1
|
Morsli DS, Tbahriti HF, Rahli F, Mahammi FZ, Nagdalian A, Hemeg HA, Imran M, Rauf A, Shariati MA. Probiotics in colorectal cancer prevention and therapy: mechanisms, benefits, and challenges. Discov Oncol 2025; 16:406. [PMID: 40140210 PMCID: PMC11947384 DOI: 10.1007/s12672-025-01996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer and the second leading cause of morbidity worldwide. In Algeria, it ranks second in mortality-related deaths. Poor lifestyle, characterized by a low-fiber diet, insufficient physical activity, tobacco use, and alcohol consumption, is strongly associated with an increased risk of developing this disease. Probiotics have demonstrated anti-inflammatory and antitumor effects in preclinical and clinical studies. The World Health Organization (WHO) and European Food Safety Authority (EFSA) have recognized their safety and effectiveness, classifying them as Generally Recognized as Safe (GRAS) and Qualified Presumption of Safety (QPS), respectively. Probiotics exhibit immunomodulatory effects and maintain the equilibrium of the gut microbiota. However, the evidence for their clinical efficacy is inadequate, and additional research is requisite to establish them as therapeutic agents rather than simply as dietary supplements. Although probiotics are, in most cases, safe, high-risk patients should exercise caution due to the potential risk of infection. This review examines the current knowledge on probiotic strains, their therapeutic potential for colorectal cancer, limitations, and areas where further research is imperative to improve their efficacy.
Collapse
Affiliation(s)
| | - Hadja Fatima Tbahriti
- Higher School of Biological Sciences of Oran, Oran, Algeria.
- Laboratory of Clinical Nutrition and Metabolism, Department of Biology, Faculty of Natural and Life Sciences, University Oran 1, Oran, Algeria.
| | - Fouzia Rahli
- Higher School of Biological Sciences of Oran, Oran, Algeria
- Laboratory of Microbiology Applied, Department of Biology, Faculty of Natural and Life Sciences, University Oran 1, Oran, Algeria
| | - Fatima Zohra Mahammi
- Higher School of Biological Sciences of Oran, Oran, Algeria
- Laboratory of Molecular and Cellular Genetics, Department of Applied Molecular Genetics, Faculty of Natural and Life Sciences, University of Science and Technology of Oran Mohamed Boudiaf, Oran, Algeria
| | - Andrey Nagdalian
- Laboratory of Food and Industrial Biotechnology, North Caucasus Federal University, Pushkina Street 1, 355009, Stavropol, Russia
| | - Hassan A Hemeg
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawara, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, KP, Pakistan.
| | - Mohammad Ali Shariati
- Scientific Department, Semey Branch of the Kazakh Research Institute of Processing and Food Industry, Gagarin Avenue 238G, Almaty, 050060, Kazakhstan
| |
Collapse
|
2
|
Kim MJ, Lee YJ, Hussain Z, Park H. Effect of Probiotics on Improving Intestinal Mucosal Permeability and Inflammation after Surgery. Gut Liver 2025; 19:207-218. [PMID: 39327843 PMCID: PMC11907258 DOI: 10.5009/gnl240170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 09/28/2024] Open
Abstract
Background/Aims We explored the mechanisms underlying the improvement of postoperative ileus (POI) following probiotic pretreatment. We assessed intestinal permeability, inflammation, tight junction (TJ) protein expression in the gut epithelium, and plasma interleukin (IL)-17 levels in a guinea pig model of POI. Methods Guinea pigs were divided into control, POI, and probiotic groups. The POI and probiotic groups underwent surgery, but the probiotic group received probiotics before the procedure. The ileum and proximal colon were harvested. Intestinal permeability was measured via horseradish peroxidase permeability. Inflammation was evaluated via leukocyte count in the intestinal wall muscle layer, and calprotectin expression in each intestinal wall layer was analyzed immunohistochemically. TJ proteins were analyzed using immunohistochemical staining, and plasma IL-17 levels were measured using an enzyme-linked immunosorbent assay. Results The POI group exhibited increased intestinal permeability and inflammation, whereas probiotic pretreatment reduced the extent of these POI-induced changes. Probiotics restored the expression of TJ proteins occludin and zonula occludens-1 in the proximal colon, which were increased in the POI group. Calprotectin expression significantly increased in the muscle layer of the POI group and was downregulated in the probiotic group; however, no distinct differences were observed between the mucosal and submucosal layers. Plasma IL-17 levels did not significantly differ among the groups. Conclusions Probiotic pretreatment may relieve POI by reducing intestinal permeability and inflammation and TJ protein expression in the gut epithelium. These findings suggest a potential therapeutic approach for POI management.
Collapse
Affiliation(s)
- Min-Jae Kim
- Division of Gastroenterology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ju Lee
- Division of Gastroenterology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Zahid Hussain
- Division of Gastroenterology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyojin Park
- Division of Gastroenterology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Szajewska H, Scott KP, de Meij T, Forslund-Startceva SK, Knight R, Koren O, Little P, Johnston BC, Łukasik J, Suez J, Tancredi DJ, Sanders ME. Antibiotic-perturbed microbiota and the role of probiotics. Nat Rev Gastroenterol Hepatol 2025; 22:155-172. [PMID: 39663462 DOI: 10.1038/s41575-024-01023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
The disruptive effect of antibiotics on the composition and function of the human microbiota is well established. However, the hypothesis that probiotics can help restore the antibiotic-disrupted microbiota has been advanced, with little consideration of the strength of evidence supporting it. Some clinical data suggest that probiotics can reduce antibiotic-related side effects, including Clostridioides difficile-associated diarrhoea, but there are no data that causally link these clinical effects to microbiota protection or recovery. Substantial challenges hinder attempts to address this hypothesis, including the absence of consensus on the composition of a 'normal' microbiota, non-standardized and evolving microbiome measurement methods, and substantial inter-individual microbiota variation. In this Review, we explore these complexities. First, we review the known benefits and risks of antibiotics, the effect of antibiotics on the human microbiota, the resilience and adaptability of the microbiota, and how microbiota restoration might be defined and measured. Subsequently, we explore the evidence for the efficacy of probiotics in preventing disruption or aiding microbiota recovery post-antibiotic treatment. Finally, we offer insights into the current state of research and suggest directions for future research.
Collapse
Affiliation(s)
- Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Karen P Scott
- Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Tim de Meij
- Department of Paediatric Gastroenterology, Emma Children's Hospital, Amsterdam UMC, Academic Medical Centre, Amsterdam, The Netherlands
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, a joint cooperation of Max Delbruck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Department of Computer Science & Engineering, University of California San Diego, San Diego, CA, USA
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, CA, USA
- Center for Microbiome Innovation, University of California San Diego, San Diego, CA, USA
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Paul Little
- Primary Care Research Centre, University of Southampton, Southampton, UK
| | - Bradley C Johnston
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, USA
| | - Jan Łukasik
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Jotham Suez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniel J Tancredi
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Consulting Scientific Advisor, Centennial, CO, USA.
| |
Collapse
|
4
|
Cosier DJ, Lambert K, Neale EP, Probst Y, Charlton K. The effect of oral synbiotics on the gut microbiota and inflammatory biomarkers in healthy adults: a systematic review and meta-analysis. Nutr Rev 2025; 83:e4-e24. [PMID: 38341803 DOI: 10.1093/nutrit/nuae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024] Open
Abstract
CONTEXT Prior research has explored the effect of synbiotics, the combination of probiotics and prebiotics, on the gut microbiota in clinical populations. However, evidence related to the effect of synbiotics on the gut microbiota in healthy adults has not been reviewed to date. OBJECTIVE A systematic review and meta-analysis was conducted to comprehensively investigate the effect of synbiotics on the gut microbiota and inflammatory markers in populations of healthy adults. DATA SOURCES Scopus, PubMed, Web of Science, ScienceDirect, MEDLINE, CINAHL, and The Cochrane Library were systematically searched to retrieve randomized controlled trials examining the primary outcome of gut microbiota or intestinal permeability changes after synbiotic consumption in healthy adults. Secondary outcomes of interest were short-chain fatty acids, inflammatory biomarkers, and gut microbiota diversity. DATA EXTRACTION Weighted (WMD) or standardized mean difference (SMD) outcome data were pooled in restricted maximum likelihood models using random effects. Twenty-seven articles reporting on 26 studies met the eligibility criteria (n = 1319). DATA ANALYSIS Meta-analyses of 16 studies showed synbiotics resulted in a significant increase in Lactobacillus cell count (SMD, 0.74; 95% confidence interval [CI], 0.15, 1.33; P = 0.01) and propionate concentration (SMD, 0.22; 95% CI, 0.02, 0.43; P = 0.03) compared with controls. A trend for an increase in Bifidobacterium relative abundance (WMD, 0.97; 95% CI, 0.42, 2.52; P = 0.10) and cell count (SMD, 0.82; 95% CI, 0.13, 1.88; P = 0.06) was seen. No significant differences in α-diversity, acetate, butyrate, zonulin, IL-6, CRP, or endotoxins were observed. CONCLUSION This review demonstrates that synbiotics modulate the gut microbiota by increasing Lactobacillus and propionate across various healthy adult populations, and may result in increased Bifidobacterium. Significant variations in synbiotic type, dose, and duration should be considered as limitations when applying findings to clinical practice. SYSTEMATIC REVIEW REGISTRATION PROSPERO no. CRD42021284033.
Collapse
Affiliation(s)
- Denelle J Cosier
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Kelly Lambert
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Elizabeth P Neale
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Yasmine Probst
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Karen Charlton
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
5
|
Dawson SL, Todd E, Ward AC. The Interplay of Nutrition, the Gut Microbiota and Immunity and Its Contribution to Human Disease. Biomedicines 2025; 13:329. [PMID: 40002741 PMCID: PMC11853302 DOI: 10.3390/biomedicines13020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Nutrition, the gut microbiota and immunity are all important factors in the maintenance of health. However, there is a growing realization of the complex interplay between these elements coalescing in a nutrition-gut microbiota-immunity axis. This regulatory axis is critical for health with disruption being implicated in a broad range of diseases, including autoimmune disorders, allergies and mental health disorders. This new perspective continues to underpin a growing number of innovative therapeutic strategies targeting different elements of this axis to treat relevant diseases. This review describes the inter-relationships between nutrition, the gut microbiota and immunity. It then details several human diseases where disruption of the nutrition-gut microbiota-immunity axis has been identified and presents examples of how the various elements may be targeted therapeutically as alternate treatment strategies for these diseases.
Collapse
Affiliation(s)
- Samantha L. Dawson
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia; (S.L.D.); (E.T.)
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Emma Todd
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia; (S.L.D.); (E.T.)
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia; (S.L.D.); (E.T.)
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
6
|
Kearns R, Dooley J, Matthews M, McNeilly A. "Do probiotics mitigate GI-induced inflammation and perceived fatigue in athletes? A systematic review". J Int Soc Sports Nutr 2024; 21:2388085. [PMID: 39193818 PMCID: PMC11360638 DOI: 10.1080/15502783.2024.2388085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/28/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Fatigue and gastrointestinal (GI) distress are common among athletes with an estimated 30-90% of athletes participating in marathons, triathlons, or similar events experiencing GI complaints. Intense exercise can lead to increased intestinal permeability, potentially allowing members of the gut microbiota to permeate into the bloodstream, resulting in an inflammatory response and cascade of performance-limiting outcomes. Probiotics, through their capacity to regulate the composition of the gut microbiota, may act as an adjunctive therapy by enhancing GI and immune function while mitigating inflammatory responses. This review investigates the effectiveness of probiotic supplementation on fatigue, inflammatory markers, and exercise performance based on randomized controlled trials (RCTs). METHODS This review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines and PICOS (Population, Intervention, Comparison, Outcome, Study design) framework. A comprehensive search was conducted in Sportdiscus, PubMed, and Scopus databases, and the screening of titles, abstracts, and full articles was performed based on pre-defined eligibility criteria. Of the 3505 records identified, 1884 were screened using titles and abstracts, of which 450 studies were selected for full-text screening. After final screening, 13 studies met the eligibility criteria and were included for review. The studies contained 513 participants, consisting of 351 males and 115 females, however, two studies failed to mention the sex of the participants. Among the participants, 246 were defined as athletes, while the remaining participants were classified as recreationally active (n = 267). All trials were fully described and employed a double- or triple-blind placebo-controlled intervention using either a single probiotic strain or a multi-strain synbiotic (containing both pro- and pre-biotics). RESULTS This review assesses the effects of daily probiotic supplementation, ranging from 13 to 90 days, on physical performance and physiological markers in various exercise protocols. Ten studies reported improvements in various parameters, such as, enhanced endurance performance, improved anxiety and stress levels, decreased GI symptoms, and reduced upper respiratory tract infections (URTI). Moreover, despite no improvements in maximal oxygen uptake (VO2), several studies demonstrated that probiotic supplementation led to amelioration in lactate, creatine kinase (CK), and ammonia concentrations, suggesting beneficial effects on mitigating exercise-induced muscular stress and damage. CONCLUSION Probiotic supplementation, specifically at a minimum dosage of 15 billion CFUs daily for a duration of at least 28 days, may contribute to the reduction of perceived or actual fatigue.
