of expression, strongly suggests that they perform specific functions during embryogenesis and in the adult.
Collapse
Affiliation(s)
- P Leroy
- Laboratoire de Génétique Moléculaire des Eucaryotes du CNRS, Unité 184 de Biologie Moléculaire et de Génie Génétique de l'INSERM, Faculté de Médecine, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Munholland JM, Kelly JK, Wildeman AG. DNA sequences required for yeast actin gene transcription do not include conserved CCAAT motifs. Nucleic Acids Res 1990; 18:6061-8. [PMID: 2235489 PMCID: PMC332406 DOI: 10.1093/nar/18.20.6061] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sequences required for Saccharomyces cerevisiae actin gene transcription were mapped and compared to the regulatory region of the actin gene from a thermophilic fungus, Thermomyces lanuginosus. Two CCAAT motifs conserved in position in these two species could be mutated without affecting promoter activity, regardless of whether the yeast were grown in fermentable or non-fermentable carbon sources. Two TATA-like sequences and an upstream activation sequence (UAS) composed of multiple elements were identified. The contribution of sequence motifs within these elements to UAS activity varied depending on the carbon source. The Thermomyces gene contains sequences highly homologous to this UAS, but in the opposite orientation.
Collapse
Affiliation(s)
- J M Munholland
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
37
|
Brown CW, McHugh KM, Lessard JL. A cDNA sequence encoding cytoskeletal gamma-actin from rat. Nucleic Acids Res 1990; 18:5312. [PMID: 2402472 PMCID: PMC332185 DOI: 10.1093/nar/18.17.5312] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- C W Brown
- Children's Hospital Medical Center, Division of Basic Science Research, Cincinnati, OH 45229
| | | | | |
Collapse
|
38
|
Retroviral and pseudogene insertion sites reveal the lineage of human salivary and pancreatic amylase genes from a single gene during primate evolution. Mol Cell Biol 1990. [PMID: 1692956 DOI: 10.1128/mcb.10.6.2513] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analyzed the junction regions of inserted elements within the human amylase gene complex. This complex contains five genes which are expressed at high levels either in the pancreas or in the parotid gland. The proximal 5'-flanking regions of these genes contain two inserted elements. A gamma-actin pseudogene is located at a position 200 base pairs upstream of the first coding exon. All of the amylase genes contain this insert. The subsequent insertion of an endogenous retrovirus interrupted the gamma-actin pseudogene within its 3'-untranslated region. Nucleotide sequence analysis of the inserted elements associated with each of the five human amylase genes has revealed a series of molecular events during the recent history of this gene family. The data indicate that the entire gene family was generated during primate evolution from one ancestral gene copy and that the retroviral insertion activated a cryptic promoter.
Collapse
|
39
|
Samuelson LC, Wiebauer K, Snow CM, Meisler MH. Retroviral and pseudogene insertion sites reveal the lineage of human salivary and pancreatic amylase genes from a single gene during primate evolution. Mol Cell Biol 1990; 10:2513-20. [PMID: 1692956 PMCID: PMC360608 DOI: 10.1128/mcb.10.6.2513-2520.1990] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have analyzed the junction regions of inserted elements within the human amylase gene complex. This complex contains five genes which are expressed at high levels either in the pancreas or in the parotid gland. The proximal 5'-flanking regions of these genes contain two inserted elements. A gamma-actin pseudogene is located at a position 200 base pairs upstream of the first coding exon. All of the amylase genes contain this insert. The subsequent insertion of an endogenous retrovirus interrupted the gamma-actin pseudogene within its 3'-untranslated region. Nucleotide sequence analysis of the inserted elements associated with each of the five human amylase genes has revealed a series of molecular events during the recent history of this gene family. The data indicate that the entire gene family was generated during primate evolution from one ancestral gene copy and that the retroviral insertion activated a cryptic promoter.
