1
|
Naharia P, Karade S, Kumar R, Sharma A. An unusual subcutaneous mycosis due to Parathyridaria percutanea in an immunocompromised individual. Diagn Microbiol Infect Dis 2025; 112:116836. [PMID: 40252587 DOI: 10.1016/j.diagmicrobio.2025.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/21/2025]
Abstract
Solid Organ transplant recipients are at risk of opportunistic infections due to immunosuppressed state, prolonged hospital stay and exposure to multiple antibiotics. Subcutaneous mycoses are heterogenous group of fungal infections affecting dermis and subcutaneous tissue due to penetrating injury. Subcutaneous mycosis in immunocompromised individual causes significant morbidity in the form of chronic discharging sinuses and systemic spread. Parathyridaria percutanea is an emerging cause of subcutaneous mycosis in transplant patients and is difficult to identify phenotypically. It is relatively novel pathogen and only few cases are reported in Indian population. Here we present a case of subcutaneous mycosis who presented with multiple discharging sinuses over left foot. Timely identification of implicating pathogen and initiation of targeted anti-fungal therapy plays important role in decreasing hospital stay and overall financial burden to patient. Present case also highlights importance of genotypic methods in diagnosing emerging fungal infection in immunocompromised individuals, when phenotypic identification fails.
Collapse
Affiliation(s)
- Pooja Naharia
- Department of Lab Sciences & Molecular Medicine, Army Hospital Research and Referral, Delhi, India
| | - Santosh Karade
- Department of Lab Sciences & Molecular Medicine, Army Hospital Research and Referral, Delhi, India; Viral Diseases Research and Diagnostic Laboratory (VRDL), Army Hospital Research and Referral, Delhi, India.
| | - Rajiv Kumar
- Department of Haematology, Army Hospital Research and Referral, Delhi, India
| | - Anita Sharma
- Department of Lab Sciences & Molecular Medicine, Army Hospital Research and Referral, Delhi, India
| |
Collapse
|
2
|
Gaspar BS, Roşu OA, Enache RM, Manciulea Profir M, Pavelescu LA, Creţoiu SM. Gut Mycobiome: Latest Findings and Current Knowledge Regarding Its Significance in Human Health and Disease. J Fungi (Basel) 2025; 11:333. [PMID: 40422666 DOI: 10.3390/jof11050333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
The gut mycobiome, the fungal component of the gut microbiota, plays a crucial role in health and disease. Although fungi represent a small fraction of the gut ecosystem, they influence immune responses, gut homeostasis, and disease progression. The mycobiome's composition varies with age, diet, and host factors, and its imbalance has been linked to conditions such as inflammatory bowel disease (IBD) and metabolic disorders. Advances in sequencing have expanded our understanding of gut fungi, but challenges remain due to methodological limitations and high variability between individuals. Emerging therapeutic strategies, including antifungals, probiotics, fecal microbiota transplantation, and dietary interventions, show promise but require further study. This review highlights recent discoveries on the gut mycobiome, its interactions with bacteria, its role in disease, and potential clinical applications. A deeper understanding of fungal contributions to gut health will help develop targeted microbiome-based therapies.
Collapse
Affiliation(s)
- Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Robert-Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Monica Manciulea Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Luciana Alexandra Pavelescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
3
|
Onwusereaka CO, Jalaludin J, Oluchi SE, Poh Choo VC. New generation sequencing: molecular approaches for the detection and monitoring of bioaerosols in an indoor environment: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2025; 40:47-62. [PMID: 38214730 DOI: 10.1515/reveh-2023-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
INTRODUCTION The exposure of occupants to indoor air pollutants has increased in recent decades. The aim of this review is to discuss an overview of new approaches that are used to study fungal aerosols. Thus, this motivation was to compensate the gaps caused by the use of only traditional approaches in the study of fungal exposure. CONTENT The search involved various databases such as; Science Direct, PubMed, SAGE, Springer Link, EBCOHOST, MEDLINE, CINAHL, Cochrane library, Web of Science and Wiley Online Library. It was limited to full text research articles that reported the use of non-viable method in assessing bioaerosol, written in English Language, full text publications and published from year 2015-2022. SUMMARY AND OUTLOOK A total of 15 articles met the inclusion criteria and was included in this review. The use of next-generation sequencing, which is more commonly referred to as high-throughput sequencing (HTS) or molecular methods in microbial studies is based on the detection of genetic material of organisms present in a given sample. Applying these methods to different environments permitted the identification of the microorganisms present, and a better comprehension of the environmental impacts and ecological roles of microbial communities. Based on the reviewed articles, there is evidence that dust samples harbour a high diversity of human-associated bacteria and fungi. Molecular methods such as next generation sequencing are reliable tools for identifying and tracking the bacterial and fungal diversity in dust samples using 18S metagenomics approach.
Collapse
Affiliation(s)
- Cynthia Oluchi Onwusereaka
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Selangor, Malaysia
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Selangor, Malaysia
| | - Sampson Emilia Oluchi
- Department of Community Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia Serdang, Selangor, Malaysia
| | | |
Collapse
|
4
|
Chacón-Navarrete H, García-Álvarez de Toledo I, Ramos J, Ruiz-Castilla FJ. Evaluating the Role of Nutrient Competition in Debaryomyces hansenii Biocontrol Activity Against Spoilage Molds in the Meat Industry. J Fungi (Basel) 2025; 11:242. [PMID: 40278063 PMCID: PMC12027869 DOI: 10.3390/jof11040242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
The rejection of chemical preservatives reflects the growing demand for natural and safe products. This concern has spurred scientific interest in yeasts as biocontrol agents, given their antagonistic activity against undesired fungi, which is one of the main problems associated with preservative reduction. Debaryomyces hansenii is a non-conventional yeast that has shown great potential for inhibiting filamentous fungi in the food industry. This study investigated the role of nutrient competition in the biocontrol activity of D. hansenii against unwanted molds. Potentially pathogenic molds from spoiled food were isolated using different media and identified using Sanger sequencing. The inhibitory effects of different autochthonous D. hansenii strains under varying nutrient conditions were assessed against isolated molds using semipermeable membranes. Inhibition activity was measured by assessing mycelial expansion and spore production using image software analysis and classical cell counting using a Neubauer chamber. The results indicated that D. hansenii effectively inhibited mold growth and sporulation, with the autochthonous strains LR2 and SRF1 showing higher inhibitory activity than the control strain CBS767. The effectiveness of inhibition varied with the yeast-mold combination, highlighting the need for a species-specific analysis. Nutrient competition plays a complementary role in D. hansenii biocontrol but does not directly impact overall inhibition. This suggests that other mechanisms, such as direct cell interactions or metabolite production, may be crucial. These findings enhance our understanding of the potential of D. hansenii as a natural preservative and advance biocontrol methods for food safety.
Collapse
Affiliation(s)
- Helena Chacón-Navarrete
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Campus de Rabanales, 14014 Córdoba, Spain; (H.C.-N.); (I.G.-Á.d.T.); (J.R.)
| | - Ignacio García-Álvarez de Toledo
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Campus de Rabanales, 14014 Córdoba, Spain; (H.C.-N.); (I.G.-Á.d.T.); (J.R.)
- Food Safety and Functionality Programme, IRTA, Finca Camps I Armet S/N, 17121 Monells, Spain
| | - José Ramos
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Campus de Rabanales, 14014 Córdoba, Spain; (H.C.-N.); (I.G.-Á.d.T.); (J.R.)
| | - Francisco Javier Ruiz-Castilla
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Campus de Rabanales, 14014 Córdoba, Spain; (H.C.-N.); (I.G.-Á.d.T.); (J.R.)
| |
Collapse
|
5
|
Usyk M, Carlson L, Schlecht NF, Sollecito CC, Grassi E, Wiek F, Viswanathan S, Strickler HD, Nucci-Sack A, Diaz A, Burk RD. Cervicovaginal microbiome and natural history of Chlamydia trachomatis in adolescents and young women. Cell 2025; 188:1051-1061.e12. [PMID: 39818212 PMCID: PMC12035847 DOI: 10.1016/j.cell.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025]
Abstract
This study investigated the cervicovaginal microbiome's (CVM's) impact on Chlamydia trachomatis (CT) infection among Black and Hispanic adolescent and young adult women. A total of 187 women with incident CT were matched to 373 controls, and the CVM was characterized before, during, and after CT infection. The findings highlight that a specific subtype of bacterial vaginosis (BV), identified from 16S rRNA gene reads using the molBV algorithm and community state type (CST) clustering, is a significant risk factor for CT acquisition. A microbial risk score (MRS) further identified a network of bacterial genera associated with increased CT risk. Post treatment, the CVM associated with CT acquisition re-emerged in a different subset of cases leading to reinfection. Additionally, the analysis showed a connection between post-treatment CVM and the development of pelvic inflammatory disease (PID) and miscarriage, further underscoring the CVM's contributing role to incident CT natural history and highlighting its consideration as a therapeutic target.
Collapse
Affiliation(s)
- Mykhaylo Usyk
- Departments of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Luke Carlson
- Department of Pediatrics, Mount Sinai Adolescent Health Center, Icahn School of Medicine at Mount Sinai, Manhattan, New York, NY, USA
| | - Nicolas F Schlecht
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Christopher C Sollecito
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Evan Grassi
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Fanua Wiek
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Shankar Viswanathan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Howard D Strickler
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Anne Nucci-Sack
- Department of Pediatrics, Mount Sinai Adolescent Health Center, Icahn School of Medicine at Mount Sinai, Manhattan, New York, NY, USA
| | - Angela Diaz
- Department of Pediatrics, Mount Sinai Adolescent Health Center, Icahn School of Medicine at Mount Sinai, Manhattan, New York, NY, USA
| | - Robert D Burk
- Departments of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York, NY, USA.
| |
Collapse
|
6
|
Zhao P, Zhou H, Liao X, Zhao L, Zheng Y, Xiong T, Zhang G, Jiang S, Wang J, He Y, Li J, Zhu J, Zhang Y, Li Y, Nian F, Liu D. The regulation of tobacco growth under preceding crop planting: insights from soil quality, microbial communities, and metabolic profiling. FRONTIERS IN PLANT SCIENCE 2025; 16:1530324. [PMID: 39990714 PMCID: PMC11842363 DOI: 10.3389/fpls.2025.1530324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025]
Abstract
Introduction Specific microorganisms and metabolites in soil play key roles in regulating organismal behavior. Currently, the effects of different preceding crops on the rhizosphere soil quality of flue-cured tobacco remain unclear. Methods Four treatments were compared in the study: fallow + tobacco (CK), maize + tobacco (T1), rapeseed + tobacco (T2), and wheat + tobacco (T3). Results and discussion Results showed that preceding crops significantly enhanced soil nutrient levels and improved tobacco growth by altering rhizosphere metabolites and microbial community structure. Previous cultivation of maize and rapeseed significantly promoted tobacco growth, rapeseed and wheat cultivation enhanced the diversity of soil bacterial communities, and notably decreased the abundance of urea-degrading bacteria. In contrast, the preceding crop of maize reduced plant pathogenic fungi and promoted positive microbial interactions. Metabolomics analysis showed that different preceding crops altered lipids, organic acids, flavonoids, alkaloids, and terpenoids, enhancing secondary metabolite synthesis pathways in soil. Preceding crops regulated rhizosphere metabolites which potentially participated in soil carbon and nitrogen cycling, balancing soil nutrients, and improving tobacco yield. Overall, the three preceding crops altered the composition and function of metabolites and microbial community structures in rhizosphere soil, thereby increased soil nutrient concentration. Both maize and rapeseed cultivation significantly boosted tobacco growth and biomass. These findings offer new insights into the potential interactions between rhizosphere metabolites and microbial communities and strategies of comprehensively regulating tobacco growth.
Collapse
Affiliation(s)
- Peiyan Zhao
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Houfa Zhou
- Technology and Research Center, Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Xiaolin Liao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Leifeng Zhao
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuanxian Zheng
- Technology and Research Center, Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Tiane Xiong
- Technology and Research Center, Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Gaorun Zhang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sirong Jiang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jiming Wang
- Technology and Research Center, Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Yuansheng He
- Technology and Research Center, Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Jiangtao Li
- Technology and Research Center, Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Jieying Zhu
- Technology and Research Center, Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Yongjun Zhang
- Technology and Research Center, Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Yanrun Li
- Technology and Research Center, Lincang Branch Company of Yunnan Tobacco Company, Lincang, Yunnan, China
| | - Fuzhao Nian
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Di Liu
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
7
|
Taitz JJ, Tan J, Ni D, Potier-Villette C, Grau G, Nanan R, Macia L. Antibiotic-mediated dysbiosis leads to activation of inflammatory pathways. Front Immunol 2025; 15:1493991. [PMID: 39850904 PMCID: PMC11754057 DOI: 10.3389/fimmu.2024.1493991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction The gut microbiota plays a pivotal role in influencing host health, through the production of metabolites and other key signalling molecules. While the impact of specific metabolites or taxa on host cells is well-documented, the broader impact of a disrupted microbiota on immune homeostasis is less understood, which is particularly important in the context of the increasing overuse of antibiotics. Methods Female C57BL/6 mice were gavaged twice daily for four weeks with Vancomycin, Polymyxin B, or PBS (control). Caecal microbiota composition was assessed via 16S rRNA sequencing and caecal metabolites were quantified with NMR spectroscopy. Immune profiles of spleen and mesenteric lymph nodes (MLNs) were assessed by flow cytometry, and splenocytes assessed for ex vivo cytokine production. A generalised additive model approach was used to examine the relationship between global antibiotic consumption and IBD incidence. Results Antibiotics significantly altered gut microbiota composition, reducing alpha-diversity. Acetate and butyrate were significantly reduced in antibiotic groups, while propionate and succinate increased in Vancomycin and PmB-treated mice, respectively. The MLNs and spleen showed changes only to DC numbers. Splenocytes from antibiotic-treated mice stimulated ex vivo exhibited increased production of TNF. Epidemiological analysis revealed a positive correlation between global antibiotic consumption and IBD incidence. Discussion Our findings demonstrate that antibiotic-mediated dysbiosis results in significantly altered short-chain fatty acid levels but immune homeostasis in spleen and MLNs at steady state is mostly preserved. Non-specific activation of splenocytes ex vivo, however, revealed mice with perturbed microbiota had significantly elevated production of TNF. Thus, this highlights antibiotic-mediated disruption of the gut microbiota may program the host towards dysregulated immune responses, predisposing to the development of TNF-associated autoimmune or chronic inflammatory disease.
