1
|
Zhang Y, Liang C, Weng M, Zhang Z, Zhang L, Jiang X, Yue F. Intestinal alterations of mucosal barrier integrity, motility and enteric nerve in cynomolgus monkey model of Parkinson's disease. Exp Neurol 2025; 389:115256. [PMID: 40222722 DOI: 10.1016/j.expneurol.2025.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
The most prevalent non-motor symptoms in individuals with Parkinson's disease (PD) such as constipation and bloating that significantly impact patients' quality of life. However, the pathophysiological mechanisms underlying these symptoms remain unclear. PD model with typical and stable symptoms was induced by individualized dosing of MPTP with Kurlan score increased to 10 or above and remained steady for three months or more. TH-positive neurons in the injured substantia nigra (SN) of the brain of PD monkeys showed up to 83.95 % reduction. Histopathological examination indicated severe damage to both enteric nerve and TH neurons, along with significant disruption of mucosal structure, intestinal barrier integrity and motility in PD monkeys across all four intestinal segments, including the duodenum, ileum, transverse colon, and rectum. The association between dopaminergic neuronal deficits in SN and these above mentioned intestinal disorders, that might be attributed to the abnormal regulation of gastrointestinal function due to the breakdown of the integrity of the nigrostriatal dopaminergic nervous system. Therefore, the abnormal alterations found in gut of PD monkeys and its triggered possible secondary pathophysiological cascade reactions might be a potential mechanism underlying the presence of constipation and other intestinal symptoms observed in PD patients. These findings in this study provide a valuable scientific basis for investigating the pathogenesis of gastrointestinal symptoms in PD patients and potential therapeutic approaches. (The graphical abstract is by Figdraw).
Collapse
Affiliation(s)
- Yuling Zhang
- State key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Caiyan Liang
- State key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Miaorong Weng
- State key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | | | - Lin Zhang
- School of Medicine, Guangxi University, Nanning 530003, China
| | - Xue Jiang
- School of Medicine, Guangxi University, Nanning 530003, China.
| | - Feng Yue
- State key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China; Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Nepali S, Chen M, Karthikeyan B, Sonkawade SD, Mahajan SD, Spernyak J, Sharma UC, Pokharel S. Claudin 1 dysregulation disrupts coronary microvascular integrity and impairs cardiac function. Atherosclerosis 2025; 403:119149. [PMID: 40068507 DOI: 10.1016/j.atherosclerosis.2025.119149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND AND AIMS Claudin 1 (Cldn1) is a tight junction protein primarily known for its role in epithelial and endothelial barrier function. However, the role of Cldn1 in coronary microvascular barrier remain unclear. The aim of this study is to investigate the biological effects of Cldn1 dysregulation on coronary vascular permeability, inflammation, fibrosis, and left ventricular function. METHODS Cldn1 was silenced in human cardiac microvascular endothelial cells (HMVECs) and C57Bl/6 mice using oligonucleotide-based next generation siRNA duplex. Additionally, global transgenic mice with endothelial cell-specific overexpression of Cldn1 were created under the regulation of the CD144 (VE-cadherin) promoter. Permeability was assessed using FITC-dextran assay in vitro and Evans blue dye leakage (Mile's assay) in vivo. Cardiac morphology and function were measured by cardiac MRI, and myocardial pathology was analyzed by immunohistochemistry and Transmission Electron Microscopy (TEM). PCR and Western blotting confirmed Cldn1 expression changes. RESULTS Cldn1 knockdown reduced protein levels by 46% (p = 0.004) and significantly increased endothelial permeability in HMVEC (p = 0.0007). In mice, Cldn1 knockdown significantly increased Evans blue dye leakage (p = 0.025), macrophage infiltration (p = 0.018), and interstitial collagen (p = 0.048). TEM confirmed endothelial damage particularly affecting the basement membrane structure. Cardiac MRI showed reduced stroke volume (p = 0.004) and ejection fraction (p = 0.043). Cldn1 overexpression reduced vascular permeability (p = 0.002) without altering cardiac function under basal condition. CONCLUSION Cldn1 plays an important role in maintaining coronary microvascular barrier integrity. Its loss leads to increased permeability, inflammation, fibrosis, and impaired cardiac function, while overexpression enhances barrier function without affecting cardiac performance under baseline conditions.
Collapse
Affiliation(s)
- Sarmila Nepali
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Min Chen
- Department of Pediatrics Infectious Disease, University of Alabama, AL, USA
| | - Badri Karthikeyan
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Swati D Sonkawade
- Department of Medicine, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Supriya D Mahajan
- Department of Medicine, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Joseph Spernyak
- Translational Imaging Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Umesh C Sharma
- Department of Medicine, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Saraswati Pokharel
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
3
|
Ran P, Jiang F, Pan L, Shu Y, Hu F, Wang Y, Zhao R, Wang W, Mu H, Wang J, Wei J, Fu G. Polysaccharide from Atractylodes macrocephala Koidz. alleviates pyrotinib-induced diarrhea through regulating cAMP/LKB1/AMPK/CFTR pathway and restoring gut microbiota and metabolites. Int J Biol Macromol 2025; 308:142512. [PMID: 40157659 DOI: 10.1016/j.ijbiomac.2025.142512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/06/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Polysaccharide from Atractylodes macrocephala Koidz. (PAMK), a bioactive component of Atractylodes macrocephala Koidz. (AMK), demonstrates a wide range of pharmacological activities, including the enhancement of gastrointestinal function and regulation of internal homeostasis. This study explores the potential of PAMK in alleviating pyrotinib-induced diarrhea and modulating gut microbiota and its metabolites. Pyrotinib is a tyrosine kinase inhibitor used in cancer treatment, is known for its side effect of diarrhea, which significantly diminishes patients' quality of life. Our prior research suggests that pyrotinib-induced diarrhea may be linked to CFTR-mediated dysregulation of chloride secretion. The present findings indicate that PAMK alleviates pyrotinib-induced diarrhea by reducing cAMP levels, activating the LKB1/AMPK pathway, and inhibiting CFTR activity, as confirmed by enzyme-linked immunosorbent assay (ELISA), qRT-PCR, and western blot analyses. PAMK effectively decreased CFTR-mediated chloride ion secretion in pyrotinib-treated cells, as shown by the MQAE assay. At specific doses, PAMK alleviated pyrotinib-induced diarrhea in rats and significantly restored intestinal barrier integrity. Furthermore, PAMK treatment rebalanced the gut microbiota, reversing the pyrotinib-induced increase in Clostridium and Erysipelotrichi species. Metabolomic profiling further highlighted the involvement of the AMPK signaling pathway. These findings provide a basis for future research aimed at developing cancer treatments with reduced side effects.
Collapse
Affiliation(s)
- Pancen Ran
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, China
| | - Fengxian Jiang
- Department of Radiation Oncology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan 250031, China
| | - Liying Pan
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, China
| | - Yang Shu
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, China
| | - Fangyan Hu
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yahui Wang
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, China
| | - Rui Zhao
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Weihao Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Huaiqian Mu
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Juqiong Wang
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Jian Wei
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| | - Guobin Fu
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, China; Department of Medical Oncology, The Third Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250031, China.
| |
Collapse
|
4
|
Jasim SA, Pallathadka H, Sivaprasad GV, Kumar A, Mustafa YF, Mohammed JS, Eldesoqui M, Pramanik A, Abdukarimovna RK, Zwamel AH. New approaches of chimeric antigen receptor (CAR)-immune cell-based therapy in gastric cancer; highlight CAR-T and CAR-NK. Funct Integr Genomics 2025; 25:72. [PMID: 40133688 DOI: 10.1007/s10142-025-01584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
One characteristic that makes gastric cancer (GC) against other cancers is the intricate immune system's reaction, particularly to tenacious inflammation. Consequently, the immunological function is essential to the growth of this malignancy. Tumor immunotherapy has yielded several encouraging outcomes, but despite this, different patients continue to not respond to treatment, and a far larger number become resistant to it. Also, activated CAR-T cells express a majority of immunological checkpoint factors, containing PD1, CTLA4, and LAG3, which counteracts the anti-tumor actions of CAR-T cells. Moreover, cytokine release syndrome is one of the possible adverse responses of CAR-T cell therapy. Therefore, producing universal allogeneic T lymphocytes with potent anti-tumor activity is essential. This study demonstrates current research on this cutting-edge technology, including the composition and mode of action of CAR-NK and CAR-T cells in GC. Also, in this study, we examined recent studies about various specific GC biomarkers that target CAR-T cells and CAR-NK cells.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | | | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Ashwani Kumar
- Department of Life Scienzces, School of Sciences, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | | | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, 13713, DiriyahRiyadh, Saudi Arabia.
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University Dehradun, Dehradun, Uttarakhand, India
| | - Rakhimova Khusnidakhon Abdukarimovna
- Department of Folk Medicine and Pharmacology, Fergana Public Health Medical Institute, Fergana, Uzbekistan
- Western Caspian University, Scientific Researcher, Baku, Azerbaijan
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Zhang Y, Deng Z, Li H, Jiang Z. A Spermidine Derivative Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice by Inhibiting the MAPK4/AKT Signaling Pathway. Foods 2025; 14:1110. [PMID: 40238233 PMCID: PMC11988437 DOI: 10.3390/foods14071110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by recurrent episodes and an inability to achieve a complete cure. The spermidine derivative (di-p-coumaroyl-caffeoyl spermidine, SPDD), as a key alkaloid, exhibits unique health benefits. However, it has not yet been reported whether SPDD can improve dextran sulfate sodium (DSS)-induced colitis in mice. Herein, we investigated the effects and mechanisms of SPDD on DSS-induced colitis in mice. SPDD was successfully purified from rose bee pollen and was found to have a protective effect on colitis, evidenced by reduced disease activity index (DAI) scores and colonic inflammation, increased colonic length and upregulated the expression of tight junction proteins (TJs) in the model (p < 0.05). Importantly, the IL-17 signaling pathway showed significant enrichment by RNA sequencing (RNA-seq) technology with SPDD treatment, which resulted in the downregulation of MAPK4 expression (p < 0.05). Furthermore, SPDD weakened the interaction between MAPK4 and AKT, resulting in a decrease in the phosphorylation level of AKT, thereby reducing the expression of IL-6, IL-1β, iNOS, and COX-2, and alleviating colitis (p < 0.05). In addition, SPDD treatment also ameliorated TNF-α-induced inflammation in Caco-2 cells. Overall, our study demonstrated that SPDD reversed colonic inflammation in colitis mice through the MAPK4/AKT pathway and might be a promising candidate for UC intervention.
Collapse
Affiliation(s)
- Yuxin Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (Y.Z.); (Z.D.); (H.L.)
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (Y.Z.); (Z.D.); (H.L.)
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (Y.Z.); (Z.D.); (H.L.)
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, China
| | - Zeyin Jiang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (Y.Z.); (Z.D.); (H.L.)
| |
Collapse
|
6
|
Yang YJ, Kim MJ, Heo JW, Kim HH, Kim GS, Shim MS, Kim KY, Park KI. Korean Mistletoe ( Viscum album var. coloratum) Ethanol Extracts Enhance Intestinal Barrier Function and Alleviate Inflammation. Antioxidants (Basel) 2025; 14:370. [PMID: 40227441 PMCID: PMC11939438 DOI: 10.3390/antiox14030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
Korean mistletoe (Viscum album var. coloratum, KML) offers remarkable therapeutic potential for a variety of diseases. This study aims to evaluate the effects and potential molecular mechanisms of KML ethanol extracts (KMLE), focusing on intestinal barrier function and tight junctions (TJs) in an interleukin (IL)-6-induced Caco-2 cell monolayer model and a dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) mouse model. KMLE is non-cytotoxic in Caco-2 cells and demonstrated strong antioxidant activity. KMLE alleviated significant barrier dysfunction and protected tight junction proteins (TJPs) in vitro. Furthermore, KMLE alleviated clinical symptoms and histopathological damage, upregulated TJPs, and suppressed the inflammatory cytokines in vivo. Additionally, six bioactive compounds were identified in KMLE by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In conclusion, KMLE ameliorated intestinal barrier dysfunction in vitro and in vivo. These findings underscore the potential of KMLE as a therapeutic agent for UC, providing insights into the mechanisms through anti-inflammatory properties and its ability to restore TJ integrity.
