1
|
Liu Y, Yuan Z, He H, Liu H, Wu Y, Xue S, Diao Z, Qiao H. TTX-R and TTX-S Sodium Channels in CGRP-Positive Dorsal Root Ganglia Neurons Mediate Referred Somatic Hyperalgesia in Ulcerative Colitis Mice. Neurogastroenterol Motil 2025:e70051. [PMID: 40273371 DOI: 10.1111/nmo.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) frequently co-exists with referred somatic hyperalgesia in clinical presentations. However, the peripheral neurophysiological mechanisms of visceral referred pain remain unclear. This study aimed to clarify the neurobiological mechanisms that underpin the referred somatic hyperalgesia associated with UC. METHODS A UC mouse model was constructed via the administration of dextran sulfate sodium (DSS). Referred somatic regions in these mice were identified by measuring the number of Evans blue extravasations and pain threshold levels. Electrophysiological and immunofluorescent staining approaches were applied to evaluate the alterations in kinetic properties and expression of TTX-R (Nav1.8) and TTX-S (Nav1.7) channels in calcitonin gene-related peptide (CGRP)-positive dorsal root ganglion (DRG) neurons in the referred regions. Pharmacological methods were utilized to elucidate the necessary role of the Nav1.8 and Nav1.7 channels in somatic referred hyperalgesia. KEY RESULTS Oral administration of DSS to mice for 7 days resulted in significant colon damage, neurogenic inflammation, and referred somatic hyperalgesia. The mechanisms underlying these effects may involve the activation of TTX-R and TTX-S channels, and the upregulation of co-expressed Nav1.8 and Nav1.7 with CGRP, resulting in an increased excitability of CGRP+ DRG neurons in sensitized regions. Selectively inhibiting either Nav1.8 or Nav1.7 channels could mitigate the referred somatic hyperalgesia induced by DSS. CONCLUSIONS AND INFERENCES The functional alterations in Nav1.8 and Nav1.7 channels within CGRP+ DRG neurons are pivotal to the development of neurogenic inflammation and referred somatic hyperalgesia. These findings lay a foundation for exploring novel therapeutic targets to relieve visceral referred pain.
Collapse
Affiliation(s)
- Yongbin Liu
- Shaanxi Key Laboratory of Integrative Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
- Key Laboratory of Acupuncture and Neurobiology, Shaanxi Administration of Traditional Chinese Medicine, Xianyang, Shaanxi Province, China
- College of Acupuncture-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Ziyan Yuan
- Shaanxi Key Laboratory of Integrative Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
- Key Laboratory of Acupuncture and Neurobiology, Shaanxi Administration of Traditional Chinese Medicine, Xianyang, Shaanxi Province, China
- College of Acupuncture-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Hongzhou He
- Shaanxi Key Laboratory of Integrative Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
- Key Laboratory of Acupuncture and Neurobiology, Shaanxi Administration of Traditional Chinese Medicine, Xianyang, Shaanxi Province, China
- College of Acupuncture-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Huanhuan Liu
- Shaanxi Key Laboratory of Integrative Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
- Key Laboratory of Acupuncture and Neurobiology, Shaanxi Administration of Traditional Chinese Medicine, Xianyang, Shaanxi Province, China
- College of Acupuncture-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Yuwei Wu
- College of Acupuncture-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Simeng Xue
- Shaanxi Key Laboratory of Integrative Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Zhijun Diao
- Shaanxi Key Laboratory of Integrative Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
- Key Laboratory of Acupuncture and Neurobiology, Shaanxi Administration of Traditional Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Haifa Qiao
- Shaanxi Key Laboratory of Integrative Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
- Key Laboratory of Acupuncture and Neurobiology, Shaanxi Administration of Traditional Chinese Medicine, Xianyang, Shaanxi Province, China
- Shaanxi Collaborative Innovation Center of TCM Technologies and Devices, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| |
Collapse
|
2
|
Song Y, Fothergill LJ, Lee KS, Liu BY, Koo A, Perelis M, Diwakarla S, Callaghan B, Huang J, Wykosky J, Furness JB, Yeo GW. Stratification of enterochromaffin cells by single-cell expression analysis. eLife 2025; 12:RP90596. [PMID: 40184163 PMCID: PMC11970908 DOI: 10.7554/elife.90596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.
Collapse
Affiliation(s)
- Yan Song
- Department of Cellular and Molecular Medicine, University of California San DiegoLa JollaUnited States
- Stem Cell Program, University of California San DiegoLa JollaUnited States
- Institute for Genomic Medicine, University of California San DiegoLa JollaUnited States
| | - Linda J Fothergill
- Department of Anatomy & Physiology, University of MelbourneParkvilleAustralia
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
| | - Kari S Lee
- Department of Cellular and Molecular Medicine, University of California San DiegoLa JollaUnited States
- Stem Cell Program, University of California San DiegoLa JollaUnited States
- Institute for Genomic Medicine, University of California San DiegoLa JollaUnited States
| | - Brandon Y Liu
- Department of Cellular and Molecular Medicine, University of California San DiegoLa JollaUnited States
- Stem Cell Program, University of California San DiegoLa JollaUnited States
- Institute for Genomic Medicine, University of California San DiegoLa JollaUnited States
| | - Ada Koo
- Department of Anatomy & Physiology, University of MelbourneParkvilleAustralia
| | - Mark Perelis
- Department of Cellular and Molecular Medicine, University of California San DiegoLa JollaUnited States
- Stem Cell Program, University of California San DiegoLa JollaUnited States
- Institute for Genomic Medicine, University of California San DiegoLa JollaUnited States
| | - Shanti Diwakarla
- Department of Anatomy & Physiology, University of MelbourneParkvilleAustralia
| | - Brid Callaghan
- Department of Anatomy & Physiology, University of MelbourneParkvilleAustralia
| | - Jie Huang
- Takeda PharmaceuticalsSan DiegoUnited States
| | | | - John B Furness
- Department of Anatomy & Physiology, University of MelbourneParkvilleAustralia
- Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San DiegoLa JollaUnited States
- Stem Cell Program, University of California San DiegoLa JollaUnited States
- Institute for Genomic Medicine, University of California San DiegoLa JollaUnited States
| |
Collapse
|
3
|
Morales-Soto W, Smith-Edwards KM. Unique properties of proximal and distal colon reflect distinct motor functions. Am J Physiol Gastrointest Liver Physiol 2025; 328:G448-G454. [PMID: 40095602 DOI: 10.1152/ajpgi.00215.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
The gastrointestinal tract is made up of specialized organs that work in tandem to facilitate digestion. The colon regulates the final steps in this process where complex motor patterns in proximal regions facilitate the formation of fecal pellets that are propelled along the distal colon via self-sustaining neural peristalsis and temporarily stored before defecation. Historically, our understanding of colonic motility has focused primarily on distal regions, and the intrinsic reflex circuits of the enteric nervous system involved in neural peristalsis have been defined, but we do not yet have a clear grasp on the mechanisms orchestrating motor function in proximal regions. New approaches have brought to the forefront the unique structural, neurochemical, and functional characteristics that exist in distinct regions of the mouse and human colon. In this mini-review, we highlight key differences along the proximal-distal colonic axis and discuss how these differences relate to region-specific motor function.
Collapse
Affiliation(s)
- Wilmarie Morales-Soto
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Enteric Neurosciences Program, Mayo Clinic, Rochester, Minnesota, United States
| | - Kristen M Smith-Edwards
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
- Enteric Neurosciences Program, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
4
|
Fukasawa N, Tsunoda J, Sunaga S, Kiyohara H, Nakamoto N, Teratani T, Mikami Y, Kanai T. The gut-organ axis: Clinical aspects and immune mechanisms. Allergol Int 2025; 74:197-209. [PMID: 39979198 DOI: 10.1016/j.alit.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 02/22/2025] Open
Abstract
The gut-brain axis exemplifies the bidirectional connection between the intestines and the brain, as evidenced by the impact of severe stress on gastrointestinal symptoms including abdominal pain and diarrhea, and conversely, the influence of abdominal discomfort on mood. Clinical observations support the notion of the gut-brain connection, including an increased prevalence of inflammatory bowel disease (IBD) in patients with depression and anxiety, as well as the association of changes in the gut microbiota with neurological disorders such as multiple sclerosis, Parkinson's disease, stroke and Alzheimer's disease. The gut and brain communicate via complex mechanisms involving inflammatory cytokines, immune cells, autonomic nerves, and gut microbiota, which contribute to the pathogenesis in certain gut and brain diseases. Two primary pathways mediate the bidirectional information exchange between the intestinal tract and the brain: signal transduction through bloodstream factors, such as bacterial metabolites and inflammatory cytokines, and neural pathways, such as neurotransmitters and inflammatory cytokines within the autonomic nervous system through the interaction between the nerve cells and beyond. In recent years, the basic mechanisms of the pathophysiology of the gut-brain axis have been gradually elucidated. Beyond the gut-brain interaction, emerging evidence suggests the influence of the gut extends to other organs, such as the liver and lungs, through intricate inter-organ communication pathways. An increasing number of reports on this clinical and basic cross-organ interactions underscore the potential for better understanding and novel therapeutic strategies targeting inter-organs networks. Further clarification of interactions between multiorgans premises transformative insights into cross-organ therapeutic strategies.
Collapse
Affiliation(s)
- Naoto Fukasawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Junya Tsunoda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shogo Sunaga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroki Kiyohara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
5
|
Thiel V, Renders S, Panten J, Dross N, Bauer K, Azorin D, Henriques V, Vogel V, Klein C, Leppä AM, Barriuso Ortega I, Schwickert J, Ourailidis I, Mochayedi J, Mallm JP, Müller-Tidow C, Monyer H, Neoptolemos J, Hackert T, Stegle O, Odom DT, Offringa R, Stenzinger A, Winkler F, Sprick M, Trumpp A. Characterization of single neurons reprogrammed by pancreatic cancer. Nature 2025; 640:1042-1051. [PMID: 39961335 PMCID: PMC12018453 DOI: 10.1038/s41586-025-08735-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/31/2025] [Indexed: 04/04/2025]
Abstract
The peripheral nervous system (PNS) orchestrates organ function in health and disease. Most cancers, including pancreatic ductal adenocarcinoma (PDAC), are infiltrated by PNS neurons, and this contributes to the complex tumour microenvironment (TME)1,2. However, neuronal cell bodies reside in various PNS ganglia, far from the tumour mass. Thus, cancer-innervating or healthy-organ-innervating neurons are lacking in current tissue-sequencing datasets. To molecularly characterize pancreas- and PDAC-innervating neurons at single-cell resolution, we developed Trace-n-Seq. This method uses retrograde tracing of axons from tissues to their respective ganglia, followed by single-cell isolation and transcriptomic analysis. By characterizing more than 5,000 individual sympathetic and sensory neurons, with about 4,000 innervating PDAC or healthy pancreas, we reveal novel neuronal cell types and molecular networks that are distinct to the pancreas, pancreatitis, PDAC or melanoma metastasis. We integrate single-cell datasets of innervating neurons and the TME to establish a neuron-cancer-microenvironment interactome, delineate cancer-driven neuronal reprogramming and generate a pancreatic-cancer nerve signature. Pharmacological denervation induces a pro-inflammatory TME and increases the effectiveness of immune-checkpoint inhibitors. The taxane nab-paclitaxel causes intratumoral neuropathy, which attenuates PDAC growth and, in combination with sympathetic denervation, results in synergistic tumour regression. Our multi-dimensional data provide insights into the networks and functions of PDAC-innervating neurons, and support the inclusion of denervation in future therapies.
Collapse
Affiliation(s)
- Vera Thiel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Simon Renders
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany
| | - Jasper Panten
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nicolas Dross
- Nikon Imaging Center, University of Heidelberg, Heidelberg, Germany
| | | | - Daniel Azorin
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vanessa Henriques
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Vanessa Vogel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Corinna Klein
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Aino-Maija Leppä
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Isabel Barriuso Ortega
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas Schwickert
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Iordanis Ourailidis
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julian Mochayedi
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Carsten Müller-Tidow
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany
| | - Hannah Monyer
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John Neoptolemos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Stegle
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Duncan T Odom
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rienk Offringa
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Albrecht Stenzinger
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Winkler
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Sprick
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany.
