1
|
Husaini ASA, Fathima A, Halawa D, Aakel N, Erre GL, Giordo R, Zayed H, Pintus G. Exploring endothelial dysfunction in major rheumatic diseases: current trends and future directions. J Mol Med (Berl) 2025:10.1007/s00109-025-02539-8. [PMID: 40229608 DOI: 10.1007/s00109-025-02539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
The relationship between rheumatic diseases (RDs) and endothelial dysfunction (ED) is intricate and multifaceted, with chronic inflammation and immune system dysregulation playing key roles. RDs, including Osteoarthritis (OA), Rheumatoid arthritis (RA), Systemic Lupus erythematosus (SLE), Ankylosing spondylitis (AS), Psoriatic arthritis (PsA), Sjogren's syndrome (SS), Systemic sclerosis (SSc), Polymyalgia rheumatica (PMR) are characterized by chronic inflammation and immune dysregulation, leading to ED. ED is marked by reduced nitric oxide (NO) production, increased oxidative stress, and heightened pro-inflammatory and prothrombotic activities, which are crucial in the development of cardiovascular disease (CVD) and systemic inflammation. This association persists even in RD patients without conventional cardiovascular risk factors, suggesting a direct impact of RD-related inflammation on endothelial function. Studies also show that ED significantly contributes to atherosclerosis, thereby elevating cardiovascular risk in RD patients. This review synthesizes the molecular mechanisms connecting major RDs and ED, highlighting potential biomarkers and therapeutic targets. Ultimately, the review aims to enhance understanding of the complex interactions leading to ED in rheumatic patients and inform strategies to mitigate cardiovascular risks and improve patient outcomes.
Collapse
Affiliation(s)
- Arshiya S Anwar Husaini
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, 2713, Qatar
| | - Aseela Fathima
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, 2713, Qatar
| | - Dunia Halawa
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, 2713, Qatar
| | - Nada Aakel
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, 2713, Qatar
| | - Gian Luca Erre
- Rheumatology Unit, University Hospital (AOU) of Sassari, Sassari, Italy
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, 2713, Qatar.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy.
- Department of Medical Laboratory Sciences, College of Health Sciences, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
2
|
Tsilingiris D, Natsi A, Gavriilidis E, Antoniadou C, Eleftheriadou I, Anastasiou IA, Tentolouris A, Papadimitriou E, Eftalitsidis E, Kolovos P, Tsironidou V, Giatromanolaki A, Koffa M, Tentolouris N, Skendros P, Ritis K. Interleukin-8/Matrix Metalloproteinase-9 Axis Impairs Wound Healing in Type 2 Diabetes through Neutrophil Extracellular Traps-Fibroblast Crosstalk. Eur J Immunol 2025; 55:e202451664. [PMID: 40170410 PMCID: PMC11962236 DOI: 10.1002/eji.202451664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Neutrophils interact with and activate fibroblasts through the release of neutrophil extracellular traps (NETs). We investigated the role of NETs-fibroblast crosstalk in the cutaneous wound healing of type 2 diabetes (T2D). Neutrophils/NETs, serum, and primary human skin fibroblasts (HSFs) were obtained from individuals with T2D and age/sex-matched controls. NET-stimulation studies were performed on neutrophils/HSFs, with and without specific inhibitors, while HSF healing capacity was assessed using a scratch wound healing assay. T2D HSFs display a profibrotic phenotype, showing increased CCN2/CTGF, α-smooth muscle actin, and collagen release, albeit with impaired healing capacity, elevated type I collagen C-terminal telopeptide, and collagen degradation associated with increased (∼3.5-fold) matrix metalloproteinase-9 (MMP-9) in T2D neutrophils/NETs. IL-8 induced the expression of MMP-9 in neutrophils/NETs. Moreover, T2D neutrophils/NETs exhibited increased IL-8 content, which acted in an autocrine/paracrine fashion to further augment its production by neutrophils/HSFs. The findings were validated in normoglycemic individuals during a hyperglycemic clamp with concomitant lipid infusion and further corroborated immunohistochemically in diabetic plantar ulcer biopsies. This novel, vicious circle of NETs/interleukin-8/MMP-9/HSFs was hindered by IL-8 or MMP-9 blockade via specific inhibitors or by dismantling the NET-scaffold with DNase I, suggesting candidate therapeutic targets in wound healing impairment of T2D.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Anastasia‐Maria Natsi
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Efstratios Gavriilidis
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Christina Antoniadou
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Ioanna Eleftheriadou
- First Department of Propaedeutic Internal MedicineMedical SchoolNational and Kapodistrian University of AthensLaiko General HospitalAthensGreece
| | - Ioanna A. Anastasiou
- First Department of Propaedeutic Internal MedicineMedical SchoolNational and Kapodistrian University of AthensLaiko General HospitalAthensGreece
| | - Anastasios Tentolouris
- First Department of Propaedeutic Internal MedicineMedical SchoolNational and Kapodistrian University of AthensLaiko General HospitalAthensGreece
| | - Evangelos Papadimitriou
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Evgenios Eftalitsidis
- Laboratory of Cell BiologyProteomics and Cell CycleDepartment of Molecular Biology and GeneticsDemocritus University of ThraceAlexandroupolisGreece
| | - Panagiotis Kolovos
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
| | - Victoria Tsironidou
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Alexandra Giatromanolaki
- Department of PathologyUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
| | - Maria Koffa
- Laboratory of Cell BiologyProteomics and Cell CycleDepartment of Molecular Biology and GeneticsDemocritus University of ThraceAlexandroupolisGreece
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Internal MedicineMedical SchoolNational and Kapodistrian University of AthensLaiko General HospitalAthensGreece
| | - Panagiotis Skendros
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Konstantinos Ritis
- First Department of Internal MedicineUniversity Hospital of AlexandroupolisDemocritus University of ThraceAlexandroupolisGreece
- Laboratory of Molecular HematologyDepartment of MedicineDemocritus University of ThraceAlexandroupolisGreece
| |
Collapse
|
3
|
Yuan Y, Sun C, Liu X, Hu L, Wang Z, Li X, Zhang J, Li D, Zhang X, Wu M, Liu L. The Role of Neutrophil Extracellular Traps in Atherosclerosis: From the Molecular to the Clinical Level. J Inflamm Res 2025; 18:4421-4433. [PMID: 40162077 PMCID: PMC11955173 DOI: 10.2147/jir.s507330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
Atherosclerosis is a chronic inflammatory condition that is typified by the deposition of lipids and the subsequent inflammation of medium and large arteries. Neutrophil extracellular traps (NETs) are fibrous meshworks of DNA, histones, and granzymes expelled by activated neutrophils in response to a variety of pathogenic conditions. In addition to their role in pathogen eradication, NETs have been demonstrated to play a pivotal role in the development of atherosclerosis. This article presents a review of the bidirectional interactions in which atherosclerosis-related risk factors stimulate the formation of NETs, which in turn support disease progression. This article emphasizes the involvement of NETs in the various stages of atherogenesis and development, influencing multiple factors such as the vascular endothelium, platelets, the inflammatory milieu, and lipid metabolism. The findings of this study offer new insights and avenues for further investigation into the processes underlying the formation and regulation of the vascular inflammatory microenvironment in atherosclerosis. Finally, potential targeted therapeutic strategies for NETs are discussed to facilitate their progression to clinical practice (Graphical Abstract).
Collapse
Affiliation(s)
- Yongfang Yuan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| | - Changxin Sun
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xinyi Liu
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lanqing Hu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| | - Zeping Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| | - Xiaoya Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| | - Jingyi Zhang
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Dexiu Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| | - Xiaonan Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| | - Min Wu
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Longtao Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Li L, Jiao Q, Yang Q, Lu H, Zhou X, Zhang Q, Zhang F, Li H, Tian Z, Zeng Z. A bladder-blood immune barrier constituted by suburothelial perivascular macrophages restrains uropathogen dissemination. Immunity 2025; 58:568-584.e6. [PMID: 40015270 DOI: 10.1016/j.immuni.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 09/29/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025]
Abstract
Urinary tract infections (UTIs) predominantly occur in the bladder and can potentially progress into life-threatening sepsis if uropathogens spread unconstrainedly into the bloodstream. Here, we identified a subset of suburothelial perivascular macrophages (suPVMs) in the bladder that exerted a pivotal barrier function to prevent systemic bacterial dissemination during acute cystitis. During the initial phase of uropathogenic Escherichia coli (UPEC) infection, suPVMs actively captured UPEC invading the laminal propria and maintained the integrity of inflamed vessels. They subsequently underwent METosis to expel macrophage extracellular DNA traps (METs) into the urothelium to sequester bacteria within this avascular compartment. Matrix metallopeptidase-13 was released along with METs to promote neutrophil transuroepithelial migration. Replenished suPVMs from monocytes following a prior infection were functionally competent to confer protection against recurrent UTIs. Our study thus uncovers a bladder-blood immune barrier in restraining uropathogen dissemination, which could have implications for the prevention and treatment of urosepsis.
Collapse
Affiliation(s)
- Lu Li
- National Key Laboratory of Immune responses and Immunotherapy, Department of Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Qiancheng Jiao
- National Key Laboratory of Immune responses and Immunotherapy, Department of Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qianqian Yang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Haisen Lu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xia Zhou
- National Key Laboratory of Immune responses and Immunotherapy, Department of Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qing Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Futing Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hai Li
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhigang Tian
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhutian Zeng
- National Key Laboratory of Immune responses and Immunotherapy, Department of Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
5
|
Kaplan MJ. Exploring the Role of Neutrophil Extracellular Traps in Systemic Lupus Erythematosus: A Clinical Case Study and Comprehensive Review. Arthritis Rheumatol 2025; 77:247-252. [PMID: 39402725 DOI: 10.1002/art.43019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 11/07/2024]
Affiliation(s)
- Mariana J Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| |
Collapse
|
6
|
Xu H, Zhan M, Wu Z, Chen J, Zhao Y, Feng F, Wang F, Li Y, Zhang S, Liu Y. Aberrant expansion of CD177 + neutrophils promotes endothelial dysfunction in systemic lupus erythematosus via neutrophil extracellular traps. J Autoimmun 2025; 152:103399. [PMID: 40088615 DOI: 10.1016/j.jaut.2025.103399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/22/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
OBJECTIVE Aberrant neutrophil activation is implicated in the pathogenesis of systemic lupus erythematosus (SLE) and its related comorbidities. We found that CD177 was one of the most highly up-regulated genes at the transcriptional level in purified neutrophils from SLE patients. In this study, we aimed to explore the role of CD177+ neutrophils in the pathogenesis of SLE. METHODS Expression of CD177 was analyzed by neutrophil transcriptome and flow cytometry. CD177+ neutrophils and CD177-neutrophils were isolated to determine the role of neutrophils-derived NETs in endothelium dysfunction. Wild type and CD177-/- murine model of lupus were analyzed for organ involvement, endothelium-dependent vasorelaxation, serum autoantibodies, and innate and adaptive immune responses in an imiquimod (IMQ)-induced lupus model. RESULTS CD177MFI-hi neutrophils and CD177MFI-hi low-density granulocytes (LDGs) were expanded in active SLE, which were weakly but significantly associated with disease activity. CD177+neutrophils displayed enhanced production of reactive oxygen species (ROS) and NETs, which impaired the murine aortic endothelium-dependent vasorelaxation and induced endothelial cell apoptosis. Moreover, CD177-/- mice exposed to IMQ showed alleviated splenomegaly, endothelium-dependent vasorelaxation, and renal immune complex deposition. CONCLUSIONS Our findings indicated that CD177 MFI-hi may serve as a novel biomarker for monitoring disease activity in SLE. Further, CD177+ neutrophils may play a vasculopathic role in cardiovascular disease (CVD) via NETs formation, suggesting that specific targeting CD177+ neutrophil subset may have therapeutic effect in SLE but reducing the levels of NETs-prone neutrophils.
