1
|
Rivera DE, Poirier K, Moore S, Nicolle O, Morgan E, Longares JF, Singh A, Michaux G, Félix MA, Luallen RJ. Dynamics of gut colonization by commensal and pathogenic bacteria that attach to the intestinal epithelium. NPJ Biofilms Microbiomes 2025; 11:70. [PMID: 40319018 PMCID: PMC12049552 DOI: 10.1038/s41522-025-00696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/04/2025] [Indexed: 05/07/2025] Open
Abstract
Bacterial adherence to the intestinal epithelium plays a role in niche establishment in the gut lumen. Through sampling natural populations of Caenorhabditis, we discovered several bacterial species that adhere to the intestinal epithelium via polar, intimate association, best described as attachment. These bacteria had varying effects on host fitness and physiology, with one species having negative effects, and the others exhibiting neutral effects. These bacteria can actively divide in the gut lumen, either replicating throughout the gut simultaneously or anteroposteriorly. In competition assays, animals pre-colonized with an attaching commensal bacteria reduced colonization by the pathogenic bacteria, but this effect was not seen when animals were colonized by both species simultaneously. Regardless of the colonization paradigm, populations exposed to both bacteria showed a near-identical mitigation of the pathogenic effects. Altogether, these strains illustrate the capacity of microbiome bacteria to attach, replicate, and establish a niche across the entire intestinal lumen.
Collapse
Affiliation(s)
- Dalaena E Rivera
- Department of Biology, San Diego State University, San Diego, USA
| | - Kayla Poirier
- Department of Biology, San Diego State University, San Diego, USA
| | - Samuel Moore
- Department of Biology, San Diego State University, San Diego, USA
| | - Ophélie Nicolle
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) -UMR 6290, F-35000, Rennes, France
| | - Emily Morgan
- Department of Biology, San Diego State University, San Diego, USA
| | | | - Anupama Singh
- Department of Biology, San Diego State University, San Diego, USA
| | - Grégoire Michaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) -UMR 6290, F-35000, Rennes, France
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique, INSERM, École Normale Supérieure, Paris Sciences et Lettres, Paris, France.
| | - Robert J Luallen
- Department of Biology, San Diego State University, San Diego, USA.
| |
Collapse
|
2
|
Rudick CP, Cox RS, Bourret TJ, Hanson ND. In vitro assays for clinical isolates of sequence type 131 Escherichia coli do not recapitulate in vivo infectivity using a murine model of urinary tract infection. Microbiol Spectr 2025; 13:e0151124. [PMID: 39998334 PMCID: PMC11960073 DOI: 10.1128/spectrum.01511-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Sequence type 131 isolates are a major cause of cystitis and pyelonephritis. Many studies rely solely on in vitro assays to screen for bacterial virulence factors associated with the pathogenicity of clinical isolates of Escherichia coli. Few studies have compared in vitro findings with in vivo infectivity of clinical isolates. The purpose of this study was to evaluate the correlation between in vitro assays with the ability to cause cystitis and pyelonephritis in a murine model of urinary tract infection. In vitro assays were conducted according to the published protocols and included motility assays, biofilm formation, epithelial cell adhesion and invasion, and curli production. Twenty-one uropathogenic E. coli (UPEC) isolates of E. coli ST131 and non-ST131 were used for both in vivo and in vitro studies. Six mice per isolate were inoculated via urethral catheterization. Colony forming units (CFUs) were determined from bladder and kidneys. In vitro and in vivo correlations were evaluated by multiple linear regression analysis. Pairwise linear regressions showed trendlines with weak positive correlations for motility, adhesion, and invasion and weak negative correlations for hemagglutination, biofilm, and curli production. The ability of E. coli ST131 and non-ST131 clinical isolates to cause cystitis and pyelonephritis varied among strains. The R2 Pearson correlation value was less than ±0.5 for any pair, indicating little to no statistical association between in vitro and in vivo findings. These data show that in vitro data are not predictive of the ability of ST131 E. coli to infect and/or cause disease in a mouse model. IMPORTANCE Urinary tract infections (UTIs) affect 150 million people annually, and E. coli ST131, a pandemic clone, has become responsible for a significant portion of those UTIs. How ST131 E. coli has become such a successful strain remains to be elucidated. When evaluating bacterial pathogenicity, it is customary to use in vitro assays to predict isolate virulence and fitness due to lower cost and ease of experimentation compared with in vivo models. It is common to use model organisms like pathogenic E. coli CFT073 or a non-pathogenic K12 lab strain as representatives for the entire species. However, our research has shown that model organisms differ from ST131 E. coli, and in vitro assays are poor predictors of ST131 isolate infectivity in a murine model of UTI. As such, research into the mechanisms of fitness/pathogenesis for ST131 infectivity needs to focus on these organisms rather than other types of UPEC.
Collapse
Affiliation(s)
- Courtney P. Rudick
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
- Creighton Center for Antimicrobial Resistance and Epidemiology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Rachel S. Cox
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
- Creighton Center for Antimicrobial Resistance and Epidemiology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Travis J. Bourret
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
- Creighton Center for Antimicrobial Resistance and Epidemiology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Nancy D. Hanson
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA
- Creighton Center for Antimicrobial Resistance and Epidemiology, Creighton University School of Medicine, Omaha, Nebraska, USA
| |
Collapse
|
3
|
Ikeda R, Nakamura K, Korsak N, Duprez JN, Hayashi T, Thiry D, Mainil JG. Non-Melibiose Fermentation and Tellurite Resistance by Shigatoxigenic and Enteropathogenic Escherichia coli O80:H2 from Diseased Calves: Comparison with Human Shigatoxigenic E. coli O80:H2. Vet Sci 2025; 12:274. [PMID: 40266978 PMCID: PMC11945584 DOI: 10.3390/vetsci12030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 04/25/2025] Open
Abstract
Despite their prevalence in Europe, the source of contamination of humans by Attaching-Effacing Shigatoxigenic Escherichia coli (AE-STEC) O80:H2 remains unidentified. This study aimed to assess a procedure based on non-melibiose fermentation and resistance to tellurite to isolate AE-STEC and enteropathogenic (EPEC) O80:H2 from healthy cattle. The genome sequences of 40 calf and human AE-STEC and EPEC O80:H2 were analyzed: (i) none harbored the mel operon, but the 70mel DNA sequence instead; (ii) the ter-type 1 operon was detected in 16 EPEC and stx1a or stx2a AE-STEC, while no ter-type 1 operon was detected in the remaining 24 EPEC and stx2d AE-STEC. The 21 calf AE-STEC and EPEC O80:H2 were tested phenotypically: (i) none fermented melibiose on melibiose-MacConkey agar plates; (ii) ten of the 11 ter-type 1-positive strains had Minimal Inhibitory Concentrations (MIC) ≥ 128 µg/mL to potassium tellurite; (iii) conversely, the ten ter-negative strains had MIC of two µg/mL. Accordingly, enrichment broths containing two µg/mL of potassium tellurite and inoculated with one high MIC (≥256 µg/mL) stx1a AE-STEC O80:H2 tested positive with the O80 PCR after overnight growth, but not the enrichment broths inoculated with one low MIC (two µg/mL) EPEC. Nevertheless, neither AE-STEC nor EPEC O80:H2 were recovered from 96 rectal fecal samples collected from healthy cattle at one slaughterhouse after overnight growth under the same conditions. In conclusion, this procedure may help to isolate stx1a and stx2a AE-STEC and EPEC O80:H2, but not stx2d AE-STEC that are tellurite sensitive, and new surveys using different procedures are necessary to identify their animal source, if any.
Collapse
Affiliation(s)
- Rie Ikeda
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liège, Belgium; (R.I.); (J.-N.D.); (J.G.M.)
| | - Keiji Nakamura
- Department of Bacteriology, Faculty of Medical Science, Kyushu University, Fukuoka 812-8582, Japan; (K.N.); (T.H.)
| | - Nicolas Korsak
- Food Inspection, Department of Food Sciences, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liège, Belgium;
| | - Jean-Noël Duprez
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liège, Belgium; (R.I.); (J.-N.D.); (J.G.M.)
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Science, Kyushu University, Fukuoka 812-8582, Japan; (K.N.); (T.H.)
| | - Damien Thiry
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liège, Belgium; (R.I.); (J.-N.D.); (J.G.M.)
| | - Jacques G. Mainil
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Center for Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, B-4000 Liège, Belgium; (R.I.); (J.-N.D.); (J.G.M.)
| |
Collapse
|
4
|
Sun H, Huang D, Pang Y, Chen J, Kang C, Zhao M, Yang B. Key roles of two-component systems in intestinal signal sensing and virulence regulation in enterohemorrhagic Escherichia coli. FEMS Microbiol Rev 2024; 48:fuae028. [PMID: 39537200 PMCID: PMC11644481 DOI: 10.1093/femsre/fuae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that infects humans by colonizing the large intestine. Upon reaching the large intestine, EHEC mediates local signal recognition and the transcriptional regulation of virulence genes to promote adherence and colonization in a highly site-specific manner. Two-component systems (TCSs) represent an important strategy used by EHEC to couple external stimuli with the regulation of gene expression, thereby allowing EHEC to rapidly adapt to changing environmental conditions. An increasing number of studies published in recent years have shown that EHEC senses a variety of host- and microbiota-derived signals present in the human intestinal tract and coordinates the expression of virulence genes via multiple TCS-mediated signal transduction pathways to initiate the disease-causing process. Here, we summarize how EHEC detects a wide range of intestinal signals and precisely regulates virulence gene expression through multiple signal transduction pathways during the initial stages of infection, with a particular emphasis on the key roles of TCSs. This review provides valuable insights into the importance of TCSs in EHEC pathogenesis, which has relevant implications for the development of antibacterial therapies against EHEC infection.
Collapse
Affiliation(s)
- Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Yu Pang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Jingnan Chen
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Mengjie Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| |
Collapse
|
5
|
Antunes Filho S, Pizzorno Backx B, Foguel D. Green nanotechnology in phytosynthesis and its efficiency in inhibiting bacterial biofilm formation: implications for medicine. BIOFOULING 2024; 40:645-659. [PMID: 39319552 DOI: 10.1080/08927014.2024.2407036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/07/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Nanotechnology is used in several biomedical applications, including antimicrobial and antibiofilm applications using nanomaterials. Bacterial biofilm varies according to the strain; the matrix is very strong and resistant. In this sense, phytosynthesis is an important method for combating bacterial biofilms through the use of metallic nanoparticles (silver, gold, or copper) with increased marketing and technical-scientific potential. In this review, we seek to gather the leading publications on the use of phytosynthesized metallic nanoparticles against bacterial biofilms. Furthermore, this study aims to understand the main characteristics and parameters of these nanomaterials, their antibiofilm efficiency, and the presence or absence of cytotoxicity in these developed technologies.
Collapse
Affiliation(s)
- Sérgio Antunes Filho
- NUMPEX - UFRJ, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Débora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Edison LK, Kudva IT, Kariyawasam S. Host-Pathogen Interactions during Shiga Toxin-Producing Escherichia coli Adherence and Colonization in the Bovine Gut: A Comprehensive Review. Microorganisms 2024; 12:2009. [PMID: 39458318 PMCID: PMC11509540 DOI: 10.3390/microorganisms12102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a significant public health threat due to its ability to cause severe gastrointestinal diseases in humans, ranging from diarrhea to life-threatening conditions such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). As the primary reservoir of STEC, cattle play a crucial role in its transmission through contaminated food and water, posing a considerable risk to human health. This comprehensive review explores host-pathogen interactions during STEC colonization of the bovine gut, focusing on the role of gut microbiota in modulating these interactions and influencing disease outcomes. We integrated findings from published transcriptomics, proteomics, and genomics studies to provide a thorough understanding of how STEC adheres to and colonizes the bovine gastrointestinal tract. The insights from this review offer potential avenues for the development of novel preventative and therapeutic strategies aimed at controlling STEC colonization in cattle, thereby reducing the risk of zoonotic transmission.