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
- German Cancer Consortium (DKTK), DKFZ, Heidelberg, Germany.
| |
Collapse
|
6
|
Touhara KK, Rossen ND, Deng F, Castro J, Harrington AM, Chu T, Garcia-Caraballo S, Brizuela M, O'Donnell T, Xu J, Cil O, Brierley SM, Li Y, Julius D. Topological segregation of stress sensors along the gut crypt-villus axis. Nature 2025; 640:732-742. [PMID: 39939779 DOI: 10.1038/s41586-024-08581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/27/2024] [Indexed: 02/14/2025]
Abstract
The crypt-villus structure of the small intestine serves as an essential protective barrier. The integrity of this barrier is monitored by the complex sensory system of the gut, in which serotonergic enterochromaffin (EC) cells play an important part1,2. These rare sensory epithelial cells surveil the mucosal environment for luminal stimuli and transmit signals both within and outside the gut3-6. However, whether EC cells in crypts and villi detect different stimuli or produce distinct physiological responses is unknown. Here we address these questions by developing a reporter mouse model to quantitatively measure the release and propagation of serotonin from EC cells in live intestines. Crypt EC cells exhibit a tonic low-level mode that activates epithelial serotonin 5-HT4 receptors to modulate basal ion secretion and a stimulus-induced high-level mode that activates 5-HT3 receptors on sensory nerve fibres. Both these modes can be initiated by the irritant receptor TRPA1, which is confined to crypt EC cells. The activation of TRPA1 by luminal irritants is enhanced when the protective mucus layer is compromised. Villus EC cells also signal damage through a distinct mechanism, whereby oxidative stress activates TRPM2 channels, which leads to the release of both serotonin and ATP and consequent excitation of sensory nerve fibres. This topological segregation of EC cell functionality along the mucosal architecture constitutes a mechanism for the surveillance, maintenance and protection of gut integrity under diverse physiological conditions.
Collapse
Affiliation(s)
- Kouki K Touhara
- Department of Physiology, University of California San Franscisco, San Francisco, CA, USA.
| | - Nathan D Rossen
- Department of Physiology, University of California San Franscisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Fei Deng
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Joel Castro
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea M Harrington
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Tifany Chu
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Sonia Garcia-Caraballo
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Mariana Brizuela
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Tracey O'Donnell
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Jinhao Xu
- Department of Physiology, University of California San Franscisco, San Francisco, CA, USA
| | - Onur Cil
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Stuart M Brierley
- Visceral Pain Research Group, Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Yulong Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
| | - David Julius
- Department of Physiology, University of California San Franscisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Xie Z, Rose L, Feng J, Zhao Y, Lu Y, Kane H, Hibberd TJ, Hu X, Wang Z, Zang K, Yang X, Richardson Q, Othman R, Venezia O, Zhakyp A, Gao F, Abe N, Vigeland K, Wang H, Branch C, Duizer C, Deng L, Meng X, Zamidar L, Hauptschein M, Bergin R, Dong X, Chiu IM, Kim BS, Spencer NJ, Hu H, Jackson R. Enteric neuronal Piezo1 maintains mechanical and immunological homeostasis by sensing force. Cell 2025:S0092-8674(25)00258-2. [PMID: 40132579 DOI: 10.1016/j.cell.2025.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/19/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
The gastrointestinal (GI) tract experiences a myriad of mechanical forces while orchestrating digestion and barrier immunity. A central conductor of these processes, the enteric nervous system (ENS), detects luminal pressure to regulate peristalsis independently of extrinsic input from the central and peripheral nervous systems. However, how the ∼500 million enteric neurons that reside in the GI tract sense and respond to force remains unknown. Herein, we establish that the mechanosensor Piezo1 is functionally expressed in cholinergic enteric neurons. Optogenetic stimulation of Piezo1+ cholinergic enteric neurons drives colonic motility, while Piezo1 deficiency reduces cholinergic neuronal activity and slows peristalsis. Additionally, Piezo1 deficiency in cholinergic enteric neurons abolishes exercise-induced acceleration of GI motility. Finally, we uncover that enteric neuronal Piezo1 function is required for motility alterations in colitis and acts to prevent aberrant inflammation and tissue damage. This work uncovers how the ENS senses and responds to mechanical force.
Collapse
Affiliation(s)
- Zili Xie
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Lillian Rose
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghui Zhao
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Yisi Lu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Harry Kane
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy J Hibberd
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Xueming Hu
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Zhen Wang
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - Kaikai Zang
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Xingliang Yang
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA
| | | | - Rahmeh Othman
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Olivia Venezia
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ademi Zhakyp
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Fang Gao
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Nobuya Abe
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - Keren Vigeland
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Hongshen Wang
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Camren Branch
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Coco Duizer
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Liwen Deng
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Xia Meng
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - Lydia Zamidar
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - Max Hauptschein
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ronan Bergin
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Issac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Brian S Kim
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Allen Discovery Center for Neuroimmune Interactions, New York, NY 10029, USA
| | - Nick J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Hongzhen Hu
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Allen Discovery Center for Neuroimmune Interactions, New York, NY 10029, USA; The Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ruaidhrí Jackson
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Forster PM, Jakob MO, Yusuf D, Bubeck M, Limberger H, Luo Y, Thieme P, Polici A, Sterczyk N, Boulekou S, Bartel L, Cosovanu C, Witkowski M, González-Acera M, Kühl AA, Weidinger C, Backofen R, Hegazy AN, Patankar JV, Klose CSN. A transcriptional atlas of gut-innervating neurons reveals activation of interferon signaling and ferroptosis during intestinal inflammation. Neuron 2025:S0896-6273(25)00136-9. [PMID: 40101721 DOI: 10.1016/j.neuron.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/19/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025]
Abstract
Enteric infections often cause long-term sequelae, including persistent gastrointestinal symptoms, such as pain, discomfort, or irritable bowel syndrome. The plethora of sensory symptoms indicates that gut-innervating neurons might be directly affected by inflammation. However, sequencing studies of neurons in the gastrointestinal tract are hampered by difficulties in purifying neurons, especially during inflammation. Activating a nuclear GFP tag selectively in neurons enabled sort purification of intrinsic and extrinsic neurons of the gastrointestinal tract in models of intestinal inflammation. Using bulk and single-nucleus RNA sequencing, we mapped the whole transcriptomic landscape and identified a conserved neuronal response to inflammation, which included the interferon signaling and ferroptosis pathway. Deletion of the interferon receptor 1 in neurons regulated ferroptosis, neuronal loss, and consequently gut-transit time. Collectively, this study offers a resource documenting neuronal adaptation to inflammatory conditions and exposes the interferon and ferroptosis pathways as signaling cascades activated in neurons during inflammation.
Collapse
Affiliation(s)
- Patrycja M Forster
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Manuel O Jakob
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany; Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dilmurat Yusuf
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Marvin Bubeck
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Heidi Limberger
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Yanjiang Luo
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Hindenburgdamm 30, 12203 Berlin, Germany; Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, 10117 Berlin, Germany
| | - Paula Thieme
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Alexandra Polici
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Nele Sterczyk
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Sotiria Boulekou
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Laura Bartel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Catalina Cosovanu
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Mario Witkowski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Miguel González-Acera
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, iPATH.Berlin-Immunpathologie für Experimentelle Modelle, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Carl Weidinger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| | - Ahmed N Hegazy
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Hindenburgdamm 30, 12203 Berlin, Germany; Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, 10117 Berlin, Germany
| | - Jay V Patankar
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph S N Klose
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203 Berlin, Germany.
| |
Collapse
|
9
|
Gupta RA, Higham JP, Pearce A, Urriola-Muñoz P, Barker KH, Paine L, Ghooraroo J, Raine T, Hockley JRF, Rahman T, St John Smith E, Brown AJH, Ladds G, Suzuki R, Bulmer DC. GPR35 agonists inhibit TRPA1-mediated colonic nociception through suppression of substance P release. Pain 2025; 166:596-613. [PMID: 39382322 PMCID: PMC11808708 DOI: 10.1097/j.pain.0000000000003399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 10/10/2024]
Abstract
ABSTRACT The development of nonopioid analgesics for the treatment of abdominal pain is a pressing clinical problem. To address this, we examined the expression of G i/o -coupled receptors, which typically inhibit nociceptor activation, in colonic sensory neurons. This led to the identification of the orphan receptor GPR35 as a visceral analgesic drug target because of its marked coexpression with transient receptor potential ankyrin 1 (TRPA1), a mediator of noxious mechanotransduction in the bowel. Building on in silico docking simulations, we confirmed that the mast cell stabiliser, cromolyn (CS), and phosphodiesterase inhibitor, zaprinast, are agonists at mouse GPR35, promoting the activation of different G i/o subunits. Pretreatment with either CS or zaprinast significantly attenuated TRPA1-mediated colonic nociceptor activation and prevented TRPA1-mediated mechanosensitisation. These effects were lost in tissue from GPR35 -/- mice and were shown to be mediated by inhibition of TRPA1-evoked substance P (SP) release. This observation highlights the pronociceptive effect of SP and its contribution to TRPA1-mediated colonic nociceptor activation and sensitisation. Consistent with this mechanism of action, we confirmed that TRPA1-mediated colonic contractions evoked by SP release were abolished by CS pretreatment in a GPR35-dependent manner. Our data demonstrate that GPR35 agonists prevent the activation and sensitisation of colonic nociceptors through the inhibition of TRPA1-mediated SP release. These findings highlight the potential of GPR35 agonists to deliver nonopioid analgesia for the treatment of abdominal pain.
Collapse
Affiliation(s)
- Rohit A. Gupta
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - James P. Higham
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Abigail Pearce
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Paulina Urriola-Muñoz
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Katie H. Barker
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Luke Paine
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Joshua Ghooraroo
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Tim Raine
- Department of Gastroenterology, Addenbrookes Hospital, Cambridge University Teaching Hospitals, Cambridge, United Kingdom
| | - James R. F. Hockley
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Alastair J. H. Brown
- Nxera, Steinmetz Building, Granta Park Great Abington, Cambridge, United Kingdom
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Rie Suzuki
- Nxera, Steinmetz Building, Granta Park Great Abington, Cambridge, United Kingdom
| | - David C. Bulmer
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| |
Collapse
|
10
|
Svendsen K, Bradaia A, Gandini MA, Defaye M, Matisz C, Abdullah NS, Gruber A, Zamponi GW, Sharkey KA, Altier C. Entourage effects of nonpsychotropic cannabinoids on visceral sensitivity in experimental colitis. J Pharmacol Exp Ther 2025; 392:103389. [PMID: 39921943 DOI: 10.1016/j.jpet.2025.103389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/08/2025] [Indexed: 02/10/2025] Open
Abstract
Abdominal pain is the most disabling symptom of inflammatory bowel diseases, but current treatments are limited, leading patients to seek alternatives such as cannabis. Cannabis contains over 100 cannabinoids which, unlike tetrahydrocannabinol, are biologically active compounds often without psychotropic effects (ie, nonpsychotropic cannabinoids [npCBs]). These npCBs have analgesic and anti-inflammatory properties and may show potentiating effects when administered in combination, referred to as the entourage effect. Here, we investigated the analgesic effects of cannabichromene, cannabidiol (CBD), cannabidivarin, and cannabigerol (CBG), individually and in combination, using the mouse model of dextran sulfate sodium colitis-induced visceral hypersensitivity (VHS). We then explored antinociceptive targets through patch-clamp electrophysiology on dorsal root ganglia neurons and recombinant channels. We found that a single injection of 10 mg/kg of either CBD or CBG reduced both VHS and c-Fos activation in the spinal dorsal horn. Moreover, a combination of npCBs consisting of 5 mg/kg CBD with 1 mg/kg of cannabichromene, cannabidivarin, and CBG-all at subtherapeutic dosages-reduced VHS, without altering colitis. Electrophysiological recordings revealed that the antinociceptive mixture of npCBs acts through voltage-gated sodium and calcium channels, particularly Cav2.2, but not Cav3.2 and Kv channels. These results suggest that CBD, CBG, and a mixture of npCBs given at subtherapeutic doses may be beneficial in managing VHS associated with inflammatory bowel disease. SIGNIFICANCE STATEMENT: Cannabis is increasingly used as an alternative treatment for managing pain associated with chronic conditions. Nonpsychotropic cannabinoids, such as cannabidiol, interact with ionotropic and voltage-gated ion channels. In our study, we demonstrated that cannabidiol, cannabigerol, and a combination of nonpsychotropic cannabinoids, administered at subtherapeutic doses, effectively alleviated visceral hypersensitivity associated with inflammatory bowel disease.