Collapse
Affiliation(s)
- Jemma J. Taitz
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jian Tan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Camille Potier-Villette
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Georges Grau
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Vascular Immunology Unit, Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Ralph Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School Nepean, The University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School Nepean, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Guan T, Wei X, Qiu X, Liu Y, Yu J, Hou R, Liu M, Mao Y, Liu Q, Tian L, He Z, Xiang S. Precipitation and temperature drive microbial community changes affecting flavor quality of Nongxiangxing Daqu. Food Chem X 2024; 24:102063. [PMID: 39717403 PMCID: PMC11665295 DOI: 10.1016/j.fochx.2024.102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/25/2024] Open
Abstract
Nongxiangxing Baijiu is the most famous Baijiu flavor in China, and its characteristic style is closely related to Nongxiangxing Daqu used in fermentation. However, there are few reports about the difference of Daqu quality between seasonal variations. In this study, precipitation and temperature drove changes in microbial communities that resulted in differences in the flavor of Daqu produced in different seasons. For example, the average daily temperature in summer was as high as 27.29 ± 2.24 °C, which was significantly higher than other seasons (p < 0.01). Bacillus was abundant in the Daqu produced in this season, while tetramethylpyrazine flavor was more prominent, up to 1556.95 ± 153.92 μg/kg. Metabolomics studies identified major pathways associated with the weak flavor of spring_Daqu. In addition, LEFSe analysis revealed the marked microorganisms in different seasons. These results revealed the differences in seasonal Daqu, thus contributing to the scientific and rational use of Daqu.
Collapse
Affiliation(s)
- Tongwei Guan
- College of Food and Biological Engineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province,Chengdu 610039, China
| | - Xinyue Wei
- Sichuan Mianzhu Jiannanchun Liquor Co., Ltd, Mianzhu 618200, China
| | - Xianping Qiu
- Sichuan Quanxing of Liquor Co., Ltd., Chengdu 610000, China
| | - Ying Liu
- College of Food and Biological Engineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province,Chengdu 610039, China
| | - Jianshen Yu
- Sichuan Quanxing of Liquor Co., Ltd., Chengdu 610000, China
| | - Rui Hou
- Sichuan Mianzhu Jiannanchun Liquor Co., Ltd, Mianzhu 618200, China
| | - Maoke Liu
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, China
| | - Yichen Mao
- Xinjiang Kaiduhe Liquor Co., Ltd, Hejing 841302, China
| | - Qingru Liu
- College of Food and Biological Engineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province,Chengdu 610039, China
| | - Lei Tian
- College of Food and Biological Engineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province,Chengdu 610039, China
| | - Zongjun He
- Sichuan Tujiu Liquor Co., Ltd, Nanchong 637919, China
| | | |
Collapse
|
9
|
Kalboush ZA, Mazrou YSA, Hassan AA, Sherif A, Gabr WE, Ali Q, Nehela Y. Revisiting the emerging pathosystem of rice sheath blight: deciphering the Rhizoctonia solani virulence, host range, and rice genotype-based resistance. FRONTIERS IN PLANT SCIENCE 2024; 15:1499785. [PMID: 39748817 PMCID: PMC11693681 DOI: 10.3389/fpls.2024.1499785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
Sheath blight, caused by Rhizoctonia solani AG1 IA, is a challenging disease of rice worldwide. In the current study, nine R. solani isolates, within the anastomosis group AG-1 IA, were isolated, characterized based on their macroscopic and microscopic features, as well as their ability to produce cell wall degrading enzymes (CWDEs), and further molecularly identified via ITS sequencing. Although all isolates were pathogenic and produced typical sheath blight symptoms the susceptible rice cultivar, Sakha 101, R. solani AG1 IA -isolate SHBP9 was the most aggressive isolate. The virulence of isolate SHBP9 was correlated with its overproduction of CWDEs, where it had the highest pectinase, amylase, and cellulase activity in vitro. R. solani AG1 IA -isolate SHBP9 was able to infect 12 common rice-associated weeds from the family Poaceae, as well as over 25 economic crops from different families, except chickpea (Cicer arietinum) from Fabaceae, Rocket (Eruca sativa) from Brassicaceae, and the four crops from Solanaceae. Additionally, rice genotype-based resistance was evaluated using 11 rice genotypes for their response to R. solani isolates, morphological traits, yield components, and using 12 SSR markers linked to sheath blight resistance. Briefly, the tested 11 rice genotypes were divided into three groups; Cluster "I" included only two resistant genotypes (Egyptian Yasmine and Giza 182), Cluster "II" included four moderately resistant genotypes (Egyptian hybrid 1, Giza 178, 181, and 183), whereas Cluster "III" included five susceptible (Sakha 104, 101, 108, Super 300 and Giza 177). Correspondingly, only surface-mycelium growth was microscopically noticed on the resistant cultivar Egyptian Yasmine, as well as the moderately resistant Egyptian hybrid 1, however, on the susceptible Sakha 104, the observed mycelium was branched, shrunk, and formed sclerotia. Accordingly, Indica and Indica/Japonica rice genotypes showed more resistance to R. solani than Japonica genotypes. These findings provide insights into its pathogenicity mechanisms and identify potential targets for disease control which ultimately contributes to the development of sustainable eco-friendly disease management strategies. Moreover, our findings might pave the way for developing resistant rice varieties by using more reliable resistance sources of non-host plants, as well as, rice genotype-based resistance as a genetic resource.
Collapse
Affiliation(s)
- Zeinab A. Kalboush
- Rice Pathology Department, Plant Pathology Research Institute, Agricultural Research Center, Sakha, Kafrelsheikh, Egypt
| | - Yasser S. A. Mazrou
- Business Administration Department, Community College, King Khalid University, Guraiger, Abha, Saudi Arabia
| | - Amr A. Hassan
- Rice Pathology Department, Plant Pathology Research Institute, Agricultural Research Center, Sakha, Kafrelsheikh, Egypt
| | - Ahmed Sherif
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Sakha, Kafrelsheikh, Egypt
| | - Wael E. Gabr
- Rice Pathology Department, Plant Pathology Research Institute, Agricultural Research Center, Sakha, Kafrelsheikh, Egypt
| | - Qurban Ali
- Department of Biology, College of Science, United Arab Emirates University, Al-ain, Abu-Dhabi, United Arab Emirates
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
10
|
Han X, Zheng J, Zhang L, Zhao Z, Cheng G, Zhang W, Qu P. Endometrial microbial dysbiosis and metabolic alteration promote the development of endometrial cancer. Int J Gynaecol Obstet 2024; 167:810-822. [PMID: 38837368 DOI: 10.1002/ijgo.15718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE Emerging evidence suggests that the endometrial microbiome plays important roles in the development of endometrial cancer (EC). Here, we evaluate stage-specific roles of microbial dysbiosis and metabolic disorders in patients with EC, patients with endometrial hyperplasia (EH), and patients afflicted with benign uterine conditions (CK). METHODS This prospective cohort study included 33 women with EC, 15 women with endometrial EH, and 15 women with benign uterine conditions (CK) from November 2022 to September 2023. Different typical endometrial samples were imaged with a scanning electron microscope and a transmission electron microscope. The endometrial microbiome was assessed by sequencing the V3-V4 region of the 16S rRNA gene and the ITS1 to fill the gap in relation to the study of the uterine fungal microbiome. Moreover, liquid chromatography-mass spectrometry-based metabolomics was used to identify and quantify metabolic changes among these groups. RESULTS The endometrial microbiome revealed that there is a structural microbiome shift and an increase in the α-diversity in the EC and EH cases, distinguishable from the benign cases, especially the fungal community structure. The fungal microbiome from patients with EC and EH was altered relative to controls and dominated by Penicillium sp. By contrast, Sarocladium was more abundant in controls. Significant differences were observed in the composition and content of compounds between benign cases and EC, especially estradiol-like metabolism-related substances. Altered microbiota was correlated with the concentrations of interleukin-6 (IL-6), IL-11, transforming growth factor-beta, and β-glucuronidase activity especially the relative abundance increase of Penicillium sp. CONCLUSIONS This study suggested that the endometrial microbiome is complicit in modulating the development of EC such as estrogen activity and a pro-inflammatory response. Our work provides a new insight into the endometrial microbiome from a perspective of stages, which opens up new avenues for EC prognosis and therapy.
Collapse
Affiliation(s)
- Xinxin Han
- Clinical School of Obstetrics and Gynecology Center, Tianjin Medical University, Tianjin, China
- Department of Obstetrics and Gynecology, Tianjin First Center Hospital, Tianjin, China
| | - Jia Zheng
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Lizhi Zhang
- Department of Obstetrics and Gynecology, Tianjin First Center Hospital, Tianjin, China
| | - Zhongwei Zhao
- Department of Obstetrics and Gynecology, Tianjin First Center Hospital, Tianjin, China
| | - Guangyan Cheng
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Wenwen Zhang
- Research Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Pengpeng Qu
- Clinical School of Obstetrics and Gynecology Center, Tianjin Medical University, Tianjin, China
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| |
Collapse
|
11
|
Altın H, Delice B, Yıldırım B, Demircan T, Yıldırım S. Temporal microbiome changes in axolotl limb regeneration: Stage-specific restructuring of bacterial and fungal communities with a Flavobacterium bloom during blastema proliferation. Wound Repair Regen 2024; 32:826-839. [PMID: 39105277 PMCID: PMC11584358 DOI: 10.1111/wrr.13207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
The intricate relationship between regeneration and microbiota has recently gained attention, spanning diverse model organisms. Axolotl (Ambystoma mexicanum) is a critically endangered salamander species and a model organism for regenerative and developmental biology. Despite its significance, a noticeable gap exists in understanding the interplay between axolotl regeneration and its microbiome. Here, we analyse in depth bacterial 16S rRNA amplicon dataset that we reported before as data resource and profile fungal community by sequencing ITS amplicons at the critical stages of limb regeneration (0-1-4-7-30-60 days post amputation, 'dpa'). Results reveal a decline in richness and evenness in the course of limb regeneration, with bacterial community richness recovering beyond 30 dpa unlike fungi community. Beta diversity analysis reveals precise restructuring of the bacterial community along the three phases of limb regeneration, contrasting with less congruent changes in the fungal community. Temporal dynamics of the bacterial community highlight prevalent anaerobic bacteria in initiation phase and Flavobacterium bloom in the early phase correlating with limb blastema proliferation. Predicted functional analysis mirrors these shifts, emphasising a transition from amino acid metabolism to lipid metabolism control. Fungal communities shift from Blastomycota to Ascomycota dominance in the late regeneration stage. Our findings provide ecologically relevant insights into stage specific role of microbiome contributions to axolotl limb regeneration.
Collapse
Affiliation(s)
- Hanne Altın
- Department of Medical MicrobiologyIstanbul Medipol University International School of MedicineIstanbulTürkiye
| | - Büşra Delice
- Department of Medical MicrobiologyIstanbul Medipol University International School of MedicineIstanbulTürkiye
| | - Berna Yıldırım
- Department of Histology and EmbryologyAtlas University School of MedicineIstanbulTürkiye
- Regenerative and Restorative Medicine Research Center, REMER, İstanbul Medipol University, İstanbul & Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTürkiye
| | - Turan Demircan
- Medical Biology DepartmentMuğla Sıtkı Koçman University School of MedicineMuğlaTurkey
| | - Süleyman Yıldırım
- Department of Medical MicrobiologyIstanbul Medipol University International School of MedicineIstanbulTürkiye
- Regenerative and Restorative Medicine Research Center, REMER, İstanbul Medipol University, İstanbul & Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTürkiye
| |
Collapse
|
12
|
Kwak S, Wang C, Usyk M, Wu F, Freedman ND, Huang WY, McCullough ML, Um CY, Shrubsole MJ, Cai Q, Li H, Ahn J, Hayes RB. Oral Microbiome and Subsequent Risk of Head and Neck Squamous Cell Cancer. JAMA Oncol 2024; 10:1537-1547. [PMID: 39325441 PMCID: PMC11428028 DOI: 10.1001/jamaoncol.2024.4006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/21/2024] [Indexed: 09/27/2024]
Abstract
Importance The oral microbiota may be involved in development of head and neck squamous cell cancer (HNSCC), yet current evidence is largely limited to bacterial 16S amplicon sequencing or small retrospective case-control studies. Objective To test whether oral bacterial and fungal microbiomes are associated with subsequent risk of HNSCC development. Design, Setting, and Participants Prospective nested case-control study among participants providing oral samples in 3 epidemiological cohorts, the American Cancer Society Cancer Prevention Study II Nutrition Cohort, the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, and the Southern Community Cohort Study. Two hundred thirty-six patients who prospectively developed HNSCC were identified during a mean (SD) of 5.1 (3.6) years of follow-up. Control participants who remained HNSCC free were selected by 2:1 frequency matching on cohort, age, sex, race and ethnicity, and time since oral sample collection. Data analysis was conducted in 2023. Exposures Characterization of the oral bacterial microbiome using whole-genome shotgun sequencing and the oral fungal microbiome using internal transcribed spacer sequencing. Association of bacterial and fungal taxa with HNSCC was assessed by analysis of compositions of microbiomes with bias correction. Association with red and orange oral pathogen complexes was tested by logistic regression. A microbial risk score for HNSCC risk was calculated from risk-associated microbiota. Main Outcomes and Measures The primary outcome was HNSCC incidence. Results The study included 236 HNSCC case participants with a mean (SD) age of 60.9 (9.5) years and 24.6% women during a mean of 5.1 (3.6) years of follow-up, and 485 matched control participants. Overall microbiome diversity at baseline was not related to subsequent HNSCC risk; however 13 oral bacterial species were found to be differentially associated with development of HNSCC. The species included the newly identified Prevotella salivae, Streptococcus sanguinis, and Leptotrichia species, as well as several species belonging to beta and gamma Proteobacteria. The red/orange periodontal pathogen complex was moderately associated with HNSCC risk (odds ratio, 1.06 per 1 SD; 95% CI, 1.00-1.12). A 1-SD increase in microbial risk score (created based on 22 bacteria) was associated with a 50% increase in HNSCC risk (multivariate odds ratio, 1.50; 95% CI, 1.21-1.85). No fungal taxa associated with HNSCC risk were identified. Conclusions and Relevance This case-control study yielded compelling evidence that oral bacteria are a risk factor for HNSCC development. The identified bacteria and bacterial complexes hold promise, along with other risk factors, to identify high-risk individuals for personalized prevention of HNSCC.