Collapse
MESH Headings
- Extracellular Traps/metabolism
- Extracellular Traps/immunology
- Neutrophils/immunology
- Neutrophils/metabolism
- Animals
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Mice
- Humans
- GPI-Linked Proteins/metabolism
- GPI-Linked Proteins/genetics
- Female
- Mice, Knockout
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Disease Models, Animal
- Adult
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Isoantigens/immunology
- Male
- Neutrophil Activation
- Reactive Oxygen Species/metabolism
- Mice, Inbred C57BL
- Biomarkers
- Endothelial Cells/metabolism
- Endothelial Cells/immunology
Collapse
Affiliation(s)
- Honglin Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Minghua Zhan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, 100730, China
| | - Ziyan Wu
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Jianing Chen
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanling Zhao
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Futai Feng
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Fang Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Shulan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
| | - Yudong Liu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, 100730, China; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Wu S, Zhou M, Zhou H, Han L, Liu H. Astragaloside IV- loaded biomimetic nanoparticles target IκBα to regulate neutrophil extracellular trap formation for sepsis therapy. J Nanobiotechnology 2025; 23:155. [PMID: 40022068 PMCID: PMC11869569 DOI: 10.1186/s12951-025-03260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/20/2025] [Indexed: 03/03/2025] Open
Abstract
This study explored the novel mechanism of Astragaloside IV (As) in treating sepsis and its application through a biomimetic nano-delivery system (As@ZM). Sepsis, a condition of organ dysfunction caused by an abnormal host response to infection, poses a significant threat to global health due to its high mortality rate. Our findings revealed a new mechanism for As in treating sepsis, which involved the reduction of neutrophil extracellular traps (NETs) release, potentially related to As binding with IκBα to inhibit the activation of the NF-κB pathway. As treated neutrophils also improved the immune microenvironment by crosstalk with endothelial cells and lung epithelial cells. However, the stability and bioavailability of As limited its clinical application. To address this issue, we had developed a ZIF-8-based nano-delivery system that achieved targeted delivery through neutrophil membrane coating, significantly enhancing the therapeutic efficacy of As. The innovative design of As@ZM offered a new strategy for sepsis treatment, with the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Shujuan Wu
- Department of Anesthesiology, Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Mengqi Zhou
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Huimin Zhou
- Department of Anesthesiology, Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Han
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Huifan Liu
- Department of Anesthesiology, Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Cui L, Fang C, Yu B. Multiple simultaneous coronary plaque erosion detected by optical coherence tomography associated with systemic lupus erythematosus. Eur Heart J 2025; 46:765. [PMID: 39786444 DOI: 10.1093/eurheartj/ehae899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Affiliation(s)
- Lina Cui
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Chao Fang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Nangang District, Harbin 150086, China
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Nangang District, Harbin 150086, China
| |
Collapse
|
9
|
Zhou Q, Zhou X, Li J, Wang R, Xie F. Research progress on the relationship between neutrophil extra-cellular traps and autogenous arteriovenous fistula thrombosis. J Vasc Access 2025:11297298251317298. [PMID: 39935409 DOI: 10.1177/11297298251317298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Autogenous arteriovenous fistula (AVF) is the preferred vascular access for long-term hemodialysis, and thrombosis is one of the most common complications. In recent years, it has been found that neutrophil extra-cellular traps (NETs) play an important role in thrombosis. NETs are a kind of network structure with DNA as a skeleton and intercalated with a variety of granule proteins, proteolytic enzymes, antimicrobial peptides and histone proteins, which are released into the extracellular space by neutrophils after stimulation. In this paper, the NETs in the role of AVF thrombus formation and NETs in the value of prevention and cure of AVF thrombus complications were reviewed.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Nephrology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xuhua Zhou
- Department of Nephrology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junlin Li
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Runxiu Wang
- Department of Nephrology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fuhua Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
10
|
Ma X, Yu J, Ma Y, Huang X, Zhu K, Jiang Z, Zhang L, Liu Y. Explore the mechanism of yishenjiangya formula in the treatment of senile hypertension based on multi-omics technology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118886. [PMID: 39362324 DOI: 10.1016/j.jep.2024.118886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Yishenjiangya formula (YSJ) is a traditional Chinese medicine (TCM) primarily composed of qi-tonifying components. This classic formula is commonly utilized to treat kidney qi deficiency in elderly patients with hypertension. According to TCM, maintaining a balance between qi and blood is crucial for stable blood pressure. Kidney qi deficiency can disrupt this balance, altering fluid shear force and, ultimately, leading to hypertension, particularly in elderly populations. Despite YSJ's efficacy in treating hypertension, its specific anti-hypertensive mechanisms remain unclear. AIM OF THE STUDY YSJ is commonly prescribed for elderly patients with hypertension. Earlier metabolomics studies demonstrated that YSJ exerts antihypertensive effects by influencing four key pathways: linoleic acid metabolism, glycerol phospholipid metabolism, arginine and proline metabolism, and steroid hormone biosynthesis. This study aims to combine metabolomic and proteomic analyses to thoroughly understand the molecular biological mechanisms responsible for YSJ's anti-hypertensive properties. METHODS Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) metabolomics, combined with Label-Free Quantitation (LFQ) proteomics, was employed to analyze serum samples from elderly individuals with and without hypertension pre- and post-YSJ intervention. Serum levels of candidate proteins were assessed using enzyme-linked immunosorbent assay, and receiver operating characteristic curves were used to evaluate the diagnostic performance of the target proteins. RESULTS Eight differentially expressed metabolites and three differentially expressed proteins were identified as potential therapeutic targets of YSJ. These substances are primarily involved in unsaturated fatty acid metabolism, fluid shear stress and atherosclerosis pathway, primary bile acid biosynthesis, proline metabolism, apoptosis, and endoplasmic reticulum stress. YSJ exerts its therapeutic effects on hypertension in the elderly by modulating these pathways. CONCLUSIONS YSJ effectively treats senile hypertension. By analyzing the correlation between therapeutic targets and pathways, YSJ's anti-hypertensive effect was achieved by inhibiting lipid peroxidation and matrix degeneration. Combining metabolomics and proteomics provides an effective method for uncovering YSJ's anti-hypertensive mechanisms.
Collapse
Affiliation(s)
- Xu Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Jie Yu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Yongbo Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, Shanghai, China
| | - Xinyu Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Kunpeng Zhu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Zhen Jiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Lei Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China.
| | - Yingying Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China.
| |
Collapse
|
11
|
Li Z, Li Z, Hu Y, Xie Y, Shi Y, Chen G, Huang J, Xiao Z, Zhu W, Huang H, Wang M, Chen J, Chen X, Liang D. Neutrophil extracellular traps potentiate effector T cells via endothelial senescence in uveitis. JCI Insight 2025; 10:e180248. [PMID: 39846254 PMCID: PMC11790022 DOI: 10.1172/jci.insight.180248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025] Open
Abstract
Autoimmune uveitis (AU) is a sight-threatening ocular autoimmune disorder that often manifests as retinal vasculitis. Increased neutrophil infiltration around retinal vessels has been reported during the progression of AU, while how they function is not fully recognized. Neutrophil extracellular traps (NETs), produced by activated neutrophils, have been suggested to be detrimental in autoimmune diseases. Here, we found that NETs were elevated in patients with active AU, and this was verified in an experimental AU (EAU) mouse model. Depletion of neutrophils or degradation of NETs with deoxyribonuclease-I (DNase I) could decrease CD4+ effector T cell (Teff) infiltration in retina and spleen to alleviate EAU. Moreover, we found that the expression of adhesion molecules, selectin, and antigen-presenting molecules was elevated in EAU retina and in retinal microvascular endothelial cells (RMECs) cocultured with NETs. The stimulated RMECs further facilitated CD4+ T cell adhesion, activation, and differentiation into Teffs. Mechanistically, NETs trigger RMEC activation by hastening cell senescence through the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. Slowing down senescence or inhibiting the cGAS/STING pathway in RMECs reduces the activation and differentiation of CD4+ T cells. These results suggest a deleterious role of NETs in AU. Targeting NETs would offer an effective therapeutic method.
Collapse
Affiliation(s)
- Zuoyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Zhuang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Yunwei Hu
- Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanyan Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Guanyu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Jun Huang
- Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhiqiang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Wenjie Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Haixiang Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Minzhen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Jianping Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Xiaoqing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| |
Collapse
|
12
|
Deng R, Huang G, Zhou J, Zeng K. PLASMA PROTEOME, METABOLOME MENDELIAN RANDOMIZATION IDENTIFIES SEPSIS THERAPEUTIC TARGETS. Shock 2025; 63:52-63. [PMID: 39194222 DOI: 10.1097/shk.0000000000002465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
ABSTRACT Background : The interrelation between the plasma proteome and plasma metabolome with sepsis presents a multifaceted dynamic that necessitates further research to elucidate the underlying causal mechanisms. Methods : Our investigation used public genome-wide association study data to explore the relationships among the plasma proteome, metabolome, and sepsis, considering different sepsis subgroup. Initially, two-sample Mendelian randomization established causal connections between the plasma proteome and metabolome with sepsis. Subsequently, multivariate and iterative Mendelian randomization analyses were performed to understand the complex interactions in plasma during sepsis. The validity of these findings was supported by thorough sensitivity analyses. Result : The study identified 25 plasma proteins that enhance risk and 34 that act as protective agents in sepsis. After P value adjustment (0.05/1306), ICAM5 emerged with a positive correlation to sepsis susceptibility ( P value = 2.14E-05, OR = 1.10, 95% CI = 1.05-1.15), with this significance preserved across three sepsis subgroup examined. Additionally, 29 plasma metabolites were recognized as risk factors, and 15 as protective factors for sepsis outcomes. After P value adjustment (0.05/997), elevated levels of 1,2,3-benzenetriol sulfate (2) was significantly associated with increased sepsis risk ( P value = 3.37E-05, OR = 1.18, 95% CI = 1.09-1.28). Further scrutiny revealed that this plasma metabolite notably augments the abundance of ICAM5 protein ( P value = 3.52E-04, OR = 1.11, 95% CI = 1.04-1.17), devoid of any detected heterogeneity, pleiotropy, or reverse causality. Mediated Mendelian randomization revealed ICAM5 mediated 11.9% of 1,2,3-benzenetriol sulfate (2)'s total effect on sepsis progression. Conclusion : This study details the causal link between the plasma proteome and metabolome with sepsis, highlighting the roles of ICAM5 and 1,2,3-benzenetriol sulfate (2) in sepsis progression, both independently and through crosstalk.
Collapse
Affiliation(s)
| | - Guiming Huang
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou City, Jiangxi Provence, China
| | - Juan Zhou
- Department of Thyroid and Breast Surgery, Ganzhou People's Hospital, Ganzhou City, Jiangxi Provence, China
| | - Kai Zeng
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
13
|
Hanata N, Kaplan MJ. The role of neutrophil extracellular traps in inflammatory rheumatic diseases. Curr Opin Rheumatol 2025; 37:64-71. [PMID: 39258603 PMCID: PMC11602361 DOI: 10.1097/bor.0000000000001054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
PURPOSE OF REVIEW Dysregulation in neutrophil extracellular trap (NET) formation and degradation has been reported in several inflammatory rheumatic diseases. This review summarizes the recent advances in the understanding the role of NETs in the context of inflammatory rheumatic diseases. RECENT FINDINGS NET formation is enhanced in peripheral blood of patients with large vessel vasculitis and polymyalgia rheumatica. NETs are detected in affected organs in autoimmune conditions, and they might play pathological roles in tissues. Several understudied medications and supplements suppress NET formation and ameliorate animal models of inflammatory rheumatic diseases. NETs and anti-NET antibodies have potential utility as disease biomarkers. SUMMARY Growing evidence has suggested the contribution of NET dysregulation to the pathogenesis of several inflammatory rheumatic diseases. Further research is warranted in regard to clinical impact of modulating aberrant NET formation and clearance in inflammatory rheumatic diseases.
Collapse
Affiliation(s)
- Norio Hanata
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Suárez A, Tobío-Parada U, Rodríguez-Carrio J, Martínez-Zapico A, Pérez-Álvarez ÁI, Suárez-Díaz S, Caminal-Montero L, López P. Circulating Levels of Low-Density Granulocytes and Cell-Free DNA as Predictors of Cardiovascular Disease and Bone Deterioration in SLE Patients. Thromb Haemost 2024. [PMID: 39542026 DOI: 10.1055/a-2467-6826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
OBJECTIVE The present work evaluates the predictive value of low-density granulocytes (LDGs) for the development of cardiovascular disease (CVD) and/or bone deterioration (BD) in a 6-year prospective study in systemic lupus erythematosus (SLE). Considering the high SLE-LDG capacity to form neutrophil extracellular traps (NETs), circulating levels of total cell-free DNA (cirDNA) and relative amounts of mitochondrial and nuclear DNA (mtDNA and nDNA, respectively) were tested as LDG-associated biomarkers to identify SLE patients at risk of CVD and BD. MATERIAL AND METHODS The frequency of total blood LDGs, as well as the CD16negCD14neg (nLDG) and CD16posCD14low (pLDG) subsets, was quantified by flow cytometry in 33 controls and 144 SLE patients. Total cirDNA and relative amounts of mitochondrial (mtDNA) and nuclear (nDNA) cell-free DNA were measured by fluorometry or qPCR in plasma from a subgroup of 117 patients and 23 controls at enrolment. RESULTS AND CONCLUSION Our findings showed increased blood levels of SLE-nLDGs at enrolment associated with prospective CVD development (pCVD) and the presence of BD, thus revealing LDG expansion as a predictor of both comorbidities in SLE progression. The amounts of the different types of circulating DNA analyzed were increased in patients, especially those presenting with traditional CV risk factors or subclinical atheromatosis. Similar to nLDGs, the nDNA concentration could predict the development of pCVD in SLE, supporting the quantification of cirDNA levels as a surrogate marker of LDGs in clinical practice.