Collapse
Affiliation(s)
- Kristofer Svendsen
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amyaouch Bradaia
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria A Gandini
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Chelsea Matisz
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Nasser S Abdullah
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aaron Gruber
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Christophe Altier
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
11
|
Meng MY, Paine LW, Sagnat D, Bello I, Oldroyd S, Javid F, Harper MT, Hockley JRF, St John Smith E, Owens RM, Alric L, Buscail E, Welsh F, Vergnolle N, Bulmer DC. TRPV4 stimulates colonic afferents through mucosal release of ATP and glutamate. Br J Pharmacol 2025; 182:1324-1340. [PMID: 39626870 DOI: 10.1111/bph.17408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND AND PURPOSE Abdominal pain is a leading cause of morbidity for people living with gastrointestinal disease. Whereas the transient receptor potential vanilloid 4 (TRPV4) ion channel has been implicated in the pathogenesis of abdominal pain, the relative paucity of TRPV4 expression in colon-projecting sensory neurons suggests that non-neuronal cells may contribute to TRPV4-mediated nociceptor stimulation. EXPERIMENTAL APPROACH Changes in murine colonic afferent activity were examined using ex vivo electrophysiology in tissues with the gut mucosa present or removed. ATP and glutamate release were measured by bioluminescence assays from human colon organoid cultures and mouse colon. Dorsal root ganglion sensory neuron activity was evaluated by Ca2+ imaging when cultured alone or co-cultured with colonic mucosa. KEY RESULTS Bath application of TRPV4 agonist GSK1016790A elicited a robust increase in murine colonic afferent activity, which was abolished by removing the gut mucosa. GSK1016790A promoted ATP and glutamate release from human colon organoid cultures and mouse colon. Inhibition of ATP degradation in mouse colon enhanced the afferent response to GSK1016790A. Pretreatment with purinoceptor or glutamate receptor antagonists attenuated and abolished the response to GSK1016790A when given alone or in combination, respectively. Sensory neurons co-cultured with colonic mucosal cells produced a marked increase in intracellular Ca2+ to GSK1016790A compared with neurons cultured alone. CONCLUSION AND IMPLICATIONS Our data indicate that mucosal release of ATP and glutamate is responsible for the stimulation of colonic afferents following TRPV4 activation. These findings highlight an opportunity to target the gut mucosa for the development of new visceral analgesics.
Collapse
Affiliation(s)
- Michelle Y Meng
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Luke W Paine
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - David Sagnat
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Ivana Bello
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Sophie Oldroyd
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Farideh Javid
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | | | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Laurent Alric
- Internal Medicine Department of Digestive Disease, CHU Toulouse-Rangueil and Université de Toulouse, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Etienne Buscail
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
- Department of Surgery, CHU Toulouse-Rangueil and Université de Toulouse, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Fraser Welsh
- BioPharmaceuticals R&D, AstraZeneca, Neuroscience, Cambridge, UK
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Li C, Gehring J, Bronner ME. Spatiotemporal dynamics of the developing zebrafish enteric nervous system at the whole-organ level. Dev Cell 2025; 60:613-629.e6. [PMID: 39642879 PMCID: PMC11859770 DOI: 10.1016/j.devcel.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/22/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024]
Abstract
Neural crest cells give rise to the neurons of the enteric nervous system (ENS) that innervate the gastrointestinal (GI) tract to regulate gut motility. The immense size and distinct subregions of the gut present a challenge to understanding the spatial organization and sequential differentiation of different neuronal subtypes. Here, we profile enteric neurons (ENs) and progenitors at single-cell resolution during zebrafish embryonic and larval development to provide a near-complete picture of transcriptional changes that accompany the emergence of ENS neurons throughout the GI tract. Multiplex spatial RNA transcript analysis identifies the temporal order and distinct localization patterns of neuronal subtypes along the length of the gut. Finally, we show that functional perturbation of select transcription factors Ebf1a, Gata3, and Satb2 alters the cell fate choice, respectively, of inhibitory, excitatory, and serotonergic neuronal subtypes in the developing ENS.
Collapse
Affiliation(s)
- Can Li
- California Institute of Technology, Division of Biology and Biological engineering, Pasadena, CA 91125, USA
| | - Jase Gehring
- California Institute of Technology, Division of Biology and Biological engineering, Pasadena, CA 91125, USA; Arcadia Science, Berkeley, CA 94702, USA
| | - Marianne E Bronner
- California Institute of Technology, Division of Biology and Biological engineering, Pasadena, CA 91125, USA.
| |
Collapse
|
13
|
Song Y, Fothergill LJ, Lee KS, Liu BY, Koo A, Perelis M, Diwakarla S, Callaghan B, Huang J, Wykosky J, Furness JB, Yeo GW. Stratification of enterochromaffin cells by single-cell expression analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.08.24.554649. [PMID: 37662229 PMCID: PMC10473706 DOI: 10.1101/2023.08.24.554649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine (5-HT) to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify fourteen EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2 + population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic and pharmacological approaches, we demonstrated Piezo2 + ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.
Collapse
Affiliation(s)
- Yan Song
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Linda J. Fothergill
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | - Kari S. Lee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Brandon Y. Liu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Ada Koo
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mark Perelis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Shanti Diwakarla
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brid Callaghan
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jie Huang
- Takeda Pharmaceuticals, San Diego, CA 92121, United States
| | - Jill Wykosky
- Takeda Pharmaceuticals, San Diego, CA 92121, United States
| | - John B. Furness
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
14
|
Ohara TE, Hsiao EY. Microbiota-neuroepithelial signalling across the gut-brain axis. Nat Rev Microbiol 2025:10.1038/s41579-024-01136-9. [PMID: 39743581 DOI: 10.1038/s41579-024-01136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Research over the past two decades has established a remarkable ability of the gut microbiota to modulate brain activity and behaviour. Conversely, signals from the brain can influence the composition and function of the gut microbiota. This bidirectional communication across the gut microbiota-brain axis, involving multiple biochemical and cellular mediators, is recognized as a major brain-body network that integrates cues from the environment and the body's internal state. Central to this network is the gut sensory system, formed by intimate connections between chemosensory epithelial cells and sensory nerve fibres, that conveys interoceptive signals to the central nervous system. In this Review, we provide a broad overview of the pathways that connect the gut and the brain, and explore the complex dialogue between microorganisms and neurons at this emerging intestinal neuroepithelial interface. We highlight relevant microbial factors, endocrine cells and neural mechanisms that govern gut microbiota-brain interactions and their implications for gastrointestinal and neuropsychiatric health.
Collapse
Affiliation(s)
- Takahiro E Ohara
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
15
|
He SQ, Zhang C, Wang XW, Huang Q, Liu J, Lin Q, He H, Yang DZ, Tseng SC, Guan Y. HC-HA/PTX3 from Human Amniotic Membrane Induced Differential Gene Expressions in DRG Neurons: Insights into the Modulation of Pain. Cells 2024; 13:1887. [PMID: 39594635 PMCID: PMC11592720 DOI: 10.3390/cells13221887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The biologics derived from human amniotic membranes (AMs) demonstrate potential pain-inhibitory effects in clinical settings. However, the molecular basis underlying this therapeutic effect remains elusive. HC-HA/PTX3 is a unique water-soluble regenerative matrix that is purified from human AMs. We examined whether HC-HA/PTX3 can modulate the gene networks and transcriptional signatures in the dorsal root ganglia (DRG) neurons transmitting peripheral sensory inputs to the spinal cord. Methods: We conducted bulk RNA-sequencing (RNA-seq) of mouse DRG neurons after treating them with HC-HA/PTX3 (15 µg/mL) for 10 min and 24 h in culture. Differential gene expression analysis was performed using the limma package, and Gene Ontology (GO) and protein-protein interaction (PPI) analyses were conducted to identify the networks of pain-related genes. Western blotting and in vitro calcium imaging were used to examine the protein levels and signaling of pro-opiomelanocortin (POMC) in DRG neurons. Results: Compared to the vehicle-treated group, 24 h treatment with HC-HA/PTX3 induced 2047 differentially expressed genes (DEGs), which were centered on the ATPase activity, receptor-ligand activity, and extracellular matrix pathways. Importantly, PPI analysis revealed that over 50 of these DEGs are closely related to pain and analgesia. Notably, HC-HA/PTX3 increased the expression and signaling pathway of POMC, which may affect opioid analgesia. Conclusions: HC-HA/PTX3 induced profound changes in the gene expression in DRG neurons, centered around various neurochemical mechanisms associated with pain modulation. Our findings suggest that HC-HA/PTX3 may be an important biological active component in human AMs that partly underlies its pain inhibitory effect, presenting a new strategy for pain treatment.
Collapse
Affiliation(s)
- Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Xue-Wei Wang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Jing Liu
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Qing Lin
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Hua He
- BioTissue, Inc., Miami, FL 33126, USA; (H.H.); (S.C.T.)
| | - Da-Zhi Yang
- Acrogenic Technologies Inc., Rockville, MD 20847, USA;
| | | | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
- Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Defaye M, Altier C. Spare the pain for your gut Treg cells! Trends Pharmacol Sci 2024; 45:859-861. [PMID: 39242334 DOI: 10.1016/j.tips.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
Maintaining gut homeostasis requires a complex interplay between the nervous and immune systems and the microbiome, but the nature of their interactions remains unclear. Chiu and Benoist's teams employed designer receptors exclusively activated by designer drugs (DREADD)-based chemogenetics to target specific neuronal cell types and evaluate their effects on both the gut immune system and the microbiota.
Collapse
Affiliation(s)
- Manon Defaye
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
17
|
Hamed YMF, Ghosh B, Marshall KL. PIEZO ion channels: force sensors of the interoceptive nervous system. J Physiol 2024; 602:4777-4788. [PMID: 38456626 PMCID: PMC11845038 DOI: 10.1113/jp284077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
Many organs are designed to move: the heart pumps each second, the gastrointestinal tract squeezes and churns to digest food, and we contract and relax skeletal muscles to move our bodies. Sensory neurons of the peripheral nervous system detect signals from bodily tissues, including the forces generated by these movements, to control physiology. The processing of these internal signals is called interoception, but this is a broad term that includes a wide variety of both chemical and mechanical sensory processes. Mechanical senses are understudied, but rapid progress has been made in the last decade, thanks in part to the discovery of the mechanosensory PIEZO ion channels (Coste et al., 2010). The role of these mechanosensors within the interoceptive nervous system is the focus of this review. In defining the transduction molecules that govern mechanical interoception, we will have a better grasp of how these signals drive physiology.
Collapse
Affiliation(s)
- Yasmeen M. F. Hamed
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Britya Ghosh
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kara L. Marshall
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Lead contact
| |
Collapse
|
18
|
Gold MS, Pineda-Farias JB, Close D, Patel S, Johnston PA, Stocker SD, Journigan VB. Subcutaneous administration of a novel TRPM8 antagonist reverses cold hypersensitivity while attenuating the drop in core body temperature. Br J Pharmacol 2024; 181:3527-3543. [PMID: 38794851 DOI: 10.1111/bph.16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND AND PURPOSE We extend the characterization of the TRPM8 antagonist VBJ103 with tests of selectivity, specificity and distribution, therapeutic efficacy of systemic administration against oxaliplatin-induced cold hyperalgesia and the impact of systemic administration on core body temperature (CBT). EXPERIMENTAL APPROACH Selectivity at human TRPA1 and TRPV1 as well as in vitro safety profiling was determined. Effects of systemic administration of VBJ103 were evaluated in a model of oxaliplatin-induced cold hyperalgesia. Both peripheral and centrally mediated effects of VBJ103 on CBT were assessed with radiotelemetry. KEY RESULTS VBJ103 had no antagonist activity at TRPV1 and TRPA1, but low potency TRPA1 activation. The only safety liability detected was partial inhibition of the dopamine transporter (DAT). VBJ103 delivered subcutaneously dose-dependently attenuated cold hypersensitivity in oxaliplatin-treated mice at 3, 10 and 30 mg·kg-1 (n = 7, P < 0.05). VBJ103 (30 mg·kg-1) antinociception was influenced by neither the TRPA1 antagonist HC-030031 nor the DAT antagonist GBR12909. Subcutaneous administration of VBJ103 (3, 10 and 30 mg·kg-1, but not 100 or 300 mg·kg-1, n = 7) decreased CBT (2°C). Intraperitoneal (i.p.) administration of VBJ103 (3, 10 and 30 mg·kg-1) dose-dependently decreased CBT to an extent larger than that detected with subcutaneous administration. Intracerebroventricular (i.c.v.) administration (306 nmol/1 μL; n = 5) did not alter CBT. CONCLUSIONS AND IMPLICATIONS We achieve therapeutic efficacy with subcutaneous administration of a novel TRPM8 antagonist that attenuates deleterious influences on CBT, a side effect that has largely prevented the translation of TRPM8 as a target.