Collapse
Affiliation(s)
- Lekshmi K. Edison
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA;
| | - Subhashinie Kariyawasam
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
7
|
Carter MQ, Carychao D, Lindsey RL. Conditional expression of flagellar motility, curli fimbriae, and biofilms in Shiga toxin- producing Escherichia albertii. Front Microbiol 2024; 15:1456637. [PMID: 39318426 PMCID: PMC11420993 DOI: 10.3389/fmicb.2024.1456637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 09/26/2024] Open
Abstract
Escherichia albertii is an emerging foodborne pathogen. We previously reported that some avian Shiga toxin-producing E. albertii strains exhibited higher or comparable cytotoxicity in Vero-d2EGFP cells with several enterohemorrhagic E. coli (EHEC) outbreak strains. To better understand the environmental persistence of this pathogen, comparative genomics and phenotypic assays were applied to assess adhesion capability, motility, and biofilm formation in E. albertii. Among the 108 adherence-related genes, those involved in biogenesis of curli fimbriae, hemorrhagic E. coli pilus, type 1 fimbriae, and Sfm fimbriae were conserved in E. albertii. All 20 E. albertii strains carried a complete set of primary flagellar genes that were organized into four gene clusters, while five strains possessed genes related to the secondary flagella, also known as lateral flagella. Compared to EHEC strain EDL933, the eight chemotaxis genes located within the primary flagellar gene clusters were deleted in E. albertii. Additional deletion of motility genes flhABCD and motBC was identified in several E. albertii strains. Swimming motility was detected in three strains when grown in LB medium, however, when grown in 5% TSB or in the pond water-supplemented with 10% pigeon droppings, an additional four strains became motile. Although all E. albertii strains carried curli genes, curli fimbriae were detected only in four, eight, and nine strains following 24, 48, and 120 h incubation, respectively. Type 1 fimbriae were undetectable in any of the strains grown at 37°C or 28°C. Strong biofilms were detected in strains that produced curli fimbriae and in a chicken isolate that was curli fimbriae negative but carried genes encoding adhesive fimbriae K88, a signature of enterotoxigenic E. coli strains causing neonatal diarrhea in piglets. In all phenotypic traits examined, no correlation was revealed between the strains isolated from different sources, or between the strains with and without Shiga toxin genes. The phenotypic variations could not be explained solely by the genetic diversity or the difference in adherence genes repertoire, implying complex regulation in expression of various adhesins. Strains that exhibited a high level of cytotoxicity and were also proficient in biofilm production, may have potential to emerge into high-risk pathogens.
Collapse
Affiliation(s)
- Michelle Qiu Carter
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Diana Carychao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Rebecca L Lindsey
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
8
|
Vázquez‐Arias A, Vázquez‐Iglesias L, Pérez‐Juste I, Pérez‐Juste J, Pastoriza‐Santos I, Bodelon G. Bacterial surface display of human lectins in Escherichia coli. Microb Biotechnol 2024; 17:e14409. [PMID: 38380565 PMCID: PMC10884992 DOI: 10.1111/1751-7915.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/02/2024] [Indexed: 02/22/2024] Open
Abstract
Lectin-glycan interactions sustain fundamental biological processes involved in development and disease. Owing to their unique sugar-binding properties, lectins have great potential in glycobiology and biomedicine. However, their relatively low affinities and broad specificities pose a significant challenge when used as analytical reagents. New approaches for expression and engineering of lectins are in demand to overcome current limitations. Herein, we report the application of bacterial display for the expression of human galectin-3 and mannose-binding lectin in Escherichia coli. The analysis of the cell surface expression and binding activity of the surface-displayed lectins, including point and deletion mutants, in combination with molecular dynamics simulation, demonstrate the robustness and suitability of this approach. Furthermore, the display of functional mannose-binding lectin in the bacterial surface proved the feasibility of this method for disulfide bond-containing lectins. This work establishes for the first time bacterial display as an efficient means for the expression and engineering of human lectins, thereby increasing the available toolbox for glycobiology research.
Collapse
Affiliation(s)
- Alba Vázquez‐Arias
- CINBIOUniversidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
| | - Lorena Vázquez‐Iglesias
- CINBIOUniversidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
| | | | - Jorge Pérez‐Juste
- CINBIOUniversidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
- Departamento de Química FísicaUniversidade de VigoVigoSpain
| | - Isabel Pastoriza‐Santos
- CINBIOUniversidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
- Departamento de Química FísicaUniversidade de VigoVigoSpain
| | - Gustavo Bodelon
- CINBIOUniversidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
- Departamento de Biología Funcional y Ciencias de la SaludUniversidade de VigoVigoSpain
| |
Collapse
|
9
|
Weinroth MD, Clawson ML, Harhay GP, Eppinger M, Harhay DM, Smith TPL, Bono JL. Escherichia coli O157:H7 tir 255 T > A allele strains differ in chromosomal and plasmid composition. Front Microbiol 2023; 14:1303387. [PMID: 38169669 PMCID: PMC10758439 DOI: 10.3389/fmicb.2023.1303387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O157:H7 strains with the T allele in the translocated intimin receptor polymorphism (tir) 255 A > T gene associate with human disease more than strains with an A allele; however, the allele is not thought to be the direct cause of this difference. We sequenced a diverse set of STEC O157:H7 strains (26% A allele, 74% T allele) to identify linked differences that might underlie disease association. The average chromosome and pO157 plasmid size and gene content were significantly greater within the tir 255 A allele strains. Eighteen coding sequences were unique to tir 255 A allele chromosomes, and three were unique to tir 255 T allele chromosomes. There also were non-pO157 plasmids that were unique to each tir 255 allele variant. The overall average number of prophages did not differ between tir 255 allele strains; however, there were different types between the strains. Genomic and mobile element variation linked to the tir 255 polymorphism may account for the increased frequency of the T allele isolates in human disease.
Collapse
Affiliation(s)
- Margaret D. Weinroth
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
| | - Michael L. Clawson
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
| | - Gregory P. Harhay
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Dayna M. Harhay
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
| | - Timothy P. L. Smith
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
| | - James L. Bono
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
| |
Collapse
|
10
|
Veloso M, Arros P, Acosta J, Rojas R, Berríos-Pastén C, Varas M, Araya P, Hormazábal JC, Allende ML, Chávez FP, Lagos R, Marcoleta AE. Antimicrobial resistance, pathogenic potential, and genomic features of carbapenem-resistant Klebsiella pneumoniae isolated in Chile: high-risk ST25 clones and novel mobile elements. Microbiol Spectr 2023; 11:e0039923. [PMID: 37707451 PMCID: PMC10581085 DOI: 10.1128/spectrum.00399-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023] Open
Abstract
Multidrug- and carbapenem-resistant Klebsiella pneumoniae (CR-Kp) are critical threats to global health and key traffickers of resistance genes to other pathogens. Despite the sustained increase in CR-Kp infections in Chile, few strains have been described at the genomic level, lacking details of their resistance and virulence determinants and the mobile elements mediating their dissemination. In this work, we studied the antimicrobial susceptibility and performed a comparative genomic analysis of 10 CR-Kp isolates from the Chilean surveillance of carbapenem-resistant Enterobacteriaceae. High resistance was observed among the isolates (five ST25, three ST11, one ST45, and one ST505), which harbored 44 plasmids, most carrying genes for conjugation and resistance to several antibiotics and biocides. Ten plasmids encoding carbapenemases were characterized, including novel plasmids or variants with additional resistance genes, a novel genetic environment for blaKPC-2, and plasmids widely disseminated in South America. ST25 K2 isolates belonging to CG10224, a clone traced back to 2012 in Chile, which recently acquired blaNDM-1, blaNDM-7, or blaKPC-2 plasmids stood out as high-risk clones. Moreover, this corresponds to the first report of ST25 and ST45 Kp producing NDM-7 in South America and ST505 CR-Kp producing both NDM-7 and KPC-2 worldwide. Also, we characterized a variety of genomic islands carrying virulence and fitness factors. These results provide baseline knowledge for a detailed understanding of molecular and genetic determinants behind antibiotic resistance and virulence of CR-Kp in Chile and South America. IMPORTANCE In the ongoing antimicrobial resistance crisis, carbapenem-resistant strains of Klebsiella pneumoniae are critical threats to public health. Besides globally disseminated clones, the burden of local problem clones remains substantial. Although genomic analysis is a powerful tool for improving pathogen and antimicrobial resistance surveillance, it is still restricted in low- to middle-income countries, including Chile, causing them to be underrepresented in genomic databases and epidemiology surveys. This study provided the first 10 complete genomes of the Chilean surveillance for carbapenem-resistant K. pneumoniae in healthcare settings, unveiling their resistance and virulence determinants and the mobile genetic elements mediating their dissemination, placed in the South American and global K. pneumoniae epidemiological context. We found ST25 with K2 capsule as an emerging high-risk clone, along with other lineages producing two carbapenemases and several other resistance and virulence genes encoded in novel plasmids and genomic islands.
Collapse
Affiliation(s)
- Marcelo Veloso
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Patricio Arros
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Joaquin Acosta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Roberto Rojas
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Camilo Berríos-Pastén
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Macarena Varas
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | - Miguel L. Allende
- Millennium Institute Center for Genome Regulation (CGR), Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Francisco P. Chávez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rosalba Lagos
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Andrés E. Marcoleta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Azam MW, Zarrilli R, Khan AU. Updates on the Virulence Factors Produced by Multidrug-Resistant Enterobacterales and Strategies to Control Their Infections. Microorganisms 2023; 11:1901. [PMID: 37630461 PMCID: PMC10456890 DOI: 10.3390/microorganisms11081901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
The Enterobacterales order is a massive group of Gram-negative bacteria comprised of pathogenic and nonpathogenic members, including beneficial commensal gut microbiota. The pathogenic members produce several pathogenic or virulence factors that enhance their pathogenic properties and increase the severity of the infection. The members of Enterobacterales can also develop resistance against the common antimicrobial agents, a phenomenon called antimicrobial resistance (AMR). Many pathogenic Enterobacterales members are known to possess antimicrobial resistance. This review discusses the virulence factors, pathogenicity, and infections caused by multidrug-resistant Enterobacterales, especially E. coli and some other bacterial species sharing similarities with the Enterobacterales members. We also discuss both conventional and modern approaches used to combat the infections caused by them. Understanding the virulence factors produced by the pathogenic bacteria will help develop novel strategies and methods to treat infections caused by them.
Collapse
Affiliation(s)
- Mohd W. Azam
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Asad U. Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
12
|
Yesilay G, Dos Santos OAL, A BR, Hazeem LJ, Backx BP, J JV, Kamel AH, Bououdina M. Impact of pathogenic bacterial communities present in wastewater on aquatic organisms: Application of nanomaterials for the removal of these pathogens. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106620. [PMID: 37399782 DOI: 10.1016/j.aquatox.2023.106620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023]
Abstract
Contaminated wastewater (WW) can cause severe hazards to numerous delicate ecosystems and associated life forms. In addition, human health is negatively impacted by the presence of microorganisms in water. Multiple pathogenic microorganisms in contaminated water, including bacteria, fungi, yeast, and viruses, are vectors for several contagious diseases. To avoid the negative impact of these pathogens, WW must be free from pathogens before being released into stream water or used for other reasons. In this review article, we have focused on pathogenic bacteria in WW and summarized the impact of the different types of pathogenic bacteria on marine organisms. Moreover, we presented a variety of physical and chemical techniques that have been developed to provide a pathogen-free aquatic environment. Among the techniques, membrane-based techniques for trapping hazardous biological contaminants are gaining popularity around the world. Besides, novel and recent advancements in nanotechnological science and engineering suggest that many waterborne pathogens could be inactivated using nano catalysts, bioactive nanoparticles, nanostructured catalytic membranes, nanosized photocatalytic structures, and electrospun nanofibers and processes have been thoroughly examined.
Collapse
Affiliation(s)
- Gamze Yesilay
- Molecular Biology and Genetics Department, Hamidiye Institute of Health Sciences, University of Health Sciences-Türkiye, Istanbul 34668, Türkiye; Experimental Medicine Application & Research Center, University of Health Sciences, Validebag Research Park, Uskudar, Istanbul 34662, Türkiye
| | | | - Bevin Roger A
- Department of Chemistry, Catalysis and Nanomaterials Research Laboratory, Loyola College, Chennai 600 034, India
| | - Layla J Hazeem
- Department of Biology, College of Science, University of Bahrain, 32038, Bahrain
| | | | - Judith Vijaya J
- Department of Chemistry, Catalysis and Nanomaterials Research Laboratory, Loyola College, Chennai 600 034, India
| | - Ayman H Kamel
- Department of Chemistry, College of Science, University of Bahrain, 32038, Bahrain; Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo 11566, Egypt
| | - Mohamed Bououdina
- Department of Mathematics and Science, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia.
| |
Collapse
|
13
|
L A LA, Waturangi DE. Application of BI-EHEC and BI-EPEC bacteriophages to control enterohemorrhagic and enteropathogenic escherichia coli on various food surfaces. BMC Res Notes 2023; 16:102. [PMID: 37312167 DOI: 10.1186/s13104-023-06371-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
OBJECTIVES The purposes of this study were to determine the Efficiency of Plating (EOP) value of Bacteriophage BI-EHEC and BI-EPEC and to evaluate the application of these bacteriophages in reducing population of EHEC and EPEC on various food samples. RESULTS In this study, we used bacteriophage BI-EHEC and BI-EPEC, which were isolated from previous study. Both phages were tested with other multiple pathotypes of intestinal pathogenic E. coli to determine the efficiency of plating. BI-EHEC had high efficiency toward ETEC with an EOP value of 2.95 but low efficiency toward EHEC with an EOP value of 0.10, while BI-EPEC had high efficiency toward EHEC and ETEC with EOP values of 1.10 and 1.21, respectively. As biocontrol agents, both bacteriophages able to reduce CFU of EHEC and EPEC in several food samples using 1 and 6-days incubation times at 4 [Formula: see text]. BI-EHEC reduced the number of EHEC with an overall percentage of bacterial reduction value above 0.13 log10, while BI-EPEC reduced number of EPEC with reduction value above 0.33 log10.
