1
|
Sangkachai N, Wiratsudakul A, Randolph DG, Whittaker M, George A, Nielsen MR, Hogarth N, Pfeiffer DU, Smith-Hall C, Nameer P, Hassan L, Talukdar G, Lee TM, Mathur VB, Rwego IB, Compton J, Mispiratceguy M, Shi J, Fine AE, Animon I, de Carvalho KR, Taber A, Newman S, Thongdee M, Sariya L, Tangsudjai S, Korkijthamkul W, Sakcamduang W, Suwanpakdee S. Advancing green recovery: Integrating one health in sustainable wildlife management in the Asia-Pacific Indigenous People and Local Communities. One Health 2025; 20:100969. [PMID: 39898313 PMCID: PMC11782897 DOI: 10.1016/j.onehlt.2025.100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/13/2024] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
Wildlife (in this paper: wild animals) deliver a crucial range of ecosystem services on human health and livelihood, particularly in Indigenous People and Local Communities (IPLCs). 'One Health' extends beyond just health; it also includes a comprehensive framework that can address wildlife and biodiversity conservation to enhance the well-being of humans, animals, and the environment with multisectoral collaboration. Therefore, integrating One Health principles into wildlife management was suggested in this review to improve the quality of life by reducing poverty, improving food security, and preventing zoonotic diseases in IPLCs. The relationship between wildlife interactions and the emergence of pathogens that can be transmitted between wild animals, domestic and production animals, and humans underscores the need to incorporate a One Health approach to mitigate risk. This integration will also contribute to conserving wild animals and their habitats and biodiversity for ecosystem balance. This review highlights the importance of One Health in supporting sustainable wildlife management to achieve a green recovery through policies and actions based on global and national regulatory frameworks, development of local policies with community engagement, risk assessment and communication, sustainable wildlife use practices, and conducting research and innovation. Monitoring and analyzing data on supply chains and economic values can serve as a decision-support tool for sustainability wildlife management. A theory of change for sustainable wildlife management and enhancing human well-being is proposed using the One Health approach. All these activities must respect local cultures and traditions, ensuring that One Health and community-based approaches effectively benefit local communities.
Collapse
Affiliation(s)
| | | | | | | | - Acty George
- Food and Agriculture Organization of the United Nations (FAO)
| | - Martin R. Nielsen
- Department of Food and Resource Economics, Faculty of Science, University of Copenhagen, Denmark
| | | | - Dirk U. Pfeiffer
- Centre for Applied One Health Research and Policy Advice, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Carsten Smith-Hall
- Department of Food and Resource Economics, Faculty of Science, University of Copenhagen, Denmark
| | - P.O. Nameer
- College of Climate Change and Environmental Science, Vellanikkara, Kerala Agricultural University, India
| | - Latiffah Hassan
- Department of Public Health, University of Missouri, Columbia, USA
| | | | - Tien Ming Lee
- School of Life Sciences and School of Ecology, State Key Lab of Biological Control, Sun Yat-sen University, China
| | | | - Innocent B. Rwego
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | | | | | - Jianbin Shi
- School of Environment, Beijing Normal University, China
| | | | - Illias Animon
- Food and Agriculture Organization of the United Nations (FAO)
| | | | - Andrew Taber
- Food and Agriculture Organization of the United Nations (FAO)
| | - Scott Newman
- Food and Agriculture Organization of the United Nations (FAO)
| | | | - Ladawan Sariya
- Faculty of Veterinary Science, Mahidol University, Thailand
| | | | | | | | | |
Collapse
|
2
|
Ansil BR, Viswanathan A, Ramachandran V, Yeshwanth HM, Sanyal A, Ramakrishnan U. Host-Pathogen-Vector Continuum in a Changing Landscape: Potential Transmission Pathways for Bartonella in a Small Mammal Community. Ecol Evol 2025; 15:e71085. [PMID: 40177689 PMCID: PMC11962204 DOI: 10.1002/ece3.71085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 02/12/2025] [Accepted: 02/21/2025] [Indexed: 04/05/2025] Open
Abstract
Bacterial infections account for a large proportion of zoonoses. Our current understanding of zoonotic spillover, however, is largely based on studies from viral systems. Small mammals such as rodents and their ectoparasites present a unique system for studying several bacterial pathogens and mapping their spillover pathways. Using Bartonella spp. (a Gram-negative bacteria) as a model system within a rainforest human-use landscape, we investigated (1) ecological correlates of Bartonella prevalence in small mammal hosts and (2) evolutionary relationships between Bartonella spp. and various hosts and ectoparasites to gain insight into pathogen movement pathways within ecological communities. We detected Bartonella in five out of eight small mammal species and in 86 (40.56%) out of 212 individuals, but prevalence varied widely among species (0%-75.8%). Seven of the ten ectoparasite species found on these small mammals were positive for Bartonella. Interestingly, while Bartonella genotypes (15) in small mammals were host-specific, ectoparasites had nonspecific associations, suggesting the possibility for vector-mediated cross-species transmission. We also found that Bartonella prevalence in hosts was positively correlated with their aggregated ectoparasite loads, further emphasizing the crucial role that ectoparasites may play in these transmission pathways. Our cophylogenetic analysis and ancestral trait (host) reconstruction revealed incongruence between small mammal and Bartonella phylogenies, indicating historic host shifts and validating the potential for contemporary spillover events. We found that small mammal hosts in this fragmented landscape often move across habitat boundaries, creating a transmission pathway (via shared ectoparasites) to novel hosts, which may include synanthropic species like Rattus rattus. Our results highlight the necessity to disentangle the complex relationship among hosts, ectoparasites, and bacterial pathogens to understand the implications of undetected spillover events.
Collapse
Affiliation(s)
- B. R. Ansil
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreKarnatakaIndia
- Manipal Academy of Higher EducationManipalKarnatakaIndia
| | | | - Vivek Ramachandran
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreKarnatakaIndia
- Wildlife Biology and Conservation ProgramNational Centre for Biological SciencesBangaloreKarnatakaIndia
| | - H. M. Yeshwanth
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreKarnatakaIndia
| | - Avirup Sanyal
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreKarnatakaIndia
- Trivedi School of BiosciencesAshoka UniversitySonipatHaryanaIndia
| | - Uma Ramakrishnan
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreKarnatakaIndia
| |
Collapse
|
3
|
Ahmed AN, Fornace KM, Iwamura T, Murray KA. Human animal contact, land use change and zoonotic disease risk: a protocol for systematic review. Syst Rev 2025; 14:65. [PMID: 40108687 PMCID: PMC11921583 DOI: 10.1186/s13643-025-02805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/28/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Zoonotic diseases pose a significant risk to human health globally. The interrelationship between humans, animals, and the environment plays a key role in the transmission of zoonotic infections. Human-animal contact (HAC) is particularly important in this relationship, where it serves as the pivotal interaction for pathogen spillover to occur from an animal reservoir to a human. In the context of disease emergence linked to land-use change, increased HAC as a result of land changes (e.g., deforestation, agricultural expansion, habitat degradation) is frequently cited as a key mechanism. We propose to conduct a systematic literature review to map and assess the quality of current evidence linking changes in HAC to zoonotic disease emergence as a result of land-use change. METHOD We developed a search protocol to be conducted in eight (8) databases: Medline, Embase, Global Health, Web of Science, Scopus, AGRIS, Africa-Wide Info, and Global Index Medicus. The review will follow standard systematic review methods and will be reported according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines. The search will consist of building a search strategy, database search, and a snowballing search of references from retrieved relevant articles. The search strategy will be developed for Medline (through PubMed) and EMBASE databases. The search strategy will then be applied to all eight (8) databases. Retrieved articles will be exported to EndNote 20 where duplicates will be removed and exported to Rayyan®, to screen papers using their title and abstract. Screening will be conducted by two independent reviewers and data extraction will be performed using a data extraction form. Articles retrieved will be assessed using study quality appraisal tools (OHAT-Office for Health Assessment and Technology Risk of Bias Rating Tool for Human and Animal Studies, CCS-Case Control Studies, OCCSS-Observational Cohort and Cross-Sectional Studies, and CIS-Controlled interventional studies). Data will be analysed using descriptive statistics and a meta-analysis where data permits. DISCUSSION The review will provide an important systematic literature aggregate of existing evidence on the role and evidence quality linking HAC to the emergence of zoonoses via land-use change. The outcome of the proposed review will produce a high-level evidence document that could inform intervention points and further research priorities. REGISTRATION The review will be registered with PROSPERO.
Collapse
Affiliation(s)
- Aliyu N Ahmed
- Centre on Climate Change and Planetary Health, Medical Research Council Unit the Gambia at London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia.
| | - Kimberly M Fornace
- Saw Swee Hock School of Public Health and National University Health Systems, National University of Singapore, Singapore, Singapore
| | - Takuya Iwamura
- Department F.-A. Forel for Aquatic and Environmental Sciences, Faculty of Science, University of Geneva, Geneva, Switzerland
- Institute of Environmental Sciences, University of Geneva, Geneva, Switzerland
- Department of Forest Ecosystems and Society, College of Forestry, Oregon State University, Corvallis, USA
| | - Kris A Murray
- Centre on Climate Change and Planetary Health, Medical Research Council Unit the Gambia at London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia
| |
Collapse
|
4
|
Leal Filho W, Nagy GJ, Gbaguidi GJ, Paz S, Dinis MAP, Luetz JM, Sharifi A. The role of climatic changes in the emergence and re-emergence of infectious diseases: bibliometric analysis and literature-supported studies on zoonoses. ONE HEALTH OUTLOOK 2025; 7:12. [PMID: 39994740 PMCID: PMC11853283 DOI: 10.1186/s42522-024-00127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/18/2024] [Indexed: 02/26/2025]
Abstract
Climate change (CC) is increasingly recognised as a critical driver in the emergence and re-emergence of infectious diseases. The relationship between CC and infectious diseases is complex and multifaceted, encompassing changes in temperature, precipitation patterns, and extreme weather events. This study describes the role of CC in the emergence and re-emergence of infectious diseases, emphasising zoonoses. It used a mixed methodology, including an initial literature contextualisation and a bibliometric analysis, to identify key thematic research areas related to CC and zoonotic diseases and show their connections. The research relied on the Scopus database for the identification of relevant source literature and focused the search query on publications in English. VOSviewer was used to discover clear thematic clusters that illustrate what research areas have been addressed in the literature and how they are interlinked. In addition, the research selected and analysed twelve literature-supported studies to investigate the relevance of the zoonoses involved in infectious disease emergence and re-emergence linked to CC impacts. Many pathogens and their vectors, such as mosquitoes, ticks, and rodents, are sensitive to temperature and moisture. CC can expand or shift the geographical distribution of these vectors, bringing diseases to new areas. Warmer temperatures may allow mosquitoes that transmit diseases like malaria and dengue fever to survive and reproduce in regions that were previously too cold. Also, extreme events such as floods, droughts, and hurricanes can lead to immediate increases in waterborne and vector-borne diseases (VBD) by facilitating the spread of pathogens. There is a need to better understand the connections between CC and zoonoses. To address the challenges posed by zoonoses linked to CC, international organizations like the WHO should coordinate a global response to provide clear guidance. Governments must integrate CC and zoonoses into national health policies, ensuring that health frameworks address these interconnected risks. Funding should be allocated for research on the root causes of CC and for strengthening defenses, particularly in developing countries with fragile health systems. Additionally, enhanced communication, education, and training for healthcare professionals about the links between CC and zoonoses are essential for raising awareness and promoting proactive measures.