Collapse
Affiliation(s)
- Ye Jin Yang
- College of Veterinary Medicine, Gyeongsang National University, 501 Jinjudaero, Gazwa, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (G.S.K.)
| | - Min Jung Kim
- College of Veterinary Medicine, Gyeongsang National University, 501 Jinjudaero, Gazwa, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (G.S.K.)
| | - Ji Woong Heo
- College of Veterinary Medicine, Gyeongsang National University, 501 Jinjudaero, Gazwa, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (G.S.K.)
| | - Hun Hwan Kim
- College of Veterinary Medicine, Gyeongsang National University, 501 Jinjudaero, Gazwa, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (G.S.K.)
| | - Gon Sup Kim
- College of Veterinary Medicine, Gyeongsang National University, 501 Jinjudaero, Gazwa, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (G.S.K.)
| | - Min Sub Shim
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, 19555 N. 59th Ave., Glendale, AZ 85308, USA;
| | - Kwang Youn Kim
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70 Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea
| | - Kwang Il Park
- College of Veterinary Medicine, Gyeongsang National University, 501 Jinjudaero, Gazwa, Jinju 52828, Republic of Korea; (Y.J.Y.); (M.J.K.); (J.W.H.); (H.H.K.); (G.S.K.)
| |
Collapse
|
7
|
Zhang J, Shen M, Yin Y, Chen Y, Deng X, Mo J, Zhou X, Lin J, Chen X, Xie X, Wu X, Chen X. Carnosic acid reduces lipid content, enhances gut health, and modulates microbiota composition and metabolism in diet-induced obese mice. Food Funct 2025; 16:1888-1902. [PMID: 39932492 DOI: 10.1039/d4fo04534c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Carnosic acid (CA) is a bioactive phenolic diterperne compound found in sage and rosemary. The present study investigated the beneficial effects of CA (50 and 100 mg per kg bw) in diet-induced obese mice and the underlying mechanisms of action. After the intervention, the physiology, lipid metabolism, and tissue morphology, as well as the inflammation, gut microbiota, and metabolomics in the colon were measured. We found that CA improved the composition and metabolism of the gut microbiota in obese mice, with Akkermansia being the dominant bacterium negatively correlated with obesity and various fecal metabolites. Regarding the intestinal barrier function, CA promoted the expression of tight junction proteins and inhibited the TLR4/MyD88/NF-κB signaling pathway in obese mice to alleviate colonic inflammation. These results suggest that CA improved multiple aspects of gut health in diet-induced obesity in mice, providing a scientific basis for future clinical studies in humans.
Collapse
Affiliation(s)
- Jing Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Mengzhu Shen
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Yue Yin
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Yuru Chen
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Xianying Deng
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Jingyun Mo
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Xiaoling Zhou
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Juanying Lin
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Xinxin Chen
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Xinwei Xie
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, USA.
| | - Xuexiang Chen
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| |
Collapse
|
8
|
Li R, Ding X, Lei M, Li P, Giannenas I, Wang J, Zhu W. The impact of combined thymol and rosmarinic acid on the intestinal microbiota and barrier function of the piglets challenged by Escherichia coli K88. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:131-144. [PMID: 39967693 PMCID: PMC11834115 DOI: 10.1016/j.aninu.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 02/20/2025]
Abstract
It has been found that thymol (Thy) and rosmarinic acid (Ros-A) improve the growth performance of piglets and relieve intestinal inflammation in animals. The effects of Thy and Ros-A separately or in combination (Thy × Ros-A) on the intestinal function and health of piglets challenged with Escherichia coli K88 (E. coli K88) were investigated. A total of 30 piglets aged 21 d were assigned to 5 groups (n = 6). The control (Con) and K88 groups piglets received a basal diet, while the Thy, Ros-A, and Thy × Ros-A groups were fed a basal diet supplemented with 500 mg/kg Thy, 500 mg/kg Ros-A, and 250 mg/kg Thy + 250 mg/kg Ros-A, respectively. On the 19th and 20th day, piglets in the K88, Thy, Ros-A, and Thy × Ros-A groups were orally administered 10 mL of phosphate-buffered saline (PBS) containing approximately 1 × 109 CFU/mL of E. coli K88, while the Con group received an equal volume of PBS. The results showed that the Thy × Ros-A treatment reduced the damage to ileal villi induced by the E. coli K88 challenge, leading to longer villi in the ileum (P < 0.05). Thy and Ros-A modulated the composition of the ileal microbiota. Compared to the K88 group, the Thy × Ros-A group had a higher abundance of Lactobacillus and Romboutsia, while Escherichia-Shigella and Desulforvibrio were lower (P < 0.05). Additionally, the Thy × Ros-A group showed elevated levels of gene and protein expressions for zonula occludens-1, occludin, and claudin-1 compared to the K88 group (P < 0.05). In conclusion, combining Thy and Ros-A reduced ileal damage and relieved the inflammation in weaned piglets challenged with E. coli K88 by regulating intestinal microflora and improving barrier function.
Collapse
Affiliation(s)
- Runlin Li
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuedong Ding
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingkang Lei
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Panpan Li
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ilias Giannenas
- Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Jing Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Xia Y, Hu L, Ren K, Han X, Sun Y, Li D. Embryonic exposure to 6:2 fluorotelomer alcohol mediates autism spectrum disorder-like behavior by dysfunctional microbe-gut-brain axis in mice. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136739. [PMID: 39637794 DOI: 10.1016/j.jhazmat.2024.136739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/29/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
6:2 fluorotelomer alcohol (6:2 FTOH) is considered an emerging contaminant as a substitute for perfluoroalkyl and polyfluoroalkyl substances. Autism spectrum disorder (ASD) is a highly heterogeneous childhood neurodevelopmental disorder, the prevalence of which has been significantly increasing globally, possibly due to rising exposure to environmental pollutants. Additionally, the microbe-gut-brain axis plays a crucial role in the development of ASD. The purpose of study was to investigate the impact of embryonic 6:2 FTOH exposure on neurological development in mice and explore the potential involvement of the microbe-gut-brain. Pregnant mice were orally administered 6:2 FTOH from gestation day 8.5 until delivery, and follow-up testing was performed on day 22 post-delivery. The findings revealed that embryonic exposure to 6:2 FTOH led to ASD-like symptoms, cortical neuron apoptosis, glial cell activation, and abnormal synapse formation in mice. Furthermore, impairment of colonic barrier function, inflammatory response, and dysbiosis in gut microbiota were observed. Interestingly, supplementation with Lactobacillus rhamnosus GG during embryonic development mitigated these adverse outcomes. This study enhances our understanding of how environmental pollutants can impact neurological development in children and provides valuable insights for clinical prevention, diagnosis, and treatment strategies for non-genetic ASD.
Collapse
Affiliation(s)
- Yunhui Xia
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Liehai Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ke Ren
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yun Sun
- Genetic Medicine Center, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Dongmei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
10
|
Kong W, Ding X, Wang Z, Lu L, Fan S. NVP-AUY922 relieves radiation-induced intestinal injury via regulating EPHX1. Life Sci 2025; 363:123382. [PMID: 39798648 DOI: 10.1016/j.lfs.2025.123382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
As a common side effect of radiotherapy, radiation-induced intestinal injury (RIII) greatly affects the prognosis of patients and the efficacy of radiotherapy. Current therapeutic strategies for RIII are still very limited. Thus, the identification of effective radioprotective agents is of great importance. NVP-AUY922 is an HSP90 inhibitor with favorable anti-inflammatory and antioxidant activities. It has been proven to mitigate radiation-induced lung injury. However, its effects on the alleviation of RIII remain unclear. In this study, our data indicated that NVP-AUY922 remarkably increased the survival rate after radiation exposure. NVP-AUY922 treatment could enhance the viability of intestinal stem cells (ISCs) and promote the recovery of the small intestine. In addition, it also inhibited intestinal inflammation and reshaped the gut microbiota structure. We found that the radioprotective effect of NVP-AUY922 is partially dependent on EPHX1. In addition, NVP-AUY922 could attenuate dextran sulfate sodium (DSS)-induced colitis and promote intestinal barrier recovery. Thus, our results suggest that NVP-AUY922 contributes to the amelioration of intestinal injury after radiation exposure, which offers a new approach for the prevention of RIII.
Collapse
Affiliation(s)
- Wenzhe Kong
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Xudong Ding
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Zhaoyu Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Lu Lu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Saijun Fan
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| |
Collapse
|
11
|
Yang W, Li T, An S, Chen R, Zhao Y, Cui J, Zhang M, Lu J, Tian Y, Bao L, Zhao P. Ligilactobacillus salivarius LZZAY01 accelerated autophagy and apoptosis in colon cancer cells and improved gut microbiota in CAC mice. Microbiol Spectr 2025; 13:e0186124. [PMID: 39792005 PMCID: PMC11792455 DOI: 10.1128/spectrum.01861-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Colorectal cancer (CRC) is one of the malignant tumors globally, with high morbidity and mortality rates. The mainstay treatment of CRC includes surgery, radiotherapy, and chemotherapy. However, these treatments are associated with a high recurrence rate, poor prognosis, and highly toxic side effects. The probiotics have the potential to prevent CRC, and they display a favorable safety performance. Probiotics could provide a potential strategy to prevent and treat CRC. The impact of LZZAY01 on cancer cell lines CT-26, HCT-116, and SW-620 was evaluated by conducting cytotoxicity and clonogenicity tests. A model of colitis-associated cancer (CAC) was established in C57BL/6j mice following induction with AOM/DSS. The levels of autophagy and apoptosis proteins, tight junction proteins, and inflammatory factors were detected by western blotting, immunofluorescence assay, and enzyme-linked immunosorbent assay. High-throughput sequencing of gut 16S rRNA was performed to analyze the abundance and diversity of the gut microbiome. LZZAY01, a new strain of Ligilactobacillus salivarius, was certified by an evolutionary tree and average nucleotide identity. LZZAY01 enhanced autophagy and apoptosis in CT-26, HCT-116, and SW-620 cell lines. It preserved the integrity of the intestinal barrier by regulating the tight junction protein ZO-1 and claudin-1. The tumor necrosis factor-α and interleukin-6 were reduced by LZZAY01. The abundance and diversity of the intestinal microbiota were enhanced, especially the beneficial bacterial species maintaining the balance of the intestinal flora such as Bifidobacterium and Lactobacillus. L. salivarius LZZAY01 improved CAC via suppressing the growth of colon cancer cells, promoting autophagy and apoptosis, enhancing intestinal tight junctions, reducing intestinal barrier degradation, modifying the gut microbiota abundance, and decreasing inflammatory reactions.IMPORTANCEAlthough similar probiotics have been shown to have anticancer potential in colorectal cancer (CRC), there is a paucity of research related to the preventive function of probiotics against CRC. And there are fewer studies about the mechanism of probiotics' preventive effects on CRC. The regulation of tumor cell proliferation and apoptosis by the active ingredients of probiotics may be one of the mechanisms of their prevention of CRC. In this study, we explored the effects of L. salivarius LZZAY01 on autophagy and apoptosis of colon cancer cells in vitro and in vivo and proposed a possible mechanism for the prevention of CRC by probiotics.
Collapse
Affiliation(s)
- Wenhong Yang
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Tao Li
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Shixiang An
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Rong Chen
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Yuxin Zhao
- Department of Anesthesiology, Inner Mongolia Chest Hospital (The Fourth Hospital), Hohhot, China
| | - Jiaxian Cui
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Mingyu Zhang
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Jingkun Lu
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Yunpeng Tian
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Lili Bao
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Pengwei Zhao
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
12
|
Qiang X, Wang X, Liang S, Li S, Lv Y, Zhan J. Long-term effects of Nε-carboxymethyllysine intake on intestinal barrier permeability: Associations with gut microbiota and bile acids. Food Res Int 2025; 201:115543. [PMID: 39849698 DOI: 10.1016/j.foodres.2024.115543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/02/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Advanced glycation end products (AGEs) in processed foods are closely linked to intestinal injury. However, the long-term effects of exposure to free Nɛ-carboxymethyl lysine (CML), a prevalent AGE molecule, on intestinal barrier integrity have been rarely evaluated. This study investigated the temporal effects of CML exposure on intestinal barrier permeability in C57BL/6N mice at diet-related doses over 12, 14, and 16 weeks. No significant changes were observed at 12 weeks, but CML exposure significantly increased intestinal permeability at 14 and 16 weeks, accompanied by elevated serum LPS levels, colonic histological damage, and reduced tight junction protein expression at 16 weeks. CML exposure also altered gut microbiota composition and intestinal bile acid (BA) profiles, specifically reducing TDCA, GDCA, and GCDCA levels. Given the important role of colonic BA receptor signaling in maintaining the intestinal barrier integrity, the impact of CML on BA receptor signaling was assessed. CML exposure significantly downregulated BA receptor TGR5-YAP signaling in mice, while no significant effects were observed in vitro, suggesting that the changes observed in TGR5-YAP signaling in vivo may not result from the direct effects of CML. Spearman's correlation analysis revealed strong associations between altered gut microbiota, BA levels, TGR5-YAP signaling, and intestinal barrier injury. This study highlighted the chronic health risks of long-term CML intake and provided new insights into the links between CML-induced intestinal toxicity, gut microbiota, BA profiles, and BA receptor signaling.
Collapse
Affiliation(s)
- Xin Qiang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Xiaoyuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Shumin Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Shaogang Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Yinchuan Lv
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
13
|
Meirelles MG, Fénero CIM, Nornberg BF, Camara NOS, Marins LF. In Vivo Measurement of Intestinal Permeability to Macromolecules in Adult Zebrafish ( Danio rerio). Zebrafish 2025; 22:1-10. [PMID: 39895322 DOI: 10.1089/zeb.2024.0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Intestinal permeability plays a crucial role in intestinal barrier function. Altered intestinal permeability is well documented in numerous chronic diseases and may serve as a risk factor for disease onset as well as a target for innovative therapeutic strategies. While reliable and sensitive approaches for studying intestinal permeability have been established in animal models, such as mice and zebrafish larvae, methods for investigating this in adult zebrafish remain a considerable challenge. The zebrafish has emerged as a valuable model for studying intestinal development, physiology, and disease. Moreover, zebrafish offer certain advantages over rodent models, such as the ability to evaluate the dynamic interactions of labeled markers in vivo and in real time. In this study, we present a comprehensive pipeline for assessing in vivo intestinal permeability in adult zebrafish using fluorescent-labeled dextran. Detailed protocols for fish handling, reagent preparation, optimization of reagent dosage and delivery routes, and quantification of fluorescent markers in extraintestinal sites are provided. Our findings suggest that zebrafish hold promise as an alternative model for in vivo investigations of intestinal permeability induced by genetic, pathophysiological, and/or pharmacological events.