Collapse
Affiliation(s)
- Soyoung Kwak
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Chan Wang
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Mykhaylo Usyk
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Feng Wu
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | | | - Caroline Y. Um
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Martha J. Shrubsole
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qiuyin Cai
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Huilin Li
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Jiyoung Ahn
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Richard B. Hayes
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York
| |
Collapse
|
13
|
Crouch AL, Monsey L, Rambeau M, Ramos C, Yracheta JM, Anderson MZ. Metagenomic discovery of microbial eukaryotes in stool microbiomes. mBio 2024; 15:e0206324. [PMID: 39207108 PMCID: PMC11481512 DOI: 10.1128/mbio.02063-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Host-associated microbiota form complex microbial communities that are increasingly associated with host behavior and disease. While these microbes include bacterial, archaeal, viral, and eukaryotic constituents, most studies have focused on bacteria due to their dominance in the human host and available tools for investigation. Accumulating evidence suggests microbial eukaryotes in the microbiome play pivotal roles in host health, but our understandings of these interactions are limited to a few readily identifiable taxa because of technical limitations in unbiased eukaryote exploration. Here, we combined cell sorting, optimized eukaryotic cell lysis, and shotgun sequencing to accelerate metagenomic discovery and analysis of host-associated microbial eukaryotes. Using synthetic communities with a 1% microbial eukaryote representation, the eukaryote-optimized cell lysis and DNA recovery method alone yielded a 38-fold increase in eukaryotic DNA. Automated sorting of eukaryotic cells from stool samples of healthy adults increased the number of microbial eukaryote reads in metagenomic pools by up to 28-fold compared to commercial kits. Read frequencies for identified fungi increased by 10,000× on average compared to the Human Microbiome Project and allowed for the identification of novel taxa, de novo assembly of contigs from previously unknown microbial eukaryotes, and gene prediction from recovered genomic segments. These advances pave the way for the unbiased inclusion of microbial eukaryotes in deciphering determinants of health and disease in the host-associated microbiome.IMPORTANCEMicrobial eukaryotes are common constituents of the human gut where they can contribute to local ecology and host health, but they are often overlooked in microbiome studies. The lack of attention is due to current technical limitations that are heavily biased or poorly recovered DNA from microbial eukaryotes. We developed a method to increase the representation of these eukaryotes in metagenomic sequencing of microbiome samples that allows to improve their detection compared to prior methods and allows for the identification of new species. Application of the technique to gut microbiome samples improved detection of fungi, protists, and helminths. New eukaryotic taxa and their encoded genes could be identified by sequencing a small number of samples. This approach can improve the inclusion of eukaryotes into microbiome research.
Collapse
Affiliation(s)
- Audra L. Crouch
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Laine Monsey
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Molly Rambeau
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Cameron Ramos
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | | | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Center for Genomic Science Innovation, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Khan MW, Cruz de Jesus V, Mittermuller BA, Sareen S, Lee V, Schroth RJ, Hu P, Chelikani P. Role of socioeconomic factors and interkingdom crosstalk in the dental plaque microbiome in early childhood caries. Cell Rep 2024; 43:114635. [PMID: 39154338 DOI: 10.1016/j.celrep.2024.114635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Early childhood caries (ECC) is influenced by microbial and host factors, including social, behavioral, and oral health. In this cross-sectional study, we analyze interkingdom dynamics in the dental plaque microbiome and its association with host variables. We use 16S rRNA and ITS1 amplicon sequencing on samples collected from preschool children and analyze questionnaire data to examine the social determinants of oral health. The results indicate a significant enrichment of Streptococcus mutans and Candida dubliniensis in ECC samples, in contrast to Neisseria oralis in caries-free children. Our interkingdom correlation analysis reveals that Candida dubliniensis is strongly correlated with both Neisseria bacilliformis and Prevotella veroralis in ECC. Additionally, ECC shows significant associations with host variables, including oral health status, age, place of residence, and mode of childbirth. This study provides empirical evidence associating the oral microbiome with socioeconomic and behavioral factors in relation to ECC, offering insights for developing targeted prevention strategies.
Collapse
Affiliation(s)
- Mohd Wasif Khan
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Vivianne Cruz de Jesus
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada
| | - Betty-Anne Mittermuller
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada
| | - Shaan Sareen
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Victor Lee
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada
| | - Robert J Schroth
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Department of Biochemistry, Western University, London, ON, Canada.
| | - Prashen Chelikani
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
15
|
Jiang MG, Yang J, Xu Q, Qi L, Gao Y, Zhao C, Lu H, Miao Y, Han S. The responses of CO 2 emission to nitrogen application and earthworm addition in the soybean cropland. PeerJ 2024; 12:e17176. [PMID: 38560479 PMCID: PMC10979750 DOI: 10.7717/peerj.17176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
The effects of nitrogen application or earthworms on soil respiration in the Huang-Huai-Hai Plain of China have received increasing attention. However, the response of soil carbon dioxide (CO2) emission to nitrogen application and earthworm addition is still unclear. A field experiment with nitrogen application frequency and earthworm addition was conducted in the Huang-Huai-Hai Plain. Results showed nitrogen application frequency had a significant effect on soil respiration, but neither earthworms nor their interaction with nitrogen application frequency were significant. Low-frequency nitrogen application (NL) significantly increased soil respiration by 25%, while high-frequency nitrogen application (NH), earthworm addition (E), earthworm and high-frequency nitrogen application (E*NH), and earthworm and low-frequency nitrogen application (E*NL) also increased soil respiration by 21%, 21%, 12%, and 11%, respectively. The main reason for the rise in soil respiration was alterations in the bacterial richness and keystone taxa (Myxococcales). The NH resulted in higher soil nitrogen levels compared to NL, but NL had the highest bacterial richness. The abundance of Corynebacteriales and Gammaproteobacteria were positively connected with the CO2 emissions, while Myxococcales, Thermoleophilia, and Verrucomicrobia were negatively correlated. Our findings indicate the ecological importance of bacterial communities in regulating the carbon cycle in the Huang-Huai-Hai Plain.
Collapse
Affiliation(s)
| | - Jingyuan Yang
- School of Life Sciences, Henan University, Henan, China
| | - Qi Xu
- School of Life Sciences, Henan University, Henan, China
| | - Linyu Qi
- School of Life Sciences, Henan University, Henan, China
| | - Yue Gao
- School of Life Sciences, Henan University, Henan, China
| | - Cancan Zhao
- School of Life Sciences, Henan University, Henan, China
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Xinyang Academy of Ecological Research, Xinyang, China
| | - Huijie Lu
- School of Life Sciences, Henan University, Henan, China
| | - Yuan Miao
- School of Life Sciences, Henan University, Henan, China
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Xinyang Academy of Ecological Research, Xinyang, China
| | - Shijie Han
- School of Life Sciences, Henan University, Henan, China
| |
Collapse
|
16
|
Schott J, Rakei J, Remus-Emsermann M, Johnston P, Mbedi S, Sparmann S, Hilker M, Paniagua Voirol LR. Microbial associates of the elm leaf beetle: uncovering the absence of resident bacteria and the influence of fungi on insect performance. Appl Environ Microbiol 2024; 90:e0105723. [PMID: 38179921 PMCID: PMC10807431 DOI: 10.1128/aem.01057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/31/2023] [Indexed: 01/06/2024] Open
Abstract
Microbial symbionts play crucial roles in the biology of many insects. While bacteria have been the primary focus of research on insect-microbe symbiosis, recent studies suggest that fungal symbionts may be just as important. The elm leaf beetle (ELB, Xanthogaleruca luteola) is a serious pest species of field elm (Ulmus minor). Using culture-dependent and independent methods, we investigated the abundance and species richness of bacteria and fungi throughout various ELB life stages and generations, while concurrently analyzing microbial communities on elm leaves. No persistent bacterial community was found to be associated with the ELB or elm leaves. By contrast, fungi were persistently present in the beetle's feeding life stages and on elm leaves. Fungal community sequencing revealed a predominance of the genera Penicillium and Aspergillus in insects and on leaves. Culture-dependent surveys showed a high prevalence of two fungal colony morphotypes closely related to Penicillium lanosocoeruleum and Aspergillus flavus. Among these, the Penicillium morphotype was significantly more abundant on feeding-damaged compared with intact leaves, suggesting that the fungus thrives in the presence of the ELB. We assessed whether the detected prevalent fungal morphotypes influenced ELB's performance by rearing insects on (i) surface-sterilized leaves, (ii) leaves inoculated with Penicillium spores, and (iii) leaves inoculated with Aspergillus spores. Insects feeding on Penicillium-inoculated leaves gained more biomass and tended to lay larger egg clutches than those consuming surface-sterilized leaves or Aspergillus-inoculated leaves. Our results demonstrate that the ELB does not harbor resident bacteria and that it might benefit from associating with Penicillium fungi.IMPORTANCEOur study provides insights into the still understudied role of microbial symbionts in the biology of the elm leaf beetle (ELB), a major pest of elms. Contrary to expectations, we found no persistent bacterial symbionts associated with the ELB or elm leaves. Our research thus contributes to the growing body of knowledge that not all insects rely on bacterial symbionts. While no persistent bacterial symbionts were detectable in the ELB and elm leaf samples, our analyses revealed the persistent presence of fungi, particularly Penicillium and Aspergillus on both elm leaves and in the feeding ELB stages. Moreover, when ELB were fed with fungus-treated elm leaves, we detected a potentially beneficial effect of Penicillium on the ELB's development and fecundity. Our results highlight the significance of fungal symbionts in the biology of this insect.
Collapse
Affiliation(s)
- Johanna Schott
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany
| | - Juliette Rakei
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany
| | | | - Paul Johnston
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Susan Mbedi
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Museum für Naturkunde Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Sarah Sparmann
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universitaet Berlin, Berlin, Germany
| | | |
Collapse
|
17
|
Thiele Orberg E, Meedt E, Hiergeist A, Xue J, Heinrich P, Ru J, Ghimire S, Miltiadous O, Lindner S, Tiefgraber M, Göldel S, Eismann T, Schwarz A, Göttert S, Jarosch S, Steiger K, Schulz C, Gigl M, Fischer JC, Janssen KP, Quante M, Heidegger S, Herhaus P, Verbeek M, Ruland J, van den Brink MRM, Weber D, Edinger M, Wolff D, Busch DH, Kleigrewe K, Herr W, Bassermann F, Gessner A, Deng L, Holler E, Poeck H. Bacteria and bacteriophage consortia are associated with protective intestinal metabolites in patients receiving stem cell transplantation. NATURE CANCER 2024; 5:187-208. [PMID: 38172339 PMCID: PMC12063274 DOI: 10.1038/s43018-023-00669-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/13/2023] [Indexed: 01/05/2024]
Abstract
The microbiome is a predictor of clinical outcome in patients receiving allogeneic hematopoietic stem cell transplantation (allo-SCT). Microbiota-derived metabolites can modulate these outcomes. How bacteria, fungi and viruses contribute to the production of intestinal metabolites is still unclear. We combined amplicon sequencing, viral metagenomics and targeted metabolomics from stool samples of patients receiving allo-SCT (n = 78) and uncovered a microbiome signature of Lachnospiraceae and Oscillospiraceae and their associated bacteriophages, correlating with the production of immunomodulatory metabolites (IMMs). Moreover, we established the IMM risk index (IMM-RI), which was associated with improved survival and reduced relapse. A high abundance of short-chain fatty acid-biosynthesis pathways, specifically butyric acid via butyryl-coenzyme A (CoA):acetate CoA-transferase (BCoAT, which catalyzes EC 2.8.3.8) was detected in IMM-RI low-risk patients, and virome genome assembly identified two bacteriophages encoding BCoAT as an auxiliary metabolic gene. In conclusion, our study identifies a microbiome signature associated with protective IMMs and provides a rationale for considering metabolite-producing consortia and metabolite formulations as microbiome-based therapies.
Collapse
Affiliation(s)
- Erik Thiele Orberg
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany.
- German Cancer Consortium (DKTK), partner-site Munich, a partnership between DKFZ and Klinikum rechts der Isar, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
| | - Elisabeth Meedt
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Medical Center, Regensburg, Germany
| | - Jinling Xue
- Institute of Virology, Helmholtz Zentrum Munich, Munich, Germany
- Chair of Prevention for Microbial Infectious Disease, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Paul Heinrich
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Jinlong Ru
- Institute of Virology, Helmholtz Zentrum Munich, Munich, Germany
- Chair of Prevention for Microbial Infectious Disease, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Sakhila Ghimire
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Oriana Miltiadous
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah Lindner
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
| | - Melanie Tiefgraber
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Sophia Göldel
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Tina Eismann
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Alix Schwarz
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Sascha Göttert
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), partner-site Munich, a partnership between DKFZ and Klinikum rechts der Isar, Munich, Germany
- Comparative Experimental Pathology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Schulz
- Department of Internal Medicine II, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Michael Gigl
- Bavarian Center for Biomolecular Mass Spectrometry, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Julius C Fischer
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar TUM, Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar TUM, Munich, Germany
| | - Michael Quante
- Department of Internal Medicine II, University Medical Center, Freiburg, Germany
| | - Simon Heidegger
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter Herhaus
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Mareike Verbeek
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Jürgen Ruland
- German Cancer Consortium (DKTK), partner-site Munich, a partnership between DKFZ and Klinikum rechts der Isar, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcel R M van den Brink
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Daniela Weber
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Matthias Edinger
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Daniel Wolff
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Florian Bassermann
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
- German Cancer Consortium (DKTK), partner-site Munich, a partnership between DKFZ and Klinikum rechts der Isar, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Medical Center, Regensburg, Germany
| | - Li Deng
- Institute of Virology, Helmholtz Zentrum Munich, Munich, Germany
- Chair of Prevention for Microbial Infectious Disease, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Ernst Holler
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Hendrik Poeck
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany.
- Leibniz Institute for Immunotherapy, Regensburg, Germany.
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany.
| |
Collapse
|
18
|
Liu NN, Yi CX, Wei LQ, Zhou JA, Jiang T, Hu CC, Wang L, Wang YY, Zou Y, Zhao YK, Zhang LL, Nie YT, Zhu YJ, Yi XY, Zeng LB, Li JQ, Huang XT, Ji HB, Kozlakidis Z, Zhong L, Heeschen C, Zheng XQ, Chen C, Zhang P, Wang H. The intratumor mycobiome promotes lung cancer progression via myeloid-derived suppressor cells. Cancer Cell 2023; 41:1927-1944.e9. [PMID: 37738973 DOI: 10.1016/j.ccell.2023.08.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/08/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023]
Abstract
Although polymorphic microbiomes have emerged as hallmarks of cancer, far less is known about the role of the intratumor mycobiome as living microorganisms in cancer progression. Here, using fungi-enriched DNA extraction and deep shotgun metagenomic sequencing, we have identified enriched tumor-resident Aspergillus sydowii in patients with lung adenocarcinoma (LUAD). By three different syngeneic lung cancer mice models, we find that A. sydowii promotes lung tumor progression via IL-1β-mediated expansion and activation of MDSCs, resulting in suppressed activity of cytotoxic T lymphocyte cells and accumulation of PD-1+ CD8+ T cells. This is mediated by IL-1β secretion via β-glucan/Dectin-1/CARD9 pathway. Analysis of human samples confirms that enriched A. sydowii is associated with immunosuppression and poor patient outcome. Our findings suggest that intratumor mycobiome, albeit at low biomass, promotes lung cancer progression and could be targeted at the strain level to improve patients with LUAD outcome.