Collapse
Affiliation(s)
- Ana Suárez
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Uxía Tobío-Parada
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Javier Rodríguez-Carrio
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Aleida Martínez-Zapico
- Department of Internal Medicine, Hospital Universitario Central de Asturias, Oviedo, Spain
- Department of Neurology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ángel I Pérez-Álvarez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Neurology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Silvia Suárez-Díaz
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Internal Medicine, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Luis Caminal-Montero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Internal Medicine, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Patricia López
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
15
|
Chen R, Hu T, Lu Y, Yang S, Zhang M, Tan C, Liang R, Wang Y. PAD4 Inhibitor-Loaded Layered Double Hydroxide Nanosheets as a Multifunctional Nanoplatform for Photodynamic Therapy-Mediated Tumor Metastasis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404211. [PMID: 39358959 PMCID: PMC11636073 DOI: 10.1002/smll.202404211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/29/2024] [Indexed: 10/04/2024]
Abstract
Photodynamic therapy (PDT) is demonstrated to be effective in inducing antitumor immune responses for tumor metastasis treatment. However, tumor hypoxia, inferior tissue penetration of light, and low singlet oxygen (1O2) quantum yield significantly hamper the efficacy of PDT, thus weakening its immune function. Moreover, PDT-mediated neutrophil extracellular traps (NETs) formation can further reduce the therapeutic effectiveness. Herein, the use of defect-rich CoMo-layered double hydroxide (DR-CoMo-LDH) nanosheets as a carrier to load a typical peptidyl arginine deiminase 4 inhibitor, i.e., YW4-03, to construct a multifunctional nanoagent (403@DR-LDH) for PDT/immunotherapy, is reported. Specifically, 403@DR-LDH inherits excellent 1O2 generation activity under 1550 nm laser irradiation and improves the half-life of YW4-03. Meanwhile, 403@DR-LDH plus 1550 nm laser irradiation can stimulate immunogenic cell death to promote the maturation of dendric cells and activation/infiltration of T cells and significantly downregulate H3cit protein expression to inhibit NETs formation, synergistically promoting the antitumor metastasis effect. Taken together, 403@DR-LDH can kill cancer cells and inhibit tumor growth/metastasis under 1550 nm laser irradiation. Single-cell analysis indicates that 403@DR-LDH can regulate the ratio of immune cells and immune-related proteins to improve the tumor immune microenvironment, showing strong efficacy to inhibit the tumor growth, metastasis, and recurrence.
Collapse
Affiliation(s)
- Rong Chen
- Department of Medicinal ChemistryCollege of Pharmaceutical Sciences of Capital Medical UniversityBeijing100069P. R. China
| | - Tingting Hu
- Department Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong Kong SAR999077P. R. China
| | - Yu Lu
- Department of Medicinal ChemistryCollege of Pharmaceutical Sciences of Capital Medical UniversityBeijing100069P. R. China
| | - Shuqing Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Min Zhang
- Department of NephrologyAffiliated Beijing Chaoyang Hospital of Capital Medical UniversityBeijing100020P. R. China
| | - Chaoliang Tan
- Department Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong Kong SAR999077P. R. China
- Department Electrical EngineeringCity University of Hong Kong83 Tat Chee Ave, Kowloon TongHong Kong SAR999077P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
- Quzhou Institute for Innovation in Resource Chemical EngineeringQuzhou324000P. R. China
| | - Yuji Wang
- Department of Medicinal ChemistryCollege of Pharmaceutical Sciences of Capital Medical UniversityBeijing100069P. R. China
- Beijing Area Major Laboratory of Peptide and Small Molecular DrugsEngineering Research Center of Endogenous Prophylactic of Ministry of Education of ChinaBeijing Laboratory of Biomedical MaterialsLaboratory for Clinical MedicineBeijing Laboratory of Oral HealthCapital Medical UniversityBeijing100069P. R. China
| |
Collapse
|
16
|
Ning Y, Chen Y, Tian T, Gao X, Liu X, Wang J, Chu H, Zhao C, Yang Y, Lei K, Ren H, Cui Z. S100A7 orchestrates neutrophil chemotaxis and drives neutrophil extracellular traps (NETs) formation to facilitate lymph node metastasis in cervical cancer patients. Cancer Lett 2024; 605:217288. [PMID: 39384116 DOI: 10.1016/j.canlet.2024.217288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Neutrophil extracellular traps (NETs) have been shown to promote the metastatic potential of many kinds of tumors. Our study aimed to investigate the role and mechanisms of NETs in lymph node metastasis (LNM) of cervical cancer (CCa), and evaluated the therapeutic value of targeting NETs in CCa. Immunohistochemistry demonstrated that neutrophil infiltration and NETs formation were increased in CCa patients with LNM, as well as confirming a positive correlation between S100A7 expression and neutrophil infiltration in CCa. NETs enhanced the migratory capability of CCa by activating the P38-MAPK/ERK/NFκB pathway through interaction with TLR2. Digesting NETs with deoxyribonuclease 1 (DNase 1) or inhibiting TLR2 with chloroquine eliminated the NETs-induced metastatic potential of CCa. Additionally, NETs promoted lymphangiogenesis and increased the permeability of lymphatic vessels, thus facilitating translymphatic movement of CCa. CCa-derived S100A7 exhibited a chemotactic effect on neutrophils and promoted NETs generation by elevating ROS levels rather than activating autophagy in neutrophils. The mouse model with footpad implantation illustrated that DNase 1 effectively reduced LNM in LPS-induced mice and in mice seeded with S100A7-overexpressing CCa cells. In conclusion, our study reveals a new tumor-promoting mechanism of S100A7, clarifies the crucial role and mechanism of NETs in LNM of CCa, and indicates that the NETs-targeted therapy emerges as a promising anti-metastasis therapy in CCa.
Collapse
Affiliation(s)
- Ying Ning
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yu Chen
- Department of Clinical Medicine, Qingdao University, Qingdao, 266003, China
| | - Tian Tian
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xinyan Gao
- Department of Clinical Medicine, Qingdao University, Qingdao, 266003, China
| | - Xiaolan Liu
- Department of Clinical Medicine, Qingdao University, Qingdao, 266003, China
| | - Jia Wang
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Huijun Chu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chenyang Zhao
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yufei Yang
- Department of Clinical Medicine, Qingdao University, Qingdao, 266003, China
| | - Ke Lei
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - He Ren
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Zhumei Cui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
17
|
Chen H, Zhou Y, Tang Y, Lan J, Lin C, Chen Q, Kuang H. Neutrophil extracellular traps in tumor progression of gynecologic cancers. Front Immunol 2024; 15:1421889. [PMID: 39555072 PMCID: PMC11563837 DOI: 10.3389/fimmu.2024.1421889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/30/2024] [Indexed: 11/19/2024] Open
Abstract
This article delves into the intricate interplay between tumors, particularly gynecologic malignancies, and neutrophil extracellular traps (NETs). The relationship between tumors, specifically gynecologic malignancies, and NETs is a multifaceted and pivotal area of study. Neutrophils, pivotal components of the immune system, are tasked with combating foreign invaders. NETs, intricate structures released by neutrophils, play a vital role in combating systemic infections but also play a role in non-infectious conditions such as inflammation, autoimmune diseases, and cancer. Cancer cells have the ability to attract neutrophils, creating tumor-associated neutrophils, which then stimulate the release of NETs into the tumor microenvironment. The impact of NETs within the tumor microenvironment is profound and intricate. They play a significant role in influencing cancer development and metastasis, as well as modulating tumor immune responses. Through the release of proteases and pro-inflammatory cytokines, NETs directly alter the behavior of tumor cells, increasing invasiveness and metastatic potential. Additionally, NETs can trigger epithelial-mesenchymal transition in tumor cells, a process associated with increased invasion and metastasis. The interaction between tumors and NETs is particularly critical in gynecologic malignancies such as ovarian, cervical, and endometrial cancer. Understanding the mechanisms through which NETs operate in these tumors can offer valuable insights for the development of targeted therapeutic interventions. Researchers are actively working towards harnessing this interaction to impede tumor progression and metastasis, opening up new avenues for future treatment modalities. As our understanding of the interplay between tumors and NETs deepens, it is anticipated that novel treatment strategies will emerge, potentially leading to improved outcomes for patients with gynecologic malignancies. This article provides a comprehensive overview of the latest research findings on the interaction between NETs and cancer, particularly in gynecologic tumors, serving as a valuable resource for future exploration in this field.
Collapse
Affiliation(s)
- Hong Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yaling Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jianfa Lan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chao Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qionghua Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hongying Kuang
- The Second Department of Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
18
|
Porsch F, Binder CJ. Autoimmune diseases and atherosclerotic cardiovascular disease. Nat Rev Cardiol 2024; 21:780-807. [PMID: 38937626 DOI: 10.1038/s41569-024-01045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
Autoimmune diseases are associated with a dramatically increased risk of atherosclerotic cardiovascular disease and its clinical manifestations. The increased risk is consistent with the notion that atherogenesis is modulated by both protective and disease-promoting immune mechanisms. Notably, traditional cardiovascular risk factors such as dyslipidaemia and hypertension alone do not explain the increased risk of cardiovascular disease associated with autoimmune diseases. Several mechanisms have been implicated in mediating the autoimmunity-associated cardiovascular risk, either directly or by modulating the effect of other risk factors in a complex interplay. Aberrant leukocyte function and pro-inflammatory cytokines are central to both disease entities, resulting in vascular dysfunction, impaired resolution of inflammation and promotion of chronic inflammation. Similarly, loss of tolerance to self-antigens and the generation of autoantibodies are key features of autoimmunity but are also implicated in the maladaptive inflammatory response during atherosclerotic cardiovascular disease. Therefore, immunomodulatory therapies are potential efficacious interventions to directly reduce the risk of cardiovascular disease, and biomarkers of autoimmune disease activity could be relevant tools to stratify patients with autoimmunity according to their cardiovascular risk. In this Review, we discuss the pathophysiological aspects of the increased cardiovascular risk associated with autoimmunity and highlight the many open questions that need to be answered to develop novel therapies that specifically address this unmet clinical need.
Collapse
Affiliation(s)
- Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Tang Y, Jiao Y, An X, Tu Q, Jiang Q. Neutrophil extracellular traps and cardiovascular disease: Associations and potential therapeutic approaches. Biomed Pharmacother 2024; 180:117476. [PMID: 39357329 DOI: 10.1016/j.biopha.2024.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Cardiovascular disease (CVD) is a significant global health concern, ranking among the top five causes of disability-adjusted life-years (DALY) in 190 countries and territories. Neutrophils, key players in the innate immune system, combat infections by releasing neutrophil extracellular traps (NETs) composed of DNA, histones, elastase, myeloperoxidase, and antimicrobial peptides. This paper explores the relationship between NETs and cardiovascular diseases, focusing on conditions such as heart failure, pulmonary hypertension, atrial fibrillation, and ischemia-reperfusion injury. Particularly, it delves into the impact of NETs on atrial fibrillation and pulmonary hypertension, as well as the role of myeloperoxidase (MPO) and neutrophil elastase (NE) in these diseases. Furthermore, the potential of targeting NETs for the treatment of cardiovascular diseases is discussed.
Collapse
Affiliation(s)
- Yiyue Tang
- Department of Cardiovascular Medicine, The First People's Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China; Zunyi Medical University, Zunyi, Guizhou, China
| | - Yang Jiao
- Department of Cardiovascular Medicine, The First People's Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Xiaohua An
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China; Zunyi Medical University, Zunyi, Guizhou, China
| | - Qingxian Tu
- Department of Cardiovascular Medicine, The First People's Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China.
| | - Qianfeng Jiang
- GuizhouAerospaceHospital,(Affiliated AerospaceHospital of Zunyi Medical University), Zunyi, Guizhou, China.
| |
Collapse
|
20
|
Bromley JD, Ganchua SKC, Nyquist SK, Maiello P, Chao M, Borish HJ, Rodgers M, Tomko J, Kracinovsky K, Mugahid D, Nguyen S, Wang QD, Rosenberg JM, Klein EC, Gideon HP, Floyd-O'Sullivan R, Berger B, Scanga CA, Lin PL, Fortune SM, Shalek AK, Flynn JL. CD4 + T cells re-wire granuloma cellularity and regulatory networks to promote immunomodulation following Mtb reinfection. Immunity 2024; 57:2380-2398.e6. [PMID: 39214090 PMCID: PMC11466276 DOI: 10.1016/j.immuni.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/03/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Immunological priming-in the context of either prior infection or vaccination-elicits protective responses against subsequent Mycobacterium tuberculosis (Mtb) infection. However, the changes that occur in the lung cellular milieu post-primary Mtb infection and their contributions to protection upon reinfection remain poorly understood. Using clinical and microbiological endpoints in a non-human primate reinfection model, we demonstrated that prior Mtb infection elicited a long-lasting protective response against subsequent Mtb exposure and was CD4+ T cell dependent. By analyzing data from primary infection, reinfection, and reinfection-CD4+ T cell-depleted granulomas, we found that the presence of CD4+ T cells during reinfection resulted in a less inflammatory lung milieu characterized by reprogrammed CD8+ T cells, reduced neutrophilia, and blunted type 1 immune signaling among myeloid cells. These results open avenues for developing vaccines and therapeutics that not only target lymphocytes but also modulate innate immune cells to limit tuberculosis (TB) disease.