Collapse
Affiliation(s)
- Walter Leal Filho
- International Climate Change Information and Research Programme, International Expert Centre for Climate Change and Health, Research and Transfer Centre "Climate Change and Sustainable Development", Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
- Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Gustavo J Nagy
- Instituto de Ecología y Ciencias Ambientales (IECA), Facultad de Ciencias, Universidad de la República (UdelaR), Iguá 4225, Montevideo, 11440, Uruguay
| | - Gouvidé Jean Gbaguidi
- International Climate Change Information and Research Programme, International Expert Centre for Climate Change and Health, Research and Transfer Centre "Climate Change and Sustainable Development", Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany.
- West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL), Faculty of Human and Social Sciences, Department of Geography, Togo, University of Lomé, Lomé, Togo.
| | - Shlomit Paz
- School of Environmental Sciences, Climate and Environmental Sustainability Center, University of Haifa, Haifa, 3103301, Israel
| | - Maria Alzira Pimenta Dinis
- Fernando Pessoa Research, Innovation and Development Institute (FP-I3ID), University Fernando Pessoa (UFP), Praça 9 de Abril 349, Porto, 4249-004, Portugal
- Marine and Environmental Sciences Centre (MARE), University of Coimbra, Edifício do Patronato, Rua da Matemática, 49, Coimbra, 3004-517, Portugal
| | - Johannes M Luetz
- Graduate Research School, Alphacrucis University College, Brisbane, QLD, 4102, Australia
- School of Law and Society, University of the Sunshine Coast, Maroochydore, QLD, 4556, Australia
- School of Social Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ayyoob Sharifi
- The IDEC Institute & Network for Education and Research on Peace and Sustainability (NERPS), Hiroshima University, 1-5-1 Kagamiyama, Higashi Hiroshima City, Hiroshima, 739-8529, Japan
| |
Collapse
|
5
|
Worsley-Tonks KEL, Angwenyi S, Carlson C, Cissé G, Deem SL, Ferguson AW, Fèvre EM, Kimaro EG, Kimiti DW, Martins DJ, Merbold L, Mottet A, Murray S, Muturi M, Potter TM, Prasad S, Wild H, Hassell JM. A framework for managing infectious diseases in rural areas in low- and middle-income countries in the face of climate change-East Africa as a case study. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0003892. [PMID: 39883787 PMCID: PMC11781624 DOI: 10.1371/journal.pgph.0003892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Climate change is having unprecedented impacts on human health, including increasing infectious disease risk. Despite this, health systems across the world are currently not prepared for novel disease scenarios anticipated with climate change. While the need for health systems to develop climate change adaptation strategies has been stressed in the past, there is no clear consensus on how this can be achieved, especially in rural areas in low- and middle-income countries that experience high disease burdens and climate change impacts simultaneously. Here, we highlight the need to put health systems in the context of climate change and demonstrate how this can be achieved by taking into account all aspects of infectious disease risk (i.e., pathogen hazards, and exposure and vulnerability to these pathogen hazards). The framework focuses on rural communities in East Africa since communities in this region experience climate change impacts, present specific vulnerabilities and exposure to climate-related hazards, and have regular exposure to a high burden of infectious diseases. Implementing the outlined approach can help make health systems climate adapted and avoid slowing momentum towards achieving global health grand challenge targets.
Collapse
Affiliation(s)
- Katherine E. L. Worsley-Tonks
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, Paris, France
- Global Health Program, Smithsonian Conservation Biology Institute, Washington, DC, United States of America
- International Livestock Research Institute, Nairobi, Kenya
| | - Shaleen Angwenyi
- Global Health Program, Smithsonian Conservation Biology Institute, Washington, DC, United States of America
| | - Colin Carlson
- Department of Epidemiology of Microbial Diseases, Yale University School of Public Health, New Haven, Connecticut, United State of America
| | - Guéladio Cissé
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Sharon L. Deem
- Institute for Conservation Medicine, Saint Louis Zoo, Saint Louis, Missouri, United States of America
| | - Adam W. Ferguson
- Gantz Family Collection Center, Field Museum of Natural History, Chicago, Illinois, United States of America
| | - Eric M. Fèvre
- International Livestock Research Institute, Nairobi, Kenya
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Esther G. Kimaro
- Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | | | - Dino J. Martins
- Turkana Basin Institute, Stony Brook University, Stony Brook, New York, United States of America
| | - Lutz Merbold
- Mazingira Centre, International Livestock Research Institute, Nairobi, Kenya
- Integrative Agroecology Group, Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Anne Mottet
- International Fund for Agricultural Development; Sustainable Production, Markets and Institutions Division, Rome, Italy,
| | - Suzan Murray
- Global Health Program, Smithsonian Conservation Biology Institute, Washington, DC, United States of America
| | - Mathew Muturi
- Global Health Program, Smithsonian Conservation Biology Institute, Washington, DC, United States of America
- Kenya Zoonotic Disease Unit, Nairobi, Kenya
- Department of Veterinary Medicine, Dahlem Research School of Biomedical Sciences (DRS), Freie Universität Berlin, Berlin, Germany
| | - Teddie M. Potter
- School of Nursing, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Shailendra Prasad
- Center for Global Health and Social Responsibility, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hannah Wild
- Department of Surgery, University of Washington, Seattle, Washington, United States of America
| | - James M. Hassell
- Global Health Program, Smithsonian Conservation Biology Institute, Washington, DC, United States of America
- International Livestock Research Institute, Nairobi, Kenya
- Department of Epidemiology of Microbial Diseases, Yale University School of Public Health, New Haven, Connecticut, United State of America
| |
Collapse
|
6
|
Chaves A, Mendoza H, Herrera A, Pacheco-Zapata M, López-Pérez AM, Fernández A, Arguello-Sáenz M, Arnal A, Suzán G. Zoonosis: social and environmental connections in the Mexico-United States border region. ONE HEALTH OUTLOOK 2025; 7:3. [PMID: 39780242 PMCID: PMC11715514 DOI: 10.1186/s42522-024-00120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/04/2024] [Indexed: 01/11/2025]
Abstract
The emerging risks facing humanity have highlighted the need to address and prevent challenges through multilateral preventive strategies. The Mexico-United States (US) border is a region with great biological biodiversity and both countries shared a similar history and intense socioeconomic, and cultural interrelationships. Also, it has an extraordinary ecological contrast, resulting in an enormous biological diversity in a broad Nearctic-Neotropical transition zone. This dynamic region has important disparities due to the lack of bilateral strategies to face emerging issues (e.g., infectious diseases) in an integrated and holistic approach. In this context, we describe the various socio-ecosystemic contexts of the shared border and present different diseases transmitted, and different zoonoses that affect ecosystemic public health that must be addressed under collaborative schemes that can develop preventive policies under the One Health approach with emphasis on the Mexican zone. We describe the social determinants of health issues for the border, but we add ecological contexts infrequently studied in classical epidemiological approaches. Strategies towards One Health require international and multidisciplinary approaches that strengthen diagnostic capabilities, recognizing social, and environmental challenges. Recognizing these aspects will allow the establishment of joint monitoring, prevention, and mitigation strategies with benefits for both countries.
Collapse
Affiliation(s)
- Andrea Chaves
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico
- Institute of Research and Education in Nutrition and Health (INCIENSA), La Union, San Diego, Cartago, 42250, Costa Rica
- Escuela de Biología, Universidad de Costa, 11501-206, San José, Costa Rica
| | - Hugo Mendoza
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico
| | - Angel Herrera
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico
| | - Mitsuri Pacheco-Zapata
- Institute of Research and Education in Nutrition and Health (INCIENSA), La Union, San Diego, Cartago, 42250, Costa Rica
- International Joint Laboratory ELDORADO, IRD/UNAM, Mérida, Yucatán, México
| | - Andrés M López-Pérez
- Red de Biología y Conservación de Vertebrados, Instituto de ecologia AC, Xalapa, 91073, Veracruz, México
| | - Adriana Fernández
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico
| | - Milena Arguello-Sáenz
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico
| | - Audrey Arnal
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico
- International Joint Laboratory ELDORADO, IRD/UNAM, Mérida, Yucatán, México
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Gerardo Suzán
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico.
- International Joint Laboratory ELDORADO, IRD/UNAM, Mérida, Yucatán, México.
| |
Collapse
|
7
|
Gibb R, Redding DW, Friant S, Jones KE. Towards a 'people and nature' paradigm for biodiversity and infectious disease. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230259. [PMID: 39780600 PMCID: PMC11712283 DOI: 10.1098/rstb.2023.0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025] Open
Abstract
Zoonotic and vector-borne infectious diseases are among the most direct human health consequences of biodiversity change. The COVID-19 pandemic increased health policymakers' attention on the links between ecological degradation and disease, and sparked discussions around nature-based interventions to mitigate zoonotic emergence and epidemics. Yet, although disease ecology provides an increasingly granular knowledge of wildlife disease in changing ecosystems, we still have a poor understanding of the net consequences for human disease. Here, we argue that a renewed focus on wildlife-borne diseases as complex socio-ecological systems-a 'people and nature' paradigm-is needed to identify local interventions and transformative system-wide changes that could reduce human disease burden. We discuss longstanding scientific narratives of human involvement in zoonotic disease systems, which have largely framed people as ecological disruptors, and discuss three emerging research areas that provide wider system perspectives: how anthropogenic ecosystems construct new niches for infectious disease, feedbacks between disease, biodiversity and social vulnerability and the role of human-to-animal pathogen transmission ('spillback') in zoonotic disease systems. We conclude by discussing new opportunities to better understand the predictability of human disease outcomes from biodiversity change and to integrate ecological drivers of disease into health intervention design and evaluation.This article is part of the discussion meeting issue 'Bending the curve towards nature recovery: building on Georgina Mace's legacy for a biodiverse future'.
Collapse
Affiliation(s)
- Rory Gibb
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment,, University College London, LondonWC1E 6BT, UK
| | | | - Sagan Friant
- Department of Anthropology, Pennsylvania State University, University Park, PA16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA16802, USA
| | - Kate E. Jones
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment,, University College London, LondonWC1E 6BT, UK
| |
Collapse
|
8
|
Titcomb G, Uelmen J, Janko M, Nunn C. Infectious disease responses to human climate change adaptations. GLOBAL CHANGE BIOLOGY 2024; 30:e17433. [PMID: 39171421 PMCID: PMC11646313 DOI: 10.1111/gcb.17433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 08/23/2024]
Abstract
Many recent studies have examined the impact of predicted changes in temperature and precipitation patterns on infectious diseases under different greenhouse gas emissions scenarios. But these emissions scenarios symbolize more than altered temperature and precipitation regimes; they also represent differing levels of change in energy, transportation, and food production at a global scale to reduce the effects of climate change. The ways humans respond to climate change, either through adaptation or mitigation, have underappreciated, yet hugely impactful effects on infectious disease transmission, often in complex and sometimes nonintuitive ways. Thus, in addition to investigating the direct effects of climate changes on infectious diseases, it is critical to consider how human preventative measures and adaptations to climate change will alter the environments and hosts that support pathogens. Here, we consider the ways that human responses to climate change will likely impact disease risk in both positive and negative ways. We evaluate the evidence for these impacts based on the available data, and identify research directions needed to address climate change while minimizing externalities associated with infectious disease, especially for vulnerable communities. We identify several different human adaptations to climate change that are likely to affect infectious disease risk independently of the effects of climate change itself. We categorize these changes into adaptation strategies to secure access to water, food, and shelter, and mitigation strategies to decrease greenhouse gas emissions. We recognize that adaptation strategies are more likely to have infectious disease consequences for under-resourced communities, and call attention to the need for socio-ecological studies to connect human behavioral responses to climate change and their impacts on infectious disease. Understanding these effects is crucial as climate change intensifies and the global community builds momentum to slow these changes and reduce their impacts on human health, economic productivity, and political stability.