Collapse
Affiliation(s)
- L C Samuelson
- Department of Human Genetics, University of Michigan, Ann Arbor 48109-0618
| | | | | | | |
Collapse
|
40
|
Nagaoka I, Trapnell BC, Crystal RG. Regulation of insulin-like growth factor I gene expression in the human macrophage-like cell line U937. J Clin Invest 1990; 85:448-55. [PMID: 1688884 PMCID: PMC296444 DOI: 10.1172/jci114458] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Activated macrophages release tissue forms of insulin-like growth factor I (IGF-I), 20-25-kD products of the IGF-I gene, thus providing an extracellular growth and differentiation signal at sites of inflammation. To examine the control of IGF-I gene expression in mononuclear phagocytes, the human macrophage-like cell line U937 was evaluated at rest and after surface activation with phorbol myristate acetate (PMA) or Ca2+ ionophore. Northern analysis and RNAse protection analysis with 32P-labeled IGF-I-specific probes demonstrated that the IGF-I mRNA transcripts of resting U937 cells were similar in size and amount to those of resting human alveolar macrophages, mononuclear phagocytes known to express the IGF-I gene. Nuclear run-off assays demonstrated that surface activation of U937 cells increased the transcription rate of the IGF-I gene four- to fivefold, a process that was inhibited by cycloheximide, suggesting that active protein synthesis was involved in the activation pathway. Despite this, cytoplasmic IGF-I mRNA levels after surface activation declined markedly, a process blocked by a protein kinase C inhibitor (for PMA activation) or a calmodulin antagonist (for Ca2+ ionophore activation). Like the increased transcription of the IGF-I gene, modulation of IGF-I mRNA transcript levels required active protein synthesis; in the presence of cycloheximide constitutive IGF-I mRNA levels increased and surface activation no longer caused a decrease in transcript number. Interestingly, surface activation caused a rapid release of IGF-I, even in the presence of a protein synthesis inhibitor, suggesting that mononuclear phagocytes have a preformed, stored, releasable pool of IGF-I. Together these observations demonstrate that IGF-I gene expression is complex and probably involves control of transcription rate, cytoplasmic mRNA levels possibly mediated through protein kinase C, calcium influx and calmodulin, and finally, release of preformed IGF-I from a storage pool.
Collapse
Affiliation(s)
- I Nagaoka
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
41
|
König H, Ponta H, Rahmsdorf U, Büscher M, Schönthal A, Rahmsdorf HJ, Herrlich P. Autoregulation of fos: the dyad symmetry element as the major target of repression. EMBO J 1989; 8:2559-66. [PMID: 2511006 PMCID: PMC401256 DOI: 10.1002/j.1460-2075.1989.tb08394.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Fos and Jun co-operatively repress the fos promoter. Removal of all putative Fos/Jun binding sites from the fos promoter neither obliterates the repression by Fos/Jun in transient cotransfection experiments in NIH3T3 cells nor the turn-off kinetics of serum-induced fos expression in stably transfected NIH3T3 cells. The dyad symmetry element (DSE) suffices to subject a promoter to this type of repression. However, one of the putative Fos/Jun binding sites (-292 to -299 and thus located immediately adjacent to the DSE), determines the very low level of basal expression.
Collapse
Affiliation(s)
- H König
- Kernforschungszentrum Karlsruhe, Institut für Genetik und Toxikologie, FRG
| | | | | | | | | | | | | |
Collapse
|
42
|
Rees JL, Daly AK, Redfern CP. Differential expression of the alpha and beta retinoic acid receptors in tissues of the rat. Biochem J 1989; 259:917-9. [PMID: 2543375 PMCID: PMC1138606 DOI: 10.1042/bj2590917] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have compared the expression of alpha and beta retinoic acid receptors (RAR-alpha and RAR-beta) in different rat tissues. The two cDNA probes for RAR-alpha and RAR-beta each specifically detect two different transcripts. RAR-alpha was expressed in all tissues examined, but, in contrast, the expression of RAR-beta was undetectable in some tissues. The data do not support the idea that RAR-beta is specific to epithelial tissues.