Collapse
Affiliation(s)
- Leny Agustina L A
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51 Jakarta, 12930, South Jakarta, Indonesia
| | - Diana Elizabeth Waturangi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51 Jakarta, 12930, South Jakarta, Indonesia.
| |
Collapse
|
14
|
Bernal AM, Sosa FN, Todero MF, Montagna DR, Vermeulen ME, Fernández-Brando RJ, Ramos MV, Errea AJ, Rumbo M, Palermo MS. Nasal immunization with H7 flagellin protects mice against hemolytic uremic syndrome secondary to Escherichia coli O157:H7 gastrointestinal infection. Front Cell Infect Microbiol 2023; 13:1143918. [PMID: 37260706 PMCID: PMC10227447 DOI: 10.3389/fcimb.2023.1143918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Shiga-toxin (Stx) producing Escherichia coli (STEC) O157:H7 is the most frequent serotype associated with hemolytic uremic syndrome (HUS) after gastrointestinal infections. Protection against HUS secondary to STEC infections has been experimentally assayed through the generation of different vaccine formulations. With focus on patients, the strategies have been mainly oriented to inhibit production of Stx or its neutralization. However, few approaches have been intended to block gastrointestinal phase of this disease, which is considered the first step in the pathogenic cascade of HUS. The aim of this work was to assay H7 flagellin as a mucosal vaccine candidate to prevent the systemic complications secondary to E. coli O157:H7 infections. Materials and methods The cellular and humoral immune response after H7 nasal immunization in mice were studied by the analysis of systemic and intestinal specific antibody production, as well as cytokine production and lymphocyte proliferation against H7 flagellin ex vivo. Results Immunized mice developed a strong and specific anti-H7 IgG and IgA response, at systemic and mucosal level, as well as a cellular Th1/Th2/Th17 response. H7 induced activation of bone marrow derived dendritic cells in vitro and a significant delayed-type hypersensitivity (DTH) response in immunized mice. Most relevant, immunized mice were completely protected against the challenge with an E. coli O157:H7 virulent strain in vivo, and surviving mice presented high titres of anti-H7 and Stx antibodies. Discussion These results suggest that immunization avoids HUS outcome and allows to elicit a specific immune response against other virulence factors.
Collapse
Affiliation(s)
- Alan Mauro Bernal
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Fernando Nicolás Sosa
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - María Florencia Todero
- Laboratorio de Fisiología de Procesos Inflamatorios, IMEX CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Daniela Romina Montagna
- Laboratorio de Oncología Experimental, IMEX CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Mónica Elba Vermeulen
- Laboratorio de Células Presentadoras de Antígenos y Respuesta Inflamatoria, IMEX CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Romina Jimena Fernández-Brando
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - María Victoria Ramos
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Agustina Juliana Errea
- Instituto de Estudios Inmunológicos y Fisiopatológicos - CONICET - Universidad Nacional de La Plata, La Plata, Argentina
| | - Martin Rumbo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - CONICET - Universidad Nacional de La Plata, La Plata, Argentina
| | - Marina Sandra Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
15
|
Huerta-Saquero A, Chapartegui-González I, Bowser S, Khakhum N, Stockton JL, Torres AG. P22-Based Nanovaccines against Enterohemorrhagic Escherichia coli. Microbiol Spectr 2023:e0473422. [PMID: 36943089 PMCID: PMC10100862 DOI: 10.1128/spectrum.04734-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is an important causative agent of diarrhea in humans that causes outbreaks worldwide. Efforts have been made to mitigate the morbidity and mortality caused by these microorganisms; however, the global incidence is still high, causing hundreds of deaths per year. Several vaccine candidates have been evaluated that demonstrate some stability and therapeutic potential but have limited overarching effect. Virus-like particles have been used successfully as nanocontainers for the targeted delivery of drugs, proteins, or nucleic acids. In this study, phage P22 nanocontainers were used as a carrier for the highly antigenic T3SS structural protein EscC that is conserved between EHEC and other enteropathogenic bacteria. We were able to stably incorporate the EscC protein into P22 nanocontainers. The EscC-P22 particles were used to intranasally inoculate mice, which generated specific antibodies against EscC. These antibodies increased the phagocytic activity of murine macrophages infected with EHEC in vitro and reduced bacterial adherence to Caco-2 epithelial cells in vitro, illustrating their functionality. The EscC-P22-based particles are a potential nanovaccine candidate for immunization against EHEC O157:H7 infections. IMPORTANCE This study describes the initial attempt to use P22 viral-like particles as nanocontainers expressing enterohemorrhagic Escherichia coli (EHEC) proteins that are immunogenic and could be used as effective vaccines against EHEC infections.
Collapse
Affiliation(s)
- Alejandro Huerta-Saquero
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Sarah Bowser
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nittaya Khakhum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jacob L Stockton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
16
|
Dishan A, Hizlisoy H, Barel M, Disli HB, Gungor C, Ertas Onmaz N, Gonulalan Z, Al S, Yildirim Y. Biofilm formation, antibiotic resistance and genotyping of Shiga toxin-producing Escherichia coli isolated from retail chicken meats. Br Poult Sci 2023; 64:63-73. [PMID: 36102939 DOI: 10.1080/00071668.2022.2116697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The Shiga toxin-producing Escherichia coli (STEC) is a hazardous zoonotic agent for chicken meat consumers. This study determined the serogroups and evaluated the virulence genes, antibiotic resistance, biofilm-forming profiles and genetic relationships of STEC isolates in chicken meat.2. A total of 100 samples belonging to dressed-whole chicken and different parts of the chicken (wing, breast, thigh, drumstick) were collected between September and November 2019 from different retail markets in Kayseri, Türkiye.3. Phenotypic (identification, disc diffusion test, Congo red agar and microtitre plate tests) and molecular tests (identification, serogrouping, virulence factors, biofilm, antibiotic susceptibility, 16S rRNA sequencing and enterobacterial repetitive intergenic consensus-PCR for typing of the isolates) were carried out.4. E. coli was isolated from 35% of the samples and 35% of the samples harboured at least one STEC. Among 35 STEC isolates, 3 (8.5%), 6 (17.1%), 2 (5.7%) and 3 (8.5%) were found to be positive for fliCH2, fliCH8, fliCH11, fliCH19 genes, respectively. Out of 35 STEC positive isolates, 4 (11.4%) were identified as E. coli O157, from which 2 (5.7%) were E. coli O157:H7. E. coli O157 was detected in two (10%), one (5%), one (5%) of the thigh, drumstick and whole chicken samples, respectively.5. Biofilm-forming ability was reported in 33 (94.2%) of 35 E. coli isolates, whilst the biofilm-associated genes detected among 35 STEC isolates included csgA (88.5%), fimH (88.5%), bcsA (85.7%), agn43 (14.2%) and papC (8.5%). The STEC strains showed resistance against ampicillin (88.5%) and erythromycin (88.5%), followed by tetracycline (74.2%) and gentamicin (25.7%). However, the distribution of isolates harbouring blaCMY, ere(A), tet(A) and aac(3)-IV antibiotic resistance genes was found to be 17.1%, 11.4%, 85.7% and 5.7%, respectively.6. ERIC-PCR showed that E. coli strains obtained from different parts and whole of chicken samples had genetic diversities. ERIC-PCR patterns grouped strains of 35 STEC into eight clusters designated A-H, with 73% similarity. Proper hygiene measures and staff training are essential for public health during poultry processing and in retail stores to control STEC.
Collapse
Affiliation(s)
- A Dishan
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Yozgat Bozok University, Sorgun/Yozgat, Türkiye
| | - H Hizlisoy
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - M Barel
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - H B Disli
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Türkiye
| | - C Gungor
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - N Ertas Onmaz
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - Z Gonulalan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - S Al
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - Y Yildirim
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
17
|
Wu P, Wang Q, Yang Q, Feng X, Liu X, Sun H, Yan J, Kang C, Liu B, Liu Y, Yang B. A Novel Role of the Two-Component System Response Regulator UvrY in Enterohemorrhagic Escherichia coli O157:H7 Pathogenicity Regulation. Int J Mol Sci 2023; 24:ijms24032297. [PMID: 36768620 PMCID: PMC9916836 DOI: 10.3390/ijms24032297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important human pathogen causing severe diseases, such as hemorrhagic colitis and lethal hemolytic uremic syndrome. The signal-sensing capability of EHEC O157:H7 at specific host colonization sites via different two-component systems (TCSs) is closely related to its pathogenicity during infection. However, the types of systems involved and the regulatory mechanisms are not fully understood. Here, we investigated the function of the TCS BarA/UvrY regulator UvrY in the pathogenicity regulation of EHEC O157:H7. Our results showed that UvrY acts as a positive regulator of EHEC O157:H7 for cellular adherence and mouse colonization through the transcriptional activation of the locus for enterocyte effacement (LEE) pathogenic genes. Furthermore, this regulation is mediated by the LEE island master regulator, Ler. Our results highlight the significance of UvrY in EHEC O157:H7 pathogenicity and underline the unknown importance of BarA/UvrY in colonization establishment and intestinal adaptability during infection.
Collapse
Affiliation(s)
- Pan Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Qian Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Qian Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Xiaohui Feng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Xingmei Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Nankai International Advanced Research Institute, Nankai University, Shenzhen 518000, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Nankai International Advanced Research Institute, Nankai University, Shenzhen 518000, China
- Correspondence: (Y.L.); (B.Y.)
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
- Correspondence: (Y.L.); (B.Y.)
| |
Collapse
|
18
|
Quinn C, Tomás-Cortázar J, Ofioritse O, Cosgrave J, Purcell C, McAloon C, Frost S, McClean S. GlnH, a Novel Antigen That Offers Partial Protection against Verocytotoxigenic Escherichia coli Infection. Vaccines (Basel) 2023; 11:175. [PMID: 36680019 PMCID: PMC9863631 DOI: 10.3390/vaccines11010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Verotoxin-producing Escherichia coli (VTEC) causes zoonotic infections, with potentially devastating complications, and children under 5 years old are particularly susceptible. Antibiotic treatment is contraindicated, and due to the high proportion of infected children that suffer from severe and life-changing complications, there is an unmet need for a vaccine to prevent VTEC infections. Bacterial adhesins represent promising candidates for the successful development of a vaccine against VTEC. Using a proteomic approach to identify bacterial proteins interacting with human gastrointestinal epithelial Caco-2 and HT-29 cells, we identified eleven proteins by mass spectrometry. These included a glutamine-binding periplasmic protein, GlnH, a member of the ABC transporter family. The glnH gene was identified in 13 of the 15 bovine and all 5 human patient samples tested, suggesting that it is prevalent. We confirmed that GlnH is involved in the host cell attachment of an O157:H7 prototype E. coli strain to gastrointestinal cells in vitro. Recombinant GlnH was expressed and purified prior to the immunisation of mice. When alum was used as an adjuvant, GlnH was highly immunogenic, stimulating strong serological responses in immunised mice, and it resulted in a modest reduction in faecal shedding but did not reduce colonisation. GlnH immunisation with a T-cell-inducing adjuvant (SAS) also showed comparable antibody responses and an IgG1/IgG2a ratio suggestive of a mixed Th1/Th2 response but was partially protective, with a 1.5-log reduction in colonisation of the colon and caecum at 7 days relative to the adjuvant only (p = 0.0280). It is clear that future VTEC vaccine developments should consider the contribution of adjuvants in addition to antigens. Moreover, it is likely that a combined cellular and humoral response may prove more beneficial in providing protective interventions against VTEC.