Collapse
Affiliation(s)
- Georgia Titcomb
- Department of Fish, Wildlife, and Conservation Biology, Warner College of Natural Resources, Colorado State University, Fort Collins, Colorado, USA
| | - Johnny Uelmen
- Triangle Center for Evolutionary Medicine, Durham, North Carolina, USA
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark Janko
- Duke Global Health Institute, Durham, North Carolina, USA
| | - Charles Nunn
- Triangle Center for Evolutionary Medicine, Durham, North Carolina, USA
- Duke Global Health Institute, Durham, North Carolina, USA
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
9
|
Parsons ES, Jowell A, Veidis E, Barry M, Israni ST. Climate change and inequality. Pediatr Res 2024:10.1038/s41390-024-03153-z. [PMID: 38914758 DOI: 10.1038/s41390-024-03153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 06/26/2024]
Abstract
This review explores how climate change is manifesting along existing lines of inequality and thus further exacerbating current health disparities with a particular focus on children and future generations. Climate change risk and vulnerability are not equally distributed, nor is the adaptive capacity to respond to its adverse effects, which include health consequences, economic impacts, and displacement. Existing lines of inequality are already magnifying the adverse effects of climate change. Today's children and future generations will experience a disproportionate number of adverse climate events than prior generations, especially children in lower-income populations, communities of color, and Indigenous communities. In order to mitigate the crisis of inequity accompanying the climate crisis, systemic action must be taken on a global scale - with a focus on protecting children and future generations, and in empowering youth-led environmental activism and engagement in climate policy. IMPACT STATEMENT: Our review offers a current summary of the ways in which inequality is manifesting with respect to climate change in children and future generations. Rather than use a systematic review, we opted to use a theoretical framework to guide our review. We divided the effects of climate change into three effect pathways: via disruptions in (i) climate and weather, (ii) ecosystems, and (iii) society. By dividing our review in this theoretical framework, we can better suggest targeted public health interventions at each effect level. Furthermore, we are able to successfully identify literature gaps and areas of future research.
Collapse
Affiliation(s)
- Ella Sandrine Parsons
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, USA.
| | - Ashley Jowell
- Stanford University School of Medicine, Stanford, CA, USA
| | - Erika Veidis
- Center for Innovation in Global Health, Stanford University, Stanford, CA, USA
| | - Michele Barry
- Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
10
|
Szajnoga D, Perenc H, Jakubiak GK, Cieślar G, Ćwieląg-Drabek M. Consumption of Meats and Fish in Poland during the COVID-19 Lockdown Period. Nutrients 2024; 16:1318. [PMID: 38732565 PMCID: PMC11085878 DOI: 10.3390/nu16091318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The COVID-19 pandemic and related restrictions have significantly impacted the quality of life of society in many countries in various aspects. The purpose of this study was to examine how the COVID-19 pandemic affected the consumption of meat and fish in society in Poland as well as the factors that determined these changes. The cross-sectional study was conducted using an original online questionnaire between 8th and 18th of April 2020. The subjects were selected randomly. The target population were adults living in Poland. The inclusion criterion for the study was the age of at least 18 years and consent to selfless participation in the study. Communication via social media such as Facebook or Instagram was used to enroll more participants from different socio-demographic subgroups. The questionnaire was divided into two parts-the first part contained questions about sex, age, body mass, body height, residence, level of education, and occupation, and the second part consisted of specific questions about the consumption frequency of different kinds of meat during the COVID-19 lockdown period (in comparison to the time before the pandemic). A total of 3888 people took part in the study including 84.54% women, with an average age of 30.17 ± 9.22 years. The frequency of poultry consumption increased, while for pork, beef, ham and other meat products as well as fish and seafood it declined. The factors that influenced the change in dietary patterns during the lockdown related to the COVID-19 pandemic included age, body mass index, gender, place of residence, and type of work performed. However, no relationship was found between the change in meat and fish consumption during the pandemic and the level of education and form of employment during the pandemic.
Collapse
Affiliation(s)
- Dominika Szajnoga
- Student Research Group, Department of Environmental Health, Faculty of Public Health in Bytom, Medical University of Silesia, Piekarska 18 St., 41-902 Bytom, Poland;
| | - Helena Perenc
- Student Research Group, Department and Clinic of Internal Medicine, Angiology, and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland;
| | - Grzegorz K. Jakubiak
- Department and Clinic of Internal Medicine, Angiology, and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland;
| | - Grzegorz Cieślar
- Department and Clinic of Internal Medicine, Angiology, and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland;
| | - Małgorzata Ćwieląg-Drabek
- Department of Environmental Health Risk Factors, Faculty of Public Health in Bytom, Medical University of Silesia, Piekarska 18 St., 41-902 Bytom, Poland;
| |
Collapse
|
11
|
Matute DR, Cooper BS. Aedes albopictus is present in the lowlands of southern Zambia. Acta Trop 2024; 251:107115. [PMID: 38184292 PMCID: PMC11586621 DOI: 10.1016/j.actatropica.2023.107115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024]
Abstract
Identifying the current geographic range of disease vectors is a critical first step towards determining effective mechanisms for controlling and potentially eradicating them. This is particularly true given that historical vector ranges may expand due to changing climates and human activity. The Aedes subgenus Stegomyia contains over 100 species, and among them, Ae. aegypti and Ae. albopictus mosquitoes represent the largest concern for public health, spreading dengue, chikungunya, and zika viruses. While Ae. aegypti has been observed in the country of Zambia for decades, Ae. albopictus has not. In 2015 we sampled four urban and three rural areas in Zambia for Aedes species. Using DNA barcoding, we confirmed the presence of immature and adult Ae. albopictus at two sites: Siavonga and Livingstone. These genotypes seem most closely related to specimens previously collected in Mozambique based on mtDNA barcoding. We resampled Siavonga and Livingstone sites in 2019, again observing immature and adult Ae. albopictus at both sites. Relative Ae. albopictus frequencies were similar between sites, with the exception of immature life stages, which were higher in Siavonga than in Livingstone in 2019. While Ae. albopictus frequencies did not vary through time in Livingstone, both immature and adult frequencies increased through time in Siavonga. This report serves to document the presence of Ae. albopictus in Zambia, which will contribute to understanding the potential public health implications of this disease vector in southern Africa.
Collapse
Affiliation(s)
- Daniel R Matute
- Biology Department, University of North Carolina, 250 Bell Tower Drive, Genome Sciences Building, Chapel Hill, NC 27510, United States.
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812, United States
| |
Collapse
|
12
|
Wright CY, Kapwata T, Naidoo N, Asante KP, Arku RE, Cissé G, Simane B, Atuyambe L, Berhane K. Climate Change and Human Health in Africa in Relation to Opportunities to Strengthen Mitigating Potential and Adaptive Capacity: Strategies to Inform an African "Brains Trust". Ann Glob Health 2024; 90:7. [PMID: 38312714 PMCID: PMC10836170 DOI: 10.5334/aogh.4260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024] Open
Abstract
Background Africa faces diverse and complex population/human health challenges due to climate change. Understanding the health impacts of climate change in Africa in all its complexity is essential for implementing effective strategies and policies to mitigate risks and protect vulnerable populations. This study aimed to outline the major climate change-related health impacts in Africa in the context of economic resilience and to seek solutions and provide strategies to prevent or reduce adverse effects of climate change on human health and well-being in Africa. Methods For this narrative review, a literature search was conducted in the Web of Science, Scopus, CAB Abstracts, MEDLINE and EMBASE electronic databases. We also searched the reference lists of retrieved articles for additional records as well as reports. We followed a conceptual framework to ensure all aspects of climate change and health impacts in Africa were identified. Results The average temperatures in all six eco-regions of Africa have risen since the early twentieth century, and heat exposure, extreme events, and sea level rise are projected to disproportionately affect Africa, resulting in a larger burden of health impacts than other continents. Given that climate change already poses substantial challenges to African health and well-being, this will necessitate significant effort, financial investment, and dedication to climate change mitigation and adaptation. This review offers African leaders and decision-makers data-driven and action-oriented strategies that will ensure a more resilient healthcare system and safe, healthy populations-in ways that contribute to economic resiliency. Conclusions The urgency of climate-health action integrated with sustainable development in Africa cannot be overstated, given the multiple economic gains from reducing current impacts and projected risks of climate change on the continent's population health and well-being. Climate action must be integrated into Africa's development plan to meet the Sustainable Development Goals, protect vulnerable populations from the detrimental effects of climate change, and promote economic development.
Collapse
Affiliation(s)
- Caradee Y. Wright
- Environment and Health Research Unit, South African Medical Research Council, Pretoria, South Africa
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa
| | - Thandi Kapwata
- Environment and Health Research Unit, South African Medical Research Council, Pretoria, South Africa
- Department of Environmental Health, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Natasha Naidoo
- Environment and Health Research Unit, South African Medical Research Council, Durban, South Africa
| | | | - Raphael E. Arku
- School of Public Health & Health Sciences, University of Massachusetts Amherst, USA
| | - Guéladio Cissé
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Lynn Atuyambe
- Makerere University, School of Public Health, Uganda
| | | |
Collapse
|
13
|
Hudson J, Egan S. Marine diseases and the Anthropocene: Understanding microbial pathogenesis in a rapidly changing world. Microb Biotechnol 2024; 17:e14397. [PMID: 38217393 PMCID: PMC10832532 DOI: 10.1111/1751-7915.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024] Open
Abstract
Healthy marine ecosystems are paramount for Earth's biodiversity and are key to sustaining the global economy and human health. The effects of anthropogenic activity represent a pervasive threat to the productivity of marine ecosystems, with intensifying environmental stressors such as climate change and pollution driving the occurrence and severity of microbial diseases that can devastate marine ecosystems and jeopardise food security. Despite the potentially catastrophic outcomes of marine diseases, our understanding of host-pathogen interactions remains an understudied aspect of both microbiology and environmental research, especially when compared to the depth of information available for human and agricultural systems. Here, we identify three avenues of research in which we can advance our understanding of marine disease in the context of global change, and make positive steps towards safeguarding marine communities for future generations.
Collapse
Affiliation(s)
- Jennifer Hudson
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNew South WalesAustralia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
14
|
Chitre SD, Crews CM, Tessema MT, Plėštytė-Būtienė I, Coffee M, Richardson ET. The impact of anthropogenic climate change on pediatric viral diseases. Pediatr Res 2024; 95:496-507. [PMID: 38057578 PMCID: PMC10872406 DOI: 10.1038/s41390-023-02929-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/12/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
The adverse effects of climate change on human health are unfolding in real time. Environmental fragmentation is amplifying spillover of viruses from wildlife to humans. Increasing temperatures are expanding mosquito and tick habitats, introducing vector-borne viruses into immunologically susceptible populations. More frequent flooding is spreading water-borne viral pathogens, while prolonged droughts reduce regional capacity to prevent and respond to disease outbreaks with adequate water, sanitation, and hygiene resources. Worsening air quality and altered transmission seasons due to an increasingly volatile climate may exacerbate the impacts of respiratory viruses. Furthermore, both extreme weather events and long-term climate variation are causing the destruction of health systems and large-scale migrations, reshaping health care delivery in the face of an evolving global burden of viral disease. Because of their immunological immaturity, differences in physiology (e.g., size), dependence on caregivers, and behavioral traits, children are particularly vulnerable to climate change. This investigation into the unique pediatric viral threats posed by an increasingly inhospitable world elucidates potential avenues of targeted programming and uncovers future research questions to effect equitable, actionable change. IMPACT: A review of the effects of climate change on viral threats to pediatric health, including zoonotic, vector-borne, water-borne, and respiratory viruses, as well as distal threats related to climate-induced migration and health systems. A unique focus on viruses offers a more in-depth look at the effect of climate change on vector competence, viral particle survival, co-morbidities, and host behavior. An examination of children as a particularly vulnerable population provokes programming tailored to their unique set of vulnerabilities and encourages reflection on equitable climate adaptation frameworks.