Collapse
Affiliation(s)
- Michael S Gold
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jorge B Pineda-Farias
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David Close
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Smith Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sean D Stocker
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - V Blair Journigan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Zhu Y, Meerschaert KA, Galvan-Pena S, Bin NR, Yang D, Kawamoto R, Shalaby A, Liberles SD, Mathis D, Benoist C, Chiu IM. A chemogenetic screen reveals that Trpv1-expressing neurons control regulatory T cells in the gut. Science 2024; 385:eadk1679. [PMID: 39088603 PMCID: PMC11416019 DOI: 10.1126/science.adk1679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/21/2024] [Accepted: 06/03/2024] [Indexed: 08/03/2024]
Abstract
Neuroimmune cross-talk participates in intestinal tissue homeostasis and host defense. However, the matrix of interactions between arrays of molecularly defined neuron subsets and of immunocyte lineages remains unclear. We used a chemogenetic approach to activate eight distinct neuronal subsets, assessing effects by deep immunophenotyping, microbiome profiling, and immunocyte transcriptomics in intestinal organs. Distinct immune perturbations followed neuronal activation: Nitrergic neurons regulated T helper 17 (TH17)-like cells, and cholinergic neurons regulated neutrophils. Nociceptor neurons, expressing Trpv1, elicited the broadest immunomodulation, inducing changes in innate lymphocytes, macrophages, and RORγ+ regulatory T (Treg) cells. Neuroanatomical, genetic, and pharmacological follow-up showed that Trpv1+ neurons in dorsal root ganglia decreased Treg cell numbers via the neuropeptide calcitonin gene-related peptide (CGRP). Given the role of these neurons in nociception, these data potentially link pain signaling with gut Treg cell function.
Collapse
Affiliation(s)
- Yangyang Zhu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kimberly A. Meerschaert
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Silvia Galvan-Pena
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Na Ryum Bin
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Daping Yang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ryo Kawamoto
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Amre Shalaby
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen D. Liberles
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Diane Mathis
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Christophe Benoist
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M. Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
20
|
Guo J, Li L, Chen F, Fu M, Cheng C, Wang M, Hu J, Pei L, Sun J. Forces Bless You: Mechanosensitive Piezo Channels in Gastrointestinal Physiology and Pathology. Biomolecules 2024; 14:804. [PMID: 39062518 PMCID: PMC11274378 DOI: 10.3390/biom14070804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The gastrointestinal (GI) tract is an organ actively involved in mechanical processes, where it detects forces via a mechanosensation mechanism. Mechanosensation relies on specialized cells termed mechanoreceptors, which convert mechanical forces into electrochemical signals via mechanosensors. The mechanosensitive Piezo1 and Piezo2 are widely expressed in various mechanosensitive cells that respond to GI mechanical forces by altering transmembrane ionic currents, such as epithelial cells, enterochromaffin cells, and intrinsic and extrinsic enteric neurons. This review highlights recent research advances on mechanosensitive Piezo channels in GI physiology and pathology. Specifically, the latest insights on the role of Piezo channels in the intestinal barrier, GI motility, and intestinal mechanosensation are summarized. Additionally, an overview of Piezo channels in the pathogenesis of GI disorders, including irritable bowel syndrome, inflammatory bowel disease, and GI cancers, is provided. Overall, the presence of mechanosensitive Piezo channels offers a promising new perspective for the treatment of various GI disorders.
Collapse
Affiliation(s)
- Jing Guo
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Li Li
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Feiyi Chen
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Minhan Fu
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Cheng Cheng
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Meizi Wang
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Jun Hu
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Lixia Pei
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Jianhua Sun
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| |
Collapse
|
21
|
Higham JP, Bhebhe CN, Gupta RA, Tranter MM, Barakat FM, Dogra H, Bab N, Wozniak E, Barker KH, Wilson CH, Mein CA, Raine T, Cox JJ, Wood JN, Croft NM, Wright PD, Bulmer DC. Transcriptomic profiling reveals a pronociceptive role for angiotensin II in inflammatory bowel disease. Pain 2024; 165:1592-1604. [PMID: 38293826 PMCID: PMC11190897 DOI: 10.1097/j.pain.0000000000003159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/20/2023] [Accepted: 10/29/2023] [Indexed: 02/01/2024]
Abstract
ABSTRACT Visceral pain is a leading cause of morbidity in inflammatory bowel disease (IBD), contributing significantly to reduced quality of life. Currently available analgesics often lack efficacy or have intolerable side effects, driving the need for a more complete understanding of the mechanisms causing pain. Whole transcriptome gene expression analysis was performed by bulk RNA sequencing of colonic biopsies from patients with ulcerative colitis (UC) and Crohn's disease (CD) reporting abdominal pain and compared with noninflamed control biopsies. Potential pronociceptive mediators were identified based on gene upregulation in IBD biopsy tissue and cognate receptor expression in murine colonic sensory neurons. Pronociceptive activity of identified mediators was assessed in assays of sensory neuron and colonic afferent activity. RNA sequencing analysis highlighted a 7.6-fold increase in the expression of angiotensinogen transcripts, Agt , which encode the precursor to angiotensin II (Ang II), in samples from UC patients ( P = 3.2 × 10 -8 ). Consistent with the marked expression of the angiotensin AT 1 receptor in colonic sensory neurons, Ang II elicited an increase in intracellular Ca 2+ in capsaicin-sensitive, voltage-gated sodium channel subtype Na V 1.8-positive sensory neurons. Ang II also evoked action potential discharge in high-threshold colonic nociceptors. These effects were inhibited by the AT 1 receptor antagonist valsartan. Findings from our study identify AT 1 receptor-mediated colonic nociceptor activation as a novel pathway of visceral nociception in patients with UC. This work highlights the potential utility of angiotensin receptor blockers, such as valsartan, as treatments for pain in IBD.
Collapse
Affiliation(s)
- James P. Higham
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Charity N. Bhebhe
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Rohit A. Gupta
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Michael M. Tranter
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Farah M. Barakat
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Harween Dogra
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Natalie Bab
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Eva Wozniak
- Genome Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Katie H. Barker
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Catherine H. Wilson
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Charles A. Mein
- Genome Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Tim Raine
- Department of Gastroenterology, Addenbrookes Hospital, Cambridge University Teaching Hospitals, Cambridge, United Kingdom
| | - James J. Cox
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - John N. Wood
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Nicholas M. Croft
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Paul D. Wright
- LifeArc, SBC Open Innovation Campus, Stevenage, United Kingdom
| | - David C. Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Hawker P, Zhang L, Liu L. Mas-related G protein-coupled receptors in gastrointestinal dysfunction and inflammatory bowel disease: A review. Br J Pharmacol 2024; 181:2197-2211. [PMID: 36787888 DOI: 10.1111/bph.16059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/25/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic debilitating condition, hallmarked by persistent inflammation of the gastrointestinal tract. Despite recent advances in clinical treatments, the aetiology of IBD is unknown, and a large proportion of patients are refractory to pharmacotherapy. Understanding IBD immunopathogenesis is crucial to discern the cause of IBD and optimise treatments. Mas-related G protein-coupled receptors (Mrgprs) are a family of approximately 50 G protein-coupled receptors that were first identified over 20 years ago. Originally known for their expression in skin nociceptors and their role in transmitting the sensation of itch in the periphery, new reports have described the presence of Mrgprs in the gastrointestinal tract. In this review, we consider the impact of these findings and assess the evidence that suggests that Mrgprs may be involved in the disrupted homeostatic processes that contribute to gastrointestinal disorders and IBD. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Patrick Hawker
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Lv T, Li G, Zhao C, Ma J, Zhang F, Zhao M, Liu H, Wu H, Li K, Weng Z. P2X7 and P2Y 1 receptors in DRG mediate electroacupuncture to inhibit peripheral sensitization in rats with IBS visceral pain. Purinergic Signal 2024:10.1007/s11302-024-10028-9. [PMID: 38922475 DOI: 10.1007/s11302-024-10028-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Although multiple purinergic receptors mediate the analgesic effects of acupuncture, it remains unclear whether there is mutual interaction between purinergic receptors to jointly mediate the electroacupuncture inhibition of peripheral sensitization in visceral pain. Visceral hypersensitivity was induced by intracolonic 2,4,6-trinitrobenzene sulfonic acid (TNBS) in rat. The antinociception effect of electroacupuncture on visceral pain was evaluated by morphology, behaviors, neuroelectrophysiology and molecular biology techniques. After labeling the colon-related primary sensory neurons with neural retrograde tracer and employing neuropharmacology, neuroelectrophysiology, and molecular biotechnology, the mechanisms of P2X7R, P2Y1R, and P2X3R in colon-related dorsal root ganglion (DRG) neurons alleviating visceral hypersensitivity of irritable bowel syndrome (IBS) by electroacupuncture at Zusanli and Sanyinjiao acupoints.were elucidated from the perspective of peripheral sensitization. Electroacupuncture significantly inhibited TNBS-induced colonic hypersensitivity in rats with IBS, and Satellite Glial Cells (SGCs) in DRG were found to be involved in electroacupuncture-mediated regulation of the electrophysiological properties of neurons. P2X7R was found to play a pain-inducing role in IBS visceral hypersensitivity by affecting P2X3R, and electroacupuncture exerted an analgesic effect by inhibiting P2X7R activation. P2Y1R was found to play an analgesic role in the process of visceral pain, mediating electroacupuncture to relieve visceral hypersensitivity. P2Y1R relieved visceral pain by inhibiting P2X3R in neurons associated with nociception, with P2X7R identified as upstream of P2Y1R up-regulation by electroacupuncture. Our study suggests that the P2X7R → P2Y1R → P2X3R inhibitory pathway in DRG mediates the inhibition of peripheral sensitization by electroacupuncture in rats with IBS visceral hypersensitivity.
Collapse
Affiliation(s)
- Tingting Lv
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200030, China
| | - Guona Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen Zhao
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jindan Ma
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200030, China
| | - Fang Zhang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200030, China
| | - Min Zhao
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200030, China
| | - Huirong Liu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200030, China
| | - Huangan Wu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200030, China
| | - Kunshan Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200030, China.
| | - Zhijun Weng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200030, China.
| |
Collapse
|
24
|
Gonzales J, Dharshika C, Mazhar K, Morales-Soto W, McClain JL, Moeser AJ, Nault R, Price TJ, Gulbransen BD. Early life adversity promotes gastrointestinal dysfunction through a sex-dependent phenotypic switch in enteric glia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596805. [PMID: 38895433 PMCID: PMC11185517 DOI: 10.1101/2024.05.31.596805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Irritable bowel syndrome and related disorders of gut-brain interaction (DGBI) are common and exhibit a complex, poorly understood etiology that manifests as abnormal gut motility and pain. Risk factors such as biological sex, stressors during critical periods, and inflammation are thought to influence DGBI vulnerability by reprogramming gut-brain circuits, but the specific cells affected are unclear. Here, we used a model of early life stress to understand cellular mechanisms in the gut that produce DGBIs. Our findings identify enteric glia as a key cellular substrate in which stress and biological sex converge to dictate DGBI susceptibility. Enteric glia exhibit sexual dimorphism in genes and functions related to cellular communication, inflammation, and disease susceptibility. Experiencing early life stress has sex-specific effects on enteric glia that cause a phenotypic switch in male glia toward a phenotype normally observed in females. This phenotypic transformation is followed by physiological changes in the gut, mirroring those observed in DGBI in humans. These effects are mediated, in part, by alterations to glial prostaglandin and endocannabinoid signaling. Together, these data identify enteric glia as a cellular integration site through which DGBI risk factors produce changes in gut physiology and suggest that manipulating glial signaling may represent an attractive target for sex-specific therapeutic strategies in DGBIs.