Collapse
Affiliation(s)
- Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Cheng-Xiang Yi
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Lu-Qi Wei
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin-An Zhou
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tong Jiang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, (Past Name: Institut Pasteur of Shanghai, Chinese Academy of Sciences), Shanghai 200031, China; Laboratory Services and Biobanking, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Cong-Cong Hu
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Lu Wang
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Yuan-Yuan Wang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, (Past Name: Institut Pasteur of Shanghai, Chinese Academy of Sciences), Shanghai 200031, China
| | - Yun Zou
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, (Past Name: Institut Pasteur of Shanghai, Chinese Academy of Sciences), Shanghai 200031, China
| | - Yi-Kai Zhao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Le-Le Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Ya-Ting Nie
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Yi-Jing Zhu
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Xin-Yao Yi
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Ling-Bing Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330052, China
| | - Jing-Quan Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Tian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330052, China
| | - Hong-Bin Ji
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zisis Kozlakidis
- Laboratory Services and Biobanking, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Christopher Heeschen
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Qi Zheng
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Changbin Chen
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, (Past Name: Institut Pasteur of Shanghai, Chinese Academy of Sciences), Shanghai 200031, China; Nanjing Advanced Academy of Life and Health, Nanjing 211135, China.
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
19
|
Zhang Q, Yang S, Yang Z, Zheng T, Li P, Zhou Q, Cai W, Wang Y, Zhang J, Ji X, Li D. Effects of a novel microbial fermentation medium produced by Tremella aurantialba SCT-F3 on cigar filler leaf. Front Microbiol 2023; 14:1267916. [PMID: 37808308 PMCID: PMC10556473 DOI: 10.3389/fmicb.2023.1267916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Adding a fermentation medium is an effective way to improve the quality of cigar tobacco leaves. Methods A novel microbial fermentation medium produced by an edible medicinal fungus, Tremella aurantialba SCT-F3 (CGMCC No.23831) was used to improve the quality of cigar filler leaves (CFLs). Changes in sensory quality, chemical components, volatile flavor compounds (VFCs), and the structure and function of microbes were investigated during the fermentation process. Results The sensory quality of CFLs supplemented with the T. aurantialba SCT-F3 fermentation medium significantly improved. Adding the fermentation medium increased the total alkaloid, reducing sugar, total sugar, and 12 VFCs significantly. A total of 31 microbial genera were significantly enriched, which increased the microbial community's richness and diversity. Microbial functions increased, including nucleotide biosynthesis, amino acid biosynthesis, fatty acid and lipid biosynthesis, nicotine degradation, and nicotinate degradation. During fermentation, the total alkaloid, reducing sugar, and total sugar content decreased. The richness and diversity of the microbial community decreased, whereas bacterial enzyme activity increased. At the end of fermentation, the sensory quality was excellent. The microbial structure gradually stabilized, and functional genes were low. The contents of the four Maillard reaction products and three nicotine degradation products increased significantly. 2-Ethyl-6-methylpyrazine, methylpyrazine, D,L-anatabine, β-nicotyrine, nicotinic degradation products, and total nitrogen were significantly and positively correlated with sensory quality. Methylpyrazine, D,L-anatabine, and β-nicotyrine were negatively correlated with Luteimonas, Mitochondria, Paracoccus, Stemphylium, and Stenotrophomonas. Conclusion This research provides not only a new microbial fermentation medium that utilizes edible and medicinal fungi to improve the quality of fermented CFLs, but also new ideas for the development and application of other edible medicinal fungi to improve the quality of cigar tobacco leaves.
Collapse
Affiliation(s)
- Qianying Zhang
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Shuanghong Yang
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Zhen Yang
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Tianfei Zheng
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Pinhe Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Quanwei Zhou
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Wen Cai
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Yue Wang
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Juan Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xiaoying Ji
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Dongliang Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| |
Collapse
|
20
|
Pulcini L, Bona E, Vaudano ET, Tsolakis C, Garcia-Moruno E, Costantini A, Gamalero E. The Impact of a Commercial Biostimulant on the Grape Mycobiota of Vitis vinifera cv. Barbera. Microorganisms 2023; 11:1873. [PMID: 37630432 PMCID: PMC10457965 DOI: 10.3390/microorganisms11081873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Reducing the use of fungicides, insecticides, and herbicides in order to limit environmental pollution and health risks for agricultural operators and consumers is one of the goals of European regulations. In fact, the European Commission developed a package of measures (the European Green Deal) to promote the sustainable use of natural resources and strengthen the resilience of European agri-food systems. As a consequence, new plant protection products, such as biostimulants, have been proposed as alternatives to agrochemicals. Their application in agroecosystems could potentially open new scenarios regarding the microbiota. In particular, the vineyard microbiota and the microbiota on the grape surface can be affected by biostimulants and lead to different wine features. The aim of this work was to assess the occurrence of a possible variation in the mycobiota due to the biostimulant application. Therefore, our attention has been focused on the yeast community of grape bunches from vines subjected to the phytostimulant BION®50WG treatment. This work was carried out in the CREA-VE experimental vineyard of Vitis vinifera cv. Barbera in Asti (Piedmont, Italy). The composition of fungal communities on grapes from three experimental conditions such as IPM (integrated pest management), IPM+BION®50WG, and IPM+water foliar nebulization was compared by a metabarcoding approach. Our results revealed the magnitude of alpha and beta diversity, and the microbial biodiversity index and specific fungal signatures were highlighted by comparing the abundance of yeast and filamentous fungi in IPM and BION®50WG treatments. No significant differences in the mycobiota of grapevines subjected to the three treatments were detected.
Collapse
Affiliation(s)
- Laura Pulcini
- Consiglio per la Ricerca e l’analisi dell’Economia Agraria—Centro di Ricerca Viticoltura ed Enologia (CREA-VE), Via P. Micca 35, 14100 Asti, Italy; (E.T.V.); (C.T.); (E.G.-M.)
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy;
| | - Elisa Bona
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica (DISSTE), Università del Piemonte Orientale, Piazza San Eusebio 5, 13100 Vercelli, Italy;
| | - Enrico Tommaso Vaudano
- Consiglio per la Ricerca e l’analisi dell’Economia Agraria—Centro di Ricerca Viticoltura ed Enologia (CREA-VE), Via P. Micca 35, 14100 Asti, Italy; (E.T.V.); (C.T.); (E.G.-M.)
| | - Christos Tsolakis
- Consiglio per la Ricerca e l’analisi dell’Economia Agraria—Centro di Ricerca Viticoltura ed Enologia (CREA-VE), Via P. Micca 35, 14100 Asti, Italy; (E.T.V.); (C.T.); (E.G.-M.)
| | - Emilia Garcia-Moruno
- Consiglio per la Ricerca e l’analisi dell’Economia Agraria—Centro di Ricerca Viticoltura ed Enologia (CREA-VE), Via P. Micca 35, 14100 Asti, Italy; (E.T.V.); (C.T.); (E.G.-M.)
| | - Antonella Costantini
- Consiglio per la Ricerca e l’analisi dell’Economia Agraria—Centro di Ricerca Viticoltura ed Enologia (CREA-VE), Via P. Micca 35, 14100 Asti, Italy; (E.T.V.); (C.T.); (E.G.-M.)
| | - Elisa Gamalero
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy;
| |
Collapse
|
21
|
Usyk M, Schlecht NF, Viswanathan S, Gradissimo A, Valizadegan N, Sollecito CC, Nucci-Sack A, Diaz A, Burk RD. TRiCit: A High-Throughput Approach to Detect Trichomonas vaginalis from ITS1 Amplicon Sequencing. Int J Mol Sci 2023; 24:11839. [PMID: 37511598 PMCID: PMC10380363 DOI: 10.3390/ijms241411839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Trichomoniasis, caused by Trichomonas vaginalis (TV), is the most common non-viral sexually transmitted infection (STI) worldwide, affecting over 174 million people annually and is frequently associated with reproductive co-morbidities. However, its detection can be time-consuming, subjective, and expensive for large cohort studies. This case-control study, conducted at the Mount Sinai Adolescent Health Center in New York City, involved 36 women with prevalent TV infections and 36 controls. The objective was to examine Internal Transcribed Spacer region-1 (ITS1) amplicon-derived communities for the detection of prevalent TV infections with the same precision as clinical microscopy and the independent amplification of the TV-specific TVK3/7 gene. DNA was isolated from clinician-collected cervicovaginal samples and amplified using ITS1 primers in a research laboratory. Results were compared to microscopic wet-mount TV detection of concurrently collected cervicovaginal samples and confirmed against TV-specific TVK3/7 gene PCR. The area under the receiver operating characteristics curve (AUC) for diagnosing TV using ITS1 communities was 0.92. ITS1 amplicons displayed an intra-class correlation coefficient (ICC) of 0.96 (95% CI: 0.93-0.98) compared to TVK3/7 PCR fragment testing. TV cases showed an increased risk of bacterial vaginosis (BV) compared to the TV-negative controls (OR = 8.67, 95% CI: 2.24-48.54, p-value = 0.0011), with no significant differences regarding genital yeast or chlamydia infections. This study presents a bioinformatics approach to ITS1 amplicon next-generation sequencing that is capable of detecting prevalent TV infections. This approach enables high-throughput testing for TV in stored DNA from large-scale epidemiological studies.
Collapse
Affiliation(s)
- Mykhaylo Usyk
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Epidemiology and Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Nicolas F Schlecht
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shankar Viswanathan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ana Gradissimo
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Negin Valizadegan
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christopher C Sollecito
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Anne Nucci-Sack
- Department of Pediatrics, Mount Sinai Adolescent Health Center, Icahn School of Medicine at Mount Sinai, Manhattan, NY 10029, USA
| | - Angela Diaz
- Department of Pediatrics, Mount Sinai Adolescent Health Center, Icahn School of Medicine at Mount Sinai, Manhattan, NY 10029, USA
| | - Robert D Burk
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Departments of Microbiology and Immunology, and Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
22
|
Baeshen NN, Baz L, Shami AY, Ashy RA, Jalal RS, Abulfaraj AA, Refai M, Majeed MA, Abuzahrah SS, Abdelkader H, Baeshen NA, Baeshen MN. Composition, Abundance, and Diversity of the Soil Microbiome Associated with the Halophytic Plants Tamarix aphylla and Halopeplis perfoliata on Jeddah Seacoast, Saudi Arabia. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112176. [PMID: 37299153 DOI: 10.3390/plants12112176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The coast of the Red Sea in Jeddah City is home to a unique microbial community that has adapted to extreme environmental conditions. Therefore, it is essential to characterize the microbial community in this unique microbiome to predict how environmental changes will affect it. The aim of this study was to conduct metagenomic sequencing of 16S rRNA and ITS rRNA genes for the taxonomic classification of the microbial community in soil samples associated with the halophytic plants Tamarix aphylla and Halopeplis perfoliata. Fifteen soil samples were collected in triplicate to enhance robustness and minimize sampling bias. Firstly, to identify novel microbial candidates, the gDNAs were isolated from the saline soil samples surrounding each plant, and then bacterial 16S (V3-V4) and fungal ITS1 regions were sequenced utilizing a high-throughput approach (next-generation sequencing; NGS) on an Illumina MiSeq platform. Quality assessment of the constructed amplicon libraries was conducted using Agilent Bioanalyzer and fluorometric quantification methods. The raw data were processed and analyzed using the Pipeline (Nova Lifetech, Singapore) for bioinformatics analysis. Based on the total number of readings, it was determined that the phylum Actinobacteriota was the most prevalent in the soil samples examined, followed by the phylum Proteobacteria. Based on ITS rRNA gene analysis, the alpha and beta fungal diversity in the studied soil samples revealed that the fungal population is structured into various groups according to the crust (c) and/or rhizosphere (r) plant parts. Fungal communities in the soil samples indicated that Ascomycota and Basidiomycota were the two most abundant phyla based on the total amount of sequence reads. Secondly, heat-map analysis of the diversity indices showed that the bacterial alpha diversity, as measured by Shannon, Simpson, and InvSimpson, was associated with soil crust (Hc and Tc enclosing H. perfoliata and T. aphylla, respectively) and that the soil rhizosphere (Hr and Tr) was strongly correlated with bacterial beta diversity. Finally, fungal-associated Tc and Hc samples clustered together, according to observations made using the Fisher and Chao1 methods, and Hr and Tr samples clustered together according to Shannon, Simpson, and InvSimpson analyses. As a result of the soil investigation, potential agents that have been identified could lead to innovative agricultural, medical, and industrial applications.
Collapse
Affiliation(s)
- Naseebh N Baeshen
- Department of Biology, College of Sciences and Arts at Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Lina Baz
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashwag Y Shami
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11617, Saudi Arabia
| | - Ruba A Ashy
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Rewaa S Jalal
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Aala A Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Mohammed Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Mazen A Majeed
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Samah S Abuzahrah
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Hayam Abdelkader
- Virus Research Department, Molecular Biology Laboratory, PPRI, ARC, Giza 12613, Egypt
| | - Nabih A Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed N Baeshen
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| |
Collapse
|
23
|
Jain V, Baraniya D, El-Hadedy DE, Chen T, Slifker M, Alakwaa F, Cai KQ, Chitrala KN, Fundakowski C, Al-Hebshi NN. Integrative Metatranscriptomic Analysis Reveals Disease-specific Microbiome-host Interactions in Oral Squamous Cell Carcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:807-820. [PMID: 37377901 PMCID: PMC10166004 DOI: 10.1158/2767-9764.crc-22-0349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/05/2023] [Accepted: 04/13/2023] [Indexed: 06/29/2023]
Abstract
Studies on the microbiome of oral squamous cell carcinoma (OSCC) have been limited to 16S rRNA gene sequencing. Here, laser microdissection coupled with brute-force, deep metatranscriptome sequencing was employed to simultaneously characterize the microbiome and host transcriptomes and predict their interaction in OSCC. The analysis involved 20 HPV16/18-negative OSCC tumor/adjacent normal tissue pairs (TT and ANT) along with deep tongue scrapings from 20 matched healthy controls (HC). Standard bioinformatic tools coupled with in-house algorithms were used to map, analyze, and integrate microbial and host data. Host transcriptome analysis identified enrichment of known cancer-related gene sets, not only in TT versus ANT and HC, but also in the ANT versus HC contrast, consistent with field cancerization. Microbial analysis identified a low abundance yet transcriptionally active, unique multi-kingdom microbiome in OSCC tissues predominated by bacteria and bacteriophages. HC showed a different taxonomic profile yet shared major microbial enzyme classes and pathways with TT/ANT, consistent with functional redundancy. Key taxa enriched in TT/ANT compared with HC were Cutibacterium acnes, Malassezia restricta, Human Herpes Virus 6B, and bacteriophage Yuavirus. Functionally, hyaluronate lyase was overexpressed by C. acnes in TT/ANT. Microbiome-host data integration revealed that OSCC-enriched taxa were associated with upregulation of proliferation-related pathways. In a preliminary in vitro validation experiment, infection of SCC25 oral cancer cells with C. acnes resulted in upregulation of MYC expression. The study provides a new insight into potential mechanisms by which the microbiome can contribute to oral carcinogenesis, which can be validated in future experimental studies. Significance Studies have shown that a distinct microbiome is associated with OSCC, but how the microbiome functions within the tumor interacts with the host cells remains unclear. By simultaneously characterizing the microbial and host transcriptomes in OSCC and control tissues, the study provides novel insights into microbiome-host interactions in OSCC which can be validated in future mechanistic studies.