Collapse
Affiliation(s)
- Joshua D Bromley
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Graduate Program in Microbiology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sharie Keanne C Ganchua
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah K Nyquist
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael Chao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - H Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kara Kracinovsky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Douaa Mugahid
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Son Nguyen
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Qianchang Dennis Wang
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob M Rosenberg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edwin C Klein
- Division of Laboratory Animal Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hannah P Gideon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roisin Floyd-O'Sullivan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philana Ling Lin
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sarah M Fortune
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
22
|
Chen Y, Zhou D, Qian X, Ge S, Shuai Z. Characteristic changes in the mRNA expression profile of plasma exosomes from patients with MPO-ANCA-associated vasculitis and its possible correlations with pathogenesis. Clin Exp Med 2024; 24:222. [PMID: 39287711 PMCID: PMC11408407 DOI: 10.1007/s10238-024-01457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/30/2024] [Indexed: 09/19/2024]
Abstract
To explore the expression patterns and potential roles of mRNAs in exosomes from patients with myeloperoxidase-specific anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (MPO-AAV). Plasma exosomes were isolated from MPO-AAV patients and healthy controls (HCs) to screen for differential mRNA expression via exosomal mRNA sequencing. The differentially expressed mRNAs in exosomes from the 2 groups were comparatively explored by bioinformatics analysis. The six most differentially expressed mRNAs were selected and validated in larger groups of MPO-AAV patients and HCs by real-time quantitative polymerase chain reaction (RT‒qPCR). The relationships between these selected mRNAs and patient characteristics were statistically analyzed. Compared with HCs, a total of 1077 mRNAs in exosomes from MPO-AAV patients were found to be significantly upregulated, including DEPDC1B and TPST1, while NSUN4 and AK4 were significantly downregulated. Statistical analysis did not reveal any correlation between the six selected mRNAs and clinical indicators, including disease activity. GO enrichment analysis revealed that these differentially expressed genes participate in various enzyme activities, protein synthesis, etc. KEGG pathway analysis revealed that metabolic pathways, cell adhesion molecules, epithelial signaling, and mitogen-activated protein kinase (MAPK) signaling pathways were significantly enriched in the exosomal mRNAs. There were significant differences in the expression of exosomal mRNAs between MPO-AAV patients and HCs, which may be related to the occurrence and development of MPO-AAV. These findings provide clues for further investigations of MPO-AAV pathogenesis and the identification of new potential therapeutic targets.
Collapse
Affiliation(s)
- Yangfan Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Dongqing Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xin Qian
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shangqing Ge
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, China.
| |
Collapse
|
23
|
Bergkamp SC, Bergkamp ND, Wahadat MJ, Gruppen MP, Nassar-Sheikh Rashid A, Tas SW, Smit MJ, Versnel MA, van den Berg JM, Kamphuis S, Schonenberg-Meinema D. Learning from serum markers reflecting endothelial activation: longitudinal data in childhood-onset systemic lupus erythematosus. Lupus Sci Med 2024; 11:e001190. [PMID: 39242108 PMCID: PMC11381702 DOI: 10.1136/lupus-2024-001190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/04/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVES In childhood-onset SLE (cSLE), patients have an increased risk of premature atherosclerosis. The pathophysiological mechanisms for this premature atherosclerosis are not yet completely understood, but besides traditional risk factors, the endothelium plays a major role. The first aim of this study was to measure levels of SLE-associated markers involved in endothelial cell (EC) function and lipids in a cSLE cohort longitudinally in comparison with healthy controls (HC). Next aim was to correlate these levels with Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) and nailfold capillaroscopic patterns. METHODS Blood serum samples, videocapillaroscopy images and patient characteristics were collected in a multicentre longitudinal cSLE cohort and from age and sex comparable HC. Disease activity was evaluated by SLEDAI. A total of 15 EC markers and six lipids were measured in two longitudinal cSLE samples (minimum interval of 6 months) and in HC. Nailfold videocapillaroscopy images were scored according to the guidelines from the EULAR Study Group on Microcirculation in Rheumatic Diseases. RESULTS In total, 47 patients with cSLE and 42 HCs were analysed. Median age at diagnosis was 15 years (IQR 12-16 years). Median time between t=1 and t=2 was 14.5 months (IQR 9-24 months). Median SLEDAI was 12 (IQR 6-18) at t=1 and 2 (IQR 1-4) at t=2. Serum levels of angiopoietin-2, CCL2, CXCL10, GAS6, pentraxin-3, thrombomodulin, VCAM-1 and vWF-A2 were elevated in cSLE compared with HC at t=1. While many elevated EC markers at t=1 normalised over time after treatment, several markers remained significantly increased compared with HC (angiopoietin-2, CCL2, CXCL10, GAS6, thrombomodulin and VCAM-1). CONCLUSION In serum from patients with cSLE different markers of endothelial activation were dysregulated. While most markers normalised during treatment, others remained elevated in a subset of patients, even during low disease activity. These results suggest a role for the dysregulated endothelium in early and later phases of cSLE, possibly also during lower disease activity. TRIAL REGISTRATION NUMBER NL60885.018.17.
Collapse
Affiliation(s)
- Sandy C Bergkamp
- Department of Paediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Centres (AUMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Nick D Bergkamp
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mohamed Javad Wahadat
- Department of Paediatric Rheumatology, Sophia Children’s Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Immunology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Mariken P Gruppen
- Department of Paediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Centres (AUMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Amara Nassar-Sheikh Rashid
- Department of Paediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Centres (AUMC), University of Amsterdam, Amsterdam, The Netherlands
- Department of Paediatrics, Zaans Medisch Centrum, Zaandam, The Netherlands
| | - Sander W Tas
- Amsterdam Rheumatology and Immunology Centre, Department of Rheumatology and Clinical Immunology, and Laboratory for Experimental Immunology, Amsterdam University Medical Centres (AUMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marjan A Versnel
- Department of Immunology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - J Merlijn van den Berg
- Department of Paediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Centres (AUMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Sylvia Kamphuis
- Department of Paediatric Rheumatology, Sophia Children’s Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Dieneke Schonenberg-Meinema
- Department of Paediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Centres (AUMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Dumont BL, Neagoe PE, Charles E, Villeneuve L, Ninni S, Tardif JC, Räkel A, White M, Sirois MG. Low-Density Neutrophils and Neutrophil Extracellular Traps (NETs) Are New Inflammatory Players in Heart Failure. Can J Cardiol 2024; 40:1524-1535. [PMID: 38555028 DOI: 10.1016/j.cjca.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Heart failure with reduced (HFrEF) or preserved ejection fraction (HFpEF) is characterized by low-grade chronic inflammation. Circulating neutrophils regroup 2 subtypes termed high- and low-density neutrophils (HDNs and LDNs). LDNs represent less than 2% of total neutrophil under physiological conditions, but their counts increase in multiple pathologies, releasing more inflammatory cytokines and neutrophil extracellular traps (NETs). The aims of this study were to assess the differential count and role of HDNs, LDNs, and NETs-related activities in patients with heart failure (HF). METHODS HDNs and LDNs were isolated from human blood by density gradient and purified by fluorescence-activated cell sorting (FACS) and their counts obtained by flow cytometry. Formation of NETs (NETosis) was quantified by confocal microscopy. Circulating inflammatory and NETosis biomarkers were measured by enzyme-linked immunosorbent assay (ELISA). Neutrophil adhesion onto human extracellular matrix (hECM) was assessed by optical microscopy. RESULTS A total of 140 individuals were enrolled, including 33 healthy volunteers (HVs), 41 HFrEF (19 stable patients and 22 presenting acute decompensated HF [ADHF]), and 66 patients with HFpEF (36 stable patients and 30 presenting HF decompensation). HDNs and LDNs counts were significantly increased up to 39% and 2740%, respectively, in patients with HF compared with HVs. In patients with HF, the correlations among LDNs counts and circulating inflammatory (CRP, IL-6 and -8), troponin T, N-terminal prohormone of brain natriuretic peptide (NT-proBNP), and NETosis components were significant. In vitro, LDNs expressed more citrullinated histone H3 (H3Cit) and NETs and were more proadhesive, with ADHFpEF patients presenting the highest proinflammatory profile. CONCLUSIONS Patients with HFpEF present higher levels of circulating LDNs- and NETs-related activities, which are the highest in the context of acute HF decompensation.
Collapse
Affiliation(s)
- Benjamin L Dumont
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada; Departments of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada
| | | | - Elcha Charles
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada; Departments of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada
| | - Louis Villeneuve
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada
| | - Sandro Ninni
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada; CHU Lille, Institut Coeur Poumon, Université de Lille, Lille, France
| | - Jean-Claude Tardif
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Agnès Räkel
- Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Michel White
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Martin G Sirois
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada; Departments of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
25
|
Li Z, Lu Q. The role of neutrophils in autoimmune diseases. Clin Immunol 2024; 266:110334. [PMID: 39098706 DOI: 10.1016/j.clim.2024.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Historically, neutrophils have been primarily regarded as short-lived immune cells that act as initial responders to antibacterial immunity by swiftly neutralizing pathogens and facilitating the activation of adaptive immunity. However, recent evidence indicates that their roles are considerably more complex than previously recognized. Neutrophils comprise distinct subpopulations and can interact with various immune cells, release granular proteins, and form neutrophil extracellular traps. These functions are increasingly recognized as contributing factors to tissue damage in autoimmune diseases. This review comprehensively examines the physiological functions and heterogeneity of neutrophils, their interactions with other immune cells, and their significance in autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, antiphospholipid syndrome, antineutrophil cytoplasmic antibody-associated vasculitis, multiple sclerosis, and others. This review aims to provide a deeper understanding of the function of neutrophils in the development and progression of autoimmune disorders.
Collapse
Affiliation(s)
- Zhuoshu Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
26
|
Yasuda T, Deans K, Shankar A, Chilton R. The web of intrigue: unraveling the role of NETosis within the gut-microbiome-immune-heart axis in acute myocardial infarction and heart failure. Cardiovasc Endocrinol Metab 2024; 13:e0309. [PMID: 39130369 PMCID: PMC11315478 DOI: 10.1097/xce.0000000000000309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/06/2024] [Indexed: 08/13/2024]
Abstract
This review summarizes the role of NETosis, or the release of neutrophil extracellular traps (NETs), and its interplay with the gut microbiome in acute myocardial infarction (AMI) and heart failure. NETosis contributes to inflammation, thrombosis, and atherothrombosis, all central to the pathophysiology of AMI and heart failure. NETosis can be activated by inflammation and dietary factors, indicating association with metabolic conditions. In cases of heart failure, NETosis is regulated by inflammatory molecules such as C-reactive protein (CRP), and Krüppel-like factor 2 (KLF2) - a protein that plays a role in controlling inflammation, and angiotensin II. Changes in the gut microbiome are linked to the severity and recovery of cardiac injury post-AMI and heart failure progression. The microbiome's influence extends to immune modulation and inflammatory responses, potentially affecting NETosis.