Collapse
Affiliation(s)
- Conor Quinn
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
- APC Ltd., Building 11, Cherrywood Business Park, Loughlinstown, D18 DH5 Co. Dublin, Ireland
| | - Julen Tomás-Cortázar
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
| | - Oritsejolomi Ofioritse
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joanne Cosgrave
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claire Purcell
- Children’s Health Ireland (CHI) at Tallaght, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| | - Catherine McAloon
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Susanna Frost
- Children’s Health Ireland (CHI) at Tallaght, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
| |
Collapse
|
19
|
Jia T, Wu P, Liu B, Liu M, Mu H, Liu D, Huang M, Li L, Wei Y, Wang L, Yang Q, Liu Y, Yang B, Huang D, Yang L, Liu B. The phosphate-induced small RNA EsrL promotes E. coli virulence, biofilm formation, and intestinal colonization. Sci Signal 2023; 16:eabm0488. [PMID: 36626577 DOI: 10.1126/scisignal.abm0488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/08/2022] [Indexed: 01/12/2023]
Abstract
Escherichia coli are part of the normal intestinal microbiome, but some enterohemorrhagic E. coli (EHEC) and enteropathogenic E. coli (EPEC) strains can cause potentially life-threatening gastroenteritis. Virulence factors underlying the ability of EHEC and EPEC to cause disease include those encoded in the locus of the enterocyte effacement (LEE) pathogenicity island. Here, we demonstrated that EsrL, a small RNA present in many E. coli strains, promoted pathogenicity, adhesion, and biofilm formation in EHEC and EPEC. PhoB, the response regulator of the two-component system that controls cellular responses to phosphate, directly repressed esrL expression under low-phosphate conditions. A phosphate-rich environment, similar to that of the human intestine, relieved PhoB-mediated repression of esrL. EsrL interacted with and stabilized the LEE-encoded regulator (ler) transcript, which encodes a transcription factor for LEE genes, leading to increased bacterial adhesion to cultured cells and colonization of the rabbit colon. EsrL also bound to and stabilized the fimC transcript, which encodes a chaperone that is required for the assembly of type 1 pili, resulting in enhanced cell adhesion in pathogenic E. coli and enhanced biofilm formation in pathogenic and nonpathogenic E. coli. Our findings demonstrate that EsrL stimulates the expression of virulence genes in both EHEC and EPEC under phosphate-rich conditions, thus promoting the pathogenicity of EHEC and EPEC in the nutrient-rich gut environment.
Collapse
Affiliation(s)
- Tianyuan Jia
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Pan Wu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Bin Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Miaomiao Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Huiqian Mu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Dan Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Min Huang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Linxing Li
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yi Wei
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Lu Wang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Qian Yang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yutao Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Bin Yang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
| | - Di Huang
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
- Nankai International Advanced Research Institute, Shenzhen, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Bin Liu
- Institute of Translational Medicine Research, Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, China
- Nankai International Advanced Research Institute, Shenzhen, China
| |
Collapse
|
20
|
Vogt SL, Serapio-Palacios A, Woodward SE, Santos AS, de Vries SP, Daigneault MC, Brandmeier LV, Grant AJ, Maskell DJ, Allen-Vercoe E, Finlay BB. Enterohemorrhagic Escherichia coli responds to gut microbiota metabolites by altering metabolism and activating stress responses. Gut Microbes 2023; 15:2190303. [PMID: 36951510 PMCID: PMC10038027 DOI: 10.1080/19490976.2023.2190303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a major cause of severe bloody diarrhea, with potentially lethal complications, such as hemolytic uremic syndrome. In humans, EHEC colonizes the colon, which is also home to a diverse community of trillions of microbes known as the gut microbiota. Although these microbes and the metabolites that they produce represent an important component of EHEC's ecological niche, little is known about how EHEC senses and responds to the presence of gut microbiota metabolites. In this study, we used a combined RNA-Seq and Tn-Seq approach to characterize EHEC's response to metabolites from an in vitro culture of 33 human gut microbiota isolates (MET-1), previously demonstrated to effectively resolve recurrent Clostridioides difficile infection in human patients. Collectively, the results revealed that EHEC adjusts to growth in the presence of microbiota metabolites in two major ways: by altering its metabolism and by activating stress responses. Metabolic adaptations to the presence of microbiota metabolites included increased expression of systems for maintaining redox balance and decreased expression of biotin biosynthesis genes, reflecting the high levels of biotin released by the microbiota into the culture medium. In addition, numerous genes related to envelope and oxidative stress responses (including cpxP, spy, soxS, yhcN, and bhsA) were upregulated during EHEC growth in a medium containing microbiota metabolites. Together, these results provide insight into the molecular mechanisms by which pathogens adapt to the presence of competing microbes in the host environment, which ultimately may enable the development of therapies to enhance colonization resistance and prevent infection.
Collapse
Affiliation(s)
- Stefanie L. Vogt
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Sarah E. Woodward
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew S. Santos
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stefan P.W. de Vries
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Michelle C. Daigneault
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Lisa V. Brandmeier
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew J. Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Duncan J. Maskell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Lactobacilli, a Weapon to Counteract Pathogens through the Inhibition of Their Virulence Factors. J Bacteriol 2022; 204:e0027222. [PMID: 36286515 PMCID: PMC9664955 DOI: 10.1128/jb.00272-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, several studies have reported an alarming increase in pathogen resistance to current antibiotic therapies and treatments. Therefore, the search for effective alternatives to counter their spread and the onset of infections is becoming increasingly important.
Collapse
|
22
|
Bagel A, Delignette-Muller ML, Lopez C, Michel V, Sergentet D, Douellou T. Strain- and serotype-dependent affinity of Shiga toxin-producing Escherichia coli for bovine milk fat globules. J Dairy Sci 2022; 105:8688-8704. [PMID: 36175225 DOI: 10.3168/jds.2022-21840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are widely detected in raw milk products intended for human consumption. Although STEC are a worldwide public health problem, the pathogenicity of STEC in cheese remains unclear. In fact, bacterial association with compounds in raw milk cheeses could reduce their pathogenicity. A previous study showed the association of 2 STEC strains with raw milk cream in a natural creaming assay. Different concentrations of each strain were required to saturate the cream. In this study, we hypothesized that all STEC strains could be associated with milk fat globules (MFG) in raw milk and that the bacterial load required for saturation of the cream is serotype dependent. We evaluated the affinity of STEC strains belonging to the O157:H7, O26:H11, and O103:H2 serotypes for bovine raw milk cream and analyzed saturation of the cream layer by natural creaming assay. We used 12 STEC strains and 3 strains belonging to another pathotype to assess the effects of serotypes on this phenomenon. We performed sucrose density gradient centrifugation assays with 2 STEC model strains to confirm the results obtained by natural creaming. The localization of STEC within MFG-enriched creams was observed by confocal and electron microscopy. We recovered approximately 10 times more STEC from the cream layer after natural creaming than from raw bovine milk. The concentration of STEC required to saturate the cream layer (the saturation concentration) was estimated for each strain by nonlinear regression, highlighting a strain and serotype effect. Moreover, the concentration of STEC in the cream was milk fat level dependent. However, even in nonsaturating conditions, a high level of STEC was still present in the aqueous phase, after fat separation. Thus, natural creaming should not be used as the sole preventive measure to remove STEC from naturally contaminated raw milk. The results of our study suggest that cream saturation is a complex mechanism, most likely involving specific interactions between STEC and raw MFG.
Collapse
Affiliation(s)
- A Bagel
- Bacterial Opportunistic Pathogens and Environment Research Group, Université de Lyon, UMR 5557 Ecologie Microbienne Lyon, National Center of Scientific Research, VetAgro Sup, 69280 Marcy-l'Etoile, France
| | - M-L Delignette-Muller
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, VetAgro Sup, National Center of Scientific Research, 69622 Villeurbanne, France
| | - C Lopez
- INRAE, UR BIA, F-44316, Nantes, France
| | - V Michel
- Actalia, 74800 La Roche-sur-Foron, France
| | - D Sergentet
- Bacterial Opportunistic Pathogens and Environment Research Group, Université de Lyon, UMR 5557 Ecologie Microbienne Lyon, National Center of Scientific Research, VetAgro Sup, 69280 Marcy-l'Etoile, France; VetAgro Sup-Campus Vétérinaire, Laboratoire d'Etudes des Microorganismes Alimentaires Pathogènes-French National Reference Laboratory for Escherichia coli including Shiga toxin-producing E. coli (NRL-STEC), Université de Lyon, 69280, Marcy-l'Etoile, France.
| | - T Douellou
- Bacterial Opportunistic Pathogens and Environment Research Group, Université de Lyon, UMR 5557 Ecologie Microbienne Lyon, National Center of Scientific Research, VetAgro Sup, 69280 Marcy-l'Etoile, France
| |
Collapse
|
23
|
Garimano N, Scalise ML, Gómez F, Amaral MM, Ibarra C. Intestinal mucus-derived metabolites modulate virulence of a clade 8 enterohemorrhagic Escherichia coli O157:H7. Front Cell Infect Microbiol 2022; 12:975173. [PMID: 36004327 PMCID: PMC9393340 DOI: 10.3389/fcimb.2022.975173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
The human colonic mucus is mainly composed of mucins, which are highly glycosylated proteins. The normal commensal colonic microbiota has mucolytic activity and is capable of releasing the monosaccharides contained in mucins, which can then be used as carbon sources by pathogens such as Enterohemorrhagic Escherichia coli (EHEC). EHEC can regulate the expression of some of its virulence factors through environmental sensing of mucus-derived sugars, but its implications regarding its main virulence factor, Shiga toxin type 2 (Stx2), among others, remain unknown. In the present work, we have studied the effects of five of the most abundant mucolytic activity-derived sugars, Fucose (L-Fucose), Galactose (D-Galactose), N-Gal (N-acetyl-galactosamine), NANA (N-Acetyl-Neuraminic Acid) and NAG (N-Acetyl-D-Glucosamine) on EHEC growth, adhesion to epithelial colonic cells (HCT-8), and Stx2 production and translocation across a polarized HCT-8 monolayer. We found that bacterial growth was maximum when using NAG and NANA compared to Galactose, Fucose or N-Gal, and that EHEC adhesion was inhibited regardless of the metabolite used. On the other hand, Stx2 production was enhanced when using NAG and inhibited with the rest of the metabolites, whilst Stx2 translocation was only enhanced when using NANA, and this increase occurred only through the transcellular route. Overall, this study provides insights on the influence of the commensal microbiota on the pathogenicity of E. coli O157:H7, helping to identify favorable intestinal environments for the development of severe disease.
Collapse
|
24
|
Enterohemorrhagic Escherichia coli and a Fresh View on Shiga Toxin-Binding Glycosphingolipids of Primary Human Kidney and Colon Epithelial Cells and Their Toxin Susceptibility. Int J Mol Sci 2022; 23:ijms23136884. [PMID: 35805890 PMCID: PMC9266556 DOI: 10.3390/ijms23136884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx, whereas the role of epithelial cells of colon and kidneys in the infection process has been and is still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) and their various lipoforms present in primary human kidney and colon epithelial cells and their distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes with a brief outlook on future challenges of Stx research.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW This review updates recent findings about Escherichia coli O157:H7 virulence factors and its bovine reservoir. This Shiga toxin (Stx)-producing E. coli belongs to the Enterohemorrhagic E. coli (EHEC) pathotype causing hemorrhagic colitis. Its low infectious dose makes it an efficient, severe, foodborne pathogen. Although EHEC remains in the intestine, Stx can translocate systemically and is cytotoxic to microvascular endothelial cells, especially in the kidney and brain. Disease can progress to life-threatening hemolytic uremic syndrome (HUS) with hemolytic anemia, acute kidney failure, and thrombocytopenia. Young children, the immunocompromised, and the elderly are at the highest risk for HUS. Healthy ruminants are the major reservoir of EHEC and cattle are the primary source of human exposure. RECENT FINDINGS Advances in understanding E. coli O157:H7 pathogenesis include molecular mechanisms of virulence, bacterial adherence, type three secretion effectors, intestinal microbiome, inflammation, and reservoir maintenance. SUMMARY Many aspects of E. coli O157:H7 disease remain unclear and include the role of the human and bovine intestinal microbiomes in infection. Therapeutic strategies involve controlling inflammatory responses and/or intestinal barrier function. Finally, elimination/reduction of E. coli O157:H7 in cattle using CRISPR-engineered conjugative bacterial plasmids and/or on-farm management likely hold solutions to reduce infections and increase food safety/security.
Collapse
|
26
|
Bagel A, Sergentet D. Shiga Toxin-Producing Escherichia coli and Milk Fat Globules. Microorganisms 2022; 10:496. [PMID: 35336072 PMCID: PMC8953591 DOI: 10.3390/microorganisms10030496] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are zoonotic Gram-negative bacteria. While raw milk cheese consumption is healthful, contamination with pathogens such as STEC can occur due to poor hygiene practices at the farm level. STEC infections cause mild to serious symptoms in humans. The raw milk cheese-making process concentrates certain milk macromolecules such as proteins and milk fat globules (MFGs), allowing the intrinsic beneficial and pathogenic microflora to continue to thrive. MFGs are surrounded by a biological membrane, the milk fat globule membrane (MFGM), which has a globally positive health effect, including inhibition of pathogen adhesion. In this review, we provide an update on the adhesion between STEC and raw MFGs and highlight the consequences of this interaction in terms of food safety, pathogen detection, and therapeutic development.