Collapse
Affiliation(s)
- Vinay Jain
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania
- Low level Radiation Research Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Divyashri Baraniya
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania
| | - Doaa E. El-Hadedy
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania
| | - Tsute Chen
- Department of Microbiology, Forsyth Institute, Cambridge, Massachusetts
| | - Michael Slifker
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Fadhl Alakwaa
- Department of Internal Medicine, Nephrology Division, University of Michigan, Ann Arbor, Michigan
| | - Kathy Q. Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kumaraswamy N. Chitrala
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | | | - Nezar N. Al-Hebshi
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Balogun FO, Abdulsalam RA, Ojo AO, Cason E, Sabiu S. Chemical Characterization and Metagenomic Identification of Endophytic Microbiome from South African Sunflower ( Helianthus annus) Seeds. Microorganisms 2023; 11:988. [PMID: 37110411 PMCID: PMC10146784 DOI: 10.3390/microorganisms11040988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Helianthus annus (sunflower) is a globally important oilseed crop whose survival is threatened by various pathogenic diseases. Agrochemical products are used to eradicate these diseases; however, due to their unfriendly environmental consequences, characterizing microorganisms for exploration as biocontrol agents are considered better alternatives against the use of synthetic chemicals. The study assessed the oil contents of 20 sunflower seed cultivars using FAMEs-chromatography and characterized the endophytic fungi and bacteria microbiome using Illumina sequencing of fungi ITS 1 and bacteria 16S (V3-V4) regions of the rRNA operon. The oil contents ranged between 41-52.8%, and 23 fatty acid components (in varied amounts) were found in all the cultivars, with linoleic (53%) and oleic (28%) acids as the most abundant. Ascomycota (fungi) and Proteobacteria (bacteria) dominated the cultivars at the phyla level, while Alternaria and Bacillus at the genus level in varying abundance. AGSUN 5102 and AGSUN 5101 (AGSUN 5270 for bacteria) had the highest fungi diversity structure, which may have been contributed by the high relative abundance of linoleic acid in the fatty acid components. Dominant fungi genera such as Alternaria, Aspergillus, Aureobasidium, Alternariaste, Cladosporium, Penicillium, and bacteria including Bacillus, Staphylococcus, and Lactobacillus are established, providing insight into the fungi and bacteria community structures from the seeds of South Africa sunflower.
Collapse
Affiliation(s)
- Fatai Oladunni Balogun
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, South Africa; (F.O.B.); (R.A.A.)
| | - Rukayat Abiola Abdulsalam
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, South Africa; (F.O.B.); (R.A.A.)
| | - Abidemi Oluranti Ojo
- Centre for Applied Food Sustainability and Biotechnology, Central University of Technology, Bloemfontein 9300, South Africa
| | - Errol Cason
- Department of Animal Science, University of the Free State, Bloemfontein 9300, South Africa;
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, South Africa; (F.O.B.); (R.A.A.)
| |
Collapse
|
25
|
Arfken AM, Frey JF, Carrillo NI, Dike NI, Onyeachonamm O, Rivera DN, Davies CP, Summers KL. Porcine fungal mock community analyses: Implications for mycobiome investigations. Front Cell Infect Microbiol 2023; 13:928353. [PMID: 36844394 PMCID: PMC9945231 DOI: 10.3389/fcimb.2023.928353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction The gut microbiome is an integral partner in host health and plays a role in immune development, altered nutrition, and pathogen prevention. The mycobiome (fungal microbiome) is considered part of the rare biosphere but is still a critical component in health. Next generation sequencing has improved our understanding of fungi in the gut, but methodological challenges remain. Biases are introduced during DNA isolation, primer design and choice, polymerase selection, sequencing platform selection, and data analyses, as fungal reference databases are often incomplete or contain erroneous sequences. Methods Here, we compared the accuracy of taxonomic identifications and abundances from mycobiome analyses which vary among three commonly selected target gene regions (18S, ITS1, or ITS2) and the reference database (UNITE - ITS1, ITS2 and SILVA - 18S). We analyze multiple communities including individual fungal isolates, a mixed mock community created from five common fungal isolates found in weanling piglet feces, a purchased commercial fungal mock community, and piglet fecal samples. In addition, we calculated gene copy numbers for the 18S, ITS1, and ITS2 regions of each of the five isolates from the piglet fecal mock community to determine whether copy number affects abundance estimates. Finally, we determined the abundance of taxa from several iterations of our in-house fecal community to assess the effects of community composition on taxon abundance. Results Overall, no marker-database combination consistently outperformed the others. Internal transcribed space markers were slightly superior to 18S in the identification of species in tested communities, but Lichtheimia corymbifera, a common member of piglet gut communities, was not amplified by ITS1 and ITS2 primers. Thus, ITS based abundance estimates of taxa in piglet mock communities were skewed while 18S marker profiles were more accurate. Kazachstania slooffiae displayed the most stable copy numbers (83-85) while L. corymbifera displayed significant variability (90-144) across gene regions. Discussion This study underscores the importance of preliminary studies to assess primer combinations and database choice for the mycobiome sample of interest and raises questions regarding the validity of fungal abundance estimates.
Collapse
Affiliation(s)
- Ann M. Arfken
- Oak Ridge Institute for Science and Education, Center for Disease Control, Atlanta, GA, United States
| | - Juli Foster Frey
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Nora Isabel Carrillo
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Nneka Ijeoma Dike
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Ogechukwu Onyeachonamm
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Daniela Nieves Rivera
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Cary Pirone Davies
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Katie Lynn Summers
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
26
|
Hong M, Peng D, Fu A, Wang X, Zheng Y, Xia L, Shi W, Qian C, Li Z, Liu F, Wu Q. The application of nanopore targeted sequencing in the diagnosis and antimicrobial treatment guidance of bloodstream infection of febrile neutropenia patients with hematologic disease. J Cell Mol Med 2023; 27:506-514. [PMID: 36722317 PMCID: PMC9930421 DOI: 10.1111/jcmm.17651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/12/2022] [Accepted: 12/06/2022] [Indexed: 02/02/2023] Open
Abstract
Traditional microbiological methodology has limited sensitivity, detection range, and turnaround times in diagnosis of bloodstream infection in Febrile Neutropenia (FN) patients. A more rapid and sensitive detection technology is urgently needed. Here we used the newly developed Nanapore targeted sequencing (NTS) to diagnose the pathogens in blood samples. The diagnostic performance (sensitivity, specificity and turnaround time) of NTS detection of 202 blood samples from FN patients with hematologic disease was evaluated in comparison to blood culture and nested Polymerase Chain Reaction (PCR) followed by sanger sequence. The impact of NTS results on antibiotic treatment modification, the effectivity and mortality of the patients under the guidance of NTS results were assessed. The data showed that NTS had clinical sensitivity of 92.11%, clinical specificity of 78.41% compared with the blood culture and PCR combination. Importantly, the turnaround time for NTS was <24 h for all specimens, and the pre-report time within 6 h in emergency cases was possible in clinical practice. Among 118 NTS positive patients, 98.3% patients' antibiotic regimens were guided according to NTS results. There was no significant difference in effectivity and mortality rate between Antibiotic regimen switched according to NTS group and Antibiotic regimen covering pathogens detected by NTS group. Therefore, NTS could yield a higher sensitivity, specificity and shorter turnaround time for broad-spectrum pathogens identification in blood samples detection compared with traditional tests. It's also a good guidance in clinical targeted antibiotic treatment for FN patients with hematologic disease, thereby emerging as a promising technology for detecting infectious disease.
Collapse
Affiliation(s)
- Mei Hong
- Institute of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Danyue Peng
- Institute of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Aisi Fu
- Wuhan Dgensee Clinical Laboratory Co., Ltd.WuhanChina
| | - Xian Wang
- Wuhan Dgensee Clinical Laboratory Co., Ltd.WuhanChina
| | - Yabiao Zheng
- Wuhan Dgensee Clinical Laboratory Co., Ltd.WuhanChina
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chenjing Qian
- Institute of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zixuan Li
- Institute of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fang Liu
- Institute of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
27
|
Xia Y, Zhou W, Du Y, Wang Y, Zhu M, Zhao Y, Wu Z, Zhang W. Difference of microbial community and gene composition with saccharification function between Chinese nongxiangxing daqu and jiangxiangxing daqu. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:637-647. [PMID: 36053854 DOI: 10.1002/jsfa.12175] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The saccharification function of daqu is usually characterized by two indicators: saccharification power and liquefaction power. Daqu provides diverse microbial saccharifying enzymes for hydrolyzing carbohydrate in Baijiu fermenting grain. Obviously, the composition of microbial communities and enzymatic genes in different types of daqu cultured at varied temperatures is different. However, these differences in saccharification function are not fully understood. RESULTS The findings suggested that the saccharification power and liquefaction power of jiangxiangxing daqu were lower than those of nongxiangxing daqu throughout the production process. We employed metagenomics to find evidence that a mode of multiple saccharifying enzymes involving amylase, cellulase and hemicellulase originating from various microbes exists in daqu. Moreover, a totality of 541 related differential genes were obtained, some of which, annotated to genera of Aspergillus, Lactobacillus and Weissella, were significantly enriched (P < 0.05) in nongxiangxing daqu, while others, annotated to thermophilic genera of Virgibacillus, Bacillus, Kroppenstedtia and Saccharopolyspora, showed a higher relative abundance in jiangxiangxing daqu (P < 0.05). CONCLUSION Various microbial communities of daqu showed diverse saccharification capacity during cultivation of different parameters. These findings are helpful in comprehending the saccharification functional genes of daqu. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Wen Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yake Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yan Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Min Zhu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yajiao Zhao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Zhengyun Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- School of Liquor-Making Engineering, Sichuan University Jinjiang College, Meishan, China
| |
Collapse
|
28
|
Usyk M, Peters BA, Karthikeyan S, McDonald D, Sollecito CC, Vazquez-Baeza Y, Shaffer JP, Gellman MD, Talavera GA, Daviglus ML, Thyagarajan B, Knight R, Qi Q, Kaplan R, Burk RD. Comprehensive evaluation of shotgun metagenomics, amplicon sequencing, and harmonization of these platforms for epidemiological studies. CELL REPORTS METHODS 2023; 3:100391. [PMID: 36814836 PMCID: PMC9939430 DOI: 10.1016/j.crmeth.2022.100391] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/28/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023]
Abstract
In a large cohort of 1,772 participants from the Hispanic Community Health Study/Study of Latinos with overlapping 16SV4 rRNA gene (bacterial amplicon), ITS1 (fungal amplicon), and shotgun sequencing data, we demonstrate that 16SV4 amplicon sequencing and shotgun metagenomics offer the same level of taxonomic accuracy for bacteria at the genus level even at shallow sequencing depths. In contrast, for fungal taxa, we did not observe meaningful agreements between shotgun and ITS1 amplicon results. Finally, we show that amplicon and shotgun data can be harmonized and pooled to yield larger microbiome datasets with excellent agreement (<1% effect size variance across three independent outcomes) using pooled amplicon/shotgun data compared to pure shotgun metagenomic analysis. Thus, there are multiple approaches to study the microbiome in epidemiological studies, and we provide a demonstration of a powerful pooling approach that will allow researchers to leverage the massive amount of amplicon sequencing data generated over the last two decades.
Collapse
Affiliation(s)
- Mykhaylo Usyk
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Epidemiology and Population Health, NYU School of Medicine, New York, NY, USA
| | - Brandilyn A. Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Smruthi Karthikeyan
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Christopher C. Sollecito
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yoshiki Vazquez-Baeza
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Justin P. Shaffer
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Marc D. Gellman
- Department of Psychology, University of Miami, Miami, FL, USA
| | - Gregory A. Talavera
- Division of Health Promotion and Behavioral Science, San Diego State University, San Diego, CA, USA
| | - Martha L. Daviglus
- Department of Medicine, University of Illinois-Chicago, Chicago, IL, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center, Minneapolis, MN, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Departments of Computer Science and Engineering, and Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, NYU School of Medicine, New York, NY, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, NYU School of Medicine, New York, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert D. Burk
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Microbiology & Immunology, and Obstetrics, Gynecology & Women’s Health, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
29
|
Isa KNM, Jalaludin J, Hashim Z, Than LTL, Hashim JH, Norbäck D. Fungi composition in settled dust associated with fractional exhaled nitric oxide in school children with asthma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158639. [PMID: 36089033 DOI: 10.1016/j.scitotenv.2022.158639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Fungi exposure has been significantly linked to respiratory illness. However, numerous fungi taxa that are potentially allergenic still undocumented and leave a barrier to establishing a clear connection between exposure and health risks. This study aimed to evaluate the association of fungi composition in settled dust with fractional exhaled nitric oxide (FeNO) levels among school children with doctor-diagnosed asthma. A cross-sectional study was undertaken among secondary school students in eight schools in the urban area of Hulu Langat, Selangor, Malaysia. A total of 470 school children (aged 14 years old) were randomly selected and their FeNO levels were measured and allergic skin prick tests were conducted. The settled dust samples were collected and analysed by using metagenomic technique to determine the fungi composition. The general linear regression with complex sampling was employed to determine the interrelationship. In total, 2645 fungal operational taxonomic units (OTUs) were characterised from the sequencing process which belongs to Ascomycota (60.7 %), Basidiomycota (36.4 %), Glomeromycota (2.9 %) and Chytridiomycota (0.04 %). The top five mostly abundance in all dust samples were Aspergillus clavatus (27.2 %), followed by Hyphoderma multicystidium (12.2 %), Verrucoconiothyrium prosopidis (9.4 %), Ganoderma tuberculosum (9.2 %), and Heterochaete shearii (7.2 %). The regression results indicated that A. clavatus, Brycekendrickomyces acaciae, Candida parapsilosis, Hazslinszkyomyces aloes, H. multicystidium, H. shearii, Starmerella meliponinorum, V. prosopidis were associated in increased of FeNO levels among the asthmatic group at 0.992 ppb (95 % CI = 0.34-1.68), 2.887 ppb (95 % CI = 2.09-3.76), 0.809 ppb (95 % CI = 0.14-1.49), 0.647 ppb (95 % CI = 0.36-0.94), 1.442 ppb (95 % CI = 0.29-2.61), 1.757 ppb (95 % CI = 0.59-2.87), 1.092 ppb (95 % CI = 0.43-1.75) and 1.088 ppb (95 % CI = 0.51-1.62), respectively. To our knowledge, this is a new finding. The findings pointed out that metagenomics profiling of fungi could enhance our understanding of a complex interrelation between rare and unculturable fungi with airway inflammation.