Collapse
Affiliation(s)
- Tai Yasuda
- Department of Anesthesiology, University Hospital, UTHSC San Antonio
| | - Kate Deans
- Department of Cardiology, South Texas Department of Veteran Affairs
| | - Aditi Shankar
- Department of Cardiology, University Hospital, UTHSC San Antonio, San Antonio, Texas, USA
| | - Robert Chilton
- Department of Cardiology, South Texas Department of Veteran Affairs
- Department of Cardiology, University Hospital, UTHSC San Antonio, San Antonio, Texas, USA
| |
Collapse
|
27
|
Luo J, Xie Z, Duan L. The Phenotypes and Functions of Neutrophils in Systemic Sclerosis. Biomolecules 2024; 14:1054. [PMID: 39334819 PMCID: PMC11429774 DOI: 10.3390/biom14091054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Systemic sclerosis (SSc) is a chronic disease of the connective tissue characterized by its multifaceted impact on various bodily systems, yet its precise cause remains elusive. Central to its pathology are abnormal immune activation, vasculopathy, and consequent fibrosis affecting both the skin and internal organs. The intricate interplay between the innate and adaptive immune systems significantly influences the pathogenesis of SSc. Despite substantial research, the role of neutrophils, key players in innate immunity, in the context of SSc has remained enigmatic. Emerging evidence suggests that neutrophils not only contribute to the initiation and perpetuation of SSc but also inflict damage on organs and promote fibrosis-a hallmark of the disease in many patients. This review aims to investigate the nuanced involvement of neutrophils in the development of SSc. By shedding light on the intricate mechanisms through which neutrophils influence the pathogenesis of SSc, we can gain deeper insights into the disease process and potentially identify novel therapeutic targets. Understanding the precise role of neutrophils may pave the way for more targeted and effective interventions to alleviate the burden of SSc on affected individuals.
Collapse
Affiliation(s)
- Jiao Luo
- Jiangxi Province Key Laboratory of Immunity and Inflammation, Jiangxi Provincial People’s Hospital, Nanchang 330000, China; (J.L.); (Z.X.)
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang 330000, China
| | - Zhongming Xie
- Jiangxi Province Key Laboratory of Immunity and Inflammation, Jiangxi Provincial People’s Hospital, Nanchang 330000, China; (J.L.); (Z.X.)
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang 330000, China
| | - Lihua Duan
- Jiangxi Province Key Laboratory of Immunity and Inflammation, Jiangxi Provincial People’s Hospital, Nanchang 330000, China; (J.L.); (Z.X.)
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang 330000, China
| |
Collapse
|
28
|
Matson SM, Demoruelle MK. Connective Tissue Disease Associated Interstitial Lung Disease. Rheum Dis Clin North Am 2024; 50:423-438. [PMID: 38942578 DOI: 10.1016/j.rdc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Connective tissue disease associated interstitial lung disease (CTD-ILD) is a heterogenous collection of conditions with a diverse spectrum of interstitial lung disease (ILD) manifestations. Currently, clinical practice of lung-directed immunosuppression in CTD-ILD is supported by several randomized, placebo-controlled trials (RCTs) in patients with scleroderma and several observational, retrospective studies in other autoimmune conditions. However, given the harm of immunosuppression in idiopathic pulmonary fibrosis, there is an urgent need for RCTs of immunosuppression and antifibrotic agents in fibrotic CTD-ILD populations as well as the study of intervention in patients with subclinical CTD-ILD.
Collapse
Affiliation(s)
- Scott M Matson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, 3901 Rainbow boulevard, Mailstop 3007, Kansas City, KS 66160, USA
| | - M Kristen Demoruelle
- Division of Rheumatology, University of Colorado School of Medicine, 1775 Aurora Court, Mail Stop B-115, Aurora, CO 80045, USA.
| |
Collapse
|
29
|
Wang Y, Lv Q, Li J, Hu M, Li H, Zhang M, Shen D, Wang X. The protective mechanism of human umbilical cord mesenchymal stem cell-derived exosomes against neutrophil extracellular trap-induced placental damage. Placenta 2024; 153:59-74. [PMID: 38823320 DOI: 10.1016/j.placenta.2024.05.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
INTRODUCTION Preeclampsia (PE) is a pregnancy-specific complication. Its etiology and pathogenesis remain unclear. Previous studies have shown that neutrophil extracellular traps (NETs) cause placental dysfunction and lead to PE. Human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-EXOs) have been widely used to treat different diseases. We investigated whether hUCMSC-EXOs can protect against NET-induced placental damage. METHODS NETs were detected in the placenta by immunofluorescence. The impact of NETs on cellular function and the effect of hUCMSC-EXOs on NET-induced placental damage were evaluated by 5-ethynyl-20-deoxyuridine (EdU) cell proliferation, lactate dehydrogenase (LDH), reactive oxygen species (ROS), and cell migration, invasion and tube formation assays; flow cytometry; and Western blotting. RESULTS The number of placental NETs was increased in PE patients compared with control individuals. NETs impaired the function of endothelial cells and trophoblasts. These effects were partially reversed after N-acetyl-L-cysteine (NAC; ROS inhibitor) or DNase I (NET lysing agent) pretreatment. HUCMSC-EXOs ameliorated NET-induced functional impairment of endothelial cells and trophoblasts in vitro, partially reversed NET-induced inhibition of endothelial cell and trophoblast proliferation, and partially restored trophoblast migration and invasion and endothelial cell tube formation. Exosomes inhibited ROS production in these two cell types, suppressed p38 mitogen-activated protein kinase (p38 MAPK) signaling activation, activated extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, and modulated the Bax, Bim, Bcl-2 and cleaved caspase-3 levels to inhibit apoptosis. DISCUSSION HUCMSC-EXOs can reverse NET-induced placental endothelial cell and trophoblast damage, possibly constituting a theoretical basis for the treatment of PE with exosomes.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Street, Jinan, Shandong, 250021, China
| | - Qingfeng Lv
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Street, Jinan, Shandong, 250021, China
| | - Jing Li
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, China
| | - Min Hu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hao Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Meihua Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Di Shen
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| | - Xietong Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Street, Jinan, Shandong, 250021, China; Department of Obstetrics and Gynecology, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| |
Collapse
|
30
|
Le Tallec E, Bourg C, Bouzillé G, Belhomme N, Le Pabic E, Guillot S, Droitcourt C, Perlat A, Jouneau S, Donal E, Lescoat A. Prognostic value and predictors of the alteration of the diffusing capacity of the lungs for carbon monoxide in systemic lupus erythematosus. Rheumatology (Oxford) 2024; 63:2178-2188. [PMID: 37831905 DOI: 10.1093/rheumatology/kead558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVES SLE is a systemic autoimmune disease characterized by heterogeneous manifestations and severity, with frequent lung involvement. Among pulmonary function tests, the measure of the diffusing capacity of the lungs for carbon monoxide (DLCO) is a noninvasive and sensitive tool assessing pulmonary microcirculation. Asymptomatic and isolated DLCO alteration has frequently been reported in SLE, but its clinical relevance has not been established. METHODS This retrospective study focused on 232 SLE patients fulfilling the 2019 EULAR/ACR classification criteria for SLE. Data were collected from the patient's medical record, including demographic, clinical and immunological characteristics, while DLCO was measured when performing pulmonary function tests as part of routine patient follow-up. RESULTS At the end of follow-up, DLCO alteration (<70% of predicted value) was measured at least once in 154 patients (66.4%), and was associated with a history of smoking as well as interstitial lung disease, but was also associated with renal and neurological involvement. History of smoking, detection of anti-nucleosome autoantibodies and clinical lymphadenopathy at diagnosis were independent predictors of DLCO alteration, while early cutaneous involvement with photosensitivity was a protective factor. DLCO alteration, at baseline or any time during follow-up, was predictive of admission in intensive care unit and/or of all-cause death, both mainly due to severe disease flares and premature cardiovascular complications. CONCLUSION This study suggests a link between DLCO alteration and disease damage, potentially related to SLE vasculopathy, and a prognostic value of DLCO on death or intensive care unit admission in SLE.
Collapse
Affiliation(s)
- Erwan Le Tallec
- Department of Internal Medicine and Clinical Immunology, Pontchaillou Hospital, Rennes, France
| | - Corentin Bourg
- Department of Cardiology, Pontchaillou Hospital, Rennes, France
| | - Guillaume Bouzillé
- INSERM, LTSI-UMR 1099, Rennes 1 University, Pontchaillou Hospital, Rennes, France
| | - Nicolas Belhomme
- Department of Internal Medicine and Clinical Immunology, Pontchaillou Hospital, Rennes, France
| | - Estelle Le Pabic
- INSERM, CIC UMR 1414, Rennes 1 University, Pontchaillou Hospital, Rennes, France
| | - Stéphanie Guillot
- Department of Pulmonary Function Testing, Pontchaillou Hospital, Rennes, France
| | - Catherine Droitcourt
- Department of Dermatology, Pontchaillou Hospital, Rennes, France
- INSERM, IRSET UMR 1085, Rennes 1 University, Rennes, France
| | - Antoinette Perlat
- Department of Internal Medicine and Clinical Immunology, Pontchaillou Hospital, Rennes, France
| | - Stéphane Jouneau
- INSERM, IRSET UMR 1085, Rennes 1 University, Rennes, France
- Department of Respiratory Medicine, Pontchaillou Hospital, Rennes, France
| | - Erwan Donal
- Department of Cardiology, Pontchaillou Hospital, Rennes, France
- INSERM, LTSI-UMR 1099, Rennes 1 University, Pontchaillou Hospital, Rennes, France
| | - Alain Lescoat
- Department of Internal Medicine and Clinical Immunology, Pontchaillou Hospital, Rennes, France
- INSERM, IRSET UMR 1085, Rennes 1 University, Rennes, France
| |
Collapse
|
31
|
Kortam N, Liang W, Shiple C, Huang S, Gedert R, Clair JS, Sarosh C, Foster C, Tsou PS, Varga J, Knight JS, Khanna D, Ali RA. Elevated neutrophil extracellular traps in systemic sclerosis-associated vasculopathy and suppression by a synthetic prostacyclin analog. Arthritis Res Ther 2024; 26:139. [PMID: 39054558 PMCID: PMC11270934 DOI: 10.1186/s13075-024-03379-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVES Neutrophils and neutrophil extracellular traps (NETs) contribute to the vascular complications of multiple diseases, but their role in systemic sclerosis (SSc) is understudied. We sought to test the hypothesis that NETs are implicated in SSc vasculopathy and that treatment with prostacyclin analogs may ameliorate SSc vasculopathy not only through vasodilation but also by inhibiting NET release. METHODS Blood from 125 patients with SSc (87 diffuse cutaneous SSc and 38 limited cutaneous SSc) was collected at a single academic medical center. Vascular complications such as digital ulcers, pulmonary artery hypertension, and scleroderma renal crisis were recorded. The association between circulating NETs and vascular complications was determined using in vitro and ex vivo assays. The impact of the synthetic prostacyclin analog epoprostenol on NET release was determined. RESULTS Neutrophil activation and NET release were elevated in patients with SSc-associated vascular complications compared to matched patients without vascular complications. Neutrophil activation and NETs positively correlated with soluble E-selectin and VCAM-1, circulating markers of vascular injury. Treatment of patients with digital ischemia with a synthetic prostacyclin analog boosted neutrophil cyclic AMP, which was associated with the blunting of NET release and reduced NETs in circulation. CONCLUSION Our study demonstrates an association between NETs and vascular complications in SSc. We also identified the potential for an additional therapeutic benefit of synthetic prostacyclin analogs, namely to reduce neutrophil hyperactivity and NET release in SSc patients.
Collapse
Affiliation(s)
- Neda Kortam
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Wenying Liang
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Claire Shiple
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Suiyuan Huang
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Rosemary Gedert
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - James St Clair
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Cyrus Sarosh
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Caroline Foster
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Ramadan A Ali
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
32
|
Tambralli A, Harbaugh A, NaveenKumar SK, Radyk MD, Rysenga CE, Sabb K, Hurley JM, Sule GJ, Yalavarthi S, Estes SK, Hoy CK, Smith T, Sarosh C, Madison JA, Schaefer JK, Sood SL, Zuo Y, Sawalha AH, Lyssiotis CA, Knight JS. Neutrophil glucose flux as a therapeutic target in antiphospholipid syndrome. J Clin Invest 2024; 134:e169893. [PMID: 38869951 PMCID: PMC11290966 DOI: 10.1172/jci169893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Neutrophil hyperactivity and neutrophil extracellular trap release (NETosis) appear to play important roles in the pathogenesis of the thromboinflammatory autoimmune disease known as antiphospholipid syndrome (APS). The understanding of neutrophil metabolism has advanced tremendously in the past decade, and accumulating evidence suggests that a variety of metabolic pathways guide neutrophil activities in health and disease. Our previous work characterizing the transcriptome of APS neutrophils revealed that genes related to glycolysis, glycogenolysis, and the pentose phosphate pathway (PPP) were significantly upregulated. Here, we found that neutrophils from patients with APS used glycolysis more avidly than neutrophils from people in the healthy control group, especially when the neutrophils were from patients with APS with a history of microvascular disease. In vitro, inhibiting either glycolysis or the PPP tempered phorbol myristate acetate- and APS IgG-induced NETosis, but not NETosis triggered by a calcium ionophore. In mice, inhibiting either glycolysis or the PPP reduced neutrophil reactive oxygen species production and suppressed APS IgG-induced NETosis ex vivo. When APS-associated thrombosis was evaluated in mice, inhibiting either glycolysis or the PPP markedly suppressed thrombosis and circulating NET remnants. In summary, these data identify a potential role for restraining neutrophil glucose flux in the treatment of APS.