Collapse
|
25
|
Ford AC, Vanner S, Kashyap PC, Nasser Y. Chronic Visceral Pain: New Peripheral Mechanistic Insights and Resulting Treatments. Gastroenterology 2024; 166:976-994. [PMID: 38325759 PMCID: PMC11102851 DOI: 10.1053/j.gastro.2024.01.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/15/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
Chronic visceral pain is one of the most common reasons for patients with gastrointestinal disorders, such as inflammatory bowel disease or disorders of brain-gut interaction, to seek medical attention. It represents a substantial burden to patients and is associated with anxiety, depression, reductions in quality of life, and impaired social functioning, as well as increased direct and indirect health care costs to society. Unfortunately, the diagnosis and treatment of chronic visceral pain is difficult, in part because our understanding of the underlying pathophysiologic basis is incomplete. In this review, we highlight recent advances in peripheral pain signaling and specific physiologic and pathophysiologic preclinical mechanisms that result in the sensitization of peripheral pain pathways. We focus on preclinical mechanisms that have been translated into treatment approaches and summarize the current evidence base for directing treatment toward these mechanisms of chronic visceral pain derived from clinical trials. The effective management of chronic visceral pain remains of critical importance for the quality of life of suffers. A deeper understanding of peripheral pain mechanisms is necessary and may provide the basis for novel therapeutic interventions.
Collapse
Affiliation(s)
- Alexander C Ford
- Leeds Institute of Medical Research at St. James's, University of |Leeds, Leeds, United Kingdom; Leeds Gastroenterology Institute, Leeds Teaching Hospitals National Health Service Trust, Leeds, United Kingdom
| | - Stephen Vanner
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Yasmin Nasser
- Snyder Institute for Chronic Diseases, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
26
|
Gupta S, Viotti A, Eichwald T, Roger A, Kaufmann E, Othman R, Ghasemlou N, Rafei M, Foster SL, Talbot S. Navigating the blurred path of mixed neuroimmune signaling. J Allergy Clin Immunol 2024; 153:924-938. [PMID: 38373475 DOI: 10.1016/j.jaci.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Evolution has created complex mechanisms to sense environmental danger and protect tissues, with the nervous and immune systems playing pivotal roles. These systems work together, coordinating local and systemic reflexes to restore homeostasis in response to tissue injury and infection. By sharing receptors and ligands, they influence the pathogenesis of various diseases. Recently, a less-explored aspect of neuroimmune communication has emerged: the release of neuropeptides from immune cells and cytokines/chemokines from sensory neurons. This article reviews evidence of this unique neuroimmune interplay and its impact on the development of allergy, inflammation, itch, and pain. We highlight the effects of this neuroimmune signaling on vital processes such as host defense, tissue repair, and inflammation resolution, providing avenues for exploration of the underlying mechanisms and therapeutic potential of this signaling.
Collapse
Affiliation(s)
- Surbhi Gupta
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Alice Viotti
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Tuany Eichwald
- Department of Pharmacology and Physiology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Anais Roger
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Aix-Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Eva Kaufmann
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Rahmeh Othman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, University of Montréal, Montréal, Québec, Canada
| | - Simmie L Foster
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Sebastien Talbot
- Department of Pharmacology and Physiology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
27
|
Liu J, Zhang S, Emadi S, Guo T, Chen L, Feng B. Morphological, molecular, and functional characterization of mouse glutamatergic myenteric neurons. Am J Physiol Gastrointest Liver Physiol 2024; 326:G279-G290. [PMID: 38193160 PMCID: PMC11211033 DOI: 10.1152/ajpgi.00200.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
The enteric nervous system (ENS) functions largely independently of the central nervous system (CNS). Glutamate, the dominant neurotransmitter in the CNS and sensory afferents, is not a primary neurotransmitter in the ENS. Only a fraction (∼2%) of myenteric neurons in the mouse distal colon and rectum (colorectum) are positive for vesicular glutamate transporter type 2 (VGLUT2), the structure and function of which remain undetermined. Here, we systematically characterized VGLUT2-positive enteric neurons (VGLUT2-ENs) through sparse labeling with adeno-associated virus, single-cell mRNA sequencing (scRNA-seq), and GCaMP6f calcium imaging. Our results reveal that the majority of VGLUT2-ENs (29 of 31, 93.5%) exhibited Dogiel type I morphology with a single aborally projecting axon; most axons (26 of 29, 89.7%) are between 4 and 10 mm long, each traversing 19 to 34 myenteric ganglia. These anatomical features exclude the VGLUT2-ENs from being intrinsic primary afferent or motor neurons. The scRNA-seq conducted on 52 VGLUT2-ENs suggests different expression profiles from conventional descending interneurons. Ex vivo GCaMP6f recordings from flattened colorectum indicate that almost all VGLUT2-EN (181 of 215, 84.2%) are indirectly activated by colorectal stretch via nicotinic cholinergic neural transmission. In conclusion, VGLUT2-ENs are a functionally unique group of enteric neurons with single aborally projecting long axons that traverse multiple myenteric ganglia and are activated indirectly by colorectal mechanical stretch. This knowledge will provide a solid foundation for subsequent studies on the potential interactions of VGLUT2-EN with extrinsic colorectal afferents via glutamatergic neurotransmission.NEW & NOTEWORTHY We reveal that VGLUT2-positive enteric neurons (EN), although constituting a small fraction of total EN, are homogeneously expressed in the myenteric ganglia, with a slight concentration at the intermediate region between the colon and rectum. Through anatomic, molecular, and functional analyses, we demonstrated that VGLUT2-ENs are activated indirectly by noxious circumferential colorectal stretch via nicotinic cholinergic transmission, suggesting their participation in mechanical visceral nociception.
Collapse
Affiliation(s)
- Jia Liu
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| | - Shaopeng Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| | - Sharareh Emadi
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| | - Tiantian Guo
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States
| |
Collapse
|
28
|
Gold MS, Loeza-Alcocer E. Experimental colitis-induced visceral hypersensitivity is attenuated by GABA treatment in mice. Am J Physiol Gastrointest Liver Physiol 2024; 326:G252-G263. [PMID: 38193198 PMCID: PMC11211035 DOI: 10.1152/ajpgi.00012.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
Ulcerative colitis (UC) is linked with inflammation of the large intestine due to an overactive response of the colon-immune system. UC is associated with weight loss, rectal bleeding, diarrhea, and abdominal pain. Given that γ-amino butyric acid (GABA) suppresses immune cell activity and the excitability of colonic afferents, and that there is a decrease in colonic GABA during UC, we hypothesized that UC pain is due to a decrease in the inhibition of colonic afferents. Thus, restoring GABA in the colon will attenuate inflammatory hypersensitivity. We tested this hypothesis in a mouse model of colitis. Colon inflammation was induced with seven days of dextran sodium sulfate (DSS, 3%) in the drinking water. GABA (40 mg/kg) was administered orally for the same period as DSS, and body weight, colon length, colon permeability, clinical progression of colitis (disease activity index or DAI), and colon histological score (HS) were assessed to determine the effects of GABA on colitis. A day after the end of GABA treatment, visceral sensitivity was assessed with balloon distention (of the colon)-evoked visceromotor response and colon samples were collected for the measurement of GABA and cytokines. Treatment with GABA reduced the DSS-induced increase in the colon permeability, DAI, HS, and decrease in body weight and colon length. Furthermore, GABA inhibited the DSS-induced increase in the proinflammatory cytokines tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-12 (IL-12), and increased the expression of the anti-inflammatory cytokine IL-10 in the colon tissue. Importantly, GABA reduced DSS-induced visceral hypersensitivity. These data suggest that increasing gastrointestinal levels of GABA may be useful for the treatment of colitis.NEW & NOTEWORTHY GABA treatment reduces the severity of colitis and inflammation and produces inhibition of visceral hypersensitivity in colon-inflamed mice. These results raise the promising possibility that GABA treatment may be an effective therapeutic strategy for the management of symptoms associated with colitis. However, clinical studies are required to corroborate whether this mouse-model data translates to human colon.
Collapse
Affiliation(s)
- Michael S Gold
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Emanuel Loeza-Alcocer
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
29
|
Wang RL, Chang RB. The Coding Logic of Interoception. Annu Rev Physiol 2024; 86:301-327. [PMID: 38061018 PMCID: PMC11103614 DOI: 10.1146/annurev-physiol-042222-023455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Interoception, the ability to precisely and timely sense internal body signals, is critical for life. The interoceptive system monitors a large variety of mechanical, chemical, hormonal, and pathological cues using specialized organ cells, organ innervating neurons, and brain sensory neurons. It is important for maintaining body homeostasis, providing motivational drives, and regulating autonomic, cognitive, and behavioral functions. However, compared to external sensory systems, our knowledge about how diverse body signals are coded at a system level is quite limited. In this review, we focus on the unique features of interoceptive signals and the organization of the interoceptive system, with the goal of better understanding the coding logic of interoception.
Collapse
Affiliation(s)
- Ruiqi L Wang
- Department of Neuroscience and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Rui B Chang
- Department of Neuroscience and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
30
|
Alsaadi H, Peller J, Ghasemlou N, Kawaja MD. Immunohistochemical phenotype of sensory neurons associated with sympathetic plexuses in the trigeminal ganglia of adult nerve growth factor transgenic mice. J Comp Neurol 2024; 532:e25563. [PMID: 37986234 DOI: 10.1002/cne.25563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Following peripheral nerve injury, postganglionic sympathetic axons sprout into the affected sensory ganglia and form perineuronal sympathetic plexuses with somata of sensory neurons. This sympathosensory coupling contributes to the onset and persistence of injury-induced chronic pain. We have documented the presence of similar sympathetic plexuses in the trigeminal ganglia of adult mice that ectopically overexpress nerve growth factor (NGF), in the absence of nerve injury. In this study, we sought to further define the phenotype(s) of these trigeminal sensory neurons having sympathetic plexuses in our transgenic mice. Using quantitative immunofluorescence staining analyses, we show that the invading sympathetic axons specifically target sensory somata immunopositive for several biomarkers: NGF high-affinity receptor tyrosine kinase A (trkA), calcitonin gene-related peptide (CGRP), neurofilament heavy chain (NFH), and P2X purinoceptor 3 (P2X3). Based on these phenotypic characteristics, the majority of the sensory somata surrounded by sympathetic plexuses are likely to be NGF-responsive nociceptors (i.e., trkA expressing) that are peptidergic (i.e., CGRP expressing), myelinated (i.e., NFH expressing), and ATP sensitive (i.e., P2X3 expressing). Our data also show that very few sympathetic plexuses surround sensory somata expressing other nociceptive (pain) biomarkers, including substance P and acid-sensing ion channel 3. No sympathetic plexuses are associated with sensory somata that display isolectin B4 binding. Though the cellular mechanisms that trigger the formation of sympathetic plexus (with and without nerve injury) remain unknown, our new observations yield an unexpected specificity with which invading sympathetic axons appear to target a precise subtype of nociceptors. This selectivity likely contributes to pain development and maintenance associated with sympathosensory coupling.
Collapse
Affiliation(s)
- Hanin Alsaadi
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Jacob Peller
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Michael D Kawaja
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
31
|
Svendsen K, Sharkey KA, Altier C. Non-Intoxicating Cannabinoids in Visceral Pain. Cannabis Cannabinoid Res 2024; 9:3-11. [PMID: 37883662 DOI: 10.1089/can.2023.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Cannabis and cannabis products are becoming increasingly popular options for symptom management of inflammatory bowel diseases, particularly abdominal pain. While anecdotal and patient reports suggest efficacy of these compounds for these conditions, clinical research has shown mixed results. To date, clinical research has focused primarily on delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC is a ligand of classical cannabinoid receptors (CBRs). CBD is one of a large group of nonintoxicating cannabinoids (niCBs) that mediate their effects on both CBRs and through non-CBR mechanisms of action. Because they are not psychotropic, there is increasing interest and availability of niCBs. The numerous niCBs show potential to rectify abnormal intestinal motility as well as have anti-inflammatory and analgesic effects. The effects of niCBs are frequently not mediated by CBRs, but rather through actions on other targets, including transient receptor potential channels and voltage-gated ion channels. Additionally, evidence suggests that niCBs can be combined to increase their potency through what is termed the entourage effect. This review examines the pre-clinical data available surrounding these niCBs in treatment of abdominal pain with a focus on non-CBR mechanisms.