Collapse
Affiliation(s)
- Marcela G Meirelles
- LEGENE-Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande-FURG, Rio Grande, Brazil
| | - Camila I M Fénero
- Department of Immunology, Institute of Biomedical Science, University of São Paulo-USP, São Paulo, Brazil
| | - Bruna F Nornberg
- LEGENE-Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande-FURG, Rio Grande, Brazil
| | - Niels Olsen S Camara
- Department of Immunology, Institute of Biomedical Science, University of São Paulo-USP, São Paulo, Brazil
| | - Luis Fernando Marins
- LEGENE-Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande-FURG, Rio Grande, Brazil
| |
Collapse
|
14
|
Cui G, Wang M, Liu Z, Chang C, Wu Y, Li X, Sun Z. Investigating the therapeutic effects and potential mechanisms of Zuojin Pill in the treatment of gastroesophageal reflux disease. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119230. [PMID: 39662861 DOI: 10.1016/j.jep.2024.119230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuojin Pill (ZJP), a traditional Chinese medicinal formula, is widely recognized for its diverse pharmacological properties in the management of gastrointestinal disorders. However, the precise mechanisms underlying its therapeutic effects in gastroesophageal reflux disease (GERD) remain inadequately understood. AIM OF THE STUDY This study aims to investigate the therapeutic effects of ZJP in GERD and to elucidate the molecular mechanisms involved. MATERIALS AND METHODS The chemical composition of ZJP was characterized using HPLC-Q-Exactive-MS. A rat model of GERD was established through esophagogastric anastomosis, and three different doses of ZJP were administered. Histological changes were assessed via hematoxylin-eosin (H&E) staining, while pro-inflammatory cytokines were quantified to evaluate the anti-inflammatory effects of ZJP. Network pharmacology combined with bioinformatics analysis was employed to predict potential therapeutic targets and signaling pathways of ZJP in GERD. Validation of the mechanisms was conducted through Western blotting, immunofluorescence (IF), transmission electron microscopy (TEM), and immunohistochemistry (IHC). RESULTS The results demonstrated that ZJP effectively alleviated pathological alterations and reduced pro-inflammatory cytokine levels in esophageal tissues of GERD rats. Western blotting and IF analysis of E-cadherin and claudin-1 confirmed that ZJP enhanced the integrity of the esophageal mucosal barrier. TEM imaging revealed that ZJP restored intercellular space (DIS), increased desmosome density, thereby protecting esophageal tissues from the detrimental effects of GERD. Furthermore, ZJP modulated macrophage polarization in the GERD rat model. Mechanistic investigations indicated that ZJP exerted its therapeutic effects by inhibiting MAPK/NF-κB signaling pathway activation and downregulating the expression of prostaglandin-endoperoxide synthase 2 (PTGS2) and matrix metalloproteinase 2 (MMP2), consistent with predictions from network pharmacology analysis. CONCLUSIONS This study provides comprehensive evidence for the therapeutic efficacy of ZJP in GERD, acting through modulation of inflammation, mucosal barrier integrity, and macrophage polarization. Additionally, ZJP downregulated PTGS2 and MMP2 expression and suppressed the activation of MAPK/NF-κB signaling pathways, underscoring its potential as a therapeutic intervention for GERD.
Collapse
Affiliation(s)
- Guoliang Cui
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Manli Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhiting Liu
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Cheng Chang
- Jiangsu Provincial Hospital of Chinese medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 225200, China.
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhiguang Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
15
|
Senthil Kumar KJ, Gokila Vani M, Dakpa G, Wang SY. Dietary limonene promotes gastrointestinal barrier function via upregulating tight/adherens junction proteins through cannabinoid receptor type-1 antagonistic mechanism and alters cellular metabolism in intestinal epithelial cells. Biofactors 2025; 51:e2106. [PMID: 39143845 DOI: 10.1002/biof.2106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/25/2024] [Indexed: 08/16/2024]
Abstract
Limonene, a dietary monocyclic monoterpene commonly found in citrus fruits and various aromatic plants, has garnered increasing interest as a gastrointestinal protectant. This study aimed to assess the effects of limonene on intestinal epithelial barrier function and investigate the involvement of cannabinoid receptor type-1 (CB1R) in vitro. Additionally, the study focused on examining the metabolomic changes induced by limonene in the intestinal epithelial cells (Caco-2). Initial analysis of transepithelial electrical resistance (TEER) revealed that both l-limonene and d-limonene, isomers of limonene, led to a dose- and time-dependent increase in TEER in normal cells and those inflamed by pro-inflammatory cytokines mixture (CytoMix). Furthermore, both types of limonene reduced CytoMix-induced paracellular permeability, as demonstrated by a decrease in Lucifer yellow flux. Moreover, d-limonene and l-limonene treatment increased the expression of tight junction molecules (TJs) such as occludin, claudin-1, and ZO-1, at both the transcriptional and translational levels. d-Limonene upregulates E-cadherin, a molecule involved in adherens junctions (AJs). Mechanistic investigations demonstrated that d-limonene and l-limonene treatment significantly inhibited CB1R at the protein, while the mRNA level remained unchanged. Notably, the inhibitory effect of d-limonene on CB1R was remarkably similar to that of pharmacological CB1R antagonists, such as rimonabant and ORG27569. d-limonene also alters Caco-2 cell metabolites. A substantial reduction in β-glucose and 2-succinamate was detected, suggesting limonene may impact intestinal epithelial cells' glucose uptake and glutamate metabolism. These findings suggest that d-limonene's CB1R antagonistic property could effectively aid in the recovery of intestinal barrier damage, marking it a promising gastrointestinal protectant.
Collapse
Affiliation(s)
- K J Senthil Kumar
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Center for General Education, National Chung Hsing University, Taichung, Taiwan
| | - M Gokila Vani
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Gyaltsen Dakpa
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Special Crop and Metabolome Discipline Cluster, Academy of Circle Economy, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
16
|
Nobumoto T, Yamasaki S, Hamada A, Higaki M, Ito N, Obayashi F, Ishida Y, Hamana T, Shintani T, Tani R, Koizumi K, Yanamoto S, Hayashido Y. Clinical significance and biological role of claudin-1 in oral squamous cell carcinoma cells. Oral Surg Oral Med Oral Pathol Oral Radiol 2025; 139:92-100. [PMID: 39294092 DOI: 10.1016/j.oooo.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/20/2024]
Abstract
OBJECTIVES Claudin (CLD), a major component of tight junctions, is a four-transmembrane protein, and 24 subtypes have been reported in humans. CLD expression is highly tissue-specific; CLD1 has been reported to be expressed in the skin and mucosa. There have been few reports on CLD1 expression and its function in oral cancer. MATERIALS AND METHODS This retrospective study immunohistochemically evaluated CLD1 expression as prognostic predictors in 84 participants with oral squamous cell carcinoma (OSCC). Participants were classified as positive or negative based on staining intensity; the clinicopathologic characteristics and survival rates of the two groups were compared. To clarify the biological role of CLD1 in OSCC cells, we examined the effects of CLD1 overexpression on the invasion and proliferation of the OSCC cell line, SCCKN. RESULTS We observed the immunohistochemical CLD1 expression in the cell membranes of OSCC cells. The disease-free survival rate was significantly lower in patients with CLD1-positive OSCC than in patients with CLD1-negative OSCC (P < .05). In vitro studies showed that cell proliferative capacity, motility, proteolytic activity, and invasive growth were promoted in CLD1-overexpressing SCCKN cells compared to those in control SCCKN cells. CONCLUSION CLD1 may be a useful and potential prognostic factor for OSCC treatment.
Collapse
Affiliation(s)
- Tadayoshi Nobumoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Sachiko Yamasaki
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Atsuko Hamada
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Mirai Higaki
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Nanako Ito
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Fumitaka Obayashi
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Yasutaka Ishida
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Tomoaki Hamana
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan.
| | - Ryouji Tani
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Koichi Koizumi
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Yasutaka Hayashido
- Department of Oral Oncology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
17
|
Chen J, Cui Y, Chen Z, Ding H, Li C, Ju S, Ding C, Xu C, Zhao J, Tong X. Aberrant Expression of JAM2 Inhibits Invasion and Migration in Lung Adenocarcinoma. Cancer Rep (Hoboken) 2025; 8:e70038. [PMID: 39838844 PMCID: PMC11751475 DOI: 10.1002/cnr2.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/02/2024] [Accepted: 10/11/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer. JAM2, a member of the Junctional adhesion molecule (JAM) family, plays diverse roles in cell-cell contacts and tumor development. Although JAM2's expression and functions have been reported in various cancers, its clinical and biological significance in LUAD remains unclear. AIMS The aim of this study was to investigate the expression and function of JAM2 in LUAD, and to assess its potential as a prognostic gene and a molecular target for early diagnosis and targeted therapy. MATERIALS Immunohistochemistry (IHC) was performed on 37 pairs of LUAD tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted among co-expression genes in different JAM2 subgroups. In vitro experiments were also conducted to study the migratory and invasive capabilities of LUAD cells when JAM2 was overexpressed. RESULTS The study confirmed that JAM2 was downregulated in LUAD, possibly due to methylation. JAM2 emerged as an independent prognostic gene for predicting the outcomes of patients with LUAD. IHC analysis revealed the significance of JAM2 with clinicopathological parameters in LUAD. GO and KEGG analyses provided insights into the biological processes and pathways associated with JAM2. In vitro experiments showed that overexpressing JAM2 significantly suppressed the migratory and invasive capabilities of LUAD cells. Additionally, JAM2 played a crucial role in LUAD inflammatory infiltration, and higher JAM2 expression predicted a better immunotherapy response. CONCLUSION JAM2 may serve as a promising molecular target for early diagnosis and targeted therapy of LUAD. Its downregulation in LUAD, potential role as a prognostic gene, and influence on cell migration, invasion, and inflammatory infiltration make it a valuable target for further research and development of therapeutic strategies.
Collapse
Affiliation(s)
- Jun Chen
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yuan Cui
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhimeng Chen
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hao Ding
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chang Li
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Sheng Ju
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Cheng Ding
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chun Xu
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jun Zhao
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xin Tong
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
18
|
Li Z, Gu M, Zaparte A, Fu X, Mahen K, Mrdjen M, Li XS, Yang Z, Ma J, Thoudam T, Chandler K, Hesler M, Heathers L, Gorse K, Van TT, Wong D, Gibson AM, Wang Z, Taylor CM, Quijada P, Makarewich CA, Hazen SL, Liangpunsakul S, Brown JM, Lefer DJ, Welsh DA, Sharp TE. Alcohol-induced gut microbial reorganization and associated overproduction of phenylacetylglutamine promotes cardiovascular disease. Nat Commun 2024; 15:10788. [PMID: 39738016 PMCID: PMC11685538 DOI: 10.1038/s41467-024-55084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology. Fecal microbiota transplantation from pair-/alcohol-fed mice into naïve male mice demonstrates the transmissibility of PAGln production and the CVD phenotype. Independent of alcohol exposure, pharmacological-mediated increases in PAGln elicits direct cardiac and vascular dysfunction. PAGln induced hypercontractility and altered calcium cycling in isolated cardiomyocytes providing evidence of improper relaxation which corresponds to elevated filling pressures observed in vivo. Furthermore, PAGln directly induces vascular endothelial cell activation through induction of oxidative stress leading to endothelial cell dysfunction. We thus reveal that the alcohol-induced microbial reorganization and resultant GMM elevation, specifically PAGln, directly contributes to CVD.
Collapse
Affiliation(s)
- Zhen Li
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Min Gu
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
- International Flavors and Fragrances Health and Bioscience, Shanghai, China
| | - Aline Zaparte
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
- Comprehensive Alcohol Research Center, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Xiaoming Fu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kala Mahen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center (NOAC), Cleveland Clinic, Cleveland, OH, USA
| | - Marko Mrdjen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center (NOAC), Cleveland Clinic, Cleveland, OH, USA
| | - Xinmin S Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Themis Thoudam
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristina Chandler
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maggie Hesler
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Laura Heathers
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kiersten Gorse
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Thanh Trung Van
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - David Wong
- Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Aaron M Gibson
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher M Taylor
- Comprehensive Alcohol Research Center, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Pearl Quijada
- Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Catherine A Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Heart and Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - J Mark Brown
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Learner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center (NOAC), Cleveland Clinic, Cleveland, OH, USA
| | - David J Lefer
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David A Welsh
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
- Comprehensive Alcohol Research Center, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Thomas E Sharp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Heart Institute, Morsani College of Medicine, USF Health, University South Florida, Tampa, FL, USA.
| |
Collapse
|
19
|
Xu X, Wei S, Lin M, Chen F, Zhang X, Zhu Y. The relationship between acrylamide and neurodegenerative diseases: gut microbiota as a new intermediate cue. Crit Rev Food Sci Nutr 2024:1-13. [PMID: 39668759 DOI: 10.1080/10408398.2024.2440602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Acrylamide (AA), a compound formed during the thermal processing of high-carbohydrate foods, has been implicated in the onset and progression of neurodegenerative diseases. An increasing number of reports support that gut microbiota plays a significant role in brain function and diseases, suggesting it may act as a mediator between AA exposure and the development of neurodegenerative diseases. Available studies have shown that AA intake affects the composition of the gut microbiota and the integrity of the intestinal barrier, both of which are often thought to be associated with the pathogenesis of neurodegenerative diseases, given the numerous evidences linking gut microbiota with the brain. Based on the current understanding, this paper discusses that AA induces the onset and progression of neurodegenerative diseases by disrupting the composition of the gut microbiota and the structure of the intestinal barrier. Furthermore, it explores the interaction between probiotics and AA exposure, as well as the potential for polysaccharides and polyphenols to improve the gut microenvironment, which provides novel perspectives on modulating the neurodegenerative diseases caused by AA exposure through diet.