Collapse
Affiliation(s)
- R.P. Kearns
- Ulster University, School of Life and Health Sciences, Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| | - J.S.G. Dooley
- Ulster University, School of Life and Health Sciences, Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| | - M. Matthews
- Ulster University, School of Life and Health Sciences, Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| | - A.M. McNeilly
- Ulster University, School of Life and Health Sciences, Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| |
Collapse
|
7
|
Anderson JL, Tierney AC, Miles C, Kotsimbos T, King SJ. Probiotic knowledge of adults with cystic fibrosis is limited but is associated with probiotic use: A cross-sectional survey study. Nutr Health 2024; 30:697-706. [PMID: 36366805 DOI: 10.1177/02601060221136653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Background: Probiotics are used by people with cystic fibrosis (CF) and other chronic diseases to manage gastrointestinal symptoms. Aim: To describe probiotic knowledge; its relationship with probiotic use, probiotic information sources and factors influencing choice in adults with CF and a general population control group. Methods: A cross-sectional questionnaire study was conducted in adults with CF (n = 205) and Controls (n = 158). Probiotic knowledge was compared between CF and Controls using a knowledge score (maximum 5) based on predefined criteria: (1a) bacteria/microorganism; (1b) live; (2a) administered; (2b) adequate dose and (3) health benefit, using independent samples t-test. Two-way analysis of variance explored knowledge scores between CF and Control and between Ever User and Never User groups. Chi-square and Fisher's exact tests compared knowledge criterion, probiotic sources and influences on probiotic choice between groups. Thematic analysis of open-text responses explored probiotic-related knowledge and influences on probiotic decision making. Results: Knowledge scores (mean ± SD) did not differ between CF (1.70 ± 1.12) and Controls (1.89 ± 0.99), p = 0.13. Probiotic use was associated with knowledge score (p < 0.001). More CF Ever Users than Never Users correctly identified criteria 1a (65% vs. 38%), 1b (16% vs. 0%), 2a (45% vs. 22%) and 3 (73% vs. 42%) (all p < 0.005). CF participants considered 'dairy yoghurt' (69%), 'live cultures' (64%) and 'fermented foods' (37%) as 'all/mostly' probiotic sources. The internet was the commonest source of probiotic-related information. Conclusion: Probiotic knowledge and use were associated in adults with CF. Understanding of probiotic characteristics and sources were limited. Education is needed to help guide patient probiotic decision making.
Collapse
Affiliation(s)
- Jacqueline L Anderson
- Discipline of Food, Nutrition and Dietetics, School of Allied Health, La Trobe University, Bundoora, Australia
| | - Audrey C Tierney
- Discipline of Food, Nutrition and Dietetics, School of Allied Health, La Trobe University, Bundoora, Australia
- School of Allied Health, Health Implementation Science and Technology Centre, Health Research Institute, University of Limerick, Limerick, Ireland
| | - Caitlin Miles
- Nutrition and Dietetics Department, Monash Health, Clayton, Australia
| | - Tom Kotsimbos
- Cystic Fibrosis Service, Department of Allergy, Immunology and Respiratory Medicine, Alfred Health, Melbourne, Australia
- Department of Medicine, Monash University, Melbourne, Australia
| | - Susannah J King
- Discipline of Food, Nutrition and Dietetics, School of Allied Health, La Trobe University, Bundoora, Australia
- Nutrition Department, Alfred Health, Melbourne, Australia
| |
Collapse
|
8
|
Gawlik-Kotelnicka O, Rogalski J, Czarnecka-Chrebelska KH, Burzyński J, Jakubowska P, Skowrońska A, Strzelecki D. The Interplay Between Depression, Probiotics, Diet, Immunometabolic Health, the Gut, and the Liver-A Secondary Analysis of the Pro-Demet Randomized Clinical Trial. Nutrients 2024; 16:4024. [PMID: 39683419 PMCID: PMC11643736 DOI: 10.3390/nu16234024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
(1) Background: Depression, metabolic alternations, and liver diseases are highly comorbid. Studies have shown that probiotics might be helpful in the treatment of the above-mentioned states. The aim of this secondary analysis was to search for possible predictors of probiotics' efficacy on liver-related outcome measures. (2) Methods: Data from 92 subjects from a randomized clinical trial on the effect of probiotics on depression were analyzed. The shift in liver steatosis and fibrosis indices was assessed in the context of baseline immunometabolic, psychometric, dietary, and intestinal permeability factors. Correlation analysis and linear regression models were used. (3) Results: A total of 30% of the variance of the improvement in the score of the aspartate transferase to platelet ratio index was explained by probiotic use, higher pre-intervention triglycerides, cholesterol, C-reactive protein levels, increased cereal intake, and a lower consumption of sweets. Then, the model of the change in alanine transferase indicated that probiotics were efficient when used by subjects with higher basal levels of intestinal permeability markers. (4) Conclusions: Probiotics being used along with a healthy diet may provide additional benefits, such as decreased cardiovascular risk, for patients with measures consistent with the immunometabolic form of depression. Probiotic augmentation may be useful for liver protection among subjects with a suspected "leaky gut" syndrome. ClinicalTrials.gov: NCT04756544.
Collapse
Affiliation(s)
- Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (P.J.); (A.S.); (D.S.)
| | - Jakub Rogalski
- University Clinical Hospital No. 2, Medical University of Lodz, 90-549 Lodz, Poland;
| | | | - Jacek Burzyński
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Paulina Jakubowska
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (P.J.); (A.S.); (D.S.)
| | - Anna Skowrońska
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (P.J.); (A.S.); (D.S.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (P.J.); (A.S.); (D.S.)
| |
Collapse
|
9
|
Guarner F, Bustos Fernandez L, Cruchet S, Damião A, Maruy Saito A, Riveros Lopez JP, Rodrigues Silva L, Valdovinos Diaz MA. Gut dysbiosis mediates the association between antibiotic exposure and chronic disease. Front Med (Lausanne) 2024; 11:1477882. [PMID: 39568738 PMCID: PMC11576192 DOI: 10.3389/fmed.2024.1477882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Antibiotics are safe, effective drugs and continue to save millions of lives and prevent long-term illness worldwide. A large body of epidemiological, interventional and experimental evidence shows that exposure to antibiotics has long-term negative effects on human health. We reviewed the literature data on the links between antibiotic exposure, gut dysbiosis, and chronic disease (notably with regard to the "developmental origins of health and disease" ("DOHaD") approach). Molecular biology studies show that the systemic administration of antibiotic to infants has a rapid onset but also often a long-lasting impact on the microbial composition of the gut. Along with other environmental factors (e.g., an unhealthy "Western" diet and sedentary behavior), antibiotics induce gut dysbiosis, which can be defined as the disruption of a previously stable, functionally complete microbiota. Gut dysbiosis many harmful long-term effects on health. Associations between early-life exposure to antibiotics have been reported for chronic diseases, including inflammatory bowel disease, celiac disease, some cancers, metabolic diseases (obesity and type 2 diabetes), allergic diseases, autoimmune disorders, atherosclerosis, arthritis, and neurodevelopmental, neurodegenerative and other neurological diseases. In mechanistic terms, gut dysbiosis influences chronic disease through direct effects on mucosal immune and inflammatory pathways, plus a wide array of direct or indirect effects of short-chain fatty acids, the enteric nervous system, peristaltic motility, the production of hormones and neurotransmitters, and the loss of intestinal barrier integrity (notably with leakage of the pro-inflammatory endotoxin lipopolysaccharide into the circulation). To mitigate dysbiosis, the administration of probiotics in patients with chronic disease is often (but not always) associated with positive effects on clinical markers (e.g., disease scores) and biomarkers of inflammation and immune activation. Meta-analyses are complicated by differences in probiotic composition, dose level, and treatment duration, and large, randomized, controlled clinical trials are lacking in many disease areas. In view of the critical importance of deciding whether or not to prescribe antibiotics (especially to children), we suggest that the DOHaD concept can be logically extended to "gastrointestinal origins of health and disease" ("GOHaD") or even "microbiotic origins of health and disease" ("MOHaD").
Collapse
Affiliation(s)
| | - Luis Bustos Fernandez
- Centro Medico Bustos Fernandez, Instituto de Gastroenterologia, Buenos Aires, Argentina
| | - Sylvia Cruchet
- Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Adérson Damião
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Aldo Maruy Saito
- Catedra de Pediatria, Hospital Cayetano Heredia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | |
Collapse
|
10
|
Huang X, Bao J, Yang M, Li Y, Liu Y, Zhai Y. The role of Lactobacillus plantarum in oral health: a review of current studies. J Oral Microbiol 2024; 16:2411815. [PMID: 39444695 PMCID: PMC11497578 DOI: 10.1080/20002297.2024.2411815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/09/2024] [Accepted: 08/27/2024] [Indexed: 10/25/2024] Open
Abstract
Background Oral non-communicable diseases, particularly dental caries and periodontal disease, impose a significant global health burden. The underlying microbial dysbiosis is a prominent factor, driving interest in strategies that promote a balanced oral microbiome. Lactobacillus plantarum, a gram-positive lactic acid bacterium known for its adaptability, has gained attention for its potential to enhance oral health. Recent studies have explored the use of probiotic L. plantarum in managing dental caries, periodontal disease, and apical periodontitis. However, a comprehensive review on its effects in this context is still lacking. Aims This narrative review evaluates current literature on L. plantarum's role in promoting oral health and highlights areas for future research. Content In general, the utilization of L. plantarum in managing non-communicable biofilm-dependent oral diseases is promising, but additional investigations are warranted. Key areas for future study include: exploring its mechanisms of action, identifying optimal strains or strain combinations of L. plantarum, determining effective delivery methods and dosages, developing commercial antibacterial agents from L. plantarum, and addressing safety considerations related to its use in oral care.
Collapse
Affiliation(s)
- Xinyan Huang
- School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, China
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Jianhang Bao
- School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, China
| | - Mingzhen Yang
- School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, China
| | - Yingying Li
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, China
| | - Youwen Liu
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, China
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, China
| |
Collapse
|
11
|
Heer K, Kaur M, Sidhu D, Dey P, Raychaudhuri S. Modulation of gut microbiome in response to the combination of Escherichia coli Nissle 1917 and sugars: a pilot study using host-free system reflecting impact on interpersonal microbiome. Front Nutr 2024; 11:1452784. [PMID: 39502876 PMCID: PMC11534610 DOI: 10.3389/fnut.2024.1452784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
INTRODUCTION The differential effects of probiotic, prebiotic, and synbiotic formulations on human health are dictated by the inter-individual gut microbial profile. The effects of probiotics such as Escherichia coli Nissle 1917 (ECN) on gut microbiota may vary according to the microbiome profiles of individuals and may be influenced by the presence of certain carbohydrates, which can impact microbial community structure and treatment results. METHOD Processed fecal samples from donors having contrasting lifestyles, dietary patterns, and disease histories were mixed with 5 × 106 CFU/mL ECN with or without 1% (w/v) sugars (glucose, galactose, or rice starch) in a host-free system. Post-incubation, 16 s rRNA sequencing was performed. Microbial diversity and taxonomic abundance were computed in relation to the probiotic, prebiotic, and synbiotic treatment effects and interpersonal microbiome variance. RESULT Baseline gut microbial profiles showed significant inter-individual variations. ECN treatment alone had a limited impact on the inter-personal gut microbial diversity and abundance. Prebiotics caused a substantial enrichment in Actinobacteria, but there were differences in the responses at the order and genus levels, with enrichment shown in Bifidobacterium, Collinsella, and Megasphaera. Subject B exhibited enrichment in Proteobacteria and Cyanobacteria, but subject A showed more diversified taxonomic alterations as a consequence of the synbiotic treatments. Despite negligible difference in the α-diversity, probiotic, prebiotic, and synbiotic treatments independently resulted in distinct segregation in microbial communities at the β-diversity level. The core microbiota was altered only under prebiotic and synbiotic treatment. Significant correlations primarily for minor phyla were identified under prebiotic and synbiotic treatment. CONCLUSION The interindividual microbiome composition strongly influences the effectiveness of personalized diet and treatment plans. The responsiveness to dietary strategies varies according to individual microbiome profiles influenced by health, diet, and lifestyle. Therefore, tailored approaches that consider individual microbiome compositions are crucial for maximizing gut health and treatment results.
Collapse
Affiliation(s)
- Kiran Heer
- Molecular Biology and Microbial Physiology Division, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manpreet Kaur
- Molecular Biology and Microbial Physiology Division, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Dwinder Sidhu
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Saumya Raychaudhuri
- Molecular Biology and Microbial Physiology Division, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
12
|
Hamilton AM, Krout IN, White AC, Sampson TR. Microbiome-based therapeutics for Parkinson's disease. Neurotherapeutics 2024; 21:e00462. [PMID: 39393983 PMCID: PMC11585879 DOI: 10.1016/j.neurot.2024.e00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/13/2024] Open
Abstract
Recent experimental and clinical data demonstrate a significant dysregulation of the gut microbiome in individuals with Parkinson's disease (PD). With an immense influence on all aspects of physiology, this dysregulation has potential to directly or indirectly contribute to disease pathology. Experimental models have bridged these associations toward defined contributions, identifying various microbiome-dependent impacts to PD pathology. These studies have laid the foundation for human translation, examining whether certain members of the microbiome and/or whole restoration of the gut microbiome community can provide therapeutic benefit for people living with PD. Here, we review recent and ongoing clinically-focused studies that use microbiome-targeted therapies to limit the severity and progression of PD. Fecal microbiome transplants, prebiotic interventions, and probiotic supplementation are each emerging as viable methodologies to augment the gut microbiome and potentially limit PD symptoms. While still early, the data in the field to date support continued cross-talk between experimental systems and human studies to identify key microbial factors that contribute to PD pathologies.