Collapse
Affiliation(s)
- Arthur Bagel
- ‘Bacterial Opportunistic Pathogens and Environment’ Research Team, Université de Lyon, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Marcy-l’Etoile, 69280 Lyon, France;
| | - Delphine Sergentet
- ‘Bacterial Opportunistic Pathogens and Environment’ Research Team, Université de Lyon, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Marcy-l’Etoile, 69280 Lyon, France;
- Laboratoire d’Etudes des Microorganismes Alimentaires Pathogènes-French National Reference Laboratory for Escherichia coli Including Shiga Toxin-Producing E. coli (NRL-STEC), VetAgro Sup—Campus Vétérinaire, Université de Lyon, Marcy-l’Etoile, 69280 Lyon, France
| |
Collapse
|
27
|
Henrique IDM, Sacerdoti F, Ferreira RL, Henrique C, Amaral MM, Piazza RMF, Luz D. Therapeutic Antibodies Against Shiga Toxins: Trends and Perspectives. Front Cell Infect Microbiol 2022; 12:825856. [PMID: 35223548 PMCID: PMC8866733 DOI: 10.3389/fcimb.2022.825856] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 12/22/2022] Open
Abstract
Shiga toxins (Stx) are AB5-type toxins, composed of five B subunits which bind to Gb3 host cell receptors and an active A subunit, whose action on the ribosome leads to protein synthesis suppression. The two Stx types (Stx1 and Stx2) and their subtypes can be produced by Shiga toxin-producing Escherichia coli strains and some Shigella spp. These bacteria colonize the colon and induce diarrhea that may progress to hemorrhagic colitis and in the most severe cases, to hemolytic uremic syndrome, which could lead to death. Since the use of antibiotics in these infections is a topic of great controversy, the treatment remains supportive and there are no specific therapies to ameliorate the course. Therefore, there is an open window for Stx neutralization employing antibodies, which are versatile molecules. Indeed, polyclonal, monoclonal, and recombinant antibodies have been raised and tested in vitro and in vivo assays, showing differences in their neutralizing ability against deleterious effects of Stx. These molecules are in different phases of development for which we decide to present herein an updated report of these antibody molecules, their source, advantages, and disadvantages of the promising ones, as well as the challenges faced until reaching their applicability.
Collapse
Affiliation(s)
| | - Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Camila Henrique
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Maria Marta Amaral
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Roxane Maria Fontes Piazza
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
- *Correspondence: Roxane Maria Fontes Piazza, ; Daniela Luz,
| | - Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
- *Correspondence: Roxane Maria Fontes Piazza, ; Daniela Luz,
| |
Collapse
|
28
|
Optimization of Multivalent Gold Nanoparticle Vaccines Eliciting Humoral and Cellular Immunity in an In Vivo Model of Enterohemorrhagic Escherichia coli O157:H7 Colonization. mSphere 2022; 7:e0093421. [PMID: 35044806 PMCID: PMC8769200 DOI: 10.1128/msphere.00934-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 remains a pathogen of significance and high consequence around the world. This outcome is due in part to the high economic impact associated with massive, contaminated product recalls, prevalence of the pathogen in carrier reservoirs, disease sequelae, and mortality associated with several outbreaks worldwide. Furthermore, the contraindication of antibiotic use for the treatment of EHEC-related infections makes this pathogen a primary candidate for the development of effective prophylactic vaccines. However, no vaccines are approved for human use, and many have failed to provide a high degree of efficacy or broad protection, thereby opening an avenue for the use of new technologies to produce a safe, effective, and protective vaccine. Building on our previous studies using reverse vaccinology-predicted antigens, we refine a formulation, evaluate new immunogenic antigens, and further expand our understanding about the mechanism of EHEC vaccine-mediated protection. In the current study, we exploit the use of the nanotechnology platform based on gold nanoparticles (AuNP), which can act as a scaffold for the delivery of various antigens. Our results demonstrate that a refined vaccine formulation incorporating EHEC antigen LomW, EscC, LpfA1, or LpfA2 and delivered using AuNPs can elicit robust antigen-specific cellular and humoral responses associated with reduced EHEC colonization in vivo. Furthermore, our in vitro mechanistic studies further support that antibody-mediated protection is primarily driven by inhibition of bacterial adherence onto intestinal epithelial cells and by promotion of macrophage uptake and killing. IMPORTANCE Enterohemorrhagic E. coli O157:H7 remains an important human pathogen that does not have an effective and safe vaccine available. We have made outstanding progress in the identification of novel protective antigens that have been incorporated into the gold nanoparticle platform and used as vaccines. In this study, we have refined our vaccine formulations to incorporate multiple antigens and further define the mechanism of antibody-mediated protection, including one vaccine that promotes macrophage uptake. We further define the cell-mediated responses elicited at the mucosal surface by our nanovaccine formulations, another key immune mechanism linked to protection.
Collapse
|
29
|
Strain specific motility patterns and surface adhesion of virulent and probiotic Escherichia coli. Sci Rep 2022; 12:614. [PMID: 35022453 PMCID: PMC8755817 DOI: 10.1038/s41598-021-04592-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/22/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial motility provides the ability for bacterial dissemination and surface exploration, apart from a choice between surface colonisation and further motion. In this study, we characterised the movement trajectories of pathogenic and probiotic Escherichia coli strains (ATCC43890 and M17, respectively) at the landing stage (i.e., leaving the bulk and approaching the surface) and its correlation with adhesion patterns and efficiency. A poorly motile strain JM109 was used as a control. Using specially designed and manufactured microfluidic chambers, we found that the motion behaviour near surfaces drastically varied between the strains, correlating with adhesion patterns. We consider two bacterial strategies for effective surface colonisation: horizontal and vertical, based on the obtained results. The horizontal strategy demonstrated by the M17 strain is characterised by collective directed movements within the horizontal layer during a relatively long period and non-uniform adhesion patterns, suggesting co-dependence of bacteria in the course of adhesion. The vertical strategy demonstrated by the pathogenic ATCC43890 strain implies the individual movement of bacteria mainly in the vertical direction, a faster transition from bulk to near-surface swimming, and independent bacterial behaviour during adhesion, providing a uniform distribution over the surface.
Collapse
|
30
|
Hu B, Yang X, Liu Q, Zhang Y, Jiang D, Jiao H, Yang Y, Xiong Y, Bai X, Hou P. High prevalence and pathogenic potential of Shiga toxin-producing Escherichia coli strains in raw mutton and beef in Shandong, China. Curr Res Food Sci 2022; 5:1596-1602. [PMID: 36161222 PMCID: PMC9493282 DOI: 10.1016/j.crfs.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/09/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen that can cause severe human diseases such as hemolytic uremic syndrome (HUS). Human STEC infections are frequently caused through consumption of contaminated foods, especially raw meats. This study aimed to investigate the prevalence of STEC in raw meats and to characterize the meat-derived STEC strains using whole genome sequencing. Our study showed that 26.6% of raw mutton, and 7.5% of raw beef samples were culture-positive for STEC. Thirteen serotypes were identified in 22 meat-derived isolates in this study, including the virulent serotypes O157:H7 and O26:H11. Seven Shiga toxin (Stx) subtypes were found in 22 isolates, of these, stx1c and stx1c + stx2b were predominant. The recently-reported stx2k subtype was found in three mutton-sourced isolates. A number of other virulence genes such as genes encoding intimin (eae), enterohemorrhagic E. coli (EHEC) hemolysin (ehxA), EHEC factor for adherence (efa1), heat-stable enterotoxin 1 (astA), type III secretion system effectors, were detected in meat-derived STEC strains. One mutton-sourced isolate was resistant to three antibiotics, i.e., tetracycline, chloramphenicol, and trimethoprim-sulfamethoxazole. Whole-genome phylogeny indicated the genomic diversity of meat-derived strains in this study. O157:H7 and O26:H11 isolates in this study were phylogenetically grouped together with strains from HUS patients, suggesting their pathogenic potential. To conclude, our study reported high STEC contaminations in retail raw meats, particularly raw mutton, genomic characterization indicated pathogenic potential of meat-derived STEC strains. These findings highlight the critical need for increased monitoring of STEC in retail raw meats in China. High prevalence of Shiga toxin-producing E. coli (STEC) was detected in raw mutton, compared to beef. Virulent serotypes O157:H7 and O26:H11 were found in meat-sourced STEC isolates. Meat-sourced STEC isolates in the same region exhibited genetic diversity.
Collapse
Affiliation(s)
- Bin Hu
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Xi Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Qian Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuanqing Zhang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Deshui Jiang
- Lanling Center for Disease Control and Prevention, Lanling, 277700, Shandong, China
| | - Hongbo Jiao
- Lanling Center for Disease Control and Prevention, Lanling, 277700, Shandong, China
| | - Ying Yang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiangning Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, 141 52, Stockholm, Sweden
- Corresponding author. State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Peibin Hou
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
- Corresponding author. Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China.
| |
Collapse
|
31
|
S. Hoefler R, Kudva IT. EDL933 Strains of Escherichia coli O157 can Demonstrate Genetic Diversity and Differential Adherence to Bovine Recto-Anal Junction Squamous Epithelial Cells. Open Microbiol J 2021. [DOI: 10.2174/1874285802115010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Differences between Escherichia coli O157 (O157) strains are well-established with some of these strains being associated with major outbreaks in the US. EDL933 is one such O157 strain that caused a multistate outbreak in 1982 and has since been used as a prototype in various O157-related experiments.
Objective:
As O157 can readily acquire genetic mutations, we sought to determine if the genetic and phenotypic profiles of EDL933 strains from different sources would be consistent.
Methods:
We evaluated wild-type O157 strains stocked as EDL933 from three different laboratories, in the strain typing Polymorphic Amplified Typing Sequence (PATS) and the bovine rectal-anal junction squamous epithelial (RSE) cell- and HEp-2 cell- adherence assays. In addition, we also verified if Shiga toxins (Stx), the Locus of Enterocyte Effacement (LEE) or curli fimbriae contributed to the adherence phenotypes observed using mutant and wild-type EDL933 isolates.
Results:
Our results showed differences in PATS profiles and RSE cell-adherence phenotype, with no influence from the Stx or LEE genes, between EDL933 from different sources. Interestingly, the EDL933 strain that demonstrated the most contrasting diffuse adherence phenotype on RSE cells, EDL933-T, had decreased curli production that may have contributed to this phenotype.
Conclusion:
Our observations suggest that a comprehensive characterization of bacterial isolates, even if assigned to the same strain type prior to use in experiments, is warranted to ensure consistency and reproducibility of results.
Collapse
|
32
|
Unruh DA, Uhl BC, Phebus RK, Gragg SE. Attachment of Shiga Toxin-Producing Escherichia coli (STEC) to Pre-Chill and Post-Chill Beef Brisket Tissue. Microorganisms 2021; 9:microorganisms9112320. [PMID: 34835446 PMCID: PMC8618168 DOI: 10.3390/microorganisms9112320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) has caused numerous foodborne illness outbreaks where beef was implicated as the contaminated food source. Understanding how STEC attach to beef surfaces may inform effective intervention applications at the abattoir. This simulated meat processing conditions to measure STEC attachment to adipose and lean beef tissue. Beef brisket samples were warmed to a surface temperature of 30 °C (warm carcass), while the remaining samples were maintained at 4 °C (cold carcass), prior to surface inoculation with an STEC cocktail (O26, O45, O103, O111, O121, O145, and O157:H7). Cocktails were grown in either tryptic soy broth (TSB) or M9 minimal nutrient medium. Loosely and firmly attached cells were measured at 0, 3, 5, and 20 min and 1, 3, 8, 12, 24 and 48 h. TSB-grown STEC cells became more firmly attached throughout storage and a difference in loosely versus firmly attached populations on lean and adipose tissues was observed. M9-grown STEC demonstrated a 0.2 log10 CFU/cm2 difference in attachment to lean versus adipose tissue and variability in populations was recorded throughout sampling. Future research should investigate whether a decrease in intervention efficacy correlates to an increase in firmly attached STEC cells on chilled carcasses and/or subprimals, which has been reported.
Collapse
Affiliation(s)
| | | | | | - Sara E. Gragg
- Correspondence: ; Tel.: +1-785-532-1306; Fax: +1-785-532-5861
| |
Collapse
|
33
|
Segura A, Bertin Y, Durand A, Benbakkar M, Forano E. Transcriptional analysis reveals specific niche factors and response to environmental stresses of enterohemorrhagic Escherichia coli O157:H7 in bovine digestive contents. BMC Microbiol 2021; 21:284. [PMID: 34663220 PMCID: PMC8524897 DOI: 10.1186/s12866-021-02343-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
Background Enterohemorrhagic Escherichia coli (EHEC) are responsible for severe diseases in humans, and the ruminant digestive tract is considered as their main reservoir. Their excretion in bovine feces leads to the contamination of foods and the environment. Thus, providing knowledge of processes used by EHEC to survive and/or develop all along the bovine gut represents a major step for strategies implementation. Results We compared the transcriptome of the reference EHEC strain EDL933 incubated in vitro in triplicate samples in sterile bovine rumen, small intestine and rectum contents with that of the strain grown in an artificial medium using RNA-sequencing (RNA-seq), focusing on genes involved in stress response, adhesion systems including the LEE, iron uptake, motility and chemotaxis. We also compared expression of these genes in one digestive content relative to the others. In addition, we quantified short chain fatty acids and metal ions present in the three digestive contents. RNA-seq data first highlighted response of EHEC EDL933 to unfavorable physiochemical conditions encountered during its transit through the bovine gut lumen. Seventy-eight genes involved in stress responses including drug export, oxidative stress and acid resistance/pH adaptation were over-expressed in all the digestive contents compared with artificial medium. However, differences in stress fitness gene expression were observed depending on the digestive segment, suggesting that these differences were due to distinct physiochemical conditions in the bovine digestive contents. EHEC activated genes encoding three toxin/antitoxin systems in rumen content and many gene clusters involved in motility and chemotaxis in rectum contents. Genes involved in iron uptake and utilization were mostly down-regulated in all digestive contents compared with artificial medium, but feo genes were over-expressed in rumen and small intestine compared with rectum. The five LEE operons were more expressed in rectum than in rumen content, and LEE1 was also more expressed in rectum than in small intestine content. Conclusion Our results highlight various strategies that EHEC may implement to survive in the gastrointestinal environment of cattle. These data could also help defining new targets to limit EHEC O157:H7 carriage and shedding by cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02343-7.