Collapse
Affiliation(s)
- Kristofer Svendsen
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
- Inflammation Research Network, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Keith A Sharkey
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
- Inflammation Research Network, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
32
|
Riehl L, Fürst J, Kress M, Rykalo N. The importance of the gut microbiome and its signals for a healthy nervous system and the multifaceted mechanisms of neuropsychiatric disorders. Front Neurosci 2024; 17:1302957. [PMID: 38249593 PMCID: PMC10797776 DOI: 10.3389/fnins.2023.1302957] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Increasing evidence links the gut microbiome and the nervous system in health and disease. This narrative review discusses current views on the interaction between the gut microbiota, the intestinal epithelium, and the brain, and provides an overview of the communication routes and signals of the bidirectional interactions between gut microbiota and the brain, including circulatory, immunological, neuroanatomical, and neuroendocrine pathways. Similarities and differences in healthy gut microbiota in humans and mice exist that are relevant for the translational gap between non-human model systems and patients. There is an increasing spectrum of metabolites and neurotransmitters that are released and/or modulated by the gut microbiota in both homeostatic and pathological conditions. Dysbiotic disruptions occur as consequences of critical illnesses such as cancer, cardiovascular and chronic kidney disease but also neurological, mental, and pain disorders, as well as ischemic and traumatic brain injury. Changes in the gut microbiota (dysbiosis) and a concomitant imbalance in the release of mediators may be cause or consequence of diseases of the central nervous system and are increasingly emerging as critical links to the disruption of healthy physiological function, alterations in nutrition intake, exposure to hypoxic conditions and others, observed in brain disorders. Despite the generally accepted importance of the gut microbiome, the bidirectional communication routes between brain and gut are not fully understood. Elucidating these routes and signaling pathways in more detail offers novel mechanistic insight into the pathophysiology and multifaceted aspects of brain disorders.
Collapse
Affiliation(s)
| | | | | | - Nadiia Rykalo
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
33
|
Wiedmann NM, Fuller-Jackson JP, Osborne PB, Keast JR. An adeno-associated viral labeling approach to visualize the meso- and microanatomy of mechanosensory afferents and autonomic innervation of the rat urinary bladder. FASEB J 2024; 38:e23380. [PMID: 38102980 PMCID: PMC10789495 DOI: 10.1096/fj.202301113r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/04/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
The urinary bladder is supplied by a rich network of sensory and autonomic axons, commonly visualized by immunolabeling for neural markers. This approach demonstrates overall network patterning but is less suited to understanding the structure of individual motor and sensory terminals within these complex plexuses. There is a further limitation visualizing the lightly myelinated (A-delta) class of sensory axons that provides the primary mechanosensory drive for initiation of voiding. Whereas most unmyelinated sensory axons can be revealed by immunolabeling for specific neuropeptides, to date no unique neural marker has been identified to immunohistochemically label myelinated visceral afferents. We aimed to establish a non-surgical method to visualize and map myelinated afferents in the bladder in rats. We found that in rats, the adeno-associated virus (AAV), AAV-PHP.S, which shows a high tropism for the peripheral nervous system, primarily transduced myelinated dorsal root ganglion neurons, enabling us to identify the structure and regional distribution of myelinated (mechanosensory) axon endings within the muscle and lamina propria of the bladder. We further identified the projection of myelinated afferents within the pelvic nerve and lumbosacral spinal cord. A minority of noradrenergic and cholinergic neurons in pelvic ganglia were transduced, enabling visualization and regional mapping of both autonomic and sensory axon endings within the bladder. Our study identified a sparse labeling approach for investigating myelinated sensory and autonomic axon endings within the bladder and provides new insights into the nerve-bladder interface.
Collapse
Affiliation(s)
- Nicole M Wiedmann
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Peregrine B Osborne
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Janet R Keast
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
34
|
Hovhannisyan AH, Lindquist KA, Belugin S, Mecklenburg J, Ibrahim T, Tram M, Corey TM, Salmon AB, Perez D, Ruparel S, Akopian AN. Sensory innervation of masseter, temporal and lateral pterygoid muscles in common marmosets. Sci Rep 2023; 13:23062. [PMID: 38155190 PMCID: PMC10754842 DOI: 10.1038/s41598-023-49882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023] Open
Abstract
Myogenous temporomandibular disorders is associated with an increased responsiveness of nerves innervating the masseter (MM), temporal (TM), and lateral pterygoid muscles (LPM). This study aimed to examine sensory nerve types innervating MM, TM and LPM of adult non-human primate-common marmosets. Sensory nerves were localized in specific regions of these muscles. Pgp9.5, marker for all nerves, and NFH, a marker for A-fibers, showed that masticatory muscles were primarily innervated with A-fibers. The proportion of C- to A-fibers was highest in LPM, and lowest in MM. All C-fibers (pgp9.5+/NFH-) observed in masticatory muscles were peptidergic (CGRP+) and lacked mrgprD and CHRNA3, a silent nociceptive marker. TrpV1 was register in 17% of LPM nerves. All fibers in masticatory muscles were labeled with GFAP+, a myelin sheath marker. There were substantially more peptidergic A-fibers (CGRP+/NFH+) in TM and LPM compared to MM. MM, TM and LPM NFH+ fibers contained different percentages of trkC+ and parvalbumin+, but not trkB+ fibers. Tyrosine hydroxylase antibodies, which did not label TG, highlighted sympathetic fibers around blood vessels of the masticatory muscles. Overall, masticatory muscle types of marmosets have similarities and differences in innervation patterns.
Collapse
Affiliation(s)
- Anahit H Hovhannisyan
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Karen A Lindquist
- Integrated Biomedical Sciences (IBMS) Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Sergei Belugin
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jennifer Mecklenburg
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Tarek Ibrahim
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Meilinn Tram
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
- Integrated Biomedical Sciences (IBMS) Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Tatiana M Corey
- Departments of Laboratory Animal Resources, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Adam B Salmon
- Departments of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, Geriatric Research Education and Clinical Center San Antonio, San Antonio, TX, 78229, USA
| | - Daniel Perez
- Oral and Maxillofacial Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Shivani Ruparel
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
- Integrated Biomedical Sciences (IBMS) Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Departments of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Armen N Akopian
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
- Integrated Biomedical Sciences (IBMS) Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Departments of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
35
|
Münzberg H, Berthoud HR, Neuhuber WL. Sensory spinal interoceptive pathways and energy balance regulation. Mol Metab 2023; 78:101817. [PMID: 37806487 PMCID: PMC10590858 DOI: 10.1016/j.molmet.2023.101817] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Interoception plays an important role in homeostatic regulation of energy intake and metabolism. Major interoceptive pathways include gut-to-brain and adipose tissue-to brain signaling via vagal sensory nerves and hormones, such as leptin. However, signaling via spinal sensory neurons is rapidly emerging as an additional important signaling pathway. Here we provide an in-depth review of the known anatomy and functions of spinal sensory pathways and discuss potential mechanisms relevant for energy balance homeostasis in health and disease. Because sensory innervation by dorsal root ganglia (DRG) neurons goes far beyond vagally innervated viscera and includes adipose tissue, skeletal muscle, and skin, it is in a position to provide much more complete metabolic information to the brain. Molecular and anatomical identification of function specific DRG neurons will be important steps in designing pharmacological and neuromodulation approaches to affect energy balance regulation in disease states such as obesity, diabetes, and cancer.
Collapse
Affiliation(s)
- Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Winfried L Neuhuber
- Institute for Anatomy and Cell Biology, Friedrich-Alexander University, Erlangen, Germany.
| |
Collapse
|
36
|
Mas-Orea X, Rey L, Battut L, Bories C, Petitfils C, Abot A, Gheziel N, Wemelle E, Blanpied C, Motta JP, Knauf C, Barreau F, Espinosa E, Aloulou M, Cenac N, Serino M, Mouledous L, Fazilleau N, Dietrich G. Proenkephalin deletion in hematopoietic cells induces intestinal barrier failure resulting in clinical feature similarities with irritable bowel syndrome in mice. Commun Biol 2023; 6:1168. [PMID: 37968381 PMCID: PMC10652007 DOI: 10.1038/s42003-023-05542-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
Opioid-dependent immune-mediated analgesic effects have been broadly reported upon inflammation. In preclinical mouse models of intestinal inflammatory diseases, the local release of enkephalins (endogenous opioids) by colitogenic T lymphocytes alleviate inflammation-induced pain by down-modulating gut-innervating nociceptor activation in periphery. In this study, we wondered whether this immune cell-derived enkephalin-mediated regulation of the nociceptor activity also operates under steady state conditions. Here, we show that chimeric mice engrafted with enkephalin-deficient bone marrow cells exhibit not only visceral hypersensitivity but also an increase in both epithelial paracellular and transcellular permeability, an alteration of the microbial topography resulting in increased bacteria-epithelium interactions and a higher frequency of IgA-producing plasma cells in Peyer's patches. All these alterations of the intestinal homeostasis are associated with an anxiety-like behavior despite the absence of an overt inflammation as observed in patients with irritable bowel syndrome. Thus, our results show that immune cell-derived enkephalins play a pivotal role in maintaining gut homeostasis and normal behavior in mice. Because a defect in the mucosal opioid system remarkably mimics some major clinical symptoms of the irritable bowel syndrome, its identification might help to stratify subgroups of patients.
Collapse
Affiliation(s)
- Xavier Mas-Orea
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Lea Rey
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Louise Battut
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Cyrielle Bories
- INFINITy, Université de Toulouse, INSERM U1291, CNRS U5051, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Camille Petitfils
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Anne Abot
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
- Enterosys SAS, Labège, France
| | - Nadine Gheziel
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
- INFINITy, Université de Toulouse, INSERM U1291, CNRS U5051, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Eve Wemelle
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Catherine Blanpied
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Jean-Paul Motta
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Claude Knauf
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Frederick Barreau
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Eric Espinosa
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Meryem Aloulou
- INFINITy, Université de Toulouse, INSERM U1291, CNRS U5051, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Nicolas Cenac
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Matteo Serino
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Lionel Mouledous
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), Université de Toulouse, CNRS UMR-5169, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Nicolas Fazilleau
- INFINITy, Université de Toulouse, INSERM U1291, CNRS U5051, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France.
| |
Collapse
|
37
|
Tang L, Huang ZP, Mei H, Hu Y. Insights gained from single-cell analysis of chimeric antigen receptor T-cell immunotherapy in cancer. Mil Med Res 2023; 10:52. [PMID: 37941075 PMCID: PMC10631149 DOI: 10.1186/s40779-023-00486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Advances in chimeric antigen receptor (CAR)-T cell therapy have significantly improved clinical outcomes of patients with relapsed or refractory hematologic malignancies. However, progress is still hindered as clinical benefit is only available for a fraction of patients. A lack of understanding of CAR-T cell behaviors in vivo at the single-cell level impedes their more extensive application in clinical practice. Mounting evidence suggests that single-cell sequencing techniques can help perfect the receptor design, guide gene-based T cell modification, and optimize the CAR-T manufacturing conditions, and all of them are essential for long-term immunosurveillance and more favorable clinical outcomes. The information generated by employing these methods also potentially informs our understanding of the numerous complex factors that dictate therapeutic efficacy and toxicities. In this review, we discuss the reasons why CAR-T immunotherapy fails in clinical practice and what this field has learned since the milestone of single-cell sequencing technologies. We further outline recent advances in the application of single-cell analyses in CAR-T immunotherapy. Specifically, we provide an overview of single-cell studies focusing on target antigens, CAR-transgene integration, and preclinical research and clinical applications, and then discuss how it will affect the future of CAR-T cell therapy.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Zhong-Pei Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
38
|
Bhebhe CN, Higham JP, Gupta RA, Raine T, Bulmer DC. K V7 but not dual small and intermediate K Ca channel openers inhibit the activation of colonic afferents by noxious stimuli. Am J Physiol Gastrointest Liver Physiol 2023; 325:G436-G445. [PMID: 37667839 PMCID: PMC10894664 DOI: 10.1152/ajpgi.00141.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
In numerous subtypes of central and peripheral neurons, small and intermediate conductance Ca2+-activated K+ (SK and IK, respectively) channels are important regulators of neuronal excitability. Transcripts encoding SK channel subunits, as well as the closely related IK subunit, are coexpressed in the soma of colonic afferent neurons with receptors for the algogenic mediators ATP and bradykinin, P2X3 and B2, highlighting the potential utility of these channels as drug targets for the treatment of abdominal pain in gastrointestinal diseases such as irritable bowel syndrome. Despite this, pretreatment with the dual SK/IK channel opener SKA-31 had no effect on the colonic afferent response to ATP, bradykinin, or noxious ramp distention of the colon. Inhibition of SK or IK channels with apamin or TRAM-34, respectively, yielded no change in spontaneous baseline afferent activity, indicating these channels are not tonically active. In contrast to its lack of effect in electrophysiological experiments, comparable concentrations of SKA-31 abolished ongoing peristaltic activity in the colon ex vivo. Treatment with the KV7 channel opener retigabine blunted the colonic afferent response to all applied stimuli. Our data therefore highlight the potential utility of KV7, but not SK/IK, channel openers as analgesic agents for the treatment of abdominal pain.NEW & NOTEWORTHY Despite marked coexpression of small (Kcnn1, Kcnn2) and intermediate (Kcnn4) conductance calcium-activated potassium channel transcripts with P2X3 (P2rx3) or bradykinin B2 (Bdkrb2) receptors in colonic sensory neurons, pharmacological activation of these channels had no effect on the colonic afferent response to ATP, bradykinin or luminal distension of the colon. This is in contrast to the robust inhibitory effect of the KV7 channel opener, retigabine.