Collapse
Affiliation(s)
- Ajay Tambralli
- Division of Rheumatology, Department of Internal Medicine
- Division of Pediatric Rheumatology, Department of Pediatrics
| | | | | | | | | | - Kaitlyn Sabb
- Division of Rheumatology, Department of Internal Medicine
| | | | - Gautam J. Sule
- Division of Rheumatology, Department of Internal Medicine
| | | | | | - Claire K. Hoy
- Division of Rheumatology, Department of Internal Medicine
| | - Tristin Smith
- Division of Rheumatology, Department of Internal Medicine
| | - Cyrus Sarosh
- Division of Rheumatology, Department of Internal Medicine
| | - Jacqueline A. Madison
- Division of Rheumatology, Department of Internal Medicine
- Division of Pediatric Rheumatology, Department of Pediatrics
| | - Jordan K. Schaefer
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Suman L. Sood
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yu Zuo
- Division of Rheumatology, Department of Internal Medicine
| | - Amr H. Sawalha
- Departments of Pediatrics, Medicine, and Immunology, and Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
33
|
Yaykasli KO, van Schie KA, Toes REM, Wuhrer M, Koeleman CAM, Bila G, Negrych N, Schett G, Knopf J, Herrmann M, Bilyy R. Neutrophil Depletion Changes the N-Glycosylation Pattern of IgG in Experimental Murine Sepsis. Int J Mol Sci 2024; 25:6478. [PMID: 38928183 PMCID: PMC11203722 DOI: 10.3390/ijms25126478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Sepsis is a life-threatening condition with a rising disease burden worldwide. It is a multifactorial disease and is defined as a dysregulated host response to infection. Neutrophils have been shown to be involved in the pathogenesis of sepsis by exacerbating inflammation. However, the exact effector mechanism of action still remains a mystery. Changes in the glycosylation pattern of the immunoglobulin G (IgG) Fc region are described for several diseases including meningococcal sepsis. In this study, we investigated the possible contribution of neutrophils and neutrophil implication, potentially related to degranulation or neutrophil extracellular trap (NET) formation in changing the IgG Fc N-glycosylation pattern in a murine sepsis model. We have measured the serum level of cytokines/chemokines and immunoglobulins, the serum activity of neutrophil elastase (NE), and analyzed the IgG Fc glycosylation pattern by Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (LC-ESI-MS) and Lectin enzyme-linked immunosorbent assay (ELISA). We observed an increased activity of NE- and neutrophil-associated cytokines such as keratinocyte chemoattractant (KC) with the development of sepsis. Regarding the IgG Fc N-glycosylation, we observed an increase in fucosylation and α1,3-galactosylation and a decrease for sialyation. Interestingly, these changes were not uniform for all IgG subclasses. After depletion of neutrophils, we saw a change in the exposure of fucose and α2,6-linked sialic acid during the time course of our experimental sepsis model. In conclusion, neutrophils can influence changes in the IgG glycosylation pattern in experimental sepsis.
Collapse
Affiliation(s)
- Kursat O. Yaykasli
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Karin A. van Schie
- Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - René E. M. Toes
- Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Carolien A. M. Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Galyna Bila
- Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine (R.B.)
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’, 050568 Bucharest, Romania
| | - Nazar Negrych
- Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine (R.B.)
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Rostyslav Bilyy
- Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine (R.B.)
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’, 050568 Bucharest, Romania
| |
Collapse
|
34
|
Song L, Zhang B, Li R, Duan Y, Chi Y, Xu Y, Hua X, Xu Q. Significance of neutrophil extracellular traps-related gene in the diagnosis and classification of atherosclerosis. Apoptosis 2024; 29:605-619. [PMID: 38367202 DOI: 10.1007/s10495-023-01923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2023] [Indexed: 02/19/2024]
Abstract
Atherosclerosis (AS) is a pathological process associated with various cardiovascular diseases. Upon different stimuli, neutrophils release reticular complexes known as neutrophil extracellular traps (NETs). Numerous researches have indicated a strong correlation between NETs and AS. However, its role in cardiovascular disease requires further investigation. By utilizing a machine learning algorithm, we examined the genes associated with NETs that were expressed differently in individuals with AS compared to normal controls. As a result, we identified four distinct genes. A nomogram model was built to forecast the incidence of AS. Additionally, we conducted analysis on immune infiltration, functional enrichment and consensus clustering in AS samples. The findings indicated that individuals with AS could be categorized into two groups, exhibiting notable variations in immune infiltration traits among the groups. Furthermore, to measure the NETs model, the principal component analysis algorithm was developed and cluster B outperformed cluster A in terms of NETs. Additionally, there were variations in the expression of multiple chemokines between the two subtypes. By studying AS NETs, we acquired fresh knowledge about the molecular patterns and immune mechanisms implicated, which could open up new possibilities for AS immunotherapy.
Collapse
Affiliation(s)
- Liantai Song
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Boyu Zhang
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Reng Li
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Yibing Duan
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Yifan Chi
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Yangyi Xu
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Xucong Hua
- Basic Medical College of Chengde Medical University, Chengde, 067000, China
| | - Qian Xu
- Department of Biochemistry, Chengde Medical University, Chengde, 067000, Hebei, People's Republic of China.
| |
Collapse
|
35
|
Singh B, Cui K, Eisa-Beygi S, Zhu B, Cowan DB, Shi J, Wang DZ, Liu Z, Bischoff J, Chen H. Elucidating the crosstalk between endothelial-to-mesenchymal transition (EndoMT) and endothelial autophagy in the pathogenesis of atherosclerosis. Vascul Pharmacol 2024; 155:107368. [PMID: 38548093 PMCID: PMC11303600 DOI: 10.1016/j.vph.2024.107368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Atherosclerosis, a chronic systemic inflammatory condition, is implicated in most cardiovascular ischemic events. The pathophysiology of atherosclerosis involves various cell types and associated processes, including endothelial cell activation, monocyte recruitment, smooth muscle cell migration, involvement of macrophages and foam cells, and instability of the extracellular matrix. The process of endothelial-to-mesenchymal transition (EndoMT) has recently emerged as a pivotal process in mediating vascular inflammation associated with atherosclerosis. This transition occurs gradually, with a significant portion of endothelial cells adopting an intermediate state, characterized by a partial loss of endothelial-specific gene expression and the acquisition of "mesenchymal" traits. Consequently, this shift disrupts endothelial cell junctions, increases vascular permeability, and exacerbates inflammation, creating a self-perpetuating cycle that drives atherosclerotic progression. While endothelial cell dysfunction initiates the development of atherosclerosis, autophagy, a cellular catabolic process designed to safeguard cells by recycling intracellular molecules, is believed to exert a significant role in plaque development. Identifying the pathological mechanisms and molecular mediators of EndoMT underpinning endothelial autophagy, may be of clinical relevance. Here, we offer new insights into the underlying biology of atherosclerosis and present potential molecular mechanisms of atherosclerotic resistance and highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Bandana Singh
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Bo Zhu
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Douglas B Cowan
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Jinjun Shi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Da-Zhi Wang
- Center for Regenerative Medicine, University of South Florida Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Zhenguo Liu
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Joyce Bischoff
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
36
|
Liu R, Liu H, Yang L, Li C, Yin G, Xie Q. Pathogenic role and clinical significance of neutrophils and neutrophil extracellular traps in idiopathic inflammatory myopathies. Clin Exp Med 2024; 24:115. [PMID: 38814339 PMCID: PMC11139741 DOI: 10.1007/s10238-024-01384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Idiopathic inflammatory myopathies (IIM) are a heterogeneous group of chronic autoimmune diseases characterized by muscle damage and extramuscular symptoms, including specific skin rash, arthritis, interstitial lung disease, and cardiac involvement. While the etiology and pathogenesis of IIM are not yet fully understood, emerging evidence suggests that neutrophils and neutrophil extracellular traps (NETs) have a role in the pathogenesis. Recent research has identified increased levels of circulating and tissue neutrophils as well as NETs in patients with IIM; these contribute to the activation of the type I and type II interferons pathway. During active IIM disease, myositis-specific antibodies are associated with the formation and incomplete degradation of NETs, leading to damage in the lungs, muscles, and blood vessels of patients. This review focuses on the pathogenic role and clinical significance of neutrophils and NETs in IIM, and it includes a discussion of potential targeted treatment strategies.
Collapse
Affiliation(s)
- Ruiting Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Leiyi Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Changpei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
37
|
Matson SM, Ngo LT, Sugawara Y, Fernando V, Lugo C, Azeem I, Harrison A, Alsup A, Nissen E, Koestler D, Washburn MP, Rekowski MJ, Wolters PJ, Lee JS, Solomon JJ, Demoruelle MK. Neutrophil extracellular traps linked to idiopathic pulmonary fibrosis severity and survival. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.24.24301742. [PMID: 38343853 PMCID: PMC10854325 DOI: 10.1101/2024.01.24.24301742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) leads to progressive loss of lung function and mortality. Understanding mechanisms and markers of lung injury in IPF is paramount to improving outcomes for these patients. Despite the lack of systemic involvement in IPF, many analyses focus on identifying circulating prognostic markers. Using a proteomic discovery method followed by ELISA validation in multiple IPF lung compartments and cohorts we explored novel markers of IPF survival. Methods In our discovery analysis, agnostic label-free quantitative proteomics differentiated lung tissue protein expression based on survival trajectory (n=10). Following selection of the candidate pathway (neutrophil extracellular trap (NET) formation), we subsequently validated the presence of NETs in the IPF lung microenvironment using fully quantitative assays of known NET remnants in separate IPF cohorts (n=156 and n=52) with bronchoalveolar lavage fluid. We then assessed the correlation of these markers with baseline pulmonary function and survival. Results Discovery lung tissue proteomics identified NET formation as significantly associated with poor IPF survival. Using fully quantitative confirmatory tests for reproducibility we confirmed the presence of NET markers in IPF BALF and found significant correlations with worse pulmonary function in both cohorts (p<0.03 and p = 0.04 respectively). In the survival cohort, higher levels of NET markers predicted worse survival after adjusting for gender, age, and baseline physiologic severity (hazard ratio range: 1.79-2.19). Conclusions NET markers were associated with disease severity and worse survival in IPF. These findings suggest NET formation contributes to lung injury and decreased survival in IPF and may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Scott M. Matson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Linh T. Ngo
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Yui Sugawara
- Department of Respiratory Medicine, Respiratory Center, Toranomon Hospital, Tokyo, Japan
| | - Veani Fernando
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Claudia Lugo
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Imaan Azeem
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Alexis Harrison
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Alex Alsup
- Department of Biostatistics & Data Science, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Emily Nissen
- Department of Biostatistics & Data Science, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Devin Koestler
- Department of Biostatistics & Data Science, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Michael P. Washburn
- Department of Cancer Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Michaella J. Rekowski
- Department of Cancer Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Paul J. Wolters
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, CA, USA
| | - Joyce S. Lee
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA
| | - Joshua J. Solomon
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Hospital, Denver, CO
| | - M. Kristen Demoruelle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
38
|
Xu C, Zhang L, Xu S, Wang Z, Han Q, Lv Y, Wang X, Zhang X, Zhang Q, Zhang Y, He S, Yuan Q, Bian Y, Li C, Wang J, Xu F, Cao Y, Pang J, Chen Y. Neutrophil ALDH2 is a new therapeutic target for the effective treatment of sepsis-induced ARDS. Cell Mol Immunol 2024; 21:510-526. [PMID: 38472357 PMCID: PMC11061144 DOI: 10.1038/s41423-024-01146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Acetaldehyde dehydrogenase 2 (ALDH2) mutations are commonly found in a subgroup of the Asian population. However, the role of ALDH2 in septic acute respiratory distress syndrome (ARDS) remains unknown. Here, we showed that human subjects carrying the ALDH2rs671 mutation were highly susceptible to developing septic ARDS. Intriguingly, ALDH2rs671-ARDS patients showed higher levels of blood cell-free DNA (cfDNA) and myeloperoxidase (MPO)-DNA than ALDH2WT-ARDS patients. To investigate the mechanisms underlying ALDH2 deficiency in the development of septic ARDS, we utilized Aldh2 gene knockout mice and Aldh2rs671 gene knock-in mice. In clinically relevant mouse sepsis models, Aldh2-/- mice and Aldh2rs671 mice exhibited pulmonary and circulating NETosis, a specific process that releases neutrophil extracellular traps (NETs) from neutrophils. Furthermore, we discovered that NETosis strongly promoted endothelial destruction, accelerated vascular leakage, and exacerbated septic ARDS. At the molecular level, ALDH2 increased K48-linked polyubiquitination and degradation of peptidylarginine deiminase 4 (PAD4) to inhibit NETosis, which was achieved by promoting PAD4 binding to the E3 ubiquitin ligase CHIP. Pharmacological administration of the ALDH2-specific activator Alda-1 substantially alleviated septic ARDS by inhibiting NETosis. Together, our data reveal a novel ALDH2-based protective mechanism against septic ARDS, and the activation of ALDH2 may be an effective treatment strategy for sepsis.