Collapse
Affiliation(s)
- Xinrui Xu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, P. R. China
| | - Siyu Wei
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, P. R. China
| | - Mengyi Lin
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, P. R. China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, P. R. China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P. R. China
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
20
|
Cui D, Li M, Liu M, Shen M, Liu Y, Wang K, Tang H, Lu X, Li S, Yao J, Zhang G. Synergistic effect and mechanism of monoacylglycerol lipase inhibitor and Icaritin in the treatment of ulcerative colitis. Int Immunopharmacol 2024; 142:113155. [PMID: 39276456 DOI: 10.1016/j.intimp.2024.113155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Ulcerative colitis (UC) is a chronic, relapsing nonspecific intestinal inflammatory disease. It is difficult for a single drug to treat UC effectively and maintain long-term efficacy. There is an urgent need to find new drugs and treatment strategies. MAGL11 is a new kind of single acylglycerol lipase (MAGL) inhibitor. Icaritin (Y003) is the major metabolite of icariin in vivo. Several studies have confirmed the role of MAGL inhibitors and icariin in anti-inflammatory and regulation of intestinal stability. Therefore, this study adopted a new strategy of combining MAGL inhibitor with Icaritin to further explore the role and mechanism of drugs in the treatment of UC. Enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin staining (HE), immunohistochemical (IHC) and Western blot were used to detect the synergistic protective effects of MAGL11 and Y003 on intestinal pathological injury, intestinal mucosal permeability and inflammation in UC mice. 16S rDNA sequencing was used to detect the synergistic effect of MAGL11 and Y003 on gut microbiota. The effects of MAGL11 and Y003 combined therapy on serum and fecal metabolism of UC mice were analyzed by untargeted metabolomics. Proteomics method was applied to investigate the molecular mechanisms underlying MAGL11 and Y003 synergy in the treatment of UC. The results showed that MAGL11 and Y003 could synergistically improve the clinical symptoms, reduce intestinal inflammation and pathological damage, and improve intestinal mucosal permeability in UC mice. The mechanism study found that MAGL11 and Y003 could synergistically inhibit Toll-like receptors 4 (TLR4) / Myeloid differentiation primary response gene (Myd88)/Nuclear factor kappa-B (NF-κB) pathway and further regulate gut microbiota imbalance and metabolic disorders to treat UC.
Collapse
Affiliation(s)
- Deyu Cui
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Meng Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Mingfei Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mengmeng Shen
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi 276005, China
| | - Yifan Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Kun Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongguang Tang
- School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyan Lu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi 276005, China
| | - Shirong Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi 276005, China.
| | - Guimin Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi 276005, China.
| |
Collapse
|
21
|
Shendge AK, Sekler I, Hershfinkel M. ZnR/GPR39 regulates hepatic insulin signaling, tunes liver bioenergetics and ROS production, and mitigates liver fibrosis and injury. Redox Biol 2024; 78:103403. [PMID: 39514940 PMCID: PMC11584770 DOI: 10.1016/j.redox.2024.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Adequate supply of zinc is essential for hepatic function and its deficiency is associated with acute liver injury (ALI) and chronic nonalcoholic fatty liver disease (NAFLD). However, how zinc controls hepatic function is unknown. We found that the zinc sensitive ZnR/GPR39, a mediator of zinc signaling, enhances hepatic phosphorylation of ERK1/2, which is reduced in ZnR/GPR39 deficient livers. Surprisingly, livers from ZnR/GPR39 knockout (KO) mice exhibited elevated insulin receptor expression and downstream AKT activation. Moreover, ZnR/GPR39 KO mice had higher blood fasting glucose level, pronounced hepatic lipid accumulation, increased hepatocyte oxygen consumption rate (OCR) and reactive oxygen species (ROS) levels. These data suggest that ZnR/GPR39 modulates insulin receptor signaling, a major pathway in hepatic metabolism. Associated with the impaired signaling, ZnR/GPR39 KO livers exhibited increased tissue fibrosis, manifested by marked elevation of collagen expression, compared to wildtype (WT). Additionally, we found alteration of hepatocyte junctional proteins that was accompanied by increased macrophage infiltration and higher liver inflammation in ZnR/GPR39 KO mice. To determine the role of ZnR/GPR39 in ALI, we applied a mild LPS challenge that induced profound decrease in hepatic OCR, also leading to higher ROS generation in ZnR/GPR39 KO hepatocytes, but not in WT. We further found increased serum IL-2 and AST/ALT ratio only in ZnR/GPR39 KO mice. Our findings reveal a role of ZnR/GPR39 in controlling hepatic insulin receptor signaling and mitigating liver fibrosis and inflammation, thus underscoring the important role of ZnR/GPR39 in liver signaling and function.
Collapse
Affiliation(s)
- Anil Khushalrao Shendge
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
22
|
Luan J, Wen L, Bao Y, Bai H, Zhao C, Zhang S, Man X, Yin T, Feng X. Systemic toxicity of biodegradable polyglycolic acid microplastics on the gut-liver-brain axis in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176898. [PMID: 39401589 DOI: 10.1016/j.scitotenv.2024.176898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/20/2024] [Accepted: 10/11/2024] [Indexed: 10/17/2024]
Abstract
Polyglycolic acid (PGA), a novel type of hazardous biodegradable plastic, is gradually being widely used in the biomedical and food packaging industries. However, the long-term ecological effects of PGA degradation to microplastics (MPs) in aquatic organisms remain unknown. The gut-liver-brain axis regulates the exchange of information between the gut, liver, and brain, and is a key target for tissue damage caused by pollutants. Adult zebrafish were exposed to 1 or 100 mg/L PGA MP suspension for 28 d. PGA affects the intestinal vascular barrier through gene expression downstream of the Wnt/β-catenin pathway, increasing intestinal permeability and disrupting the environment of intestinal microbial diversity. This, in turn, promoted the accumulation of lipopolysaccharide (LPS). Disturbance of the intestinal microbiota balance and its metabolites are transferred to the liver and brain through the gut-liver-brain axis, causing disorders in hepatic lipid metabolism and synthesis. Behavioural experiments showed that long-term exposure to PGA MP caused anxiety-like behaviour and cognitive impairment, which may be related to the disruption of the gut-liver-brain axis, thus inducing inflammation and disrupting the normal functioning of the body. In summary, this study evaluated the safety of the new degradable plastic, PGA, but its ecological risks still require attention.
Collapse
Affiliation(s)
- Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Liang Wen
- China Energy Yulin Chemical Co., LTD, 710061,China.
| | - Yehua Bao
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Huijuan Bai
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Chengtian Zhao
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China; School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xiaoting Man
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Tian Yin
- China Shenhua Coal To Liquid and Chemical CO., LTD, 100011, China
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
23
|
El-Shenawy R, Moustafa RI, Helmy NM, El-Abd YS, Tabll AA, Elesnawy YK, Shawky H. Peripheral immune signatures associated with the risk of hepatocarcinogenesis in cirrhotic Egyptian HCV patients before and after treatment with direct-acting antivirals. Virol J 2024; 21:293. [PMID: 39548562 PMCID: PMC11566392 DOI: 10.1186/s12985-024-02551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Although direct-acting antivirals (DAAs) have revolutionized the management of chronic HCV, the debatable association with hepatocellular carcinoma (HCC) occurrence/recurrence has raised major concerns about their long-term use, especially in cirrhotic cases. The role of epithelial tight junction proteins (TJPs) in hepatocarcinogenesis has been highlighted; however, the association of their expression in peripheral blood mononuclear cells (PBMCs) with HCC has rarely been reported. This study aimed to explore the role of peripheral claudin (Cldn)1 in liver pathogenesis and its crosstalk with soluble immune mediators in HCC prognosis. METHODS The study population included six independent subgroups: healthy controls, cirrhotic/non-cirrhotic treatment-naïve HCV patients, DAA-SVR patients, and anticancer treatment-naïve de novo HCC patients. The laboratory tests included serum levels of alpha-fetoprotein (AFP), albumin, liver transaminases, total bilirubin, and CBC profiling. The serum levels of soluble cluster of differentiation (sCD)163, IL-10, and IL-12 were estimated by corresponding ELISA kits, whereas the levels of Cldn1 and transforming growth factor (TGF)-β in PBMCs were quantified using quantitative PCR (qPCR). RESULTS Serum sCD163, IL-10, and IL-12 levels were significantly higher in the HCC patient group than in the control and non-malignant patient groups (P < 0.0001). No significant difference was detected in the serum levels of the three markers between cirrhotic and non-cirrhotic patients, whereas their levels were significantly different between cirrhotic and non-cirrhotic patients (P < 0.0001). Similarly, the transcriptional levels of peripheral Cldn1 and TGF-β were significantly higher in patients with HCC and non-malignant cirrhosis than in patients without cirrhosis (P = 0.0185-<0.0001 and 0.0089-<0.0001, respectively). Logistic regression analysis revealed a significant association between all the abovementioned markers and HCC (P = 0.0303 to < 0.0001), which was further confirmed by the results of receiver operating characteristic (ROC) analysis, which revealed an area under the curve (AUC) value ranging from 0.883 to 0.996. The calculated cutoff values demonstrated remarkable prognostic capacity, with ranges of 88-99.41% and 82.14-97.92% and positive/negative predictive values ranging from 84.62 to 98.3% and 92-98%, respectively. CONCLUSION The proposed HCC predictors are novel non-invasive HCC biomarkers that maintain their predictive power under different pathological conditions and circumvent the drawbacks of conventional prognostic markers in patients with mild cirrhosis and/or normal AFP, albumin, and/or platelet counts.
Collapse
Affiliation(s)
- Reem El-Shenawy
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Rehab I Moustafa
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
- School of Pharmacy, Newgiza University (NGU), Newgiza, 12577, Giza, Egypt
| | - Naiera M Helmy
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Yasmine S El-Abd
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ashraf A Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Yasser K Elesnawy
- National Committee for Control of Viral Hepatitis (NCCVH), Ministry of Health and Population, Cairo, Egypt
| | - Heba Shawky
- Therapeutic Chemistry Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
24
|
Zeng L, Huang J, Wang Y, Hu Y, Zhou S, Lu Y. Oleanolic acid induces hepatic injury by disrupting hepatocyte tight junction and dysregulation of farnesoid X receptor-mediated bile acid efflux transporters. J Appl Toxicol 2024; 44:1725-1741. [PMID: 39030772 DOI: 10.1002/jat.4667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/09/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Oleanolic acid (OA) is a naturally occurring pentacyclic triterpene compound that has been reported to cause cholestatic liver injury. However, the regulation and pathogenic role of bile acids in OA-induced development of cholestatic liver injury remains largely unclear. Farnesoid X receptor (FXR) is a metabolic nuclear receptor that plays an important role in bile acid homeostasis in the liver by regulating efflux transporters bile salt export pump (BSEP) and multidrug resistance-associated protein 2 (MRP2). The aim of this study was to investigate the effect of OA on hepatocyte tight junction function and determine the role of FXR, BSEP, and MRP2 in the mechanism of impairment of transport of bile acids induced by OA. Both in vivo and in vitro models were used to characterize the OA-induced liver injury. The liquid chromatography-tandem mass spectrometry (LC-MS) was employed to characterize the efflux function of the transporters, and the results showed that OA caused a blockage of bile acids efflux. OA treatment resulted in decreased expression levels of the tight junction proteins zonula occludens-1 and occludin. Immunofluorescence results showed that OA treatment significantly reduced the number of bile ducts and the immunofluorescence intensity. Pretreatment with agonists of FXR and MRP2, respectively, in animal experiments attenuated OA-induced liver injury, while pretreatment with inhibitors of BSEP and MRP2 further aggravated OA-induced liver injury. These results suggest that OA inhibits FXR-mediated BSEP and MRP2, leading to impaired bile acid efflux and disruption of tight junctions between liver cells, resulting in liver damage.
Collapse
Affiliation(s)
- Li Zeng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jianxiang Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Department of Pharmacy, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Yi Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yan Hu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
25
|
Katoh M, Katoh M. Claudin 1, 4, 6 and 18 isoform 2 as targets for the treatment of cancer (Review). Int J Mol Med 2024; 54:100. [PMID: 39301632 DOI: 10.3892/ijmm.2024.5424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The 24 claudin (CLDN) genes in the human genome encode 26 representative CLDN family proteins. CLDNs are tetraspan‑transmembrane proteins at tight junctions. Because several CLDN isoforms, such as CLDN6 and CLDN18.2, are specifically upregulated in human cancer, CLDN‑targeting monoclonal antibodies (mAbs), antibody‑drug conjugates (ADCs), bispecific antibodies (bsAbs) and chimeric antigen receptor (CAR) T cells have been developed. In the present review, CLDN1‑, 4‑, 6‑ and 18.2‑targeting investigational drugs in clinical trials are discussed. CLDN18.2‑directed therapy for patients with gastric and other types of cancer is the most advanced area in this field. The mouse/human chimeric anti‑CLDN18.2 mAb zolbetuximab has a single‑agent objective response rate (ORR) of 9%, and increases progression‑free and overall survival in combination with chemotherapy. The human/humanized anti‑CLDN18.2 mAb osemitamab, and ADCs AZD0901, IBI343 and LM‑302, with single‑agent ORRs of 28‑60%, have been tested in phase III clinical trials. In addition, bsAbs, CAR T cells and their derivatives targeting CLDN4, 6 or 18.2 are in phase I and/or II clinical trials. AZD0901, IBI343, zolbetuximab and the anti‑CLDN1 mAb ALE.C04 have been granted fast track designation or priority review designation by the US Food and Drug Administration.