Collapse
Affiliation(s)
- Charity N Bhebhe
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - James P Higham
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Rohit A Gupta
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Tim Raine
- Department of Gastroenterology, Addenbrookes Hospital, Cambridge University Teaching Hospitals, Cambridge, United Kingdom
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Hurd M, Haag MM, Kwasnik MJ, Wykosky J, Lavoie B, Mawe GM. Protective actions of a luminally acting 5-HT 4 receptor agonist in mouse models of colitis. Neurogastroenterol Motil 2023; 35:e14673. [PMID: 37831752 PMCID: PMC10840927 DOI: 10.1111/nmo.14673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND 5-hydroxytryptamine 4 receptors (5-HT4 Rs) are expressed in the colonic epithelium, and previous studies have demonstrated that luminal administration of agonists enhances motility, suppresses nociception, and is protective in models of inflammation. We investigated whether stimulation with a luminally acting 5-HT4 R agonist is comparable to previously tested absorbable compounds. METHODS The dextran sodium sulfate (DSS), trinitrobenzene sulfonic acid (TNBS), and interleukin 10 knockout (IL-10KO) models of colitis were used to test the protective effects of the luminally acting 5-HT4 R agonist, 5HT4-LA1, in the absence and presence of a 5-HT4 R antagonist. The compounds were delivered by enema to mice either before (prevention) or after (recovery) the onset of active colitis. Outcome measure included disease activity index (DAI) and histological evaluation of colon tissue, and effects on wound healing and fecal water content were also assessed. KEY RESULTS Daily enema of 5HT4-LA1 attenuated the development of, and accelerated recovery from, active colitis. Enema administration of 5HT4-LA1 did not attenuate the development of colitis in 5-HT4 R knockout mice. Stimulation of 5-HT4 Rs with 5HT4-LA1 increased Caco-2 cell migration (accelerated wound healing). Daily administration of 5HT4-LA1 did not increase fecal water content in active colitis. CONCLUSIONS AND INFERENCES Luminally restricted 5-HT4 R agonists are comparable to absorbable compounds in attenuating and accelerating recovery from active colitis. Luminally acting 5-HT4 R agonists may be useful as an adjuvant to current inflammatory bowel disease (IBD) treatments to enhance epithelial healing.
Collapse
Affiliation(s)
- Molly Hurd
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - Melody M. Haag
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - Matthew J. Kwasnik
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - Jill Wykosky
- Takeda Pharmaceuticals Company Limited, Cambridge, MA, USA
| | - Brigitte Lavoie
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - Gary M. Mawe
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| |
Collapse
|
40
|
Yang D, Almanzar N, Chiu IM. The role of cellular and molecular neuroimmune crosstalk in gut immunity. Cell Mol Immunol 2023; 20:1259-1269. [PMID: 37336989 PMCID: PMC10616093 DOI: 10.1038/s41423-023-01054-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023] Open
Abstract
The gastrointestinal tract is densely innervated by the peripheral nervous system and populated by the immune system. These two systems critically coordinate the sensations of and adaptations to dietary, microbial, and damaging stimuli from the external and internal microenvironment during tissue homeostasis and inflammation. The brain receives and integrates ascending sensory signals from the gut and transduces descending signals back to the gut via autonomic neurons. Neurons regulate intestinal immune responses through the action of local axon reflexes or through neuronal circuits via the gut-brain axis. This neuroimmune crosstalk is critical for gut homeostatic maintenance and disease resolution. In this review, we discuss the roles of distinct types of gut-innervating neurons in the modulation of intestinal mucosal immunity. We will focus on the molecular mechanisms governing how different immune cells respond to neural signals in host defense and inflammation. We also discuss the therapeutic potential of strategies targeting neuroimmune crosstalk for intestinal diseases.
Collapse
Affiliation(s)
- Daping Yang
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Nicole Almanzar
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
41
|
Manion J, Musser MA, Kuziel GA, Liu M, Shepherd A, Wang S, Lee PG, Zhao L, Zhang J, Marreddy RKR, Goldsmith JD, Yuan K, Hurdle JG, Gerhard R, Jin R, Rakoff-Nahoum S, Rao M, Dong M. C. difficile intoxicates neurons and pericytes to drive neurogenic inflammation. Nature 2023; 622:611-618. [PMID: 37699522 PMCID: PMC11188852 DOI: 10.1038/s41586-023-06607-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Clostridioides difficile infection (CDI) is a major cause of healthcare-associated gastrointestinal infections1,2. The exaggerated colonic inflammation caused by C. difficile toxins such as toxin B (TcdB) damages tissues and promotes C. difficile colonization3-6, but how TcdB causes inflammation is unclear. Here we report that TcdB induces neurogenic inflammation by targeting gut-innervating afferent neurons and pericytes through receptors, including the Frizzled receptors (FZD1, FZD2 and FZD7) in neurons and chondroitin sulfate proteoglycan 4 (CSPG4) in pericytes. TcdB stimulates the secretion of the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) from neurons and pro-inflammatory cytokines from pericytes. Targeted delivery of the TcdB enzymatic domain, through fusion with a detoxified diphtheria toxin, into peptidergic sensory neurons that express exogeneous diphtheria toxin receptor (an approach we term toxogenetics) is sufficient to induce neurogenic inflammation and recapitulates major colonic histopathology associated with CDI. Conversely, mice lacking SP, CGRP or the SP receptor (neurokinin 1 receptor) show reduced pathology in both models of caecal TcdB injection and CDI. Blocking SP or CGRP signalling reduces tissue damage and C. difficile burden in mice infected with a standard C. difficile strain or with hypervirulent strains expressing the TcdB2 variant. Thus, targeting neurogenic inflammation provides a host-oriented therapeutic approach for treating CDI.
Collapse
Affiliation(s)
- John Manion
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Melissa A Musser
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gavin A Kuziel
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Min Liu
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Amy Shepherd
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Siyu Wang
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pyung-Gang Lee
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Leo Zhao
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Jie Zhang
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Ravi K R Marreddy
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | | | - Ke Yuan
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julian G Hurdle
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Rongsheng Jin
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Seth Rakoff-Nahoum
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Meenakshi Rao
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Liu J, Zhang S, Emadi S, Guo T, Chen L, Feng B. Morphological, molecular, and functional characterization of mouse glutamatergic myenteric neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558146. [PMID: 37781576 PMCID: PMC10541117 DOI: 10.1101/2023.09.18.558146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The enteric nervous system (ENS) functions largely independently of the central nervous system (CNS). Correspondingly, glutamate, the dominant neurotransmitter in the CNS and sensory afferents, is not a primary neurotransmitter in the ENS. Only a fraction (approximately 2%) of myenteric neurons in the mouse distal colon and rectum (colorectum) are positive for vesicular glutamate transporter type 2 (VGLUT2), the structure and function of which remain undetermined. Here, we systematically characterized VGLUT2-positive enteric neurons (VGLUT2-ENs) through sparse labeling with adeno-associated virus, single-cell mRNA sequencing (scRNA-seq), and GCaMP6f calcium imaging. Our results reveal that the majority of VGLUT2-ENs (29 out of 31, 93.5%) exhibited Dogiel type I morphology with a single aborally projecting axon; most axons (26 out of 29, 89.7%) are between 4 and 10 mm long, each traversing 19 to 34 myenteric ganglia. These anatomical features exclude the VGLUT2-ENs from being intrinsic primary afferent or motor neurons. The scRNA-seq conducted on 52 VGLUT2-ENs suggests different expression profiles from conventional descending interneurons. Ex vivo GCaMP6f recordings from flattened colorectum indicate that almost all VGLUT2-EN (181 out of 215, 84.2%) are indirectly activated by colorectal stretch via nicotinic cholinergic neural transmission. In conclusion, VGLUT2-ENs are a functionally unique group of enteric neurons with single aborally projecting long axons that traverse multiple myenteric ganglia and are activated indirectly by colorectal mechanical stretch. This knowledge will provide a solid foundation for subsequent studies on the potential interactions of VGLUT2-EN with extrinsic colorectal afferents via glutamatergic neurotransmission. New & Noteworthy We reveal that VGLUT2-positive enteric neurons (EN), although constituting a small fraction of total EN, are homogeneously expressed in the myenteric ganglia, with a slight concentration at the intermediate region between the colon and rectum. This concentration coincides with the entry zone of extrinsic afferents into the colorectum. Given that VGLUT2-ENs are indirectly activated by colorectal mechanical stretch, they are likely to participate in visceral nociception through glutamatergic neural transmission with extrinsic afferents.
Collapse
|
43
|
Ibrahim T, Wu P, Wang LJ, Fang-Mei C, Murillo J, Merlo J, Shein SS, Tumanov AV, Lai Z, Weldon K, Chen Y, Ruparel S. Sex-dependent differences in the genomic profile of lingual sensory neurons in naïve and tongue-tumor bearing mice. Sci Rep 2023; 13:13117. [PMID: 37573456 PMCID: PMC10423281 DOI: 10.1038/s41598-023-40380-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023] Open
Abstract
Mechanisms of sex-dependent orofacial pain are widely understudied. A significant gap in knowledge exists about comprehensive regulation of tissue-specific trigeminal sensory neurons in diseased state of both sexes. Using RNA sequencing of FACS sorted retro-labeled sensory neurons innervating tongue tissue, we determined changes in transcriptomic profiles in males and female mice under naïve as well as tongue-tumor bearing conditions Our data revealed the following interesting findings: (1) FACS sorting obtained higher number of neurons from female trigeminal ganglia (TG) compared to males; (2) Naïve female neurons innervating the tongue expressed immune cell markers such as Csf1R, C1qa and others, that weren't expressed in males. This was validated by Immunohistochemistry. (3) Accordingly, immune cell markers such as Csf1 exclusively sensitized TRPV1 responses in female TG neurons. (4) Male neurons were more tightly regulated than female neurons upon tumor growth and very few differentially expressed genes (DEGs) overlapped between the sexes, (5) Male DEGs contained higher number of transcription factors whereas female DEGs contained higher number of enzymes, cytokines and chemokines. Collectively, this is the first study to characterize the effect of sex as well as of tongue-tumor on global gene expression, pathways and molecular function of tongue-innervating sensory neurons.