Collapse
Affiliation(s)
- Changchang Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Shaoyu Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Zichen Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Qi Han
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Lv
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xingfang Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiangxin Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Qingju Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Simeng He
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuan Bian
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Chuanbao Li
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, 171 65, Sweden
| | - Jiaojiao Pang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China.
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China.
- Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
39
|
Firouzjaie F, Taghipour N, Akhavan AA, Seyyed Tabaei SJ, Rouhani S, Shirazian M, Koochaki A, Fatemi M, Mosaffa N, Moin Vaziri V. Neutrophil extracellular traps formation: effect of Leishmania major promastigotes and salivary gland homogenates of Phlebotomus papatasi in human neutrophil culture. BMC Microbiol 2024; 24:117. [PMID: 38575882 PMCID: PMC10993452 DOI: 10.1186/s12866-024-03270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Leishmaniasis as a neglected tropical disease (NTD) is caused by the inoculation of Leishmania parasites via the bite of phlebotomine sand flies. After an infected bite, a series of innate and adaptive immune responses occurs, among which neutrophils can be mentioned as the initiators. Among the multiple functions of these fighting cells, neutrophil extracellular traps (NETs) were studied in the presence of Leishmania major promastigotes and salivary gland homogenates (SGH) of Phlebotomus papatasi alone, and in combination to mimic natural conditions of transmission. MATERIAL & METHODS The effect of L. major and SGH on NETs formation was studied in three different groups: neutrophils + SGH (NS), neutrophils + L. major (NL), neutrophils + L. major + SGH (NLS) along with negative and positive controls in 2, 4 and 6 h post-incubation. Different microscopic methods were used to visualize NETs comprising: fluorescence microscopy by Acridine Orange/ Ethidium Bromide staining, optical microscopy by Giemsa staining and scanning electron microscopy. In addition, the expression level of three different genes NE, MPO and MMP9 was evaluated by Real-Time PCR. RESULTS All three microscopical methods revealed similar results, as in NS group, chromatin extrusion as a sign of NETosis, was not very evident in each three time points; but, in NL and especially NLS group, more NETosis was observed and the interaction between neutrophils and promastigotes in NL and also with saliva in NLS group, gradually increased over times. Real-time reveals that, the expression of MPO, NE and MMP9 genes increased during 2 and 4 h after exposure, and then decreased at 6 h in most groups. CONCLUSION Hence, it was determined that the simultaneous presence of parasite and saliva in NLS group has a greater impact on the formation of NETs compared to NL and NS groups.
Collapse
Affiliation(s)
- Fahimeh Firouzjaie
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ahmad Akhavan
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Javad Seyyed Tabaei
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Rouhani
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Shirazian
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Fatemi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Vahideh Moin Vaziri
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Ambler WG, Kaplan MJ. Vascular damage in systemic lupus erythematosus. Nat Rev Nephrol 2024; 20:251-265. [PMID: 38172627 PMCID: PMC11391830 DOI: 10.1038/s41581-023-00797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Vascular disease is a major cause of morbidity and mortality in patients with systemic autoimmune diseases, particularly systemic lupus erythematosus (SLE). Although comorbid cardiovascular risk factors are frequently present in patients with SLE, they do not explain the high burden of premature vascular disease. Profound innate and adaptive immune dysregulation seems to be the primary driver of accelerated vascular damage in SLE. In particular, evidence suggests that dysregulation of type 1 interferon (IFN-I) and aberrant neutrophils have key roles in the pathogenesis of vascular damage. IFN-I promotes endothelial dysfunction directly via effects on endothelial cells and indirectly via priming of immune cells that contribute to vascular damage. SLE neutrophils are vasculopathic in part because of their increased ability to form immunostimulatory neutrophil extracellular traps. Despite improvements in clinical care, cardiovascular disease remains the leading cause of mortality among patients with SLE, and treatments that improve vascular outcomes are urgently needed. Improved understanding of the mechanisms of vascular injury in inflammatory conditions such as SLE could also have implications for common cardiovascular diseases, such as atherosclerosis and hypertension, and may ultimately lead to personalized therapeutic approaches to the prevention and treatment of this potentially fatal complication.
Collapse
Affiliation(s)
- William G Ambler
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
41
|
Zheng Y, Sun H, Yang S, Liu W, Jiang G. Identification of Molecular Subtype and Prognostic Signature for Prostate Adenocarcinoma based on Neutrophil Extracellular Traps. J Cancer 2024; 15:2678-2690. [PMID: 38577608 PMCID: PMC10988314 DOI: 10.7150/jca.93275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/03/2024] [Indexed: 04/06/2024] Open
Abstract
Background: Prostate adenocarcinoma (PRAD) is one of the most common cancers in male. Increasing evidences pointed out that Neutrophil Extracellular Traps (NETs) play an important role in tumor angiogenesis, tumor metastasis and drug resistance. However, limited systematic studies regarding the role of NETs in PRAD have been performed. Identification of biomarkers based on NETs might facilitate risk stratification which help optimizing the clinical strategies. Methods: NETs-related genes with differential expressions were identified between PRAD and adjacent normal tissues in TCGA-PRAD dataset. Consensus cluster analysis was performed to determine the PRAD subtypes based on the different-expressed NETs-related genes. The difference of pathway enrichment, infiltrating immune cell and genomic mutation were also evaluated between subtypes. LASSO cox regression analysis was conducted to construct a NETs-related prognostic signature. Result: We identified 19 NETs related genes with differential expressions between PRAD and adjacent normal tissue in TCGA-PRAD dataset. Two significant subtypes were identified based on these 19 genes by consensus cluster analysis, namely subtype 1 and subtype 2. Significant differences in prognosis, immune infiltration and tumor mutation burden were observed in subtypes. LASSO Cox regression analysis identified a NETs-associated prognostic signature including 13 genes, and this signature had a good performance in predicting the progression-free survival of PRAD patients. Further integrated analysis indicated that MMP9 mostly expressed in Mono/Macrophage cells might play a role in regulating NETs formation via neutrophil activation in PRAD. Conclusion: To sum up, the current study identified two NETs-related molecular subtypes and based on which constructed a prognostic signature for PRAD.
Collapse
Affiliation(s)
| | | | | | - Wei Liu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
42
|
Yennemadi AS, Jordan N, Diong S, Keane J, Leisching G. The Link Between Dysregulated Immunometabolism and Vascular Damage: Implications for the Development of Atherosclerosis in Systemic Lupus Erythematosus and Other Rheumatic Diseases. J Rheumatol 2024; 51:234-241. [PMID: 38224981 DOI: 10.3899/jrheum.2023-0833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/17/2024]
Abstract
A bimodal pattern of mortality in systemic lupus erythematosus (SLE) exists. Early-stage deaths are predominantly caused by infection, whereas later-stage deaths are mainly caused by atherosclerotic disease. Further, although SLE-related mortality has reduced considerably in recent years, cardiovascular (CV) events remain one of the leading causes of death in people with SLE. Accelerated atherosclerosis in SLE is attributed to both an increase in traditional CV risk factors and the inflammatory effects of SLE itself. Many of these changes occur within the microenvironment of the vascular-immune interface, the site of atherosclerotic plaque development. Here, an intimate interaction between endothelial cells, vascular smooth muscle cells, and immune cells dictates physiological vs pathological responses to a chronic type 1 interferon environment. Low-density neutrophils (LDNs) have also been implicated in eliciting vasculature-damaging effects at such lesion sites. These changes are thought to be governed by dysfunctional metabolism of immune cells in this niche due at least in part to the chronic induction of type 1 interferons. Understanding these novel pathophysiological mechanisms and metabolic pathways may unveil potential innovative pharmacological targets and therapeutic opportunities for atherosclerosis, as well as shed light on the development of premature atherosclerosis in patients with SLE who develop CV events.
Collapse
Affiliation(s)
- Anjali S Yennemadi
- A.S. Yennemadi, MSc, J. Keane, MD, G. Leisching, PhD, TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, University of Dublin
| | - Natasha Jordan
- N. Jordan, PhD, Department of Rheumatology, St. James's Hospital
| | - Sophie Diong
- S. Diong, MD, Department of Dermatology, St. James's Hospital, Dublin, Ireland
| | - Joseph Keane
- A.S. Yennemadi, MSc, J. Keane, MD, G. Leisching, PhD, TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, University of Dublin
| | - Gina Leisching
- A.S. Yennemadi, MSc, J. Keane, MD, G. Leisching, PhD, TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, University of Dublin;
| |
Collapse
|
43
|
Lu Y, Luo Q, Liu Y, Wang H. Relationships between inflammation markers and the risk of hypertension in primary Sjögren's syndrome: A retrospective cohort study. Mod Rheumatol 2024; 34:369-375. [PMID: 36976576 DOI: 10.1093/mr/road032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVES The association of inflammation markers with hypertension (HTN) in primary Sjögren's syndrome (pSS) remains controversial. We aimed to investigate whether inflammation markers are at increased risk of developing HTN in pSS patients. METHODS A retrospective cohort study included pSS patients (n = 380) between May 2011 and May 2020 from the Third People's Hospital of Chengdu. Multivariable Cox regression analyses were used to estimate hazard ratios (HRs) of the potential inflammation markers for pSS-HTN. Subsequently, the dose-response relationships were also used. RESULTS Out of 380 pSS patients, 171 (45%) developed HTN, and the median follow-up period was 4.16 years. Univariable Cox regression analysis showed that the erythrocyte sedimentation rate (ESR) and neutrophils were significantly associated with the incident HTN (P < 0.05). After adjustment for covariates, this association between ESR (adjusted HR 1.017, 95%CI: 1.005-1.027, P = .003), neutrophils (adjusted HR 1.356, 95%CI: 1.113-1.653, P = .003), and HTN remained significant. The dose-effect relationship was also found between ESR, neutrophils, and HTN (P = .001). CONCLUSIONS Inflammation markers may play an important role in the incident HTN in pSS.
Collapse
Affiliation(s)
- Yan Lu
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
- Department of Geriatrics, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiang Luo
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China
| | - Yaping Liu
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
- Department of Geriatrics, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Han Wang
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
44
|
Pan Q, Chen C, Yang YJ. Top Five Stories of the Cellular Landscape and Therapies of Atherosclerosis: Current Knowledge and Future Perspectives. Curr Med Sci 2024; 44:1-27. [PMID: 38057537 DOI: 10.1007/s11596-023-2818-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/22/2023] [Indexed: 12/08/2023]
Abstract
Atherosclerosis (AS) is characterized by impairment and apoptosis of endothelial cells, continuous systemic and focal inflammation and dysfunction of vascular smooth muscle cells, which is documented as the traditional cellular paradigm. However, the mechanisms appear much more complicated than we thought since a bulk of studies on efferocytosis, transdifferentiation and novel cell death forms such as ferroptosis, pyroptosis, and extracellular trap were reported. Discovery of novel pathological cellular landscapes provides a large number of therapeutic targets. On the other side, the unsatisfactory therapeutic effects of current treatment with lipid-lowering drugs as the cornerstone also restricts the efforts to reduce global AS burden. Stem cell- or nanoparticle-based strategies spurred a lot of attention due to the attractive therapeutic effects and minimized adverse effects. Given the complexity of pathological changes of AS, attempts to develop an almighty medicine based on single mechanisms could be theoretically challenging. In this review, the top stories in the cellular landscapes during the initiation and progression of AS and the therapies were summarized in an integrated perspective to facilitate efforts to develop a multi-targets strategy and fill the gap between mechanism research and clinical translation. The future challenges and improvements were also discussed.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
45
|
Tay SH, Zharkova O, Lee HY, Toh MMX, Libau EA, Celhar T, Narayanan S, Ahl PJ, Ong WY, Joseph C, Lim JCT, Wang L, Larbi A, Liang S, Lateef A, Akira S, Ling LH, Thamboo TP, Yeong JPS, Lee BTK, Edwards SW, Wright HL, MacAry PA, Connolly JE, Fairhurst AM. Platelet TLR7 is essential for the formation of platelet-neutrophil complexes and low-density neutrophils in lupus nephritis. Rheumatology (Oxford) 2024; 63:551-562. [PMID: 37341646 PMCID: PMC10836995 DOI: 10.1093/rheumatology/kead296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVES Platelets and low-density neutrophils (LDNs) are major players in the immunopathogenesis of SLE. Despite evidence showing the importance of platelet-neutrophil complexes (PNCs) in inflammation, little is known about the relationship between LDNs and platelets in SLE. We sought to characterize the role of LDNs and Toll-like receptor 7 (TLR7) in clinical disease. METHODS Flow cytometry was used to immunophenotype LDNs from SLE patients and controls. The association of LDNs with organ damage was investigated in a cohort of 290 SLE patients. TLR7 mRNA expression was assessed in LDNs and high-density neutrophils (HDNs) using publicly available mRNA sequencing datasets and our own cohort using RT-PCR. The role of TLR7 in platelet binding was evaluated in platelet-HDN mixing studies using TLR7-deficient mice and Klinefelter syndrome patients. RESULTS SLE patients with active disease have more LDNs, which are heterogeneous and more immature in patients with evidence of kidney dysfunction. LDNs are platelet bound, in contrast to HDNs. LDNs settle in the peripheral blood mononuclear cell (PBMC) layer due to the increased buoyancy and neutrophil degranulation from platelet binding. Mixing studies demonstrated that this PNC formation was dependent on platelet-TLR7 and that the association results in increased NETosis. The neutrophil:platelet ratio is a useful clinical correlate for LDNs, and a higher NPR is associated with past and current flares of LN. CONCLUSIONS LDNs sediment in the upper PBMC fraction due to PNC formation, which is dependent on the expression of TLR7 in platelets. Collectively, our results reveal a novel TLR7-dependent crosstalk between platelets and neutrophils that may be an important therapeutic opportunity for LN.