Collapse
Affiliation(s)
- J L Rees
- Medical Molecular Biology Group, Medical School, University of Newcastle upon Tyne, U.K
| | | | | |
Collapse
|
43
|
Isolation of cDNA clones for mouse cytoskeletal gamma-actin and differential expression of cytoskeletal actin mRNAs in mouse cells. Mol Cell Biol 1989. [PMID: 3221869 DOI: 10.1128/mcb.8.9.3929] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We described the structures of mouse cytoskeletal gamma-actin cDNA clones and showed that there is strong conservation of the untranslated regions with human gamma-actin cDNA. In addition, we found that the expression levels of beta- and gamma-actin mRNAs are differentially controlled in various mouse tissues and cell types but are coordinately increased in the cellular growing state. These results suggest that there are multiple regulatory mechanisms of cytoskeletal actin genes and are consistent with the argument that beta- and gamma-actins might have functional diversity in mammalian cells.
Collapse
|
44
|
Leung S, Miyamoto NG. Point mutational analysis of the human c-fos serum response factor binding site. Nucleic Acids Res 1989; 17:1177-95. [PMID: 2493627 PMCID: PMC331729 DOI: 10.1093/nar/17.3.1177] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A series of point mutants were generated in the human c-fos dyad symmetry element (DSE), found within the c-fos serum response element, to study the sequence requirements for its interaction with the human HeLa cell serum response factor (SRF). Plasmids that contain base substitutions within a core CC(A/T)6GG motif in the center of the DSE did not compete, or competed very poorly, with the wild-type c-fos DSE for formation of a specific SRF-DSE complex in vitro. The CC(A/T)6GG motif is not sufficient for maximal binding of SRF, as several plasmids that contain base substitutions in the sequences flanking this core motif competed either poorer or better than the wild-type c-fos DSE for SRF binding. Evidence is presented that supports the idea that SRF binds in a symmetrical fashion. Results of in vivo transient expression assays in HeLa cells suggest that negative regulation of c-fos transcription observed in serum-deprived cells is mediated through SRF binding to the DSE.
Collapse
Affiliation(s)
- S Leung
- Division of Biological Research, Ontario Cancer Institute, Toronto, Canada
| | | |
Collapse
|
45
|
Ng SY, Gunning P, Liu SH, Leavitt J, Kedes L. Regulation of the human beta-actin promoter by upstream and intron domains. Nucleic Acids Res 1989; 17:601-15. [PMID: 2915924 PMCID: PMC331606 DOI: 10.1093/nar/17.2.601] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have identified three regulatory domains of the complex human beta-actin gene promoter. They span a region of about 3000 bases, from not more than -2011 bases upstream of the mRNA cap site to within the 5' intron (832 bases long). A distal upstream domain contains at least one enhancer-like element. A proximal upstream domain, with a CArG [for CC(A + T rich)6GG] motif found in all known mammalian actin genes, seems to confer serum, but not growth factor, inducibility. The third domain is within the evolutionarily conserved 3' region of the first intron and contains a 13 base-pair sequence, identical to the upstream sequence with the CArG motif. This domain also contains sequences that are both serum and fibroblast growth factor inducible.
Collapse
Affiliation(s)
- S Y Ng
- Armand Hammer Cancer Research Center, Linus Pauling Institute, Palo Alto, CA 94306
| | | | | | | | | |
Collapse
|
46
|
Frederickson RM, Micheau MR, Iwamoto A, Miyamoto NG. 5' flanking and first intron sequences of the human beta-actin gene required for efficient promoter activity. Nucleic Acids Res 1989; 17:253-70. [PMID: 2911466 PMCID: PMC331549 DOI: 10.1093/nar/17.1.253] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have identified a CCAAT box element that is required for the efficient transcription of the human beta-actin gene. Both in vivo transient transfection assays in cultured HeLa cells and in vitro run-off transcription assays in HeLa whole cell extracts demonstrated the requirement of this element for efficient promoter activity. A gel mobility shift assay revealed a Hela nuclear factor that specifically interacted with the beta-actin CCAAT element in vitro; mutation of the first three base pairs of the CCAAT pentanucleotide abolished binding of this factor. Competition gel shift experiments revealed that three sequence elements located within the beta-actin promoter, each containing a CC(A/T)6GG motif similar to that contained within the c-fos serum response element, were able to bind a different nuclear factor, serum response factor (SRF). One of these CC(A/T)6GG motifs is contained within a first intron fragment that enhanced transcription from a heterologous promoter in vivo.