Collapse
Affiliation(s)
- Adam M Hamilton
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Ian N Krout
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Alexandria C White
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Timothy R Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA.
| |
Collapse
|
13
|
Goya-Jorge E, Gonza I, Bondue P, Druart G, Al-Chihab M, Boutaleb S, Douny C, Taminiau B, Daube G, Scippo ML, Thonart P, Delcenserie V. Unveiling the influence of a probiotic combination of Heyndrickxia coagulans and Lacticaseibacillus casei on healthy human gut microbiota using the TripleSHIME® system. Microbiol Res 2024; 285:127778. [PMID: 38823185 DOI: 10.1016/j.micres.2024.127778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
Probiotics are host-friendly microorganisms that can have important health benefits in the human gut microbiota as dietary supplements. Maintaining a healthy gut microbial balance relies on the intricate interplay among the intestinal microbiota, metabolic activities, and the host's immune response. This study aims to explore if a mixture of Heyndrickxia coagulans [ATB-BCS-042] and Lacticaseibacillus casei [THT-030-401] promotes in vitro this balance in representative gut microbiota from healthy individuals using the Triple-SHIME® (Simulation of the Human Intestinal Microbial Ecosystem). Metataxonomic analysis of the intestinal microbes revealed that the probiotic mix was not causing important disruptions in the biodiversity or microbial composition of the three simulated microbiota. However, some targeted populations analyzed by qPCR were found to be disrupted at the end of the probiotic treatment or after one week of washout. Populations such as Cluster IV, Cluster XVIa, and Roseburia spp., were increased indicating a potential gut health-promoting butyrogenic effect of the probiotic supplementation. In two of the systems, bifidogenic effects were observed, while in the third, the treatment caused a decrease in bifidobacteria. For the health-detrimental biomarker Escherichia-Shigella, a mild decrease in all systems was observed in the proximal colon sections, but these genera were highly increased in the distal colon sections. By the end of the washout, Bacteroides-Prevotella was found consistently boosted, which could have inflammatory consequences in the intestinal context. Although the probiotics had minimal influence on most quantified metabolites, ammonia consistently decreased after one week of daily probiotic supplementation. In reporter gene assays, aryl hydrocarbon receptor (AhR) activation was favored by the metabolic output obtained from post-treatment periods. Exposure of a human intestinal cell model to fermentation supernatant obtained after probiotic supplementation induced a trend to decrease the mRNA expression of immunomodulatory cytokines (IL-6, IL-8). Overall, with some exceptions, a positive impact of H. coagulans and L. casei probiotic mix was observed in the three parallel experiments, despite inter-individual differences. This study might serve as an in vitro pipeline for the impact assessment of probiotic combinations on the human gut microbiota.
Collapse
Affiliation(s)
- Elizabeth Goya-Jorge
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, Liège 4000, Belgium; Intestinal Regenerative Medicine Lab, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
| | - Irma Gonza
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, Liège 4000, Belgium.
| | - Pauline Bondue
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, Liège 4000, Belgium.
| | - Germain Druart
- Lacto Research sprl., Rue Herman Meganck 21, Gembloux-les Isnes 5032, Belgium.
| | - Mohamed Al-Chihab
- Lacto Research sprl., Rue Herman Meganck 21, Gembloux-les Isnes 5032, Belgium.
| | - Samiha Boutaleb
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, Liège 4000, Belgium.
| | - Caroline Douny
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, Liège 4000, Belgium.
| | - Bernard Taminiau
- Laboratory of Microbiology, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, Liège 4000, Belgium.
| | - Georges Daube
- Laboratory of Microbiology, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, Liège 4000, Belgium.
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, Liège 4000, Belgium.
| | - Philippe Thonart
- Lacto Research sprl., Rue Herman Meganck 21, Gembloux-les Isnes 5032, Belgium.
| | - Véronique Delcenserie
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, Liège 4000, Belgium.
| |
Collapse
|
14
|
Pal BB, Bandagi RV, Pebbili KK, Rathod R, Kotak B, Dhanaki G, Shah S. Effectiveness of Saccharomyces boulardii CNCM I-745 in Adult Indian Patients with Diarrhoea: A Real-world, Multicentre, Retrospective, Comparative Study. Drugs Real World Outcomes 2024; 11:309-316. [PMID: 38581564 PMCID: PMC11176121 DOI: 10.1007/s40801-024-00424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Multiple clinical studies have described the benefits of probiotic Saccharomyces boulardii (S. boulardii) CNCM I-745 against diarrhoea, but the real-world evidence supporting its use is lacking. OBJECTIVE To evaluate effectiveness of the S. boulardii CNCM I-745 group in a real-world setting. METHODS This was an electronic medical record (EMR)-based, retrospective, multicentre, comparative study in Indian adult patients presenting with diarrhoea managed between January 2020 and January 2022. Data of patients at the baseline visit, with a follow-up visit within 15 days, and who were administered S. boulardii CNCM I-745 (for the test group) or any other treatment modality excluding probiotics (for the control group) were considered. Effectiveness was evaluated on the basis of number of patients who did not complain of diarrhoea at follow-up. RESULTS Of 30,385 adult patients with diarrhoea, 270 patients prescribed S. boulardii CNCM I-745 were included, while the control group comprised 1457 patients. The baseline median age of the test group was 47 years (range 19-86 years), while it was 44 years (range 19-100 years) for the control group. The majority of patients in both study groups were females (56.7% in the test and 51.5% in the control group). Median duration between visits was 5 days (range 1-15 days) in both study groups. In all, 77.8% patients (95% CI 72.34-82.59) in the test group did not complain of diarrhoea at follow-up, while the proportion was 15.8% (95% CI 13.95-17.76) in the control group (p < 0.05). Odds ratio (OR) for absence of diarrhoea in the S. boulardii CNCM I-745 group versus the control group was 18.7 (95% CI 13.6-25.7, p < 0.05). For subgroups on concomitant antibiotics, a significant advantage was noted again for the test versus the control group (76.8% versus 18.4%; p < 0.05; OR: 14.7 with 95% CI 8.8-24.4; p < 0.05). CONCLUSION The effect of S. boulardii CNCM I-745 probiotic in controlling diarrhoea was better than anti-diarrhoeal and/or oral rehydration therapy in real-world clinical practice. The effect was similar even with concomitant antibiotic usage.
Collapse
Affiliation(s)
| | | | - Kranthi Kiran Pebbili
- Department of Medical Affairs, Dr Reddy's Laboratories Ltd, Hyderabad, Telangana, India
| | - Rahul Rathod
- Department of Medical Affairs, Dr Reddy's Laboratories Ltd, Hyderabad, Telangana, India
| | - Bhavesh Kotak
- Department of Medical Affairs, Dr Reddy's Laboratories Ltd, Hyderabad, Telangana, India
| | - Gauri Dhanaki
- Department of Medical Affairs, Dr Reddy's Laboratories Ltd, Hyderabad, Telangana, India
| | - Snehal Shah
- Department of Clinical Insights, Healthplix Technologies, Bangalore, India
| |
Collapse
|
15
|
Efremova I, Maslennikov R, Poluektova E, Medvedev O, Kudryavtseva A, Krasnov G, Fedorova M, Romanikhin F, Zharkova M, Zolnikova O, Bagieva G, Ivashkin V. Presepsin as a biomarker of bacterial translocation and an indicator for the prescription of probiotics in cirrhosis. World J Hepatol 2024; 16:822-831. [PMID: 38818295 PMCID: PMC11135270 DOI: 10.4254/wjh.v16.i5.822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/12/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The gut-liver axis and bacterial translocation are important in cirrhosis, but there is no available universal biomarker of cellular bacterial translocation, for which presepsin may be a candidate. AIM To evaluate the relationship of the blood presepsin levels with the state of the gut microbiota in cirrhosis in the absence of obvious infection. METHODS This study included 48 patients with Child-Pugh cirrhosis classes B and C and 15 healthy controls. The fecal microbiome was assessed using 16S rRNA gene sequencing. Plasma levels of presepsin were measured. A total of 22 patients received a probiotic (Saccharomyces boulardii) for 3 months. RESULTS Presepsin levels were higher in patients with cirrhosis than in healthy individuals [342 (91-2875) vs 120 (102-141) pg/mL; P = 0.048]. Patients with elevated presepsin levels accounted for 56.3% of all included patients. They had lower levels of serum albumin and higher levels of serum total bilirubin and overall severity of cirrhosis as assessed using the Child-Pugh scale. Patients with elevated presepsin levels had an increased abundance of the main taxa responsible for bacterial translocation, namely Bacilli and Proteobacteria (including the main class Gammaproteobacteria and the minor taxa Xanthobacteraceae and Stenotrophomonas), and a low abundance of bacteria from the family Lachnospiraceae (including the minor genus Fusicatenibacter), which produce short-chain fatty acids that have a positive effect on intestinal barrier function. The presepsin level directly correlated with the relative abundance of Bacilli, Proteobacteria, and inversely correlated with the abundance of Lachnospiraceae and Propionibacteriaceae. After 3 months of taking the probiotic, the severity of cirrhosis on the Child-Pugh scale decreased significantly only in the group with elevated presepsin levels [from 9 (8-11) to 7 (6-9); P = 0.004], while there were no significant changes in the group with normal presepsin levels [from 8 (7-8) to 7 (6-8); P = 0.123]. A high level of presepsin before the prescription of the probiotic was an independent predictor of a greater decrease in Child-Pugh scores (P = 0.046), as well as a higher level of the Child-Pugh scale (P = 0.042), but not the C-reactive protein level (P = 0.679) according to multivariate linear regression analysis. CONCLUSION The level of presepsin directly correlates with the abundance in the gut microbiota of the main taxa that are substrates of bacterial translocation in cirrhosis. This biomarker, in the absence of obvious infection, seems important for assessing the state of the gut-liver axis in cirrhosis and deciding on therapy targeted at the gut microbiota in this disease.
Collapse
Affiliation(s)
- Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Department of Scientific, Scientific Community for the Promotion of the Clinical Study of the Human Microbiome, Moscow 119435, Russia.
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Department of Scientific, Scientific Community for the Promotion of the Clinical Study of the Human Microbiome, Moscow 119435, Russia
| | - Oleg Medvedev
- Department of Pharmacology, Lomonosov Moscow State University, Moscow 119192, Russia
| | - Anna Kudryavtseva
- Department of Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - George Krasnov
- Department of Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Maria Fedorova
- Department of Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Filipp Romanikhin
- Department of Pharmacology, Lomonosov Moscow State University, Moscow 119192, Russia
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Oxana Zolnikova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Gyunay Bagieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Department of Scientific, Scientific Community for the Promotion of the Clinical Study of the Human Microbiome, Moscow 119435, Russia
| |
Collapse
|
16
|
Leser T, Baker A. Molecular Mechanisms of Lacticaseibacillus rhamnosus, LGG ® Probiotic Function. Microorganisms 2024; 12:794. [PMID: 38674738 PMCID: PMC11051730 DOI: 10.3390/microorganisms12040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
To advance probiotic research, a comprehensive understanding of bacterial interactions with human physiology at the molecular and cellular levels is fundamental. Lacticaseibacillus rhamnosus LGG® is a bacterial strain that has long been recognized for its beneficial effects on human health. Probiotic effector molecules derived from LGG®, including secreted proteins, surface-anchored proteins, polysaccharides, and lipoteichoic acids, which interact with host physiological processes have been identified. In vitro and animal studies have revealed that specific LGG® effector molecules stimulate epithelial cell survival, preserve intestinal barrier integrity, reduce oxidative stress, mitigate excessive mucosal inflammation, enhance IgA secretion, and provide long-term protection through epigenetic imprinting. Pili on the cell surface of LGG® promote adhesion to the intestinal mucosa and ensure close contact to host cells. Extracellular vesicles produced by LGG® recapitulate many of these effects through their cargo of effector molecules. Collectively, the effector molecules of LGG® exert a significant influence on both the gut mucosa and immune system, which promotes intestinal homeostasis and immune tolerance.
Collapse
Affiliation(s)
- Thomas Leser
- Future Labs, Human Health Biosolutions, Novonesis, Kogle Alle 6, 2970 Hoersholm, Denmark;
| | | |
Collapse
|
17
|
Murtaza N, Nawaz M, Yaqub T, Mehmood AK. Impact of Limosilactobacillus fermentum probiotic treatment on gut microbiota composition in sahiwal calves with rotavirus diarrhea: A 16S metagenomic analysis study". BMC Microbiol 2024; 24:114. [PMID: 38575861 PMCID: PMC10993544 DOI: 10.1186/s12866-024-03254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Diarrhea poses a major threat to bovine calves leading to mortality and economic losses. Among the causes of calf diarrhea, bovine rotavirus is a major etiological agent and may result in dysbiosis of gut microbiota. The current study was designed to investigate the effect of probiotic Limosilactobacillus fermentum (Accession No.OR504458) on the microbial composition of rotavirus-infected calves using 16S metagenomic analysis technique. Screening of rotavirus infection in calves below one month of age was done through clinical signs and Reverse Transcriptase PCR. The healthy calves (n = 10) were taken as control while the infected calves (n = 10) before treatment was designated as diarrheal group were treated with Probiotic for 5 days. All the calves were screened for the presence of rotavirus infection on each day and fecal scoring was done to assess the fecal consistency. Infected calves after treatment were designated as recovered group. Fecal samples from healthy, recovered and diarrheal (infected calves before sampling) were processed for DNA extraction while four samples from each group were processed for 16S metagenomic analysis using Illumina sequencing technique and analyzed via QIIME 2. RESULTS The results show that Firmicutes were more abundant in the healthy and recovered group than in the diarrheal group. At the same time Proteobacteria was higher in abundance in the diarrheal group. Order Oscillospirales dominated healthy and recovered calves and Enterobacterials dominated the diarrheal group. Alpha diversity indices show that diversity indices based on richness were higher in the healthy group and lower in the diarrheal group while a mixed pattern of clustering between diarrheal and recovered groups samples in PCA plots based on beta diversity indices was observed. CONCLUSION It is concluded that probiotic Limosilactobacillus Fermentum N-30 ameliorate the dysbiosis caused by rotavirus diarrhea and may be used to prevent diarrhea in pre-weaned calves after further exploration.