Collapse
Affiliation(s)
- Sen Hee Tay
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Olga Zharkova
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Hui Yin Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Michelle Min Xuan Toh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eshele Anak Libau
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Teja Celhar
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sriram Narayanan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Patricia Jennifer Ahl
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Wei Yee Ong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Craig Joseph
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shen Liang
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Aisha Lateef
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore
| | | | - Lieng Hsi Ling
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Cardiology, National University Hospital, Singapore
| | | | - Joe Poh Seng Yeong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Anatomical Pathology, Division of Pathology, Singapore General Hospital, Singapore
| | - Bernett Teck Kwong Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Steven W Edwards
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Helen L Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Paul Anthony MacAry
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John E Connolly
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Anna-Marie Fairhurst
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
46
|
Tian Y, Tao K, Li S, Chen X, Wang R, Zhang M, Zhai Z. Identification of m6A-Related Biomarkers in Systemic Lupus Erythematosus: A Bioinformation-Based Analysis. J Inflamm Res 2024; 17:507-526. [PMID: 38298525 PMCID: PMC10829513 DOI: 10.2147/jir.s439779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Background Systemic Lupus Erythematosus (SLE), a prototypical autoimmune disorder, presents a challenge due to the absence of reliable biomarkers for discerning organ-specific damage within SLE. A growing body of evidence underscores the pivotal involvement of N6-methyladenosine (m6A) in the etiology of autoimmune conditions. Methods The datasets, which primarily encompassed the expression profiles of m6A regulatory genes, were retrieved from the Gene Expression Omnibus (GEO) repository. The optimal model, selected from either Random Forest (RF) or Support Vector Machine (SVM), was employed for the development of a predictive nomogram model. To identify pivotal genes associated with SLE, a comprehensive screening process was conducted utilizing LASSO, SVM-RFE, and RF techniques. Within the realm of SLE susceptibility, Weighted Gene Co-expression Network Analysis (WGCNA) was harnessed to delineate relevant modules and hub genes. Additionally, MeRIP-qPCR assays were performed to elucidate key genes correlated with m6A targets. Furthermore, a Mendelian randomization study was conducted based on genome-wide association studies to assess the causative influence of MMP9 on ischemic stroke (IS), which is not only a severe cerebrovascular event but also a common complication of SLE. Results Twelve m6A regulatory genes was identified, demonstrating statistical significance (p < 0.05) and utilized for constructing a nomogram model using the RF algorithm. EPSTI1, USP18, HP, and MMP9, as the hub genes, were identified. MMP9 uniquely correlates with m6A modification and was causally linked to an increased risk of IS, as indicated by our inverse variance weighting analysis showing an odds ratio of 1.0134 (95% CI=1.0004-1.0266, p = 0.0440). Conclusion Our study identified twelve m6A regulators, shedding light on the molecular mechanisms underlying SLE risk genes. Importantly, our analysis established a causal relationship between MMP9, a key m6A-related gene, and ischemic stroke, a common complication of SLE, thereby providing critical insights for presymptomatic diagnostic approaches.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Kang Tao
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Shifei Li
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xiaoqiang Chen
- Department of Dermatology, General Hospital of Central Theater Command, Wuhan, People’s Republic of China
| | - Rupeng Wang
- Department of Dermatology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People’s Republic of China
| | - Mingwang Zhang
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Zhifang Zhai
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
47
|
Li Y, Wu Y, Huang J, Cao X, An Q, Peng Y, Zhao Y, Luo Y. A variety of death modes of neutrophils and their role in the etiology of autoimmune diseases. Immunol Rev 2024; 321:280-299. [PMID: 37850797 DOI: 10.1111/imr.13284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Neutrophils are important in the context of innate immunity and actively contribute to the progression of diverse autoimmune disorders. Distinct death mechanisms of neutrophils may exhibit specific and pivotal roles in autoimmune diseases and disease pathogenesis through the orchestration of immune homeostasis, the facilitation of autoantibody production, the induction of tissue and organ damage, and the incitement of pathological alterations. In recent years, more studies have provided in-depth examination of various neutrophil death modes, revealing nuances that challenge conventional understanding and underscoring their potential clinical utility in diagnosis and treatment. This review explores the multifaceted processes and characteristics of neutrophil death, with a focus on tailored investigations within various autoimmune diseases. It also highlights the potential interplay between neutrophil death and the landscape of autoimmune disorders. The review encapsulates the pertinent pathways implicated in various neutrophil death mechanisms across diverse autoimmune diseases while also charts possible avenues for future research.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yinlan Wu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingang Huang
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xue Cao
- Department of Rheumatology and Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Qiyuan An
- School of Inspection and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yun Peng
- Department of Rheumatology and Clinical Immunology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Yi Zhao
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yubin Luo
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
48
|
Bromley JD, Ganchua SKC, Nyquist SK, Maiello P, Chao M, Borish HJ, Rodgers M, Tomko J, Kracinovsky K, Mugahid D, Nguyen S, Wang D, Rosenberg JM, Klein EC, Gideon HP, Floyd-O’Sullivan R, Berger B, Scanga CA, Lin PL, Fortune SM, Shalek AK, Flynn JL. CD4 + T cells are homeostatic regulators during Mtb reinfection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572669. [PMID: 38187598 PMCID: PMC10769325 DOI: 10.1101/2023.12.20.572669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Immunological priming - either in the context of prior infection or vaccination - elicits protective responses against subsequent Mycobacterium tuberculosis (Mtb) infection. However, the changes that occur in the lung cellular milieu post-primary Mtb infection and their contributions to protection upon reinfection remain poorly understood. Here, using clinical and microbiological endpoints in a non-human primate reinfection model, we demonstrate that prior Mtb infection elicits a long-lasting protective response against subsequent Mtb exposure and that the depletion of CD4+ T cells prior to Mtb rechallenge significantly abrogates this protection. Leveraging microbiologic, PET-CT, flow cytometric, and single-cell RNA-seq data from primary infection, reinfection, and reinfection-CD4+ T cell depleted granulomas, we identify differential cellular and microbial features of control. The data collectively demonstrate that the presence of CD4+ T cells in the setting of reinfection results in a reduced inflammatory lung milieu characterized by reprogrammed CD8+ T cell activity, reduced neutrophilia, and blunted type-1 immune signaling among myeloid cells, mitigating Mtb disease severity. These results open avenues for developing vaccines and therapeutics that not only target CD4+ and CD8+ T cells, but also modulate innate immune cells to limit Mtb disease.
Collapse
Affiliation(s)
- Joshua D. Bromley
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Graduate Program in Microbiology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sharie Keanne C. Ganchua
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Sarah K. Nyquist
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
| | - Michael Chao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - H. Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Mark Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Kara Kracinovsky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Douaa Mugahid
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Son Nguyen
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dennis Wang
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob M. Rosenberg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edwin C. Klein
- Division of Laboratory Animal Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hannah P. Gideon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Roisin Floyd-O’Sullivan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
| | - Philana Ling Lin
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine
| | - Sarah M. Fortune
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alex K. Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA
- Lead contact
| |
Collapse
|
49
|
Chooklin S, Chuklin S. The role of neutrophil extracellular traps in thrombosis. EMERGENCY MEDICINE 2023; 19:448-457. [DOI: 10.22141/2224-0586.19.7.2023.1627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
According to the cellular model of hemostasis, the process of blood coagulation is presented in the form of three phases: initiation, amplification and propagation, each of them includes several consecutive stages. At the same time, thrombus formation is often explained by Virchow’s triad: blood stasis, damage to the blood vessel walls, and hypercoagulation. Classically, the appearance of one of the three mentioned parameters can lead to thrombus formation. Over the past decade, our knowledge of the cross-talk between coagulation, inflammation, and innate immune activation and the involvement of neutrophil extracellular traps in these processes has expanded. This brief review shows their role in thrombosis through the mechanisms of activation of platelets, complement, interaction with blood coagulation factors and damage to the vascular endothelium. We searched the literature in the MEDLINE database on the PubMed platform.
Collapse
|
50
|
Dahlberg D, Holm S, Sagen EML, Michelsen AE, Stensland M, de Souza GA, Müller EG, Connelly JP, Revheim ME, Halvorsen B, Hassel B. Bacterial Brain Abscesses Expand Despite Effective Antibiotic Treatment: A Process Powered by Osmosis Due to Neutrophil Cell Death. Neurosurgery 2023; 94:00006123-990000000-00996. [PMID: 38084989 PMCID: PMC10990409 DOI: 10.1227/neu.0000000000002792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/22/2023] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVES A bacterial brain abscess is an emergency and should be drained of pus within 24 hours of diagnosis, as recently recommended. In this cross-sectional study, we investigated whether delaying pus drainage entails brain abscess expansion and what the underlying mechanism might be. METHODS Repeated brain MRI of 47 patients who did not undergo immediate pus drainage, pus osmolarity measurements, immunocytochemistry, proteomics, and 18F-fluorodeoxyglucose positron emission tomography. RESULTS Time from first to last MRI before neurosurgery was 1 to 14 days. Abscesses expanded in all but 2 patients: The median average increase was 23% per day (range 0%-176%). Abscesses expanded during antibiotic therapy and even if the pus did not contain viable bacteria. In a separate patient cohort, we found that brain abscess pus tended to be hyperosmolar (median value 360 mOsm; range 266-497; n = 14; normal cerebrospinal fluid osmolarity is ∼290 mOsm). Hyperosmolarity would draw water into the abscess cavity, causing abscess expansion in a ballooning manner through increased pressure in the abscess cavity. A mechanism likely underlying pus hyperosmolarity was the recruitment of neutrophils to the abscess cavity with ensuing neutrophil cell death and decomposition of neutrophil proteins and other macromolecules to osmolytes: Pus analysis showed the presence of neutrophil proteins (protein-arginine deiminases, citrullinated histone, myeloperoxidase, elastase, cathelicidin). Previous studies have shown very high levels of osmolytes (ammonia, amino acids) in brain abscess pus. 18F-fluorodeoxyglucose positron emission tomography showed focal neocortical hypometabolism 1 to 8 years after brain abscess, indicating long-lasting damage to brain tissue. CONCLUSION Brain abscesses expand despite effective antibiotic treatment. Furthermore, brain abscesses cause lasting damage to surrounding brain tissue. These findings support drainage of brain abscesses within 24 hours of diagnosis.
Collapse
Affiliation(s)
- Daniel Dahlberg
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Ellen Margaret Lund Sagen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Annika Elisabet Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Maria Stensland
- Institute of Immunology and Centre for Immune Regulation, Oslo University Hospital, Oslo, Norway
| | - Gustavo Antonio de Souza
- Institute of Immunology and Centre for Immune Regulation, Oslo University Hospital, Oslo, Norway
- Department of Biochemistry, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil
| | - Ebba Gløersen Müller
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - James Patrick Connelly
- Division of Radiology and Nuclear Medicine, Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Mona-Elisabeth Revheim
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bjørnar Hassel
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
- Norwegian Defence Research Establishment (FFI), Kjeller, Norway
| |
Collapse
|