Collapse
Affiliation(s)
- Khairul Nizam Mohd Isa
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia; Environmental Health Research Cluster (EHRc), Environmental Healthcare Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, 43000 Kajang, Selangor, Malaysia
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia.
| | - Zailina Hashim
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Jamal Hisham Hashim
- Department of Health Sciences, Faculty of Engineering and Life Science, Universiti Selangor, Shah Alam Campus, Seksyen 7, 40000 Shah Alam, Selangor, Malaysia
| | - Dan Norbäck
- Department of Medical Science, Occupational and Environmental Medicine, Uppsala University Hospital, Uppsala University, 75185 Uppsala, Sweden
| |
Collapse
|
30
|
Peroumal D, Sahu SR, Kumari P, Utkalaja BG, Acharya N. Commensal Fungus Candida albicans Maintains a Long-Term Mutualistic Relationship with the Host To Modulate Gut Microbiota and Metabolism. Microbiol Spectr 2022; 10:e0246222. [PMID: 36135388 PMCID: PMC9603587 DOI: 10.1128/spectrum.02462-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/12/2022] [Indexed: 01/04/2023] Open
Abstract
Candida albicans survives as a commensal fungus in the gastrointestinal tract, and that its excessive growth causes infections in immunosuppressed individuals is widely accepted. However, any mutualistic relationship that may exist between C. albicans and the host remains undetermined. Here, we showed that a long-term feeding of C. albicans does not cause any noticeable infections in the mouse model. Our 16S and 18S ribosomal DNA (rDNA) sequence analyses suggested that C. albicans colonizes in the gut and modulates microbiome dynamics, which in turn mitigates high-fat-diet-induced uncontrolled body weight gain and metabolic hormonal imbalances. Interestingly, adding C. albicans to a nonobesogenic diet stimulated the appetite-regulated hormones and helped the mice maintain a healthy body weight. In concert, our results suggest a mutualism between C. albicans and the host, contrary to the notion that C. albicans is always an adversary and indicating it can instead be a bona fide admirable companion of the host. Finally, we discuss its potential translational implication as a probiotic, especially in obese people or people dependent on high-fat calorie intakes to manage obesity associated complications. IMPORTANCE Candida albicans is mostly considered an opportunistic pathogen that causes fetal systemic infections. However, this study demonstrates that in its commensal state, it maintains a long-term mutualistic relationship with the host and regulates microbial dynamics in the gut and host physiology. Thus, we concluded that C. albicans is not always an adversary but rather can be a bona fide admirable companion of the host. More importantly, as several genomic knockout strains of C. albicans were shown to be avirulent, such candidate strains may be explored further as preferable probiotic isolates to control obesity.
Collapse
Affiliation(s)
- Doureradjou Peroumal
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Premlata Kumari
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
31
|
Wang S, Tan Y, Li S, Zhu T. Structural and Dynamic Analysis of Leaf-Associated Fungal Community of Walnut Leaves Infected by Leaf Spot Disease Based Illumina High-Throughput Sequencing Technology. Pol J Microbiol 2022; 71:429-441. [PMID: 36185023 PMCID: PMC9608163 DOI: 10.33073/pjm-2022-038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Leaf-associated microbiota is vital in plant-environment interactions and is the basis for micro-ecological regulation. However, there are no studies on the direct differences in microbial community composition between disease-susceptible and healthy walnut leaves. This study collected five samples of healthy and infected leaves (all leaves with abnormal spots were considered diseased leaves) from May to October 2018. Differences in fungal diversity (Chao1 index, Shannon index, and Simpson index) and community structure were observed by sequencing and analyzing diseased and healthy leaf microbial communities by Illumina HiSeq sequencing technology. The main fungal phyla of walnut leaf-associated were Ascomycota, Basidiomycota, and Glomeromycota. Diversity indices (Shannon and Chao1 index values) of healthy leaves differed significantly in the late stages of disease onset. The results showed that the fungal species that differed considerably between the healthy and infected groups differed, and the fungal species that differed significantly between the healthy and infected groups changed with the development of the leaf disease. Critical control time points were determined by analyzing the population dynamics of pathogenic fungi. Leaf-associated microorganisms are abundant and diverse, and fungal identification and diversity studies are helpful for developing more appropriate walnut management strategies.
Collapse
Affiliation(s)
- Shiwei Wang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yu Tan
- College of Forestry, Sichuan Agricultural University, Chengdu, China,Chengdu Botanical Garden, Chengdu, China
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China,National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu, China, T. Zhu, College of Forestry, Sichuan Agricultural University , Chengdu, China # Shiwei Wang and Yu Tan contribute equally to this work and are co-first authors.
| |
Collapse
|
32
|
Li W, Lei X, Zhang R, Cao Q, Yang H, Zhang N, Liu S, Wang Y. Shifts in rhizosphere microbial communities in Oplopanax elatus Nakai are related to soil chemical properties under different growth conditions. Sci Rep 2022; 12:11485. [PMID: 35798802 PMCID: PMC9262954 DOI: 10.1038/s41598-022-15340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Plant growth environment plays an important role in shaping soil microbial communities. To understand the response of soil rhizosphere microbial communities in Oplopanax elatus Nakai plant to a changed growth conditions from natural habitation to cultivation after transplant. Here, a comparative study of soil chemical properties and microbial community using high-throughput sequencing was conducted under cultivated conditions (CT) and natural conditions (WT), in Changbai Mountain, Northeast of China. The results showed that rhizosphere soil in CT had higher pH and lower content of soil organic matter (SOM) and available nitrogen compared to WT. These changes influenced rhizosphere soil microbial communities, resulting in higher soil bacterial and fungi richness and diversity in CT soil, and increased the relative abundance of bacterial phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Firmicutes and Patescibacteria, and the fungi phyla Mortierellomycota and Zoopagomycota, while decreased bacterial phyla Actinobacteria, WPS-2, Gemmatimonadetes, and Verrucomicrobia, and the fungi phyla Ascomycota, and Basidiomycota. Redundancy analysis analysis indicated soil pH and SOM were the primarily environmental drivers in shaping the rhizosphere soil microbial community in O. elatus under varied growth conditions. Therefore, more attention on soil nutrition management especially organic fertilizer inputs should be paid in O. elatus cultivation.
Collapse
Affiliation(s)
- Wanying Li
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Xiujuan Lei
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Rui Zhang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Qingjun Cao
- Jilin Academy of Agriculture Science, Changchun, 130033, People's Republic of China.
| | - He Yang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Nanqi Zhang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Shuangli Liu
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Yingping Wang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China. .,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China.
| |
Collapse
|
33
|
Modulation of Gut Microbiota and Neuroprotective Effect of a Yeast-Enriched Beer. Nutrients 2022; 14:nu14122380. [PMID: 35745108 PMCID: PMC9228237 DOI: 10.3390/nu14122380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Beer is the most consumed alcoholic beverage worldwide. It is rich in nutrients, and with its microbial component it could play a role in gut microbiota modulation. Conflicting data are currently available regarding the consequences of alcohol and alcohol-containing beverages on dementia and age-associated disorders including Alzheimer’s disease (AD), a neurodegeneration characterized by protein aggregation, inflammatory processes and alterations of components of the gut–brain axis. The effects of an unfiltered and unpasteurized craft beer on AD molecular hallmarks, levels of gut hormones and composition of micro/mycobiota were dissected using 3xTg-AD mice. In addition, to better assess the role of yeasts, beer was enriched with the same Saccharomyces cerevisiae strain used for brewing. The treatment with the yeast-enriched beer ameliorated cognition and favored the reduction of Aβ(1-42) and pro-inflammatory molecules, also contributing to an increase in the concentration of anti-inflammatory cytokines. A significant improvement in the richness and presence of beneficial taxa in the gut bacterial population of the 3xTg-AD animals was observed. In addition, the fungal order, Sordariomycetes, associated with gut inflammatory conditions, noticeably decreased with beer treatments. These data demonstrate, for the first time, the beneficial effects of a yeast-enriched beer on AD signs, suggesting gut microbiota modulation as a mechanism of action.
Collapse
|
34
|
A longitudinal study of the pulmonary mycobiome in subjects with and without chronic obstructive pulmonary disease. PLoS One 2022; 17:e0267195. [PMID: 35551278 PMCID: PMC9098062 DOI: 10.1371/journal.pone.0267195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
Background Few studies have examined the stability of the pulmonary mycobiome. We report longitudinal changes in the oral and pulmonary mycobiome of participants with and without COPD in a large-scale bronchoscopy study (MicroCOPD). Methods Repeated sampling was performed in 30 participants with and 21 without COPD. We collected an oral wash (OW) and a bronchoalveolar lavage (BAL) sample from each participant at two time points. The internal transcribed spacer 1 region of the ribosomal RNA gene cluster was PCR amplified and sequenced on an Illumina HiSeq sequencer. Differences in taxonomy, alpha diversity, and beta diversity between the two time points were compared, and we examined the effect of intercurrent antibiotic use. Results Sample pairs were dominated by Candida. We observed less stability in the pulmonary taxonomy compared to the oral taxonomy, additionally emphasised by a higher Yue-Clayton measure in BAL compared to OW (0.69 vs 0.22). No apparent effect was visually seen on taxonomy from intercurrent antibiotic use or participant category. We found no systematic variation in alpha diversity by time either in BAL (p-value 0.16) or in OW (p-value 0.97), and no obvious clusters on bronchoscopy number in PCoA plots. Pairwise distance analyses showed that OW samples from repeated sampling appeared more stable compared to BAL samples using the Bray-Curtis distance metric (p-value 0.0012), but not for Jaccard. Conclusion Results from the current study propose that the pulmonary mycobiome is less stable than the oral mycobiome, and neither COPD diagnosis nor intercurrent antibiotic use seemed to influence the stability.
Collapse
|
35
|
Hinrichs C, Wiese-Posselt M, Graf B, Geffers C, Weikert B, Enghard P, Aldejohann A, Schrauder A, Knaust A, Eckardt KU, Gastmeier P, Kurzai O. Successful control of Candida auris transmission in a German COVID-19 intensive care unit. Mycoses 2022; 65:643-649. [PMID: 35419847 PMCID: PMC9115290 DOI: 10.1111/myc.13443] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Candida auris is a frequently multi-drug resistant yeast species that poses a global health threat due to its high potential for hospital outbreaks. While C. auris has become endemic in parts of Asia and Africa, transmissions have so far rarely been reported in Western Europe except for Great Britain and Spain. We describe the first documented patient-to-patient transmission of C. auris in Germany in a COVID-19 intensive care unit (ICU) and infection control measures implemented to prevent further spread of the pathogen. METHODS Identification of C. auris was performed by MALDI-TOF and confirmed by internal transcribed spacer (ITS) sequencing. Antifungal susceptibility testing was carried out. We conducted repeated cross-sectional examinations for the presence of C. auris in the patients of the affected ICU and investigated possible routes of transmission. RESULTS The index patient had been transferred to Germany from a hospital in Northern Africa and was found to be colonised with C. auris. The contact patient developed C. auris sepsis. Infection prevention and control (IPC) measures included strict isolation of the two C. auris patients and regular screening of non-affected patients. No further case occurred during the subsequent weeks. Reusable blades used in video laryngoscope-guided intubation were considered as the most likely vehicle of transmission. CONCLUSIONS In view of its high risk of transmission, vigilance regarding C. auris colonisation in patients referred from endemic countries is crucial. Strict and immediate IPC measures may have the potential to prevent C. auris outbreaks.
Collapse
Affiliation(s)
- Carl Hinrichs
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Miriam Wiese-Posselt
- Institute of Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Barbara Graf
- Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Christine Geffers
- Institute of Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Beate Weikert
- Institute of Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexander Aldejohann
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany.,National Reference Center for Invasive Fungal Infections NRZMyk, Leibniz Institute for Natural product research and Infection Biology - Hans-Knoell-Institute, Jena, Germany
| | | | | | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Petra Gastmeier
- Institute of Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany.,National Reference Center for Invasive Fungal Infections NRZMyk, Leibniz Institute for Natural product research and Infection Biology - Hans-Knoell-Institute, Jena, Germany
| |
Collapse
|
36
|
Tiew PY, Mac Aogáin M, Chotirmall SH. The current understanding and future directions for sputum microbiome profiling in chronic obstructive pulmonary disease. Curr Opin Pulm Med 2022; 28:121-133. [PMID: 34839338 DOI: 10.1097/mcp.0000000000000850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Next-generation sequencing (NGS) has deepened our understanding of the respiratory microbiome in health and disease. The number of microbiome studies employing sputum as an airway surrogate has continued to increase over the past decade to include multiple large multicentre and longitudinal studies of the microbiome in chronic obstructive pulmonary disease (COPD). In this review, we summarize the recent advances to our understanding of the bacteriome, virome and mycobiome in COPD. RECENT FINDINGS Diverse microbiome profiles are reported in COPD. The neutrophilic Haemophilus-predominant bacteriome remains a prominent COPD phenotype, relatively stable over time and during exacerbations. Studies of the virome remain limited but reveal a potential involvement of viruses and bacteriophages particularly during COPD exacerbations and advancing disease severity. Mycobiome signatures, even in stable COPD are associated with poorer clinical outcomes including mortality. SUMMARY The sputum microbiome in COPD is being increasingly recognized for its clinical relevance, even in the stable state. Future studies integrating microbial kingdoms holistically (i.e. bacterial, viral and fungal) will provide deeper insight into its functionality including the relevance of microbial interactions and effect of treatment on microbiome-associated clinical outcomes.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
| | - Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Ireland
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
37
|
Hashizume H, Taga S, Sakata MK, Taha MHM, Siddig EE, Minamoto T, Fahal AH, Kaneko S. Detection of multiple mycetoma pathogens using fungal metabarcoding analysis of soil DNA in an endemic area of Sudan. PLoS Negl Trop Dis 2022; 16:e0010274. [PMID: 35275915 PMCID: PMC8942264 DOI: 10.1371/journal.pntd.0010274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/23/2022] [Accepted: 02/23/2022] [Indexed: 01/14/2023] Open
Abstract
Mycetoma is a tropical disease caused by several fungi and bacteria present in the soil. Fungal mycetoma and eumycetoma are especially challenging to treat; therefore, prevention, early diagnosis, and early treatment are important, but it is also necessary to understand the geographic distribution of these pathogenic fungi. In this study, we used DNA metabarcoding methodology to identify fungal species from soil samples. Soil sampling was implemented at seven villages in an endemic area of Sennar State in Sudan in 2019, and ten sampling sites were selected in each village according to land-use conditions. In total, 70 soil samples were collected from ground surfaces, and DNA in the soil was extracted with a combined method of alkaline DNA extraction and a commercial soil DNA extraction kit. The region for universal primers was selected to be the ribosomal internal transcribed spacer one region for metabarcoding. After the second PCR for DNA library preparation, the amplicon-based DNA analysis was performed using next-generation sequencing with two sets of universal primers. A total of twelve mycetoma-causative fungal species were identified, including the prime agent, Madurella mycetomatis, and additional pathogens, Falciformispora senegalensis and Falciformispora tompkinsii, in 53 soil samples. This study demonstrated that soil DNA metabarcoding can elucidate the presence of multiple mycetoma-causative fungi, which may contribute to accurate diagnosis for patient treatment and geographical mapping. Mycetoma, a chronic subcutaneous and cutaneous disease, designated as a "neglected tropical disease," is prevalent in dry and hot climates. Fungal mycetoma is caused by more than 50 species of soil-dwelling pathogenic fungi, and its diagnosis and treatment can be challenging. The prevention of infection and early diagnosis and treatment are essential, and for this purpose, environmental assessment to understand the fungal habitat is necessary. In this study, we performed DNA metabarcoding analysis using next-generation sequencing (NGS) for mycetoma pathogens from environmental soil samples in Sudan. The results suggest that multiple causative agents of fungal mycetoma are widespread regardless of the environment and can be a source of infection anywhere in an endemic area. Based on the results of this study, we expect that the investigation of fungi in soil using NGS technology may help identify infection routes and create risk maps for the prevention of mycetoma.