Collapse
Affiliation(s)
- Masuko Katoh
- Department of Global Network, M & M Precision Medicine, Tokyo 113‑0033, Japan
| | - Masaru Katoh
- Department of Global Network, M & M Precision Medicine, Tokyo 113‑0033, Japan
| |
Collapse
|
26
|
Huang M, Zhang Y, Ni M, Shen M, Tao Y, Shen W, Sun D, Li L, Xu C, Tan J, Lai Y, Yu C, Tao L, Fan M, Cheng H. Shen-Bai-Jie-Du decoction suppresses the progression of colorectal adenoma to carcinoma through regulating gut microbiota and short-chain fatty acids. Chin Med 2024; 19:149. [PMID: 39465423 PMCID: PMC11514841 DOI: 10.1186/s13020-024-01019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Shen-Bai-Jie-Du decoction (SBJDD), a traditional Chinese herb formula developed based on evidence-based medicine, is efficacy to reduce the recurrence and carcinogenesis of colorectal adenoma. However, the mechanism of SBJDD to treat colorectal adenoma remains unclear. The present study aims to investigate the efficacy and mechanism of SBJDD on colorectal adenoma carcinogenesis from the aspects of regulating gut microbiota and short-chain fatty acids (SCFAs). METHODS Twenty-one patients diagnosed with colorectal adenoma were recruited in the study and required to take SBJDD for four consecutive weeks. Analysis of gut microbiota was conducted using 16S rRNA gene amplicon sequencing, while levels of SCFAs in fecal and serum samples were determined through HPLC-MS/MS. Additionally, twenty-four Apcmin/+ mice were randomly assigned to normal diet (ND), high-fat diet (HFD), and SBJDD groups. The pharmacological effects and mechanism of SBJDD on colorectal adenoma carcinogenesis were assessed using RT-qPCR, HE staining, IHC staining, Western blot, IF staining, and Flow cytometry assays. RESULTS Our clinical study has shown that SBJDD can regulate the gut microbiota composition and enhance SCFAs production in patients with colorectal adenoma. SBJDD alleviated colorectal adenoma formation and carcinogenesis, as well as protected the integrity of the intestinal barrier in the Apcmin/+ mice model compared to the HFD group. Additionally, SBJDD was found to regulate gut microbiota capable of producing SCFAs. G protein-coupled receptors GPR43, GPR41, and GPR109a were effectively activated in the SBJDD group, while HDAC1 and HDAC3 were inhibited. Furthermore, decreased expression levels of interleukin 1 beta (IL-1β) and interleukin 6 (IL-6), along with elevated expression level of interleukin 10 (IL-10), were observed in the colorectal tissue of the SBJDD group. Finally, SBJDD exhibited the ability to reduce the proportion of M1-type macrophages while increasing the proportion of M2-type macrophages. CONCLUSIONS Our study objectively demonstrated the pharmacological effects of SBJDD in inhibiting the progression of colorectal adenoma and investigated its mechanisms in terms of regulating gut microbiota, increasing SCFAs, and reducing colorectal inflammation.
Collapse
Affiliation(s)
- Min Huang
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Zhang
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Mingxin Ni
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng Shen
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- The First Affiliated Hospital of Soochow University, Soochow, 215123, China
| | - Yuquan Tao
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weixing Shen
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dongdong Sun
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liu Li
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Changliang Xu
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiani Tan
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yueyang Lai
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chengtao Yu
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lihuiping Tao
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Minmin Fan
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Haibo Cheng
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
27
|
Xue X, Zhou H, Gao J, Li X, Wang J, Bai W, Bai Y, Fan L, Chang H, Shi S. The impact of traditional Chinese medicine and dietary compounds on modulating gut microbiota in hepatic fibrosis: A review. Heliyon 2024; 10:e38339. [PMID: 39391468 PMCID: PMC11466535 DOI: 10.1016/j.heliyon.2024.e38339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Traditional Chinese medicine (TCM) and dietary compounds have a profound influence on the regulation of gut microbiota (GM) in hepatic fibrosis (HF). Certain substances found in both food and herbs that are edible and medicinal, such as dietary fiber, polyphenols, and polysaccharides, can generate beneficial metabolites like short-chain fatty acids (SCFAs), bile acids (BAs), and tryptophan (Trp). These compounds contribute to regulate the GM, reduce levels of endotoxins in the liver, and alleviate fibrosis and inflammation in the liver. Furthermore, they enhance the composition and functionality of GM, promoting the growth of beneficial bacteria while inhibiting the proliferation of harmful bacteria. These mechanisms mitigate the inflammatory response in the intestines and maintain the integrity of the intestinal barrier. The purpose of this review is to analyze how the GM regulates the pathogenesis of HF, evaluate the regulatory effect of TCM and dietary compounds on the intestinal microflora, with a particular emphasis on modulating flora structure, enhancing gut barrier function, and addressing associated pathogenic factors, thereby provide new insights for the treatment of HF.
Collapse
Affiliation(s)
- Xingting Xue
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Hongbing Zhou
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Jiaxing Gao
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Xinghua Li
- Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Jia Wang
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Wanfu Bai
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Yingchun Bai
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Liya Fan
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Songli Shi
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
- Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica, Baotou Medical College, Baotou, China
| |
Collapse
|
28
|
Niu R, Lan J, Liang D, Xiang L, Wu J, Zhang X, Li Z, Chen H, Geng L, Xu W, Gong S, Yang M. GZMA suppressed GPX4-mediated ferroptosis to improve intestinal mucosal barrier function in inflammatory bowel disease. Cell Commun Signal 2024; 22:474. [PMID: 39367435 PMCID: PMC11451002 DOI: 10.1186/s12964-024-01836-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Our previous study has demonstrated a decreased colonic CD8+CD39+ T cells, enrichment of granzyme A (GZMA), was found in pediatric-onset colitis and inflammatory bowel disease (IBD) characterized by impaired intestinal barrier function. However, the influence of GZMA on intestinal barrier function remains unknown. METHODS Western blotting(WB), real-time PCR (qPCR), immunofluorescence (IF) and in vitro permeability assay combined with intestinal organoid culture were used to detect the effect of GZMA on intestinal epithelial barrier function in vivo and in vitro. Luciferase, immunoprecipitation (IP) and subcellular fractionation isolation were performed to identify the mechanism through which GZMA modulated intestinal epithelial barrier function. RESULTS Herein, we, for the first time, demonstrated that CD8+CD39+ T cells promoted intestinal epithelial barrier function through GZMA, leading to induce Occludin(OCLN) and Zonula Occludens-1(ZO-1) expression, which was attributed to enhanced CDX2-mediated cell differentiation caused by increased glutathione peroxidase 4(GPX4)-induced ferroptosis inhibition in vivo and in vitro. Mechanically, GZMA inhibited intestinal epithelial cellular PDE4B activation to trigger cAMP/PKA/CREB cascade signaling to increase CREB nuclear translocation, initiating GPX4 transactivity. In addition, endogenous PKA interacted with CREB, and this interaction was enhanced in response to GZMA. Most importantly, administration of GZMA could alleviate DSS-induced colitis in vivo. CONCLUSION These findings extended the novel insight of GZMA contributed to intestinal epithelial cell differentiation to improve barrier function, and enhacement of GZMA could be a promising strategy to patients with IBD.
Collapse
Affiliation(s)
- Rongwei Niu
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jiaoli Lan
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Danxia Liang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Li Xiang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jiaxin Wu
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Xiaoyan Zhang
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Zhiling Li
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Sitang Gong
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Min Yang
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
29
|
Qiang X, Liang S, Lv Y, Wang X, Zhang H, Zhan J. Advanced glycation end products (AGEs) impair the intestinal epithelial barrier via STAT3 activation mediated by macrophages. Food Chem Toxicol 2024; 192:114966. [PMID: 39197527 DOI: 10.1016/j.fct.2024.114966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Advanced glycation end products (AGEs) are a spectrum of complex compounds widely found in processed foods and frequently consumed by humans. AGEs are implicated in impairing the intestinal barrier, but the underlying mechanisms remain unclear. This study investigated the effects of three types of AGEs on gene expression of tight junctions (TJs) in colorectal epithelial HT-29 cells, and observed minimal alterations in TJs expression. Given the important role of subepithelial macrophages in regulating the intestinal barrier, we explored whether AGEs affect the intestinal barrier via the involvement of macrophages. Notably, a significant downregulation of TJs expression was observed when supernatants from AGEs-treated RAW264.7 macrophage cells were transferred to HT-29 cells. Further investigations indicated that AGEs increased IL-6 levels in RAW264.7 cells, subsequently triggering STAT3 activation and suppressing TJs expression in HT-29 cells. The role of STAT3 activation was confirmed by observing enhanced TJs expression in HT-29 cells following pretreatment with an inhibitor of STAT3 activation prior to the transfer of the conditioned medium. These findings demonstrated that AGEs impaired the intestinal barrier via macrophage-mediated STAT3 activation, shedding light on the mechanisms underlying AGEs-induced intestinal barrier injury and related food safety risks.
Collapse
Affiliation(s)
- Xin Qiang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Shumin Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yinchuan Lv
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaoyuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
30
|
Zeng H, Jiang Y, Yin Q, Li X, Xiong Y, Li B, Xu X, Hu H, Qian G. Sinisan Alleviates Stress-Induced Intestinal Dysfunction and Depressive-like Behaviors in Mice with Irritable Bowel Syndrome by Enhancing the Intestinal Barrier and Modulating Central 5-Hydroxytryptamine. Int J Mol Sci 2024; 25:10262. [PMID: 39408592 PMCID: PMC11476996 DOI: 10.3390/ijms251910262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a common chronic functional bowel disorder and is strongly associated with an increased risk of depression and anxiety. The brain-gut axis plays an important role in the pathophysiologic changes in IBS, yet effective treatments for IBS are still lacking. Sinisan, originating from the Treatise on Typhoid Fever by the medical sage Zhang Zhongjing, is a classic formula in the Eight Methods of Traditional Chinese Medicine (TCM) that focuses on dispersing the liver and regulating the spleen, relieving depression and transmitting evils, and has been widely used in the treatment of liver-depression and spleen-deficiency, diarrhea, and related liver and stomach disorders. However, the therapeutic effect of sinisan in IBS has not been clarified. The aim of this study was to investigate the effects of sinisan on stress-induced intestinal dysfunction and depressive behavior in IBS mice. We established a diarrhea-predominant irritable bowel syndrome (IBS-D) mouse model using a 4% acetic acid enema combined with restraint stress, and analyzed the results using behavioral tests, relevant test kits, hematoxylin-eosin (HE) staining, immunofluorescence (IF), Western blot (WB), and quantitative fluorescence polymerase chain reaction (qRT-PCR). The results showed that sinisan administration significantly alleviated intestinal dysfunction and depressive-like behaviors in IBS-D mice, improved mild colonic inflammation and intestinal mucosal permeability, up-regulated the expression of tight junction proteins ZO-1 and occludin. Sinisan significantly alleviated intestinal dysfunction and depressive-like behaviors in IBS-D mice by decreasing the expression of TNF-α, promoting the expression of tight junction proteins (occludin, ZO-1) expression, and inhibiting the Tlr4/Myd88 signaling pathway, thereby attenuating the inflammatory response, protecting the intestinal barrier, and alleviating symptoms in the IBS-D mouse model. Taken together, sinisan may ameliorate intestinal inflammation and the intestinal barrier by regulating 5-HT expression and the Tlr4/Myd88 pathway, thereby alleviating stress-induced intestinal dysfunction and depressive behaviors in IBS-D mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guoqiang Qian
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.Z.); (Y.J.); (Q.Y.); (X.L.); (Y.X.); (B.L.); (X.X.); (H.H.)
| |
Collapse
|
31
|
Chen H, He M, Cao J, Zhang Y, Zhou Y, Yu Q, Wang A, Xuan J, Li T. Acupuncture and moxibustion intervention in functional dyspepsia: Gastric and duodenal regulation. Heliyon 2024; 10:e35696. [PMID: 39263151 PMCID: PMC11386019 DOI: 10.1016/j.heliyon.2024.e35696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
Functional dyspepsia (FD) is a brain-gut interaction disorder located in the stomach and duodenum, which has complex pathophysiological mechanisms, and there is no effective treatment for FD. Acupuncture and moxibustion have been proven to have definite and significant efficacy on FD. Focusing on the affected area and combined with the potential pathophysiology of FD, here we discuss the possible mechanisms of acupuncture and moxibustion in treating FD to guide future clinical and experimental research. We argue that the pathological causes of FD can be roughly divided into gastrointestinal dysfunction, duodenal low-grade inflammation, visceral hypersensitivity, and duodenal intestinal barrier and microbial imbalance. Correspondingly, the possible mechanisms of acupuncture and moxibustion in treating FD are elucidated from the perspective of how they improve gastric accommodation, regulate gastrointestinal motility, reduce gastric visceral sensitivity, regulate eosinophil-mast cell axis, inhibit low-grade inflammatory responses, and possibly regulate intestinal microbial homeostasis and duodenal barrier function through the microbiota-gut-brain axis. Although some evidence is still lacking, acupuncture remains a promising treatment for FD. In the future, it is necessary to conduct additional clinical and experimental research on acupuncture and moxibustion in treating FD to further explore their effects and mechanisms.