Collapse
Affiliation(s)
- Audrey Segura
- Université Clermont Auvergne, INRAE, MEDIS 0454, F-63000, Clermont-Ferrand, France
| | - Yolande Bertin
- Université Clermont Auvergne, INRAE, MEDIS 0454, F-63000, Clermont-Ferrand, France
| | - Alexandra Durand
- Université Clermont Auvergne, INRAE, MEDIS 0454, F-63000, Clermont-Ferrand, France
| | - Mhammed Benbakkar
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000, Clermont-Ferrand, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, MEDIS 0454, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
34
|
Diversity of Non-O157 Shiga Toxin-Producing Escherichia coli Isolated from Cattle from Central and Southern Chile. Animals (Basel) 2021; 11:ani11082388. [PMID: 34438845 PMCID: PMC8388633 DOI: 10.3390/ani11082388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cattle are the main reservoir of Shiga toxin-producing E. coli (STEC), foodborne pathogens that cause severe disease and outbreaks. However, not all STEC cause human illnesses or have the same virulence potential. Characterizing strains isolated worldwide allows insights into how strains spread and which isolates have a more significant risk potential. This study described STEC isolation rates from cattle in Chile and characterized 30 isolates. We obtained 93 STEC isolates from 56/446 (12.6%) fecal cattle samples. Then, 30 non-O157 STEC isolates were selected for complete characterization; we found isolates of 16 different sequence types and 17 serotypes. One isolate was resistant to tetracycline and carried resistance genes against the drug. Surveyed virulence genes (n = 31) were present from 13% to 100% of isolates, and one isolate carried 26/31 virulence genes. Most isolates (90%; 27/30) carried the stx2 gene, which is frequently linked to strains causing severe disease. A phylogenetic reconstruction demonstrated that isolates clustered based on serotypes, independent of their geographical origin (Central or Southern Chile). These results indicate that cattle in Chile carry a wide diversity of STEC potentially pathogenic for humans based on the presence of virulence genes. Abstract Cattle are the main reservoir of Shiga toxin-producing Escherichia coli (STEC), one of the world’s most important foodborne pathogens. The pathogen causes severe human diseases and outbreaks. This study aimed to identify and characterize non-O157 STEC isolated from cattle feces from central and southern Chile. We analyzed 446 cattle fecal samples and isolated non-O157 STEC from 12.6% (56/446); a total of 93 different isolates were recovered. Most isolates displayed β-glucuronidase activity (96.8%; 90/93) and fermented sorbitol (86.0%; 80/93), whereas only 39.8% (37/93) were resistant to tellurite. A subgroup of 30 representative non-O157 STEC isolates was selected for whole-genome sequencing and bioinformatics analysis. In silico analysis showed that they grouped into 16 different sequence types and 17 serotypes; the serotypes most frequently identified were O116:H21 and O168:H8 (13% each). A single isolate of serotype O26:H11 was recovered. One isolate was resistant to tetracycline and carried resistance genes tet(A) and tet(R); no other isolate displayed antimicrobial resistance or carried antimicrobial resistance genes. The intimin gene (eae) was identified in 13.3% (4/30) of the genomes and 90% (27/30) carried the stx2 gene. A phylogenetic reconstruction demonstrated that the isolates clustered based on serotypes, independent of geographical origin. These results indicate that cattle in Chile carry a wide diversity of STEC potentially pathogenic for humans based on the presence of critical virulence genes.
Collapse
|
35
|
Galarce N, Sánchez F, Escobar B, Lapierre L, Cornejo J, Alegría-Morán R, Neira V, Martínez V, Johnson T, Fuentes-Castillo D, Sano E, Lincopan N. Genomic Epidemiology of Shiga Toxin-Producing Escherichia coli Isolated from the Livestock-Food-Human Interface in South America. Animals (Basel) 2021; 11:ani11071845. [PMID: 34206206 PMCID: PMC8300192 DOI: 10.3390/ani11071845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens that cause food-borne diseases in humans, where cattle and derived products play a key role as reservoirs and vehicles. We analyzed the genomic data of STEC strains circulating at the livestock-food-human interface in South America, extracting clinically and epidemiologically relevant information (serotypes, virulome, resistance genes, sequence types, and phylogenomics). This study included 130 STEC genomes obtained from cattle (n = 51), beef (n = 48), and human (n = 31) samples. The successful expansion of O157:H7 (ST11) and non-O157 (ST16, ST21, ST223, ST443, ST677, ST679, ST2388) clones is highlighted, suggesting common activities, such as multilateral trade and travel. Circulating STEC strains analyzed exhibit high genomic diversity and harbor several genetic determinants associated with severe illness in humans, highlighting the need to establish official surveillance of this pathogen that should be focused on detecting molecular determinants of virulence and clonal relatedness, in the whole beef production chain. Abstract Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens responsible for causing food-borne diseases in humans. While South America has the highest incidence of human STEC infections, information about the genomic characteristics of the circulating strains is scarce. The aim of this study was to analyze genomic data of STEC strains isolated in South America from cattle, beef, and humans; predicting the antibiotic resistome, serotypes, sequence types (STs), clonal complexes (CCs) and phylogenomic backgrounds. A total of 130 whole genome sequences of STEC strains were analyzed, where 39.2% were isolated from cattle, 36.9% from beef, and 23.8% from humans. The ST11 was the most predicted (20.8%) and included O-:H7 (10.8%) and O157:H7 (10%) serotypes. The successful expansion of non-O157 clones such as ST16/CC29-O111:H8 and ST21/CC29-O26:H11 is highlighted, suggesting multilateral trade and travel. Virulome analyses showed that the predominant stx subtype was stx2a (54.6%); most strains carried ehaA (96.2%), iha (91.5%) and lpfA (77.7%) genes. We present genomic data that can be used to support the surveillance of STEC strains circulating at the livestock-food-human interface in South America, in order to control the spread of critical clones “from farm to table”.
Collapse
Affiliation(s)
- Nicolás Galarce
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Correspondence:
| | - Fernando Sánchez
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile
| | - Beatriz Escobar
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Lisette Lapierre
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Javiera Cornejo
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Raúl Alegría-Morán
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Facultad de Ciencias Agropecuarias y Ambientales, Universidad Pedro de Valdivia, Santiago 8370007, Chile
| | - Víctor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Víctor Martínez
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile;
| | - Timothy Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Danny Fuentes-Castillo
- Departamento de Patología, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil;
| | - Elder Sano
- Departamento de Microbiología, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil; (E.S.); (N.L.)
| | - Nilton Lincopan
- Departamento de Microbiología, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil; (E.S.); (N.L.)
| |
Collapse
|
36
|
Hua Y, Chromek M, Frykman A, Jernberg C, Georgieva V, Hansson S, Zhang J, Marits AK, Wan C, Matussek A, Bai X. Whole-genome characterization of hemolytic uremic syndrome-causing Shiga toxin-producing Escherichia coli in Sweden. Virulence 2021; 12:1296-1305. [PMID: 33939581 PMCID: PMC8096335 DOI: 10.1080/21505594.2021.1922010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin-producing Escherichia coli, a foodborne bacterial pathogen, has been linked to a broad spectrum of clinical outcomes ranging from asymptomatic carriage to fatal hemolytic uremic syndrome (HUS). Here, we collected clinical data and STEC strains from HUS patients from 1994 through 2018, whole-genome sequencing was performed to molecularly characterize HUS-associated STEC strains, statistical analysis was conducted to identify bacterial genetic factors associated with severe outcomes in HUS patients. O157:H7 was the most predominant serotype (57%) among 54 HUS-associated STEC strains, followed by O121:H19 (19%) and O26:H11 (7%). Notably, some non-predominant serotypes such as O59:H17 (2%) and O109:H21 (2%) also caused HUS. All O157:H7 strains with one exception belonged to clade 8. During follow-up at a median of 4 years, 41% of the patients had renal sequelae. Fifty-nine virulence genes were found to be statistically associated with severe renal sequelae, these genes encoded type II and type III secretion system effectors, chaperones, and other factors. Notably, virulence genes associated with severe clinical outcomes were significantly more prevalent in O157:H7 strains. In contrast, genes related to mild symptoms were evenly distributed across all serotypes. The whole-genome phylogeny indicated high genomic diversity among HUS-STEC strains. No distinct cluster was found between HUS and non-HUS STEC strains. The current study showed that O157:H7 remains the main cause of STEC-associated HUS, despite the rising importance of other non-O157 serotypes. Besides, O157:H7 is associated with severe renal sequelae in the follow-up, which could be a risk factor for long-term prognosis in HUS patients.
Collapse
Affiliation(s)
- Ying Hua
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Milan Chromek
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Anne Frykman
- Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Valya Georgieva
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sverker Hansson
- Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ji Zhang
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Ann Katrine Marits
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Chengsong Wan
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Andreas Matussek
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.,Laboratory Medicine, Jönköping Region County, Department of Clinical and Experimental Medicine, Linköping University, Jönköping, Sweden.,Oslo University Hospital, Oslo, Norway.,Division of Laboratory Medicine, Institute of Clinical Medicine, University of Oslo, Norway
| | - Xiangning Bai
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
37
|
Huang X, Yang X, Shi X, Erickson DL, Nagaraja TG, Meng J. Whole-genome sequencing analysis of uncommon Shiga toxin-producing Escherichia coli from cattle: Virulence gene profiles, antimicrobial resistance predictions, and identification of novel O-serogroups. Food Microbiol 2021; 99:103821. [PMID: 34119106 DOI: 10.1016/j.fm.2021.103821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Shiga toxin-producing E. coli (STEC) are major foodborne pathogens. While many studies have focused on the "top-7 STEC", little is known for minor serogroups. A total of 284 non-top-7 STEC strains isolated from cattle feces were subjected to whole-genome sequencing (WGS) to determine the serotypes, the presence of virulence genes and antimicrobial resistance (AMR) determinants. Nineteen typeable and three non-typeable serotypes with novel O-antigen loci were identified. Twenty-one AMR genes and point mutations in another six genes that conferred resistance to 10 antimicrobial classes were detected, as well as 46 virulence genes. The distribution of 33 virulence genes and 15 AMR determinants exhibited significant differences among serotypes (p < 0.05). Among all strains, 81.7% (n = 232) and 14.1% (n = 40) carried stx2 and stx1 only, respectively; only 4.2% (n = 12) carried both. Subtypes stx1a, stx1c, stx2a, stx2c, stx2d, and stx2g were identified. Forty-six strains carried eae and stx2a and therefore had the potential cause severe diseases; 47 strains were genetically related to human clinical strains inferred from a pan-genome phylogenetic tree. We were able to demonstrate the utility of WGS as a surveillance tool to characterize the novel serotypes, as well as AMR and virulence profiles of uncommon STEC that could potentially cause human illness.
Collapse
Affiliation(s)
- Xinyang Huang
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, College Park, MD, 20740, USA
| | - Xun Yang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Xiaorong Shi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - David L Erickson
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, College Park, MD, 20740, USA
| | - T G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, College Park, MD, 20740, USA; Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
38
|
He Z, Li T, Wang J, Luo D, Ning N, Li Z, Chen F, Wang H. AtaT Improves the Stability of Pore-Forming Protein EspB by Acetylating Lysine 206 to Enhance Strain Virulence. Front Microbiol 2021; 12:627141. [PMID: 33732222 PMCID: PMC7957018 DOI: 10.3389/fmicb.2021.627141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
A novel type II toxin of toxin–antitoxin systems (TAs), Gcn5-related N-acetyltransferase (GNAT) family, was reported recently. GNAT toxins are mainly present in pathogenic species, but studies of their involvement in pathogenicity are rare. This study discovered that the GANT toxin AtaT in enterohemorrhagic Escherichia coli (EHEC) can significantly enhance strain pathogenicity. First, we detected the virulence of ΔataT and ΔataR in cell and animal models. In the absence of ataT, strains showed a lower adhesion number, and host cells presented weaker attaching and effacing lesions, inflammatory response, and pathological injury. Next, we screened the acetylation substrate of AtaT to understand the underlying mechanism. Results showed that E. coli pore-forming protein EspB, which acts as a translocon in type III secretion system (T3SS) in strains, can be acetylated specifically by AtaT. The acetylation of K206 in EspB increases protein stability and maintains the efficiency of effectors translocating into host cells to cause close adhesion and tissue damage.