Collapse
Affiliation(s)
- R M Frederickson
- Division of Biological Research, Ontario Cancer Institut, Toronto, Canada
| | | | | | | |
Collapse
|
47
|
Tokunaga K, Takeda K, Kamiyama K, Kageyama H, Takenaga K, Sakiyama S. Isolation of cDNA clones for mouse cytoskeletal gamma-actin and differential expression of cytoskeletal actin mRNAs in mouse cells. Mol Cell Biol 1988; 8:3929-33. [PMID: 3221869 PMCID: PMC365452 DOI: 10.1128/mcb.8.9.3929-3933.1988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We described the structures of mouse cytoskeletal gamma-actin cDNA clones and showed that there is strong conservation of the untranslated regions with human gamma-actin cDNA. In addition, we found that the expression levels of beta- and gamma-actin mRNAs are differentially controlled in various mouse tissues and cell types but are coordinately increased in the cellular growing state. These results suggest that there are multiple regulatory mechanisms of cytoskeletal actin genes and are consistent with the argument that beta- and gamma-actins might have functional diversity in mammalian cells.
Collapse
Affiliation(s)
- K Tokunaga
- Division of Biochemistry, Chiba Cancer Center Research Institute, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Modulation of microfilament protein composition by transfected cytoskeletal actin genes. Mol Cell Biol 1988. [PMID: 3380097 DOI: 10.1128/mcb.8.4.1790] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HuT-14T is a highly tumorigenic fibroblast cell line which exhibits a reduced steady-state level of beta-actin due to coding mutations in one of two beta-actin alleles. The normal rate of total actin synthesis could be restored in some clones of cells following transfection of the functional beta-actin gene but not following transfection of the functional gamma-actin gene. In gamma-actin gene-transfected substrains that have increased rates of gamma-actin synthesis, beta-actin synthesis is further reduced in a manner consistent with an autoregulatory mechanism, resulting in abnormal ratios of actin isoforms. Thus, both beta- and gamma-actin proteins can apparently regulate the synthesis of their coexpressed isoforms. In addition, decreased synthesis of normal beta-actin seems to correlate with a concomitant down-regulation of tropomyosin isoforms.
Collapse
|
49
|
Ng SY, Erba H, Latter G, Kedes L, Leavitt J. Modulation of microfilament protein composition by transfected cytoskeletal actin genes. Mol Cell Biol 1988; 8:1790-4. [PMID: 3380097 PMCID: PMC363339 DOI: 10.1128/mcb.8.4.1790-1794.1988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
HuT-14T is a highly tumorigenic fibroblast cell line which exhibits a reduced steady-state level of beta-actin due to coding mutations in one of two beta-actin alleles. The normal rate of total actin synthesis could be restored in some clones of cells following transfection of the functional beta-actin gene but not following transfection of the functional gamma-actin gene. In gamma-actin gene-transfected substrains that have increased rates of gamma-actin synthesis, beta-actin synthesis is further reduced in a manner consistent with an autoregulatory mechanism, resulting in abnormal ratios of actin isoforms. Thus, both beta- and gamma-actin proteins can apparently regulate the synthesis of their coexpressed isoforms. In addition, decreased synthesis of normal beta-actin seems to correlate with a concomitant down-regulation of tropomyosin isoforms.
Collapse
Affiliation(s)
- S Y Ng
- Armand Hammer Cancer Research Center, Linus Pauling Institute of Science and Medicine, Palo Alto, California 94306
| | | | | | | | | |
Collapse
|