Collapse
Affiliation(s)
- Tarek Ibrahim
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Ping Wu
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Li-Ju Wang
- Greehey Children's Cancer Institute, University of Texas Health San Antonio, San Antonio, USA
- Department of Population Health Sciences, University of Texas Health at San Antonio, San Antonio, USA
| | - Chang Fang-Mei
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Josue Murillo
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Jaclyn Merlo
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Sergey S Shein
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, USA
| | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, USA
| | - Zhao Lai
- Greehey Children's Cancer Institute, University of Texas Health San Antonio, San Antonio, USA
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Korri Weldon
- Greehey Children's Cancer Institute, University of Texas Health San Antonio, San Antonio, USA
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Greehey Children's Cancer Institute, University of Texas Health San Antonio, San Antonio, USA
- Department of Population Health Sciences, University of Texas Health at San Antonio, San Antonio, USA
| | - Shivani Ruparel
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
44
|
Wolfson RL, Abdelaziz A, Rankin G, Kushner S, Qi L, Mazor O, Choi S, Sharma N, Ginty DD. DRG afferents that mediate physiologic and pathologic mechanosensation from the distal colon. Cell 2023; 186:3368-3385.e18. [PMID: 37541195 PMCID: PMC10440726 DOI: 10.1016/j.cell.2023.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/23/2023] [Accepted: 07/06/2023] [Indexed: 08/06/2023]
Abstract
The properties of dorsal root ganglia (DRG) neurons that innervate the distal colon are poorly defined, hindering our understanding of their roles in normal physiology and gastrointestinal (GI) disease. Here, we report genetically defined subsets of colon-innervating DRG neurons with diverse morphologic and physiologic properties. Four colon-innervating DRG neuron populations are mechanosensitive and exhibit distinct force thresholds to colon distension. The highest threshold population, selectively labeled using Bmpr1b genetic tools, is necessary and sufficient for behavioral responses to high colon distension, which is partly mediated by the mechanosensory ion channel Piezo2. This Aδ-HTMR population mediates behavioral over-reactivity to colon distension caused by inflammation in a model of inflammatory bowel disease. Thus, like cutaneous DRG mechanoreceptor populations, colon-innervating mechanoreceptors exhibit distinct anatomical and physiological properties and tile force threshold space, and genetically defined colon-innervating HTMRs mediate pathophysiological responses to colon distension, revealing a target population for therapeutic intervention.
Collapse
Affiliation(s)
- Rachel L Wolfson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Amira Abdelaziz
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Genelle Rankin
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Sarah Kushner
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Lijun Qi
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ofer Mazor
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Seungwon Choi
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Nikhil Sharma
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Department of Systems Biology, Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY 10032, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Servin-Vences MR, Lam RM, Koolen A, Wang Y, Saade DN, Loud M, Kacmaz H, Frausto S, Zhang Y, Beyder A, Marshall KL, Bönnemann CG, Chesler AT, Patapoutian A. PIEZO2 in somatosensory neurons controls gastrointestinal transit. Cell 2023; 186:3386-3399.e15. [PMID: 37541196 PMCID: PMC10501318 DOI: 10.1016/j.cell.2023.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/24/2023] [Accepted: 07/06/2023] [Indexed: 08/06/2023]
Abstract
The gastrointestinal tract is in a state of constant motion. These movements are tightly regulated by the presence of food and help digestion by mechanically breaking down and propelling gut content. Mechanical sensing in the gut is thought to be essential for regulating motility; however, the identity of the neuronal populations, the molecules involved, and the functional consequences of this sensation are unknown. Here, we show that humans lacking PIEZO2 exhibit impaired bowel sensation and motility. Piezo2 in mouse dorsal root, but not nodose ganglia is required to sense gut content, and this activity slows down food transit rates in the stomach, small intestine, and colon. Indeed, Piezo2 is directly required to detect colon distension in vivo. Our study unveils the mechanosensory mechanisms that regulate the transit of luminal contents throughout the gut, which is a critical process to ensure proper digestion, nutrient absorption, and waste removal.
Collapse
Affiliation(s)
- M Rocio Servin-Vences
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ruby M Lam
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; NIH-Brown University Graduate Program in Neuroscience, Providence, RI, USA; National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Alize Koolen
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yu Wang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Dimah N Saade
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Meaghan Loud
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Halil Kacmaz
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Suzanne Frausto
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yunxiao Zhang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Arthur Beyder
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kara L Marshall
- Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alexander T Chesler
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA.
| | - Ardem Patapoutian
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, San Diego, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
46
|
Tram M, Ibrahim T, Hovhannisyan A, Akopian A, Ruparel S. Lingual innervation in male and female marmosets. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100134. [PMID: 38099285 PMCID: PMC10719518 DOI: 10.1016/j.ynpai.2023.100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 12/17/2023]
Abstract
Several gaps in knowledge exists in our understanding of orofacial pain. Some of these include type of peripheral sensory innervation in specific tissues, differences in innervation between sexes and validation of rodent studies in higher order species. The current study addresses these gaps by validating mouse studies for sensory innervation of tongue tissue in non-human primates as well as assesses sex-specific differences. Tongue and trigeminal ganglia were collected from naïve male and female marmosets and tested for nerve fibers using specific markers by immunohistochemistry and number of fibers quantified. We also tested whether specific subgroups of nerve fibers belonged to myelinating or non-myelinating axons. We observed that similar to findings in mice, marmoset tongue was innervated with nerve filaments expressing nociceptor markers like CGRP and TRPV1 as well as non-nociceptor markers like TrkB, parvalbumin (PV) and tyrosine hydroxylase (TH). Furthermore, we found that while portion of TrkB and PV may be sensory fibers, TH-positive fibers were primarily sympathetic nerve fibers. Moreover, number of CGRP, TrkB and TH-positive nerve fibers were similar in both sexes. However, we observed a higher proportion of myelinated TRPV1 positive fibers in females than in males as well as increased number of PV + fibers in females. Taken together, the study for the first time characterizes sensory innervation in non-human primates as well as evaluates sex-differences in innervation of tongue tissue, thereby laying the foundation for future orofacial pain research with new world smaller NHPs like the common marmoset.
Collapse
Affiliation(s)
- Meilinn Tram
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Tarek Ibrahim
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Anahit Hovhannisyan
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Armen Akopian
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Shivani Ruparel
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| |
Collapse
|
47
|
Kupari J, Ernfors P. Molecular taxonomy of nociceptors and pruriceptors. Pain 2023; 164:1245-1257. [PMID: 36718807 PMCID: PMC10184562 DOI: 10.1097/j.pain.0000000000002831] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Jussi Kupari
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Ibrahim T, Wu P, Wang LJ, Fang-Mei C, Murillo J, Merlo J, Tumanov A, Lai Z, Weldon K, Chen Y, Ruparel S. Sex-dependent Differences in the Genomic Profile of Lingual Sensory Neurons in Naïve and Tongue-Tumor Bearing Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.14.524011. [PMID: 36711730 PMCID: PMC9882171 DOI: 10.1101/2023.01.14.524011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mechanisms of sex-dependent orofacial pain are widely understudied. A significant gap in knowledge exists about comprehensive regulation of tissue-specific trigeminal sensory neurons in diseased state of both sexes. Using RNA sequencing of FACS sorted retro-labeled sensory neurons innervating tongue tissue, we determined changes in transcriptomic profiles in males and female mice under naïve as well as tongue-tumor bearing conditions Our data revealed the following interesting findings: 1) Tongue tissue of female mice was innervated with higher number of trigeminal neurons compared to males; 2) Naïve female neurons innervating the tongue exclusively expressed immune cell markers such as Csf1R, C1qa and others, that weren't expressed in males. This was validated by Immunohistochemistry. 4) Accordingly, immune cell markers such as Csf1 exclusively sensitized TRPV1 responses in female TG neurons. 3) Male neurons were more tightly regulated than female neurons upon tumor growth and very few differentially expressed genes (DEGs) overlapped between the sexes, 5) Male DEGs contained higher number of transcription factors whereas female DEGs contained higher number of enzymes, cytokines and chemokines. Collectively, this is the first study to characterize the effect of sex as well as of tongue-tumor on global gene expression, pathways and molecular function of tongue-innervating sensory neurons.
Collapse
Affiliation(s)
- Tarek Ibrahim
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Ping Wu
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Li-Ju Wang
- Greehey Children’s Cancer Institute, University of Texas Health San Antonio, USA
- Department of Population Health Sciences, University of Texas Health at San Antonio, USA
| | - Chang Fang-Mei
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Josue Murillo
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Jaclyn Merlo
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Alexei Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, USA
| | - Zhao Lai
- Greehey Children’s Cancer Institute, University of Texas Health San Antonio, USA
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Korri Weldon
- Greehey Children’s Cancer Institute, University of Texas Health San Antonio, USA
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Greehey Children’s Cancer Institute, University of Texas Health San Antonio, USA
- Department of Population Health Sciences, University of Texas Health at San Antonio, USA
| | - Shivani Ruparel
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| |
Collapse
|
49
|
Hovhannisyan AH, Lindquist K, Belugin S, Mecklenburg J, Ibrahim T, Tram M, Corey T, Salmon A, Ruparel S, Ruparel S, Akopian A. Sensory innervation of masseter, temporal and lateral pterygoid muscles in common marmosets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528062. [PMID: 36798270 PMCID: PMC9934658 DOI: 10.1101/2023.02.10.528062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Myogenous temporomandibular disorders (TMDM) is associated with an increased responsiveness of nerves innervating the masseter (MM), temporal (TM), medial pterygoid (MPM) and lateral pterygoid muscles (LPM). This study aimed to examine sensory nerve types innervating MM, TM and LPM of adult non-human primate - common marmosets. Sensory nerves are localized in specific regions of these muscles. Pgp9.5, marker for all nerves, and NFH, a marker for A-fibers, showed that masticatory muscles were predominantly innervated with A-fibers. The proportion of C- to A-fibers was highest in LPM, and minimal (6-8%) in MM. All C-fibers (pgp9.5+/NFH-) observed in masticatory muscles were peptidergic (CGRP+) and lacked mrgprD, trpV1 and CHRNA3, a silent nociceptive marker. All fibers in masticatory muscles were labeled with GFAP+, a myelin sheath marker. There were substantially more peptidergic A-fibers (CGRP+/NFH+) in TM and LPM compared to MM. Almost all A-fibers in MM expressed trkC, with some of them having trkB and parvalbumin. In contrast, a lesser number of TM and LPM nerves expressed trkC, and lacked trkB. Tyrosine hydroxylase antibodies, which did not label TG, highlighted sympathetic fibers around blood vessels of the masticatory muscles. Overall, masticatory muscle types of marmosets have distinct and different innervation patterns.
Collapse
|
50
|
Barker KH, Higham JP, Pattison LA, Chessell IP, Welsh F, Smith ESJ, Bulmer DC. Sensitization of colonic nociceptors by IL-13 is dependent on JAK and p38 MAPK activity. Am J Physiol Gastrointest Liver Physiol 2023; 324:G250-G261. [PMID: 36749569 PMCID: PMC10010921 DOI: 10.1152/ajpgi.00280.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effective management of visceral pain is a significant unmet clinical need for those affected by gastrointestinal diseases, such as inflammatory bowel disease (IBD). The rational design of novel analgesics requires a greater understanding of the mediators and mechanisms underpinning visceral pain. Interleukin-13 (IL-13) production by immune cells residing in the gut is elevated in IBD, and IL-13 appears to be important in the development of experimental colitis. Furthermore, receptors for IL-13 are expressed by neurons innervating the colon, though it is not known whether IL-13 plays any role in visceral nociception per se. To resolve this, we used Ca2+ imaging of cultured sensory neurons and ex vivo electrophysiological recording from the lumbar splanchnic nerve innervating the distal colon. Ca2+ imaging revealed the stimulation of small-diameter, capsaicin-sensitive sensory neurons by IL-13, indicating that IL-13 likely stimulates nociceptors. IL-13-evoked Ca2+ signals were attenuated by inhibition of Janus (JAK) and p38 kinases. In the lumbar splanchnic nerve, IL-13 did not elevate baseline firing, nor sensitize the response to capsaicin application, but did enhance the response to distention of the colon. In line with Ca2+ imaging experiments, IL-13-mediated sensitization of the afferent response to colon distention was blocked by inhibition of either JAK or p38 kinase signaling. Together, these data highlight a potential role for IL-13 in visceral nociception and implicate JAK and p38 kinases in pronociceptive signaling downstream of IL-13.
Collapse
Affiliation(s)
- Katie H Barker
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - James P Higham
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Luke A Pattison
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Iain P Chessell
- Department of Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Fraser Welsh
- Department of Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|