Collapse
Affiliation(s)
- Smit D Chitre
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Cecilia M Crews
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Mesfin Teklu Tessema
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA.
- International Rescue Committee, New York, NY, USA.
| | | | - Megan Coffee
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA
- International Rescue Committee, New York, NY, USA
- New York University Grossman School of Medicine, New York, NY, USA
| | - Eugene T Richardson
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
15
|
Dhivahar J, Parthasarathy A, Krishnan K, Kovi BS, Pandian GN. Bat-associated microbes: Opportunities and perils, an overview. Heliyon 2023; 9:e22351. [PMID: 38125540 PMCID: PMC10730444 DOI: 10.1016/j.heliyon.2023.e22351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/21/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
The potential biotechnological uses of bat-associated bacteria are discussed briefly, indicating avenues for biotechnological applications of bat-associated microbes. The uniqueness of bats in terms of their lifestyle, genomes and molecular immunology may predispose bats to act as disease reservoirs. Molecular phylogenetic analysis has shown several instances of bats harbouring the ancestral lineages of bacterial (Bartonella), protozoal (Plasmodium, Trypanosoma cruzi) and viral (SARS-CoV2) pathogens infecting humans. Along with the transmission of viruses from bats, we also discuss the potential roles of bat-associated bacteria, fungi, and protozoan parasites in emerging diseases. Current evidence suggests that environmental changes and interactions between wildlife, livestock, and humans contribute to the spill-over of infectious agents from bats to other hosts. Domestic animals including livestock may act as intermediate amplifying hosts for bat-origin pathogens to transmit to humans. An increasing number of studies investigating bat pathogen diversity and infection dynamics have been published. However, whether or how these infectious agents are transmitted both within bat populations and to other hosts, including humans, often remains unknown. Metagenomic approaches are uncovering the dynamics and distribution of potential pathogens in bat microbiomes, which might improve the understanding of disease emergence and transmission. Here, we summarize the current knowledge on bat zoonoses of public health concern and flag the gaps in the knowledge to enable further research and allocation of resources for tackling future outbreaks.
Collapse
Affiliation(s)
- J. Dhivahar
- Research Department of Zoology, St. Johns College, Palayamkottai, 627002, India
- Department of Plant Biology and Biotechnology, Laboratory of Microbial Ecology, Loyola College, Chennai, 600034, India
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Anutthaman Parthasarathy
- Department of Chemistry and Biosciences, Richmond Building, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United Kingdom
| | - Kathiravan Krishnan
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Basavaraj S. Kovi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| |
Collapse
|
16
|
Matute DR, Cooper BS. Aedes albopictus is present in the lowlands of southern Zambia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560125. [PMID: 37808696 PMCID: PMC10557682 DOI: 10.1101/2023.09.29.560125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Identifying the current geographic range of disease vectors is a critical first step towards determining effective mechanisms for controlling and potentially eradicating them. This is particularly true given that historical vector ranges may expand due to changing climates and human activity. The Aedes subgenus Stegomyia contains over 100 species, and among them, Ae. aegypti and Ae. albopictus mosquitoes represent the largest concern for public health, spreading dengue, chikungunya, and Zika viruses. While Ae. aegypti has been observed in the country of Zambia for decades, Ae. albopictus has not. In 2015 we sampled four urban and two rural areas in Zambia for Aedes species. Using DNA barcoding, we confirmed the presence of immature and adult Ae. albopictus at two rural sites: Siavonga and Livingstone. These genotypes seem most closely related to specimens previously collected in Mozambique based on CO1 sequence from mtDNA. We resampled Siavonga and Livingstone sites in 2019, again observing immature and adult Ae. albopictus at both sites. Relative Ae. albopictus frequencies were similar between sites, with the exception of immature life stages, which were higher in Siavonga than in Livingstone in 2019. While Ae. albopictus frequencies did not vary through time in Livingstone, both immature and adult frequencies increased through time in Siavonga. This report serves to document the presence of Ae. albopictus in Zambia, which will contribute to the process of determining the potential public health implications of this disease vector in Central Africa.
Collapse
Affiliation(s)
- Daniel R Matute
- Biology Department, University of North Carolina, 250 Bell Tower Drive, Genome Sciences Building, Chapel Hill, NC 27510
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812
| |
Collapse
|
17
|
Cao B, Bai C, Wu K, La T, Su Y, Che L, Zhang M, Lu Y, Gao P, Yang J, Xue Y, Li G. Tracing the future of epidemics: Coincident niche distribution of host animals and disease incidence revealed climate-correlated risk shifts of main zoonotic diseases in China. GLOBAL CHANGE BIOLOGY 2023; 29:3723-3746. [PMID: 37026556 DOI: 10.1111/gcb.16708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 06/06/2023]
Abstract
Climate has critical roles in the origin, pathogenesis and transmission of infectious zoonotic diseases. However, large-scale epidemiologic trend and specific response pattern of zoonotic diseases under future climate scenarios are poorly understood. Here, we projected the distribution shifts of transmission risks of main zoonotic diseases under climate change in China. First, we shaped the global habitat distribution of main host animals for three representative zoonotic diseases (2, 6, and 12 hosts for dengue, hemorrhagic fever, and plague, respectively) with 253,049 occurrence records using maximum entropy (Maxent) modeling. Meanwhile, we predicted the risk distribution of the above three diseases with 197,098 disease incidence records from 2004 to 2017 in China using an integrated Maxent modeling approach. The comparative analysis showed that there exist highly coincident niche distributions between habitat distribution of hosts and risk distribution of diseases, indicating that the integrated Maxent modeling is accurate and effective for predicting the potential risk of zoonotic diseases. On this basis, we further projected the current and future transmission risks of 11 main zoonotic diseases under four representative concentration pathways (RCPs) (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in 2050 and 2070 in China using the above integrated Maxent modeling with 1,001,416 disease incidence records. We found that Central China, Southeast China, and South China are concentrated regions with high transmission risks for main zoonotic diseases. More specifically, zoonotic diseases had diverse shift patterns of transmission risks including increase, decrease, and unstable. Further correlation analysis indicated that these patterns of shifts were highly correlated with global warming and precipitation increase. Our results revealed how specific zoonotic diseases respond in a changing climate, thereby calling for effective administration and prevention strategies. Furthermore, these results will shed light on guiding future epidemiologic prediction of emerging infectious diseases under global climate change.
Collapse
Affiliation(s)
- Bo Cao
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Chengke Bai
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Ting La
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yiyang Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lingyu Che
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Meng Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yumeng Lu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Pufan Gao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jingjing Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ying Xue
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Guishuang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
18
|
von Delft A, Hall MD, Kwong AD, Purcell LA, Saikatendu KS, Schmitz U, Tallarico JA, Lee AA. Accelerating antiviral drug discovery: lessons from COVID-19. Nat Rev Drug Discov 2023; 22:585-603. [PMID: 37173515 PMCID: PMC10176316 DOI: 10.1038/s41573-023-00692-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, a wave of rapid and collaborative drug discovery efforts took place in academia and industry, culminating in several therapeutics being discovered, approved and deployed in a 2-year time frame. This article summarizes the collective experience of several pharmaceutical companies and academic collaborations that were active in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antiviral discovery. We outline our opinions and experiences on key stages in the small-molecule drug discovery process: target selection, medicinal chemistry, antiviral assays, animal efficacy and attempts to pre-empt resistance. We propose strategies that could accelerate future efforts and argue that a key bottleneck is the lack of quality chemical probes around understudied viral targets, which would serve as a starting point for drug discovery. Considering the small size of the viral proteome, comprehensively building an arsenal of probes for proteins in viruses of pandemic concern is a worthwhile and tractable challenge for the community.
Collapse
Affiliation(s)
- Annette von Delft
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Oxford Biomedical Research Centre, National Institute for Health Research, University of Oxford, Oxford, UK.
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | | | | | | | | | | | - Alpha A Lee
- PostEra, Inc., Cambridge, MA, USA.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Littler K, Sheather J, Singh J, Wright K. Why climate change health policy needs ethics to achieve health equity and climate justice-a call to action. BMJ 2023; 381:1368. [PMID: 37339784 DOI: 10.1136/bmj.p1368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Affiliation(s)
- Katherine Littler
- Health Ethics and Governance Unit, Research for Health Department, Science Division, World Health Organization
| | | | - Jerome Singh
- Howard College School of Law, University of KwaZulu-Natal, Durban, South Africa
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada; Academy of Science of South Africa, South Africa
- Scientific Advisory Group on Emergencies (SAGE), Academy of Science of
| | | |
Collapse
|
20
|
Irrgang C, Eckmanns T, V Kleist M, Antão EM, Ladewig K, Wieler LH, Körber N. [Application areas of artificial intelligence in the context of One Health with a focus on antimicrobial resistance]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023:10.1007/s00103-023-03707-2. [PMID: 37140603 PMCID: PMC10157576 DOI: 10.1007/s00103-023-03707-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
Societal health is facing a number of new challenges, largely driven by ongoing climate change, demographic ageing, and globalization. The One Health approach links human, animal, and environmental sectors with the goal of achieving a holistic understanding of health in general. To implement this approach, diverse and heterogeneous data streams and types must be combined and analyzed. To this end, artificial intelligence (AI) techniques offer new opportunities for cross-sectoral assessment of current and future health threats. Using the example of antimicrobial resistance as a global threat in the One Health context, we demonstrate potential applications and challenges of AI techniques.This article provides an overview of different applications of AI techniques in the context of One Health and highlights their challenges. Using the spread of antimicrobial resistance (AMR), an increasing global threat, as an example, existing and future AI-based approaches to AMR containment and prevention are described. These range from novel drug development and personalized therapy, to targeted monitoring of antibiotic use in livestock and agriculture, to comprehensive environmental surveillance.
Collapse
Affiliation(s)
- Christopher Irrgang
- Zentrum für Künstliche Intelligenz in der Public Health-Forschung, Robert Koch-Institut, Wildau, Deutschland.
| | - Tim Eckmanns
- FG 37: Nosokomiale Infektionen, Surveillance von Antibiotikaresistenz und -verbrauch, Robert Koch-Institut, Berlin, Deutschland
| | - Max V Kleist
- Fachbereich für Mathematik und Informatik, Freie Universität Berlin, Berlin, Deutschland
- P5: Systemmedizin von Infektionskrankheiten, Robert Koch-Institut, Berlin, Deutschland
| | - Esther-Maria Antão
- Fachgebiet Digital Global Public Health, Hasso-Plattner-Institut, Potsdam, Deutschland
| | - Katharina Ladewig
- Zentrum für Künstliche Intelligenz in der Public Health-Forschung, Robert Koch-Institut, Wildau, Deutschland
| | - Lothar H Wieler
- Robert Koch-Institut, Berlin, Deutschland
- Fachgebiet Digital Global Public Health, Hasso-Plattner-Institut, Potsdam, Deutschland
| | - Nils Körber
- Zentrum für Künstliche Intelligenz in der Public Health-Forschung, Robert Koch-Institut, Wildau, Deutschland
| |
Collapse
|
21
|
Edelson PJ, Harold R, Ackelsberg J, Duchin JS, Lawrence SJ, Manabe YC, Zahn M, LaRocque RC. Climate Change and the Epidemiology of Infectious Diseases in the United States. Clin Infect Dis 2023; 76:950-956. [PMID: 36048507 DOI: 10.1093/cid/ciac697] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/08/2022] [Accepted: 08/24/2022] [Indexed: 11/14/2022] Open
Abstract
The earth is rapidly warming, driven by increasing atmospheric carbon dioxide and other gases that result primarily from fossil fuel combustion. In addition to causing arctic ice melting and extreme weather events, climatologic factors are linked strongly to the transmission of many infectious diseases. Changes in the prevalence of infectious diseases not only reflect the impacts of temperature, humidity, and other weather-related phenomena on pathogens, vectors, and animal hosts but are also part of a complex of social and environmental factors that will be affected by climate change, including land use, migration, and vector control. Vector- and waterborne diseases and coccidioidomycosis are all likely to be affected by a warming planet; there is also potential for climate-driven impacts on emerging infectious diseases and antimicrobial resistance. Additional resources for surveillance and public health activities are urgently needed, as well as systematic education of clinicians on the health impacts of climate change.