Collapse
Affiliation(s)
- Nadeem Murtaza
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Nawaz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Tahir Yaqub
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Asim Khalid Mehmood
- Department of Veterinary Surgery and Pet Sciences, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
18
|
Srikrishnaraj A, Lanting BA, Burton JP, Teeter MG. The Microbial Revolution in the World of Joint Replacement Surgery. JB JS Open Access 2024; 9:e23.00153. [PMID: 38638595 PMCID: PMC11023614 DOI: 10.2106/jbjs.oa.23.00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Background The prevalence of revision surgery due to aseptic loosening and periprosthetic joint infection (PJI) following total hip and knee arthroplasty is growing. Strategies to prevent the need for revision surgery and its associated health-care costs and patient morbidity are needed. Therapies that modulate the gut microbiota to influence bone health and systemic inflammation are a novel area of research. Methods A literature review of preclinical and clinical peer-reviewed articles relating to the role of the gut microbiota in bone health and PJI was performed. Results There is evidence that the gut microbiota plays a role in maintaining bone mineral density, which can contribute to osseointegration, osteolysis, aseptic loosening, and periprosthetic fractures. Similarly, the gut microbiota influences gut permeability and the potential for bacterial translocation to the bloodstream, increasing susceptibility to PJI. Conclusions Emerging evidence supports the role of the gut microbiota in the development of complications such as aseptic loosening and PJI after total hip or knee arthroplasty. There is a potential for microbial therapies such as probiotics or fecal microbial transplantation to moderate the risk of developing these complications. However, further investigation is required. Clinical Relevance Modulation of the gut microbiota may influence patient outcomes following total joint arthroplasty.
Collapse
Affiliation(s)
- Arjuna Srikrishnaraj
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Brent A. Lanting
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
| | - Jeremy P. Burton
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
| | - Matthew G. Teeter
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
| |
Collapse
|
19
|
Zaman R, Ravichandran V, Tan CK. Role of dietary supplements in the continuous battle against COVID-19. Phytother Res 2024; 38:1071-1088. [PMID: 38168043 DOI: 10.1002/ptr.8096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
A sudden outbreak of the COVID-19 pandemic was a big blow to the world community on every level. Created by a novel coronavirus, SARS-CoV-2, which was previously unknown to the human immune system. The expert opinion almost immediately united on the fact that the most effective way of fighting the pandemic would be by building immunity artificially via a mass immunization program. However, it took about a year for the approval of the first vaccine against COVID-19. In the meantime, a big part of the general population started adapting nutritious diet plans and dietary supplements to boost natural immunity as a potential prophylactic strategy against SARS-CoV-2 infection. Whether they originate from mainstream medicine, such as synthetic supplements, or traditional herbal remedies in the form of single or poly-herbs, these supplements may comprise various components that exhibit immunomodulatory, anti-inflammatory, antioxidant, and antimicrobial characteristics. There is a substantial body of predictions and expert opinions suggesting that enhancing one's diet with dietary supplements containing additional nutrients and bioactive compounds like vitamins, minerals, amino acids, fatty acids, phytochemicals, and probiotics can enhance the immune system's ability to develop resistance against COVID-19, although none of them have any conclusive evidence nor officially recommended by World Health Organization (WHO). The current review critically acclaims the gap between public perception-based preference and real evidence-based study to weigh the actual benefit of dietary supplements in relation to COVID-19 prevention and management.
Collapse
Affiliation(s)
- Rahela Zaman
- School of Healthy Aging, Aesthetics and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Vignesh Ravichandran
- School of Healthy Aging, Aesthetics and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Chung Keat Tan
- School of Healthy Aging, Aesthetics and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Kaur S, Sharma P, Mayer MJ, Neuert S, Narbad A, Kaur S. Beneficial effects of GABA-producing potential probiotic Limosilactobacillus fermentum L18 of human origin on intestinal permeability and human gut microbiota. Microb Cell Fact 2023; 22:256. [PMID: 38087304 PMCID: PMC10717626 DOI: 10.1186/s12934-023-02264-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Gamma-aminobutyric acid (GABA) is a non-protein amino acid with neuroinhibitory, antidiabetic, and antihypertensive properties and is used as a drug for treating anxiety and depression. Some strains of lactobacilli are known to produce GABA and strengthen the gut barrier function which play an important role in ameliorating the effects caused by the pathogen on the gut barrier. The probiotic bacteria are also known to modulate the human fecal microbiota, however, the role of GABA-producing strains on the gut epithelium permeability and gut microbiota is not known. RESULTS In this study, we report the production of high levels of GABA by potential probiotic bacterium Limosilactobacillus fermentum L18 for the first time. The kinetics of the production of GABA by L18 showed that the maximum production of GABA in the culture supernatant (CS) occurred at 24 h, whereas in fermented milk it took 48 h of fermentation. The effect of L18 on the restoration of lipopolysaccharide (LPS)-disrupted intestinal cell membrane permeability in Caco-2 monolayers showed that it significantly restored the transepithelial electrical resistance (TEER) values, by significantly increasing the levels of junction proteins, occludin and E-cadherin in L18 and LPS-treated Caco-2 cells as compared to only LPS-treated cells. The effect of GABA-secreting L18 on the metataxonome of human stool samples from healthy individuals was investigated by a batch fermentor that mimics the conditions of the human colon. Although, no differences were observed in the α and β diversities of the L18-treated and untreated samples at 24 h, the relative abundances of bacterial families Lactobacillaceae and Bifidobacteriaceae increased in the L18-treated group, but both decreased in the untreated groups. On the other hand, the relative abundance of Enterobacteriaceae decreased in the L18 samples but it increased in the untreated samples. CONCLUSION These results indicate that Li. fermentum L18 is a promising GABA-secreting strain that strengthens the gut epithelial barrier by increasing junction protein concentrations and positively modulating the gut microbiota. It has the potential to be used as a psychobiotic or for the production of functional foods for the management of anxiety-related illnesses.
Collapse
Affiliation(s)
- Sumanpreet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Department of Medical Laboratory Sciences, Lovely Professional University, Jalandhar, India
| | - Preeti Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Melinda J Mayer
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Saskia Neuert
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- East Genomics Laboratory Hub, Cambridge University Hospitals Genomic Laboratory, Hills Road, Cambridge, UK
| | - Arjan Narbad
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
21
|
Hu Z, Feng L, Jiang Q, Wang W, Tan B, Tang X, Yin Y. Intestinal tryptophan metabolism in disease prevention and swine production. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:364-374. [PMID: 38058568 PMCID: PMC10695851 DOI: 10.1016/j.aninu.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 12/08/2023]
Abstract
Tryptophan (Trp) is an essential amino acid that cannot be synthesized by animals. It has been characterized into two different isomers, levorotation-Trp (L-Trp) and dextrorotation-Trp (D-Trp), based on their distinct molecule orientation. Intestinal epithelial cells and gut microbiota are involved in metabolizing L-Trp in the gut via the activation of the kynurenine, serotonin, and indole pathways. However, knowledge regarding D-Trp metabolism in the gut remains unclear. In this review, we briefly update the current understanding of intestinal L/D-Trp metabolism and the function of their metabolites in modulating the gut physiology and diseases. Finally, we summarize the effects of Trp nutrition on swine production at different stages, including growth performance in weaned piglets and growing pigs, as well as the reproduction performance in sows.
Collapse
Affiliation(s)
- Zhenguo Hu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410125, China
| | - Luya Feng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wenliang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Bi'e Tan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiongzhuo Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yulong Yin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410125, China
| |
Collapse
|
22
|
Elhossiny RM, Elshahawy HH, Mohamed HM, Abdelmageed RI. Assessment of probiotic strain Lactobacillus acidophilus LB supplementation as adjunctive management of attention-deficit hyperactivity disorder in children and adolescents: a randomized controlled clinical trial. BMC Psychiatry 2023; 23:823. [PMID: 37946220 PMCID: PMC10636814 DOI: 10.1186/s12888-023-05324-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND This study was designed to examine the possible efficacy of the probiotic strain Lactobacillus acidophilus LB (Lacteol Fort) on attention-deficit/hyperactivity disorder (ADHD) symptomatology and evaluate its influence on cognition function. METHODS In this randomized controlled trial, 80 children and adolescents with ADHD diagnosis, aged 6-16 years, were included. The participants were randomly assigned to two groups: one group received probiotics plus atomoxetine, whereas the other group received atomoxetine only. ADHD symptomatology was assessed using the Conners Parent Rating Scale-Revised Long Version (CPRS-R-L) and Child Behavioral Checklist (CBCL/6-18). The participants were evaluated for their vigilance and executive function using Conner's Continuous Performance Test (CPT) and Wisconsin Card Sort Test (WCST). Both groups were assessed at the beginning of the study and the end of the twelve weeks. RESULTS The probiotic group comprised 36 patients, whereas the control group comprised 40 patients in the final analysis after four patients dropped out of the trial. After 3 months of probiotic supplementation, a significant improvement in the CPRS-R-L and CBCL total T scores was observed compared with those in the control group (p = 0.032, 0.024, respectively). Additionally, the probiotic group demonstrated improved focus attention (target accuracy rate and omission errors;p = 0.02, 0.043, respectively) compared with the control group. An analysis of the Wisconsin Card Sorting Test (WCST) performance demonstrated that the probiotic group had significantly lower perseverative (p = 0.017) and non-perseverative errors (p = 0.044) but no significant differences compared to the control group. CONCLUSION Lactobacillus acidophilus LB supplementation combined with atomoxetine for 3 months had a beneficial impact on ADHD symptomology and a favorable influence on cognitive performance. As a result, the efficacy of probiotics as an adjunctive treatment for managing ADHD may be promising. TRIAL REGISTRATION ClinicalTrials.gov (identifier: NCT04167995). Registration date: 19-11-2019.
Collapse
Affiliation(s)
- Reham M Elhossiny
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Abbassya Square, Cairo, Egypt
| | - Heba H Elshahawy
- Department of Neuropsychiatry, Faculty of Medicine, Okasha Institue of Psychiatry, Ain Shams University, Cairo, Egypt
| | - Hanan M Mohamed
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Abbassya Square, Cairo, Egypt
| | - Reham I Abdelmageed
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Abbassya Square, Cairo, Egypt.
| |
Collapse
|
23
|
Mayer S, Bonhag C, Jenkins P, Cornett B, Watts P, Scherbak D. Probiotic-Associated Central Venous Catheter Bloodstream Infections Lead to Increased Mortality in the ICU. Crit Care Med 2023; 51:1469-1478. [PMID: 37260310 DOI: 10.1097/ccm.0000000000005953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
OBJECTIVES To determine the occurrence rate and impact on patient outcomes of probiotic-associated central venous catheter bloodstream infections in the ICU. DESIGN Retrospective observational cohort study. SETTING The cohort was gathered using HCA Healthcare's data warehouse. PATIENTS Adult patients with central venous catheters in the ICU. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Blood culture data were used to determine whether an infection had occurred with an organism contained in an administered probiotic. Eighty-six probiotic-associated central venous catheter bloodstream infections were identified among the 23,015 patient cohort who received probiotics (0.37%). The number needed to harm was 270. Zero infections were found in the cohort that did not receive probiotics. Patients who contracted a probiotic infection had increased mortality (odds ratio, 2.23; 1.30-3.71; p < 0.01). Powder formulations had an increased rate of infection compared with nonpowder formulations (0.76% vs 0.33%; odds ratio, 2.03; 1.05-3.95; p = 0.04). CONCLUSIONS Probiotic administration is associated with a substantial rate of probiotic-associated bloodstream infection in ICU patients with central venous catheters in place. Probiotic-associated bloodstream infections result in significantly increased mortality. Powder formulations cause bloodstream infections more frequently than nonpowder formulations. In ICU patients with central venous catheters, the risks of probiotic-associated central venous catheter bloodstream infection and death outweigh any potential benefits of probiotic administration.
Collapse
Affiliation(s)
| | | | - Patrick Jenkins
- Department of Pulmonary and Critical Care, University of Oklahoma, Oklahoma City, OK
| | | | - Paula Watts
- HCA HealthONE, Denver, CO
- Critical Care and Pulmonary Consultants, Greenwood Village, CO
| | - Dmitriy Scherbak
- HCA HealthONE, Denver, CO
- Critical Care and Pulmonary Consultants, Greenwood Village, CO
| |
Collapse
|
24
|
Lee YY, Roslan NS, Tee V, Koo TH, Ibrahim YS. Climate Change and the Esophagus: Speculations on Changing Disease Patterns as the World Warms. Curr Gastroenterol Rep 2023; 25:280-288. [PMID: 37656421 DOI: 10.1007/s11894-023-00888-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE OF REVIEW Esophageal disorders, including gastroesophageal reflux disease (GERD), eosinophilic esophagitis (EoE), and esophageal cancer, may be affected by climate change. Our review describes the impact of climate change on risk factors associated with esophageal diseases and speculates how these climate-related factors impacted esophageal disorders and their management. RECENT FINDINGS Climate change is responsible for extreme weather conditions (shifts in rainfall, floods, droughts, and forest fires) and global warming. These consequences affect basic human needs of water and food, causing changes in population dynamics and pose significant threats to digestive health, including common esophageal disorders like GERD, EoE, and esophageal cancers. The changing patterns of esophageal diseases with climate change are likely mediated through risk factors, including nutrition, pollutants, microplastics, and the microbiota-gut-brain axis. The healthcare process itself, including GI endoscopy practices commonly employed in diagnosing and therapeutics of esophageal diseases, may, in turn, contribute to climate change through plastic wastage and greenhouse gas emissions, thus creating the climate change lifecycle. Breaking the cycle would involve changes at the individual level, community level, and national policy level. Prevention is key, with individuals identifying and remediating risk factors and reducing carbon footprints. The ABC (Advocacy, Broadcast, and Collaborate) activities would help enhance awareness at the community level. Higher-level programs such as the Bracing Resilience Against Climate Effects (BRACE) would lead to broader and larger-scale adoption of public health adaptation strategies at the national level. The impact of climate change on esophageal disorders is likely real, mediated by several risk factors, and creates a climate change lifecycle that may only break if changes are made at individual, community, and national levels.