Collapse
Affiliation(s)
- Hongxiu Chen
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117, Changchun, PR China
| | - Min He
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117, Changchun, PR China
| | - Jiazhen Cao
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117, Changchun, PR China
| | - Yifan Zhang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117, Changchun, PR China
| | - Ying Zhou
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117, Changchun, PR China
| | - Qianhui Yu
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117, Changchun, PR China
| | - Anjie Wang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117, Changchun, PR China
| | - Jing Xuan
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, No.1478, Gongnong Rd, Chaoyang District, 130021, Changchun, PR China
| | - Tie Li
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117, Changchun, PR China
| |
Collapse
|
32
|
Meneguelli TS, Wendling AL, Kravchychyn ACP, Rocha DMUP, Dionísio AP, Bressan J, Martino HSD, Tako E, Hermsdorff HHM. Effects of Cashew Nuts ( Anacardium occidentale L.) and Cashew Nut Oil on Intestinal Permeability and Inflammatory Markers during an Energy-Restricted 8-Week Intervention: A Randomized Controlled Trial (Brazilian Nuts Study). Foods 2024; 13:2917. [PMID: 39335845 PMCID: PMC11431763 DOI: 10.3390/foods13182917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Cashew nuts can contribute to improving intestinal permeability and inflammation as they contain essential nutrients and bioactive compounds, but no clinical trials have evaluated these potential effects. This randomized trial aimed to assess the effects of cashew nuts and their oil on intestinal permeability and inflammatory markers. Sixty-four adults with overweight or obesity were allocated into three groups receiving energy restriction (-500 kcal/day): control (CT, free nuts), cashew nuts (CN, 30 g/day), or cashew nut oil (OL, 30 mL/day). Urine lactulose and mannitol, plasma zonulin and the lipopolysaccharide-binding protein (LBP), plasma interleukins (IL-6, TNF-α, IL-10, IL-1β, IL-8, and IL-12p70), and C-reactive proteins were analyzed. Energy restriction reduced body fat and other indicators of adiposity without differences between the groups. Only the control group increased LBPs after an 8-week intervention. There were no statistically significant differences found between the groups in terms of intestinal permeability and inflammatory markers. In conclusion, incorporating cashew nuts or cashew nut oil into an energy-restricted 8-week dietary intervention did not change intestinal permeability and inflammatory markers. As studies evaluating cashew nuts on these markers remain scarce, further research is needed, perhaps with a longer study period and a higher concentration of cashew nuts and oil.
Collapse
Affiliation(s)
- Talitha Silva Meneguelli
- Laboratory of Clinical Analysis and Genomics (LACEG), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil; (T.S.M.); (A.L.W.); (A.C.P.K.); (D.M.U.P.R.); (J.B.)
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil
| | - Aline Lage Wendling
- Laboratory of Clinical Analysis and Genomics (LACEG), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil; (T.S.M.); (A.L.W.); (A.C.P.K.); (D.M.U.P.R.); (J.B.)
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil
| | - Ana Claudia Pelissari Kravchychyn
- Laboratory of Clinical Analysis and Genomics (LACEG), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil; (T.S.M.); (A.L.W.); (A.C.P.K.); (D.M.U.P.R.); (J.B.)
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil
| | - Daniela Mayumi Usuda Prado Rocha
- Laboratory of Clinical Analysis and Genomics (LACEG), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil; (T.S.M.); (A.L.W.); (A.C.P.K.); (D.M.U.P.R.); (J.B.)
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil
| | - Ana Paula Dionísio
- Brazilian Agricultural Research Corporation (Embrapa) Agroindústria Tropical—CNPAT, Fortaleza 60511-110, CE, Brazil;
| | - Josefina Bressan
- Laboratory of Clinical Analysis and Genomics (LACEG), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil; (T.S.M.); (A.L.W.); (A.C.P.K.); (D.M.U.P.R.); (J.B.)
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil
| | - Hércia Stampini Duarte Martino
- Laboratory of Experimental Nutrition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil;
| | - Elad Tako
- Trace Minerals and Nutrition Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14850, USA;
| | - Helen Hermana Miranda Hermsdorff
- Laboratory of Clinical Analysis and Genomics (LACEG), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil; (T.S.M.); (A.L.W.); (A.C.P.K.); (D.M.U.P.R.); (J.B.)
- Laboratory of Energy Metabolism and Body Composition (LAMECC), Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-200, MG, Brazil
| |
Collapse
|
33
|
Tan Z, Chen Y, Wen C, Zhou Y. Dietary supplementation with a silicate clay mineral (palygorskite) alleviates inflammatory responses and intestinal barrier damage in broiler chickens challenged with Escherichia coli. Poult Sci 2024; 103:104017. [PMID: 39043023 PMCID: PMC11318557 DOI: 10.1016/j.psj.2024.104017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
This experiment aimed to explore the protective effects of dietary palygorskite (Pal) supplementation on inflammatory responses and intestinal barrier function of broiler chickens challenged with Escherichia coli (E. coli). A 2 × 2 factorial arrangement was designed to assess the effects of Pal administration (0 or 5 g/kg of feed) and E. coli challenge (E. coli or bacterial culture medium) on broilers in a 21-d feeding trial. Birds were randomly assigned into one of the 4 groups, and each group had 8 replicates with ten birds each. The challenged chickens were orally gavaged with E. coli suspended in Luria-Bertani broth on 14 d of age, while unchallenged birds were administrated with an equivalent amount of culture medium. The sampling was performed at 21 d of age. Compared with the normal birds, an oral E. coli challenge reduced final body weight, and decreased feed intake, weight gain, and feed efficiency during the challenge period (P < 0.05). E. coli challenge promoted colonization of E. coli in cecal content and their translocation to internal organs (heart, liver, and spleen) (P < 0.05). E. coli infection also increased levels of pro-inflammatory cytokines in jejunum and ileum possibly through activating the toll-like receptor-4-mediated signaling pathway (P < 0.05). Moreover, E. coli administration increased intestinal mucosal permeability (higher serum D-lactate level and diamine oxidase activity, and lower intestinal mucosal disaccharidase activities), altered intestinal morphology, and downregulated the gene expression of intestinal tight junction proteins (P < 0.05). In contrast, Pal supplementation enhanced growth performance, inhibited colonization of E. coli, reduced intestinal inflammation, decreased intestinal permeability, restored intestinal morphology, and normalized the expression of genes responsible for inflammatory processes and maintenance of intestinal mucosal barrier (P < 0.05), and most of these beneficial effects resulting from Pal administration were independent of bacterial challenge. The results indicated dietary Pal incorporation was effective in improving growth performance and alleviating inflammation and intestinal mucosal barrier damage in broilers challenged with E. coli.
Collapse
Affiliation(s)
- Zichao Tan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
34
|
Liu M, Deng X, Zhao Y, Everaert N, Zhang H, Xia B, Schroyen M. Alginate Oligosaccharides Enhance Antioxidant Status and Intestinal Health by Modulating the Gut Microbiota in Weaned Piglets. Int J Mol Sci 2024; 25:8029. [PMID: 39125598 PMCID: PMC11311613 DOI: 10.3390/ijms25158029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Alginate oligosaccharides (AOSs), which are an attractive feed additive for animal production, exhibit pleiotropic bioactivities. In the present study, we investigated graded doses of AOS-mediated alterations in the physiological responses of piglets by determining the intestinal architecture, barrier function, and microbiota. A total of 144 weaned piglets were allocated into four dietary treatments in a completely random design, which included a control diet (CON) and three treated diets formulated with 250 mg/kg (AOS250), 500 mg/kg (AOS500), and 1000 mg/kg AOS (AOS1000), respectively. The trial was carried out for 28 days. Our results showed that AOS treatment reinforced the intestinal barrier function by increasing the ileal villus height, density, and fold, as well as the expression of tight junction proteins, especially at the dose of 500 mg/kg AOS. Meanwhile, supplementations with AOSs showed positive effects on enhancing antioxidant capacity and alleviating intestinal inflammation by elevating the levels of antioxidant enzymes and inhibiting excessive inflammatory cytokines. The DESeq2 analysis showed that AOS supplementation inhibited the growth of harmful bacteria Helicobacter and Escherichia_Shigella and enhanced the relative abundance of Faecalibacterium and Veillonella. Collectively, these findings suggested that AOSs have beneficial effects on growth performance, antioxidant capacity, and gut health in piglets.
Collapse
Affiliation(s)
- Ming Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Xiong Deng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Nadia Everaert
- Nutrition and Animal Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Bing Xia
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
35
|
Lao J, Yan S, Yong Y, Li Y, Wen Z, Zhang X, Ju X, Li Y. Lacticaseibacillus casei IB1 Alleviates DSS-Induced Inflammatory Bowel Disease by Regulating the Microbiota and Restoring the Intestinal Epithelial Barrier. Microorganisms 2024; 12:1379. [PMID: 39065147 PMCID: PMC11278699 DOI: 10.3390/microorganisms12071379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) is becoming an increasingly serious health problem in humans and animals. Probiotics can inhibit the development of IBD. Due to the specificity of the strains, the function and mechanism of action of different strains are still unclear. Here, a DSS-induced colitis mouse model was utilized to investigate the ability and mechanism by which Lacticaseibacillus casei IB1 alleviates colitis. Treatment with L. casei IB1 improved DSS-induced colitis in mice, as indicated by increased body weight, colon length, and goblet cell numbers and decreased disease activity index (DAI), proinflammatory factor (TNF-α, IL-1β, and IL-6) levels, and histopathological scores after intake of IB1. IB1 supplementation also improved the expression of tight junction proteins and inhibited the activation of the MAPK and NF-κB signaling pathways to alleviate intestinal inflammation. In addition, IB1 rebalanced the intestinal microbial composition of colitis mice by increasing the abundance of Faecalibaculum and Alistipes and decreasing the abundance of Bacteroides and Escherichia_Shigella. In summary, L. casei IB1 showed great potential for relieving colitis by regulating the microbiota and restoring the epithelial barrier. It can be used as a potential probiotic for the prevention and treatment of UC in the future.
Collapse
Affiliation(s)
- Jianlong Lao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Shuping Yan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Yanhong Yong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Yin Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Zhaohai Wen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Xiaoyong Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Xianghong Ju
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Youquan Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| |
Collapse
|
36
|
Fan Q, Liang R, Chen M, Li Z, Tao X, Ren H, Sheng Y, Li J, Lin R, Zhao C, She G. Metabolic characteristics of evodiamine were associated with its hepatotoxicity via PPAR/PI3K/AKT/NF-кB/tight junction pathway-mediated apoptosis in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116448. [PMID: 38754199 DOI: 10.1016/j.ecoenv.2024.116448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Evodiae Fructus (EF), an herbal medicine, possesses remarkable anti-inflammatory and analgesic properties. It exhibits insecticidal activity as a potent insecticide candidate. However, the toxic characteristics of EF and the underlying mechanisms have not been comprehensively elucidated comprehensively. Thus, we comprehensively explored the toxic components of EF and established the relationship between the therapeutic and toxic effects of EF, encouraging its therapeutic use. We found that evodiamine (EVO), one of the main ingredients of EF, can truly reflect its analgesic properties. In phenotype observation trials, low doses of EVO (< 35 ng/mL) exhibited distinct analgesic activity without any adverse effects in zebrafish. However, EVO dose-dependently led to gross morphological abnormalities in the liver, followed by pericardial edema, and increased myocardial concentrations. Furthermore, the toxic effects of EVO decreased after processing in liver microsomes but increased after administering CYP450 inhibitors in zebrafish, highlighting the prominent effect of CYP450s in EVO-mediated hepatotoxicity. EVO significantly changed the expression of genes enriched in multiple pathways and biological processes, including lipid metabolism, inflammatory response, tight junction damage, and cell apoptosis. Importantly, the PPAR/PI3K/AKT/NF-кB/tight junction-mediated apoptosis pathway was confirmed as a critical functional signaling pathway inducing EVO-mediated hepatotoxicity. This study provided a typical example of the overall systematic evaluation of traditional Chinese medicine (TCM) and its active ingredients with significant therapeutic effects and simultaneous toxicities, especially metabolic toxicities.