Collapse
Affiliation(s)
- Paul J Edelson
- College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Rachel Harold
- Medical Society Consortium on Climate and Health, Center for Climate Change Communication, George Mason University, Fairfax, Virginia, USA
| | - Joel Ackelsberg
- New York City Department of Health and Mental Hygiene, Bureau of Communicable Disease, New York, New York, USA
| | - Jeffrey S Duchin
- Public Health-Seattle and King County, Seattle, Washington, USA
- Division of Infectious Diseases, University of Washington, Seattle, Washington, USA
| | | | - Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matt Zahn
- Orange County Health Care Agency, Santa Ana, California, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Stanhope J, Maric F, Rothmore P, Weinstein P. Physiotherapy and ecosystem services: improving the health of our patients, the population, and the environment. Physiother Theory Pract 2023; 39:227-240. [PMID: 34904927 DOI: 10.1080/09593985.2021.2015814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION The relevance of ecosystems to physiotherapy has traditionally been overlooked, despite its potential for health impacts relevant to conditions often managed by physiotherapists. PURPOSE The purpose of this article is to introduce the concept of ecosystem services to physiotherapists, and to discuss how understanding ecosystem services may improve patient care, and population and planetary health. DISCUSSION AND CONCLUSION Physiotherapists with an understanding of ecosystem services may improve patient care by value-adding to management through patient education, empathy, advocacy, and broader population health approaches. Physiotherapists are also well placed to promote the conservation and restoration of ecosystem through participation, advocacy, and the development of public health measures, to the benefit of global sustainability and population health. Further research is required into how physiotherapists currently use nature-based interventions, and the barriers and enablers to their use. To be adequately prepared to meet the challenges that climate change and environmental degradation pose to patient care, population health and health systems, both current and future physiotherapists need to take a broader view of their practice. By including consideration of the potential role of the environment and green space exposure in particular on their patient's health, physiotherapists can ultimately contribute more to population and planetary health.
Collapse
Affiliation(s)
- Jessica Stanhope
- School of Allied Health Science and Practice, University of Adelaide, Adelaide, Australia
| | - Filip Maric
- Department of Health and Care Sciences, UiT the Arctic University of Norway (Tromsø), Tromsø, Norway
| | - Paul Rothmore
- School of Allied Health Science and Practice, University of Adelaide, Adelaide, Australia
| | - Philip Weinstein
- School of Public Health, University of Adelaide, Adelaide, Australia
| |
Collapse
|
23
|
Begou P, Kassomenos P. The ecosyndemic framework of the global environmental change and the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159327. [PMID: 36220476 PMCID: PMC9547397 DOI: 10.1016/j.scitotenv.2022.159327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The ecosyndemic theory combines the concept of 'synergy' with 'epidemic' and the term "eco" implies the role of the environmental changes. Each of the conditions enhances the negative impacts of the other in an additive way making our society more vulnerable and heightening individual risk factors. In this study, we analyze the mutually reinforcing links between the environment and health from the complexity angle of the ecosyndemic theory and propose the characterization of the COVID-19 pandemic as ecosyndemic. We use the term 'ecosyndemic' because the global environmental change contributes to local-scale, regional-scale and global-scale alterations of the Earth's systems. These changes have their root causes in the way that people interact with the physical, chemical, and biotic factors of the environment. These interactions disturb nature and the consequences have feedbacks in every living organism.
Collapse
Affiliation(s)
- Paraskevi Begou
- Laboratory of Meteorology and Climatology, Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece.
| | - Pavlos Kassomenos
- Laboratory of Meteorology and Climatology, Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece
| |
Collapse
|
24
|
Poon EKW, Kitsios V, Pilcher D, Bellomo R, Raman J. Projecting Future Climate Impact on National Australian Respiratory-Related Intensive Care Unit Demand. Heart Lung Circ 2023; 32:95-104. [PMID: 36604222 DOI: 10.1016/j.hlc.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS A robust climate-health projection model has the potential to improve health care resource allocation. We aim to explore the relationship between Australian intensive care unit (ICU) demand and various measures of the long-lived large-scale climate and to develop a future nationwide climate-health projection model. METHODS We investigated patients admitted to ICUs in Australia between January 2003 and December 2019 who were exposed to long-lived large-scale combined climatic measures of temperature and humidity. We analysed the projected demand for respiratory-related ICU average length of stay (in days) per capita (ICUD/C) with four historical and one future projection dataset. These datasets included: i) Australian and New Zealand Intensive Care Society adult patient database, ii) Socioeconomic Data and Applications Center gridded global historical population, iii) Australian Bureau of Statistics national historical population, iv) Japanese 55-year Reanalysis historical climate (JRA55), and v) the fifth Coupled Model Inter-comparison Project future climate projections. RESULTS 148,638 patients with respiratory issues required intensive care between 2003 and 2019. The annual growth in the population density-weighted wet-bulb-globe temperature-a combined measure of temperature and humidity-is strongly correlated with the annual per capita growth ICUD/C for respiratory-related conditions (r=0.771; p<0.001). This relationship was applied to develop a model projecting future respiratory-related ICU demand with three possible future Representative Concentration Pathways (RCP). RCP2.6 (lowest carbon emission climate scenario) showed only a 33.4% increase in Australian ICUD/C demand by 2090, while the RCP8.5 (highest carbon emission climate scenario) demonstrated almost two-fold higher demand (66.1%) than RCP2.6 by 2090. CONCLUSIONS The annual growth in population density-weighted wet-bulb-globe temperature correlates with the annual growth in Australian ICUD/C for respiratory-related conditions. A model based on possible future climate scenarios can be developed to predict changes in ICU demand in response to CO2 changes over the coming decades.
Collapse
Affiliation(s)
- Eric K W Poon
- Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Melbourne, Vic, Australia.
| | - Vassili Kitsios
- CSIRO, Oceans & Atmosphere, Melbourne, Vic, Australia; Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace Engineering Monash University, Melbourne, Vic, Australia
| | - David Pilcher
- Department of Intensive Care, Alfred Hospital, Melbourne, Vic, Australia; The Australian and New Zealand Intensive Care Society (ANZICS) Centre for Outcome and Resources Evaluation, Melbourne, Vic, Australia; The Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Vic, Australia
| | - Rinaldo Bellomo
- The Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Vic, Australia; Department of Critical Care, The University of Melbourne, Melbourne, Vic, Australia
| | - Jai Raman
- Austin Hospital Clinical School, The University of Melbourne, Melbourne, Vic, Australia; Department of Surgery, University of Melbourne, Melbourne, Vic, Australia; Deakin University, Geelong & Melbourne, Vic, Australia; James Cook University, Townsville & Cairns, Qld, Australia; University of Illinois, Urbana-Champaign, IL, USA
| |
Collapse
|
25
|
Simons D, Attfield LA, Jones KE, Watson-Jones D, Kock R. Rodent trapping studies as an overlooked information source for understanding endemic and novel zoonotic spillover. PLoS Negl Trop Dis 2023; 17:e0010772. [PMID: 36689474 PMCID: PMC9894545 DOI: 10.1371/journal.pntd.0010772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/02/2023] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
Rodents, a diverse, globally distributed and ecologically important order of mammals are nevertheless important reservoirs of known and novel zoonotic pathogens. Ongoing anthropogenic land use change is altering these species' abundance and distribution, which among zoonotic host species may increase the risk of zoonoses spillover events. A better understanding of the current distribution of rodent species is required to guide attempts to mitigate against potentially increased zoonotic disease hazard and risk. However, available species distribution and host-pathogen association datasets (e.g. IUCN, GBIF, CLOVER) are often taxonomically and spatially biased. Here, we synthesise data from West Africa from 127 rodent trapping studies, published between 1964-2022, as an additional source of information to characterise the range and presence of rodent species and identify the subgroup of species that are potential or known pathogen hosts. We identify that these rodent trapping studies, although biased towards human dominated landscapes across West Africa, can usefully complement current rodent species distribution datasets and we calculate the discrepancies between these datasets. For five regionally important zoonotic pathogens (Arenaviridae spp., Borrelia spp., Lassa mammarenavirus, Leptospira spp. and Toxoplasma gondii), we identify host-pathogen associations that have not been previously reported in host-association datasets. Finally, for these five pathogen groups, we find that the proportion of a rodent hosts range that have been sampled remains small with geographic clustering. A priority should be to sample rodent hosts across a greater geographic range to better characterise current and future risk of zoonotic spillover events. In the interim, studies of spatial pathogen risk informed by rodent distributions must incorporate a measure of the current sampling biases. The current synthesis of contextually rich rodent trapping data enriches available information from IUCN, GBIF and CLOVER which can support a more complete understanding of the hazard of zoonotic spillover events.
Collapse
Affiliation(s)
- David Simons
- Centre for Emerging, Endemic and Exotic Diseases, The Royal Veterinary College, London, United Kingdom
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for Biodiversity and Environment Research, University College London, London, United Kingdom
| | - Lauren A. Attfield
- Centre for Biodiversity and Environment Research, University College London, London, United Kingdom
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kate E. Jones
- Centre for Biodiversity and Environment Research, University College London, London, United Kingdom
| | - Deborah Watson-Jones
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Richard Kock
- Centre for Emerging, Endemic and Exotic Diseases, The Royal Veterinary College, London, United Kingdom
| |
Collapse
|
26
|
Leifels M, Khalilur Rahman O, Sam IC, Cheng D, Chua FJD, Nainani D, Kim SY, Ng WJ, Kwok WC, Sirikanchana K, Wuertz S, Thompson J, Chan YF. The one health perspective to improve environmental surveillance of zoonotic viruses: lessons from COVID-19 and outlook beyond. ISME COMMUNICATIONS 2022; 2:107. [PMID: 36338866 PMCID: PMC9618154 DOI: 10.1038/s43705-022-00191-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
The human population has doubled in the last 50 years from about 3.7 billion to approximately 7.8 billion. With this rapid expansion, more people live in close contact with wildlife, livestock, and pets, which in turn creates increasing opportunities for zoonotic diseases to pass between animals and people. At present an estimated 75% of all emerging virus-associated infectious diseases possess a zoonotic origin, and outbreaks of Zika, Ebola and COVID-19 in the past decade showed their huge disruptive potential on the global economy. Here, we describe how One Health inspired environmental surveillance campaigns have emerged as the preferred tools to monitor human-adjacent environments for known and yet to be discovered infectious diseases, and how they can complement classical clinical diagnostics. We highlight the importance of environmental factors concerning interactions between animals, pathogens and/or humans that drive the emergence of zoonoses, and the methodologies currently proposed to monitor them-the surveillance of wastewater, for example, was identified as one of the main tools to assess the spread of SARS-CoV-2 by public health professionals and policy makers during the COVID-19 pandemic. One-Health driven approaches that facilitate surveillance, thus harbour the potential of preparing humanity for future pandemics caused by aetiological agents with environmental reservoirs. Via the example of COVID-19 and other viral diseases, we propose that wastewater surveillance is a useful complement to clinical diagnosis as it is centralized, robust, cost-effective, and relatively easy to implement.