Collapse
Affiliation(s)
- Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia.
- GI Function and Motility Unit, Hospital Universiti Sains Malaysia, 16150, Kota Bharu, Malaysia.
| | - Nur Sakinah Roslan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Vincent Tee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Thai Hau Koo
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Yusof Shuaib Ibrahim
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Microplastic Research Interest Group, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| |
Collapse
|
25
|
Mörschbächer AP, Pappen E, Henriques JAP, Granada CE. Effects of probiotic supplementation on the gut microbiota composition of adults: a systematic review of randomized clinical trials. AN ACAD BRAS CIENC 2023; 95:e20230037. [PMID: 37878913 DOI: 10.1590/0001-3765202320230037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/19/2023] [Indexed: 10/27/2023] Open
Abstract
Researchers have associated the therapeutic potential of probiotics with its ability to modulate gut microbiota, which is considered an "invisible organ" of the human body. The present study investigates the effects of probiotic supplementation on the gut microbiota composition of adults. The authors conducted a systematic review of the literature published in six different databases. The search followed PRISMA guidelines and aimed to identify randomized clinical trials on probiotic supplementation. All relevant publications indexed up to May 28, 2021, were retrieved. Then, the authors defined the inclusion and exclusion criteria. Two independent reviewers performed study screening, data extraction, and quality assessment. A total of 2,404 publications were retrieved, and eight studies met the eligibility criteria. The included randomized clinical trials were published between 2015 to 2020. The worldwide studies included adults aged from 18 to 79 years, most of whom were women (66.5%). Only one of the included studies observed significant effects on fecal microbiota composition in the relative abundance of Bacteroidetes and Firmicutes phyla in comparison with the placebo treatment. Overall, this systematic review could not draw consistent conclusions on the effects of probiotic supplementation on the gut microbiota composition of adults.
Collapse
Affiliation(s)
- Ana Paula Mörschbächer
- University of Taquari Valley (Univates), Avelino Talini Avenue, 171, 95914-014 Lajeado, RS, Brazil
| | - Emelin Pappen
- University of Taquari Valley (Univates), Avelino Talini Avenue, 171, 95914-014 Lajeado, RS, Brazil
| | - João Antonio P Henriques
- University of Taquari Valley (Univates), Avelino Talini Avenue, 171, 95914-014 Lajeado, RS, Brazil
| | - Camille E Granada
- University of Taquari Valley (Univates), Avelino Talini Avenue, 171, 95914-014 Lajeado, RS, Brazil
| |
Collapse
|
26
|
Kummola L, González-Rodríguez MI, Marnila P, Nurminen N, Salomaa T, Hiihtola L, Mäkelä I, Laitinen OH, Hyöty H, Sinkkonen A, Junttila IS. Comparison of the effect of autoclaved and non-autoclaved live soil exposure on the mouse immune system : Effect of soil exposure on immune system. BMC Immunol 2023; 24:29. [PMID: 37689649 PMCID: PMC10492337 DOI: 10.1186/s12865-023-00565-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND . Lack of exposure to the natural microbial diversity of the environment has been linked to dysregulation of the immune system and numerous noncommunicable diseases, such as allergies and autoimmune disorders. Our previous studies suggest that contact with soil material, rich in naturally occurring microbes, could have a beneficial immunoregulatory impact on the immune system in mice and humans. However, differences in the immunomodulatory properties of autoclaved, sterile soil material and non-autoclaved, live soil material have not been compared earlier. RESULTS . In this study, we exposed C57BL/6 mice to autoclaved and live soil powders that had the same rich microbiota before autoclaving. We studied the effect of the soil powders on the mouse immune system by analyzing different immune cell populations, gene expression in the gut, mesenteric lymph nodes and lung, and serum cytokines. Both autoclaved and live soil exposure were associated with changes in the immune system. The exposure to autoclaved soil resulted in higher levels of Rorγt, Inos and Foxp3 expression in the colon. The exposure to live soil was associated with elevated IFN-γ concentration in the serum. In the mesenteric lymph node, exposure to live soil reduced Gata3 and Foxp3 expression, increased the percentage of CD8 + T cells and the expression of activation marker CD80 in XCR1+SIRPα- migratory conventional dendritic cell 1 subset. CONCLUSIONS . Our results indicate that exposure to the live and autoclaved soil powders is not toxic for mice. Exposure to live soil powder slightly skews the immune system towards type 1 direction which might be beneficial for inhibiting type 2-related inflammation. Further studies are warranted to quantify the impact of this exposure in experimental type 2 inflammation.
Collapse
Affiliation(s)
- Laura Kummola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | | | - Pertti Marnila
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Tanja Salomaa
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
- Fimlab Laboratories, Arvo-Building, Rm F326, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Lotta Hiihtola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
- Fimlab Laboratories, Arvo-Building, Rm F326, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Iida Mäkelä
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Aki Sinkkonen
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Ilkka S Junttila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland.
- Fimlab Laboratories, Arvo-Building, Rm F326, Arvo Ylpön katu 34, Tampere, 33520, Finland.
- Northern Finland Laboratory Centre (NordLab), Oulu, 90220, Finland.
- Research Unit of Biomedicine, University of Oulu, Oulu, 90570, Finland.
| |
Collapse
|
27
|
Dash J, Sethi M, Deb S, Parida D, Kar S, Mahapatra S, Minz AP, Pradhan B, Prasad P, Senapati S. Biochemical, functional and genomic characterization of a new probiotic Ligilactobacillus salivarius F14 from the gut of tribes of Odisha. World J Microbiol Biotechnol 2023; 39:171. [PMID: 37101059 DOI: 10.1007/s11274-023-03626-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Characterization of new potential probiotics is desirable in the field of research on probiotics for their extensive use in health and disease. Tribes could be an unusual source of probiotics due to their unique food habits and least dependence on medications and consumption of antibiotics. The aim of the present study is to isolate lactic acid bacteria from tribal fecal samples of Odisha, India, and characterize their genetic and probiotic attributes. In this context one of the catalase-negative and Gram-positive isolates, identified using 16S rRNA sequencing as Ligilactobacillus salivarius, was characterized in vitro for its acid and bile tolerance, cell adhesion and antimicrobial properties. The whole genome sequence was obtained and analyzed for strain level identification, presence of genomic determinants for probiotic-specific features, and safety. Genes responsible for its antimicrobial and immunomodulatory functions were detected. The secreted metabolites were analyzed using high resolution mass spectroscopy; the results indicated that the antimicrobial potential could be due to the presence of pyroglutamic acid, propionic acid, lactic acid, 2-hydroxyisocaproic acid, homoserine, and glutathione, and the immuno-modulating activity, contributed by the presence of short chain fatty acids such as acetate, propionate, and butyrate. So, to conclude we have successfully characterized a Ligilactobacillus salivarius species with potential antimicrobial and immunomodulatory ability. The health-promoting effects of this probiotic strain and/or its derivatives will be investigated in future.
Collapse
Affiliation(s)
- Jayalaxmi Dash
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Manisha Sethi
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Sushanta Deb
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Department of Microbiology, AIIMS, New Delhi, India
| | - Deepti Parida
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Salona Kar
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Soumendu Mahapatra
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Aliva P Minz
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Biswaranjan Pradhan
- S. K. Dash Center of Excellence of Biosciences and Engineering & Technology (SKBET), Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, India
| | - Punit Prasad
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | | |
Collapse
|
28
|
Lee JY, An M, Heo H, Park JY, Lee J, Kang CH. Limosilactobacillus fermentum MG4294 and Lactiplantibacillus plantarum MG5289 Ameliorates Nonalcoholic Fatty Liver Disease in High-Fat Diet-Induced Mice. Nutrients 2023; 15:nu15082005. [PMID: 37111223 PMCID: PMC10143775 DOI: 10.3390/nu15082005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and the leading cause of liver-related deaths worldwide. It has been established that microorganisms are involved in the interaction between the intestinal lumen and the liver; therefore, studies on probiotics as potential candidates are increasing. This study evaluated the effects of Limosilactobacillus fermentum MG4294 and Lactiplantibacillus plantarum MG5289 on NAFLD. The MG4294 and MG5289 reduced lipid accumulation in FFA-induced HepG2 by suppressing the adipogenic proteins through the regulation of AMP-activated protein kinase (AMPK). The administration of these strains in the HFD-induced mice model lowered body weight, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and cholesterol levels. In particular, MG4294 and MG5289 restored liver TG and TC to normal levels by lowering lipid and cholesterol-related proteins via the modulation of AMPK in the liver tissue. In addition, the administration of MG4294 and MG5289 reduced pro-inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-1β-, and IL6) in the intestinal tissues of the HFD-induced mouse model. In conclusion, MG4294 and MG5289 can be presented as probiotics with the potential to prevent NAFLD.
Collapse
Affiliation(s)
- Ji Yeon Lee
- MEDIOGEN, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Republic of Korea
| | - Minju An
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| | - Huijin Heo
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| | - Jeong-Yong Park
- MEDIOGEN, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Republic of Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| | - Chang-Ho Kang
- MEDIOGEN, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Republic of Korea
| |
Collapse
|
29
|
Serbanescu MA, Da Silva M, Zaky A. Impact of Intensive Care Unit Nutrition on the Microbiome and Patient Outcomes. Anesthesiol Clin 2023; 41:263-281. [PMID: 36872003 PMCID: PMC10157520 DOI: 10.1016/j.anclin.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The bipartite relationship between nutrition and the intestinal microbiome represents an exciting frontier in critical care medicine. In this review, the authors first address these topics independently, leading with a summary of recent clinical studies assessing intensive care unit nutritional strategies, followed by an exploration of the microbiome in the context of perioperative and intensive care, including recent clinical data implicating microbial dysbiosis as a key driver of clinical outcomes. Finally, the authors address the intersection of nutrition and the microbiome, exploring the use of supplemental pre-, pro-, and synbiotics to influence microbial composition and improve outcomes in critically ill and postsurgical patients.
Collapse
Affiliation(s)
- Mara A Serbanescu
- Department of Anesthesiology, Duke University Hospital, 2301 Erwin Road, Box #3094, Durham, NC 27710, USA.
| | - Monica Da Silva
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, 950 Jefferson Tower, 625 19th Street South, Birmingham, AL 35249-6810, USA
| | - Ahmet Zaky
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, 950 Jefferson Tower, 625 19th Street South, Birmingham, AL 35249-6810, USA
| |
Collapse
|
30
|
Lu B, Qiao Q, Park ER, Wang Y, Gilleran JA, Pan M, Pilch DS, Wu X, Roberge JY, Fan H. Acylpyrazoline-Based Third-Generation Selective Antichlamydial Compounds with Enhanced Potency. ACS OMEGA 2023; 8:6597-6607. [PMID: 36844602 PMCID: PMC9947980 DOI: 10.1021/acsomega.2c06992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Chlamydiae are obligate intracellular Gram-negative bacteria and widespread pathogens in humans and animals. Broad-spectrum antibiotics are currently used to treat chlamydial infections. However, broad-spectrum drugs also kill beneficial bacteria. Recently, two generations of benzal acylhydrazones have been shown to selectively inhibit chlamydiae without toxicity to human cells and lactobacilli, which are dominating, beneficial bacteria in the vagina of reproductive-age women. Here, we report the identification of two acylpyrazoline-based third-generation selective antichlamydials (SACs). With minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of 10-25 μM against Chlamydia trachomatis and Chlamydia muridarum, these new antichlamydials are 2- to 5-fold more potent over the benzal acylhydrazone-based second-generation selective antichlamydial lead SF3. Both acylpyrazoline-based SACs are well tolerated by Lactobacillus, Escherichia coli, Klebsiella, and Salmonella as well as host cells. These third-generation selective antichlamydials merit further evaluation for therapeutic application.