Collapse
Affiliation(s)
- Zhili He
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tao Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianxin Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Deyan Luo
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nianzhi Ning
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhan Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Fanghong Chen
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
39
|
Jia T, Liu B, Mu H, Qian C, Wang L, Li L, Lu G, Zhu W, Guo X, Yang B, Huang D, Feng L, Liu B. A Novel Small RNA Promotes Motility and Virulence of Enterohemorrhagic Escherichia coli O157:H7 in Response to Ammonium. mBio 2021; 12:e03605-20. [PMID: 33688013 PMCID: PMC8092317 DOI: 10.1128/mbio.03605-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/30/2021] [Indexed: 12/15/2022] Open
Abstract
Enterohemorrhagic Escherichia coli serotype O157:H7 (O157) is a critical, foodborne, human intestinal pathogen that causes severe acute hemorrhagic diarrhea, abdominal cramping, and even death. Small RNAs (sRNAs) are noncoding regulatory molecules that sense environmental changes and trigger various virulence-related signaling pathways; however, few such sRNAs have been identified in O157. Here, we report a novel sRNA, EsrF that senses high ammonium concentrations in the colon and enhances O157 pathogenicity by promoting bacterial motility and adhesion to host cells. Specifically, EsrF was found to directly interact with the 5' untranslated regions of the flagellar biosynthetic gene, flhB, mRNA and increase its abundance, thereby upregulating expression of essential flagellar genes, including flhD, flhC, fliA, and fliC, leading to elevated O157 motility and virulence. Meanwhile, an infant rabbit model of O157 infection showed that deletion of esrF and flhB significantly attenuates O157 pathogenicity. Furthermore, NtrC-the response regulator of the NtrC/B two-component system-was found to exert direct, negative regulation of esrF expression. Meanwhile, high ammonium concentrations in the colon release the inhibitory effect of NtrC on esrF, thereby enhancing its expression and subsequently promoting bacterial colonization in the host colon. Our work reveals a novel, sRNA-centered, virulence-related signaling pathway in O157 that senses high ammonium concentrations. These findings provide novel insights for future research on O157 pathogenesis and targeted treatment strategies.IMPORTANCE The process by which bacteria sense environmental cues to regulate their virulence is complex. Several studies have focused on regulating the expression of the locus of enterocyte effacement pathogenicity island in the typical gut pathogenic bacterium, O157. However, few investigations have addressed the regulation of other virulence factors in response to intestinal signals. In this study, we report our discovery of a novel O157 sRNA, EsrF, and demonstrate that it contributed to bacterial motility and virulence in vitro and in vivo through the regulation of bacterial flagellar synthesis. Furthermore, we show that high ammonium concentrations in the colon induced esrF expression to promote bacterial virulence by releasing the repression of esrF by NtrC. This study highlights the importance of sRNA in regulating the motility and pathogenicity of O157.
Collapse
Affiliation(s)
- Tianyuan Jia
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Huiqian Mu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Chengqian Qian
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Lu Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Linxing Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Gege Lu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Wenxuan Zhu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Xi Guo
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Bin Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Di Huang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Lu Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| |
Collapse
|
40
|
Xu L, Bai X, Tenguria S, Liu Y, Drolia R, Bhunia AK. Mammalian Cell-Based Immunoassay for Detection of Viable Bacterial Pathogens. Front Microbiol 2020; 11:575615. [PMID: 33329436 PMCID: PMC7732435 DOI: 10.3389/fmicb.2020.575615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/29/2020] [Indexed: 12/24/2022] Open
Abstract
Rapid detection of live pathogens is of paramount importance to ensure food safety. At present, nucleic acid-based polymerase chain reaction and antibody-based lateral flow assays are the primary methods of choice for rapid detection, but these are prone to interference from inhibitors, and resident microbes. Moreover, the positive results may neither assure virulence potential nor viability of the analyte. In contrast, the mammalian cell-based assay detects pathogen interaction with the host cells and is responsive to only live pathogens, but the short shelf-life of the mammalian cells is the major impediment for its widespread application. An innovative approach to prolong the shelf-life of mammalian cells by using formalin was undertaken. Formalin (4% formaldehyde)-fixed human ileocecal adenocarcinoma cell line, HCT-8 on 24-well tissue culture plates was used for the capture of viable pathogens while an antibody was used for specific detection. The specificity of the Mammalian Cell-based ImmunoAssay (MaCIA) was validated with Salmonella enterica serovar Enteritidis and Typhimurium as model pathogens and further confirmed against a panel of 15 S. Enteritidis strains, 8 S. Typhimurium, 11 other Salmonella serovars, and 14 non-Salmonella spp. The total detection time (sample-to-result) of MaCIA with artificially inoculated ground chicken, eggs, milk, and cake mix at 1-10 CFU/25 g was 16-21 h using a traditional enrichment set up but the detection time was shortened to 10-12 h using direct on-cell (MaCIA) enrichment. Formalin-fixed stable cell monolayers in MaCIA provide longer shelf-life (at least 14 weeks) for possible point-of-need deployment and multi-sample testing on a single plate.
Collapse
Affiliation(s)
- Luping Xu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Shivendra Tenguria
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Yi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Rishi Drolia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
41
|
Kayali AY, Ozawa J, Nishibuchi M. Development and Improvement of Methods to Disinfect Raw BeefUsing Calcium Hydroxide-Ethanol-Lactate-Based Food Disinfectant for Safe Consumption. Front Microbiol 2020; 11:537889. [PMID: 33329416 PMCID: PMC7714727 DOI: 10.3389/fmicb.2020.537889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
The enterohemorrhagic Escherichia coli (EHEC) group is responsible for outbreaks and sporadic cases around the world annually. EHEC produces a potent protein known as Shiga toxin in the human intestine causing mild to bloody diarrhea. Some cases of EHEC infections may develop life-threatening symptoms, which may lead to human death. It also has other virulent factors that enable the EHEC cells to adhere to a target tissue and invade to some extent to crave more nutrition and escape the external extreme conditions, such as disinfection treatment. For those reasons, beef is not permitted for raw consumption unless guaranteed free of harmful bacteria, including EHEC, or the invading bacterial cells are completely removed or reduced to a safe level. A heat treatment that guarantees a sufficiently high temperature to reach inside the tissue of meat through the surface was established in Japan. This treatment may allow the core part of the meat to be consumed raw. However, it seemed to have some limitations. We aimed at developing a disinfection method with, hypothetically, nutrition-preserving property that is equivalent to the heat treatment or even superior. A combination of calcium hydroxide-ethanol-lactate-based food disinfectant and two proposed physical sterilization methods, assisted with microbial detection methods, exerted sufficient bactericidal activities against EHEC cells adhering to and/or invading the beef. These physical methods showed great usefulness in disinfecting fresh full-size boneless Round-beef of around 12 kg including fat on the outside. The first method applied a commercially available wide-drum washing machine (WM method) while the second method applied a specially designed plastic bag and a commercially available vibration machine (VV method). After trimming out the fat and the denatured surface of the beef (1 cm from the surface), the remaining meat mass showed no signs of denaturation and a significant reduction of viable EHEC cells by a factor of >104 CFU/ml. However, in the WM method, the disinfection process required a large amount of the disinfectant (150 L). The improved method, VV method, implemented a system that consumes a smaller amount of the disinfectant (50 L) while ensuring the targeted disinfection power degree.
Collapse
Affiliation(s)
- Ahmad Yaman Kayali
- Division of Environmental Coexistence, Center for Southeast Asian Studies, Kyoto University, Kyoto, Japan
| | - Jo Ozawa
- T. K. Shin Co., Ltd., Hyogo, Japan
| | - Mitsuaki Nishibuchi
- Division of Environmental Coexistence, Center for Southeast Asian Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
42
|
Stromberg ZR, Masonbrink RE, Mellata M. Transcriptomic Analysis of Shiga Toxin-Producing Escherichia coli during Initial Contact with Cattle Colonic Explants. Microorganisms 2020; 8:E1662. [PMID: 33120988 PMCID: PMC7693793 DOI: 10.3390/microorganisms8111662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 01/10/2023] Open
Abstract
Foodborne pathogens are a public health threat globally. Shiga toxin-producing Escherichia coli (STEC), particularly O26, O111, and O157 STEC, are often associated with foodborne illness in humans. To create effective preharvest interventions, it is critical to understand which factors STEC strains use to colonize the gastrointestinal tract of cattle, which serves as the reservoir for these pathogens. Several colonization factors are known, but little is understood about initial STEC colonization factors. Our objective was to identify these factors via contrasting gene expression between nonpathogenic E. coli and STEC. Colonic explants were inoculated with nonpathogenic E. coli strain MG1655 or STEC strains (O26, O111, or O157), bacterial colonization levels were determined, and RNA was isolated and sequenced. STEC strains adhered to colonic explants at numerically but not significantly higher levels compared to MG1655. After incubation with colonic explants, flagellin (fliC) was upregulated (log2 fold-change = 4.0, p < 0.0001) in O157 STEC, and collectively, Lon protease (lon) was upregulated (log2 fold-change = 3.6, p = 0.0009) in STEC strains compared to MG1655. These results demonstrate that H7 flagellum and Lon protease may play roles in early colonization and could be potential targets to reduce colonization in cattle.
Collapse
Affiliation(s)
- Zachary R. Stromberg
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA;
| | - Rick E. Masonbrink
- Genome Informatics Facility, Iowa State University, Ames, IA 50011, USA;
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
43
|
Ali A, Kolenda R, Khan MM, Weinreich J, Li G, Wieler LH, Tedin K, Roggenbuck D, Schierack P. Novel Avian Pathogenic Escherichia coli Genes Responsible for Adhesion to Chicken and Human Cell Lines. Appl Environ Microbiol 2020; 86:e01068-20. [PMID: 32769194 PMCID: PMC7531953 DOI: 10.1128/aem.01068-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a major bacterial pathogen of commercial poultry contributing to extensive economic losses and contamination of the food chain. One of the initial steps in bacterial infection and successful colonization of the host is adhesion to the host cells. A random transposon mutant library (n = 1,300) of APEC IMT 5155 was screened phenotypically for adhesion to chicken (CHIC-8E11) and human (LoVo) intestinal epithelial cell lines. The detection and quantification of adherent bacteria were performed by a modified APEC-specific antibody staining assay using fluorescence microscopy coupled to automated VideoScan technology. Eleven mutants were found to have significantly altered adhesion to the cell lines examined. Mutated genes in these 11 "adhesion-altered mutants" were identified by arbitrary PCR and DNA sequencing. The genes were amplified from wild-type APEC IMT 5155, cloned, and transformed into the respective adhesion-altered mutants, and complementation was determined in adhesion assays. Here, we report contributions of the fdtA, rluD, yjhB, ecpR, and fdeC genes of APEC in adhesion to chicken and human intestinal cell lines. Identification of the roles of these genes in APEC pathogenesis will contribute to prevention and control of APEC infections.IMPORTANCE Avian pathogenic E. coli is not only pathogenic for commercial poultry but can also cause foodborne infections in humans utilizing the same attachment and virulence mechanisms. Our aim was to identify genes of avian pathogenic E. coli involved in adhesion to chicken and human cells in order to understand the colonization and pathogenesis of these bacteria. In contrast to the recent studies based on genotypic and bioinformatics data, we have used a combination of phenotypic and genotypic approaches for identification of novel genes contributing to adhesion in chicken and human cell lines. Identification of adhesion factors remains important, as antibodies elicited against such factors have shown potential to block colonization and ultimately prevent disease as prophylactic vaccines. Therefore, the data will augment the understanding of disease pathogenesis and ultimately in designing strategies against the infections.