Collapse
Affiliation(s)
- Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Omar Khalilur Rahman
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medical Microbiology, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Dan Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Feng Jun Desmond Chua
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Dhiraj Nainani
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Se Yeon Kim
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wei Jie Ng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wee Chiew Kwok
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Centre of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | - Janelle Thompson
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Calder PC, Ortega EF, Meydani SN, Adkins Y, Stephensen CB, Thompson B, Zwickey H. Nutrition, Immunosenescence, and Infectious Disease: An Overview of the Scientific Evidence on Micronutrients and on Modulation of the Gut Microbiota. Adv Nutr 2022; 13:S1-S26. [PMID: 36183242 PMCID: PMC9526826 DOI: 10.1093/advances/nmac052] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 01/28/2023] Open
Abstract
The immune system is key to host defense against pathogenic organisms. Aging is associated with changes in the immune system, with a decline in protective components (immunosenescence), increasing susceptibility to infectious disease, and a chronic elevation in low-grade inflammation (inflammaging), increasing the risk of multiple noncommunicable diseases. Nutrition is a determinant of immune cell function and of the gut microbiota. In turn, the gut microbiota shapes and controls the immune and inflammatory responses. Many older people show changes in the gut microbiota. Age-related changes in immune competence, low-grade inflammation, and gut dysbiosis may be interlinked and may relate, at least in part, to age-related changes in nutrition. A number of micronutrients (vitamins C, D, and E and zinc and selenium) play roles in supporting the function of many immune cell types. Some trials report that providing these micronutrients as individual supplements can reverse immune deficits in older people and/or in those with insufficient intakes. There is inconsistent evidence that this will reduce the risk or severity of infections including respiratory infections. Probiotic, prebiotic, or synbiotic strategies that modulate the gut microbiota, especially by promoting the colonization of lactobacilli and bifidobacteria, have been demonstrated to modulate some immune and inflammatory biomarkers in older people and, in some cases, to reduce the risk and severity of gastrointestinal and respiratory infections, although, again, the evidence is inconsistent. Further research with well-designed and well-powered trials in at-risk older populations is required to be more certain about the role of micronutrients and of strategies that modify the gut microbiota-host relationship in protecting against infection, especially respiratory infection.
Collapse
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Edwin Frank Ortega
- Nutritional Immunology Laboratory, Jean Mayer–USDA Human Nutrition Research on Aging at Tufts University, Boston, MA, USA
| | - Simin N Meydani
- Nutritional Immunology Laboratory, Jean Mayer–USDA Human Nutrition Research on Aging at Tufts University, Boston, MA, USA
| | - Yuriko Adkins
- USDA Western Human Nutrition Research Center, Davis, CA, USA
- Nutrition Department, University of California, Davis, CA, USA
| | - Charles B Stephensen
- USDA Western Human Nutrition Research Center, Davis, CA, USA
- Nutrition Department, University of California, Davis, CA, USA
| | - Brice Thompson
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Heather Zwickey
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR, USA
| |
Collapse
|
28
|
Hendriks SL, Montgomery H, Benton T, Badiane O, Castro de la Mata G, Fanzo J, Guinto RR, Soussana JF. Global environmental climate change, covid-19, and conflict threaten food security and nutrition. BMJ 2022; 378:e071534. [PMID: 36175028 PMCID: PMC9517945 DOI: 10.1136/bmj-2022-071534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Sheryl L Hendriks
- Department of Agricultural Economics, Extension and Rural Development, University of Pretoria, South Africa
| | | | | | | | | | - Jessica Fanzo
- Berman Institute of Bioethics, Nitze School of Advanced International Studies, Bloomberg School of Public Health, Washington DC 20036, Johns Hopkins University, USA
| | - Ramon R Guinto
- Sunway Center for Planetary Health, Sunway University, Selangor, Malaysia
- Planetary and Global Health Program, St. Luke's Medical Center College of Medicine-William H. Quasha Memorial, Quezon City, Philippines
| | - Jean-François Soussana
- International, National Research Institute for Agriculture, Food and Environment, Paris, France
| |
Collapse
|
29
|
Abstract
Prudent risk management requires consideration of bad-to-worst-case scenarios. Yet, for climate change, such potential futures are poorly understood. Could anthropogenic climate change result in worldwide societal collapse or even eventual human extinction? At present, this is a dangerously underexplored topic. Yet there are ample reasons to suspect that climate change could result in a global catastrophe. Analyzing the mechanisms for these extreme consequences could help galvanize action, improve resilience, and inform policy, including emergency responses. We outline current knowledge about the likelihood of extreme climate change, discuss why understanding bad-to-worst cases is vital, articulate reasons for concern about catastrophic outcomes, define key terms, and put forward a research agenda. The proposed agenda covers four main questions: 1) What is the potential for climate change to drive mass extinction events? 2) What are the mechanisms that could result in human mass mortality and morbidity? 3) What are human societies' vulnerabilities to climate-triggered risk cascades, such as from conflict, political instability, and systemic financial risk? 4) How can these multiple strands of evidence-together with other global dangers-be usefully synthesized into an "integrated catastrophe assessment"? It is time for the scientific community to grapple with the challenge of better understanding catastrophic climate change.
Collapse
|
30
|
Jangra RK, Llabrés M, Guardado-Calvo P, Mittler E, Lasso G. Editorial: Influence of Protein-Protein Interactions (PPIs) on the Outcome of Viral Infections. Front Microbiol 2022; 13:943379. [PMID: 35832810 PMCID: PMC9272110 DOI: 10.3389/fmicb.2022.943379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rohit K Jangra
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Mercè Llabrés
- Department of Mathematics and Computer Science, University of the Balearic Islands, Palma, Spain
| | - Pablo Guardado-Calvo
- Structural Virology Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Gorka Lasso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
31
|
Ellwanger JH, Byrne LB, Chies JAB. Examining the paradox of urban disease ecology by linking the perspectives of Urban One Health and Ecology with Cities. Urban Ecosyst 2022; 25:1735-1744. [PMID: 35855439 PMCID: PMC9283848 DOI: 10.1007/s11252-022-01260-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Abstract
The ecology of zoonotic, including vector-borne, diseases in urban social-ecological systems is influenced by complex interactions among human and environmental factors. Several characteristics contribute to the emergence and spread of infectious diseases in urban places, such as high human population densities, favorable habitat for vectors, and humans' close proximity to animals and their pathogens. On the other hand, urban living can contribute to the improvement of public health through better access to health services and creation of ecological and technological infrastructure that reduces disease burdens. Therefore, urbanization creates a disease ecology paradox through the interplay of urban health penalties and advantages for individual and community outcomes. To address this contradiction, we advocate a holistic Urban One Health perspective for managing urban systems, especially their green spaces and animal populations, in ways that more effectively control the spread of zoonotic diseases. This view should be coupled with an Ecology with Cities approach which emphasizes actionable science needed for urban planning, management and policymaking; developing disease and vector surveillance programs using citizen and community science methods; and improving education and communication actions that help diverse stakeholders understand the complexities of urban disease ecology. Such measures will enable scholars from many disciplines to collaborate with professionals, government officials, and others to tackle challenges of the urban disease paradox and create more sustainable, health-promoting environments.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Postgraduate Program in Genetics and Molecular Biology - PPGBM, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul Brazil
| | - Loren B. Byrne
- Department of Biology, Marine Biology and Environmental Science, Roger Williams University, Bristol, RI USA
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Postgraduate Program in Genetics and Molecular Biology - PPGBM, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul Brazil
| |
Collapse
|
32
|
Valliere JM. Cultivating scientific literacy and a sense of place through course-based urban ecology research. Ecol Evol 2022; 12:e8985. [PMID: 35784063 PMCID: PMC9163374 DOI: 10.1002/ece3.8985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Undergraduate research experiences have been shown to increase engagement, improve learning outcomes, and enhance career development for students in ecology. However, these opportunities may not be accessible to all students, and incorporating inquiry-based research directly into undergraduate curricula may help overcome barriers to participation and improve representation and inclusion in the discipline. The shift to online instruction during the COVID-19 pandemic has imposed even greater challenges for providing students with authentic research experiences, but the pandemic may also provide a unique opportunity for creative projects conducted remotely. In this paper, I describe a course-based undergraduate research experience (CURE) designed for an upper-level ecology course at California State University, Dominguez Hills during remote learning. The primary focus of student-led research activities was to explore the potential impacts of the depopulation of campus during the pandemic on urban coyotes (Canis latrans), for which there were increased sightings reported during this time. Students conducted two research studies, including an evaluation of urban wildlife activity, behavior, and diversity using camera traps installed throughout campus and analysis of coyote diet using data from scat dissections. Students used the data they generated and information from literature reviews, class discussions, and meetings with experts to develop a coyote monitoring and management plan for our campus and create posters to educate the public. Using the campus as a living laboratory, I aimed to engage students in meaningful research while cultivating a sense of place, despite being online. Students' research outcomes and responses to pre- and post-course surveys highlight the benefits of projects that are anchored in place-based education and emphasize the importance of ecological research for solving real-world problems. CUREs focused on local urban ecosystems may be a powerful way for instructors to activate ecological knowledge and capitalize on the cultural strengths of students at urban universities.
Collapse
Affiliation(s)
- Justin M. Valliere
- Department of BiologyCalifornia State University Dominguez HillsCarsonCaliforniaUSA
| |
Collapse
|
33
|
Ma Z(S, Zhang YP. Ecology of Human Medical Enterprises: From Disease Ecology of Zoonoses, Cancer Ecology Through to Medical Ecology of Human Microbiomes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.879130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In nature, the interaction between pathogens and their hosts is only one of a handful of interaction relationships between species, including parasitism, predation, competition, symbiosis, commensalism, and among others. From a non-anthropocentric view, parasitism has relatively fewer essential differences from the other relationships; but from an anthropocentric view, parasitism and predation against humans and their well-beings and belongings are frequently related to heinous diseases. Specifically, treating (managing) diseases of humans, crops and forests, pets, livestock, and wildlife constitute the so-termed medical enterprises (sciences and technologies) humans endeavor in biomedicine and clinical medicine, veterinary, plant protection, and wildlife conservation. In recent years, the significance of ecological science to medicines has received rising attentions, and the emergence and pandemic of COVID-19 appear accelerating the trend. The facts that diseases are simply one of the fundamental ecological relationships in nature, and the study of the relationships between species and their environment is a core mission of ecology highlight the critical importance of ecological science. Nevertheless, current studies on the ecology of medical enterprises are highly fragmented. Here, we (i) conceptually overview the fields of disease ecology of wildlife, cancer ecology and evolution, medical ecology of human microbiome-associated diseases and infectious diseases, and integrated pest management of crops and forests, across major medical enterprises. (ii) Explore the necessity and feasibility for a unified medical ecology that spans biomedicine, clinical medicine, veterinary, crop (forest and wildlife) protection, and biodiversity conservation. (iii) Suggest that a unified medical ecology of human diseases is both necessary and feasible, but laissez-faire terminologies in other human medical enterprises may be preferred. (iv) Suggest that the evo-eco paradigm for cancer research can play a similar role of evo-devo in evolutionary developmental biology. (v) Summarized 40 key ecological principles/theories in current disease-, cancer-, and medical-ecology literatures. (vi) Identified key cross-disciplinary discovery fields for medical/disease ecology in coming decade including bioinformatics and computational ecology, single cell ecology, theoretical ecology, complexity science, and the integrated studies of ecology and evolution. Finally, deep understanding of medical ecology is of obvious importance for the safety of human beings and perhaps for all living things on the planet.