Collapse
Affiliation(s)
- Hiroki Hashizume
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Ecoepidemiology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Suguru Taga
- Department of Ecoepidemiology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Masayuki K. Sakata
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | | | | | - Toshifumi Minamoto
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | | | - Satoshi Kaneko
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Ecoepidemiology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
38
|
Carbonero-Pacheco J, Moreno-García J, Moreno J, García-Martínez T, Mauricio JC. Revealing the Yeast Diversity of the Flor Biofilm Microbiota in Sherry Wines Through Internal Transcribed Spacer-Metabarcoding and Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry. Front Microbiol 2022; 12:825756. [PMID: 35222316 PMCID: PMC8864117 DOI: 10.3389/fmicb.2021.825756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 01/04/2023] Open
Abstract
Flor yeast velum is a biofilm formed by certain yeast strains that distinguishes biologically aged wines such as Sherry wine from southern Spain from others. Although Saccharomyces cerevisiae is the most common species, 5.8 S-internal transcribed spacer (ITS) restriction fragment length polymorphism analyses have revealed the existence of non-Saccharomyces species. In order to uncover the flor microbiota diversity at a species level, we used ITS (internal transcribed spacer 1)-metabarcoding and matrix-assisted laser desorption/Ionization time of flight mass spectrometry techniques. Further, to enhance identification effectiveness, we performed an additional incubation stage in 1:1 wine:yeast extract peptone dextrose (YPD) before identification. Six species were identified: S. cerevisiae, Pichia manshurica, Pichia membranifaciens, Wickerhamomyces anomalus, Candida guillermondii, and Trichosporon asahii, two of which were discovered for the first time (C. guillermondii and Trichosporon ashaii) in Sherry wines. We analyzed wines where non-Saccharomyces yeasts were present or absent to see any potential link between the microbiota and the chemical profile. Only 2 significant volatile chemicals (out of 13 quantified), ethanol and ethyl lactate, and 2 enological parameters (out of 6 quantified), such as pH and titratable acidity, were found to differ in long-aged wines. Although results show a low impact where the non-Saccharomyces yeasts are present, these yeasts isolated from harsh environments (high ethanol and low nutrient availability) could have a potential industrial interest in fields such as food microbiology and biofuel production.
Collapse
Affiliation(s)
- Juan Carbonero-Pacheco
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Córdoba, Spain
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Córdoba, Spain
| | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Córdoba, Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Córdoba, Spain
| | - Juan Carlos Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Córdoba, Spain
| |
Collapse
|
39
|
Chen W, Radford D, Hambleton S. Towards Improved Detection and Identification of Rust Fungal Pathogens in Environmental Samples Using a Metabarcoding Approach. PHYTOPATHOLOGY 2022; 112:535-548. [PMID: 34384241 DOI: 10.1094/phyto-01-21-0020-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The dispersion of fungal inocula such as the airborne spores of rust fungi (Pucciniales) can be monitored through metabarcoding of the internal transcribed spacer 2 (ITS2) of the rRNA gene in environmental DNAs. This method is largely dependent on a high-quality reference database (refDB) and primers with proper taxonomic coverage and specificity. For this study, a curated ITS2 reference database (named CR-ITS2-refDB) comprising representatives of the major cereal rust fungi and phylogenetically related species was compiled. Interspecific and intraspecific variation analyses suggested that the ITS2 region had reasonable discriminating power for the majority of the Puccinia species or species complexes in the database. In silico evaluation of nine forward and seven reverse ITS2 primers, including three newly designed, revealed marked variation in DNA amplification efficiency for the rusts. We validated the theoretical assessment of rust-enhanced (Rust2inv/ITS4var_H) and universal fungal (ITS9F/ITS4) ITS2 primer pairs by profiling the airborne rust fungal communities from environmental samples via a metabarcoding approach. Species- or subspecies-level identification of the rusts was improved by use of CR-ITS2-refDB and the Automated Oligonucleotide Design Pipeline (AODP), which identified all mutations distinguishing highly conserved DNA markers between close relatives. A generic bioinformatics pipeline was developed, including all steps used in this study from in silico evaluation of primers to accurate identification of short metabarcodes at the level of interest for defining phytopathogens. The results highlight the importance of primer selection, refDBs that are resolved to reflect phylogenetic relationships, and the use of AODP for improving the reliability of metabarcoding in phytopathogen biosurveillance.
Collapse
Affiliation(s)
- Wen Chen
- Biodiversity and Bioresources, Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Devon Radford
- Biodiversity and Bioresources, Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Sarah Hambleton
- Biodiversity and Bioresources, Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| |
Collapse
|
40
|
Usyk M, Schlecht NF, Pickering S, Williams L, Sollecito CC, Gradissimo A, Porras C, Safaeian M, Pinto L, Herrero R, Strickler HD, Viswanathan S, Nucci-Sack A, Diaz A, Burk RD. molBV reveals immune landscape of bacterial vaginosis and predicts human papillomavirus infection natural history. Nat Commun 2022; 13:233. [PMID: 35017496 PMCID: PMC8752746 DOI: 10.1038/s41467-021-27628-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022] Open
Abstract
Bacterial vaginosis (BV) is a highly prevalent condition that is associated with adverse health outcomes. It has been proposed that BV's role as a pathogenic condition is mediated via bacteria-induced inflammation. However, the complex interplay between vaginal microbes and host immune factors has yet to be clearly elucidated. Here, we develop molBV, a 16 S rRNA gene amplicon-based classification pipeline that generates a molecular score and diagnoses BV with the same accuracy as the current gold standard method (i.e., Nugent score). Using 3 confirmatory cohorts we show that molBV is independent of the 16 S rRNA region and generalizable across populations. We use the score in a cohort without clinical BV states, but with measures of HPV infection history and immune markers, to reveal that BV-associated increases in the IL-1β/IP-10 cytokine ratio directly predicts clearance of incident high-risk HPV infection (HR = 1.86, 95% CI: 1.19-2.9). Furthermore, we identify an alternate inflammatory BV signature characterized by elevated TNF-α/MIP-1β ratio that is prospectively associated with progression of incident infections to CIN2 + (OR = 2.81, 95% CI: 1.62-5.42). Thus, BV is a heterogeneous condition that activates different arms of the immune response, which in turn are independent risk factors for HR-HPV clearance and progression. Clinical Trial registration number: The CVT trial has been registered under: NCT00128661.
Collapse
Affiliation(s)
- Mykhaylo Usyk
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, USA
- Department of Epidemiology and Population Health, NYU School of Medicine, New York, USA
| | - Nicolas F Schlecht
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, USA
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sarah Pickering
- Department of Pediatrics, Mount Sinai Adolescent Health Center, Icahn School of Medicine at Mount Sinai, Manhattan, NY, USA
| | - LaShanda Williams
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, USA
| | - Christopher C Sollecito
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, USA
| | - Ana Gradissimo
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, USA
| | - Carolina Porras
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, Costa Rica, USA
| | | | - Ligia Pinto
- HPV Serology Laboratory, Frederick National Laboratory for Cancer Research, Fredrick, MD, USA
| | - Rolando Herrero
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, Costa Rica, USA
| | - Howard D Strickler
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, USA
| | - Shankar Viswanathan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, USA
| | - Anne Nucci-Sack
- Department of Pediatrics, Mount Sinai Adolescent Health Center, Icahn School of Medicine at Mount Sinai, Manhattan, NY, USA
| | - Angela Diaz
- Department of Pediatrics, Mount Sinai Adolescent Health Center, Icahn School of Medicine at Mount Sinai, Manhattan, NY, USA
| | - Robert D Burk
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, USA.
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, USA.
- Departments of Microbiology and Immunology, and Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
41
|
Draft Genome Sequence of Scheffersomyces spartinae ARV011, a Marine Yeast Isolate. Microbiol Resour Announc 2021; 10:e0065221. [PMID: 34761958 PMCID: PMC8582305 DOI: 10.1128/mra.00652-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the draft genome sequence of Scheffersomyces spartinae ARV011, which was isolated from the Great Sippewissett Marsh in Falmouth, Massachusetts. Sequencing was performed using the Illumina NovaSeq 6000 platform, yielding 7,598,030 read pairs 250 bp in length. This resulted in a total draft genome size of 12,132,557 bp.
Collapse
|
42
|
Responses of the Soil Microbial Community to Salinity Stress in Maize Fields. BIOLOGY 2021; 10:biology10111114. [PMID: 34827107 PMCID: PMC8614889 DOI: 10.3390/biology10111114] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023]
Abstract
To investigate the diversity and structure of soil bacterial and fungal communities in saline soils, soil samples with three increasing salinity levels (S1, S2 and S3) were collected from a maize field in Yanqi, Xinjiang Province, China. The results showed that the K+, Na+, Ca2+ and Mg2+ values in the bulk soil were higher than those in the rhizosphere soil, with significant differences in S2 and S3 (p < 0.05). The enzyme activities of alkaline phosphatase (ALP), invertase, urease and catalase (CAT) were lower in the bulk soil than those in the rhizosphere. Principal coordinate analysis (PCoA) demonstrated that the soil microbial community structure exhibited significant differences between different salinized soils (p < 0.001). Data implied that the fungi were more susceptible to salinity stress than the bacteria based on the Shannon and Chao1 indexes. Mantel tests identified Ca2+, available phosphorus (AP), saturated electrical conductivity (ECe) and available kalium (AK) as the dominant environmental factors correlated with bacterial community structures (p < 0.001); and AP, urease, Ca2+ and ECe as the dominant factors correlated with fungal community structures (p < 0.001). The relative abundances of Firmicutes and Bacteroidetes showed positive correlations with the salinity gradient. Our findings regarding the bacteria having positive correlations with the level of salinization might be a useful biological indicator of microorganisms in saline soils.
Collapse
|
43
|
Isa KNM, Jalaludin J, Elias SM, Than LTL, Jabbar MA, Saudi ASM, Norbäck D, Hashim JH, Hashim Z. Metagenomic characterization of indoor dust fungal associated with allergy and lung inflammation among school children. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112430. [PMID: 34147866 DOI: 10.1016/j.ecoenv.2021.112430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 06/12/2023]
Abstract
The exposure of school children to indoor air pollutants has increased allergy and respiratory diseases. The objective of this study were to determine the toxicodynamic interaction of indoor pollutants exposure, biological and chemical with expression of adhesion molecules on eosinophil and neutrophil. A self-administered questionnaire, allergy skin test, and fractional exhaled nitric oxide (FeNO) analyser were used to collect information on health status, sensitization to allergens and respiratory inflammation, respectively among school children at age of 14 years. The sputum induced were analysed to determine the expression of CD11b, CD35, CD63 and CD66b on eosinophil and neutrophil by using flow cytometry technique. The particulate matter (PM2.5 and PM10), NO2, CO2, and formaldehyde, temperature, and relative humidity were measured inside the classrooms. The fungal DNA were extracted from settled dust collected from classrooms and evaluated using metagenomic techniques. We applied chemometric and regression in statistical analysis. A total of 1869 unique of operational taxonomic units (OTUs) of fungi were identified with dominated at genus level by Aspergillus (15.8%), Verrucoconiothyrium (5.5%), and Ganoderma (4.6%). Chemometric and regression results revealed that relative abundance of T. asahii were associated with down regulation of CD66b expressed on eosinophil, and elevation of FeNO levels in predicting asthmatic children with model accuracy of 63.6%. Meanwhile, upregulation of CD11b expressed on eosinophil were associated with relative abundance of A. clavatus and regulated by PM2.5. There were significant association of P. bandonii with upregulation of CD63 expressed on neutrophil and exposure to NO2. Our findings indicate that exposure to PM2.5, NO2, T. asahii, P.bandonii and A.clavatus are likely interrelated with upregulation of activation and degranulation markers on both eosinophil and neutrophil.
Collapse
Affiliation(s)
- Khairul Nizam Mohd Isa
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia; Environmental Health Research Cluster (EHRc), Environmental Healthcare Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Selangor, Malaysia
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia.
| | - Saliza Mohd Elias
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Mohammed Abdulrazzaq Jabbar
- Department of Population Medicine, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang, Selangor, Malaysia
| | - Ahmad Shakir Mohd Saudi
- Environmental Health Research Cluster (EHRc), Environmental Healthcare Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Selangor, Malaysia
| | - Dan Norbäck
- Department of Medical Science, Occupational and Environmental Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Jamal Hisham Hashim
- Department of Health Sciences, Faculty of Engineering and Life Science, Universiti Selangor, Shah Alam Campus, Seksyen 7, Shah Alam, Selangor, Malaysia
| | - Zailina Hashim
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
44
|
de Jesus VC, Khan MW, Mittermuller BA, Duan K, Hu P, Schroth RJ, Chelikani P. Characterization of Supragingival Plaque and Oral Swab Microbiomes in Children With Severe Early Childhood Caries. Front Microbiol 2021; 12:683685. [PMID: 34248903 PMCID: PMC8267818 DOI: 10.3389/fmicb.2021.683685] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
The human oral cavity harbors one of the most diverse microbial communities with different oral microenvironments allowing the colonization of unique microbial species. This study aimed to determine which of two commonly used sampling sites (dental plaque vs. oral swab) would provide a better prediction model for caries-free vs. severe early childhood caries (S-ECC) using next generation sequencing and machine learning (ML). In this cross-sectional study, a total of 80 children (40 S-ECC and 40 caries-free) < 72 months of age were recruited. Supragingival plaque and oral swab samples were used for the amplicon sequencing of the V4-16S rRNA and ITS1 rRNA genes. The results showed significant differences in alpha and beta diversity between dental plaque and oral swab bacterial and fungal microbiomes. Differential abundance analyses showed that, among others, the cariogenic species Streptococcus mutans was enriched in the dental plaque, compared to oral swabs, of children with S-ECC. The fungal species Candida dubliniensis and C. tropicalis were more abundant in the oral swab samples of children with S-ECC compared to caries-free controls. They were also among the top 20 most important features for the classification of S-ECC vs. caries-free in oral swabs and for the classification of dental plaque vs. oral swab in the S-ECC group. ML approaches revealed the possibility of classifying samples according to both caries status and sampling sites. The tested site of sample collection did not change the predictability of the disease. However, the species considered to be important for the classification of disease in each sampling site were slightly different. Being able to determine the origin of the samples could be very useful during the design of oral microbiome studies. This study provides important insights into the differences between the dental plaque and oral swab bacteriome and mycobiome of children with S-ECC and those caries-free.