Collapse
Affiliation(s)
- Aamir Ali
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
- Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rafał Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Muhammad Moman Khan
- Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Jörg Weinreich
- Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | | | - Karsten Tedin
- Institute for Microbiology and Epizootics, Free University of Berlin, Berlin, Germany
| | - Dirk Roggenbuck
- Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| | - Peter Schierack
- Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| |
Collapse
|
44
|
Desvaux M, Dalmasso G, Beyrouthy R, Barnich N, Delmas J, Bonnet R. Pathogenicity Factors of Genomic Islands in Intestinal and Extraintestinal Escherichia coli. Front Microbiol 2020; 11:2065. [PMID: 33101219 PMCID: PMC7545054 DOI: 10.3389/fmicb.2020.02065] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli is a versatile bacterial species that includes both harmless commensal strains and pathogenic strains found in the gastrointestinal tract in humans and warm-blooded animals. The growing amount of DNA sequence information generated in the era of "genomics" has helped to increase our understanding of the factors and mechanisms involved in the diversification of this bacterial species. The pathogenic side of E. coli that is afforded through horizontal transfers of genes encoding virulence factors enables this bacterium to become a highly diverse and adapted pathogen that is responsible for intestinal or extraintestinal diseases in humans and animals. Many of the accessory genes acquired by horizontal transfers form syntenic blocks and are recognized as genomic islands (GIs). These genomic regions contribute to the rapid evolution, diversification and adaptation of E. coli variants because they are frequently subject to rearrangements, excision and transfer, as well as to further acquisition of additional DNA. Here, we review a subgroup of GIs from E. coli termed pathogenicity islands (PAIs), a concept defined in the late 1980s by Jörg Hacker and colleagues in Werner Goebel's group at the University of Würzburg, Würzburg, Germany. As with other GIs, the PAIs comprise large genomic regions that differ from the rest of the genome by their G + C content, by their typical insertion within transfer RNA genes, and by their harboring of direct repeats (at their ends), integrase determinants, or other mobility loci. The hallmark of PAIs is their contribution to the emergence of virulent bacteria and to the development of intestinal and extraintestinal diseases. This review summarizes the current knowledge on the structure and functional features of PAIs, on PAI-encoded E. coli pathogenicity factors and on the role of PAIs in host-pathogen interactions.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Racha Beyrouthy
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Barnich
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julien Delmas
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Richard Bonnet
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
45
|
Roles of the Tol-Pal system in the Type III secretion system and flagella-mediated virulence in enterohemorrhagic Escherichia coli. Sci Rep 2020; 10:15173. [PMID: 32968151 PMCID: PMC7511404 DOI: 10.1038/s41598-020-72412-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/31/2020] [Indexed: 11/19/2022] Open
Abstract
The Tol-Pal system is a protein complex that is highly conserved in many gram-negative bacteria. We show here that the Tol-Pal system is associated with the enteric pathogenesis of enterohemorrhagic E. coli (EHEC). Deletion of tolB, which is required for the Tol-Pal system decreased motility, secretion of the Type III secretion system proteins EspA/B, and the ability of bacteria to adhere to and to form attaching and effacing (A/E) lesions in host cells, but the expression level of LEE genes, including espA/B that encode Type III secretion system proteins were not affected. The Citrobacter rodentium, tolB mutant, that is traditionally used to estimate Type III secretion system associated virulence in mice did not cause lethality in mice while it induced anti-bacterial immunity. We also found that the pal mutant, which lacks activity of the Tol-Pal system, exhibited lower motility and EspA/B secretion than the wild-type parent. These combined results indicate that the Tol-Pal system contributes to the virulence of EHEC associated with the Type III secretion system and flagellar activity for infection at enteric sites. This finding provides evidence that the Tol-Pal system may be an effective target for the treatment of infectious diseases caused by pathogenic E. coli.
Collapse
|
46
|
Ramos-Vivas J, Chapartegui-González I, Fernández-Martínez M, González-Rico C, Barrett J, Fortún J, Escudero R, Marco F, Linares L, Nieto J, Aranzamendi M, Muñoz P, Valerio M, Aguado JM, Chaves F, Gracia-Ahufinger I, Paez-Vega A, Martínez-Martínez L, Fariñas MC. Adherence to Human Colon Cells by Multidrug Resistant Enterobacterales Strains Isolated From Solid Organ Transplant Recipients With a Focus on Citrobacter freundii. Front Cell Infect Microbiol 2020; 10:447. [PMID: 33042855 PMCID: PMC7525035 DOI: 10.3389/fcimb.2020.00447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Enterobacteria species are common causes of hospital-acquired infections, which are associated with high morbidity and mortality rates. Immunocompromised patients such as solid organ transplant (SOT) recipients are especially at risk because they are frequently exposed to antibiotics in the course of their treatments. In this work, we used a collection of 106 Escherichia coli, 78 Klebsiella pneumoniae, 25 Enterobacter spp., and 24 Citrobacter spp. multidrug resistant strains isolated from transplant patients (hepatic, renal or renal/pancreatic) in order to examine their ability to adhere in vitro to HT-29 human colon cells, and to determine if some adhesive characteristics are associated with prevalence and persistence of these strains. A total of 33 E. coli (31%), 21 K. pneumoniae (27%), 7 Enterobacter spp. (28%), and 5 Citrobacter spp. (21%), adhered to the colon epithelial cells. Two main adherence patterns were observed in the four species analyzed, diffuse adherence, and aggregative adherence. Under transmission electronic microscopy (TEM), most bacteria lacked visible fimbria on their surface, despite their strong adherence to epithelial cells. None of the strains studied was able to induce any cytotoxic effect on HT-29 cells although some of them strongly colonizing both cells and glass coverslips at high density. Some of the strains failed to adhere to the epithelial cells but adhered strongly to the cover-slide, which shows that microscopy studies are mandatory to elucidate the adherence of bacteria to epithelial cells in vitro, and that quantitative assays using colony forming unit (CFUs) counting need to be supplemented with pictures to determine definitively if a bacterial strain adheres or not to animal cells in vitro. We report here, for the first time, the aggregative adherence pattern of two multidrug resistant (MDR) Citrobacter freundii strains isolated from human patients; importantly, biofilm formation in Citrobacter is totally dependent on the temperature; strong biofilms were formed at room temperature (RT) but not at 37°C, which can play an important role in the colonization of hospital surfaces. In conclusion, our results show that there is a great variety of adhesion phenotypes in multidrug-resistant strains that colonize transplanted patients.
Collapse
Affiliation(s)
| | | | - Marta Fernández-Martínez
- Instituto de Investigación Valdecilla-IDIVAL, Santander, Spain.,Service of Microbiology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Claudia González-Rico
- Instituto de Investigación Valdecilla-IDIVAL, Santander, Spain.,Service of Infectious Diseases, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - John Barrett
- Instituto de Investigación Valdecilla-IDIVAL, Santander, Spain.,New York University School of Medicine, New York, NY, United States
| | - Jesús Fortún
- Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Rosa Escudero
- Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Francesc Marco
- Service of Microbiology, Hospital Clínic-IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | - Laura Linares
- Infectious Diseases Service, Hospital Clínic-IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | - Javier Nieto
- Infectious Diseases Unit, Hospital Universitario de Cruces, Barakaldo, Spain
| | | | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Maricela Valerio
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Jose María Aguado
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fernando Chaves
- Service of Microbiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Irene Gracia-Ahufinger
- Microbiology Unit, Hospital Universitario Reina Sofía, Córdoba, Spain.,Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,Department of Microbiology, Universidad de Córdoba, Córdoba, Spain
| | - Aurora Paez-Vega
- Infectious Diseases Unit, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Luis Martínez-Martínez
- Microbiology Unit, Hospital Universitario Reina Sofía, Córdoba, Spain.,Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.,Department of Microbiology, Universidad de Córdoba, Córdoba, Spain
| | - María Carmen Fariñas
- Instituto de Investigación Valdecilla-IDIVAL, Santander, Spain.,Service of Infectious Diseases, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| |
Collapse
|
47
|
Khan F, Tabassum N, Pham DTN, Oloketuyi SF, Kim YM. Molecules involved in motility regulation in Escherichia coli cells: a review. BIOFOULING 2020; 36:889-908. [PMID: 33028083 DOI: 10.1080/08927014.2020.1826939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The initial colonization of the host organism by commensal, probiotic, and pathogenic Escherichia coli strains is an important step in the development of infections and biofilms. Sensing and colonization of host cell surfaces are governed by flagellar and fimbriae/pili appendages, respectively. Biofilm formation confers great advantages on pathogenic E. coli cells such as protection against the host immune system, antimicrobial agents, and several environmental stress factors. The transition from planktonic to sessile physiological states involves several signaling cascades and factors responsible for the regulation of flagellar motility in E. coli cells. These regulatory factors have thus become important targets to control pathogenicity. Hence, attenuation of flagellar motility is considered a potential therapy against pathogenic E. coli. The present review describes signaling pathways and proteins involved in direct or indirect regulation of flagellar motility. Furthermore, application strategies for antimotility natural or synthetic compounds are discussed also.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, Republic of Korea
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
48
|
Ting SY, Martínez-García E, Huang S, Bertolli SK, Kelly KA, Cutler KJ, Su ED, Zhi H, Tang Q, Radey MC, Raffatellu M, Peterson SB, de Lorenzo V, Mougous JD. Targeted Depletion of Bacteria from Mixed Populations by Programmable Adhesion with Antagonistic Competitor Cells. Cell Host Microbe 2020; 28:313-321.e6. [PMID: 32470328 PMCID: PMC7725374 DOI: 10.1016/j.chom.2020.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/21/2020] [Accepted: 05/06/2020] [Indexed: 01/15/2023]
Abstract
Selective and targeted removal of individual species or strains of bacteria from complex communities can be desirable over traditional, broadly acting antibacterials in several contexts. However, generalizable strategies that accomplish this with high specificity have been slow to emerge. Here we develop programmed inhibitor cells (PICs) that direct the potent antibacterial activity of the type VI secretion system (T6SS) against specified target cells. The PICs express surface-displayed nanobodies that mediate antigen-specific cell-cell adhesion to effectively overcome the barrier to T6SS activity in fluid conditions. We demonstrate the capacity of PICs to efficiently deplete low-abundance target bacteria without significant collateral damage to complex microbial communities. The only known requirements for PIC targeting are a Gram-negative cell envelope and a unique cell surface antigen; therefore, this approach should be generalizable to a wide array of bacteria and find application in medical, research, and environmental settings.
Collapse
Affiliation(s)
- See-Yeun Ting
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Shuo Huang
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Savannah K Bertolli
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Katherine A Kelly
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Kevin J Cutler
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth D Su
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Hui Zhi
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Qing Tang
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Matthew C Radey
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA; Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, CA 92093, USA
| | - S Brook Peterson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Víctor de Lorenzo
- System Biology Program, National Center of Biotechnology CSIC, 28049 Madrid, Spain
| | - Joseph D Mougous
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
49
|
Andreozzi E, Uhlich GA. PchE Regulation of Escherichia coli O157:H7 Flagella, Controlling the Transition to Host Cell Attachment. Int J Mol Sci 2020; 21:ijms21134592. [PMID: 32605187 PMCID: PMC7369912 DOI: 10.3390/ijms21134592] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022] Open
Abstract
Shiga toxins and intimate adhesion controlled by the locus of enterocyte effacement are major enterohemorrhagic Escherichia coli (EHEC) virulence factors. Curli fimbriae also contribute to cell adhesion and are essential biofilm components. The transcriptional regulator PchE represses the expression of curli and their adhesion to HEp-2 cells. Past studies indicate that pchE also represses additional adhesins that contribute to HEp-2 cell attachment. In this study, we tested for pchE regulation of several tissue adhesins and their regulators. Three adhesin-encoding genes (eae, lpfA1, fliC) and four master regulators (csgD, stpA, ler, flhDC) were controlled by pchE. pchE over-expression strongly up-regulated fliC but the marked flagella induction reduced the attachment of O157:H7 clinical isolate PA20 to HEp-2 cells, indicating that flagella were blocking cell attachments rather than functioning as an adhesin. Chemotaxis, motor, structural, and regulatory genes in the flagellar operons were all increased by pchE expression, as was PA20 motility. This study identifies new members in the pchE regulon and shows that pchE stimulates flagellar motility while repressing cell adhesion, likely to support EHEC movement to the intestinal surface early in infection. However, induced or inappropriate pchE-dependent flagellar expression could block cell attachments later during disease progression.
Collapse
|
50
|
Sapountzis P, Segura A, Desvaux M, Forano E. An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli. Microorganisms 2020; 8:microorganisms8060877. [PMID: 32531983 PMCID: PMC7355788 DOI: 10.3390/microorganisms8060877] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023] Open
Abstract
For approximately 10,000 years, cattle have been our major source of meat and dairy. However, cattle are also a major reservoir for dangerous foodborne pathogens that belong to the Shiga toxin-producing Escherichia coli (STEC) group. Even though STEC infections in humans are rare, they are often lethal, as treatment options are limited. In cattle, STEC infections are typically asymptomatic and STEC is able to survive and persist in the cattle GIT by escaping the immune defenses of the host. Interactions with members of the native gut microbiota can favor or inhibit its persistence in cattle, but research in this direction is still in its infancy. Diet, temperature and season but also industrialized animal husbandry practices have a profound effect on STEC prevalence and the native gut microbiota composition. Thus, exploring the native cattle gut microbiota in depth, its interactions with STEC and the factors that affect them could offer viable solutions against STEC carriage in cattle.
Collapse
Affiliation(s)
- Panagiotis Sapountzis
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
- Correspondence:
| | - Audrey Segura
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
- Chr. Hansen Animal Health & Nutrition, 2970 Hørsholm, Denmark
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
| |
Collapse
|