Collapse
Affiliation(s)
- Bin Lu
- Department
of Parasitology, Central South University
Xiangya Medical School, Changsha, Hunan 410013, China
- Department
of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Qi Qiao
- Molecular
Design and Synthesis Core, RUBRIC, Office for Research, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Elizabeth R. Park
- Molecular
Design and Synthesis Core, RUBRIC, Office for Research, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
- Department
of Chemistry and Chemical Biology, Rutgers,
The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Yuxuan Wang
- Department
of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - John A. Gilleran
- Molecular
Design and Synthesis Core, RUBRIC, Office for Research, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Matthew Pan
- Department
of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Daniel S. Pilch
- Department
of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Xiang Wu
- Department
of Parasitology, Central South University
Xiangya Medical School, Changsha, Hunan 410013, China
| | - Jacques Y. Roberge
- Molecular
Design and Synthesis Core, RUBRIC, Office for Research, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Huizhou Fan
- Department
of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
31
|
He XJ, Wang XL, Sun DJ, Huang XY, Liu G, Li DZ, Lin HL, Zeng XP, Li DL, Wang W. The efficacy and safety of Saccharomyces boulardii in addition to antofloxacin-based bismuth quadruple therapy for Helicobacter pylori eradication: a single-center, prospective randomized-control study. Therap Adv Gastroenterol 2023; 16:17562848221147763. [PMID: 36742013 PMCID: PMC9893347 DOI: 10.1177/17562848221147763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/11/2022] [Indexed: 01/30/2023] Open
Abstract
Background We previously reported that antofloxacin-based bismuth quadruple therapy was safe and effective for Helicobacter pylori (H. pylori) eradication. It is not clear whether the addition of Saccharomyces boulardii (S. boulardii) to antofloxacin-based quadruple therapy can improve the eradication rate of H. pylori and reduce adverse events. Objective To investigate the effect of adding S. boulardii to antofloxacin-based quadruple therapy on the eradication rate of H. pylori and the adverse events. Design Single-center, prospective randomized controlled study. Methods A total of 172 patients with H. pylori infection were randomly assigned to the test and control groups. Patients in the control group (n = 86) received antofloxacin-based bismuth quadruple therapy for 14 days. On this basis, cases in the test group (n = 86) received S. boulardii 500 mg b.i.d. The eradication rate of H. pylori and adverse events were observed 4 weeks after the treatment. Results There were no statistically significant differences in the eradication rates of H. pylori and frequency of diarrhea between the test group and control group (p > 0.05). The duration of diarrhea in the test group was significantly shorter than in the control group (p < 0.001). In addition, the two groups exhibited similar adverse event rates for epigastric pain, abdominal distention, dizzy, vomiting, and rash (p > 0.05). The severity of adverse reactions was similar between the two groups (p > 0.05), and most of them had mild adverse events. Conclusion Although the addition of S. boulardii to antofloxacin-based quadruple therapy could not improve the eradication rate of H. pylori, it could shorten the time of antibiotic-associated diarrhea and reduce the incidence of diarrhea. Trial registration number ChiCTR2200056931.
Collapse
Affiliation(s)
- Xiao-Jian He
- Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Xiao-Ling Wang
- Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Dong-Jie Sun
- Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Xiao-Yan Huang
- Department of Oncology, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Gang Liu
- Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Da-Zhou Li
- Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Hai-Lan Lin
- Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Xiang-Peng Zeng
- Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, 156 North Road of West No.2 Ring, Fuzhou 350025, China
| | - Dong-Liang Li
- Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Hepatobiliary Diseases, 900TH Hospital of Joint Logistics Support Force, 156 North Road of West No.2 Ring, Fuzhou 350025, China
| | - Wen Wang
- Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, 156 North Road of West No.2 Ring, Fuzhou 350025, China
| |
Collapse
|
32
|
Ghanaatgar M, Taherzadeh S, Ariyanfar S, Razeghi Jahromi S, Martami F, Mahmoudi Gharaei J, Teimourpour A, Shahrivar Z. Probiotic supplement as an adjunctive therapy with Ritalin for treatment of attention-deficit hyperactivity disorder symptoms in children: a double-blind placebo-controlled randomized clinical trial. NUTRITION & FOOD SCIENCE 2023; 53:19-34. [DOI: 10.1108/nfs-12-2021-0388] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Purpose
Accumulating evidence highlights the importance of microbiota-directed intervention in neuropsychiatric disorders. This study aims to investigate the effects of probiotic supplements as an adjunct therapy in combination with Ritalin in children with attention-deficit hyperactivity disorder (ADHD).
Design/methodology/approach
Children with ADHD, aged 6–12 years, who had an intelligent quotient of ≥70 were enrolled in the study. Participants were randomly assigned to either the group that received probiotics or the group that received the placebo in addition to the weight-adjusted dose of Ritalin. Parents were asked to complete the revised Conners Parent Rating Scale–short version (CPRS–RS), and the psychiatrist completed the seven-point Clinical Global Impression–Severity (CGI–S) scale. Two study groups were compared in three time points, including T1 (before intervention), T2 (at the end of fourth week) and T3 (at the end of the eighth week).
Findings
A total of 38 participants completed the study. After eight weeks of intervention, the probiotic group had a significant improvement regarding CPRS–RS scores in T2 (9.4 unit, p = 0.014) and T3 (18.6 unit, p < 0.001), compared to placebo. In addition, children in the probiotic group had 0.7 unit lower CGI in T3 (p = 0.018) than the placebo group. A significant reduction of CGI scores was observed in each interval (T2 vs T1, T3 vs T2 and T3 vs T1; p < 0.05). This significant change in CGI score between intervals was also detected in the placebo group in T2 vs T1 (p = 0.002) and T3 vs T1 (p < 0.001). Mean CPRS scores of the groups were different in T2 and T3 (p = 0.011 and p < 0.001, respectively) and mean CGI scores of the two study groups were different in T3 (p = 0.018).
Originality/value
Eight weeks of supplementation with probiotics had a favorable effect on symptoms and severity of ADHD. Therefore, probiotics as an adjuvant treatment might have a promising efficacy regarding the management of ADHD.
Collapse
|
33
|
Wang Y, Choy CT, Lin Y, Wang L, Hou J, Tsui JCC, Zhou J, Wong CH, Yim TK, Tsui WK, Chan UK, Siu PLK, Loo SKF, Tsui SKW. Effect of a Novel E3 Probiotics Formula on the Gut Microbiome in Atopic Dermatitis Patients: A Pilot Study. Biomedicines 2022; 10:2904. [PMID: 36428472 PMCID: PMC9687608 DOI: 10.3390/biomedicines10112904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Atopic dermatitis (AD) has been shown to be closely related to gut dysbiosis mediated through the gut−skin axis, and thus the gut microbiome has recently been explored as a potential therapeutic target for the treatment of AD. Contrasting and varying efficacy have been reported since then. In order to investigate the determining factor of probiotics responsiveness in individuals with AD, we initiated the analysis of 41 AD patients with varying disease severity in Hong Kong, whereas the severity was assessed by Eczema Area and Severity Index (EASI) by board certified dermatologist. 16S rRNA sequencing on the fecal samples from AD patients were performed to obtain the metagenomics profile at baseline and after 8 weeks of oral administration of a novel E3 probiotics formula (including prebiotics, probiotics and postbiotics). While EASI of the participants were significantly lower after the probiotics treatment (p < 0.001, paired Wilcoxon signed rank), subjects with mild AD were found to be more likely to respond to the probiotics treatment. Species richness among responders regardless of disease severity were significantly increased (p < 0.001, paired Wilcoxon signed rank). Responders exhibited (1) elevated relative abundance of Clostridium, Fecalibacterium, Lactobacillus, Romboutsia, and Streptococcus, (2) reduced relative abundance of Collinsella, Bifidobacterium, Fusicatenibacter, and Escherichia-Shigella amid orally-intake probiotics identified using the machine learning algorithm and (3) gut microbiome composition and structure resembling healthy subjects after probiotics treatment. Here, we presented the gut microbiome dynamics in AD patients after the administration of the E3 probiotics formula and delineated the unique gut microbiome signatures in individuals with AD who were responding to the probiotics. These findings could guide the future development of probiotics use for AD management.
Collapse
Affiliation(s)
- Yiwei Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Tung Choy
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Yufeng Lin
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinpao Hou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Junwei Zhou
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Chi Ho Wong
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Tai Ki Yim
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Wai Kai Tsui
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Un Kei Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Pui Ling Kella Siu
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Steven King Fan Loo
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
- Hong Kong Institute of Integrative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Kwok Wing Tsui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
34
|
Spivak I, Fluhr L, Elinav E. Local and systemic effects of microbiome‐derived metabolites. EMBO Rep 2022; 23:e55664. [PMID: 36031866 PMCID: PMC9535759 DOI: 10.15252/embr.202255664] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
Commensal microbes form distinct ecosystems within their mammalian hosts, collectively termed microbiomes. These indigenous microbial communities broadly expand the genomic and functional repertoire of their host and contribute to the formation of a “meta‐organism.” Importantly, microbiomes exert numerous biochemical reactions synthesizing or modifying multiple bioactive small molecules termed metabolites, which impact their host's physiology in a variety of contexts. Identifying and understanding molecular mechanisms of metabolite–host interactions, and how their disrupted signaling can contribute to diseases, may enable their therapeutic application, a modality termed “postbiotic” therapy. In this review, we highlight key examples of effects of bioactive microbe‐associated metabolites on local, systemic, and immune environments, and discuss how these may impact mammalian physiology and associated disorders. We outline the challenges and perspectives in understanding the potential activity and function of this plethora of microbially associated small molecules as well as possibilities to harness them toward the promotion of personalized precision therapeutic interventions.
Collapse
Affiliation(s)
- Igor Spivak
- Systems Immunology Department Weizmann Institute of Science Rehovot Israel
- Medical Clinic III University Hospital Aachen Aachen Germany
| | - Leviel Fluhr
- Systems Immunology Department Weizmann Institute of Science Rehovot Israel
| | - Eran Elinav
- Systems Immunology Department Weizmann Institute of Science Rehovot Israel
- Microbiome & Cancer Division, DKFZ Heidelberg Germany
| |
Collapse
|
35
|
Maslennikov R, Efremova I, Ivashkin V, Zharkova M, Poluektova E, Shirokova E, Ivashkin K. Effect of probiotics on hemodynamic changes and complications associated with cirrhosis: A pilot randomized controlled trial. World J Hepatol 2022; 14:1667-1677. [PMID: 36157871 PMCID: PMC9453455 DOI: 10.4254/wjh.v14.i8.1667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bacterial translocation exacerbates the hyperdynamic circulation observed in cirrhosis and contributes to a more severe disease course. Probiotics may reduce bacterial translocation and may therefore be useful to redress the circulatory imbalance. AIM To investigate the effect of probiotics on hemodynamic parameters, systemic inflammation, and complications of cirrhosis in this randomized placebo-controlled trial. METHODS This single-blind randomized placebo-controlled study included 40 patients with Child-Pugh class B and C cirrhosis; 24 patients received probiotics (Saccharomyces boulardii) for 3 mo, and 16 patients received a placebo over the same period. Liver function and the systemic hemodynamic status were evaluated pre- and post-intervention. Echocardiography and simultaneous blood pressure and heart rate monitoring were performed to evaluate systemic hemodynamic indicators. Cardiac output and systemic vascular resistance were calculated. RESULTS Following a 3-mo course of probiotics in comparison to the control group, we observed amelioration of hyperdynamic circulation [a decrease in cardiac output (P = 0.026) and an increase in systemic vascular resistance (P = 0.026)] and systemic inflammation [a decrease in serum C-reactive protein levels (P = 0.044)], with improved liver function [an increase in serum albumin (P = 0.001) and a decrease in the value of Child-Pugh score (P = 0.001)] as well as a reduction in the severity of ascites (P = 0.022), hepatic encephalopathy (P = 0.048), and cholestasis [a decrease in serum alkaline phosphatase (P = 0.016) and serum gamma-glutamyl transpeptidase (P = 0.039) activity] and an increase in platelet counts (P < 0.001) and serum sodium level (P = 0.048). CONCLUSION Probiotic administration was associated with amelioration of hyperdynamic circulation and the associated complications of cirrhosis.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
- Consultative and Diagnostic Center No. 2 of Moscow Health Department , Moscow 107764, Russia.
| | - Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Elena Shirokova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Konstantin Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| |
Collapse
|
36
|
FitzGerald J, Patel S, Eckenberger J, Guillemard E, Veiga P, Schäfer F, Walter J, Claesson MJ, Derrien M. Improved gut microbiome recovery following drug therapy is linked to abundance and replication of probiotic strains. Gut Microbes 2022; 14:2094664. [PMID: 35916669 PMCID: PMC9348039 DOI: 10.1080/19490976.2022.2094664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Probiotics have been used for decades to alleviate the negative side-effects of oral antibiotics, but our mechanistic understanding on how they work is so far incomplete. Here, we performed a metagenomic analysis of the fecal microbiota in participants who underwent a 14-d Helicobacter pylori eradication therapy with or without consumption of a multi-strain probiotic intervention (L. paracasei CNCM I-1518, L. paracasei CNCM I-3689, L. rhamnosus CNCM I-3690, and four yogurt strains) in a randomized, double-blinded, controlled clinical trial. Using a strain-level analysis for detection and metagenomic determination of replication rate, ingested strains were detected and replicated transiently in fecal samples and in the gut during and following antibiotic administration. Consumption of the fermented milk product led to a significant, although modest, improvement in the recovery of microbiota composition. Stratification of participants into two groups based on the degree to which their microbiome recovered showed i) a higher fecal abundance of the probiotic L. paracasei and L. rhamnosus strains and ii) an elevated replication rate of one strain (L. paracasei CNCMI-1518) in the recovery group. Collectively, our findings show a small but measurable benefit of a fermented milk product on microbiome recovery after antibiotics, which was linked to the detection and replication of specific probiotic strains. Such functional insight can form the basis for the development of probiotic-based intervention aimed to protect gut microbiome from drug treatments.