Collapse
Affiliation(s)
- Qiqi Fan
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China
| | - Ruiqiang Liang
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Meilin Chen
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China
| | - Zhiqi Li
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China
| | - Xiaoyu Tao
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China
| | - Hongmin Ren
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China
| | - Yuhan Sheng
- Beijing University of Chinese Medicine, Beijing 100102,China
| | - Jiaqi Li
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China
| | - Ruichao Lin
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China.
| | - Chongjun Zhao
- Beijing University of Chinese Medicine, Beijing 100102,China; Beijing Key laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 100102, China.
| | - Gaimei She
- Beijing University of Chinese Medicine, Beijing 100102,China.
| |
Collapse
|
37
|
Kuo CH, Wu LL, Chen HP, Yu J, Wu CY. Direct effects of alcohol on gut-epithelial barrier: Unraveling the disruption of physical and chemical barrier of the gut-epithelial barrier that compromises the host-microbiota interface upon alcohol exposure. J Gastroenterol Hepatol 2024; 39:1247-1255. [PMID: 38509796 DOI: 10.1111/jgh.16539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
The development of alcohol-associated diseases is multifactorial, mechanism of which involves metabolic alteration, dysregulated immune response, and a perturbed intestinal host-environment interface. Emerging evidence has pinpointed the critical role of the intestinal host-microbiota interaction in alcohol-induced injuries, suggesting its contribution to disease initiation and development. To maintain homeostasis in the gut, the intestinal mucosa serves as the first-line defense against exogenous factors in the gastrointestinal tract, including dietary contents and the commensal microbiota. The gut-epithelial barrier comprises a physical barrier lined with a single layer of intestinal epithelial cells and a chemical barrier with mucus trapping host regulatory factors and gut commensal bacteria. In this article, we review recent studies pertaining to the disrupted gut-epithelial barrier upon alcohol exposure and examine how alcohol and its metabolism can affect the regulatory ability of intestinal epithelium.
Collapse
Affiliation(s)
- Cheng-Hao Kuo
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Ling Wu
- Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Microbiota Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Ping Chen
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jun Yu
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Ying Wu
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Microbiota Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
38
|
Hou W, Yu B, Li Y, Yan X, Su Q, Fang X, Zhou X, Yu Z. PC (16:0/14:0) ameliorates hyperoxia-induced bronchopulmonary dysplasia by upregulating claudin-1 and promoting alveolar type II cell repair. Int J Biochem Cell Biol 2024; 172:106587. [PMID: 38740281 DOI: 10.1016/j.biocel.2024.106587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Bronchopulmonary dysplasia (BPD) remains a significant challenge in neonatal care, the pathogenesis of which potentially involves altered lipid metabolism. Given the critical role of lipids in lung development and the injury response, we hypothesized that specific lipid species could serve as therapeutic agents in BPD. This study aimed to investigate the role of the lipid Phosphatidylcholine (PC) (16:0/14:0) in modulating BPD pathology and to elucidate its underlying mechanisms of action. Our approach integrated in vitro and in vivo methodologies to assess the effects of PC (16:0/14:0) on the histopathology, cellular proliferation, apoptosis, and molecular markers in lung tissue. In a hyperoxia-induced BPD rat model, we observed a reduction in alveolar number and an enlargement in alveolar size, which were ameliorated by PC (16:0/14:0) treatment. Correspondingly, in BPD cell models, PC (16:0/14:0) intervention led to increased cell viability, enhanced proliferation, reduced apoptosis, and elevated surfactant protein C (SPC) expression. RNA sequencing revealed significant gene expression differences between BPD and PC (16:0/14:0) treated groups, with a particular focus on Cldn1 (encoding claudin 1), which was significantly enriched in our analysis. Our findings suggest that PC (16:0/14:0) might protect against hyperoxia-induced alveolar type II cell damage by upregulating CLDN1 expression, potentially serving as a novel therapeutic target for BPD. This study not only advances our understanding of the role of lipids in BPD pathogenesis, but also highlights the significance of PC (16:0/14:0) in the prevention and treatment of BPD, offering new avenues for future research and therapeutic development.
Collapse
Affiliation(s)
- Weiwei Hou
- Department of Neonatology, Nanjing Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, Jiangsu 210008, China; Division of Neonatology, Department of Pediatrics, Northern Jiangsu People's Hospital afiliated to Yangzhou University, 98 West Nantong Road, Yangzhou, Jiangsu 225001, China
| | - Boshi Yu
- Division of Neonatology, Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 1017 North Dongmen Road, Shenzhen, Guangdong 518020, China.
| | - Yubai Li
- Division of Neonatology, Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 1017 North Dongmen Road, Shenzhen, Guangdong 518020, China
| | - Xudong Yan
- Division of Neonatology, Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 1017 North Dongmen Road, Shenzhen, Guangdong 518020, China
| | - Qian Su
- Division of Neonatology, Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 1017 North Dongmen Road, Shenzhen, Guangdong 518020, China
| | - Xiaoyan Fang
- Division of Neonatology, Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 1017 North Dongmen Road, Shenzhen, Guangdong 518020, China
| | - Xiaoguang Zhou
- Department of Neonatology, Nanjing Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, Jiangsu 210008, China.
| | - Zhangbin Yu
- Division of Neonatology, Department of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 1017 North Dongmen Road, Shenzhen, Guangdong 518020, China.
| |
Collapse
|
39
|
Nie X, Li Q, Chen X, Onyango S, Xie J, Nie S. Bacterial extracellular vesicles: Vital contributors to physiology from bacteria to host. Microbiol Res 2024; 284:127733. [PMID: 38678680 DOI: 10.1016/j.micres.2024.127733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Bacterial extracellular vesicles (bEVs) represent spherical particles with diameters ranging from 20 to 400 nm filled with multiple parental bacteria-derived components, including proteins, nucleic acids, lipids, and other biomolecules. The production of bEVs facilitates bacteria interacting with their environment and exerting biological functions. It is increasingly evident that the bEVs play integral roles in both bacterial and host physiology, contributing to environmental adaptations to functioning as health promoters for their hosts. This review highlights the current state of knowledge on the composition, biogenesis, and diversity of bEVs and the mechanisms by which different bEVs elicit effects on bacterial physiology and host health. We posit that an in-depth exploration of the mechanistic aspects of bEVs activity is essential to elucidate their health-promoting effects on the host and may facilitate the translation of bEVs into applications as novel natural biological nanomaterials.
Collapse
Affiliation(s)
- Xinke Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xinyang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | | | - Junhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
40
|
Saviano A, Roehlen N, Baumert TF. Tight Junction Proteins as Therapeutic Targets to Treat Liver Fibrosis and Hepatocellular Carcinoma. Semin Liver Dis 2024; 44:180-190. [PMID: 38648796 DOI: 10.1055/s-0044-1785646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In the last decade tight junction proteins exposed at the surface of liver or cancer cells have been uncovered as mediators of liver disease biology: Claudin-1 and Occludin are host factors for hepatitis C virus entry and Claudin-1 has been identified as a driver for liver fibrosis and hepatocellular carcinoma (HCC). Moreover, Claudins have emerged as therapeutic targets for liver disease and HCC. CLDN1 expression is upregulated in liver fibrosis and HCC. Monoclonal antibodies (mAbs) targeting Claudin-1 have completed preclinical proof-of-concept studies for treatment of liver fibrosis and HCC and are currently in clinical development for advanced liver fibrosis. Claudin-6 overexpression is associated with an HCC aggressive phenotype and treatment resistance. Claudin-6 mAbs or chimeric antigen receptor-T cells therapies are currently being clinically investigated for Claudin-6 overexpressing tumors. In conclusion, targeting Claudin proteins offers a novel clinical opportunity for the treatment of patients with advanced liver fibrosis and HCC.
Collapse
Affiliation(s)
- Antonio Saviano
- Inserm, U1110, Institute of Translational Medicine and Liver Disease, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Service d'hépato-gastroentérologie, Pôle Hépato-digestif, Institut-Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Natascha Roehlen
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas F Baumert
- Inserm, U1110, Institute of Translational Medicine and Liver Disease, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Service d'hépato-gastroentérologie, Pôle Hépato-digestif, Institut-Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
41
|
Lin P, Liufu S, Wang J, Hou Z, Liang Y, Wang H, Li B, Cao N, Liu W, Huang Y, Tian Y, Xu D, Li X, Fu X. Effects of stocking density on the homeostasis of uric acid and related liver and kidney functions in ducks. Anim Biosci 2024; 37:952-961. [PMID: 38271963 PMCID: PMC11065707 DOI: 10.5713/ab.23.0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE Stocking density (SD) is an important issue in the poultry industry, which is related to the production performance, intestinal health and immune status. In the present study, the effects of SD on the metabolism and homeostasis of uric acid as well as the related functions of the liver and kidney in ducks were examined. METHODS A total of 360 healthy 56-day-old Shan-ma ducks were randomly divided into the low stocking density (n = 60, density = 5 birds/m2), medium stocking density (n = 120, density = 10 birds/m2) and high stocking density groups (HSD; n = 180, density = 15 birds/m2). Samples were collected in the 3rd, 6th, and 9th weeks of the experiment for analysis. RESULTS The serum levels of uric acid, lipopolysaccharide and inflammatory cytokines (interleukin-1β [IL-1β], IL-8, and tumor necrosis factor-α [TNF-α]) were increased significantly in the HSD group. Serious histopathological lesions could be seen in both the livers and kidneys in the HSD group in the 9th week. The mRNA expression levels of inflammatory cytokines (IL-8 and TNF-α) and related pathway components (toll-like receptor 4, myeloid differentiation primary response gene 88, and nuclear factor-κB) were increased significantly in both the livers and kidneys in the HSD group. The mRNA expression levels of enzymes (adenosine deaminase, xanthine oxidase, phosphoribosyl pyrophosphate amidotransferase, and phosphoribosyl pyrophosphate synthetase 1) related to the synthesis of uric acid increased significantly in the livers in the HSD group. However, the mRNA expression level of solute carrier family 2 member 9, which plays an important role in the excretion of uric acid by the kidney, was decreased significantly in the kidneys in the HSD group. CONCLUSION These results indicated that a higher SD could cause tissue inflammatory lesions in the liver and kidney and subsequently affect the metabolism and homeostasis of uric acid, and is helpful for guiding decisions related to the breeding and production of ducks.
Collapse
Affiliation(s)
- Peiyi Lin
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Sui Liufu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Jinhui Wang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Zhanpeng Hou
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Yu Liang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Haiyue Wang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Bingxin Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Nan Cao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Wenjun Liu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Yunmao Huang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Yunbo Tian
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Danning Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Xiujin Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Xinliang Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| |
Collapse
|
42
|
Zhao GP, Cheng WL, Zhang ZH, Li YX, Li YQ, Yang FW, Wang YB. The use of amino acids and their derivates to mitigate against pesticide-induced toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116340. [PMID: 38636261 DOI: 10.1016/j.ecoenv.2024.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Exposure to pesticides induces oxidative stress and deleterious effects on various tissues in non-target organisms. Numerous models investigating pesticide exposure have demonstrated metabolic disturbances such as imbalances in amino acid levels within the organism. One potentially effective strategy to mitigate pesticide toxicity involves dietary intervention by supplementing exogenous amino acids and their derivates to augment the body's antioxidant capacity and mitigate pesticide-induced oxidative harm, whose mechanism including bolstering glutathione synthesis, regulating arginine-NO metabolism, mitochondria-related oxidative stress, and the open of ion channels, as well as enhancing intestinal microecology. Enhancing glutathione synthesis through supplementation of substrates N-acetylcysteine and glycine is regarded as a potent mechanism to achieve this. Selection of appropriate amino acids or their derivates for supplementation, and determining an appropriate dosage, are of the utmost importance for effective mitigation of pesticide-induced oxidative harm. More experimentation is required that involves large population samples to validate the efficacy of dietary intervention strategies, as well as to determine the effects of amino acids and their derivates on long-term and low-dose pesticide exposure. This review provides insights to guide future research aimed at preventing and alleviating pesticide toxicity through dietary intervention of amino acids and their derivates.
Collapse
Affiliation(s)
- Guo-Ping Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Wei-Long Cheng
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zhi-Hui Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yi-Xuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; National Center of Technology Innovation for Dairy, Inner Mongolia 013757, China
| | - Ying-Qiu Li
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Fang-Wei Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan-Bo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
43
|
Lai Z, Gong F. Protective Effects of Lactobacillus reuteri on Intestinal Barrier Function in a Mouse Model of Neonatal Necrotizing Enterocolitis. Am J Perinatol 2024; 41:e386-e393. [PMID: 36368653 DOI: 10.1055/s-0042-1755554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The intestinal mucosal and immune barriers play considerable roles in the pathogenesis of necrotizing enterocolitis (NEC). The present research was designed to assess the protective effects of Lactobacillus reuteri (LR) DSM 17938 (LR 17938) on the intestinal barriers and its beneficial effects on inflammation in a neonatal mouse model of NEC. STUDY DESIGN Overall, 7-day-old 75 C57BL/6 neonatal mice were separated into three groups (n = 25) as follows: (1) control, (2) NEC, and (3) NEC + LR17938 (LR group). NEC mice were administered a hypertonic feeding formula and subjected to asphyxia and hypothermia. Hematoxylin and eosin (HE) staining and pathological scores were used to assess the pathological changes in the intestine. Oxidative stress was evaluated based on the levels of superoxide dismutase (SOD) and malondialdehyde (MDA). Tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels were detected to assess inflammation. Gut permeability levels, bacterial translocation, and the levels of secretory idioglobulin A (sIgA), β-defensin, and tight junction (TJ) proteins were detected to evaluate gut mucosal and immune barrier function, and gut microbial diversity was detected to assess the composition of the gut flora. RESULTS LR 17938 administration decreased the NEC-induced increase in intestinal scores, mortality rate, gut damage, the MDA level, and TNF-α and IL-1β expressions. Besides, LR 17938 improved the survival rate of NEC mice. Moreover, LR 17938 administration improved gut permeability levels, SOD activity and the bacterial translocation, ameliorated the expression of TJ proteins, and improved the gut microbiota compared with those of NEC mice. CONCLUSION LR 17938 reduced intestinal inflammation and played a protective role in a neonatal animal model of NEC, possibly by regulating oxidative stress and exerting a protective effect on the gut mucosal and immune barriers. KEY POINTS · Our research indicated a protective effect of LR 17938 on gut barrier function in NEC mice.. · LR 17938may affect the diversity of gut flora, which are known to target beneficial bacteria.. · LR 17938 protected gut barrier function in the NEC pups by improving gut permeability..