Collapse
|
34
|
Bhattacharjee S, Ceri Davies D, Holland JC, Holmes JM, Kilroy D, McGonnell IM, Reynolds AL. On the importance of integrating comparative anatomy and One Health perspectives in anatomy education. J Anat 2022; 240:429-446. [PMID: 34693516 PMCID: PMC8819042 DOI: 10.1111/joa.13570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 10/05/2021] [Indexed: 12/02/2022] Open
Abstract
As a result of many factors, including climate change, unrestricted population growth, widespread deforestation and intensive agriculture, a new pattern of diseases in humans is emerging. With increasing encroachment by human societies into wild domains, the interfaces between human and animal ecosystems are gradually eroding. Such changes have led to zoonoses, vector-borne diseases, infectious diseases and, most importantly, the emergence of antimicrobial-resistant microbial strains as challenges for human health. Now would seem to be an opportune time to revisit old concepts of health and redefine some of these in the light of emerging challenges. The One Health concept addresses some of the demands of modern medical education by providing a holistic approach to explaining diseases that result from a complex set of interactions between humans, environment and animals, rather than just an amalgamation of isolated signs and symptoms. An added advantage is that the scope of One Health concepts has now expanded to include genetic diseases due to advancements in omics technology. Inspired by such ideas, a symposium was organised as part of the 19th International Federation of Associations of Anatomists (IFAA) Congress (August 2019) to investigate the scope of One Health concepts and comparative anatomy in contemporary medical education. Speakers with expertise in both human and veterinary anatomy participated in the symposium and provided examples where these two disciplines, which have so far evolved largely independent of each other, can collaborate for mutual benefit. Finally, the speakers identified some key concepts of One Health that should be prioritised and discussed the diverse opportunities available to integrate these priorities into a broader perspective that would attempt to explain and manage diseases within the scopes of human and veterinary medicine.
Collapse
Affiliation(s)
| | - D. Ceri Davies
- Human Anatomy UnitDepartment of Surgery and CancerImperial College LondonLondonUK
| | - Jane C. Holland
- Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland University of Medicine and Health SciencesDublinIreland
| | | | - David Kilroy
- School of Veterinary MedicineUniversity College DublinDublinIreland
| | - Imelda M. McGonnell
- Department of Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| | - Alison L. Reynolds
- School of Veterinary MedicineUniversity College DublinDublinIreland
- Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
| |
Collapse
|
35
|
Trivellone V, Hoberg EP, Boeger WA, Brooks DR. Food security and emerging infectious disease: risk assessment and risk management. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211687. [PMID: 35223062 PMCID: PMC8847898 DOI: 10.1098/rsos.211687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/20/2022] [Indexed: 05/03/2023]
Abstract
Climate change, emerging infectious diseases (EIDs) and food security create a dangerous nexus. Habitat interfaces, assumed to be efficient buffers, are being disrupted by human activities which in turn accelerate the movement of pathogens. EIDs threaten directly and indirectly availability and access to nutritious food, affecting global security and human health. In the next 70 years, food-secure and food-insecure countries will face EIDs driving increasingly unsustainable costs of production, predicted to exceed national and global gross domestic products. Our modern challenge is to transform this business as usual and embrace an alternative vision of the biosphere formalized in the Stockholm paradigm (SP). First, a pathogen-centric focus shifts our vision of risk space, determining how pathogens circulate in realized and potential fitness space. Risk space and pathogen exchange are always heightened at habitat interfaces. Second, apply the document-assess-monitor-act (DAMA) protocol developing strategic data for EID risk, to be translated, synthesized and broadcast as actionable information. Risk management is realized through targeted interventions focused around information exchanged among a community of scientists, policy practitioners of food and public health security and local populations. Ultimately, SP and DAMA protect human rights, supporting food security, access to nutritious food, health interventions and environmental integrity.
Collapse
Affiliation(s)
- Valeria Trivellone
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana Champaign, 1816 South Oak Street, Champaign, IL 61820, USA
| | - Eric P. Hoberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI 53716, USA
- Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Walter A. Boeger
- Biological Interactions, Universidade Federal do Paraná, Cx Postal 19073, Curitiba, Brazil
| | - Daniel R. Brooks
- Department of Ecology and Evolutionary Biology, University of Toronto (emeritus), Toronto, ON, Canada
- Harold W. Manter Laboratory of Parasitology, University of Nebraska-Lincoln, NE 68588-0514, USA
- Institute for Evolution, Centre for Ecological Research, Karolina ut 29, Budapest, Hungary H-1113
| |
Collapse
|
36
|
Durrance-Bagale A, Rudge JW, Singh NB, Belmain SR, Howard N. Drivers of zoonotic disease risk in the Indian subcontinent: A scoping review. One Health 2021; 13:100310. [PMID: 34458546 PMCID: PMC8379342 DOI: 10.1016/j.onehlt.2021.100310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Literature on potential anthropogenic drivers of zoonotic disease risk in the Indian subcontinent is sparse. We conducted a scoping review to identify primary sources, published 2000-2020, to clarify what research exists and on which areas future research should focus. We summarised findings thematically by disease. Of 80 sources included, 78 (98%) were original research articles and two were conference abstracts. Study designs and methods were not always clearly described, but 74 (93%) were quantitative (including one randomised trial), five (6%) were mixed-methods, and one was qualitative. Most sources reported research from India (39%) or Bangladesh (31%), followed by Pakistan (9%), Nepal (9%), Bhutan and Sri Lanka (6% each). Topically, most focused on rabies (18; 23%), Nipah virus (16; 20%) or leptospirosis (11; 14%), while 12 (15%) did not focus on a disease but instead on knowledge in communities. People generally did not seek post-exposure prophylaxis for rabies even when vaccination programmes were available and they understood that rabies was fatal, instead often relying on traditional medicines. Similarly, people did not take precautions to protect themselves from leptospirosis infection, even when they were aware of the link with rice cultivation. Nipah was correlated with presence of bats near human habitation. Official information on diseases, modes of transmission and prevention was lacking, or shared informally between friends, relatives, and neighbours. Behaviour did not correspond to disease knowledge. This review identifies various human behaviours which may drive zoonotic disease risk in the Indian subcontinent. Increasing community knowledge and awareness alone is unlikely to be sufficient to successfully change these behaviours. Further research, using interdisciplinary and participatory methods, would improve understanding of risks and risk perceptions and thus help in co-designing context-specific, relevant interventions.
Collapse
Affiliation(s)
- Anna Durrance-Bagale
- London School of Hygiene and Tropical Medicine, Department of Global Health and Development, 15-17 Tavistock Place, London WC1H 9SH, United Kingdom
| | - James W. Rudge
- London School of Hygiene and Tropical Medicine, Department of Global Health and Development, 15-17 Tavistock Place, London WC1H 9SH, United Kingdom
- Mahidol University, Faculty of Public Health, 420/1 Rajvithi Road, Bangkok, Thailand
| | - Nanda Bahadur Singh
- Tribhuvan University, Central Department of Zoology, Kathmandu, Nepal
- Mid-Western University, Surkhet, Nepal
| | - Steven R. Belmain
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Natasha Howard
- London School of Hygiene and Tropical Medicine, Department of Global Health and Development, 15-17 Tavistock Place, London WC1H 9SH, United Kingdom
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, Singapore
| |
Collapse
|
37
|
García-Peña GE, Rubio AV, Mendoza H, Fernández M, Milholland MT, Aguirre AA, Suzán G, Zambrana-Torrelio C. Land-use change and rodent-borne diseases: hazards on the shared socioeconomic pathways. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200362. [PMID: 34538146 PMCID: PMC8450622 DOI: 10.1098/rstb.2020.0362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 12/22/2022] Open
Abstract
Land-use change has a direct impact on species survival and reproduction, altering their spatio-temporal distributions. It acts as a selective force that favours the abundance and diversity of reservoir hosts and affects host-pathogen dynamics and prevalence. This has led to land-use change being a significant driver of infectious diseases emergence. Here, we predict the presence of rodent taxa and map the zoonotic hazard (potential sources of harm) from rodent-borne diseases in the short and long term (2025 and 2050). The study considers three different land-use scenarios based on the shared socioeconomic pathways narratives (SSPs): sustainable (SSP1-Representative Concentration Pathway (RCP) 2.6), fossil-fuelled development (SSP5-RCP 8.5) and deepening inequality (SSP4-RCP 6.0). We found that cropland expansion into forest and pasture may increase zoonotic hazards in areas with high rodent-species diversity. Nevertheless, a future sustainable scenario may not always reduce hazards. All scenarios presented high heterogeneity in zoonotic hazard, with high-income countries having the lowest hazard range. The SSPs narratives suggest that opening borders and reducing cropland expansion are critical to mitigate current and future zoonotic hazards globally, particularly in middle- and low-income economies. Our study advances previous efforts to anticipate the emergence of zoonotic diseases by integrating past, present and future information to guide surveillance and mitigation of zoonotic hazards at the regional and local scale. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.
Collapse
Affiliation(s)
- Gabriel E. García-Peña
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - André V. Rubio
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Hugo Mendoza
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Miguel Fernández
- NatureServe, Arlington, VA, USA
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Matthew T. Milholland
- University of Maryland, AGNR-Environmental Science and Technology, College Park, MD, USA
| | - A. Alonso Aguirre
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Gerardo Suzán
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | |
Collapse
|
38
|
Murage P, Batalha HR, Lino S, Sterniczuk K. From drug discovery to coronaviruses: why restoring natural habitats is good for human health. BMJ 2021; 375:n2329. [PMID: 34610952 DOI: 10.1136/bmj.n2329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Peninah Murage
- London School of Hygiene and Tropical Medicine, Centre on Climate Change and Planetary Health, Pathfinder Initiative, London, UK
| | | | - Silvia Lino
- Sea4Us, Biotecnologia e Recursos Marinhos, Portugal
| | | |
Collapse
|
39
|
Marazziti D, Dell’Osso L. Planet Health and Mental Health: The Lesson We Should Learn from Covid-19 Pandemic. CLINICAL NEUROPSYCHIATRY 2021; 18:235-236. [PMID: 34984066 PMCID: PMC8696286 DOI: 10.36131/cnfioritieditore20210501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Donatella Marazziti
- Section of Psychiatry, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Liliana Dell’Osso
- Section of Psychiatry, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
40
|
Barbier EB. Habitat loss and the risk of disease outbreak. JOURNAL OF ENVIRONMENTAL ECONOMICS AND MANAGEMENT 2021; 108:102451. [PMID: 33867599 PMCID: PMC8041730 DOI: 10.1016/j.jeem.2021.102451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/10/2021] [Accepted: 04/06/2021] [Indexed: 06/10/2023]
Abstract
Evidence suggests that emerging infectious diseases, such as COVID-19, originate from wildlife species, and that land-use change is an important pathway for pathogen transmission to humans. We first focus on zoonotic disease spillover and the rate at which primary human cases appear, demonstrating that a potential outbreak is directly related to the area of wildlife habitat. We then develop a model of the costs and benefits of land conversion that includes the effect of habitat size on the risk of disease outbreak. Our model and numerical simulations show that incorporating this risk requires more wildlife habitat conservation in the long run, and how much more should be conserved will depend on the initial habitat size. If the area is too small, then no conversion should take place. Any policy to control habitat loss, such as a tax imposed on the rents from converted land, should also vary with habitat area.
Collapse
Affiliation(s)
- Edward B Barbier
- Department of Economics, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
41
|
Clark NF, Taylor-Robinson AW. An Ecologically Framed Comparison of The Potential for Zoonotic Transmission of Non-Human and Human-Infecting Species of Malaria Parasite. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:361-373. [PMID: 34211355 PMCID: PMC8223545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The threats, both real and perceived, surrounding the development of new and emerging infectious diseases of humans are of critical concern to public health and well-being. Among these risks is the potential for zoonotic transmission to humans of species of the malaria parasite, Plasmodium, that have been considered historically to infect exclusively non-human hosts. Recently observed shifts in the mode, transmission, and presentation of malaria among several species studied are evidenced by shared vectors, atypical symptoms, and novel host-seeking behavior. Collectively, these changes indicate the presence of environmental and ecological pressures that are likely to influence the dynamics of these parasite life cycles and physiological make-up. These may be further affected and amplified by such factors as increased urban development and accelerated rate of climate change. In particular, the extended host-seeking behavior of what were once considered non-human malaria species indicates the specialist niche of human malaria parasites is not a limiting factor that drives the success of blood-borne parasites. While zoonotic transmission of non-human malaria parasites is generally considered to not be possible for the vast majority of Plasmodium species, failure to consider the feasibility of its occurrence may lead to the emergence of a potentially life-threatening blood-borne disease of humans. Here, we argue that recent trends in behavior among what were hitherto considered to be non-human malaria parasites to infect humans call for a cross-disciplinary, ecologically-focused approach to understanding the complexities of the vertebrate host/mosquito vector/malaria parasite triangular relationship. This highlights a pressing need to conduct a multi-species investigation for which we recommend the construction of a database to determine ecological differences among all known Plasmodium species, vectors, and hosts. Closing this knowledge gap may help to inform alternative means of malaria prevention and control.