Collapse
Affiliation(s)
- Jamie FitzGerald
- School of Microbiology, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Shriram Patel
- School of Microbiology, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Julia Eckenberger
- School of Microbiology, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eric Guillemard
- Advanced Health & Science, Danone Nutricia Research, Palaiseau, France
| | - Patrick Veiga
- Advanced Health & Science, Danone Nutricia Research, Palaiseau, France
| | - Florent Schäfer
- Advanced Health & Science, Danone Nutricia Research, Palaiseau, France
| | - Jens Walter
- School of Microbiology, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marcus J Claesson
- School of Microbiology, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland,Marcus J Claesson School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Muriel Derrien
- Advanced Health & Science, Danone Nutricia Research, Palaiseau, France,CONTACT Muriel Derrien Advanced Health & Science, Danone Nutricia Research, RD 128, Avenue de la Vauve, Palaiseau cedexF-91767, France
| |
Collapse
|
37
|
Efficacy of multi-strain probiotic along with dietary and lifestyle modifications on polycystic ovary syndrome: a randomised, double-blind placebo-controlled study. Eur J Nutr 2022; 61:4145-4154. [PMID: 35857132 DOI: 10.1007/s00394-022-02959-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/08/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Effect of multi-strain probiotic along with dietary and lifestyle modifications in the management of polycystic ovary syndrome (PCOS) has rarely been reported. We thus aimed to investigate the effect of multi-strain probiotic (Lactobacillus acidophilus UBLA-34, L. rhamnosus UBLR-58, L. reuteri UBLRu-87 (each of 2 billion colony forming units (CFU)); L. plantarum UBLP-40, L. casei UBLC-42, L. fermentum UBLF-31, Bifidobacterium bifidum UBBB-55 (each of 1 billion CFU) and fructo-oligosaccharides (100 mg)) and dietary and lifestyle modifications on restoration of menstrual regularity, weight reduction, metabolic and hormonal profile in women with PCOS. METHODS A 104 participants (age 18-40 years) were randomly allocated to receive probiotic or placebo capsules for 6 months. Baseline and end line assessment were performed for menstrual cycle regularity, ultrasonography scan for ovaries, total testosterone, dehydroepiandrosterone (DHEAS), insulin, luteinizing hormone/follicle stimulating hormone (LH/FSH) ratio, fasting blood sugar (FBS), homeostatic model assessment-insulin resistance (HOMA-IR), weight reduction, waist-/hip circumference (WC, HC), waist to hip ratio (WHR), and body mass index (BMI). Plasma lipopolysaccharide and effect of intervention on quality of life was investigated. Diet and exercise were controlled during the trial. RESULTS Probiotic supplement along with dietary and lifestyle modifications significantly regularised menstrual cycle (p 0.023), improved levels of total testosterone (p 0.043), WC (p 0.030), WHR (p 0.027) and menstrual domain of quality of life (p 0.034) as compared to placebo. No adverse events related to study were reported. CONCLUSION Multi-strain probiotic along with dietary and lifestyle modifications were effective in the management of PCOS. TRIAL REGISTRATION CTRI: CTRI/2016/07/007086, dated 13 July 2016.
Collapse
|
38
|
Cellular Carcinogenesis: Role of Polarized Macrophages in Cancer Initiation. Cancers (Basel) 2022; 14:cancers14112811. [PMID: 35681791 PMCID: PMC9179569 DOI: 10.3390/cancers14112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Inflammation is a hallmark of many cancers. Macrophages are key participants in innate immunity and important drivers of inflammation. When chronically polarized beyond normal homeostatic responses to infection, injury, or aging, macrophages can express several pro-carcinogenic phenotypes. In this review, evidence supporting polarized macrophages as endogenous sources of carcinogenesis is discussed. In addition, the depletion or modulation of macrophages by small molecule inhibitors and probiotics are reviewed as emerging strategies in cancer prevention. Abstract Inflammation is an essential hallmark of cancer. Macrophages are key innate immune effector cells in chronic inflammation, parainflammation, and inflammaging. Parainflammation is a form of subclinical inflammation associated with a persistent DNA damage response. Inflammaging represents low-grade inflammation due to the dysregulation of innate and adaptive immune responses that occur with aging. Whether induced by infection, injury, or aging, immune dysregulation and chronic macrophage polarization contributes to cancer initiation through the production of proinflammatory chemokines/cytokines and genotoxins and by modulating immune surveillance. This review presents pre-clinical and clinical evidence for polarized macrophages as endogenous cellular carcinogens in the context of chronic inflammation, parainflammation, and inflammaging. Emerging strategies for cancer prevention, including small molecule inhibitors and probiotic approaches, that target macrophage function and phenotype are also discussed.
Collapse
|
39
|
Bulanda E, Wypych TP. Bypassing the Gut-Lung Axis via Microbial Metabolites: Implications for Chronic Respiratory Diseases. Front Microbiol 2022; 13:857418. [PMID: 35591998 PMCID: PMC9113535 DOI: 10.3389/fmicb.2022.857418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/08/2022] [Indexed: 12/18/2022] Open
Abstract
The gut microbiome engages in constant interactions with the immune system, laying down the fundamentals of what we perceive as health or disease. The gut microbiota acts locally in the intestines and distally in other organs, such as the lungs. This influence (termed “the gut–lung axis”) constitutes the basis for harnessing the microbiome to prevent or treat chronic respiratory diseases. Within this context, two approaches gained the most attention: the diet interventions (which shape the microbiome) and the probiotics (which exert beneficial effects directly on the host). Microbial products, which constitute a means of communication along the gut–lung axis, are only now emerging as a new class of potential therapeutics. Here, we provide a comprehensive overview of microbial products active in the airways, describe the immunological mechanisms they trigger, and discuss their clinical advantages and pitfalls.
Collapse
Affiliation(s)
- Edyta Bulanda
- Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz P Wypych
- Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
40
|
Archambault LS, Dongari-Bagtzoglou A. Probiotics for Oral Candidiasis: Critical Appraisal of the Evidence and a Path Forward. FRONTIERS IN ORAL HEALTH 2022; 3:880746. [PMID: 35495563 PMCID: PMC9046664 DOI: 10.3389/froh.2022.880746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Oropharyngeal Candidiasis (OPC) is a mucosal fungal infection that is prevalent among patients with compromised immunity. The success of probiotics in treating chronic diseases with a microbial etiology component at other mucosal sites (i.e., gastro-intestinal, genitourinary and alveolar mucosae) has inspired research into the use of probiotics in the treatment of OPC. A growing body of research in vitro and in animal models indicates that some probiotic species and strains have inhibitory activities against Candida albicans growth, morphological switching, and biofilm formation. However, recent review and meta-analysis studies reveal a dearth of human randomized, controlled clinical trials on the efficacy of probiotics to treat or prevent OPC, while the majority of these have not based their selection of probiotic strains or the type of administration on sound pre-clinical evidence. In this mini-review, we assess the state of the field, outline some of the difficulties in translating lab results to clinical efficacy, and make recommendations for future research needed in order to move the field forward.
Collapse
Affiliation(s)
- Linda S. Archambault
- Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, CT, United States
- Center for Quantitative Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Anna Dongari-Bagtzoglou
- Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, CT, United States
- *Correspondence: Anna Dongari-Bagtzoglou
| |
Collapse
|
41
|
Liu J, Feng X, Li B, Sun Y, Jin T, Feng M, Ni Y, Liu M. Lactobacillus rhamnosus GR-1 Alleviates Escherichia coli-Induced Inflammation via NF-κB and MAPKs Signaling in Bovine Endometrial Epithelial Cells. Front Cell Infect Microbiol 2022; 12:809674. [PMID: 35310848 PMCID: PMC8924357 DOI: 10.3389/fcimb.2022.809674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli counts as a major endometritis-causing pathogen among dairy cows, which lowered the economic benefits of dairy farming seriously. Probiotic consumption has been reported to impart beneficial effects on immunomodulation. However, the inflammatory regulation mechanism of probiotics on endometritis in dairy cows remains unexplored. The current work aimed to clarify the mechanism whereby Lactobacillus rhamnosus GR-1 (L. rhamnosus GR-1) resists bovine endometrial epithelial cells (BEECs) inflammatory injury induced by E. coli. The model of cellular inflammatory injury was established in the BEECs, which comes from the uterus of healthy dairy cows using E. coli. The outcome of L. rhamnosus GR-1 addition on inflammation was evaluated in BEECs with E. coli-induced endometritis. The underlying mechanisms of anti-inflammation by L. rhamnosus GR-1 were further explored in E. coli-stimulated BEECs. In accordance with the obtained results, the use L. rhamnosus GR-1 alone could not cause the change of inflammatory factors, while L. rhamnosus GR-1 could significantly alleviate the expression of E. coli-induced inflammatory factors. Based on further study, L. rhamnosus GR-1 significantly hindered the TLR4 and MyD88 expression stimulated by E. coli. Moreover, we observed that in BEECs, L. rhamnosus GR-1 could inhibit the E. coli-elicited expressions of pathway proteins that are associated with NF-κB and MAPKs. Briefly, L. rhamnosus GR-1 can effectively protect against E. coli-induced inflammatory response that may be closely related to the inhibition of TLR4 and MyD88 stimulating NF-κB and MAPKs.
Collapse
|
42
|
González‐Rodríguez MI, Nurminen N, Kummola L, Laitinen OH, Oikarinen S, Parajuli A, Salomaa T, Mäkelä I, Roslund MI, Sinkkonen A, Hyöty H, Junttila IS. Effect of inactivated nature‐derived microbial composition on mouse immune system. Immun Inflamm Dis 2022; 10:e579. [PMID: 34873877 PMCID: PMC8926502 DOI: 10.1002/iid3.579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction The hygiene hypothesis suggests that decrease in early life infections due to increased societal‐level hygiene standards subjects one to allergic and autoimmune diseases. In this report, we have studied the effect of sterilized forest soil and plant‐based material on mouse immune system and gut microbiome. Methods Inbred C57Bl/6 mice maintained in normal sterile environment were subjected to autoclaved forest soil‐derived powder in their bedding for 1 h a day for 3 weeks. Immune response was measured by immune cell flow cytometry, serum cytokine enzyme‐linked immunoassay (ELISA) and quantitative polymerase chain reaction (qPCR) analysis. Furthermore, the mouse gut microbiome was analyzed by sequencing. Results When compared to control mice, mice treated with soil‐derived powder had decreased level of pro‐inflammatory cytokines namely interleukin (IL)−17F and IL‐21 in the serum. Furthermore, splenocytes from mice treated with soil‐derived powder expressed less IL‐1b, IL‐5, IL‐6, IL‐13, and tumor necrosis factor (TNF) upon cell activation. Gut microbiome appeared to be stabilized by the treatment. Conclusions These results provide insights on the effect of biodiversity on murine immune system in sterile environment. Subjecting mice to soil‐based plant and microbe structures appears to elicit immune response that could be beneficial, for example, in type 2 inflammation‐related diseases, that is, allergic diseases.
Collapse
Affiliation(s)
| | - Noora Nurminen
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
| | - Laura Kummola
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Department of Clinical Microbiology Fimlab Laboratories Finland
| | - Olli H. Laitinen
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
| | - Anirudra Parajuli
- Department of Medicine, Karolinska Institutet Center for infectious medicine (CIM) Huddinge Sweden
| | - Tanja Salomaa
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
| | - Iida Mäkelä
- Department of Garden Technologies, Horticulture Technologies Natural Resources Institute Finland Finland
| | - Marja I. Roslund
- Ecosystems and Environment Research Programme University of Helsinki Helsinki Finland
| | - Aki Sinkkonen
- Department of Garden Technologies, Horticulture Technologies Natural Resources Institute Finland Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Department of Clinical Microbiology Fimlab Laboratories Finland
| | - Ilkka S. Junttila
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Department of Clinical Microbiology Fimlab Laboratories Finland
| | | |
Collapse
|
43
|
Wadhwa A, Kesavelu D, Kumar K, Chatterjee P, Jog P, Gopalan S, Paul R, Veligandla KC, Mehta S, Mane A, Pandit S, Rathod R, Jayan S, Mitra M. Role of Lactobacillus reuteri DSM 17938 on Crying Time Reduction in Infantile Colic and Its Impact on Maternal Depression: A Real-Life Clinic-Based Study. Clin Pract 2022; 12:37-45. [PMID: 35076544 PMCID: PMC8788292 DOI: 10.3390/clinpract12010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Infantile colic is characterized by prolonged periods of inconsolable, incessant crying and persistent fussing in an otherwise healthy infant. It is a self-limiting condition, but causes significant stress to mothers. AIM To observe the role of Lactobacillus reuteriDSM 17938 in reducing crying time in colicky infants in routine clinical practice. METHODS This was a prospective observational multicentric clinic-based study. Each practitioner included approximately 30 infants < 5 months of age with infantile colic who were prescribed L. reuteri DSM 17938 for a period of 21 days. There were four physical consultations and two telephonic consultations. The parents were given a daily diary to record the duration of crying and fussing episodes and a questionnaire was administered during the consultations. RESULTS A total of 120 infants with a mean age of 56.9 ± 34.2 days were included in this 28-day study. The mean crying time as reported by the parents in the subject diary reduced from 248.2 ± 101.2 min, 95% CI: 229.45, 266.94 at baseline to 45.6 ± 79.1 min 95% CI: 31.02, 60.31 at study end (P < 0.01). The clinical response (defined as reduction of 50% in crying time) was observed in 85% of subjects at study end. The fussiness and parental perception of colic recorded during the consultations were reduced by 66% and 72%, respectively, at study end. The maternal depression scores were reduced to 63% at study end. CONCLUSION L. reuteri DSM 17938 was associated with a significant reduction in crying time in colicky infants, and showed improvement in maternal depression.