Collapse
Affiliation(s)
- Zhuoli Lai
- Department of Pediatrics, Yongchuan Hospital Affiliated to Chongqing Medical University, Chongqing, China
- Department of Pediatrics, Children's Hospital of Yongchuan District, Chongqing, China
| | - Fang Gong
- Department of Pediatrics, Yongchuan Hospital Affiliated to Chongqing Medical University, Chongqing, China
| |
Collapse
|
44
|
Bragazzi MC, Pianigiani F, Venere R, Ridola L. Dysbiosis in Inflammatory Bowel Disease and Spondyloarthritis: Still a Long Way to Go? J Clin Med 2024; 13:2237. [PMID: 38673510 PMCID: PMC11050776 DOI: 10.3390/jcm13082237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The association between Inflammatory Bowel Disease (IBD) and Spondyloarthritis (SpA) has been known for years, as has the concept that IBD is associated with an altered intestinal bacterial composition, a condition known as "dysbiosis". Recently, a state of intestinal dysbiosis has also been found in SpA. Dysbiosis in the field of IBD has been well characterized so far, as well as in SpA. The aim of this review is to summarize what is known to date and to emphasize the similarities between the microbiota conditions in these two diseases: particularly, an altered distribution in the gut of Enterobacteriaceae, Streptococcus, Haemophilus, Clostridium, Akkermansia, Ruminococcus, Faecalibacterium Prausnitzii, Bacteroides Vulgatus, Dialister Invisus, and Bifidubacterium Adolescentis is common to both IBD and SpA. At the same time, little is known about intestinal dysbiosis in IBD-related SpA. Only a single recent study has found an increase in Escherichia and Shigella abundances and a decrease in Firmicutes, Ruminococcaceae, and Faecalibacterium abundances in an IBD-related SpA group. Based on what has been discovered so far about the altered distribution of bacteria that unite both pathologies, it is appropriate to carry out further studies aiming to improve the understanding of IBD-related SpA for the purpose of developing new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Lorenzo Ridola
- Department of Medical-Surgical Sciences and Biotechnology, Sapienza University of Rome, Polo Pontino, 04100 Rome, Italy; (M.C.B.); (F.P.); (R.V.)
| |
Collapse
|
45
|
Yu S, Ren H, Liu T, Han X, Guo H, Ning Q, Li Y, Zhou H, Chen M, Hu T. Metformin suppresses NFE2L1 pathway activation to inhibit gap junction beta protein expression in NSCLC. Cancer Med 2024; 13:e7021. [PMID: 38562019 PMCID: PMC10985411 DOI: 10.1002/cam4.7021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVE Non-small-cell lung cancer (NSCLC) is a deadly form of cancer that exhibits extensive intercellular communication which contributed to chemoradiotherapy resistance. Recent evidence suggests that arrange of key proteins are involved in lung cancer progression, including gap junction proteins (GJPs). METHODS AND RESULTS In this study, we examined the expression patterns of GJPs in NSCLC, uncovering that both gap junction protein, beta 2 (GJB2) and gap junction protein, beta 2 (GJB3) are increased in LUAD and LUSC. We observed a correlation between the upregulation of GJB2, GJB3 in clinical samples and a worse prognosis in patients with NSCLC. By examining the mechanics, we additionally discovered that nuclear factor erythroid-2-related factor 1 (NFE2L1) had the capability to enhance the expression of connexin26 and connexin 31 in the NSCLC cell line A549. In addition, the use of metformin was discovered to cause significant downregulation of gap junction protein, betas (GJBs) by limiting the presence of NFE2L1 in the cytoplasm. CONCLUSION This emphasizes the potential of targeting GJBs as a viable treatment approach for NSCLC patients receiving metformin.
Collapse
Affiliation(s)
- Shuo Yu
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
- Department of General SurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Hui Ren
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Tingting Liu
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xiaoyan Han
- Department of General SurgeryWeifang People's HospitalWeifangShandongChina
| | - Hui Guo
- Department of OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Qian Ning
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yang Li
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Hong Zhou
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Mingwei Chen
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Tinghua Hu
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
46
|
Aburto MR, Cryan JF. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota-gut-brain axis. Nat Rev Gastroenterol Hepatol 2024; 21:222-247. [PMID: 38355758 DOI: 10.1038/s41575-023-00890-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Crosstalk between gut and brain has long been appreciated in health and disease, and the gut microbiota is a key player in communication between these two distant organs. Yet, the mechanisms through which the microbiota influences development and function of the gut-brain axis remain largely unknown. Barriers present in the gut and brain are specialized cellular interfaces that maintain strict homeostasis of different compartments across this axis. These barriers include the gut epithelial barrier, the blood-brain barrier and the blood-cerebrospinal fluid barrier. Barriers are ideally positioned to receive and communicate gut microbial signals constituting a gateway for gut-microbiota-brain communication. In this Review, we focus on how modulation of these barriers by the gut microbiota can constitute an important channel of communication across the gut-brain axis. Moreover, barrier malfunction upon alterations in gut microbial composition could form the basis of various conditions, including often comorbid neurological and gastrointestinal disorders. Thus, we should focus on unravelling the molecular and cellular basis of this communication and move from simplistic framing as 'leaky gut'. A mechanistic understanding of gut microbiota modulation of barriers, especially during critical windows of development, could be key to understanding the aetiology of gastrointestinal and neurological disorders.
Collapse
Affiliation(s)
- María R Aburto
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
47
|
Salem MB, El-Lakkany NM, Seif el-Din SH, Hammam OA, Samir S. Diosmin alleviates ulcerative colitis in mice by increasing Akkermansia muciniphila abundance, improving intestinal barrier function, and modulating the NF-κB and Nrf2 pathways. Heliyon 2024; 10:e27527. [PMID: 38500992 PMCID: PMC10945203 DOI: 10.1016/j.heliyon.2024.e27527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Ulcerative colitis is a common type of inflammatory bowel disease that affects millions of individuals around the world. Traditional UC treatment has focused on suppressing immune responses rather than treating the underlying causes of UC, which include oxidative stress, inflammation, and microbiota dysbiosis. Diosmin (DIO), a naturally occurring flavonoid, possesses antioxidant and anti-inflammatory properties. This study aimed to assess the efficacy of DIO in treating dextran-sulfate sodium (DSS)-induced colitis, and to investigate some of its underlying mechanisms, with an emphasis on Akkermansia muciniphila abundance, inflammatory markers, and intestinal barrier function. C57BL/6 mice were given 4% (w/v) DSS to induce colitis. DSS-induced mice were administered DIO (100 and 200 mg/kg) or sulfasalazine orally for 7 days. Every day, the disease activity index (DAI) was determined by recording body weight, diarrhea, and bloody stool. Changes in fecal A. muciniphila abundance, colonic MUC1 and MUC2 expression, as well as oxidative stress and inflammatory markers were all assessed. Histopathological changes, colonic PIK3PR3 and ZO-1 levels, and immunohistochemical examinations of occludin and claudin-1, were investigated. DIO administration resulted in a dose-dependent decrease in DAI, as well as increase in A. muciniphila abundance and MUC2 expression while decreasing MUC1 expression. DIO also dramatically reduced colonic oxidative stress and inflammation by regulating the NF-κB and Nrf2 cascades, restored intestinal barrier integrity by inhibiting PIK3R3 and inducing ZO-1, and improved occludin/claudin-1 gene expression and immunostaining. This study provides the first evidence that DIO preserves intestinal barrier integrity and increases A. muciniphila abundance in DSS-induced colitis. However, more research is required to explore the impact of DIO on the overall composition and diversity of the gut microbiota. Likewise, it will be important to fully understand the molecular mechanisms by which A. muciniphila maintains intestinal barrier function and its potential use as an adjuvant in the treatment of UC.
Collapse
Affiliation(s)
- Maha Badr Salem
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Naglaa Mohamed El-Lakkany
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Sayed Hassan Seif el-Din
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Olfat Ali Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| | - Safia Samir
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Giza, 12411, Egypt
| |
Collapse
|
48
|
Yu J, Zhao C, Zhao P, Mu M, Li X, Zheng J, Sun X. FXR controls duodenogastric reflux-induced gastric inflammation through negatively regulating ER stress-associated TNXIP/NLPR3 inflammasome. iScience 2024; 27:109118. [PMID: 38439955 PMCID: PMC10909759 DOI: 10.1016/j.isci.2024.109118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/15/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Duodenogastric reflux (DGR) is closely associated with gastric inflammation and tumorigenesis; however, the precise mechanism is unclear. Hence, we aim to clarify this molecular mechanism and design an effective therapeutic strategy based on it. The present study found that DGR induced TXNIP/NLRP3 inflammasome activation and triggered pyroptosis in gastric mucosa in vitro and in vivo, in which endoplasmic reticulum (ER) stress via PERK/eIF2α/CHOP signaling was involved. Mechanistically, farnesoid X receptor (FXR) antagonized the DGR-induced PERK/eIF2α/CHOP pathway and reduced TXNIP and NLRP3 expression. Moreover, FXR suppressed NLRP3 inflammasome activation by physically interacting with NLRP3 and caspase-1. Administration of the FXR agonist OCA protected the gastric mucosa from DGR-induced barrier disruption and mucosal inflammation. In conclusion, our study demonstrates the involvement of TXNIP/NLRP3 inflammasome-mediated pyroptosis in DGR-induced gastric inflammation. FXR antagonizes gastric barrier disruption and mucosal inflammation induced by DGR. Restoration of FXR activity may be a therapeutic strategy for DGR-associated gastric tumorigenesis.
Collapse
Affiliation(s)
- Junhui Yu
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Chenye Zhao
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Pengwei Zhao
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Mingchao Mu
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Xiaopeng Li
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Jianbao Zheng
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Xuejun Sun
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| |
Collapse
|
49
|
Goel H, Printz RL, Pannala VR, AbdulHameed MDM, Wallqvist A. Probing Liver Injuries Induced by Thioacetamide in Human In Vitro Pooled Hepatocyte Experiments. Int J Mol Sci 2024; 25:3265. [PMID: 38542239 PMCID: PMC10970511 DOI: 10.3390/ijms25063265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 11/03/2024] Open
Abstract
Animal studies are typically utilized to understand the complex mechanisms associated with toxicant-induced hepatotoxicity. Among the alternative approaches to animal studies, in vitro pooled human hepatocytes have the potential to capture population variability. Here, we examined the effect of the hepatotoxicant thioacetamide on pooled human hepatocytes, divided into five lots, obtained from forty diverse donors. For 24 h, pooled human hepatocytes were exposed to vehicle, 1.33 mM (low dose), and 12 mM (high dose) thioacetamide, followed by RNA-seq analysis. We assessed gene expression variability using heat maps, correlation plots, and statistical variance. We used KEGG pathways and co-expression modules to identify underlying physiological processes/pathways. The co-expression module analysis showed that the majority of the lots exhibited activation for the bile duct proliferation module. Despite lot-to-lot variability, we identified a set of common differentially expressed genes across the lots with similarities in their response to amino acid, lipid, and carbohydrate metabolism. We also examined efflux transporters and found larger lot-to-lot variability in their expression patterns, indicating a potential for alteration in toxicant bioavailability within the cells, which could in turn affect the gene expression patterns between the lots. Overall, our analysis highlights the challenges in using pooled hepatocytes to understand mechanisms of toxicity.
Collapse
Affiliation(s)
- Himanshu Goel
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Richard L. Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Venkat R. Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Mohamed Diwan M. AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
| |
Collapse
|
50
|
Xu Q, Jia C, Ou Y, Zeng C, Jia Y. Dark horse target Claudin18.2 opens new battlefield for pancreatic cancer. Front Oncol 2024; 14:1371421. [PMID: 38511141 PMCID: PMC10951399 DOI: 10.3389/fonc.2024.1371421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Pancreatic cancer is one of the deadliest malignant tumors, which is a serious threat to human health and life, and it is expected that pancreatic cancer may be the second leading cause of cancer death in developed countries by 2030. Claudin18.2 is a tight junction protein expressed in normal gastric mucosal tissues, which is involved in the formation of tight junctions between cells and affects the permeability of paracellular cells. Claudin18.2 is highly expressed in pancreatic cancer and is associated with the initiation, progression, metastasis and prognosis of cancer, so it is considered a potential therapeutic target. Up to now, a number of clinical trials for Claudin18.2 are underway, including solid tumors such as pancreatic cancers and gastric cancers, and the results of these trials have not yet been officially announced. This manuscript briefly describes the Claudia protein, the dual roles of Cluadin18 in cancers, and summarizes the ongoing clinical trials targeting Claudin18.2 with a view to integrating the research progress of Claudin18.2 targeted therapy. In addition, this manuscript introduces the clinical research progress of Claudin18.2 positive pancreatic cancer, including monoclonal antibodies, bispecific antibodies, antibody-drug conjugates, CAR-T cell therapy, and hope to provide feasible ideas for the clinical treatment of Claudin18.2 positive pancreatic cancer.
Collapse
Affiliation(s)
- Qian Xu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Caiyan Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yan Ou
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chuanxiu Zeng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|