Collapse
Affiliation(s)
- Nicole F. Clark
- Institute for Applied Ecology, University of Canberra,
Bruce, Australia,College of Medicine and Public Health, Flinders
University, Australia
| | - Andrew W. Taylor-Robinson
- Infectious Diseases Research Group, School of Health,
Medical & Applied Sciences, Central Queensland University, Brisbane,
Australia,College of Health & Human Sciences, Charles Darwin
University, Casuarina, Australia,To whom all correspondence should be addressed:
Prof Andrew W. Taylor-Robinson, Infectious Diseases Research Group, School of
Health, Medical & Applied Sciences, Central Queensland University, 160 Ann
Street, Brisbane, QLD 4000, Australia; Tel: +61 7 3295 1185;
; ORCID iD: https://orcid.org/0000-0001-7342-8348
| |
Collapse
|
42
|
Marazziti D, Cianconi P, Mucci F, Foresi L, Chiarantini I, Della Vecchia A. Climate change, environment pollution, COVID-19 pandemic and mental health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145182. [PMID: 33940721 PMCID: PMC7825818 DOI: 10.1016/j.scitotenv.2021.145182] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 05/06/2023]
Abstract
Converging data would indicate the existence of possible relationships between climate change, environmental pollution and epidemics/pandemics, such as the current one due to SARS-CoV-2 virus. Each of these phenomena has been supposed to provoke detrimental effects on mental health. Therefore, the purpose of this paper was to review the available scientific literature on these variables in order to suggest and comment on their eventual synergistic effects on mental health. The available literature report that climate change, air pollution and COVID-19 pandemic might influence mental health, with disturbances ranging from mild negative emotional responses to full-blown psychiatric conditions, specifically, anxiety and depression, stress/trauma-related disorders, and substance abuse. The most vulnerable groups include elderly, children, women, people with pre-existing health problems especially mental illnesses, subjects taking some types of medication including psychotropic drugs, individuals with low socio-economic status, and immigrants. It is evident that COVID-19 pandemic uncovers all the fragility and weakness of our ecosystem, and inability to protect ourselves from pollutants. Again, it underlines our faults and neglect towards disasters deriving from climate change or pollution, or the consequences of human activities irrespective of natural habitats and constantly increasing the probability of spillover of viruses from animals to humans. In conclusion, the psychological/psychiatric consequences of COVID-19 pandemic, that currently seem unavoidable, represent a sharp cue of our misconception and indifference towards the links between our behaviour and their influence on the "health" of our planet and of ourselves. It is time to move towards a deeper understanding of these relationships, not only for our survival, but for the maintenance of that balance among man, animals and environment at the basis of life in earth, otherwise there will be no future.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy; UniCamillus - Saint Camillus University of Health Sciences, Rome, Italy
| | - Paolo Cianconi
- Institute of Psychiatry, Department of Neurosciences, Catholic University, Rome, Italy
| | - Federico Mucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy; Department of Psychiatry, North-Western Tuscany Region, NHS Local Health Unit, Italy
| | - Lara Foresi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Ilaria Chiarantini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Alessandra Della Vecchia
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.
| |
Collapse
|
43
|
Bergelson J, Kreitman M, Petrov DA, Sanchez A, Tikhonov M. Functional biology in its natural context: A search for emergent simplicity. eLife 2021; 10:e67646. [PMID: 34096867 PMCID: PMC8184206 DOI: 10.7554/elife.67646] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023] Open
Abstract
The immeasurable complexity at every level of biological organization creates a daunting task for understanding biological function. Here, we highlight the risks of stripping it away at the outset and discuss a possible path toward arriving at emergent simplicity of understanding while still embracing the ever-changing complexity of biotic interactions that we see in nature.
Collapse
Affiliation(s)
- Joy Bergelson
- Department of Ecology & Evolution, University of ChicagoChicagoUnited States
| | - Martin Kreitman
- Department of Ecology & Evolution, University of ChicagoChicagoUnited States
| | - Dmitri A Petrov
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Alvaro Sanchez
- Department of Ecology & Evolutionary Biology, Yale UniversityNew HavenUnited States
| | - Mikhail Tikhonov
- Department of Physics, Washington University in St LouisSt. LouisUnited States
| |
Collapse
|
44
|
Maric F, Chance-Larsen K, Chevan J, Jameson S, Nicholls D, Opsommer E, Perveen W, Richter R, Stanhope J, Stone O, Strimpakos N, Vieira A, Williams M, Zuber S, Söderlund A. A progress report on planetary health, environmental and sustainability education in physiotherapy – Editorial. EUROPEAN JOURNAL OF PHYSIOTHERAPY 2021. [DOI: 10.1080/21679169.2021.1932981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Filip Maric
- Department of Health and Care Sciences, UiT The Arctic University of NorwayLecturer, Physiotherapy studies
| | - Kenneth Chance-Larsen
- School of Sport and Health Sciences, University of Central Lancashire, Lancashire, UK
| | - Julia Chevan
- Chair and Professor of Physical Therapy, Springfield College, Springfield, MA, USA
| | - Sarah Jameson
- Graduate School of health Sciences, Chatham University, Pittsburgh, PA, USA
| | - David Nicholls
- School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Emmanuelle Opsommer
- University of Applied Sciences and Arts Western Switzerland (HES-SO), School of Health Sciences (HESAV), Lausanne, Switzerland
| | | | | | - Jessica Stanhope
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, Australia
| | - Olivia Stone
- School of Physiotherapy Clinics, University of Otago, Otago, New Zealand
| | | | - Adriane Vieira
- Department of Physical Education, Physiotherapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mark Williams
- Faculty of Health and Life Sciences, Department of Sport, Health Sciences and Social Work, Oxford Brookes University, Oxford, UK
| | - Stefan Zuber
- Division of Physiotherapy, Department of Health Professions, Bern University of Applied Sciences, Bern, Switzerland
| | - Anne Söderlund
- School of Health, Care and Social Welfare, Mälardalen University, Västerås, Sweden
| |
Collapse
|
45
|
León B, González SF, Solís LM, Ramírez-Cardoce M, Moreira-Soto A, Cordero-Solórzano JM, Hutter SE, González-Barrientos R, Rupprecht CE. Rabies in Costa Rica - Next Steps Towards Controlling Bat-Borne Rabies After its Elimination in Dogs. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:311-329. [PMID: 34211351 PMCID: PMC8223541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Rabies is an acute, progressive encephalitis caused by a lyssavirus, with the highest case fatality of any conventional infectious disease. More than 17 different lyssaviruses have been described, but rabies virus is the most widely distributed and important member of the genus. Globally, tens of thousands of human fatalities still occur each year. Although all mammals are susceptible, most human fatalities are caused by the bites of rabid dogs, within lesser developed countries. A global plan envisions the elimination of human rabies cases caused via dogs by the year 2030. The combination of prophylaxis of exposed humans and mass vaccination of dogs is an essential strategy for such success. Regionally, the Americas are well on the way to meet this goal. As one example of achievement, Costa Rica, a small country within Central America, reported the last autochthonous case of human rabies transmitted by a dog at the end of the 1970s. Today, rabies virus transmitted by the common vampire bat, Desmodus rotundus, as well as other wildlife, remains a major concern for humans, livestock, and other animals throughout the region. This review summarizes the historical occurrence of dog rabies and its elimination in Costa Rica, describes the current occurrence of the disease with a particular focus upon affected livestock, discusses the ecology of the vampire bat as the primary reservoir relevant to management, details the clinical characteristics of recent human rabies cases, and provides suggestions for resolution of global challenges posed by this zoonosis within a One Health context.
Collapse
Affiliation(s)
- Bernal León
- Biosecurity Laboratory, Servicio Nacional de Salud
Animal (SENASA), LANASEVE, Heredia, Costa Rica
- Universidad Técnica Nacional (UTN), Quesada, Costa
Rica
| | | | - Lisa Miranda Solís
- Specialist in Pediatric Pathology, Pathology Service,
Children National Hospital, Caja Costarricense de Seguro Social, San José, Costa
Rica
| | - Manuel Ramírez-Cardoce
- Specialist in Infectious Diseases, San Juan de Dios
Hospital, Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Andres Moreira-Soto
- Research Center for Tropical Diseases (CIET), Virology,
Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
- Charité-Universitätsmedizin Berlin, corporate member of
Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute
of Health, Institute of Virology, Berlin, Germany
| | | | - Sabine Elisabeth Hutter
- Coordinator of the National Risk Analysis Program,
Epidemiology Department, SENASA, Ministry of Agriculture, San José, Costa
Rica
- Institute of Food Safety, Food Technology and
Veterinary Public Health, Department for Farm Animals and Veterinary Public
Health University of Veterinary Medicine, Vienna, Austria
| | - Rocío González-Barrientos
- Pathology Area Biosecurity Laboratory, Servicio
Nacional de Salud Animal (SENASA), LANASEVE, Heredia, Costa Rica
- Department of Biomedical Sciences of Anatomic
Pathology, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
46
|
Beyer RM, Manica A, Mora C. Shifts in global bat diversity suggest a possible role of climate change in the emergence of SARS-CoV-1 and SARS-CoV-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:145413. [PMID: 33558040 PMCID: PMC7837611 DOI: 10.1016/j.scitotenv.2021.145413] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 05/17/2023]
Abstract
Bats are the likely zoonotic origin of several coronaviruses (CoVs) that infect humans, including SARS-CoV-1 and SARS-CoV-2, both of which have caused large-scale epidemics. The number of CoVs present in an area is strongly correlated with local bat species richness, which in turn is affected by climatic conditions that drive the geographical distributions of species. Here we show that the southern Chinese Yunnan province and neighbouring regions in Myanmar and Laos form a global hotspot of climate change-driven increase in bat richness. This region coincides with the likely spatial origin of bat-borne ancestors of SARS-CoV-1 and SARS-CoV-2. Accounting for an estimated increase in the order of 100 bat-borne CoVs across the region, climate change may have played a key role in the evolution or transmission of the two SARS CoVs.
Collapse
Affiliation(s)
- Robert M Beyer
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom; Potsdam Institute for Climate Impact Research, Telegrafenberg A 31, 14473 Potsdam, Germany.
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - Camilo Mora
- Department of Geography and Environment, University of Hawai'i at Manoa, 2424 Maile Way, Honolulu, HI 96822, USA
| |
Collapse
|
47
|
Carlson CJ, Albery GF, Phelan A. Preparing international cooperation on pandemic prevention for the Anthropocene. BMJ Glob Health 2021; 6:e004254. [PMID: 33727277 PMCID: PMC7970212 DOI: 10.1136/bmjgh-2020-004254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
- Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
| | - Alexandra Phelan
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
48
|
Liao WH, Henneberg M. Ecological Analysis of the Influence of ACEIs and ARBs on the COVID-19 Prevalence and Death from COVID-19. Health (London) 2021. [DOI: 10.4236/health.2021.135046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|