Collapse
Affiliation(s)
- Arun Wadhwa
- Dr. Wadhwa's Clinic, New Delhi 110048, India
| | | | - Kishore Kumar
- Cloudnine Hospital, Bangalore 560066, Karnataka, India
| | - Pallab Chatterjee
- Outreach Clinic, Clinical and Experimental Pharmacology, School of Tropical Medicine, Kolkata 700073, West Bengal, India
| | - Pramod Jog
- Medipoint Hospital, Pune 411007, Maharastra, India
| | - Sarath Gopalan
- Madhukar Rainbow Children's Hospital, New Delhi 110017, India
| | - Rudra Paul
- Outreach Clinic, Clinical and Experimental Pharmacology, School of Tropical Medicine, Kolkata 700073, West Bengal, India
| | | | - Suyog Mehta
- Global Generics India, Dr. Reddy's Laboratories Limited, Hyderabad 500016, Telangana, India
| | - Amey Mane
- Global Generics India, Dr. Reddy's Laboratories Limited, Hyderabad 500016, Telangana, India
| | - Sucheta Pandit
- Global Generics India, Dr. Reddy's Laboratories Limited, Hyderabad 500016, Telangana, India
| | - Rahul Rathod
- Global Generics India, Dr. Reddy's Laboratories Limited, Hyderabad 500016, Telangana, India
| | - Sushma Jayan
- Medclin Research Pvt. Ltd., Kolkata 700107, West Bengal, India
| | - Monjori Mitra
- Institute of Child Health, Kolkata 700017, West Bengal, India
| |
Collapse
|
44
|
Singh RP, Shadan A, Ma Y. Biotechnological Applications of Probiotics: A Multifarious Weapon to Disease and Metabolic Abnormality. Probiotics Antimicrob Proteins 2022; 14:1184-1210. [PMID: 36121610 PMCID: PMC9483357 DOI: 10.1007/s12602-022-09992-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 12/25/2022]
Abstract
Consumption of live microorganisms "Probiotics" for health benefits and well-being is increasing worldwide. Their use as a therapeutic approach to confer health benefits has fascinated humans for centuries; however, its conceptuality gradually evolved with methodological advancement, thereby improving our understanding of probiotics-host interaction. However, the emerging concern regarding safety aspects of live microbial is enhancing the interest in non-viable or microbial cell extracts, as they could reduce the risks of microbial translocation and infection. Due to technical limitations in the production and formulation of traditionally used probiotics, the scientific community has been focusing on discovering new microbes to be used as probiotics. In many scientific studies, probiotics have been shown as potential tools to treat metabolic disorders such as obesity, type-2 diabetes, non-alcoholic fatty liver disease, digestive disorders (e.g., acute and antibiotic-associated diarrhea), and allergic disorders (e.g., eczema) in infants. However, the mechanistic insight of strain-specific probiotic action is still unknown. In the present review, we analyzed the scientific state-of-the-art regarding the mechanisms of probiotic action, its physiological and immuno-modulation on the host, and new direction regarding the development of next-generation probiotics. We discuss the use of recently discovered genetic tools and their applications for engineering the probiotic bacteria for various applications including food, biomedical applications, and other health benefits. Finally, the review addresses the future development of biological techniques in combination with clinical and preclinical studies to explain the molecular mechanism of action, and discover an ideal multifunctional probiotic bacterium.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand India
| | - Afreen Shadan
- Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand India
| | - Ying Ma
- College of Resource and Environment, Southwest University, Chongqing, China
| |
Collapse
|
45
|
Rew L, Harris MD, Goldie J. The ketogenic diet: its impact on human gut microbiota and potential consequent health outcomes: a systematic literature review. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2022; 15:326-342. [PMID: 36762214 PMCID: PMC9876773 DOI: 10.22037/ghfbb.v15i4.2600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/21/2022] [Indexed: 02/11/2023]
Abstract
Aim This systematic review examined the diet's impact on the human gut microbiota to identify potential consequent health outcomes. Background The extreme macronutrient profile of the ketogenic diet (KD) instigates compositional shifts in the gut's microbial community. Methods In this systematic literature review, an evidence-based and methodical approach was undertaken, which involved systematic searches of the Medical Literature Analysis and Retrieval System Online (MEDLINE), PubMed and Cumulative Index to Nursing and Allied Health Literature (CINAHL) databases, generating a total of 263 relevant research papers. Following the application of inclusion and exclusion criteria, eight papers were deemed suitable for inclusion. These papers were critically appraised using a checklist tool adapted from the National Institute of Care and Excellence (NICE). The findings were analysed using a simplified thematic analysis. Results The results provide strong evidence for a persistent reduction in Bifidobacterium abundance following KD adherence. A reduced abundance of key Firmicutes butyrate-producing bacteria was found to be a likely impact, although two studies with extended intervention periods indicate this may be time-limited. Studies investigating short-chain fatty acids (SCFA's) indicate KD reduces total faecal SCFA's, acetate, and butyrate. Conclusion Changes to microbial communities resulting from KD adherence are potentially detrimental to colonic health. The persistent reduction in Bifidobacterium abundance was concerning, with obesity, type-2 diabetes, and depression highlighted as potential consequent risks. For nutrition and healthcare professionals, the findings emphasize the importance of considering KDs microbial effects and resulting health implications at an individual level.
Collapse
Affiliation(s)
- Leslyn Rew
- The School of Allied Health and Community, University of Worcester, Henwick Grove, WR2 6AJ, United Kingdom
| | - Miranda D Harris
- The School of Allied Health and Community, University of Worcester, Henwick Grove, WR2 6AJ, United Kingdom
| | - Joanna Goldie
- The School of Allied Health and Community, University of Worcester, Henwick Grove, WR2 6AJ, United Kingdom
| |
Collapse
|
46
|
Therapeutic potential of Saccharomyces boulardii in liver diseases: from passive bystander to protective performer? Pharmacol Res 2021; 175:106022. [PMID: 34883213 DOI: 10.1016/j.phrs.2021.106022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Saccharomyces boulardii (S. boulardii) is a probiotic yeast that has been elucidated to be efficacious in fighting various gastrointestinal diseases in preclinical as well as clinical studies. Its general mechanisms of probiotic action in the treatment of gastrointestinal conditions cover multifaceted aspects, including immune regulation, production of antimicrobial substances, pathogen competitive elimination, gut barrier integrity maintenance, intestinal trophic effect and antioxidant potency. In this review, basic knowledge with regard to the gut-liver axis, available probiotics remedies and mechanistic insights of S. boulardii as probiotics will be elucidated. In addition, we summarize the therapeutic potential of S. boulardii in several liver diseases evident from both bench and bedside information, such as acute liver injury/failure, fibrosis, hepatic damages due to metabolic disturbance or infection and obstructive jaundice. Future prospects in relation to medicinal effects of S. boulardii are also exploited and discussed on the basis of novel and attractive therapeutic concept in the latest scientific literature.
Collapse
|
47
|
Deka N, Hassan S, Seghal Kiran G, Selvin J. Insights into the role of vaginal microbiome in women's health. J Basic Microbiol 2021; 61:1071-1084. [PMID: 34763361 DOI: 10.1002/jobm.202100421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 10/31/2021] [Indexed: 01/12/2023]
Abstract
The vaginal microbiome is a complex and dynamic microecosystem that fluctuates continually throughout a woman's life. Lactobacillus, a bacterium that possesses antibacterial properties dominates a healthy vaginal microbiome. Bacterial vaginosis is the most common vaginal disorder that has been linked with the dysbiosis of normal vaginal microbiota. Despite the importance of vaginal microbiome, little is known about functions it performs especially, how it helps in protecting the female reproductive tract. This knowledge gap is a significant impediment to the development of effective and feasible clinical treatments that might be required to improve women's health. Thus, a deeper understanding of the functional aspects and not just the composition of vaginal microbiome may aid in improving the diagnostics and treatment strategies. Recent advancement in molecular methods and computational biology have allowed researchers to acquire more knowledge about the vaginal microbiome. The use of metagenomics (culture-independent high-throughput technology) and bioinformatics tools have improved our understanding of the vaginal microbiome. In this review, we have attempted to explore the factors that may alter normal vaginal microbiota homeostasis such as age, sexual behavior, ethnicity, and hygiene, and so forth. We also discuss the role of probiotics in restoring healthy vaginal microbiome.
Collapse
Affiliation(s)
- Namrata Deka
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Saqib Hassan
- Division of Non-Communicable Diseases, Indian Council of Medical Research (ICMR), New Delhi, India.,Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - George Seghal Kiran
- Department of Food Science and Technology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
48
|
Fidanza M, Panigrahi P, Kollmann TR. Lactiplantibacillus plantarum-Nomad and Ideal Probiotic. Front Microbiol 2021; 12:712236. [PMID: 34690957 PMCID: PMC8527090 DOI: 10.3389/fmicb.2021.712236] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics are increasingly recognized as capable of positively modulating several aspects of human health. There are numerous attributes that make an ideal probiotic. Lactiplantibacillus plantarum (Lp) exhibits an ecological and metabolic flexibility that allows it to thrive in a variety of environments. The present review will highlight the genetic and functional characteristics of Lp that make it an ideal probiotic and summarizes the current knowledge about its potential application as a prophylactic or therapeutic intervention.
Collapse
Affiliation(s)
| | - Pinaki Panigrahi
- Georgetown University Medical Center, Department of Pediatrics, Washington, DC, United States
| | | |
Collapse
|
49
|
Micioni Di Bonaventura MV, Coman MM, Tomassoni D, Micioni Di Bonaventura E, Botticelli L, Gabrielli MG, Rossolini GM, Di Pilato V, Cecchini C, Amedei A, Silvi S, Verdenelli MC, Cifani C. Supplementation with Lactiplantibacillus plantarum IMC 510 Modifies Microbiota Composition and Prevents Body Weight Gain Induced by Cafeteria Diet in Rats. Int J Mol Sci 2021; 22:11171. [PMID: 34681831 PMCID: PMC8540549 DOI: 10.3390/ijms222011171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Changes in functionality and composition of gut microbiota (GM) have been associated and may contribute to the development and maintenance of obesity and related diseases. The aim of our study was to investigate for the first time the impact of Lactiplantibacillus (L.) plantarum IMC 510 in a rat model of diet-induced obesity, specifically in the cafeteria (CAF) diet. This diet provides a strong motivation to voluntary overeat, due to the palatability and variety of selected energy-dense foods. The oral administration for 84 days of this probiotic strain, added to the CAF diet, decreased food intake and body weight gain. Accordingly, it ameliorated body mass index, liver and white adipose tissue weight, hepatic lipid accumulation, adipocyte size, serum parameters, including glycemia and low-density lipoprotein levels, in CAF fed rats, potentially through leptin control. In this scenario, L. plantarum IMC 510 showed also beneficial effects on GM, limiting the microbial imbalance established by long exposure to CAF diet and preserving the proportion of different bacterial taxa. Further research is necessary to better elucidate the relationship between GM and overweight and then the mechanism of action by which L. plantarum IMC 510 modifies weight. However, these promising results prompt a clear advantage of probiotic supplementation and identify a new potential probiotic as a novel and safe therapeutic approach in obesity prevention and management.
Collapse
Affiliation(s)
| | - Maria Magdalena Coman
- Synbiotec S.r.l., Spin-off of UNICAM, Via Gentile III Da Varano, 62032 Camerino, Italy; (M.M.C.); (C.C.); (M.C.V.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (M.G.G.)
| | - Emanuela Micioni Di Bonaventura
- Pharmacology Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.V.M.D.B.); (E.M.D.B.); (L.B.); (C.C.)
| | - Luca Botticelli
- Pharmacology Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.V.M.D.B.); (E.M.D.B.); (L.B.); (C.C.)
| | - Maria Gabriella Gabrielli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (M.G.G.)
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.M.R.); (A.A.)
- Microbiology and Virology Unit, Florence Careggi University Hospital, 50134 Florence, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genova, Italy;
| | - Cinzia Cecchini
- Synbiotec S.r.l., Spin-off of UNICAM, Via Gentile III Da Varano, 62032 Camerino, Italy; (M.M.C.); (C.C.); (M.C.V.)
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.M.R.); (A.A.)
| | - Stefania Silvi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (M.G.G.)
| | - Maria Cristina Verdenelli
- Synbiotec S.r.l., Spin-off of UNICAM, Via Gentile III Da Varano, 62032 Camerino, Italy; (M.M.C.); (C.C.); (M.C.V.)
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.V.M.D.B.); (E.M.D.B.); (L.B.); (C.C.)
| |
Collapse
|
50
|
Lopez-Pier MA, Koppinger MP, Harris PR, Cannon DK, Skaria RS, Hurwitz BL, Watts G, Aras S, Slepian MJ, Konhilas JP. An adaptable and non-invasive method for tracking Bifidobacterium animalis subspecies lactis 420 in the mouse gut. J Microbiol Methods 2021; 189:106302. [PMID: 34391819 PMCID: PMC8473990 DOI: 10.1016/j.mimet.2021.106302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/26/2022]
Abstract
Probiotic strains from the Bifidobacterium or Lactobacillus genera improve health outcomes in models of metabolic and cardiovascular disease. Yet, underlying mechanisms governing these improved health outcomes are rooted in the interaction of gut microbiota, intestinal interface, and probiotic strain. Central to defining the underlying mechanisms governing these improved health outcomes is the development of adaptable and non-invasive tools to study probiotic localization and colonization within the host gut microbiome. The objective of this study was to test labeling and tracking efficacy of Bifidobacterium animalis subspecies lactis 420 (B420) using a common clinical imaging agent, indocyanine green (ICG). ICG was an effective in situ labeling agent visualized in either intact mouse or excised gastrointestinal (GI) tract at different time intervals. Quantitative PCR was used to validate ICG visualization of B420, which also demonstrated that B420 transit time matched normal murine GI motility (~8 hours). Contrary to previous thoughts, B420 did not colonize any region of the GI tract whether following a single bolus or daily administration for up to 10 days. We conclude that ICG may provide a useful tool to visualize and track probiotic species such as B420 without implementing complex molecular and genetic tools. Proof-of-concept studies indicate that B420 did not colonize and establish residency align the murine GI tract.
Collapse
Affiliation(s)
- Marissa A Lopez-Pier
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Matthew P Koppinger
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA; Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Preston R Harris
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA; Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Danielle K Cannon
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | - Rinku S Skaria
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | | | - George Watts
- Bio5 Institute, University of Arizona, Tucson, AZ, USA
| | | | - Marvin J Slepian
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA; Bio5 Institute, University of Arizona, Tucson, AZ, USA; Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - John P Konhilas
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|