Collapse
Affiliation(s)
- Vivianne Cruz de Jesus
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
| | - Mohd Wasif Khan
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Betty-Anne Mittermuller
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada
| | - Kangmin Duan
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
| | - Pingzhao Hu
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada
| | - Robert J. Schroth
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
- Department of Preventive Dental Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
| |
Collapse
|
45
|
Tangaro M, Defazio G, Fosso B, Licciulli VF, Grillo G, Donvito G, Lavezzo E, Baruzzo G, Pesole G, Santamaria M. ITSoneWB: profiling global taxonomic diversity of eukaryotic communities on Galaxy. Bioinformatics 2021; 37:4253-4254. [PMID: 34117876 PMCID: PMC9502156 DOI: 10.1093/bioinformatics/btab431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 12/05/2022] Open
Abstract
Summary ITSoneWB (ITSone WorkBench) is a Galaxy-based bioinformatic environment where comprehensive and high-quality reference data are connected with established pipelines and new tools in an automated and easy-to-use service targeted at global taxonomic analysis of eukaryotic communities based on Internal Transcribed Spacer 1 variants high-throughput sequencing. Availability and implementation ITSoneWB has been deployed on the INFN-Bari ReCaS cloud facility and is freely available on the web at http://itsonewb.cloud.ba.infn.it/galaxy. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Marco Tangaro
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari 70126, Italy
| | - Giuseppe Defazio
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari 'A. Moro', Bari 70126, Italy
| | - Bruno Fosso
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari 70126, Italy
| | - Vito Flavio Licciulli
- Institute of Biomedical Technologies, National Research Council, Bari Unit, 70126 Bari, Italy
| | - Giorgio Grillo
- Institute of Biomedical Technologies, National Research Council, Bari Unit, 70126 Bari, Italy
| | - Giacinto Donvito
- National Institute for Nuclear Physics (INFN), Section of Bari, Bari 70126, Italy
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| | - Giacomo Baruzzo
- Department of Information Engineering, University of Padova, Padova, 35131, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari 70126, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari 'A. Moro', Bari 70126, Italy
| | - Monica Santamaria
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari 70126, Italy
| |
Collapse
|
46
|
Tian D, Chen Z, Lin Y, Liang T, Chen Z, Guo X, Wang F, Wang Z. The Interaction between Rice Genotype and Magnaporthe oryzae Regulates the Assembly of Rice Root-Associated Microbiota. RICE (NEW YORK, N.Y.) 2021; 14:40. [PMID: 33974154 PMCID: PMC8113375 DOI: 10.1186/s12284-021-00486-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Utilizating the plant microbiome to enhance pathogen resistance in crop production is an emerging alternative to the use of chemical pesticides. However, the diversity and structure of the microbiota, and the assembly mechanisms of root-associated microbial communities of plants are still poorly understood. RESULTS We invstigated the microbiota of the root endosphere and rhizosphere soils of the rice cultivar Nipponbare (NPB) and its Piz-t-transgenic line (NPB-Piz-t) when infected with the filamentous fungus Magnaporthe oryzae (M. oryzae) isolate KJ201, using 16S rRNA and internal transcribed spacer 1 (ITS1) amplicon sequencing. The rhizosphere soils showed higher bacterial and fungal richness and diversity than the endosphere except for fungal richness in the rhizosphere soils of the mock treatment. Bacteria richness and diversity increased in the endospheric communities of NPB and Piz-t under inoculation with KJ201 (referred to as 'NPB-KJ201' and 'Piz-t-KJ201', respectively) compared with the corresponding mock treatments, with the NPB-KJ201 showing the highest diversity in the four bacterial endocompartments. In contrast, fungal richness and diversity decreased in the endospheric communities of NPB-KJ201 and Piz-t-KJ201, relative to the corresponding mock treatments, with NPB-KJ201 and Piz-t-KJ201 having the lowest richness and diversity, respectively, across the four fungal endocompartments. Principal component analysis (PCA) indicated that the microbiota of Piz-t-KJ201 of root endophytes were mostly remarkablely distinct from that of NPB-KJ201. Co-occurrence network analysis revealed that the phyla Proteobacteria and Ascomycota were the key contributors to the bacterial and fungal communities, respectively. Furthermore, a comparative metabolic analysis showed that the contents of tryptophan metabolism and indole alkaloid biosynthesis were significantly lower in the Piz-t-KJ201 plants. CONCLUSIONS In this study, we compared the diversity, composition, and assembly of microbial communities associated with the rhizosphere soils and endosphere of Piz-t-KJ201 and NPB-KJ201. On the basis of the different compositions, diversities, and assemblies of the microbial communities among different compartments, we propose that the host genotype and inoculation pattern of M. oryzae played dominant roles in determining the microbial community assemblage. Further metabolomics analysis revealed that some metabolites may influence changes in bacterial communities. This study improves our understanding of the complex interactions between rice and M. oryzae, which could be useful in developing new strategies to improve rice resistance through the manipulation of soil microorganisms.
Collapse
Affiliation(s)
- Dagang Tian
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China.
- Biotechnology Research Institute, Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China.
| | - Zaijie Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Biotechnology Research Institute, Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Yan Lin
- Biotechnology Research Institute, Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Tingmin Liang
- Biotechnology Research Institute, Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Ziqiang Chen
- Biotechnology Research Institute, Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Xinrui Guo
- Biotechnology Research Institute, Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Feng Wang
- Biotechnology Research Institute, Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
47
|
Shi XP, Bai YF, Song P, Liu YY, Zhang ZW, Zheng B, Jiang CQ, Wang YJ. Clonal integration and phosphorus management under light heterogeneity facilitate the growth and diversity of understory vegetation and soil fungal communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144322. [PMID: 33422956 DOI: 10.1016/j.scitotenv.2020.144322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
The spatial heterogeneity of light and nutrient deficiency occurs in many forest understories. Proper fertilization management of unhealthy forests can benefit forest understory diversity and improve the stability of degraded soil; and clonal integration is a major advantage of resource sharing for many forest understory vegetation, such as pteridophytes. In this study, we tested whether understory soil fertilization and clonal integration under light heterogeneity were able to increase the performance and diversity of understory vegetation and soil microbial communities in nature. Field experiments-with or without phosphorus (P) addition, with intact or severed rhizome, and under homogeneous or heterogeneous light environments-were conducted in the understory of a typical evergreen forest in southeast China. Light heterogeneity, P addition and clonal integration promoted the growth, diversity and evenness of ferns and soil microbial biomass C, N and P (MBC, MBN and MBP) at both experimental plot and patch level. They also increased Chao1 richness and Shannon diversity of soil fungal communities at patch level, especially in the high light patches with P addition. The positive effects of P addition and clonal integration on the growth and diversity of ferns and soil microbial biomass were greatly increased under heterogeneous light. The positive effects of clonal integration on the growth were the greatest in the heterogeneous high light patches. Moreover, the interactive effect of P addition and clonal integration increased soil MBN and MBP. Clonal integration promoted the increased growth and diversity of ferns and soil MBC in the heterogeneous light environment (9.35%-35.19%), and enhanced soil MBN and MBP in the P addition treatment (9.03%-12.96%). The interactive effect of P addition and clonal integration largely led to the transition of fungal groups from slow-growing oligotrophic types to fast-growing copiotrophic types. Our results show that the interactions between clonal integration and/or P addition under light heterogeneity increase the benefits of ferns in light-rich patches, and further promote integrative performance of ferns and soil microbial communities.
Collapse
Affiliation(s)
- Xue-Ping Shi
- College of Horticulture and Forestry Sciences / Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan-Feng Bai
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ping Song
- Chinese Academy of Forestry, Beijing 100091, China
| | - Yuan-Yuan Liu
- College of Horticulture and Forestry Sciences / Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuo-Wen Zhang
- College of Horticulture and Forestry Sciences / Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Zheng
- College of Horticulture and Forestry Sciences / Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun-Qian Jiang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Yong-Jian Wang
- College of Horticulture and Forestry Sciences / Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
48
|
Microbial composition and dynamic succession during the Daqu production process of Northern Jiang-flavored liquor in China. 3 Biotech 2021; 11:224. [PMID: 33968569 DOI: 10.1007/s13205-021-02779-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022] Open
Abstract
The microbial community structure and succession regularity of six key periods during high-temperature Daqu production were revealed using high-throughput sequencing to explore the factors affecting the flavor formation of Northern Jiang-flavored Baijiu technology. The results showed that among the six Daqu samples, the bacteria mainly included Firmicutes, Actinobacteriota, and Proteobacteria, of which Proteobacteria was the most dominant. The primary fungus was Ascomycota. At the genus level, the primary bacterial groups were Lactobacillus, Weissella, Bacillus, Delftia, Achromobacter, Saccharopolyspora, Thermoactinomyces, Scopulibacillus, Pseudomonas, and Stenotrophomonas. The main fungal groups in the Daqu were Wickerhamomyces, Saccharomycopsis, Thermoascus, and Thermomyces. During the initial stage of Daqu production, the dominant bacteria were Lactobacillus (20.07%) and Weissella (48.30%). As the fermentation temperature of the Daqu increased, Achromobacter, Stenotrophomonas, and Delftia became the dominant bacteria during the first Daqu flipping period, the second Daqu flipping period, and the dry-fire period. During these three periods, many bacteria were eliminated, decreasing the bacterial diversity, while a decline in temperature was evident during the Daqu exit period. After adapting to the high-temperature environment, the accumulation of Saccharopolyspora (22.07%), Thermoactinomyces (16.73%), Scopulibacillus (27.13%), Kroppenstedtia (9.03%), and Bacillus (6.97%) increased the bacterial diversity during the Daqu exit period. Wickerhamomyces (83.47%) represented the main dominant fungus during the initial production stage but were eliminated with increased temperature. Furthermore, a higher temperature increased the abundance of Saccharomycopsis and Thermoascus, while Thermomyces gradually accumulated in the D, E, and F samples. Thermomyces (79.90%) and Thermoascus (13.83%) became the dominant fungi during the Daqu exit period. In this study, high-throughput sequencing technology was used to reveal the microbial diversity during the high-temperature Daqu production process of Northern Jiang-flavored Baijiu. This provided a scientific basis for improving the production process of this product in the future. Therefore, understanding the formation of the flavor substances and the related microorganisms in Northern Jiang-flavored Baijiu can provide guidance for using them to manipulate the preparation process while implementing microbial control and improving the production procedures. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02779-8.
Collapse
|
49
|
Martinsen EMH, Eagan TML, Leiten EO, Haaland I, Husebø GR, Knudsen KS, Drengenes C, Sanseverino W, Paytuví-Gallart A, Nielsen R. The pulmonary mycobiome-A study of subjects with and without chronic obstructive pulmonary disease. PLoS One 2021; 16:e0248967. [PMID: 33826639 PMCID: PMC8026037 DOI: 10.1371/journal.pone.0248967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The fungal part of the pulmonary microbiome (mycobiome) is understudied. We report the composition of the oral and pulmonary mycobiome in participants with COPD compared to controls in a large-scale single-centre bronchoscopy study (MicroCOPD). METHODS Oral wash and bronchoalveolar lavage (BAL) was collected from 93 participants with COPD and 100 controls. Fungal DNA was extracted before sequencing of the internal transcribed spacer 1 (ITS1) region of the fungal ribosomal RNA gene cluster. Taxonomic barplots were generated, and we compared taxonomic composition, Shannon index, and beta diversity between study groups, and by use of inhaled steroids. RESULTS The oral and pulmonary mycobiomes from controls and participants with COPD were dominated by Candida, and there were more Candida in oral samples compared to BAL for both study groups. Malassezia and Sarocladium were also frequently found in pulmonary samples. No consistent differences were found between study groups in terms of differential abundance/distribution. Alpha and beta diversity did not differ between study groups in pulmonary samples, but beta diversity varied with sample type. The mycobiomes did not seem to be affected by use of inhaled steroids. CONCLUSION Oral and pulmonary samples differed in taxonomic composition and diversity, possibly indicating the existence of a pulmonary mycobiome.
Collapse
Affiliation(s)
| | - Tomas M. L. Eagan
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Elise O. Leiten
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingvild Haaland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunnar R. Husebø
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kristel S. Knudsen
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Christine Drengenes
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | - Rune Nielsen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
50
|
Summers KL, Foster Frey J, Arfken AM. Characterization of Kazachstania slooffiae, a Proposed Commensal in the Porcine Gut. J Fungi (Basel) 2021; 7:jof7020146. [PMID: 33671322 PMCID: PMC7922399 DOI: 10.3390/jof7020146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Kazachstania slooffiae is a fungus commonly isolated from the gastrointestinal tract and feces of post-weaning pigs. Studies have implicated its ability to positively alter piglet gut health through potential symbioses with beneficial bacteria, including Lactobacillus and Prevotella, in providing amino acids as an energy source for microbial and piglet growth, and it has been found to be positively correlated with short-chain fatty acids in the piglet gut. However, basic mycological information remains limited, hampering in vitro studies. In this study, we characterized the growth parameters, biofilm formation ability, susceptibility to antimicrobials, and genetic relatedness of K. slooffiae to other fungal isolates. Optimal fungal growth conditions were determined, no antifungal resistance was found against multiple classes of antifungal drugs (azoles, echinocandins, polyenes, or pyrimidine analogues), and dimorphic growth was observed. K. slooffiae produced biofilms that became more complex in the presence of Lactobacillus acidophilus supernatant, suggesting positive interactions with this bacterium in the gut, while Enterococcus faecalis supernatant decreased density, suggesting an antagonistic interaction. This study characterizes the in vitro growth conditions that are optimal for further studies of K. slooffiae, which is an important step in defining the role and interactions of K. slooffiae in the porcine gut environment.
Collapse
|